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Abstract

This paper is concerned with extending the familiar notion of fixed effects to nonlinear

setups with infinite dimensional unobservables like preferences. The main result is that a

generalized version of differencing identifies local average structural derivatives (LASDs)

in very general nonseparable models, while allowing for arbitrary dependence between

the persistent unobservables and the regressors of interest even if there are only two time

periods. These quantities specialize to well known objects like the slope coefficient in

the semiparametric panel data binary choice model with fixed effects. We extend the

basic framework to include dynamics in the regressors and time trends, and show how

distributional effects as well as average effects are identified. In addition, we show how

to handle endogeneity in the transitory component. Finally, we adapt our results to the

semiparametric binary choice model with correlated coefficients, and establish that average

structural marginal probabilities are identified. We conclude this paper by applying the

last result to a real world data example. Using the PSID, we analyze the way in which

the lending restrictions for mortgages eased between 2000 and 2004.
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1 Introduction

In linear structures, panel data allow one to deal with persistent but unobservable sources of

endogeneity. In many microeconomic data applications, such unobservables include traits that

are specific to the individual, e.g., their background or ability, that are clearly correlated with

many individual-specific regressors of interest, e.g., income. In linear settings, these invariant

factors are typically modelled using a scalar additive unobservable (the “fixed effect”); this is

typically removed by taking first differences or by quasi-differencing (see any standard textbook,

e.g., Wooldridge, 2008).

This paper establishes that a particular form of differencing can be applied to a large class of

nonseparable models. As a special case, we consider binary choice models with additive scalar

fixed effects. More generally, we establish that the same results hold under mild regularity

conditions not just for scalar fixed effects, but for any infinite dimensional nonseparable time

invariant unobservables.

Specifically, we first consider the general class of nonseparable panel structures of the form:

Yt = φ(Xt, Zt, Ut, A), t = 1, ..., T. (1.1)

where, for i = 1, 2, ..., Yt = Yit ∈ Y is an observable real-valued random scalar, (Xt, Zt) =

(Xit, Zit) ∈ X × Z ⊆ R
K+L are observable real valued random K- and L-vectors, respectively,

and (Ut, A) = (Uit, Ai) ∈ U ×A denote unobservables, respectively time varying and time

invariant, both of which are allowed to be of countably infinite dimension. For example, A may

be a Borel space whose elements are piecewise continuous utility functions, whereas U may be

a Borel space whose elements represent piecewise continuous belief functions. The idea is that

the first two arguments of φ denote drivers of Yt that we can observe without error, whereas

the latter two denote genuinely unobservable causes and characteristics determining Yt. We

assume that interest centers on the effect of Xt on Yt, whereas we only want to account or

control for the influence of all other variables, whether observed like Zt or unobserved – we are

not primarily interested in their effects.

Note further that we will not assume any type of monotonicity of φ in Ut or A. This will

imply that the function φ itself and its derivatives are not identified, but certain of its conditional

expectations and their derivatives are. These have an interpretation as local average structural

derivatives (LASDs), and are related to the average structural function of Blundell and Powell

(2004) and the marginal treatment effect of Heckman and Vytlacil (2008). To denote these

derivatives, we let Dxf denote the row vector of partial derivatives of f with respect to the

elements of x; we also let Dxxf be the K × K Hessian of f .

For simplicity, our focus is on the case where T = 2, i.e., we consider the two period case1.

1Indeed, we consider the fact that our approach can work in such a simple setup a major advantage compared
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In the following, we let ∆Y := Y2 − Y1, X = (X ′
1, X

′
2)

′ , ∆X := X2 − X1, Z = (Z ′
1, Z

′
2)

′ and

∆Z := Z2 − Z1. Our main theorem establishes that

DξE [∆Y |∆X = ξ,X1 = x, ∆Z = 0, Z1 = z] |ξ=0

= E [Dxφ(X1, Z1, U1, A)|∆X = 0, X1 = x, ∆Z = 0, Z1 = z] .

The expression on the left-hand side involves only observable quantities. The expression on the

right is the LASD. For a fixed value ∆X = 0, X1 = x, ∆Z = 0, Z1 = z, this gives the average

structural derivative for the subpopulation characterized by those values of the regressors.

Similar quantities are analyzed in the cross-section case with endogeneity in Altonji and Matzkin

(2005), Hoderlein (2005, 2008), Hoderlein and Mammen (2007), Imbens and Newey (2008), and

Schennach, White, and Chalak (2008), and in the panel case by Chernozhukov, Fernandez-Val,

Hahn, and Newey (2009) and Graham and Powell (2009). LASDs are also related to the average

structural function of Blundell and Powell (2004). Note the different roles of X and Z. Whereas

we differentiate with respect to first differences of the former, we only condition on the latter.

Note, moreover, that if Z is time invariant then ∆Z = 0 is automatically satisfied, and similarly

for time-invariant components of Z.

We show below that this LASD is identified under mild assumptions. Indeed, we require only

conditional independence between Ut and X, conditional on A and Z, and a mild stationarity

condition on the error U . To emphasize, Z can be arbitrarily correlated with A and U ; we also

allow correlation between A and U as well as A and X. Thus, we can indeed say that panel

data allow one to correct for the influence of potentially endogenous persistent unobserved

heterogeneity in a very general class of models.

There are two caveats to our analysis: First, as it stands, our approach does not allow for

lagged dependent variables. Second, under the weakest set of assumptions, we can only identify

effects for the subpopulation for which ∆X = 0 and ∆Z = 0. However, if the data generating

process has an index structure, e.g., φ(Xt, Zt, Ut, A) = ψ(X ′
tβo, Z

′
tγo, Ut, A), this subpopulation

suffices to identify the index coefficient βo, γo up to scale (and hence the ratio of marginal

effects). We will use this fact later when discussing the binary choice model. Alternatively, if

we strengthen our dependence assumptions and restrict the correlation between increments of

the X process and A mildly, we obtain

DξE [∆Y |∆X = ξ,X1 = x, ∆Z = 0, Z1 = z] |ξ=0

= E [Dxφ(X1, Z1, U1, A)|X1 = x, Z1 = z] ,

implying that we can learn the LASD for the entire population by just considering the subpop-

ulation with ∆X = 0 and ∆Z = 0. Consequently, we do not consider this a serious limitation.

to some of the other semiparametric approaches.
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In addition to average marginal effects, we describe how distributional effects are similarly

identified.

As mentioned earlier, the general approach proposed here can be applied to the semipara-

metric binary choice panel structure, as in Arellano and Carrasco (2003). In our notation, this

is

Yt = I {X ′
tβo + Z ′

tγo + Ut + A > 0} , t = 1, ..., T, (1.2)

where all variables are as before, but now U ×A ⊆ R
2, i.e., A corresponds to the classical notion

of fixed effect, I {·} denotes the indicator function, and βo and γo denote unknown coefficients.

If we let T = 2, by arguments similar to those for the general nonseparable case, we can show

that under similarly unrestrictive assumptions,

βo ∝ E [{DξE [∆Y |∆X = ξ, X1, ∆Z = 0, Z] |ξ=0} b(X, Z)] ,

where b denotes a user-specified weighting function affecting only the constant of proportional-

ity. As is standard in semiparametric index models, identification is only up to scale. In fact,

we obtain identification results for the more general case in which unobserved heterogeneity is

present in the coefficients by replacing βo in this structure with β(A).

These applications and extensions illustrate the wide applicability of our approach.

Related Literature: Analyzing nonlinear panel data models has a long tradition, dating

back to the conditional ML approach by Rasch (1960, 1961); see also Andersen (1970) and

Chamberlain (1984). Nonlinear parametric panel data models have frequently been analyzed.

For an overview of work related to discrete choice models, see Arellano (2003). Closely related to

our work is that of Manski (1987), who considers semiparametric estimation of a non-dynamic

binary choice panel data model via a median restriction. Chamberlain (1992) discusses the

identification of the dynamic panel data binary choice model, and why the logistic distribution

assumption is required for identification of βo (unless one is willing to assume unbounded

support for one of the regressors, as is the case in Manski (1987)). For other nonlinear fixed

effects models, see also Hausman, Hall, and Griliches (1984) for panel count data, Honore (1992)

for panel censored regression, and Kyriazidou (1997) for a panel sample selection model.

Like all of this work, our approach assumes a fixed number of time periods. Indeed, it is

one of the appealing features of our approach that we only require T = 2. This distinguishes

our approach from some of the work on the dynamic binary choice model that requires several

time periods more and that focuses only on a very restrictive subpopulation; see Honore and

Kyriazidou (2000). Other approaches let the time dimension T tend to infinity; see Arellano

and Hahn (2007) and Hahn and Newey (2004). An interesting alternative way to treat the bias

arising in dynamic models with fixed T are bounds, as in Honore and Tamer (2004). For a

general overview, see Chamberlain (1984) and Arellano and Honore (2001).
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All of the work just described is concerned with a specific semiparametric model, e.g., the

dynamic binary choice model. Approaches that are closer in spirit to our work are those of Cher-

nozhukov, Fernandez-Val, Hahn, and Newey (2009), who consider discrete variation, whereas

we consider derivatives, and Graham and Powell (2009) as well as Arellano and Bonhomme

(2009) who both focus on a linear heterogeneous population (i.e., the structure is linear in the

coefficients, with coefficients that vary across the population), and not on a fully nonseparable

structure. The latter two also require at least as many time periods as regressors (resp. param-

eters) to estimate, while we require only two time periods. Altonji and Matzkin (2005) treat

the model under an exchangeability assumption that is different from ours and more closely re-

lated to random effects. Finally, Bester and Hansen (2009) consider a fixed-effects model where

the regressors enter through an index structure, and are weakly separable from the correlated

unobservable, whereas we can allow for random coefficients in e.g., binary choice models.

Outline of the Paper: After this introduction, we focus directly on the main identification

result. We start with a discussion of the precise assumptions we require, and present and discuss

the main result, which establishes the identification of LASDs by generalized differencing. We

provide heuristics for the arguments involved and discuss a number of extensions: We show how

to treat dynamics in the regressors, as well as distributional effects. We also provide guidance

regarding the introduction of time trends and discuss how to deal with endogeneity in Xt beyond

that already permitted by our assumptions. To conclude this section, we give a brief discussion

of estimation under our assumptions, and we also show how to identify average effects. In the

third section, we show how the semiparametric panel data binary choice model can be identified,

using the proof of the main theorem as foundation. We discuss two specifications, one where

the regression coefficients are random, and one where they are fixed. We show that in both

cases, average marginal conditional probabilities are identified (conditional on unobservables

A). We also provide constructive identification for the coefficient of interest, βo, in the fixed

parameters case and we give a closed form expression for the coefficient βo that can be used

to construct a sample counterpart estimator. We conclude this section with a discussion of the

estimator’s properties. All these concepts are put to the test in an application, using data from

the PSID to study the relation between income and the probability of home ownership. The

final section contains a summary and concluding remarks.

2 Identification of Marginal Effects in Nonseparable Func-

tions via Differencing

Assumptions and Notations: To keep the exposition as transparent as possible, we consider

the simplest possible panel data generating process, in which there are just two time periods,
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t = 1, 2. In this case, we have

Y1 = φ(X1, Z1, U1, A)

Y2 = φ(X2, Z2, U2, A). (2.1)

We assume that Yt is a scalar random variable, and that Xt and Zt are random vectors of finite

dimension K and L, respectively. On the other hand, the unobservables Ut and A are random

vectors of possibly countably infinite dimension.

In addition, we impose sufficient regularity on the conditional cumulative distribution func-

tion (CDF) FA|∆X,X1,∆Z,Z1
(a | ξ, x, 0, z) to ensure that it has a density representation of the

form

f(a | ξ, x, 0, z) µ(da | x, 0, z). (2.2)

Here, we understand f to be the Radon-Nikodým derivative; e.g., it is a conditional density

if A is continuous (so A is absolutely continuous with respect to Lebesgue measure µ), or a

conditional probability if A is discrete (i.e., µ is counting measure). In stating our assumptions,

we understand that conditions that hold ”almost everywhere−µ” (a.e. − µ) are with respect

to µ(· | x, 0, z). Further, we let ν(u, a | x, z) denote the product measure defined by F (u |
a, 0, z) × µ(a | x, 0, z). Functions that are ”ν−integrable” are understood to be integrable

with respect to ν(·, · | x, z). We let ||ξ|| := [ξ′ξ]1/2 denote the Euclidean norm, and we define

the neighborhood Nε = {ξ : ‖ξ‖ < ε} . Finally, we write |M | := maxi,j |Mi,j| for any matrix

M := [Mi,j].

We impose the following assumptions:

Assumption 1. Let (Ω,F , P ) be a complete probability space on which are defined the random

vectors A : Ω → A, A ⊆ R
∞, and (Yt, Xt, Zt, Ut) : Ω → Y ×X ×Z × U , Y ⊆ R,X ⊆ R

K ,Z ⊆
R

L,U ⊆ R
∞, t = 1, 2, with K and L finite integers, such that for t = 1, 2, (i) E(Yt) < ∞; (ii)

Yt = φ(Xt, Zt, Ut, A),

where φ : X × Z × U ×A → Y is a Borel measurable function; and (iii) realizations of (Yt, Xt, Zt)

are observable, whereas those of (Ut, A) are not.

Assumption 2. There exists ε > 0 such that

Ut ⊥ (I {‖∆X‖ < ε}∆X, X1) | A, I {‖∆Z‖ = 0}∆Z, Z1 t = 1, 2. (2.3)

Assumption 3. Ut is conditionally stationary: FU1|A,I{‖∆Z‖=0}∆Z,Z1
= FU2|A,I{‖∆Z‖=0}∆Z,Z2

.

Assumption 4. X is an open convex set, and for each (z, u, a) ∈ Z × U×A, φ(·, z, u, a) is twice

continuously differentiable on X . Further, E[Dxφ(X1, Z1, U1, A)] < ∞ and E[Dxxφ(X1, Z1, U1, A)]

< ∞.
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Assumption 5. For each (x, z) ∈ X×Z, there exists a σ−finite measure µ(· | x, 0, z) absolutely

continuous with respect to F (· | ξ, x, 0, z) for all ξ ∈ Nε, so that there exists a Radon-Nikodým

density f such that for each (a, ξ) ∈ A×Nε, F (da | ξ, x, 0, z) = f(a | ξ, x, 0, z) µ(da | x, 0, z).

Assumption 6. For each (x, z) ∈ X × Z, Dξf(a | ξ, x, 0, z) exists a.e. − µ for all ξ ∈ Nε.

Assumption 7. For each (x, z) ∈ X × Z, there exists a ν−integrable dominating function

(u, a) → D(u, a | x, z) such that

sup
ξ∈Nε

|Dxxφ(x + ξ, z, u, a) f(a | ξ, x, 0, z)| ≤ D(u, a | x, z)

sup
ξ∈Nε

|Dxφ(x + ξ, z, u, a)′ Dξf(a | ξ, x, 0, z)| ≤ D(u, a | x, z).

Assumption 8. A ⊥ (I {‖∆X‖ < ε}∆X, I {‖∆Z‖ = 0}∆Z) | X1, Z1.

Discussion of Assumptions: These assumptions merit some discussion. First, assumption

A1 formally specifies the data generating process discussed at the beginning of this section.

The fact that φ is time invariant rules out unrestricted time trends; however, we can include

trends when they enter in a specific fashion, as discussed below.

Next, assumption A2 specifies the sense in which X is exogenous. Conditional on A and

Z1, ∆Z = 0, U1 is independent of X1 and ∆X, and similarly for U2. Note that for the differences

∆X, the independence condition only has to hold for small values of the increment, leaving

larger magnitude values out of account. Note in addition that Z1 and ∆Z may be arbitrarily

correlated with Ut, and that the Ut process may exhibit time series dependence. Below, we will

discuss an extension addressing the case when this assumption does not hold.

What does this condition mean in economic terms? Suppose we have a data set involving

individual-specific information on demand for some good, and on the income and the household

characteristics of each of a set of individuals; and assume for simplicity that all household

characteristics are time invariant. In addition, assume that we only want to control for the

influence of the household characteristics on the income (X) effect, but we are not interested

in the effects of household characteristics per se (i.e., these play the role of Z). Assume for the

moment that A and Zt are discrete, and that we stratify the population according to individual

values (z, a), which we call a ”cell”. Then we require that the errors (i.e., transitory shocks) U1

and U2 are marginally, but not necessarily jointly, independent of income X1 and its increments

∆X for small values of the increment, within every cell. Suppose we have data on gender and

type of occupation in Z, and A is (unobserved) ability. Then this means that Ut is distributed

independently of income and small income changes for, e.g., all high-ability female workers in

the iron industry. Nevertheless, income and transitory shocks Ut are allowed to be dependent

unconditionally, i.e., ignoring the (z, a) values.
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If we are interested in the effects of all regressors, there are effectively no Z’s to condition

on, and the condition becomes closely related to the strict exogeneity condition in textbook

linear panel data models, with the only (important) exceptions that we can allow for correlation

between A and U and that A and U can have arbitrarily large dimension. This already weak

condition could be weakened further, if we have additional conditioning instruments (e.g., past

values of X); see the discussion below.

The next assumption, A3, is a mild conditional stationarity requirement for the unobserv-

able drivers. It essentially says that the conditional distribution of Ut is time invariant. As we

will see below, this assumption rules out lagged dependent variables as regressors. A4 specifies

that the function φ is differentiable in the directions of interest, so that it admits a mean-value

expansion. Moreover, the integrability conditions ensure that the needed expectations are well

defined. We also suppose that f(a | ξ, x, z) is continuously differentiable at ξ = 0 (A6). Dif-

ferentiability, combined with the fact that we are considering a neighborhood of zero in the

changes of the X variable (for all values of X), implies that we are effectively requiring X to be

continuously distributed. Hence, this approach rules out discrete random variables X. Thus,

our world is one of continuous variables and differentiation2. Note, however, that we require

neither condition for the covariates Z, and we do not impose any restriction on the correlation

of Z with all the unobserved variables. This parallels discussions in the cross-section case (see

Hoderlein (2005, 2008) and Schennach, White, and Chalak (2008)).

In contrast to these material assumptions, assumptions A5 and A7 can be seen as regularity

conditions. The latter allows one to interchange integration and differentiation, and only the

former has some binding content in an economic sense: It allows the conditional probability

of A,Z to depend on realized values of ∆X, X1, but it does not permit the possible values for

A,Z to depend on these realized values. For example, the support cannot be discrete for some

values of x and continuous for others.

Finally, the last assumption A8 is again material: It restricts the correlation between the

increments of the Xt and Zt processes and A, conditional on X1, Z1. This condition is discussed

in detail in a companion paper, Hoderlein and White (2009). Since, as already mentioned, we

do not require this for the main result, we only mention here that it is fulfilled with correlated

A, for example if the influence of A is additively separable from other drivers of X, say, Xt =

ψ(Xt−1, Zt, Ut) + λ(A). Nevertheless, this type of restriction need not hold generally. Observe

again that the conditioning on Z admits arbitrary dependence, as in A2 above.

The Main Result: The assumptions introduced above now allow us to identify the object

of interest, the LASD. Our result is as follows:

2If interest centers on the effect of discrete variables, then we refer to Chernozhukov, Fernandez-Val, Hahn,

and Newey (2009), which provides a complement to our approach.
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Theorem 1. Let assumptions A1–A7 hold. Then

DξE [∆Y | ∆X = ξ,X1 = x, ∆Z = 0, Z1 = z] |ξ=0

= E [Dxφ(X1, Z1, U1, A) | ∆X = 0, X1 = x, ∆Z = 0, Z1 = z] ,

with probability one. If in addition assumption A8 holds, then

DξE [∆Y | ∆X = ξ, X1 = x, ∆Z = 0, Z1 = z] |ξ=0 = E [Dxφ(X1, Z1, U1, A) | X1 = x, Z1 = z] ,

(2.4)

with probability one.

Remark: 2.1 - Discussion of Theorem 1: Our main result establishes that certain

conditional averages of derivatives are identified. The left hand side involves only observables:

It is simply the derivative of the nonparametric regression of ∆Y on ∆X, X1, ∆Z,Z1 with

respect to the first arguments (i.e., ∆X), evaluated at arbitrary positions X1 = x, Z1 = z and

at ∆X = 0, ∆Z = 0. The right hand side is exactly the LASD introduced above.

What is this effect, and why is it economically relevant? Consider the demand example

we introduced above, but assume now that we have a time-varying covariate, say, years of

education. Then we can determine the average marginal effect of income on, say, food demand

for all female workers in the iron industry earning $50 K and having 10 years of education,

whose income and years of education did not change between the periods. But we are not able

to identify the marginal effect for every single individual woman. Note that we may allow for

omitted persistent factors like preferences, which may be arbitrarily correlated with income,

occupation, or years of education.

The difference between the first and the second statement of this theorem is that under

the stronger assumption A8, we may actually determine the average marginal effect for all

female women in the iron industry earning $50 K and having 10 years of education, regardless

of whether their income or years of education change or not.

These quantities are similar to those considered in Chernozhukov, Fernandez-Val, Hahn,

and Newey (2009) and to Graham and Powell (2009), and are closely related to the LASD

of Hoderlein (2005, 2008) and Hoderlein and Mammen (2007), to the covariate-conditioned

average effects of White and Chalak (2008), and to derivatives of the average structural function

of Blundell and Powell (2004). They reduce to well known quantities like βo in the linear model;

see also the binary choice model below.

One may object to this statement because it is defined for a subpopulation with small

measure. However, if we assume that the second derivative of φ and Dξf(a | ξ, x, 0, z) are

uniformly bounded then it follows straightforwardly that the bias is at most of order of the

difference, i.e. ξ implying that the bias vanishes smoothly and that we may expect only a
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small bias in the neighborhood of ξ = 0. The same conditions can be used to obtain bounds,

and we refer to section 3 where we have an extensive discussion of this issue in the setup of the

binary choice model that we also use in the application.

Moreover, if we have several time periods, we can perform more pairwise comparisons of

the above form. Since, according to the first part of theorem 1, in general the population with

Z2 − Z1 = 0 and, say, Z3 − Z2 = 0 differ in terms of A, we can use a large panel to make

statements about large parts of the population. What kind of precise technical condition is

required to obtain the LASD for the entire population in the absence of assumption A8 - but

using many time periods instead - is left for future research.

Remark 2.2 - Extensions: Theorem 1 admits a number of interesting extensions. First,

Theorem 1 also allows us to accommodate lagged regressors. To see this, consider the three

period case:

Y1 = φ(X1,X0,U1, A)

Y2 = φ(X2,X1,U2, A) (2.5)

Y3 = φ(X3,X2,U3, A).

Essentially, the same identification strategy as above goes through when we employ time differ-

ences in the dependent variable that are further apart than the order of lags of the dependent

variable. Specifically, if we rewrite X2 = (X ′
3,X ′

2)
′ , X1 = (X ′

1,X ′
0)

′ , Y2 = Y3, Y1 = Y1, U2 = U3,

and U1 = U1, the above structure fits exactly into the framework above. This means that we

use ∆Ỹ = Y2 − Y1 = Y3 − Y1, and ∆X = (X ′
3 −X ′

1,X ′
2 −X ′

0)
′, i.e. wider time differences, and

under trivial modifications the result continues to hold.

Second, although unrestricted time trends are excluded, one may include them by assuming

that

Yt = φ(t,Xt, Zt, Ut, A) = φ0(Xt, Zt, Ut, A) + φ1(t, Ut, Zt),

say. Note the additive separability between Xt, A, and t. This generalizes the commonly used

additive time trend, but is restrictive in that the marginal effects Dxφ are not allowed to depend

on t.

Next, analysis parallel to that above permits us to identify not just the average marginal

effect in the presence of generalized fixed effects, but also marginal causal effects on essentially

any aspect of the conditional response distribution that may be of interest. For example, Heck-

man, Smith, and Clements (1997) draw attention to these effects in the context of programme

evaluation. Imbens and Newey (2008) discuss a variety of such measures. We discuss two

examples: The first generalizes the above result to known differentiable transformations (e.g.,

higher moments), the second uses the conditional CDF.

10



To illustrate, we first let g denote some known differentiable transformation of Y , e.g.,

g(y) = FY (y), where FY is the CDF of Y Then, by the same reasoning as in Theorem 1, we

have

DξE [∆g(Y ) | ∆X = ξ, X1 = x, ∆Z = 0, Z1 = z] |ξ=0

= E [Dx (g[φ(X1, Z1, U1, A)) | ∆X = 0, X1 = x, ∆Z = 0, Z1 = z]

= E [Dxφ(X1, Z1, U1, A)g′(Y ) | ∆X = 0, X1 = x, ∆Z = 0, Z1 = z] .

This means in particular that weighted averages of the form E [DxφfY (Y ) | ·] or a weighting

scheme that allows focusing on a subset of Y only, are identified. This is potentially interesting

for policy considerations, when it is not just the average marginal effect that one is interested

in, but the focus is on the marginal effects for those at particular values of the Y distribution.

In fact, g does not have to be differentiable, although in this case a little different analysis

is required. Specifically, consider the conditional CDF, obtained by taking gy(φ) = I{φ ≤ y};
this is not differentiable. In this case, we can derive the result in a manner entirely parallel to

that used next in our treatment of the binary dependent variable. We obtain:

DξE [∆gy(Y ) | ∆X = ξ, X1 = x, ∆Z = 0, Z1 = z] |ξ=0

= E [DxΨy(X1, Z1, A) | ∆X = 0, X1 = x, ∆Z = 0, Z1 = z] ,

where

Ψy(x, z, a) =

∫

I{φ(x, z, u, a) ≤ y} FU |A,I{‖∆Z‖=0}∆Z,Z1
(du | a, 0, z)

= P [Y1 ≤ y|X1 = x, Z1 = z; ∆Z = 0, A = a]

is assumed differentiable in x. Note that this expression admits again an LASD interpretation.

The structural derivative of interest is DxΨy(x, z, a), and the average effect for this given

covariates is exactly the effect that is obtained.

Marginal effects on (a vector of) aspects a(x, z) of the conditional response distribution

defined by implicit moments can be similarly analyzed, using the implicit function theorem, as

in Chalak and White (2008). These equations can define distributional aspects that optimize

a quasi log-likelihood function (e.g., a conditional quantile), or they can define a generalized

moment.

Remark 2.3 - Conditional endogeneity of X. Even after isolating the marginal effects

of interest from the influence of individual-specific persistent heterogeneity, there could still be

dependence between Ut and Xt. That is, assumption A2 may not hold when conditioning is

restricted to the specified conditioning variables. For instance, if Xt is a choice variable, and

11



Ut represents new information revealed to the decision maker, there may well be correlation,

even conditional on the information specified in assumption A2.

Given suitable additional structure, this issue can be resolved with the use of control vari-

ables. Specifically, suppose that Xt is structurally generated as

Xt = χ(Wt, Vt, A), t = 1, 2,

where Wt and Vt are observable and unobservable drivers of Xt, respectively, and χ is an

unknown measurable function of its arguments such that χ is suitably invertible in Vt. An

advantage of panel data is that there are usually natural candidates for Wt, such as past Xt’s.

In the case where endogeneity arises because of the use of the same information in both decisions

(Xt and Yt), we may well assume that past choice variables reflect past information only and

are hence independent of future information.

With suitable structure, we can recover Vt for use as a control variable. For example, suppose

that Xt = χ0(Wt) + χ1(Wt, A)Vt with Vt ⊥ (Wt, A), and impose the normalizations E(Vt) = 0,

V ar(Vt) = 1. This permits us to solve for Vt as Vt = V ar(Xt|Wt)
−1/2 [Xt − E(Xt|Wt)] , where

E(Xt|Wt) and V ar(Xt|Wt) can be straightforwardly estimated.

Under exogeneity conditions for Wt analogous to those ensuring the validity of standard

instrumental variables, we can now use V1 and ∆V := V2 −V1 as control variables. Specifically,

suppose that

(Ut, ∆V, V1) ⊥ (W1,W2) | A, I {‖∆Z‖ = 0}∆Z,Z1 t = 1, 2.

Applying Dawid (1979), lemma 4.2(ii), together with lemmas 4.1 and 4.2(i), we obtain

Ut ⊥ (I {‖∆X‖ < ε}∆X, X1) | A, I {‖∆Z‖ = 0}∆Z, Z1, ∆V, V1 t = 1, 2.

We recognize this as a version of A2 in which Z1 is augmented by control variables ∆V, V1.

Remark 2.4 - Chamberlain’s impossibility theorem revisited: As mentioned at the

outset, Theorem 1 will not cover the case of a lagged dependent variable. This parallels the

discussion in Chamberlain (1992). To see this, consider the system of equations

Y1 = φ(Y0, X1, U1, A)

Y2 = φ(Y1, X2, U2, A).

At first glance it may appear that we can still identify local average structural effects by treating

Yt−1 as another cause of interest. This, however, violates condition A2, as is immediate by

simple substitution. The alternative is to treat Yt−1 as a conditioning variable, i.e. Zt = Yt−1.

Unfortunately, this is not compatible with our assumptions either. Indeed, the problem stems

in this case from the otherwise innocuous assumption A3. Specifically, it is not possible that

U2 | A, Y1, Y0 ∼ U1 | A, Y1, Y0, (2.6)

12



because although U2 can be plausibly assumed to be independent of Y1, Y0 (e.g., if there is no

serial correlation amongst the Ut), the condition fails because U1 helps determine Y1.

Remark 2.5 - Estimation: Estimation of the quantities of interest here is straightforward.

Standard nonparametric regression techniques can be employed, e.g., kernel or series-based

methods. As interest attaches to a specific partial derivative or collection of partial derivatives,

evaluated at a specified value for the conditioning variables, together with averages of these, it

is especially convenient to use kernel methods.

Specifically, we recommend the use of local polynomial regression (as proposed, e.g., by

Cleveland (1979)), as these methods are well understood and deliver consistent and asymp-

totically normal derivative estimators under mild conditions (see, e.g., Fan (1992), Ruppert

and Wand (1994), Fan and Gijbels (1996), and Masry (1997)). Further, local polynomials can

readily accommodate the empirically significant mixed data case in which some variables are

continuous and others are discrete (e.g., Li and Racine (2004)), and they permit one to avoid

the boundary problems that arise with the use of standard kernel (polynomial of degree zero)

methods.

We assume we have data on a panel of individuals, i = 1, ..., n, where, for convenience,

we may assume the observations are independent and identically distributed (IID). We obtain

parameter estimators from local polynomial regression as

θ̂n(w) = arg min
θ∈Θ

n
∑

i=1

[∆Yi − gp(Wi, θ)]
2Khn

(Wi − w),

where gp(W, θ) defines a polynomial of degree p in W := (∆X ′, X ′
1, ∆Z ′, Z ′

1)
′ with parameters

θ; Khn
is a multivariate kernel with suitably chosen bandwidth hn, e.g., the product kernel

Khn
(Wi − w) = h−d

n

d
∏

ℓ=1

κ(
Wi,ℓ − wℓ

hn

),

where d := 2K+2L, κ is a univariate kernel, and Wi has elements Wi,ℓ; and w0 := (ξ, x, 0, z), ξ ∈
Nε, defines the covariate values of interest. We provide further specifics concerning the choice

of the kernel and bandwidth in our empirical application below. The considerations involved

are entirely standard.

Given an estimator θ̂n, we estimate the effect of interest,

δ∗(x, z) : = DξE [∆Y | ∆X = ξ,X1 = x, ∆Z = 0, Z1 = z] |ξ=0

= E [Dxφ(X1, Z1, U1, A) | ∆X = 0, X1 = x, ∆Z = 0, Z1 = z] ,

as

δ̂n(x, z) := Dξgp(w0, θ̂n(w0)) |ξ=0. (2.7)
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Under mild conditions (e.g., see Fan & Gijbels (1996), Masry (1997), or Hoderlein (2005)), we

have √
nhd+2(δ̂n(x, z) − δ∗(x, z) − hpB(x, z))

d→ N (0, Σ(x, z)),

where B(x, z) and Σ(x, z) are the asymptotic bias and covariance matrix respectively.

Remark 2.6 - Average Effects: Interest may also focus on average measures of these

conditional effects. Specifically, the assumptions that yield the identifying equation (2.4) also

permit us to identify average effects of the form

EF [Dxφ(X, Z, U1, A)] :=

∫

E[Dxφ(x, z, U1, A) | X = x, Z = z] F (dx, dz),

where F is some density of interest specified by the researcher. In particular, we have

δ∗0 :=

∫

DξE [∆Y | ∆X = ξ,X1 = x, ∆Z = 0, Z1 = z] |ξ=0F (dx, dz) =: EF [Dxφ(X, Z, U1, A)],

which is the overall average effect across the population for which ∆X = 0 and ∆Z = 0.

This quantity is a partial mean, and it can therefore be estimated by the average

δ̂0,n := n−1

n
∑

i=1

δ̂n(Xi, Zi),

where {Xi, Zi} is IID with joint distribution F. Newey (1994) gives conditions under which

n1/2hα
n(δ̂0,n − δ∗0)

d→ N (0, Σ0),

where α is a constant depending on the dimensions of X and Z, and Σ0 is a covariance matrix

whose specific form depends on the choice of gp. In the appendix, we derive the estimator for

Σ0 associated with the local linear polynomial, g1. The derivation for p > 1 will be obvious

from this.

3 The Endogenous Binary Choice Model with Hetero-

geneity

Now consider the case of a binary dependent variable, Yt, with potential correlation of Xt

with Ut and A. As already mentioned, this case can be treated by similar arguments, but not

exactly in the same fashion as above. To obtain results for this case, we modify our previous

assumptions appropriately. In particular, we specify the structure of interest as follows.

Assumption 9. Assumption 1 holds with

φ(Xt, Zt, Ut, A) = I {X ′
tβ(A) + Z ′

tγo + Ut + α(A) > 0} ,

where α : A → R and β : A → R
K are unknown measurable functions, γo is an unknown finite

L × 1 vector, and Ut is a random scalar.
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Note that this reduces to the textbook binary choice fixed effects case if for all a ∈ A,

β(a) = βo, where βo is an unknown fixed vector.

Assumption 10. Assumption 3 holds, and for each (a, z) ∈ A×Z, u → FU |A,I{‖∆Z‖=0}∆Z,Z1
(u |

a, 0, z) is twice continuously differentiable in u for all u ∈ U , with

sup
u∈U

|DuFU |A,I{‖∆Z‖=0}∆Z,Z1
(u | a, 0, z)| ≤ Ka,z < ∞.

Assumption 11. Let S := {s ∈ R : s = (x + ξ)′β(a), x ∈ X , ξ ∈ Nε, a ∈ A}, and for each

(s, a, z) ∈ S ×A×Z, let

Ψ(s, a, z) := 1 − FU |A,I{‖∆Z‖=0}∆Z,Z1
(−[s + z′γo + α(a)] | a, 0, z).

For each (x, z) ∈ X × Z there exists a µ−integrable function a → D(a | x, z) such that

sup
ξ∈Nε

|DssΨ((x + ξ)′β(a), a, z) f(a | ξ, x, 0, z)| ≤ D(a | x, z)

sup
ξ∈Nε

|DsΨ((x + ξ)′β(a), a, z) Dξf(a | ξ, x, 0, z)| ≤ D(a | x, z).

Assumption 12. The weighting function b : X×Z → R
+ is measurable such that 0 < ψ̄b < ∞,

where

ψ̄b :=

∫

{
∫

DsΨ(x′β(a), z, a) F (da | 0, x, 0, z)} b(x, z) F (dx, dz).

Assumption 13. Suppose that for each (x, z) ∈ X × Z

ψ̄(x, z) :=

∫

DsΨ(x′β(a), z, a) f(a | 0, x, 0, z) µ(da | x, 0, z) < ∞,

and assume that

sup
a∈A

|DsΨ(x′β(a), z, a) − ψ̄(x, z)| ≤ Kx,z < ∞.

Assumption 14. Suppose

sup
(a,x,z)∈A×X×Z

|DsΨ(x′β(a), z, a)b(x, z) − ψ̄b| ≤ Kb < ∞.

Remark 3.1. Discussion of Assumptions: These assumptions merit some discussion.

First, assumption A9 formally specifies the data generating process. In particular, we consider

a latent variable determined by a linear structure; however, the coefficients vary across the

population as a function of the persistent unobservable A (e.g., think of A as preferences). We

restrict Ut to enter in an additive separable fashion. In view of Theorem 1, neither of these

two assumptions is necessary, but we refrain from treating the greatest possible generality

here. Instead, we specify a structure that immediately nests the textbook case where Yt =

I {X ′
tβo + Z ′

tγo + Ut + A > 0} , with βo nonrandom and A a scalar. We also provide results
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for this important special case in Theorem 3. The random (but correlated!) coefficients case is

nevertheless useful, as it allows us to treat applications in e.g., in consumer demand or empirical

industrial organization, where individual consumers have heterogeneous parameters, or other

fields where heterogeneity in individual responses is crucial.

Next, assumption A10 modifies the differentiability assumptions in A3 for the binary choice

setup. Although the indicator function is obviously not differentiable, we require differentiabil-

ity of the conditional CDF of Ut. All other conditions are regularity conditions that ensure that

all expectations exist and that interchanging integration and differentiation is warranted. In

particular, the domination conditions of assumption A7 are modified to account for the specific

setup here (see A11). Finally, the weighting function is formally defined in assumption A12,

which also ensures that the weighting function is suitably integrable. The last two boundedness

assumptions allow us to derive bounds on the marginal effects.

To state the nonparametric identification result for this structure, let β∗(x, z) := DξE[∆Y |
∆X = ξ, X1 = x, ∆Z = 0, Z1 = z] |ξ=0 and β∗

b := E [ β∗(X1, Z1) b(X1, Z1)] . Both of these

involve only the distribution of observable random variables and are therefore empirically ac-

cessible.

Theorem 2. Let assumptions A2, A5, A6, and A9–A11 hold. (i) Then

DξE [∆Y | ∆X = ξ,X1 = x, ∆Z = 0, Z1 = z] |ξ=0

= E [DxP [Y1 = 1|X1, ∆X, Z1, ∆Z, A] | ∆X = 0, X1 = x, ∆Z = 0, Z1 = z]

=

∫

β(a) DsΨ(x′β(a), z, a) f(a | 0, x, 0, z) µ(da | x, 0, z).

(ii) Suppose that A12 also holds. Then

E [ β∗(X1, Z1) b(X1, Z1)] = E(β(A) DsΨ(X ′
1β(A), Z1, A) b(X1, Z1)).

(iii) Suppose instead that A13 also holds. Then

|β∗(x, z) − β̄(x, z) ψ̄(x, z)| ≤ Kx,z

∫

|β(a) − β̄(x, z)| f(a | 0, x, 0, z) µ(da | x, 0, z),

where

β̄(x, z) :=

∫

β(a) f(a | 0, x, 0, z) µ(da | x, 0, z).

(iv) Suppose instead that A12 and A14 also hold. Then

|β∗
b − β̄ ψ̄b| ≤ Kb E(|β(A) − β̄|),

where β̄ = E(β(A)).
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Remark 3.2. Discussion of Theorem 2: This result provides constructive identification

of the average marginal probabilities for the general case of a population with heterogeneous

random coefficients. In part (i) we establish that the derivative of the conditional expecta-

tion provides the best approximation to the derivative of the heterogeneous probabilities for

an individual, given the information set σ(X1, ∆X,Z1, ∆Z, A). This is close in spirit to the

average structural function of Blundell and Powell (2004) for the case of the control func-

tion solution to the endogenous binary choice problem. Note, moreover, that we only identify

weighted averages of the underlying coefficients β(A), involving partially unknown positive

weights DsΨ(X ′
1β(A), Z1, A) b(X1, Z1), see part (ii). Because interest usually centers on the

average marginal probability, we view this as a minor limitation.

The bounds given in part (iii) of this theorem establish an important form of continuity. In

particular, the final bound shows that small amounts of unobserved coefficient heterogeneity,

as measured by E(|β(A) − β̄|), result in small deviations of β∗
b from a scaled version of β̄ =

E(β(A)), namely β̄ ψ̄b. This result is significant, as it ensures that small amounts of unobserved

heterogeneity do not result in disastrous departures of the identified β∗
b from the unweighted

coefficient average, up to a scale factor. However, the mean random coefficient is only partially

identified.

This limitation disappears completely when the population is homogeneous in marginal

effects with an additive correlated fixed effect. The precise result is as follows:

Theorem 3. Under assumptions A2, A5, A6, and A9–A11, if the population is homogenous,

i.e. for all a ∈ A, β(a) = βo, then βo is identified up to scale as:

βo = DξE [∆Y | ∆X = ξ, X1 = x, ∆Z = 0, Z1 = z] |ξ=0/ψ̄(x, z),

for any (x, z), and as a consequence also by the average partial derivative

βo ∝ E [DξE [∆Y | ∆X = ξ,X1, ∆Z = 0, Z1] |ξ=0 b(X1, Z1)] .

Remark 3.3. Discussion of Theorem 3: This result provides constructive identification

of the coefficients βo in the panel data binary choice model. Note, however, that, as is standard,

the index structure allows us to identify the object of interest, namely βo, only up to scale; or,

put differently, the ratio of two coefficients is identified. Because of the generality afforded by

A2, we may allow again for arbitrary dependence between all observed variables and the unob-

served components. In particular, our assumptions are weaker than standard strict exogeneity

notions in the nonlinear model literature (again, see Arellano (2003)). Key steps in the proof

of this result follow arguments similar to the general nonseparable case. Note further that the

extensions previously discussed continue to be feasible, in particular the introduction of lagged

regressors and the conditional endogeneity of Xt.
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Remark 3.4 Average Effects: In the absence of random coefficients, a natural sample

counterparts estimators to

βo ∝ E [DξE [∆Y | ∆X = ξ, X1, ∆Z = 0, Z1] |ξ=0 b(X1, Z1)]

= E [β∗(X1, Z1) b(X1, Z1)]

is given by

β̂0,n = n−1

n
∑

i=1

δ̂n(Xi, Zi) b(Xi, Zi),

where δ̂n is the same local polynomial-based estimator as defined above in equation (2.7).

This β̂0,n is a partial means estimator entirely analogous to δ̂0,n discussed above, except that

now a weighting by b(Xi, Zi) explicitly appears. As above, Newey’s (1994) conditions ensure

n1/2hα
n(β̂0,n − β∗

b )
d→ N (0, Σ0,b),

where α is a constant depending on the dimensions of X and Z, and Σ0,b is a covariance matrix

whose specific form depends on the choice of gp. The derivation for Σ0 in the appendix applies

with obvious modifications to yield an estimator for Σ0,b.

Even in the presence of random coefficients, this estimator may provide useful information

about the direction (sign) of effects of interest.

4 Application: The Vanishing Liquidity Constraint

In this section we demonstrate the ability of our framework to address economically and po-

litically important real-world questions. The specific question we address in our application is

the extent of the easing of liquidity constraints between the years 1999 and 2005, which for

reasons discussed below was likely a main driver of the current financial crisis. We structure

this discussion as follows: We first provide some background. Then we describe the data at

hand that allow us to tackle this question. Next, we discuss how the specific question and

the data fit into our approach. Finally, we present the results, which suggest that liquidity

constraints essentially disappeared in the time period under study.

4.1 The Empirical Question

U.S. subprime mortgage lending has been identified as the likely main culprit of the current

global financial crisis. This in turn has caused a downturn in the real economy of a magnitude

not seen in the U.S., Europe, or Japan since World War II and the Great Depression. The main

chain of the argument for why the crisis that started in the housing market was so harmful
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runs as follows (see, e.g., “The Subprime Panic” by Gordon (2008)). First, banks changed their

lending policy towards previously not creditworthy customers. This change in lending policy

had several drivers: First, it was encouraged by policy makers who wanted to see their view

of an “ownership society” established throughout the economy, and who initiated policies and

subsidies to encourage home ownership. Second, banks and the wider public held the myopic

belief that an ongoing boom in the economy, and in particular the housing market, would

continue for the foreseeable future, whereas by objective criteria the increase in housing prices

was already beyond historical precedent (e.g, see the Case-Shiller index3, for the astonishing

run up of prices). This distorted assessment of the risks associated with the housing market

then spread across the wider economy, because risky housing loans were made marketable and

were actively traded in huge volumes between banks, leading eventually to the collapse or near

collapse of historically viable institutions.

Our methods allow us to gather some evidence about the root cause of this crisis. More

specifically, we can shed light on the extent of the easing of liquidity constraints, affording a

more detailed picture of the roots of the crisis. Using a panel data set, we determine the average

marginal effect of income on the probability of owning a home. If lower income individuals are

more likely to be liquidity constrained, then we should expect this marginal probability to be

positive for lower and mid-level incomes. For sufficiently high income levels, we would expect

the marginal probability to decline to near zero as the probability of home ownership stabilizes,

other things equal. On the other hand, in the absence of a liquidity constraint, we would

expect the marginal probability to lie near zero. By applying our approach, we can account for

covariates that are correlated with X (income) whether they are observable (Z in our notation,

e.g., age) or unobservable (denoted U (time-varying) or A (persistent)).

This is important, because the probability of buying a house depends both on factors that

we observe, like age (younger households are believed to be more mobile, and hence more re-

luctant to buy a house, other things equal, because of the associated fixed costs (Campbell and

Cocco (2007), Li and Yao (2007)), as well as on unobservable but relatively persistent factors

like the credit score or other criteria banks use to make their decisions. Another unobservable

factor that may well assumed to be constant is initial wealth, a variable which is notoriously

hard to measure and also impacts the liquidity constraint. Generally, these factors will be

highly correlated with the (transitory) labor income, making a direct regression of home own-

ership on transitory income potentially highly confounding. In contrast, our approach allows

us to determine the average marginal effect of the transitory income on the home ownership,

controlling for both observable and persistent unobserved correlated drivers of the decision to

3http://www2.standardandpoors.com/portal/site/sp/en/us/page.topic/indices csmahp/0,0,0,0,0,0,0,0,0,1,1,

0,0,0,0,0.html
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buy a house. We will now explain how we isolate the changing influence of transitory income,

and hence shed light on one of the specific changes in behavior that led to this housing price

bubble.

4.2 Data Description

The Panel Study of Income Dynamics (PSID) is a longitudinal sample of U.S. individuals and

their families. It is largely representative; however, minorities are oversampled. Although it

is available for a longer period, we use only the years 1999 and 2001, as well as 2003 and

2005, to construct two data sets, each of which comprises its own two-period panel. We then

compare our results for average marginal effects across these data sets, to assess changes in the

marginal income effect over time. This allows us to isolate the easing of the liquidity constraint

with respect to a different attitude towards transitory income risks from other changes in the

liquidity constraint.

For the dependent variable, we use information about whether an individual owns a house.

We use both the directly elicited variable, as well as an indicator whether someone pays property

tax, without much effect on the results. As regressors, we take income and age of household

head. Income is gross yearly income of the entire household, including social security income.

For large parts of the population, income varies only little, generating exactly the variation

around zero that we require for estimation. Age of the household head in contrast varies

between any given two years (e.g., between 1999 and 2001), but in a deterministic and uniform

fashion across the population. Hence we use “age in the first period” as a regressor. Note also

that we only want to control for age and are not interested in its effect, so that “age in the first

period” takes the role of Z, and ∆Z = 0. An alternative would be to use the average age over

the respective two year periods. Since in our sample age changes in a completely deterministic

fashion (two years later everybody is simply to years older), no added information is employed

by conditioning on age in both periods4. Taking age into account ensures that we control for

the fact that younger individuals may be more mobile for the same income.

We select a sample for which there is information about transitory income in all four years.

This reduces the number of households to some 1079 per year. We have experimented with

excluding outliers, but it does materially affect our results.

4The implied assumption here is that the equal change in age does not have a differential impact on housing

in the second period conditioning on age in the first period whether you are 25 or 45 – this is clearly an

approximation, but, we believe, a valid one in the small time interval under consideration.
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4.3 Econometric Modelling

Since our dependent variable is binary, we employ the framework of Section 3. Specifically, we

make use of Theorem 2, which holds, e.g., in a random coefficients specification, but also more

generally:

DξE [∆Y | ∆X = ξ,X1 = x, ∆Z = 0, Z1 = z] |ξ=0

= E [DxP [Y1 = 1|X1, ∆X, Z1, ∆Z, A] | ∆X = 0, X1 = x, ∆Z = 0, Z1 = z] (4.1)

In our application, Yt = 1 indicates that someone owns a home in period t (as proxied by paying

property tax). Consequently, ∆Y essentially denotes the change in home ownership between

the 1999 and 2001, as well as between 2003 and 2005. X1 is income in either 1999, or in 2003,

and ∆X denotes the change in income between 1999 and 2001, or 2003 and 2005, respectively.

Z1 is “age in the first period” (which is either 1999 or 2003); by definition this does not change.

Age and income form the complete set of variables that we use (and require) to estimate the

left hand side of equation (4.1). However, we do implicity control for further variables by

considering the subsample of the population for which health is good in both periods (i.e., we

condition on their being no negative health shocks; good health is defined as being in the health

categories “excellent”, “very good”, or “good”).

Note, moreover, from the right-hand side of equation (4.1) that we are also implicitly con-

ditioning on all individual-specific (but time-invariant) variables A, and then averaging over

these. Thus, we are implicitly controlling for persistent variables like education or race. But we

are also controlling for all persistent causes of, e.g., a bad credit score. That we are able to con-

trol for all time-invariant effects is a consequential advantage for our nonparametric approach:

If we are not interested in the influence of a time-invariant regressor, we can simply omit it,

thus dramatically mitigating the curse of dimensionality and allowing for a very parsimonious

analysis.

We implement our approach directly by use of kernel methods, as discussed above. Specifi-

cally, we estimate

DξE [∆Y | ∆X = ξ,X1 = x, ∆Z = 0, Z1 = z] |ξ=0 (4.2)

using the first derivative of a local quadratic estimator of the regression of the change in

house ownership on income and age in the respective first period, and on the change in in-

come, evaluated at income changes equal to zero. We employ a standard Epanechnikov kernel.

The bandwidth is chosen by selecting a smaller bandwidth than the cross-validated optimum.

Changes in the bandwidth do impact our results only marginally, in particular they do not

greatly affect the point estimates.
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4.4 Results

Applying the methods outlined above to the PSID housing data, we obtain results that can

be best summarized by graphical means. Consider Figure 1, which shows the marginal income

effect from the local quadratic estimator for (4.2) applied to the first subset of data, namely

1999/2001 (i.e., around 2000, hence the title of the figure). We show the marginal effect for a

value of z = 40, which is near the sample mean, and across a 95% window of the log income

range.

—-Fig. 1 approx here—-

This graph shows the point estimate of the marginal effect along with a bootstrap-based 95%

confidence band. As is clear from this graph, the marginal probability of owning a house with

respect to income is positive everywhere. This means that the probability of owning a house is

increasing everywhere, with a noticeable acceleration at the lower to lower-mid income levels

(associated with the increase at the left). This is in line with liquidity constraints binding at

the lower and middle range of the income distribution for parts of the population. Recall that

we are averaging over a heterogeneous population, so at each income level it may be binding for

some, but not for others. The effect is highly statistically significant and is almost insensitive

to reasonable variations of the bandwidth. In particular, what remains robust at all plausible

levels of bandwidth in particular is a positive marginal effect, with some indication of smaller

values at the lower end of the income distribution. Since we control for age and implicitly

for all other time invariant unobservables that might impact the liquidity constraint, e.g., bad

credit history, or wealth in the beginning of the period, we conclude that there is evidence for

liquidity constraints, or – from another perspective – more cautious lending by banks in the

period around the year 2000 with respect to low transitory income.

This contrast sharply with the later period, see Figure 2, which depicts exactly the same

quantities in the period 2003/2005:

—-Fig. 2 approx here—-

The situation has now changed fundamentally: We do not find a significantly positive effect

of income on the marginal probability of owning a house. While the point estimate is still

positive it is much closer to zero, and we can only safely infer that the average probability of

owning a house did not change across the income range, conditional on other unobservables A,

e.g. a bad credit history. The overall ownership rate increased from 0.64 to 0.69 between 1999

and 2005. Assuming that the wealthy did not net sell their houses in order to rent a house, this
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means that those individuals at the lower and middle range of the income distribution experi-

enced some catching up in terms of their ownership rate between the 1999/2001 and 2003/2005

periods, with most of the catching up done by those at the low end of the income range. Their

lower transitory income in isolation was simply not an important factor in obtaining a mortgage

any longer.

—-Fig. 3 approx here—-

Figure 3 contrasts the two periods, to demonstrate the difference. At the 90% significance level,

the 2000 functions is outside the pointwise confidence bands of the 2004 function. At the 95%

level depicted in fig. 3 the evidence is somewhat inconclusive. However, it is worthwhile empha-

sizing that these are pointwise tests, which are notorious for their lack of power. We conjecture

that L2 distance tests would very likely reject the hypothesis of equality at any conventional

significance level, if already pointwise tests indicate rejection. As already mentioned, all the

result do not change if we confine ourselves to a sample of people in constant good health, in

employment, or if we consider only the non-Afro American population5.

In summary, our finding are consistent with changing U.S. attitudes towards borrowing

by consumers and lending by banks leading to an “ownership society,” where the differences

in income risks associated with different levels of income – especially the risk of default – no

longer mattered for home ownership. We would like to point out that what we have isolated

here is the changing attitude towards transitory income, which we can separate from all time

invariant and correlated factors, e.g., a bad credit history, due to generality of our approach.

While it is entirely possible that attitude towards these factors may also have changed in the

subprime mortgage crisis, our analysis only (and clearly) establishes this change in attitudes

for transitory income.

5 Summary and Conclusions

This paper demonstrates the usefulness of panel data for controlling individual-specific persis-

tent and potentially correlated unobserved heterogeneity under mild assumptions. We demon-

strate that a particular form of first differencing is widely applicable, allowing the recovery

of effects of interest in general nonseparable nonparametric structures with general forms of

unobserved heterogeneity, e.g., in preferences and beliefs. Moreover, it also allows recovery of

effects of interest in certain semiparametric nonlinear panel data models, like the binary corre-

lated random coefficients model, for which no estimation strategy has previously been proposed.

The approach is flexible, and admits a variety of extensions: time trends, endogenous transitory

5For the Afro-American population the effect appears to be weaker, but we have too little observations.
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components, distributional effects, and lagged regressors are some of these. As it stands, the

only major limitation of this approach concerns the inclusion of lagged dependent variables.

We leave this issue to future research.

One key feature of our approach is its general nonparametric structure, which provides

constructive identification results that can be employed directly to construct nonparametric

estimators that have a straightforward economic interpretation. We demonstrate this with an

application to housing data, where we find that even after accounting for differences in age and

persistent unobserved factors, there was a clear dissociation between income and the probability

of owning a house between 1999/2001 and 2003/2005. This easing of liquidity constraints was

at least in part a major cause underlying the current economic crisis. Our ability to investigate

this cause, controlling for both observed and unobserved factors, underscores the usefulness of

our approach as much as its theoretical advantages do.

6 Appendix

6.1 Proof of Theorem 1

First, we establish

DξE [∆Y | ∆X = ξ,X1 = x, ∆Z = 0, Z1 = z] |ξ=0

= E [Dxφ(X1, Z1, U1, A) | ∆X = 0, X1 = x, ∆Z = 0, Z1 = z] .

To see this, we start by using assumption A1 to write

E [Y2 − Y1 | ∆X = ξ,X1 = x, ∆Z = 0, Z1 = z]

=

∫

[φ(x + ξ, z, u2, a) − φ(x, z, u1, a)] FU2,U1,A|∆X,X1,∆Z,Z1
(du2, du1, da | ξ, x, 0, z).

To simplify the notation in what follows, we let the argument list implicitly specify the relevant

random variables. Thus, we write

F (u2, u1, a | ξ, x, 0, z) := FU2,U1,A|∆X,X1,∆Z,Z1
(u2, u1, a | ξ, x, 0, z).

Applying successive conditioning and rearranging, we have

∫

[φ(x + ξ, z, u2, a) − φ(x, z, u1, a)] F (du2, du1, da | ξ, x, 0, z)

=

∫

[

∫

φ(x+ξ, z, u2, a)F (du2 | a, ξ, x, 0, z)−
∫

φ(x, z, u1, a)F (du1 | a, ξ, x, 0, z)] F (da | ξ, x, 0, z).
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Next, we use the conditional independence assumption A2. This assumption ensures that

for all ξ in Nε = {ξ : ‖ξ‖ < ε} and all other admissible function arguments

F (u2 | a, ξ, x, 0, z) = F (u2 | a, 0, z) and

F (u1 | a, ξ, x, 0, z) = F (u1 | a, 0, z),

so that for all ξ in Nε and all admissible x and z,

E [∆Y | ∆X = ξ, X1 = x, ∆Z = 0, Z1 = z]

=

∫
[
∫

φ(x + ξ, z, u2, a)F (du2 | a, 0, z) −
∫

φ(x, z, u1, a)F (du1 | a, 0, z)

]

F (da | ξ, x, 0, z).

Next, apply the conditional stationarity ensured by assumption A3. This gives
∫

φ(x, z, u2, a)

F (du2 | a, 0, z) =
∫

φ(x, z, u1, a)F (du1 | a, 0, z) =
∫

φ(x, z, u, a)F (du | a, 0, z), so that

E [∆Y | ∆X = ξ, X1 = x, ∆Z = 0, Z1 = z]

=

∫
[
∫

φ(x + ξ, z, u, a)F (du | a, 0, z) −
∫

φ(x, z, u, a)F (du | a, 0, z)

]

F (da | ξ, x, 0, z).

Assumption A4 ensures that φ is sufficiently smooth to admit a mean value expansion in

its first argument:

φ(x + ξ, z, u, a) = φ(x, z, u, a) + Dxφ(x̄, z, u, a)ξ.

The mean value for Dφ(x̄, z, u1, a) is given by x̄ = λ(x + ξ) + (1 − λ)x = x + λξ, where λ

depends on (z, u, a) and takes values in [0, 1]. For convenience, we reflect these dependencies

by writing

J(ξ, x, z, u, a) := Dxφ(x̄, z, u, a);

we note that J(0, x, z, u, a) = Dxφ(x, z, u, a). Under the finite expectations assumed in assump-

tion A4, we can write
∫

φ(x + ξ, z, u, a)F (du | a, 0, z) =

∫

[φ(x, z, u, a) + J(ξ, x, z, u, a)ξ] F (du | a, 0, z),

from which it follows that

E [∆Y | ∆X = ξ, X1 = x, ∆Z = 0, Z1 = z]

= ξ′
∫

[
∫

J(ξ, x, z, u, a)′ F (du | a, 0, z)

]

f(a | ξ, x, 0, z) µ(da | x, 0, z),

where we use assumption A5 to write F (da | ξ, x, 0, z) = f(a | ξ, x, 0, z) µ(da | x, 0, z).
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The next step is to differentiate this expression with respect to ξ. Using the regularity

imposed in A6 and A7 to ensure the valid interchange of derivative and integral, we obtain

DξE [∆Y | ∆X = ξ,X1 = x, ∆Z = 0, Z = z]

=

∫
[
∫

J(ξ, x, z, u, a) F (du | a, 0, z)

]

f(a | ξ, x, 0, z) µ(da | x, 0, z)

+ ξ′
∫

[
∫

DξJ(ξ, x, z, u, a) F (du | a, 0, z)

]

f(a | ξ, x, 0, z) µ(da | x, 0, z)

+ ξ′
∫

[
∫

J(ξ, x, z, u, a)′ F (du | a, 0, z)

]

Dξf(a | ξ, x, 0, z) µ(da | x, 0, z),

where DξJ(ξ, x, z, u, a) is the K × K matrix with elements (∂/∂ξj)Jk(ξ, x, z, u, a).

Evaluating this expression at ξ = 0, we obtain

DξE [∆Y | ∆X = ξ,X1 = x, ∆Z = 0, Z1 = z] |ξ=0

= E [Dxφ(X1, Z1, U1, A) | ∆X = 0, X1 = x, ∆Z = 0, Z1 = z] ,

yielding the first part of the desired result.

If we strengthen our assumptions by imposing A8, i.e.,

A ⊥ (I {‖∆X‖ < ε}∆X, I {‖∆Z‖ = 0}∆Z) | X1, Z1,

then we obtain

DξE [∆Y | ∆X = ξ,X1 = x, ∆Z = 0, Z1 = z] |ξ=0

= E [Dxφ(X1, Z1, U1, A) | X1 = x, Z1 = z] ,

completing the proof. Q.E.D.
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6.2 Proof of Theorem 2

(i) We again start again by considering E [∆Y | ∆X = ξ,X1 = x, ∆Z = 0, Z1 = z]. By A9, we

have

E [∆Y | X1 = x, ∆X = ξ, ∆Z = 0, Z1 = z]

=

∫

[I {(x + ξ)′β(a) + z′γo + u2 + α(a) > 0} − I {x′β(a) + z′γo + u1 + α(a) > 0}]

× F (du1, du2, da | ξ, x, 0, z)

=

∫

[

∫

I {(x + ξ)′β(a) + z′γo + u2 + α(a) > 0}F (du2 | a, ξ, x, 0, z)

−
∫

I {x′β(a) + z′γo + u1 + α(a) > 0}F (du1 | a, ξ, x, 0, z)] F (da | ξ, x, 0, z)

=

∫

[

∫

I {(x + ξ)′β(a) + z′γo + u2 + α(a) > 0}F (du2 | a, 0, z)

−
∫

I {x′β(a) + z′γo + u1 + α(a) > 0}F (du1 | a, 0, z)] F (da | ξ, x, 0, z),

where, as before, we make use of successive conditioning and assumption A2.

Applying the conditional stationarity ensured by A10, we can write the first inner integral

in the last expression as

Ψ((x + ξ)′ β(a), z, a) = 1 − FU |A,I{‖∆Z‖=0}∆Z,Z1
(−[(x + ξ)′ β(a) + z′γo + α(a)] | a, 0, z)

=

∫

I
{

(x + ξ)′ β(a) + z′γo + u + α(a) > 0
}

F (du | a, 0, z).

The second inner integral is Ψ(x′β(a), z, a), so we can write the final expression above as
∫

[

Ψ((x + ξ)′ β(a), z, a) − Ψ(x′β(a), z, a)
]

F (da | ξ, x, 0, z). (6.1)

Assumption A10 ensures that Ψ is sufficiently smooth to admit a mean value expansion in

its first argument (say s), so that

Ψ((x + ξ)′ β(a), z, a) = Ψ(x′β(a), z, a) + ψ(x̄′β(a), z, a) ξ′β(a),

where the scalar function ψ := DsΨ is a probability density function. The mean value x̄′β(a)

is given by

x̄′β(a) = λ(x + ξ)′β(a) + (1 − λ)x′β(a) = x′β(a) + λξ′β(a),

where λ depends on (z, a) and take values in [0, 1]. For convenience, we reflect these dependen-

cies by writing

J(ξ′β(a), x′β(a), z, a) = ψ(x̄′β(a), z, a);

we note that

J(0, x′β(a), z, a) = ψ(x′β(a), z, a).
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The bound imposed in assumption A10 ensures that we can write

E [∆Y | ∆X = ξ, X1 = x, ∆Z = 0, Z1 = z]

= ξ′
∫

β(a) J(ξ′β(a), x′β(a), z, a) f(a | ξ, x, 0, z) µ(da | x, 0, z),

where we use assumption A5 to write F (da | ξ, x, 0, z) = f(a | ξ, x, 0, z) µ(da | x, 0, z).

Differentiating with respect to ξ, we have

DξE [∆Y | ∆X = ξ,X1 = x, ∆Z = 0, Z1 = z]

=

∫

β(a) J(ξ′β(a), x′β(a), z, a) f(a | ξ, x, 0, z) µ(da | x, 0, z)

+ ξ′
∫

β(a) β(a) DsJ(ξ′β(a), x′β(a), z, a) f(a | ξ, x, 0, z) µ(da | x, 0, z)

+ ξ′
∫

β(a) J(ξ′β(a), x′β(a), z, a) Dξf(a | ξ, x, 0, z) µ(da | x, 0, z),

where the interchange of integral and derivative is justified by assumptions A6 and A11.

Evaluating at ξ = 0 produces

β∗(x, z) := DξE [∆Y | ∆X = ξ, X1 = x, ∆Z = 0, Z1 = z] |ξ=0

=

∫

β(a) ψ(x′β(a), z, a) f(a | 0, x, 0, z) µ(da | x, 0, z).

The second result follows because
∫

β(a) DsΨ(x′β(a), z, a) f(a | 0, x, 0, z) µ(da | x, 0, z) =

E [DxP [Y = 1|X1, ∆X,Z1, ∆Z, A] | ∆X = 0, X1 = x, ∆Z = 0, Z1 = z] .

(ii) Multiply β∗(X1, Z1) by the scalar b(X1, Z1), and take expectations over the joint distri-

bution of (X1, Z1) to obtain

β∗
b : = E [ β∗(X1, Z1) b(X1, Z1)]

=

∫

{
∫

β(a) ψ(x′β(a), z, a) f(a | 0, x, 0, z) µ(da | x, 0, z)} b(x, z) F (dx, dz)

= E(β(A) ψ(X ′
1β(A), Z1, A) b(X1, Z1)).

Letting

β̄ = E(β(A))

ψ̄b = E(ψ(X ′
1β(A), Z1, A) b(X1, Z1)),

where ψ̄b is finite as ensured by assumption A12, we have

β∗
b − β̄ ψ̄b = E([β(A) − β̄] [ψ(X ′

1β(A), Z1, A) b(X1, Z1) − ψ̄b]).
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(iii) Letting

β̄(x, z) =

∫

β(a) f(a | 0, x, 0, z) µ(da | x, 0, z)

ψ̄(x, z) =

∫

ψ(x′β(a), z, a) f(a | 0, x, 0, z) µ(da | x, 0, z),

we have

β∗(x, z) − β̄(x, z) ψ̄(x, z)

=

∫

[β(a) − β̄(x, z)] [ψ(x′β(a), z, a) − ψ̄(x, z)] f(a | 0, x, 0, z) µ(da | x, 0, z).

This implies

|β∗(x, z) − β̄(x, z) ψ̄(x, z)|

≤
∫

|β(a) − β̄(x, z)| |ψ(x′β(a), z, a) − ψ̄(x, z)| f(a | 0, x, 0, z) µ(da | x, 0, z)

≤ Kx,z

∫

|β(a) − β̄(x, z)| f(a | 0, x, 0, z) µ(da | x, 0, z),

where the last inequality follows from assumption A13.

(iv) Part (ii) and assumption A14 imply

|β∗
b − β̄ ψ̄b| ≤ Kb E(|β(A) − β̄|).

This completes the proof. Q.E.D.

6.3 Proof of Theorem 3

Immediate from Theorem 2(i) and (iii). Q.E.D.

Derivation of Newey’s (1994) estimator for Σ0 :

Newey’s partial means analysis involves a function m depending on observations zi (here

(1,W ′
i , ∆Yi)

′), parameters β (here δ0) and a vector function h whose ”true value,” h0, is esti-

mated by a kernel estimator, ĥ. Here, the analog of ĥ, say ĥn, determines θ̂n. An estimator of

the partial mean of interest β0 (here δ∗0), is given by β̂ (here δ̂0,n) satisfying

n−1

n
∑

i=1

m(zi, β̂, ĥ) = 0.

For concreteness and simplicity, we work here with the local linear polynomial, g1(w) =

θ00(w) + ξ′θ10(w)+ v′θ20(w), where we write w′ := (ξ′, v′)′ and θ0 := (θ00, θ
′
10, θ

′
20)

′. Letting

w00 := (0′, x′, 0′, z′)′, it follows that

δ̂n(x, z) = sξ θ̂n(w00),
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where sξ is the L × d selection matrix that selects the ξ components of w, so that sξ θ̂n = θ̂1n.

With the choice g1, θ̂n is the weighted least squares estimator

θ̂n = [ĥn,1]
−1 ĥn,2,

where, with Khn,i,w := Khn
(Wi − w),

ĥn,1(w) :=

[

n−1
∑n

i=1 Khn,i,w n−1
∑n

i=1 Khn,i,w (Wi − w)′

n−1
∑n

i=1 Khn,i,w (Wi − w) n−1
∑n

i=1 Khn,i,w (Wi − w)(Wi − w)′

]

,

and

ĥn,2(w) :=

[

n−1
∑n

i=1 Khn,i,w ∆Yi

n−1
∑n

i=1 Khn,i,w (Wi − w) ∆Yi

]

.

Letting Wi,00 := (0′, X ′
i, 0

′, Z ′
i)

′ and ĥn = (vech′[ĥn,1], ĥ
′

n,2)
′, it follows that Newey’s m(zi, β̂, ĥ)

corresponds to

m(Wi,00, δ̂0,n, ĥn) = sξ {[ĥn,1]
−1ĥn,2}(Wi,00) − δ̂0,n.

(In the binary dependent variable case, the weighting by b(Xi, Zi) is accommodated by instead

taking

m(Wi,00, δ̂0,n, ĥn) = b(Xi, Zi) sξ {[ĥn,1]
−1ĥn,2}(Wi,00) − δ̂0,n,

but we leave this implicit in what follows for simplicity.)

Because (∂/∂δ0)m(w, δ0, h) = Id (the d × d identity matrix), Newey’s (1994) estimator of

Σ0 is given by

Σ̂n := n−1

n
∑

i=1

ψ̂iψ̂
′
i,

where

ψ̂i := m(Wi,00, δ̂0,n, ĥn) + η̂i − n−1

n
∑

j=1

η̂j,

with

η̂i := (∂/∂ζ)[n−1

n
∑

j=1

m(Wj,00, δ̂0,n, ĥn + ζρn,i,0)] |ζ=0

and ρn,i,0 := (vech′[ρn,i,0,1],ρ
′
n,i,0,2)

′, where, letting Khn,i,0(w) := Khn
(Wi,00 − w),

ρn,i,0,1(w) :=

[

Khn,i,0(w) Khn,i,0(w) (Wi,00 − w)′

Khn,i,0(w) (Wi,00 − w) Khn,i,0(w) (Wi,00 − w)(Wi,00 − w)′

]

,

and

ρn,i,0,2(w) :=

[

Khn,i,0(w) ∆Yi

Khn,i,0(w) (Wi,00 − w) ∆Yi

]

.
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By the chain rule and the formula for the derivative of the matrix inverse, we obtain

(∂/∂ζ)m(Wj,00, δ̂0,n, ĥn + ζρn,i,0) = sξ (∂/∂ζ){[ĥn,1 + ζρn,i,0,1]
−1(ĥn,2 + ζρn,i,0,2)}(Wj,00)

= sξ {[ĥn,1 + ζρn,i,0,1]
−1ρn,i,0,2 − [ĥn,1 + ζρn,i,0,1]

−1ρn,i,0,1[ĥn,1 + ζρn,i,0,1]
−1(ĥn,2 + ζρn,i,0,2)}(Wj,00).

Evaluating this expression at ζ = 0 gives

(∂/∂ζ)m(Wj,00, δ̂0,n, ĥn + ζρn,i,0) |ζ=0

= sξ {[ĥn,1]
−1(ρn,i,0,2 − ρn,i,0,1[ĥn,1]

−1ĥn,2)}(Wj,00),

so

η̂i := sξ n−1

n
∑

j=1

{[ĥn,1]
−1(ρn,i,0,2 − ρn,i,0,1[ĥn,1]

−1ĥn,2)}(Wj,00).
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