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Abstract

In structural economic models, individuals are usually characterized as solving a de-

cision problem that is governed by a finite set of parameters. This paper discusses the

nonparametric estimation of the probability density function of these parameters if they

are allowed to vary continuously across the population. We establish that the problem

of recovering the probability density function of random parameters falls into the class

of non-linear inverse problem. This framework helps us to answer the question whether

there exist densities that satisfy this relationship. It also allows us to characterize the

identified set of such densities. We obtain novel conditions for point identification, and

establish that point identification is generically weak. Given this insight, we provide a

consistent nonparametric estimator that accounts for this fact, and derive its asymptotic

distribution. Our general framework allows us to deal with unobservable nuisance vari-

ables, e.g., measurement error, but also covers the case when there are no such nuisance

variables. Finally, Monte Carlo experiments for several structural models are provided

which illustrate the performance of our estimation procedure.
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1 Introduction

Motivation. Many structural microeconomic models postulate that individual decision makers

solve complicated optimization problems which are governed by a small number of structural

parameters θ. These parameters are fixed for every individual. However, economic theory does

not postulate that they be the same for every individual. Frequently, one expects that they

will differ substantially across individuals. Yet, in most empirical applications, the extent to

which individual decision makers are allowed to vary is severely constrained to depend entirely

on observable variables, to involve only few discrete types, or to be monotonic in a scalar

unobservable. These constraints on heterogeneity are unappealing and are typically not based

on economic theory. A natural way to relax the constraints and make the structural model

assumptions more appealing is to assume that the unobservable parameters θ in the individuals’

decision problems are random parameters drawn from a fully flexible nonparametric continuous

distribution that may be correlated with some observable regressors. Proposing and analyzing

such an approach is the main innovation in this paper.

To give an example, in the workhorse Euler equation models of the consumption literature,

the consumption function is characterized by the first order condition

∂cu(Ct, θ) = E [∂cu(Ct+1, θ)|It] (1.1)

where u denotes instantaneous utility, Ct consumption in period t, It is the information set
of the economic agent in period t, and ∂x denotes the partial derivative with respect to x.1

The information set It consists of exogenous observable variables Zt, endogenous observable
variablesWt and may also depend on unobservable variables. Interest centers on the distribution

of (random) parameters θ. To not unduly restrict the generality of the model, we may want

to allow for the possibility that there also be unobservable nuisance variables εt in the model.

These may enter It, e.g., heterogeneous beliefs about the income process, or they may reflect
measurement error (e.g., Ct = C∗t +εt, where C∗t is the true consumption and εt is a measurement

error). We remark that solutions to problems of the type displayed in equation (1.1) are often

only defined implicitly and need to be obtained numerically. Our approach allows us to deal

with these cases as well. Indeed, a benefit of our approach is that numerical solution of (1.1) is

separated from econometric estimation of the distribution of unobserved heterogeneity.

In this paper we propose a general framework to analyze a large class of such structural

models. Specifically, we consider all structural economic models that can be characterized by

the following condition

Ψ(C,W,Z, θ, ε) = 0 (1.2)

1To focus on essentials, we have set the interest rate equal to the discount rate.
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where C is a scalar observable outcome, θ is a d-vector of unobserved random parameters of

interest, ε is an unobservable random variable, W is a k-vector of observable random variables

allowed to be correlated with θ while Z is a l-vector of random observable variables that are

uncorrelated with θ. All variables are assumed to be continuously distributed.

Our analysis covers two cases, one where there is no unobservable nuisance variable ε and

one which includes ε.2 Since the latter case is more general, we focus on it. Nevertheless, we

give results for the first case and discuss in particular how the problem changes in this case.

Our model is structural in that we assume that Ψ is a known function coming from economic

theory. Our aim is to identify and non-parametrically estimate the distribution of θ conditional

on W . We do not require any monotonicity of Ψ in ε or θ. While our results apply to general

structural models of the form (1.2), we develop further results that apply to the specific example

of the Euler equation in order to fix ideas and motivate the discussion.

The two key notions we pursue in this paper are heterogeneity and knowledge of the struc-

tural equation. When we lack information about the probability distribution of heterogeneity in

the population
(
for example the density fθ|W

)
but have knowledge about the structural func-

tion Ψ, we can use this knowledge to define a mapping from fθ|W to the population probability

density function (pdf ) of observables fC|WZ . In our setting, this mapping is provided by the

integral equation

fC|WZ = Tfθ|W , PW − a.s., (1.3)

where the integral operator T maps the density of random parameters into the density of the

observable variables fC|WZ and PW denotes the probability distribution of W . When Ψ can be

uniquely solved for C as a measurable function of the other variables, the operator T can be

explicitly characterized in terms of the structural economic model in (1.2). We focus on the

case in which Ψ is differentiable and has a unique global solution C = ϕ(W,Z, θ, ε). In the case

where ϕ is invertible in ε, i.e. ε = ϕ−1(w, z, θ, c), the operator takes the form

fC|WZ(c;w, z) =

∫
Θ

fε|WZθ ◦ ϕ−1
∣∣∣∂εΨ(c, w, z, θ, ϕ−1(w, z, θ, c))

∂cΨ(c, w, z, θ, ϕ−1(w, z, θ, c))

∣∣∣1Cθ(c)fθ|W (θ;w)dθ, PW − a.s.,

where fε|WZθ is the pdf of ε conditional on (W,Z, θ) and Cθ denotes the support of the condi-
tional distribution of C given (W,Z, θ). This paper focuses on this integral equation to establish

identification and obtain an estimator for fθ|W . More specifically, given this representation, we

can discuss the issues of existence, uniqueness and stability of the inverse. Translated into

econometric terms, existence will correspond to conditions for at least partial identification

and will allow us to characterize the partially identified set, and uniqueness will lead us to a

2For simplicity, we assume throughout this paper that ε is a random unobserved scalar; this could be relaxed
without great diffi culty.
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novel condition for point identification called T -completeness which exploits the structure of
the problem. Finally, stability will relate to the question whether we can construct a feasible,

consistent estimator, given the complex and high dimensional nature of the problem.

Contributions relative to the Literature. As already mentioned, this line of work

extends the parametric structural models literature to allow for endogenous random coeffi cients.

This literature is vast; the consumption literature which originally motivated this research is,

for instance, surveyed in Deaton (1993) and Attanasio and Weber (2010). When parameter

heterogeneity is introduced, identification becomes a crucial concern. The question is whether

we can non-parametrically identify the distribution of preference parameters, and if yes, whether

and how we can build an estimator based on the identification principle.

To be able to answer this question, we propose a nonparametric framework. The nonpara-

metric features are not economically marginal generalizations. First, we answer the nonpara-

metric identification question, i.e., where does the identifying power of the model come from,

if not from the functional form, and what observable variables are required to ensure identi-

fication. Second, we provide insights into when identification is only partial, and we provide

novel conditions for point identification. All of these steps are related to contributions in the

literature, as we now explain.

Our work is complementary to the nonparametric nonseparable approach (see Matzkin

(2007a) and Matzkin (2007b) for surveys). For example, Appendix A in Matzkin (2003)

discusses how to estimate a nonparametric model with high dimensional heterogeneity using

separability and the restriction that the random parameters are mutually independent. Our

approach relaxes the independence and separability conditions in Matzkin (2003) and imposes

alternative functional form restrictions. Alternatively, if computationally complexity makes

a fully nonparametric approach infeasible, our approach may remain feasible. In particular,

our approach completely separates computational issues related to approximation of ϕ from

identification and estimation issues.

Most closely related to our approach are nonparametric econometric models involving ran-

dom parameters. In particular, there is a literature that considers linear/single index nonpara-

metric random coeffi cients models, as in Beran et al. (1996), Ichimura and Thompson (1998),

Hoderlein et al. (2010), and Gautier and Kitamura (2010). In these papers, the random coeffi -

cients are continuously distributed and fully independent of regressors. In addition, there is the

structural treatment effects literature (see Abbring and Heckman (2007) for a survey). In this

literature, the random coeffi cients are allowed to be correlated with the treatment variables.

We complement these literatures by moving away from linear models and allowing for nonpara-

metric endogenous random coeffi cients in nonlinear structural models arising from economic

theory; models in which the function mapping regressors into outcomes is often only implicitly
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defined. Our most general model allows for nuisance unobservables and is hence more closely

related to mixture models discussed below.

In the case when there is nuisance heterogeneity ε, our approach resembles somewhat decon-

volution approaches to modeling unobservable variables, a line of research in econometrics that

started with the seminal work of Heckman and Singer (1984), henceforth HS. In our notation,

it is centered around the equation

fC|WZ(c;w, z) =

∫
Θ

fC|WZθ(c;w, z, θ)fθ|W (θ;w)dθ. (1.4)

In HS’s work, which focuses on duration analysis, the density fC|WZθ(c;w, z, θ) is central. It is

assumed to depend on a finite parameter σ which is the main structural object of interest while

fθ|W is a nuisance parameter. Closely related to HS are: Henry et al. (2011), who focus on

estimating fC|WZθ(c;w, z, θ) nonparametrically while restricting θ to be discretely distributed,

Kasahara and Shimotsu (2009), who also considers finitely many types, and Bonhomme (2011),

who like HS aims at estimating a finite parameter of interest σ when the exogenous variation

comes from a panel. This line of work is closely related to mixture models. In contrast to all of

these references, in our model interest centers on fθ|W , and the kernel of the operator in (1.4)

obtains structure from the economic primitives of the model.

There is a recent line of work that discusses identification of random coeffi cients in models

that are motivated by empirical IO, see in particular Bajari et al. (2012), Fox and Gandhi

(2010). These models are close in spirit to our approach in terms of the nonparametric objectives

of the analysis. However, there are a number of pronounced differences: their analysis is

mainly based on a discrete (resp. countable) number of types, the identification results are

not constructive, and all of their results establish point identification. In contrast, we focus on

the nonparametric case, discuss the issue of partial identification, and focus on the ill posed

character of the estimation problem. Consequently, these two concomitant approaches can

be seen as complements, much as nonparametric instrumental variables with discrete, resp.

continuous endogenous regressors complement each other.

These differences in the object of interest and the focus on the integral equation (1.3) in our

approach make our work related to the general inverse problem literature, see Carrasco et al.

(2007) for an overview. In particular, recovering the probability density of θ nonparametrically

from (1.3) is equivalent to solving a convexly constrained integral equation of the first kind.

Unconstrained integral equations of the first kind have been studied extensively in the liter-

ature on nonparametric instrumental regression, see e.g. Florens (2003), Newey and Powell

(2003), Darolles et al. (2011) and Hall and Horowitz (2005). While our object of interest

is very different from the estimation of a nonparametric IV regression function, we have some

5



overlap with these references in terms of the tools we employ. In particular, we use Tikhonov

regularization which was proposed by Tikhonov (1963), and introduced into econometrics by

Carrasco and Florens (2000), Florens (2003) and Darolles et al. (2011), among others.

Our estimating equation is also related to the approach of Hu and Schennach (2008). How-

ever, our model differs in many core aspects from their model, not least the different object of

interest (i.e., the distribution of random parameters), and the structural nonseparability of the

model considered. Moreover, our exclusion restrictions are fundamentally different from theirs

(e.g., we do not assume conditional independence of C and Z given θ) and motivated by the

structural economic application. Indeed, even in the case where we include measurement error,

we allow for correlation between the error and the unobservable of interest θ. Finally, we do

not assume or require injectivity of the operator defining the estimating equation, and we are

able to characterize the identified set and provide conditions for point identification.

Structure of the Paper. We develop our analysis of the above class of models in the fol-

lowing way. The next section describes our basic setup including key assumptions and discusses

several important economic example. Section 3 provides the main identification theorem. Sec-

tion 4 discusses estimation by sample counterparts. Finally, we illustrate our approach with a

simulation exercise in Section 5. An application using panel data on consumption constructed

from the PSID and the CEX is transferred to a companion paper Hoderlein et al. (2012).

Finally, Section 6 concludes.

2 The general structural model

In this section we introduce the basic building blocks of our model. We provide formal notation,

clarify and discuss the assumptions, and establish that several important economic models fall

into our framework.

2.1 Basic definitions and assumptions

Let (Ω,F , P ) be a complete probability space and (C,W,Z, θ, ε) be a real-valued random vector

defined on it, and partitioned into C ∈ R, W ∈ Rk, Z ∈ Rl, θ ∈ Rd and ε ∈ R, with k, l and
d finite integers. We denote by BC, BW , BZ , BΘ and Bε the corresponding Borel σ-fields in R,
Rk, Rl, Rd and R, respectively.
We use capital Latin letters for observable random variables and lowercase Latin letters for

their realizations. The unobservable random variables and their realization will be denoted by

lowercase Greek letters without distinction. The first assumption specifies the structural data

generating process (DGP) that we are considering.
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Assumption 1. The random element (C,W,Z, θ, ε) satisfies a structural economic model

Ψ(C,W,Z, θ, ε) = 0 a.s. (2.1)

where Ψ is a known Borel measurable real-valued function. Moreover, we assume that (2.1)

has a unique global solution in terms of C:

C = ϕ(W,Z, θ, ε), a.s.

where ϕ : Rk+l+d+1 → R is a Borel-measurable function.

This assumption describes how our structural model links observable variables (C,W,Z) to

unobservable ones (θ, ε). We distinguish between three different observable variables: C is the

dependent variable, while W and Z denote variables that cause C. The distinction between W

and Z is made because we allow the former to be correlated with θ while the latter is assumed

to be conditionally independent.3 This distinction is motivated by applications in which some

important explanatory variables are endogenous. Needless to mention, we can handle the case

when no such variables are present.

The distinction between the unobservable variables θ and ε is made to separate random

parameters of interest θ from an error term ε. In our analysis, we allow the distribution of

θ, which is the distribution of interest, to be completely nonparametric, and assume that the

distribution of ε is parametric in the sense that we allow unknown random parameters of

finite-dimension in the distribution of ε.

We do not require that the function ϕ be available in closed-form. Given its existence and

uniqueness, it may as well be available in numerical form only. Moreover, we do not require

that ϕ be globally monotone in ε; instead it may only be piecewise monotone in ε. This is

an important weakening of assumptions, as any monotonicity condition at this stage is rather

implausible. To account for piecewise monotonicity, let E1, . . . , Es be a partition of R such that
ϕ(w, z, θ, ·) : Ei → R is one-to-one for each i = 1, . . . , s, for given (w, z, θ), but not necessarily

globally. We denote by εi = ϕ−1
i (w, z, θ, ·) : R → Ei the corresponding inverse mapping for

given (w, z, θ). Thus, s is a function of (w, z, θ) . In principle, s could be either countable or

uncountable but for simplicity we assume throughout that s is a finite number.

We write ∂cϕ−1
i (w, z, θ, c) and ∂εϕ(w, z, θ, ε) to denote the partial derivatives of ϕ−1

i , i =

1, . . . , s and ϕ, respectively, with respect to C and ε for given (w, z, θ). This allows us to

introduce a differentiability assumption on Ψ.

3This obviously nests the case where all causal variables are independent of θ.
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Assumption 2. The structural function Ψ : Rk+l+d+2 → R is almost everywhere differentiable
in C and in ε with ∂cΨ(c, w, z, θ, ε) 6= 0 and ∂εΨ(c, w, z, θ, ε) 6= 0 except, possibly, on a set of

(c, w, z, θ, ε) values whose Lebesgue measure is 0.

The next three assumptions we introduce concern the stochastic properties of the random

vector (C,W,Z, θ, ε). Under Assumption 1, the random variable C has a degenerate distri-

bution conditional on (W,Z, θ, ε). Hence, the joint distribution of (C,W,Z, θ) is completely

characterized by the joint probability distribution of (W,Z, θ, ε) and the function ϕ. For the

conditional distribution of the nuisance variable ε, conditional on (W,Z, θ), we only require

that it is known up to a finite-dimensional parameter. This is formally stated in the following

assumption, where we denote by PWZθ the joint distribution on BW ⊗ BZ ⊗ BΘ.

Assumption 3. The conditional probability distribution Pε|WZθ on Bε given (W,Z, θ) admits

a Radon-Nikodym derivative fε|WZθ with respect to the Lebesgue measure. This probability

density function (pdf, hereafter) fε|WZθ is known, up to a finite-dimensional parameter θε ⊂ θ.

Moreover, there exists a constant mε > 0 such that mε ≤ fε|WZθ <∞, PWZθ-a.s. on the support

of Pε|WZθ.

This assumption allows ε to depend on all variables in the model but is also satisfied when ε is

independent of (W,Z, θ), which may be relevant in the measurement error setup. Note also that,

unlike in deconvolution, ε does not need to be independent of θ since we are not de-convolving

a probability distribution. In general, we can allow for ε and θ to be dependent. In other

applications, it may be useful to split the random parameter θ into two subparameters (θ1, θ2)

and confine dependence between ε and θ to one of the two components of θ. Mathematically,

this is equivalent to allowing the distribution of ε to depend on some ε-specific heterogeneity

parameters. For instance, we could model Pε|WZθ to be normal with mean µ and variance σ2.

Thus, µ and σ2 may be functions of (W,Z, θ) or even elements of the vector θ itself.

This allows a great deal of flexibility in structural modeling. By allowing fε|WZθ to be

known up to a finite dimensional random parameter (a parameter included in the vector θ),

we allow for cases where not everything is known about fε|WZθ. We may further weaken this

assumption: fε|WZθ could also be a finite mixture of normal pdfs where, besides the vector of

means and variances, also the mixture weights could depend on θ or be part of θ. Therefore,

the specification can be very close to a nonparametric specification for fε|WZθ, provided there

is enough independent variation in the data, as defined below. Adding flexibility in this fashion

does come at a cost, however, as it will reduce the rate of the estimation or even lead to a failure

of point identification, and we encounter the typical semiparametric trade-off of flexibility vs

feasibility.
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The probabilistic model relevant for our paper is the joint conditional probability distrib-

ution PCZθ|W on BC ⊗ BZ ⊗ BΘ conditional on W . Our assumptions will imply that this dis-

tribution is absolutely continuous with respect to the Lebesgue measure with Radon-Nikodym

derivative fCZθ|W . We denote by C ⊂ R, Z ⊂ Rl and Θ ⊂ Rd the supports of PC|WZ , PZ|W and

Pθ|W , respectively, where PC|WZ is the conditional distribution on BC given (W,Z), PZ|W (resp.

Pθ|W ) is the conditional distribution on BZ (resp. on BΘ) given W . The marginal distribution

on BW is denoted by PW and has support W ⊂ Rk. We consider C and Z to be continuous

random vectors while W can be either continuous or discrete. In contrast, θ is assumed to be

continuously distributed, as stated in the following assumption.

Assumption 4. The conditional probability distribution Pθ|W on BΘ given W admits a Radon-

Nikodym derivative fθ|W with respect to the Lebesgue measure. This pdf is strictly positive and

bounded on its support PW -a.s., i.e. there exists a constant mθ > 0 such that mθ ≤ fθ|W <∞.
Moreover, the support Θ of fθ|W does not depend on W .

Remark 1. For our analysis, we need a parametric form for fC|WZθ, that is, the conditional

pdf of C given (Z,W, θ). This pdf can be recovered by using Assumptions 2, 3 and the function

ϕ whose existence is assumed in Assumption 1. However, economic theory sometimes provides

suggestions on the functional form of fC|WZθ. For instance, Heckman and Singer (1984) and

references therein give some examples in duration models where economic theory provides a

structure for fC|WZθ.

We conjecture that a setup where some or all of the variables (Z, θ) are discrete could be

tackled by similar arguments. However, we expect that discreteness of Z would come at the cost

of point identification as in linear exogenous random coeffi cient models. This case is currently

beyond the scope of this paper.

The last assumption we introduce is an independence condition and is important for point

identification of the pdf fθ|W of the structural parameters of interest.

Assumption 5. The random element Z is conditionally independent of θ given W , i.e. Z ⊥
θ|W .

Why do we invoke this assumption, and not a marginal independence condition? Assump-

tion 5 would be satisfied if (Z,W ) were independent of θ. In this case, all variables would be

part of Z and there would be no W . However, many structural models imply that some regres-

sors are likely to be correlated with unobserved heterogeneity. We illustrate this point through

two important economic examples. We also illustrate the impact of Assumptions 3 and 5.
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2.2 Examples

Example 1 (Linear endogenous random coeffi cient model). Let X measure log-expenditure on

a set of goods and let C∗ measure the true log-expenditure share for one good. Assume that C

the observed log-expenditure share is measured with error and that C = C∗ + η. Assume that

the true outcome C∗ is generated by a linear random coeffi cients model with

C∗ = θ0 + θ1Z1 + θ2X

where Z1 is the log-price and θ = (θ0, θ1, θ2) is a vector of random parameters. Since X is

also a choice variable chosen by the same consumers, it is likely to be endogenous. To deal

with this complication, we introduce instruments in a control function fashion: Let Z2 measure

log-income and suppose that X = g (Z2,W ) , where g is a nonparametric function that is strictly

monotonic in W and W is the percentile of X conditional on Z2. Moreover, let Z = (Z1, Z2)

and assume that Z ⊥ (θ, η,W ). Impose the normalization W ∼ U [0, 1], and assume (for the

moment) that η|θWZ ∼ N [0, 1].

Substituting all elements into the outcome equation, we obtain

C = θ1Z1 + θ2g(Z2,W ) + ε, (2.2)

where ε = η + θ0 and ε|θWZ ∼ N [θ0, 1] . We are interested in recovering the density of θ

conditional on W. The example fits precisely into our framework since g can be treated as

known; one can plug in a non-parametric estimate of g obtained from a first-stage analysis.4

Moreover, Z ⊥ (θ, η,W ) implies that Z ⊥ θ|W. This illustrates that our framework allows for
a control function approach to endogeneity.

To understand the flexibility made possible by Assumption 3, note that the above arguments

remain valid if the density of ε depends on the entire vector θ or on (W,Z). On top of this,

one could allow the measurement error component to be a mixture of normals with mixing

weights that vary across the population. Alternatively, if a validation sample is available, a

nonparametric pilot estimate of fη|ZW could be plugged in. Finally, if there is no measurement

error, a modified version of our approach is detailed in Section 3.3.

Example 2 (Intertemporal consumption model). Consider the constant absolute risk aversion

(CARA) intertemporal utility maximization problem with finite horizon T , constant interest

rate r and random parameters θ1 and θ2 capturing heterogeneity in utility and subjective beliefs

respectively. Define R = (1 + r). Let At be a consumer’s beginning-of-period assets after having

4When a plug-in estimate of g is used, standard errors for our estimator can be adjusted using standard
methods for plug-in estimators.
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received all interest payments and let Yt be his/her income. Suppose income follows a random

walk. Let St = (At, Yt) be the state vector and let vt (St, θ) be the value function for a consumer

of type θ = (θ1, θ2) at date t. Let the terminal value function be vT+1 (ST+1, θ) = − eγAt+1

γ
and

let θ1 = (γ, β) where γ is the coeffi cient of risk aversion and β is the discount factor. At each

date t ≤ T , a consumer’s value function is defined by

vt (St, θ) = max
{C∗t }


− e−γC

∗
t

γ
+ βE [vt+1 (St+1, θ) |It (θ2) ]

subject to

At+1 = R (At + Yt − C∗t )

Yt+1 = Yt + ηt+1


where C∗t is consumption and ηt ∼ N

(
0, σ2

η

)
. Here, the parameters are θ1 = (γ, β) and θ2 = σ2

η.

At time t, a consumer’s information set It(θ2) consists of {ηs} for all s ≤ t. Suppose observed

consumption Ct equals actual consumption C∗t plus measurement error so that Ct = C∗t + εt.

Let Wt = (At, Yt−1) and Zt = Yt − Yt−1. Then this example fits precisely into our framework.

In terms of the variables (Ct,Wt, Zt) , the Euler equation is

e−γ(Ct−εt) − βE
[
∂Avt+1

(
R
(
W 1
t +W 2

t + Zt − Ct + εt, θ
)
,W 2

t + Zt
)
|It (θ2)

]
= 0

where W 1
t = At and W 2

t = Yt−1. In particular, under the assumptions stated, the consumption

function (with measurement error) takes the form

Ct = φ1tW
1
t + φ2t

(
W 2
t + Zt

)
+mt (γ, β, θ2) + εt (2.3)

with

mt (γ, β, θ2) = φ3t + φ4tγ + φ5t (θ2)
ln β

γ
.

The vector φt = (φ1t, φ2t, φ3t, φ4t, φ5t) consists of parameters that depend only on R, t and θ2

(see, e.g., Caballero (1990)). The vector θ = (θ1, θ2) = (γ, β, σ2
η) is assumed to be a time-

invariant random coeffi cient vector, heterogeneously distributed in the population. We assume

that the income process (Yt)t=1,..,T ⊥ θ1 and that εt ∼ N (0, σ2
ε).

5

Because θ is time invariant and determines both past and current consumption and savings

decisions, it will be correlated with Wt. Obviously, as in Example 1, we could allow the density

of εt to depend on (θ,W,Z) .

With respect to Assumption 5, note that Yt cannot be used as an exogenous variable. While

it is assumed to be marginally independent of θ, it cannot be independent of θ conditional

5More generally, the consumption function C = ϕ (W,Z, θ, ε) could be computed numerically. For such an
application, see Hoderlein et al. (2012).
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on At. Observe, however, that by assumption, Yt − Yt−1 is independent of the entire history.

Consequently, with the choice Wt = (At, Yt−1) and Zt = Yt − Yt−1, we obtain θ ⊥ Zt|Wt. Note

also that the parameters (γ, β) enter (2.3) only through the single index δ = mt (γ, β, θ2) . As

a result, the joint density of (γ, β) is not identified. Rather, the density of δ is identified. We

discuss this point in more detail in Section 3.2.

Example 3 (Auction Model). Consider the independent symmetric private value first-price

sealed-bid auction model with risk averse bidders considered in Campo et al. (2011). Let

I ≥ 2 denote the number of potential bidders and {vi}i=1,..,I be the bidders’ private values

which are drawn independently from an unknown cumulative distribution function F . This

distribution may depend on observed characteristics Z of the auctioned objects, and hence we

write F (·|Z, I) for the CDF. We assume that F (·|Z, I) is differentiable with density f(·|Z, I)

on a compact support [v(I), v̄(I)] ⊂ R+. Let U(·) be a bidder’s von Neuman Morgenstern utility
function with U(0) = 0, U ′(·) > 0 and U ′′(·) ≤ 0 because of potential risk aversion. Denote by

s(·) ≡ s(·;U, F, I) the Bayesian Nash equilibrium bidding strategy. From equation (1) in Campo

et al. (2011), a bidder i’s optimal bid bi = s(vi) solves the following differential equation:

s′(vi) = (I − 1)
f(vi|Z, I)

F (vi|Z, I)
λ(vi − bi) (2.4)

for all vi ∈ [v(I), v̄(I)], where λ(·) = U(·)/U ′(·). The boundary condition is s(v(I)) = v(I).

Assume that U(·) is of CRRA type with U(x) = x1−θ1 for 0 ≤ θ1 < 1. Then, λ(v − b) =

(1− θ1)−1(v − b) and using (2.4) bidder i’s optimal bid is

bi = vi − [F (vi|Z, I)]
− I−1

1−θ1

∫ vi

v

[F (t|Z, I)]
I−1
1−θ1 dt. (2.5)

In this example, b and v play the roles of C and ε, respectively, and the function on the right

hand side of (2.5) plays the role of the function ϕ in Assumption 1. By assuming a parametric

form for the pdf of v given (Z, I), we can recover the pdf of b conditional on θ1 and eventually

on Z. We remark that in this example the parameter θ1 is assumed to be heterogeneous across

different auctions but it is the same for bidders taking part in a given auction (as it is required in

order to have the equilibrium). Finally, note that we could let the pdf of vi depend on additional

parameters θ that could be heterogeneous across the population of auctions.

This list of examples serves to illustrate the generality of our framework. The list could be

greatly extended. For instance, one could apply this approach to study the original Heckman

and Singer (1984) work on duration, or one could apply our framework to structural labor

models of the form studied in Keane and Wolpin (1997). Instead of elaborating on the details,

we leave the application of this framework to future research, and complete the formal definition
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of our model.

2.3 A Hilbert-space setting

The natural space for probability density functions is the L1 space with respect to the Lebesgue

measure endowed with either the L1- or the Hellinger- metric. Despite this fact, to exploit

desirable properties of Hilbert spaces, we develop our analysis in L2 spaces with respect to

some suitable measures.

For this purpose, we introduce two non-negative weighting functions on Θ and C ×Rl that
we denote by πθ and πcz, respectively. Define the space L2

πθ
(Θ) (resp. L2

πcz(C × Rl)) of real-
valued functions defined on Θ (resp. on C ×Rl), and indexed by the random variableW , which
are PW -a.s. square integrable with respect to πθ (resp. πcz), that is,

L2
πθ

(Θ) =

{
h(·;W ) : Θ→ R

∣∣∣∣ ∫
Θ

h2(θ;W )πθ(θ)dθ <∞, PW − a.s.
}
,

L2
πcz(C × R

l) =

{
ψ(·, ·;W ) : C × Rl → R

∣∣∣∣ ∫
C

∫
Rl
ψ2(c, z;W )πcz(c, z)dcdz <∞, PW − a.s.

}
.

For brevity, we denote L2
πθ

(Θ) by L2
πθ
and L2

πcz(C × Rl) by L2
πcz . Further, we denote the

scalar product by < ·, · > and the induced norm by || · || in both L2
πθ
and L2

πcz without

distinction. That is ∀h1, h2 ∈ L2
πθ
, < h1, h2 >=

∫
h1(θ;W )h2(θ;W )πθ(θ)dθ and ∀ψ1, ψ2 ∈ L2

πcz ,

< ψ1, ψ2 >=
∫
ψ1(c, z;W )ψ2(c, z;W )πcz(c, z)dθ.

Since our analysis is conditional on W , we allow the weighting functions πθ and πcz to

be indexed by W too. The sets of conditional probability density functions relevant for our

analysis are denoted and defined as follows

Fθ|W :=
{
f ∈ L2

πθ

∣∣ f is a conditional pdf on (Rd,BΘ) given W
}

FC|WZ :=
{
f ∈ L2

πcz

∣∣ f is a conditional pdf on (R,BC) given (Z,W )
}

FC|WZθ := {f | f is a conditional pdf on (R,BC) given (W,Z, θ)} .

While Fθ|W ⊂ L2
πθ
and FC|WZ ⊂ L2

πcz , we do not assume that FC|WZθ ⊂ L2
πcz×πθ where

L2
πcz×πθ :=

{
h(·, ·, ·;W ) : C × Rl ×Θ→ R

∣∣∣∣∫
C

∫
Rl

∫
Θ

h2(c, z, θ;W )πθ(θ)πcz(c, z)dθdcdz <∞, PW − a.s.
}
.

When this last condition is satisfied, that is the pdf of C conditional on (W,Z, θ) is square

integrable, we can provide a simple characterization of the identified set. However, this condi-

tion is only suffi cient and not necessary as we explain in Section 3.1 below. In the following we

assume that fθ|W ∈ Fθ|W .
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3 Identification of the distribution of parameters

In this section we use the structural relationship given in Assumption 1 to characterize the direct

mapping from fθ|W , the pdf of unobservables θ conditional onW , to fC|WZ , the conditional pdf

of C given (W,Z), i.e., the mapping from the distribution of unobservables to the distribution of

observables. We also characterize the inverse mapping from the observables to the distribution

of unobservables. The economic model defines both mappings. The econometric problem is to

analyze the inverse mapping.

3.1 Linear integral equation and non-linear inverse problem

Given the direct mapping described above, the econometrician is interested in the inverse prob-

lem of recovering the conditional pdf fθ|W of θ given W (i.e. the cause) from the observed

phenomenon. The following theorem characterizes both the structural mapping as an opera-

tor equation and the inverse problem as a convexly constrained inverse of the same operator

equation.

Theorem 1. Let Assumptions 1-5 be satisfied. Then

fC|WZ = Tfθ|W , PW − a.s.

where ∀h ∈ L2
πθ
,

Th =

∫
Θ

s∑
i=1

(fε|WZθ ◦ ϕ−1
i )(c, w, z, θ) ·

∣∣∣∣∂cΨ(c, w, z, θ, ϕ−1
i (w, z, θ, c))

∂εΨ(c, w, z, θ, ϕ−1
i (w, z, θ, c))

∣∣∣∣ 1Ci(c)h(θ;w)dθ, (3.1)

c = ϕ(w, z, θ, ε) is the a.s.-explicit solution of Ψ(c, w, z, θ, ε) = 0 and Ci = {c ∈ Im (Ei) ∩ Cθ} .
Here Im (Ei) is the image of Ei through ϕ and Cθ is the support of fC|WZθ . This implies that

fθ|W is a solution of

fC|WZ = Tfθ|W subject to fθ|W ∈ Fθ|W , PW − a.s. (3.2)

Note that although the operator T depends on W, we use the short-hand notation T and leave

implicit the dependence on W .

The operator T in equation (3.2) is a mixing operator and the theorem characterizes the

object of interest fθ|W as the solution of a convexly constrained Fredholm integral equation of

the first kind. Equation (3.2) states that fC|WZ is a PW -a.s. fθ|W -mixture of fC|WZθ ∈ FC|WZθ

14



where

fC|WZθ =

s∑
i=1

(fε|WZθ ◦ ϕ−1
i )(c, w, z, θ) ·

∣∣∣∣∂cΨ(c, w, z, θ, ϕ−1
i (w, z, θ, c))

∂εΨ(c, w, z, θ, ϕ−1
i (w, z, θ, c))

∣∣∣∣ 1Cθ(c).
In other words, this means that fC|WZ belongs PW -a.s. to the convex hull MΘ of FC|WZθ:

fC|WZ ∈MΘ :=

{
h

∣∣∣∣ h =

∫
Θ

fC|WZθ(·;w, ·, θ)fθ|Wdθ; fC|WZθ ∈ FC|WZθ, fθ|W ∈ Fθ|W
}

where fC|WZθ denotes the pdf associated with PC|WZθ and PC|WZθ is the conditional probability

on BC conditional on (W,Z, θ).

Recovering fθ|W from (3.2) is an ill-posed inverse problem. The main contribution of the

theorem is the characterization (3.1) of the operator T in terms of the structural quantities of

the economic problem.

Throughout this paper, we work with compact operators on Hilbert spaces, because they

have many similarities with linear operators on finite dimensional spaces. On top of that,

they have appealing spectral properties and can be approximated by operators with finite-

dimensional range that are norm convergent which is useful for estimation. To this end, we

assume that πθ and πcz are suitably chosen so that T is bounded and compact andR(T ) ⊂ L2
πcz ,

where R(·) denotes the range of an operator. See the discussion in the simulations below. Our
assumptions imply that fC|WZ ∈ FC|WZ ⊂ L2

πcz . A suffi cient condition for T : L2
πθ
→ L2

πcz and

T being bounded and compact is that the kernel of the operator T ,
fC|WZθ

πθ
, is square integrable

with respect to πcz × πθ, that is
fC|WZθ

πθ
∈ L2

πcz×πθ .
6

In practice, the econometrician specifies fε|WZθ and πθ instead of fC|WZθ. Therefore, it is

useful to give suffi cient conditions for compactness and boundedness of the operator T in terms

of fε|WZθ and πθ. To that end we introduce Assumption 6.

Assumption 6. Let s
1
2fε|WZθ|∂cΨ/∂εΨ|1/2

∣∣∣
c=ϕ(w,z,θ,ε)

be square integrable in (ε, Z, θ) with re-

spect to πcz
πθ

∣∣∣
c=ϕ(w,z,θ,ε)

, PW -a.s.

With this assumption, we can prove the next proposition.

6Remark that R(T ) ⊂ L2
πcz if and only if ∀h ∈ L

2
πθ
, ||Th|| < ∞. By using the Cauchy-Schwarz inequality

we obtain

||Th||2 =

∫
C

∫
Rl

〈fC|WZθ

πθ
, h
〉2

πcz(c, z)dcdz ≤
∫
C

∫
Rl

∣∣∣∣∣∣fC|WZθ

πθ

∣∣∣∣∣∣2||h||2πcz(c, z)dcdz
= ||h||2

∫
C

∫
Rl

∫
Θ

f2
C|WZθ

πθ
πczdθdcdz <∞. (3.3)
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Proposition 1. Let T be the operator defined in (3.1) with domain L2
πθ
and let Assumptions

1 - 6 be satisfied. Then T is a PW -a.s. bounded and compact operator with range included in

L2
πcz .

This proposition shows that compactness of T depends both on the structural model (char-

acterized by the structural function Ψ and the density fε|WZθ) and on the weights πcz and πθ.

With this additional assumption, the adjoint operator is bounded and linear, as the following

proposition shows:

Proposition 2 (Adjoint of T ). Let T : L2
πθ
→ L2

πcz be the operator defined in (3.1) and fC|WZθ

be the pdf associated with PC|WZθ. The operator T ∗ defined as: ∀ψ ∈ L2
πcz ,

T ∗ψ =

∫
C

∫
Rl
fC|WZθ(c;w, z, θ)ψ(c, z;w)

πcz(c, z)

πθ(θ)
dcdz,

is the adjoint of T . The operator T ∗ : L2
πcz → L2

πθ
is bounded and linear.

A compact operator admits a singular value decomposition, which is briefly reviewed for

completeness:

Remark 2 (Singular value decomposition - SVD). When the operator T is compact with

infinite-dimensional range, that is, its kernel is not degenerate, then T ∗T is characterized by

a countable number of eigenvalues which accumulate only at zero. Moreover, it admits the

following singular value decomposition:

Tϕj = λjψj, T ∗ψj = λjϕj, j ∈ N

where {λj}j∈N and {ϕj, ψj}j∈N are the sequences of singular values and singular functions,
respectively. The singular values are the nonnegative square roots of the eigenvalues of T ∗T (and

also of TT ∗). The set of functions {ϕj}j∈N (resp. {ψj}j∈N) is a complete orthonormal system
of eigenfunctions of T ∗T (resp. of TT ∗) which spans R(T ∗) = R(T ∗T ) (resp. R(T ) = R(TT ∗))

where R(T ∗) is the closure of the range of the operator T ∗.

From now on we denote by T |Fθ|W the operator T restricted to Fθ|W . Thus, if D(·) denotes
the domain of an operator, we have D(T |Fθ|W ) = D(T ) ∩ Fθ|W = Fθ|W and R(T |Fθ|W ) ⊂
FC|WZ ⊂ R(T ) ⊂ L2

πcz . Following Example 2.4 in Carrasco et al. (2007), the adjoint T |∗Fθ|W
of T |Fθ|W is given by T |∗Fθ|W = PcT ∗ where Pc denotes the metric projector onto Fθ|W . Notice
that Fθ|W is a convex set and hence the operator T |Fθ|W is an affi ne operator, i.e. T |Fθ|W :

Fθ|W → L2
πcz satisfies: T |Fθ|W ((1 − λ)f1 + λf2) = (1 − λ)T |Fθ|W (f1) + λT |Fθ|W (f2) whenever

f1, f2 ∈ Fθ|W , 0 < λ < 1.
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We introduce the following set that will be useful for discussing identification

D = {f1 − f2

∣∣ ∀f1, f2 ∈ Fθ|W } = Fθ|W ⊕ F̌θ|W

where F̌θ|W = {−f ; f ∈ Fθ|W} and ⊕ denotes the Minkowski sum. The set D is a convex set

and we denote by T |D : D→ L2
πcz the operator T restricted to D. This is an affi ne operator.

Remark 3 (Nonlinear inverse problem). Despite the linearity of T , the inverse problem in (3.2)

is potentially non-linear because of the constraint fθ|W ∈ Fθ|W . By nonlinear inverse problem
we mean that the Fθ|W -constrained pseudoinverse of T is a nonlinear operator. As we explain
in more detail in section 4.3, this operator defines the constrained-best-approximate solution

of (3.2).

Remark 4 (Existence of a solution). If the model specification is correct, then the existence

of at least one solution to (3.2) is guaranteed since fC|WZ ∈ R(T |Fθ|W ). In the terminology of

inverse problems, this means that fC|WZ is “attainable”.

3.2 The identified set

In this section, we discuss point and set identification of fθ|W . The distribution fθ|W ∈ Fθ|W
will be called identified (with respect to the class Fθ|W ) if

T |Fθ|W (fθ|W ) = T |Fθ|W (f̃θ|W ) ⇒ fθ|W = f̃θ|W , (3.4)

for all f̃θ|W ∈ Fθ|W .
Therefore, point identification of fθ|W is equivalent to requiring that the operator T |D is

injective. In fact, (3.4) is equivalent to “T |D(fθ|W − f̃θ|W ) = 0 implies fθ|W = f̃θ|W”. The

injectivity of T |D depends on the injectivity of T but it is not equivalent. In fact, if T is

injective, that is, N (T ) = {0} where N (·) denotes the null space of an operator, then T |D is
injective as well. However, when T is non-injective the restricted operator T |D may be injective.
This is possible when the domain of T |D is suffi ciently restricted.
The following proposition characterizes the identified set for the operator T , denoted by

Λ. Using the notation from Remark 2, we denote the eigenvalues and eigenfunctions of T ∗T

by
{
λj, ϕj

}
j∈N . We denote by f

†
θ|W the solution of the linear inverse problem fC|WZ = Tfθ|W

which has minimal norm, and J0 = {j λj = 0}. The following proposition is then immediate
from the previous discussion:
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Proposition 3. The identified set is the set of all the solutions of (3.2):

Λ =
{
h ∈ Fθ|W

∣∣ fC|WZ = Th, PW − a.s.
}

=
{
f †θ|W ⊕N (T )

}
∩ Fθ|W .

If T is compact then

Λ =

h ∈ Fθ|W
∣∣∣∣∣∣∣∣∣∣

h = f †θ|W +
∑
{j∈J0} ζjϕj for {ζj}

satisfying∑
j∈J0

ζj

∫
Θ
ϕjdθ = 1− κw ∧

∑
{j∈J0}

ζjϕj ≥ −f
†
θ|W , PW − a.s.


where κw =

∫
Θ
f †θ|W (θ;w)dθ.

This proposition characterizes the identified set in terms of quantities that depend on the

SVD of T , which is known, and on fC|WZ which can be easily estimated.

The model is point-identified when Λ is a singleton. This occurs in two cases:

(i) the operator T is injective, i.e. N (T ) = {0}. Then, f †θ|W ∈ Fθ|W and is the unique

solution of (3.2);

(ii) the operator T is not injective, i.e. N (T ) 6= {0}, but T |D is injective, i.e. (3.4) holds.
In this case we have Λ = (f †θ|W + hθ|W ) where hθ|W ∈ N (T ) is such that

∫
Θ

(f †θ|W +

hθ|W )(θ;W )dθ = 1 and (f †θ|W + hθ|W ) is non-negative a.e. on Θ, PW -a.s. In this case we

can also have Λ = f †θ|W if f †θ|W is a probability density function.

The injectivity condition of T characterizes the strength of statistical dependence between C

and θ conditionally on (W,Z). However, identification can be obtained even without injectivity

of T . This shows that identification in our framework is a weaker concept than in the nonpara-

metric instrumental variable (IV) literature. In fact, identification in nonparametric IV models

is guaranteed only when the operator characterizing the estimating equation is injective, which

corresponds to our case (i). In contrast, we may also achieve identification in case (ii), and this

is due to the presence of the constraint in (3.2). This constraint makes the estimation problem

more diffi cult because the estimation problem is nonlinear when the constraint is binding. On

the other hand, it can help to shrink the size of the identified set.

Remark 5. If C, Z = (Z1, . . . , Zl) and θ are discretely distributed with finite supports

{c1, . . . , cs}, {z1j, . . . , ztjj}, for j = 1, . . . , l and {θ1, . . . , θm}, respectively, then a necessary
condition for identification is that sK ≥ m, where K =

∑l
j=1 t

j. This means that the number

of support points in each dimension can differ as long as sK ≥ m. If m is very large and the
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supports of C and Z contain few points then we need to increase the dimension of Z compared

to the dimension of θ, see also Newey and Powell (2003). This logic extends to the countably

infinite case, and we hence conjecture that having a vector (C,Z) with large dimension relative

to the dimension of θ is in general necessary to achieve identification.

Remark 6. The injectivity of the operator T is equivalent to the requirement that the con-

ditional pdf fθ|CWZ of θ given (C,W,Z) is L2
πθ
-complete, provided that fC|WZ and fθ|W are

bounded away from zero and infinity. The following argument shows this fact. The oper-

ator T is injective if and only if the only solution of 0 =
∫

Θ
fC|WZθ(c;w, z, θ)h(θ;w)dθ in

L2
πθ
is h(θ;w) = 0, PW -a.s. Note that we can rewrite 0 =

∫
Θ
fC|WZθ(c;w, z, θ)h(θ;w)dθ =∫

Θ
fθ|CWZ(θ; c, w, z)

fC|WZ(c;w,z)

fθ|W (θ;w)
h(θ;w)dθ. Now, under the assumptions of Theorem 1, 0 <

mεκ ≤ fC|WZ < ∞, for some constant κ. This is because by Assumption 2: ∂cΨ 6= 0 and

∂εΨ 6= 0, and by Assumption 3: mε ≤ fε|WZθ < ∞. Furthermore, Assumption 4 guarantees
that 0 < mθ ≤ fθ|W < ∞. If we then assume that fθ|CWZ is L2

πθ
-complete, then by definition

of completeness, this implies that

fC|WZ(c;w, z)

fθ|W (θ;w)
h(θ;w) = 0, PW − a.s.

which in turn implies that h(θ;w) = 0, PW -a.s. since 0 < mεk ≤ fC|WZ(c;w, z) < ∞ and

0 < mθ ≤ fθ|W (θ;w) <∞. On the other side, assume that T is injective, then 0 = Th implies

h(θ;w) = 0, PW -a.s. Since fC|WZ and fθ|W are bounded away from zero and infinity, h(θ;w) =

0, PW -a.s. is equivalent to
fC|WZ(c;w,z)

fθ|W (θ;w)
h(θ;w) = 0, PW -a.s. Thus, fθ|CWZ is L2

πθ
-complete, and

conditions that are suffi cient for completeness ensure identification. The equivalence between

L2-completeness and injectivity was already noted in Florens et al. (1990), Florens (2003),

Newey and Powell (2003) and Hu and Schennach (2008) in different setups. We would like

to point out that in mixture models, like the one that underlies our framework or Hu and

Schennach (2008), unlike the nonparametric IV literature, L2
πθ
-completeness does not refer

to the pdf fC|WZθ which characterizes the kernel of the integral operator T . In fact, these

approaches differ, as in our setting T is not a conditional expectation operator.7

However, in our framework, L2
πθ
-completeness is too strong for identification, since the

solution to the integral equation is also constrained to be a pdf. In our case, identification is

thus equivalent to a weaker concept of completeness, that we call T -completeness of fθ|CWZ .

7There is one noticeable exception to this rule: the case without Z. To see this, first note that T is
injective if and only if T ∗ is injective. The operator T ∗ is then defined as follows: ∀φ ∈ L2

πc 7→ T ∗φ =∫
C fC|Wθ(c;w, θ)φ(c;w)πc(c)dc

1
πθ

= E(φπc|W, θ) 1
πθ
. If 0 < πθ <∞ and 0 < πc <∞, PW -a.s., then T ∗φ = 0 is

equivalent to E(φ|W, θ) = 0. This shows that, in the less interesting case without Z, L2
πc-completeness of fC|Wθ

is equivalent to injectivity of T .
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This condition will turn out to be a necessary and suffi cient condition for identification in our

framework, as the following proposition shows:

Proposition 4 (T -completeness). Let L : D → L2
πθ
be the multiplication operator (Lh)(θ) =

1
fθ|W (θ;w)

h(θ;w) where fθ|W denotes the true pdf and denote T = R(L) ⊂ L2
πθ
. Under the

assumptions of theorem 1, (3.4) holds if and only if fθ|CWZ is T -complete, that is, ∀h ∈ T ,∫
Θ
hfθ|CWZdθ = 0, PCWZ-a.s., implies h = 0, PW -a.s.

We refer to Mandelbaum and Rüschendorf (1987) for more background on completeness

of a probability distribution with respect to a general family of functions T ; in this paper,
we adapt this concept to our problem. In the following, we give some examples of classes of

distribution functions FC|WZθ, for which the corresponding pdf of θ given (W,Z, θ) satisfy L2
πθ
-

completeness, resp. T -completeness, and hence allow for point identification. We start with
the well known class of exponential distributions that is complete.

Exponential family of distributions.

Lemma 3.1. Let us assume that ∀i = 1, . . . , s, ∂cϕ−1
i (w, z, ·, c)1Cθ(c) is bounded away from

zero and infinity for every (c, w, z) ∈ C ×W ×Z, and (fε|θWZ ◦ ϕ−1
i )(c, w, z, θ) is of the form

exp{τ i(c, w, z)′mi(θ)}hi(θ)ki(c, w, z), i = 1, . . . , s

where for every i = 1, . . . , s, hi(·) is a positive function depending only on θ, mi(·) is a vector-
valued function whose image has dimension equal to the dimension of θ and each component is

an increasing function depending only on θ. The functions τ i and ki do not depend on θ and ki
is a positive and bounded function. Then, if the support of (C,Z,W ) has a nonempty interior,

fθ|W is identified with respect to the class Fθ|W .

In addition to this large class of distributions, we now provide additional examples of fam-

ilies FC|WZθ of conditional distributions for which the operator T |Fθ|W is injective, that is, the

corresponding fθ|CWZ is T -complete8. It turns out that the corresponding densities fθ|CWZ

satisfy a notion of completeness stronger than T -completeness: they are complete with respect
to the class of functions {(h/fθ|W )(θ;w); h = h1 − h2, : ∀h1, h2 ∈ L1(Θ) ∩ L2

πθ
(Θ)}. This class

of functions contains T , but is in general smaller than L2
πθ
. As a consequence, the pdf s fθ|CWZ

8In fact, this is easy see: Let FC|WZθ be any of the two Teicher’s families, and let fC|WZθ ∈ FC|WZθ. Then,

T |Dh = 0 implies h = 0, where h ∈ D. Now, T |Dh = 0 is equivalent to
∫

Θ
(fθ|WZC

fC|WZ

fθ|W
)(θ, c;w, z)h(θ;w)dθ = 0

which in turn is equivalent to
∫

Θ
(fθ|WZC

1
fθ|W

)(θ;w, z, c)h(θ;w)dθ = 0. Now, suppose that fθ|WZC is not T -
complete. This implies that 1

fθ|W (θ;w)h(θ;w) may be different from 0, PW -a.s. which in turns implies that

h(θ;w) may be different from 0, PW -a.s. (since 0 < mθ < fθ|W <∞), but this is a contradiction with the fact
that T |D is injective.
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implied by the families FC|WZθ listed below are not in general L2
πθ
- complete, but T -complete.

The examples are confined to the single random coeffi cient case, but illustrative for multiple

parameters.

Additively-closed one-parameter family of distributions. Let Θ = R+ and

FC|WZθ be additively closed, i.e. ∀fC|WZθ, hC|WZθ ∈ FC|WZθ and ∀θ1, θ2 ∈ Θ, fC|WZθ(c;w, z, θ1)∗
hC|WZθ(c;w, z, θ2) = fC|WZθ(c;w, z, θ1 + θ2), where ∗ denotes the convolution operation. Then,
fθ|W is identified. Additive-closedness of FC|WZθ depends on the functional form of fε|WZθ and

of the structural function ϕ and can be easily checked. In particular, some distributions that

belongs to the additively-closed one-parameter family, and that are relevant for our application,

are the following, see Teicher (1961).

- Type III distributions: fC|WZθ = zθ

Γ(θ)
cθ−1e−zc, c > 0, z > 0, θ > 0 or fC|WZθ =

θz

Γ(z)
cz−1e−θc, c > 0, z > 0, θ > 0. The role of W and Z can be interchanged.

- Uniform distributions: fC|WZθ = U [θ−g(Z,W ), θ+g(Z,W )], where g(·, ·) is some function
of (Z,W ). Therefore, fC|WZθ = 1

2g(Z,W )
1{[θ−g(Z,W )] < c < [θ+g(Z,W )]}. However, for

uniform distributions for which the support does not depend on θ we have no identification

of Fθ|W .

Location-scale one-parameter family of distributions. Let Θ = R+ and FC|WZθ

be the one-parameter family induced by fC|WZ via location or scale changes, i.e. ∀fC|WZθ ∈
FC|WZθ, fC|WZθ(c;w, z, θ) = fC|WZ(c − θ;w, z) or fC|WZθ(c;w, z, θ) = fC|WZ(cθ;w, z). For the

location (resp. scale) family: if the conditional characteristic function of C (resp. logC),

given (W,Z), does not vanish PWZ-a.s. in some non-degenerate real interval, then the fθ|W is

identified, see Teicher (1961).

These examples illustrate nicely the degree to which our prior knowledge about the structure

of the problem and the space of possible solutions —in our case, random coeffi cient densities —

helps us to understand identification. Note, however, that the distribution of fC|WZθ(c;w, z, θ)

in our setup is determined by the distribution of ε and the structural model ϕ. To illustrate

the type of arguments that would have to be considered, we now analyze identification in the

two previous examples introduced above:

Example 1 (Continued). Suppose that ε ∼ Exp(λ) with λ > 0 a known parameter. Therefore,

the functional equation that identifies fθ|W is

fC|WZ(c, w, z) =

∫
Θ

λ exp{−λ(c− z′1θ1 − θ2g(z2, w))} · 1{c ≥ z′1θ1 + θ2g(z2, w)} · fθ|Wdθ
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where z := (z′1, z2)′. The function (fε|θWZ ◦ϕ−1
i )(c, w, z, θ) which characterizes the kernel of the

operator can be rewritten as:

(fε|θWZ ◦ ϕ−1
i )(c, w, z, θ) = λ exp{−λ(c− z′1θ1 − θ2g(z2, w))}

= λ exp{−λc} exp{λ[z′1, g(z2, w)]θ]}

and satisfies the assumptions of Lemma 3.1 with h(θ) = λ, m(θ) = θ = (θ′1, θ2)′ is the iden-

tity function, τ(c, w, z) = (z′1, g(z2, w))′ and k(c, w, z) = exp{−λc}. Then, if the support of
(C,W,Z) is nonempty, fθ|W is point-identified.

Example 2 (Continued). For simplicity, assume θ2 is not random, eliminate the index t and

assume classical measurement error. We make use only of cross-section data for the estimation.

In this example,

fC|WZ (c, w, z) =

∫
Θ

exp

(
−1

2

(
c−φ1w1−φ2(w2+z)−m(γ,β,θ2)

σε

)2
)

√
2πσ2

ε

fγβ|W (γ, β;w) dγdβ. (3.5)

Define δ = m (γ, β, θ2) . Denote by D the support of δ and by Γ the support of γ. After a change

of variable, this integral equation can be rewritten

fC|WZ (c, w, z) =

∫
D

∫
Γ

exp

(
−1

2

(
c−φ1w1−φ2(w2+z)−δ

σε

)2
)

√
2πσ2

ε

f̃γδ|W (γ, δ;w) dγdδ (3.6)

=

∫
D

exp

(
−1

2

(
c−φ1w1−φ2(w2+z)−δ

σε

)2
)

√
2πσ2

ε

f̃δ|W (δ;w)

(∫
Γ

f̃γ|Wδ (γ, δ;w) dγ

)
dδ

=

∫
D

exp

(
−1

2

(
c−φ1w1−φ2(w1+z)−δ

σε

)2
)

√
2πσ2

ε

f̃δ|W (δ;w) dδ

where

f̃γδ|W (γ, δ;w) = fγβ|W
(
γ,m−1 (γ, δ, θ2)

) ∣∣∣∣∂m−1 (γ, δ, θ2)

∂δ

∣∣∣∣ .
The joint density of (γ, δ) is not point-identified because any proper conditional density f̃γ|Wδ (γ; δ, w)

is consistent with the data. In fact, the conditions of lemma 3.1 are not satisfied. The marginal

density f̃δ|W (δ;w) is point-identified. The identified set of densities fγβ|W is the set whose

element is

fγβ|W (γ, β;w) = f̃δ|W (m (γ, β, θ2) ;w) · f̃γ|Wδ (γ,m (γ, β, θ2) ;w)

∣∣∣∣∂m∂γ
∣∣∣∣
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for some conditional density f̃γ|Wδ .

While the second result appears negative, it is important to note that our analysis only

uses information on fC|WZ . As long as we condition on age (i.e. as long as age is an element

of W ), and as long parameters governing aggregate uncertainty have been pre-estimated on

aggregate time series data, it does not matter that the cross-sectional distribution of C does

not contain any cross-sectional variation in aggregate variables, e.g., interest rates. In fact,

even in the presence of aggregate shocks, the distribution of fδ|W may still be point identified

by considering idiosyncratic variation only (in the example, a two period panel with large cross

section dimension is required). Note that potentially the entire distribution of fγβ|W may be

identified if utility is CRRA rather than CARA or with enough time series variation (e.g., a

large panel with suffi cient interest rate variation). See Hoderlein et al. (2012) for work in this

direction.

3.3 Identification without nuisance unobservables

In this section we briefly describe the case where we do not have ε so that fC|WZθ cannot be

recovered as in theorem 1. This is relevant in models where all the unobservable variables are

of interest so, ε is included in θ. In our setup, this implies that the general structural model

(1.2) reduces to

Ψ(C,W,Z, θ) = 0. (3.7)

Indeed, even in this setup where ϕ is not strictly monotonic in θ and θ is multivariate, we can

characterize the structural pdf fθ|W as a solution to a slightly different constrained functional

equation. Let FC|WZ be the cumulative distribution function of C conditioned on (W,Z)

assumed to be in L2
πcz . Then,

FC|WZ(c;w, z) = Sfθ|W (θ;w) and fθ|W ∈ Fθ|W , PW − a.s. (3.8)

where S : L2
πθ
→ L2

πcz is a bounded linear operator defined as

Sh =

∫
{θ; ϕ(w,z,θ)≤c}

h(θ;w)dθ ≡
∫

Θ

1{ϕ(w, z, θ) ≤ c}h(θ;w)dθ, ∀h ∈ L2
πθ
.

The kernel of the new operator is 1{ϕ(w,z,θ)≤c}
πθ(θ;w)

and the adjoint S∗ is:

S∗h =

∫
C

∫
Rl

1{ϕ(w, z, θ) ≤ c}πcz(c, z)
πθ(θ)

h(c;w, z)dcdz, ∀h ∈ Lπcz(c, z).
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For this new problem Assumptions 1 and 5 are still required while Assumptions 3 and 4 can

be weakened to

Assumption 4’. The random variable (C, θ, Z|W ) has a joint continuous distribution charac-

terized by its cumulative distribution function FCθZ|W that is absolutely continuous with respect

to the Lebesgue measure with Radon-Nikodym density fCθZ|W . Moreover, the support Θ of fθ|W
does not depend on W .

A suffi cient condition for compactness of the operator S is that πθ and πcz are chosen

such that
∫

Θ
1
πθ
dθ < ∞ and

∫
C
∫
Rl πczdcdz < ∞. When there are nuisance unobservables, the

estimating equation (3.2) can be trivially recovered from (3.8) by differentiating with respect

to c.

Due to the structure of the operator S, this problem is somewhat different, and left to future

research. The estimation procedure for this case is the same as that one proposed in Section 4.

Our estimator defined in (4.2) is valid with T replaced by S. We conjecture that the rate of the

MISE will improve since FC|WZ can be estimated at a better rate than fC|WZ . Moreover, the

degree of ill-posedness will not be as severe as in the case where the kernel of T is exponential.

A complete analysis of this case is beyond the scope of this paper and we leave it for future

research. This short discussion simply shows that our estimation approach is quite general and

can be extended to cover the case where ε is not part of the structural model.

4 Estimation

In this section we develop the estimation theory for fθ|W based on the resolution of the nonlinear

problem (3.2). We call our estimation method Indirect Estimation and our estimator an Indirect

Regularized Density Estimator.

Equation (3.2) cannot be solved directly for fθ|W since the (generalized) inverse of T is

unbounded and in addition fC|WZ is unknown. To solve the latter problem, we assume to be

able to estimate fC|WZ in (3.2) by a (standard nonparametric) consistent estimator from a

cross-section. The next assumption formalizes this:

Assumption 8. Let (ci, wi, zi), i = 1, . . . , n be an i.i.d. sample of (C,W,Z) that is used to

construct an estimator f̂C|WZ of fC|WZ such that E||f̂C|WZ − fC|WZ ||2 converges to 0 as n ↑ ∞.

To address the problem of unboundedness of the (generalized) inverse of T , we propose the

following regularization procedure. Our procedure is valid for any consistent nonparametric

estimator of fC|WZ that satisfies assumption 8. We give a more detailed analysis of the rate and

show asymptotic normality for the special case when fC|WZ is estimated by kernel smoothing.

24



4.1 Existence of an estimated solution

When one replaces fC|WZ in (3.2) with a consistent estimator f̂C|WZ , it is neither guaranteed

that f̂C|WZ ∈ R(T ) nor that f̂C|WZ ∈ R(T |Fθ|W ) even though, under mild conditions, f̂C|WZ ∈
L2
πcz . If f̂C|WZ /∈ R(T |Fθ|W ) then, a solution to (3.2) does not exist. Nevertheless, we may define

a generalized approximate solution that solves (3.2) approximately and that also accounts for

two additional issues: the possibility that T is not injective and the fact that the solution must

be constrained to belong to the convex and closed subset Fθ|W . The solution concept that we
adopt is the C-best-approximate solution, see Neubauer (1988), denoted by f̂ †cθ|W and defined in

the following.

Definition 1. The C-best-approximate solution f̂ †cθ|W is an element of Fθ|W ⊂ L2
πθ
such that

||T f̂ †cθ|W − f̂C|WZ || = inf
{
||Th− f̂C|WZ || subject to h ∈ Fθ|W

}
(4.1)

and

||f̂ †cθ|W || = min
{
||h||

∣∣∣ ||Th− f̂C|WZ || = ||T f̂ †cθ|W − f̂C|WZ || and f̂ †cθ|W ∈ Fθ|W
}
.

Therefore, the C-best-approximate solution is the least-squares solution on Fθ|W that has mini-

mal norm among all minimizers. It can be shown that f̂ †cθ|W = T |†Fθ|W f̂C|WZ where T |†Fθ|W denotes
the Fθ|W -constrained Moore-Penrose generalized inverse. We denote f †cθ|W = T |†Fθ|W fC|WZ and

our estimator is an estimator of f †cθ|W . The C-best approximate solution f̂ †cθ|W exists and is

unique if and only if Qcf̂C|WZ ∈ R(T |Fθ|W ), where Qc is the metric projector onto R(T |Fθ|W ),

see proposition 5.14 in Engl et al. (2000). However, f̂ †cθ|W does not depend continuously on

f̂C|WZ since, in general, R(T |Fθ|W ) is non-closed (even if it is convex because Fθ|W is closed and

convex). As a result, the inverse problem (3.2) is ill-posed. From a practical point of view this

means that the estimator f̂ †cθ|W is an inconsistent estimator for f †cθ|W despite the consistency of

f̂C|WZ .9

Thus, a regularization procedure must be used to compute a consistent estimator of f †cθ|W .

Because f †cθ|W ∈ Fθ|W , it is natural to require that the regularized estimator is in Fθ|W , too. To
this end, we use a constrained Tikhonov-type estimator defined as the minimizer of

||Th− f̂C|WZ ||2 + α||h||2s, h ∈ Fθ|W , (4.2)

with respect to h. Here, || · ||s denotes a norm to be specified later, indexed by the parameter s,
and α > 0 is a parameter that decreases to 0 at a suitable rate. If s = 0, we have the classical

9One might think that the constraint makes the problem stable. This would be the case if Fθ|W were a
compact set, but this is unfortunately not the case here.
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norm in L2
πθ
and the estimator is the classical constrained Tikhonov regularized solution.

We call our estimator an Indirect Regularized Density Estimator. Problem (4.2) is nonlinear

and, in general, does not allow a solution in closed-form except in one case. Thus, in the

estimation procedure we treat two cases separately: (i) the case in which f †cθ|W = f †θ|W , for which

a closed-form solution exists and (ii) the case in which f †cθ|W 6= f †θ|W for which the estimate of

the solution has to be computed numerically. Remember that f †θ|W denotes the unconstrained

best-approximate solution. We point out that the estimators proposed below are estimators of

f †cθ|W . This means that in the non-identified case our procedure gives estimators for only one

element of the identified set. In the point-identified case f †cθ|W = fθ|W . In the case in which

T is compact the identified set can be estimated in principle by using the characterization in

Proposition 3 and the estimator of f †θ|W given in (4.6).

In the following, we use the notationMn � Jn, for positive quantitiesMn and Jn depending

on the index n, to mean that the ratio Mn/Jn is bounded away from zero and infinity.

4.2 Estimation of f †cθ|W : a two-step approach

In this section we consider the case f †cθ|W = f †θ|W , that is, the best-approximate solution belongs

to Fθ|W . This is possible for instance when T is injective or when T is not injective but T |D
is and f †θ|W ∈ Fθ|W (but it may also be possible in the non-identified case). In this particular

case we can use a two-steps approach to compute a regularized solution in Fθ|W that in many

cases can be faster than directly solving the nonlinear problem in (4.2).

First step: compute the regularized solution, denoted by f̂αθ|W , of the unconstrained problem:

min
h∈L2

πθ

{
||Th− f̂C|WZ ||2 + α||h||2s

}
. (4.3)

For s = 0, this is the classical Tikhonov regularized estimator, while for s > 0 we obtain the

Tikhonov regularized estimator in the Hilbert scale, see e.g. Engl et al. (2000) or Florens et

al. (2010). In this paper, we focus on the case s = 0.

Second step: compute the metric projection of f̂αθ|W onto the set Fθ|W . We denote by Pc
this metric projector. Thus, the indirect Tikhonov regularized estimator of f †cθ|W is

Pcf̂αθ|W := max

{
0, f̂αθ|W −

c

πθ

}
. (4.4)

where c is such that
∫

Θ
Pcf̂αθ|Wdθ = 1. In practice, the constant c cannot be explicitly computed.
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For that, one can use the following algorithm proposed by Gajek (1986):

Pc−algorithm:

1. Set f̂α(0)
θ|W = f̂αθ|W and k = 0;

2. set f̂α(k+1)
θ|W = max{0, f̂α(k)

θ|W } and check Ck+1 =
∫

Θ
f̂
α(k+1)
θ|W (θ;w)dθ. If Ck+1 = 1 stop.

Otherwise:

3. set f̂α(k+2)
θ|W = f̂

α(k+1)
θ|W − (Ck+1−1)

πθ
∫
Θ

1
πθ
dθ
;

4. set k = k + 2 and repeat 2 - 4 until |Ck+1 − 1| < ε, for ε > 0.

Gajek (1986) shows that f̂α(k+1)
θ|W is the orthogonal projection of f̂α(k)

θ|W onto F+
θ|W and f̂α(k+2)

θ|W

is the orthogonal projection of f̂α(k+1)
θ|W onto F1

θ|W , where F
+
θ|W and F1

θ|W are the subsets of

all functions in L2
πθ
(measurable as functions of W ) which are positive a.e. on Θ and which

integrate to 1, respectively. Step 3 of the Pc−algorithm is well defined for each iteration if∫
Θ

1
πθ
dθ < ∞ and Ck+1 < ∞. In particular, if

∫
Θ

1
πθ
dθ < ∞ holds, then there exists a unique

real number c such that the Pc-algorithm converges pointwise and in norm to Pcf̂αθ|W defined

in (4.4).

Condition
∫

Θ
1
πθ
dθ < ∞ is trivially satisfied if Θ is compact and πθ is continuous. For the

case where Θ is not compact, the condition
∫

Θ
1
πθ
dθ < ∞ means that πθ must assign high

weights to arguments in the tail of the distribution of θ.

4.2.1 Tikhonov regularization in the first stage

Let I denote the identity operator in L2
πθ
. The minimizer of (4.3) for s = 0 is the classical

Tikhonov regularized estimator:

f̂αθ|W (θ;w) = (αI + T ∗T )−1T ∗f̂C|WZ (4.5)

=

∞∑
j=1

λj

α + λ2
j

< f̂C|WZ , ψj > (4.6)

where the first expression is valid for any T while the second one is valid when T is compact.

We recall that {λ2
j}j∈N and {ψj}j∈N denote the eigenvalues and eigenfunctions, respectively, of

the operator TT ∗.The parameter α > 0 is a regularization parameter that converges to zero as

the estimation error (f̂C|WZ − fC|WZ) converges to zero. The Tikhonov regularization method

is very well-known and developed in econometric theory so that we do not detail it here10.

In the following, we derive the rate of the Mean Integrated Square Error (MISE) associated

10The interested reader is referred to Kress (1999, Chapter 15) or Carrasco, Florens and Renault (2007,
Section 3).
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with the projection estimator Pcf̂αθ|W . We note that it is a weighted MISE since the norm is

the norm in L2
πθ
. In the following, we introduce regularity conditions on f †cθ|W . The smoothness

of f †cθ|W is measured relative to the smoothing properties of the operator T in terms of source

conditions. This is possible since T is a smoothing operator.

Assumption 9. For some β > 0 and 0 < M <∞ there exists an element ν ∈ L2
πθ
such that

f †cθ|W = (T ∗T )
β
2 ν and ||ν|| ≤M.

This assumption introduces an Hölder-type smoothness condition. The function ν is called the

source so that Assumption 9 is known as source condition and is rather standard in inverse

problems literature. Assumption 9 can be interpreted as a smoothness condition in a Sobolev

space.

We state in the following theorem the rate of the MISE.

Theorem 2. Let Assumptions 1-9 be satisfied. Then, the MISE associated with Pcf̂αθ|W is

E||Pcf̂αθ|W − f
†c
θ|W ||

2 = O
(
αβ∧2 +

1

α
E||f̂C|WZ − fC|WZ ||2

)
.

Moreover, if α � (E||f̂C|WZ − fC|WZ ||2)
1

β∧2+1 then,

E||Pcf̂αθ|W − f
†c
θ|W ||

2 = O
(

[E||f̂C|WZ − fC|WZ ||2]
β∧2
β∧2+1

)
.

Thus, this theorem tells us that the rate of the MISE is at best of order [E||f̂C|WZ −
fC|WZ ||2]

2
3 . In section 4.2.3 we compare the rate of our indirect estimator with the rate of the

unfeasible kernel smoothing estimator. In general the first rate is slower than the latter. Indeed,

it is the fact that we use indirect observations of θ to estimate fθ|W that slows down the rate of

convergence; below we will relate the properties of the economic model to this rate. A drawback

of the classical Tikhonov method is that a β greater than 2 (i.e., a higher degree of smoothness

of the object of interest f †cθ|W ) cannot be exploited in order to improve the rate of the MISE,

but for transparency of discussion we desist from presenting more involved estimation methods

that could exploit higher values of β at this stage11.

The rate obtained in the previous theorem is in general not minimax. Tikhonov estimators

achieve minimax rates only in restricted smoothness classes and for a particular class of opera-

11This is known as saturation effect and its a drawback of the classical Tikhonov regularization scheme. It is
the price to pay for having a regularization method that is easy to implement and intuitive. When an analyst
is willing to assume that f†cθ|W has a higher degree of smoothness, other regularization methods can be used to
exploit this smoothness. One method that exploit higher smoothness is Tikhonov regularization in Hilbert scale
obtained from (4.3) with s > 0. This discussion is similar to higher order kernels in ordinary density estimation.
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tors. This is highlighted by the fact that the qualification number for Tikhonov regularization

is 2. Bissantz et al. (2007) provide the conditions under which Tikhonov estimators achieve

the same rate of convergence of the MISE as spectral cut-off estimators, which are known to

be minimax. In the next section we give the rate of the MISE of our Tikhonov estimator under

the assumption that T is an operator satisfying the conditions in Bissantz et al. (2007).

4.2.2 Rate optimality

In this subsection we show that if the operator T satisfies an additional smoothness condition,

then our method yields optimal rates of convergence, where optimal is understood in the min-

imax sense.

We introduce an operator L : D(L) ⊂ L2
πθ
→ L2

πθ
which is unbounded, positive, self-adjoint

and defined on a dense domain D(L) ⊂ L2
πθ
.12 We assume that the inverse L−1 : L2

πθ
→ L2

πθ

is bounded. For example, L could be a differential operator with boundary constraints. We

denote by Xs, s ∈ R, the completion of
⋂
k∈R+

D(Lk) under the norm generated by the inner

product < x, y >s:=< Lsx, Lsy >, ∀x, y ∈
⋂
k∈R+

D(Lk). This space is generated by L and is a

Hilbert space. The scale of the Hilbert space generated by L is denoted by (Xs)s∈R. The norm
|| · ||s in (4.2) is the norm in Xs. If s ≥ 0 we have Xs = D(Ls). Moreover, we have Xs ⊂ Xs′ for
s, s′ ∈ R with s > s′. When T is injective we can choose L = (T ∗T )−1 and the corresponding

Xs is known as the canonical Hilbert scale.
For simplicity we assume that L has a countable number of eigenvalues ρk → ∞ with cor-

responding eigenfunctions {uk} which form an orthonormal basis of L2
πθ
.13 We formulate the

smoothness properties of T in terms of the operator L.

Assumption 10. There exists a function φ : R+ → R+ continuous and strictly increasing with

φ(0+) = 0 and finite m,m > 0 such that:

m||[φ(L−2)]
1
2f || ≤ ||Tf || ≤ m||[φ(L−2)]

1
2f || for all f ∈ L2

πθ
(θ).

This assumption is equivalent to R((T ∗T )
1
2 ) = R([φ(L−2)]1/2). We refer to Nair et al.

(2005) for a discussion and examples of this condition. The next theorem provides rates for the

case in which T and L−1 are finite smoothing operators as well as for the case in which they

are infinitely smoothing.

12Despite the same notation, this operator is not the same as the operator L used in Proposition 4.
13For non-discrete spectrum our results will still hold but the presentation would become more technical since

it would require the use of spectral measures and abstract functional calculus.
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Theorem 3. Let Assumptions 1-10 be satisfied. Then, the MISE associated with Pcf̂αθ|W is

E||Pcf̂αθ|W − f
†c
θ|W ||

2 � αβ∧2 + E||U ||2
ν̄∑
j=1

[φ(ρ−2
j )]−1

where ν̄ = ν̄(n)→∞ and U = f̂C|WZ − fC|WZ.

• Mildly ill-posed case: let β̃ = (β ∧ 2), φ(t) = ta and ρj � j
1
d for some a > 0. If ν̄ = α−

d
2a

and α � (E||U ||2)a/(aβ̃+a+d/2) then

E||Pcf̂αθ|W − f
†c
θ|W ||

2 �
(
E||U ||2

) aβ̃

aβ̃+a+d/2 .

• Severely ill-posed case: let β̃ = (β ∧ 2), φ(t) = exp(−t−a/2) and ρj � j
1
d for some a > 0.

If ν̄ = α−d and α � c(− log (E||U ||2))−1/a with a suffi ciently small c > 0 then

E||Pcf̂αθ|W − f
†c
θ|W ||

2 � (− log
(
E||U ||2

)
)−

β̃
a .

The rates given in the theorem are minimax, see e.g. Bissantz et al. (2007). We remark

that for the severely ill-posed case, the minimax rate is independent of the dimension of θ,

but very slow, which is a standard result in deconvolution type problems. In contrast, for

the mildly ill-posed case the rate depends in a negative way on d, a clear indication of curse

of dimensionality. Indeed, this curse would be double, as not just the rate of convergence of

the E||f̂C|WZ − fC|WZ ||2 part would depend on the dimensionality, but also the outer factor
aβ̃/(aβ̃+a+d/2).We analyze this effect further in the perhaps leading case of a kernel density

estimator.

4.2.3 A special case: Kernel estimation of the distribution of the data

In this section we elaborate on the rates of theorems 2 and 3 in the case where f̂C|WZ is a kernel

estimator. Without loss of generality we assume in this section that C = [0, 1], W = [0, 1]k,

Z = [0, 1]l. Let K(·, ·) denote a generalized kernel function of order r = 2 which will be used in

order to avoid boundary effects (we refer to Hall and Horowitz (2005), Darolles et al. (2011)

and references therein for an explicit definition of K(·, ·)). By abuse of notation, we use the
same notation K for the kernels involving c, w and z, and for simplicity we use a second order

kernel. We also use the same notation hn (resp. hd) for the different bandwidths for c, w and

z used to compute the numerator (resp. the denominator) of (4.7)14. Define Kh(·, ·) = K( ·,·
h

).

14In principle, these bandwidths could be different. The choice of them is an issue extensively discussed in
the literature, see Roussas (1967, 1969) and Rosenblatt (1969) among many others. To not overly complicate
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Then, the kernel estimator of fC|WZ is

f̂C|WZ(c;w, z) =

1

nh1+k+l
n

∑n
i=1Kh(ci − c, c)Kh(wi − w,w)Kh(zi − z, z)

1

nhk+l
d

∑n
l=1 Kh(wl − w,w)Kh(zl − z, z)

. (4.7)

Rates By standard Taylor series arguments, as in Rosenblatt (1969), it is easy to show that

E||f̂C|WZ − fC|WZ ||2 = O
(

1

nmin{hn, hd}k+l+1
+ max{h4

n, h
4
d}
)

(4.8)

and if hn = hd = h is chosen such that 1
nhk+l+1 � h4 then E||f̂C|WZ−fC|WZ ||2 = O(n−4/(k+l+1+4)).

By plugging this rate in the optimal rate of theorem 2, with α � n−4/[(k+l+1+4)(β∧2+1)], we obtain

E||Pcf̂αθ|W − f
†c
θ|W ||

2 = O
(
n−

4(β∧2)
(k+l+1+4)(β∧2+1)

)
. (4.9)

We show now that this rate can be improved and made independent of the dimension of Z.

This is possible since the application of the operator T ∗ to the error term (f̂C|WZ − fC|WZ) has

a smoothing effect and integrates out (C,Z), so that the dimension of (C,Z) does not play any

role in the rate. The following corollary to theorem 2 gives the new rate.

Corollary 1. Under Assumptions 1 - 9

E||Pcf̂αθ|W − f
†c
θ|W ||

2 = O
(
αβ∧2 +

1

α2

(
max{h4

n, h
4
d}+

1

n(min{hn, hd})k

))
.

Moreover, if hn = hd � n−1/(4+k) we have

inf
α

{
E||Pcf̂αθ|W − f

†c
θ|W ||

2
}

= O
(
n−4 β∧2

(4+k)((β∧2)+2)

)
. (4.10)

The rate in the corollary is faster than the rate in (4.9) if (l + 1)(β ∧ 2 + 1) > 4 + k. It is

clear that, under the conditions of the corollary, if we have no W and if hn = hd � n−1/4 then

E||T ∗(f̂C|WZ−fC|WZ)||2 = O(n−1). Our rate is increasing in β and decreasing in the dimension

k of the endogenous variables W . We have a curse of dimensionality only in the dimension of

the endogenous variables W and not in the dimension of the instruments Z. This is due to the

action of the operator T ∗ that integrates out (C,Z).

Remark 7. The rates (4.9) and (4.10) are obtained without making use of Assumption 10.

Therefore, following the discussion at the end of section 4.2.1 they are in general not minimax.

our discussion, we do not distinguish among the bandwidths, but note that our results can be trivially adapted
to the case with different bandwidths.
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On the contrary, under the assumptions of theorem 3 the rate in (4.9) would be replaced by

E||Pcf̂αθ|W − f
†c
θ|W ||

2 = O
(
n−

4a(β∧2)
(k+l+1+4)(a(β∧2)+a+d/2)

)
in the mildly ill-posed case if we choose α � n−4a/[(k+l+1+4)(a(β∧2)+a+d/2)]. This rate makes ex-

plicit the dimension of θ. When (4+k)a < (l+1)(a(β∧2)+d/2+a) we can even improve this rate

by following the lines of the proof of corollary 1, and get the rate n−4a(β∧2)/[(4+k)((β∧2)a+2a+d/2)].

The optimal rate of the MISE associated with the unfeasible standard kernel smoothing estima-

tor for fθ|W is n−
4

d+k+4 . A Comparison of this rate with the rate n−4a(β∧2)/[(4+k)((β∧2)a+2a+d/2)] of

our indirect estimator shows that our indirect estimator is in general slower, because it requires

the inversion of an integral operator. However, our estimator may be faster than the unfeasible

kernel smoothing estimator in the particular case in which ad(β ∧ 2) > (2a+ d/2)(4 + k), i.e.,

if the dimension d and the degree of smoothness β are quite large.

Asymptotic Normality. We now study pointwise asymptotic normality of the Tikhonov

regularized estimator Pcf̂αθ|W in the case where f̂C|WZ is computed by using kernel smoothing

as in (4.7). For that we introduce the following technical assumption:

Assumption 11. Let h = min{hn, hd}. We assume that

E
1

hk

∣∣∣∣∣
(
fC|WZθπcz(c1;w, z1, θ)h

k

E(f̂WZ)(w, z1)hk
−
∫
C E(f̂CWZ)(c, w, z1)fC|WZθπcz(c;w, z1, θ)dch

k

E2(f̂WZ)(w, z1)πθhkd

)
Kh(w1 − w,w)

∣∣∣∣∣
3

<∞

In the following lemma we use the notation ‘⇒’to denote pointwise convergence in distri-
bution.

Lemma 4.1. Let Assumptions 1 - 9 and 11 hold and f̂αθ|W be the Tikhonov regularized estimator

computed by using f̂C|WZ(c;w, z) defined in (4.7). If hn = hd � n−
1+ε
4+k , for 0 < ε < (4/k) and

α � n−
(4−kε)η

(4+k)(β∧2+2) for 1 < η < (β∧2)+2
2

, then,

Pcf̂αθ|W (θ;w)− f †cθ|W (θ;w)√
Vc(θ, w)

⇒ N (0, 1)

where

Vc(θ, w) =
1

n
V ar

(
P†c

[
(αI + T ∗T )−1T ∗

1

fWZ

(
Kh(ci − c, c)
hk+l+1
n

− E(f̂CWZ)

E(f̂WZ)hk+l
d

)
Kh(wi − w,w)Kh(zi − z, z)

]
(θ, w)

)

and P†c denotes the projection on the tangent cone of Fθ|W at f†cθ|W defined as {λ(f − f†cθ|W ); λ ≥ 0, f ∈ Fθ|W }.

In order to obtain this asymptotic normality result, we require an α and a bandwidth h

that converge to 0 at a faster rate than the asymptotically optimal one. This guarantees that

the bias of Pcf̂αθ|W (θ;w) is asymptotically negligible.
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4.3 Estimation of f †cθ|W : constrained Tikhonov regularization

When f †cθ|W 6= f †θ|W the two-steps procedure can no longer be applied. Instead we have to

compute the constrained Tikhonov regularized solution by directly solving the minimization

problem

min
h∈Fθ|W

{
||Th− f̂C|WZ ||2 + α||h||2

}
. (4.11)

The existence of a unique solution to problem (4.11) is proved in Neubauer (1988). A closed-

form solution of this problem does not exist and numerical methods must be used to compute

a solution. We denote by f̌α,cθ|W the estimator obtained from solution of (4.11).

In the case f †cθ|W = f †θ|W , i.e. f
†c
θ|W is in the interior of Fθ|W , this procedure can be seen as an

alternative to the two-steps approach and gives an estimator for f †cθ|W that has the same rate

as computed in Section 4.2, see proposition 5.1 of Neubauer (1988).

When f †cθ|W 6= f †θ|W then f †cθ|W ∈ ∂Fθ|W , where ∂Fθ|W denotes the boundary of the set Fθ|W .
The next theorem, which is valid in both the cases f †cθ|W = f †θ|W and f †cθ|W 6= f †θ|W , states the

convergence of the solution of (4.11) to f †cθ|W .

Theorem 4. Let fα,cθ|W be the solution of (4.11) when f̂C|WZ is replaced by the true fC|WZ and

Q be the orthogonal projector of L2
πcz onto R(T ). Then:

(i) limα→0 f
α,c
θ|W = f †cθ|W ;

(ii) moreover, if f̂C|WZ ∈ L2
πcz is such that ||Q(f̂C|WZ − fC|WZ)|| = Op(δ), for some δ → 0, if

α→ 0 and δ2α−1 → 0 as δ → 0 then:

lim
δ→0

f̌α,cθ|W = f †cθ|W .

We do not develop here the theory concerning the rate of convergence of the MISE associated

with f̌α,cθ|W in order to not unnecessarily burden the paper. However, some comments are in order.

We have to distinguish two cases: the case in which f †cθ|W is in the interior of Fθ|W and the case

in which f †cθ|W is on the boundary of Fθ|W . In the first case the smoothness condition is given
by assumption 9 and the rate of the MISE is the same as in the unconstrained case, which is

the rate given in section 4.2.1. In contrast, when f †cθ|W ∈ ∂Fθ|W , assumption 9 has to be slightly
modified and further conditions on the set Fθ|W need to be added in order to obtain the same

rate as in the unconstrained case.
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5 Monte Carlo simulation

In this section, to illustrate the performance of our estimator, we discuss results from simulations

of the models in Examples 1 and 2 in Section 2.2. Simulation results from the first example

show that our estimator performs well in a linear endogenous random coeffi cient model. We

compare the estimator’s performance with an unfeasible “oracle”estimator that uses simulated

data on the unobserved variables θ and illustrate how the estimator’s performance changes with

sample size. The results show that our estimator is capable of uncovering the distribution of θ,

and, in particular, its dependence on W .

Simulation results from the second example show that the estimator performs well when

estimating a lifecycle consumption function with random parameters with moderate data size.

The example illustrates how economic assumptions are mapped into the statistical framework

of the estimator and also shows that data can provide meaningful restrictions on the joint

distribution of random parameters even when the joint distributions is not point identified.

5.1 Simulation 1: Linear endogenous random coeffi cient model

Consider model (2.2) from Example 1. To focus on the properties of our estimator, assume

that g (Z2,W ) = Z2W.
15 Substitute this function into equation (2.2) to obtain

C = θ1Z1 + θ2Z2W + ε. (5.1)

Assume that ε ∼ N (0, 0.1) , W ∼ U [1, 2] , and Z ∼ N (0,Σz) with Σz equal to the identity

matrix. Finally, assume that θ|W ∼ N (µθ,Σθ) with µθ = β0 + β1W, β0 = (1, 1)′ , β1 = (1, 1)′

and Σθ equal to 0.1 times the identity matrix.

We simulate 1500 Monte Carlo datasets from this model; 500 for each sample size (N = 500,

N = 100, and N = 2500). For each dataset, we first estimate f̂C|WZ using a Gaussian product

kernel with bandwidth chosen as discussed below. Then we compute f̂αθ|W using (4.5). Finally,

we compute Pcf̂αθ|W as in (4.4) . In each case, we computed the estimator at the 30th, 50th,

and 70th percentiles of the distribution of W.

To facilitate accurate numerical integration when computing the operators in (4.5), we first

15If g (Z2,W ) were not known, a first-stage nonparametric estimate could be plugged into equation (2.2) .
The standard errors for our estimator could then be adjusted using standard methods for plug in estimators.
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make a change of variable, mapping (C,Z1, Z2) into the region [−1, 1]3 . Specifically, we define

Uc = 2Φ

(
C − µc
σc

)
− 1

U1 = 2Φ

(
Z1 − µz1
σz1

)
− 1

U2 = 2Φ

(
Z2 − µz2
σz2

)
− 1

where Φ is the standard normal CDF and (µc, σc),
(
µzi , σzi

)
, i = 1, 2 are the empirical mean

and standard deviation of C, Z1 and Z2.16 Substituting these new variables into (5.1) , and

solving for ε, the structural function ε = ϕ−1 (W,Z, θ, ε) can be written as

ε = µc + σcΦ
−1

(
Uc + 1

2

)
−θ1

(
µz1 + σz1Φ−1

(
Uz1 + 1

2

))
−θ2

(
µz2 + σz2Φ−1

(
Uz2 + 1

2

))
W.

We use this function to define the operator in Theorem 1.

Using the weight functions πcz = 1 and πθ = 1, for each w ∈ {w30, w50, w70} , we then
compute f̂αθ|W to solve

min
{h}

{∫ (
f̂Uc|W,Uz1Uz2 − Th

)2

dcdz1dz2 + α

∫
h (θ)2 dθ

}
(5.2)

where f̂Uc|W,Uz1Uz2 is computed by kernel smoothing. The solution is given in equation (4.5) .

To compute the operators we approximated the integral over [−1, 1]3 with the tensor product

of three unidimensional Gauss-Legendre quadature rules with 20 quadrature nodes in each

dimension. We approximated the integral over Θ with the tensor product of two unidimensional

Gauss-Legendre quadrature rules with 20 quadrature nodes in each dimension.

Figures 1-3 display plots of the true density and of the estimated density for the three

different quantiles of W obtained from one of our Monte Carlo datasets (with N = 1000). In

each figure, the top panel shows the true density and the bottom panel shows the estimate. In

all cases both the shape and location of the estimate track the true density quite closely. In

particular, the unimodality of the density is well covered, and the location of the mode almost

exactly coincides with the true mode. Moreover, the spread also very much coincides in every

16We also experimented with linear changes of variables and with no change of variables but with alternative
weight functions for πcz.
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dimension with the true spread of the density of random coeffi cients.

Figures 4-6 show contour plots of the density. Results are obtained using bandwidths

hn = hd = 0.05 and the Tikhonov regularization parameter α = 0.01. Bandwidths are chosen

to minimize the average of the square root of the density weighted mean squared error:

AMSE = E

[
1

3

∑
q

(∫ [
Pcf̂αθ|W (θ;wq)− fθ|W (θ;wq)

]2

fθ|W (θ;wq) dθ

)0.5
]

(5.3)

= E [MSE]

wq ∈ {w30, w50, w70} and where the average is calculated as the empirical average across 100
Monte Carlo replications and the pointwise average across three quantiles of the distribution

of W.

For sample size of 1000, Figure 7 shows the densities of the square root of the weighted

MSE for the Tikhonov estimator and the oracle estimator (i.e. the infeasible kernel density

estimator). In each case, the distribution is the distribution across 500 Monte Carlo replication

and across five different values of W. As was to be expected, the oracle estimator performs

better, yet there is significant overlap in the distributions of results. Table 1 shows that the

AMSE (calculated as the average across 500 Monte Carlo replications) of both estimators:

Table 1: AMSE as a function of sample size
Sample size

500 1000 2500

Tikhonov estimator 0.423 0.350 0.280

Oracle estimator 0.219 0.172 0.140

Ratio 1.93 2.03 2.00

Several features of this result are noteworthy: First, observe that the ratio is approximately

twofold, which is not very large if one considers the small sample size and the complexity of

the procedure. Second, note that absolute value decreases, showing consistency. Third, note

also that the ratio of the two averages increases slightly from 1.93 to 2.03. This is to be

expected given the fact that the unfeasible oracle estimator converges faster. Nevertheless, we

like to point out that the ratio is almost constant, indicating that the theoretical large sample

differences may sightly overstate the small sample differences in behavior.

5.2 Simulation 2: Intertemporal consumption model

This section illustrates small sample performance of our estimator using simulated data from

Example 2 detailed in Section 2.2. In the simulation n = 1000 agents start at age t = 21,
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work for 45 periods and then retire obtaining a terminal retirement utility. Income grows until

retirement. In addition, in each period each agent faces a permanent income shock ηt. These

shocks are independent over time and across individuals and distributed as ηt ∼ N (0, 0.01668).

The initial value of income is set to 0.2 (scaled so that 0.2 equals $20,000) and the initial

permanent shock is set to zero. The interest rate is set to R = 1 + r = 1.05 and the random

parameters γ and β have support on (0.5, 4.0) and (0.700, 0.999) respectively, which covers

all values suggested in the literature. The joint distribution of (γ, β) is generated from a

non-linear transformation of a normal random variable with mean vector (1, 0)′ and identity

covariance matrix. That is, we generate the distribution as follows. We define x ∼ N (µx, I)

with µx = (1, 0)′ and generate

γ = 0.5 + 3.5 ∗ Φ (x1)

β = 0.7 + 0.299 ∗ Φ (x2)

where Φ is the standard normal CDF.17 In addition, measurement error in consumption is

εt ∼ N (0, σ2
ε) with σ

2
ε set equal to 25% of the the cross-sectional variance of consumption.

We show in Figures 8-10 the quartiles of the simulated Yt, C∗t , Ct and At for each t. For the

estimation, we select one cross section to be used for our estimator. The results presented in

Figures 11-18 refer to the period t = 31. We obtained similar results for other values of t. The

dependence between δ and W varies with t as does the distribution of the data. However, the

quality of the estimation results does not.

Recall that in this example, the joint distribution of (γ, β) is not identified because the

variables enter the kernel of the operator only through a single index. Instead we estimate the

distribution of

δ = 0.5φ5γ + φ3

ln (Rβ)

γ
(5.4)

where φ3 and φ5 are parameters that depend only on the interest rate R and the time period t.

For the simulations, we use a Gaussian kernel with Tikhonov regularization parameter

α = 0.01 and bandwidths hn = hd = 0.3. For the infeasible kernel density estimator we set the

bandwidth to hθ = 0.3. Tuning parameters may be chosen using least-squares cross-validation.

However, for the purposes of the illustration we use 1000 Monte Carlo replications to compute

the square root of the density weighted mean squared error and chose tuning parameters using

a grid search to minimize the square root of density weighted mean squared error.

In this case, the true distribution of δ conditional on W is diffi cult to compute because it

is endogenously determined from the structural model. Therefore we compute the following

17Thus, while x is normally distributed, γ has support on (0.5, 4.0) and β is uniformly distributed on
(0.7, 0.999) .
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square root of the density weighted mean squared error averaged across quantiles of the W

distribution:

AMSE = E

[
1

4

∑
q

(∫ ([
Pcf̂αδ|W (δ;wq)− f̂Kerδ|W (δ;wq)

]2
)(

f̂Kerδ|W (δ;wq)
)
dδ

)0.5
]
. (5.5)

To compute the AMSE, we replace the expected values in (5.5) with the average across the 1000

Monte Carlo replications and compute the integral across δ using Gauss-Legendre quadrature

nodes with 301 points of support. The average across W is computed as the pointwise average

across vectors w with each coordinate of w equal to either its 25th or 75th percentile.

In Figures 11-14, we show an (infeasible) kernel density estimator of the pdf of δ (in solid

black line) together with our Tikhonov estimator (in dashed green line) and pointwise 95%

confidence intervals obtained using the bootstrap. In each figure, the estimate is conditional on

fixed levels of assets and income. "Low" levels of each variable correspond to the 25th percentile

and "high" levels correspond to the 75th percentile. To estimate the confidence intervals, we

created 1000 bootstrap samples from the data, each a sample of 1000 observations drawn with

replacement. We then use the pointwise 0.025 and 0.975 percentiles of the bootstrap estimates

as our confidence bands. As the results reveal, the unfeasible oracle estimator which we take in

place of the true density is, for every value w ofW we consider, within the confidence intervals.

This suggests that our estimator is reasonable accurate, in spite of the only moderate sample

size of n = 1000.

To provide an economic interpretation of these results, note that while they characterize

the density of δ conditional on W , these results also place constraints on the joint distribution

of (β, γ) given W. For each quantile of the distribution of δ, we can draw a curve representing

the values of (β, γ) satisfying (5.4) . This is a quantile level set. Suppose we draw such a curve

for δ = δq the q′th quantile of the δ distribution. Since (5.4) is monotonic in β, it must be the

case that with probability q, (β, γ) lie below this level set and with probability 1 − q they lie
above this level set.

Figures 15—18 show these level set curves conditional on various values ofWt = (At=31, Yt=30).

For example, the blue solid line in Figure 15 shows the 0.1 quantile level set. With probability

0.1, (β, γ) lie below this curve. In each case, the quantile-level-sets partition the (β, γ) space

into conical regions. The conical region in Figure 15 bounded by the 0.1 and 0.9 quantile level

sets shows that people with low assets and low income are likely to be very impatient (β < 0.9)

if they are risk averse (γ > 3.5) but are likely to be patient if they have low risk aversion. The

other figures show that this conical region shifts upward for people with higher assets or income.

As theory predicts, individuals with higher asset holdings are on average more patient and risk

averse, but there is some evidence of trade off between patience and risk aversion.
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6 Conclusion

This paper develops results on semi-parametric identification and estimation of the pdf of the

unobserved heterogeneity in structural models. We identify the pdf of interest as the solution

of a non-linear inverse problem. The identified set is a convex subset of L2
πθ
. The estimation

methods we propose are based on methods developed in the Inverse Problem literature. Finally,

a simulated exercise for the Euler Equation in finite horizon intertemporal consumption models

shows good finite-sample properties of our procedure.

A Appendix: Proofs

A.1 Proof of Theorem 1

By Assumption 1, there exists a unique c = ϕ(w, z, θ, ε) that satisfies (2.1). Thus, using the trans-

formation ϕ(w, z, θ, ·) mapping c to ε, the density of ε, fε|WZθ specified in Assumption 3 and fθ|W

specified in Assumption 4, we can characterize the pdf of fCθ|WZ . Let E1, . . . , Es be a partition
of R such that ϕ(w, z, θ, ·) : Ei → R is one-to-one for each i = 1, . . . , s, for given (w, z, θ). Let

εi = ϕ−1
i (w, z, θ, ·) : R→ Ei be the corresponding inverse mapping for given (w, z, θ). Then,

fC|WZθ(c;w, z, θ) =
s∑
i=1

fε|WZθ(ϕ
−1
i (w, z, θ, c);w, z, θ2) ·

∣∣∂cϕ−1
i (w, z, θ, c)

∣∣ 1Ci(c). (A.1)

Further using Assumption 5 we have fCθ|WZ = fC|WZθ fθ|W . This implies that

fC|WZ(c;w, z) =

∫
Θ
fC|WZθ(c;w, z, θ)fθ|W (θ;w)dθ (A.2)

Finally, since a unique solution in C to (2.1) exists, the chain rule implies that: ∂εΨ(c, w, z, θ, ε) =

∂cΨ(c, w, z, θ, ε)∂εc+ ∂εΨ(c, w, z, θ, ε) = 0, by abuse of notation. Therefore, ∂εc = ∂εϕ(w, z, θ, ε) and

∂εϕ(w, z, θ, ε) = −∂εΨ(c,w,z,θ,ε)
∂cΨ(c,w,z,θ,ε) . We conclude that

∂cϕ
−1
i (w, z, θ, c) =

1

∂εϕ(w, z, θ, ε)|ε=ϕ−1
i (w,z,θ,c)

= −
[
∂εΨ(c, w, z, θ, ε)

∂cΨ(c, w, z, θ, ε)

]−1 ∣∣∣
ε=ϕ−1

i (w,z,θ,c)

= −
[
∂cΨ(c, w, z, θ, ϕ−1

i (w, z, θ, c))

∂εΨ(c, w, z, θ, ϕ−1
i (w, z, θ, c))

]
. (A.3)

By replacing (A.3) in (A.1) and (A.1) in (A.2) we get the result.
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A.2 Proof of Proposition 1

First, we remark that an integral operator from L2
πθ
to L2

πcz is Hilbert-Schmidt if its kernel is square

integrable with respect to πθ × πcz. An Hilbert-Schmidt operator is bounded and compact.
Under the conditions of the proposition we compute

∫
C
∫
Rl
∫

Θ

f2
C|WZθ

π2
θ

πθπcz:

∫
C

∫
Rl

∫
Θ

[
s∑
i=1

fε|WZθ(ϕ
−1
i (w, z, θ, c);w, z, θ) ·

∣∣∂cϕ−1
i (w, z, θ, c)

∣∣ 1Ci(c)
]2
πθ(θ)πcz(c, z)

π2
θ

dθdcdz

≤
∫

Θ

∫
Rl

∫
C

s∑
i=1

f2
ε|WZθ(ϕ

−1
i (w, z, θ, c);w, z, θ) ·

∣∣∂cϕ−1
i (w, z, θ, c)

∣∣2 s∑
i=1

1Ci(c)
πcz(c, z)

πθ
dcdzdθ

=

∫
Θ

∫
Rl
s

s∑
i=1

∫
Ci

f2
ε|WZθ(εi;w, z, θ) · |∂εiϕ(w, z, θ, εi)|−1 πcz(ϕ(w, z, θ, εi), z)

πθ(θ)
dεidzdθ <∞

where the first inequality follows from the Fubini’s theorem and the Cauchy-Schwartz’s inequality and

the second equality follows from the change of variable ϕ−1
i (w, z, θ, c) = εi. The final inequality follows

from Assumption 6. This result shows that T is Hilbert-Schmidt and then bounded and compact. By

using the inequality in (3.3), this result shows that R(T ) ⊂ L2
πcz .

A.3 Proof of Proposition 2

By definition, the adjoint operator T ∗ of the bounded linear operator T satisfies: ∀h ∈ L2
πθ
, ∀ψ ∈ L2

πcz ,

< Th, ψ >=< h, T ∗ψ >. Thus,

< Th, ψ > =

∫
C

∫
Rl

(Th)(c;w, z)ψ(c, z;w)πcz(c, z)dcdz

=

∫
C

∫
Rl

∫
Θ
fC|WZθ(c;w, z, θ)h(θ;w)dθψ(c, z;w)πcz(c, z)dcdz

=

∫
Θ
h(θ;w)πθ(θ)

∫
C

∫
Rl
fC|WZθ(c;w, z, θ)ψ(c, z;w)

πcz(c, z)

πθ(θ)
dcdzdθ =< h, T ∗ψ >

where the third equality follows from the Fubini’s theorem.

A.4 Proof of Proposition 4

Suppose that fθ|CWZ is T -complete and that for fθ|W , f̃θ|W ∈ Fθ|W , T |Fθ|W (fθ|W ) = T |Fθ|W (f̃θ|W )

holds. By using the decomposition fC|WZθ = fθ|CWZfC|WZ/fθ|W this equality can be rewritten as

0 = T |Fθ|W (fθ|W )− T |Fθ|W (f̃θ|W ) =

∫
Θ
fC|WZθ(c;w, z, θ)

[
fθ|W (θ;w)− f̃θ|W (θ;w)

]
dθ

=

∫
Θ
fθ|CWZ(θ; c, w, z)

fC|WZ(c;w, z)

fθ|W (θ;w)

[
fθ|W (θ;w)− f̃θ|W (θ;w)

]
dθ (A.4)
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which is equivalent to

0 =

∫
Θ
fθ|CWZ(θ; c, w, z)

1

fθ|W (θ;w)

[
fθ|W (θ;w)− f̃θ|W (θ;w)

]
dθ (A.5)

because, by Assumptions 2 and 3, 0 ≤ mεκ ≤ fC|WZ <∞. Moreover, 1
fθ|W (θ;w)

[
fθ|W (θ;w)− f̃θ|W (θ;w)

]
∈

T so that (A.5) implies 1
fθ|W (θ;w)

[
fθ|W (θ;w)− f̃θ|W (θ;w)

]
= 0 which in turns implies fθ|W (θ;w) =

f̃θ|W (θ;w) under Assumption 4.

On the other side, if (3.4) holds then 0 =
∫

Θ fθ|CWZ(θ; c, w, z) 1
fθ|W (θ;w)

[
fθ|W (θ;w)− f̃θ|W (θ;w)

]
dθ

implies that 1
fθ|W (θ;w)

[
fθ|W (θ;w)− f̃θ|W (θ;w)

]
= 0 because, by Assumption 2 and 3, 0 ≤ mεκ ≤

fC|WZ <∞. This concludes the proof.

A.5 Proof of Lemma 3.1

For simplicity we consider the case where θ is one-dimensional (the multi-dimensional case can be

recovered in a similar way). Let us suppose that Tφ(θ;w) = 0, PW -a.e. for some function φ ∈ Fθ|W .
Then,

Tφ =

∫
Θ

s∑
i=1

fε|θWZ

(
ϕ−1
i (w, z, θ, c) ; θ, w, z

)
·
∣∣∂cϕ−1

i (w, z, θ, c)
∣∣φ(θ;w)dθ = 0

implies ∫
Θ
fε|θWz

(
ϕ−1
i (w, z, θ, c); θ, w, z

)
·
∣∣∂cϕ−1

i (w, z, θ, c)
∣∣φ(θ;w)dθ = 0 ∀i = 1, . . . , s.

Then, ∀i = 1, . . . , s we have:

0 =

∫
Θ

exp {τ i(c, w, z)mi(θ)}hi(θ)ki(c, w, z)φ(θ;w)
∣∣∂cϕ−1(w, z, θ, c)

∣∣ dθ
=

∫
Θ

exp{τ i(c, w, z)mi(θ)}hi(θ)ki(c, w, z)φ̃(θ;w, z, c)|dθ

=

∫
Θ

exp{τ i(c, w, z)µi}hi
(
m−1
i (µi)

)
ki(c, w, z)φ̃i

(
m−1
i (µi);w, z, c

)
dm−1

i (µi)

where we have used the notation φ̃i(θ;w, z, c) := φ(θ;w)
∣∣∂cϕ−1

i (w, z, θ, c)
∣∣ and the change of variable

mi(θ) = µi. Moreover, since dm
−1
i (µi) and hi are positive functions, we can define a measure νi(dµi) =
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hi
(
m−1
i (µi)

)
dm−1

i (µi)dµi.Thus,

0 = Tφ = ki(c, w, z)

∫
Θ

exp{τ i(c, w, z)µi}φ̃i
(
m−1
i (µi);w, z, c

)
νi(dµi)

= ki(c, w, z)

∫
Θ

exp{τ i(c, w, z)µi}ζi(µi;w, z, c)νi(dµi)

= ki(c, w, z)

( ∫
Θ exp{τ i(c, w, z)µi}ζ+

i (µi;w, z, c)νi(dµi)

−
∫

Θ exp{τ i(c, w, z)µi}ζ−i (µi;w, z, c)νi(dµi)

)

= ki(c, w, z)

(∫
Θ

exp{τ i(c, w, z)µi}Fi(dµi;w, z, c)−
∫

Θ
exp{τ i(c, w, z)µi}Gi(dµi;w, z, c)

)

where ζi(µi;w, z, c) = φ̃i◦m−1
i , Fi(dµi;w, z, c) = ζ+

i (µi;w, z, c)νi(dµi), Gi(dµi;w, z, c) = ζ−i (µi;w, z, c)νi(dµi)

and, for a function h, h+ and h− denote the positive and negative part of it, respectively. It follows

that ∫
Θ

exp{τ i(c, w, z)µi}Fi(dµi;w, z, c) =

∫
Θ

exp{τ i(c, w, z)µi}Gi(dµi;w, z, c),

that is, Fi and Gi are two measures with the same Laplace transform. Then, they are equal. This

implies that ζi(µi;w, z, c) = 0 and then φi(θ;w) = 0, PW -a.s. since ∂cϕ
−1
i (w, z, ·, c) is bounded away

from 0 and ∞, ∀(c, w, z) ∈ C × Z ×W.

A.6 Proof of Theorem 2

First, since ||Pc|| ≤ 1 we have:

E||Pcf̂αθ|W − f
†c
θ|W ||

2 = E||Pc(f̂αθ|W − f
†
θ|W )||2 ≤ ||Pc||2E||f̂αθ|W − f

†
θ|W ||

2 ≤ E||f̂αθ|W − f
†
θ|W ||

2.

We develop here only the proof for the case where T is compact and refer to Engl et al. (2000

Section 5.1) for a proof in the general non-compact case. Let fαθ|W := (αI + T ∗T )−1T ∗fC|WZ , then

E||f̂αθ|W − f
†
θ|W ||

2 ≤ 2E||f̂αθ|W − f
α
θ|W ||

2 + 2E||fαθ|W − f
†
θ|W ||

2 := 2(A1 +A2). (A.6)

Term A1 is

A1 = E||(αI + T ∗T )−1T ∗(f̂C|WZ − fC|WZ)||2 ≤ ||(αI + T ∗T )−1T ∗||2E||(f̂C|WZ − fC|WZ)||2

= sup
||u||≤1

∑
j

λ2
j

(α+ λ2
j )

2
< u,ψj >

2 E||(f̂C|WZ − fC|WZ)||2

≤
(

sup
j

λj

(α+ λ2
j )

)2

E||(f̂C|WZ − fC|WZ)||2 =
1

2α
E||(f̂C|WZ − fC|WZ)||2.
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Next, we develop term A2:

A2 = E||(αI + T ∗T )−1T ∗fC|WZ − f †θ|W ||
2 = ||[I − (αI + T ∗T )−1T ∗T ]f †θ|W ||

2

= ||α(αI + T ∗T )−1f †θ|W ||
2 = α2

∑
j

λ2β
j

(α+ λ2
j )

2

< f †θ|W , ϕj >
2

λ2β
j

≤ α2

(
sup
j

λβj

(α+ λ2
j )

)2∑
j

< f †θ|W , ϕj >
2

λ2β
j

≤ αβ (2− β)2−β

4
ββM if β ≤ 2

since < f †θ|W , ϕj >
2=< f †cθ|W , ϕj >

2= λ2β
j < ν,ϕj >

2 under Assumption 9. This shows that E||f̂αθ|W −
f †θ|W ||

2 = O
(
αβ∧2 + 1

αE||(f̂C|WZ − fC|WZ)||2
)
. If we choose α such that αβ∧2 � 1

αE||(f̂C|WZ −
fC|WZ)||2 then we get the second result of the theorem.

A.7 Proof of Theorem 3

Let us consider the development made in the proof of Theorem 2:

E||f̂αθ|W − f
†
θ|W ||

2 ≤ 2E||f̂αθ|W − f
α
θ|W ||

2 + 2E||fαθ|W − f
†
θ|W ||

2 := 2(A1 +A2).

We only develop term A1 as term A2 does not change.

We first show that the eigenvalue uj of L belongs to R(T ∗), ∀j = 1, 2, . . . To see this consider

the operator T̃ ∗ :=
[
φ(L−2)

]−1/2
T ∗T

[
φ(L−2)

]−1/2 for which, under assumption 10, < T̃ ∗ψ,ψ >=

||T
[
φ(L−2)

]−1/2
ψ||2 ≥ m2||ψ||2, ∀ψ ∈ R(

[
φ(L−2)

]1/2
). This implies that T̃ ∗ is a strictly positive

self-adjoint operator which is invertible with bounded inverse. Therefore, ∃ψ̃j ∈ D(T̃ ∗) such that

T̃ ∗ψ̃j = uj , ∀j = 1, 2, . . ., and it follows that
[
φ(L−2)

]1/2
T̃ ∗ψ̃j =

[
φ(L−2)

]1/2
uj =

[
φ(ρ−2

j )
]1/2

uj

which means that uj ∈ R(
[
φ(L−2)

]1/2
T̃ ∗) and then uj ∈ R(T ∗).

By the Cauchy-Schwartz inequality and since t/(α+t2) ≤ t−1 term A1 can be bounded from above

as

A1 = E||(αI + T ∗T )−1T ∗U ||2 ≤ E||U ||2||(αI + T ∗T )−1T ∗||2

≤ E||U ||2||(αI + T ∗T )−1T ∗||2HS = E||U ||2
∞∑
j=1

||(αI + T ∗T )−1T ∗uj ||2

≤ E||U ||2
∞∑
j=1

||(T ∗)−1uj ||2 ≤ E||U ||2m−2
∞∑
j=1

||
[
φ(L−2)

]−1/2
uj ||2

≤ E||U ||2m−2Cν̄

ν̄∑
j=1

[
φ(ρ−2

j )
]−1
||uj ||2 (A.7)

where || · ||HS denotes the Hilbert-Schmidt norm of an operator and the last inequality follows by

duality from Assumption 10 and Cν̄ is a function of ν̄ which converges to 1 as ν̄ →∞.
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• Mildly ill-posed case: we replace φ(t) = ta, a > 0 and ρj = j1/d in (A.7) and we get

A1 � E||U ||2
ν̄∑
j=1

j2a/d � E||U ||2
(
ν̄2a/d+1

)
.

If we choose ν̄ = α−d/(2a) then: A1 � E||U ||2(α−1−d/(2a)). Moreover, A1 � A2 if and only if

α �
(
E||U ||2

)a/(aβ̃+a+d/2) which gives the minimax rate
(
E||U ||2

)aβ̃/(aβ̃+a+d/2) for the MISE.

• Severely ill-posed case: we replace φ(t) = exp(−t−a/2), a > 0 and ρj = j1/d in (A.7) and we get

A1 � E||U ||2
ν̄∑
j=1

[
e−ρ

a
j

]−1
� E||U ||2 exp

(
ν̄a/d

)
.

If we choose ν̄ = α−d then: A1 � E||U ||2 exp(α−a). Moreover, A1 � A2 if and only if

α � c
(
− log(E||U ||2)

)−1/a with a suffi ciently small c > 0. This gives the minimax rate(
− log(E||U ||2)

)−β̃/a for the MISE.

A.8 Proof of Corollary 1

Following the decomposition (A.6) in the proof of Theorem 2 the upper bound for A2 remains un-
changed while term A1 is now bounded above by A1 ≤ ||(αI + T ∗T )−1||2E||T ∗(f̂C|WZ − fC|WZ)||2 =

O
(
α−2E||T ∗(f̂C|WZ − fC|WZ)||2

)
. We have to compute the rate of E||T ∗(f̂C|WZ − fC|WZ)||2. First,

remark that E||T ∗(f̂C|WZ − fC|WZ)||2 =
∫

Θ

(
V ar(T ∗f̂C|WZ) + (E(T ∗f̂C|WZ)− T ∗fC|WZ)2

)
πθ(θ)dθ.

Moreover, f̂C|WZ − fC|WZ = 1
fWZ

(f̂CWZ − fC|WZ f̂WZ)[1 − (f̂WZ − fWZ)/f̂WZ ] and since (f̂WZ −
fWZ)/f̂WZ = op(1) we can use the approximation f̂C|WZ − fC|WZ ' 1

fWZ
(f̂CWZ − fC|WZ f̂WZ).

Let t be a k-dimensional vector and v a l-dimensional vector; we use the notation
−→
vt := (v′, t′) and

−→
uvt = (u, v′, t′). Moreover, we denote p = k+ l, D2(h) is the Hessian matrix of a function h and we use
a single integral

∫
· to denote the multiple integral either in dvdt or in dudvdt. We start by computing

the bias term b(w, θ) := E(T ∗f̂C|WZ − T ∗fC|WZ). By standard Taylor series approximations we get:

b(w, θ) ' T ∗ 1

fWZ
(E(f̂CWZ)− fC|WZE(f̂WZ)) = T ∗

1

fWZ

(
(E(f̂CWZ)− fCWZ) + fC|WZ(fWZ − E(f̂WZ))

)
;

E(f̂CWZ)− fCWZ =
h2
n

2
tr

(
D2(fCWZ)

∫
−→
uvt′
−→
uvtK(u, c)K(v, z)K(t, w)dudvdt

)
+ o(h2

n);

E(f̂WZ)− fWZ =
h2
d

2
tr

(
D2(fWZ)

∫
−→
vt′
−→
vtK(v, z)K(t, w)dvdt

)
+ o(h2

d);

b(w, θ) '
∫
C

∫
Rl

fC|WZθ

fWZ

[
h2
ntr

(
D2(fCWZ)(c, w, z)

∫
−→
uvt′
−→
uvtK(u, c)K(v, z)K(t, w)dudvdt

)
dcdz

− h2
dtr

(
D2(fWZ)(w, z)

∫
−→
vt′
−→
vtK(v, z)K(t, w)dvdt

)]πcz(c, z)
πθ(θ)

dcdz + o
(
max{h2

n, h
2
d}
)

:= h2
nb1(w, θ)− h2

db2(w, θ) + o
(
max{h2

n, h
2
d}
)

44



Therefore, b2(w, θ) = O
(
max{h4

n, h
4
d}
)
. Then we consider the variance term.

V ar(T ∗f̂C|WZ) = V ar(T ∗(f̂C|WZ − fC|WZ)) ' V ar
(
T ∗

1

fWZ
(f̂CWZ − fC|WZ f̂WZ)

)
(A.8)

= V ar

(
T ∗

f̂CWZ

fWZ

)
+ V ar

(
T ∗

fC|WZ f̂WZ

fWZ

)
− 2Cov

(
T ∗

f̂CWZ

fWZ
, T ∗

fC|WZ f̂WZ

fWZ

)
;

V ar

(
T ∗

f̂CWZ

fWZ

)
= V ar

(∫
Rl

∫
C

fC|WZθ(c;w, z, θ)

fWZ(w, z)nhpn

n∑
i=1

Kh(ci − c, c)
hn

Kh(zi − z, z)Kh(wi − w,w)
πcz(c, z)

πθ
dcdz

)
= V ar

( 1

nhkn

n∑
i=1

fC|WZθ(ci;w, zi, θ)
πcz(ci, zi)

fWZ(w, zi)

Kh(wi − w,w)

πθ

)
+ o

(
(nhkn)−1

)
=

1

nh2k
n

∫
f2
C|WZθ(ci;w, zi, θ)

π2
cz(ci, zi)

f2
WZ(w, zi)

K2
h(wi − w,w)

π2
θ

fCWZ(ci, wi, zi)dcidwidzi (A.9)

− 1

nh2k
n

(∫
fC|WZθ(ci;w, zi, θ)

πcz(ci, zi)

f2
WZ(w, zi)

Kh(wi − w,w)

πθ
fCWZ(ci, wi, zi)dcidwidzi

)2

+ o
(
(nhkn)−1

)
=

1

nhkn

∫
f2
C|WZθ(ci;w, zi, θ)

π2
cz(ci, zi)

fWZ(w, zi)

∫
K2(t, w)dt

π2
θ

fC|WZ(ci;w, zi)dcidzi + o
(
(nhkn)−1

)
;

(A.10)

V ar
(
T ∗

fC|WZ f̂WZ

fWZ

)
= V ar

(∫
Rl

∫
C

fC|WZθ(c;w, z, θ)

fWZ(w, z)nhpd

n∑
i=1

fC|WZ(c;w, z)Kh(zi − z, z)Kh(wi − w,w)
πcz(c, z)

πθ
dcdz

)

= V ar

(
1

nhkd

n∑
i=1

∫
C

fC|WZθ(c;w, zi, θ)

fWZ(w, zi)
fC|WZ(c;w, zi)Kh(wi − w,w)

πcz(c, zi)

πθ
dc

)
+ o

(
(nhkd)−1

)
=

1

nhkd

∫
Z

(∫
C

fC|WZθ(c;w, zi, θ)

fWZ(w, zi)
fC|WZ(c;w, zi)πcz(c, zi)dc

)2

×∫
K2(t, w)dt

π2
θ

fWZ(w, zi)dzi + o
(
(nhkd)−1

)
, (A.11)

where the results are obtained by standard Taylor series approximations. Finally, we have to compute
the covariance term:

Cov
(
T ∗

f̂CWZ

fWZ
,T ∗

fC|WZ f̂WZ

fWZ

)
=

1

n2hknh
k
d

n∑
i=1

Cov
(fC|WZθ(ci;w, zi, θ)

fWZ(w, zi)
Kh(wi − w,w)

πcz(ci, zi)

πθ
,∫

C

fC|WZθ(c;w, zi, θ)

fWZ(w, zi)
Kh(wi − w,w)

πcz(c, zi)

πθ
fC|WZ(c;w, zi)dc

)
+ o

(
(n(min{hn, hd})k)−1

)
=

1

nhkd

∫ (∫
C
fC|WZθ(c;w, zi, θ)fC|WZ(c;w, zi)

πcz(c, zi)

πθ
dc

)2
1

fWZ(w, zi)
dzi

×
∫
K(t, w)K

(
thn
hd

, w

)
dt+ o

(
(n(min{hn, hd})k)−1

)
. (A.12)
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By putting (A.10), (A.11) and (A.12) together we obtain

V ar(T ∗f̂C|WZ) ' 1

nhkn

∫
Z
E
(
f2
C|WZθπ

2
cz |w, zi

) ∫ K2(t, w)dt

fWZ(w, zi)π2
θ

dzi +
1

nhkd

∫
Z

(
E
(
fC|WZθπcz |w, zi

))2 ∫ K2(t, w)dt

fWZ(w, zi)π2
θ

dzi

− 2
1

nhkd

∫ (
E(fC|WZθπcz |w, zi )

)2 1

fWZ(w, zi)
dzi

∫
K(t, w)K

(
thn
hd

)
dt

π2
θ

+ o

(
1

n(min{hn, hd})k

)
:=

1

nhkn
V1(w, θ) +

1

nhkd
V2(w, θ)− 2

1

nhkd
V3(w, θ) + o

(
1

n(min{hn, hd})k

)
. (A.13)

Therefore

E||T ∗(f̂C|WZ − fC|WZ)||2 =

∫
Θ

( 1

nhkn
V1(w, θ) +

1

nhkd
V2(w, θ)− 2

1

nhkd
V3(w, θ) + h4

nb
2
1(w, θ) + h4

db
2
2(w, θ)

−2h2
nh

2
db1(w, θ)b2(w, θ)

)
πθdθ + o

(
1

n(min{hn, hd})k

)
+ o

(
max{h4

n, h
4
d}
)

and the rate of the MISE is:

E||Pcf̂αθ|W − f
†c
θ|W ||

2 = O
(
αβ∧2 +

1

α2

(
max{h4

n, h
4
d}+

1

n(min{hn, hd})k

))
.

A.9 Proof of Lemma 4.1

Let us consider the decomposition (f̂αθ|W − f
†c
θ|W )(θ;w) = [f̂αθ|W − (αI + T ∗T )−1T ∗E(fC|WZ)](θ;w) +

[(αI + T ∗T )−1T ∗E(fC|WZ) − f †θ|W ](θ;w) =: A + B. The result of Lemma 4.1 follows from proving

that PcA√
Vc(θ;w)

→d N (0, 1) and PcB√
Vc(θ;w)

= op(1). We start by proving that A√
V (θ;w)

→d N (0, 1) where

V (θ;w) = V ar(A). Let {λj , ϕj , ψj}j∈N denote the singular value decomposition of T , then

[f̂αθ|W − (αI + T ∗T )−1T ∗E(f̂C|WZ)](θ;w) =
1

n

n∑
i=1

∞∑
j=1

1

α+ λ2
j

< T ∗(f̂C|WZ − E(f̂C|WZ)), ϕj > ϕj(θ;w)

'
∞∑
j=1

1

α+ λ2
j

< T ∗
1

E(f̂WZ)

(
f̂CWZ −

E(f̂CWZ)

E(f̂WZ)
f̂WZ

)
, ϕj > ϕj(θ;w)

=
1

n

n∑
i=1

∞∑
j=1

1

α+ λ2
j

< T ∗
1

E(f̂WZ)

(
Kh(ci − c, c)
hk+l+1
n

− E(f̂CWZ)

E(f̂WZ)hk+l
d

)
Kh(zi − z, z)Kh(wi − w,w), ϕj > ϕj(θ;w)

=:
1

n

n∑
i=1

Zni.

By a triangular array version of the Liapounov’s central limit theorem it follows that

1

n

n∑
i=1

Zni/
√
n−1V ar(Zni)→d N (0, 1)
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if
∑n

i=1 E
∣∣∣Zni/√nV ar(Zni)∣∣∣3 → 0 as n → ∞. Therefore, we have to prove this latter convergence.

We use the notation h = min{hn, hd}. Remark that

n∑
i=1

E
∣∣∣Zni/√nV ar(Zni)∣∣∣3 = n(nV ar(Zn1))−

3
2E|Zn1|3

= n−
1
2 (V ar(Zn1))−

3
2E|Zn1|3 (A.14)

and E|Zn1|3 is bounded above by

E|Zn1|3 = E

∣∣∣∣∣∣
∞∑
j=1

1

α+ λ2
j

< T ∗
1

E(f̂WZ)

(
Kh(c1 − c, c)

hk+l+1
n

− E(f̂CWZ)

E(f̂WZ)hk+l
d

)
Kh(z1 − z, z)Kh(w1 − w,w), ϕj > ϕj(θ;w)

∣∣∣∣∣∣
3

= E
∣∣∣ ∞∑
j=1

1

α+ λ2
j

<

(
fC|WZθπcz(c1;w, zi, θ)

E(f̂WZ)(w, z1)hkn
−
∫
C E(f̂CWZ)(c, w, z1)fC|WZθπcz(c;w, z1, θ)dc

E2(f̂WZ)(w, z1)πθhkd

)
×

(A.15)[
Kh(w1 − w,w) +O(h2)

]
, ϕj > ϕj(θ;w)

∣∣∣3
≤ 1

α3h2k
E

1

hk

∣∣∣(fC|WZθπcz(c1;w, z1, θ)h
k

E(f̂WZ)(w, z1)hkn
−
∫
C E(f̂CWZ)(c, w, z1)fC|WZθπcz(c;w, z1, θ)dch

k

E2(f̂WZ)(w, z1)πθhkd

)
×

(A.16)

Kh(wi − w,w)
∣∣∣3

:=
1

α3h2k
A2

where A2 is finite under Assumption 11. Therefore (A.14) becomes

n∑
i=1

E
∣∣∣Zni/√nV ar(Zni)∣∣∣3 ≤ (nhk)−1/2 (

hkα2V ar(Zn1)
)− 3

2 A2.

Now we have to analyze hkα2V ar(Zn1).

V ar(Zn1) =

∞∑
j=1

1

(α+ λ2
j )

2
V ar

(
< T ∗

1

E(f̂WZ)

(
Kh(c1 − c, c)

hk+l+1
n

− E(f̂CWZ)

E(f̂WZ)hk+l
d

)
Kh(z1 − z, z)Kh(w1 − w,w), ϕj >

)
ϕ2
j

+ 2

∞∑
j>m

1

(α+ λ2
j )(α+ λ2

m)
Cov

(
< T ∗

1

E(f̂WZ)

(
Kh(c1 − c, c)

hk+l+1
n

− E(f̂CWZ)

E(f̂WZ)hk+l
d

)
Kh(z1 − z, z)×

Kh(w1 − w,w), ϕj >,

< T ∗
1

E(f̂WZ)

(
Kh(c1 − c, c)

hk+l+1
n

− E(f̂CWZ)

E(f̂WZ)hk+l
d

)
Kh(z1 − z, z)Kh(w1 − w,w), ϕm >

)
ϕjϕm

=

∞∑
j=1

1

(α+ λ2
j )

2
<

∫
Θ

[
V1(w, θ)πθ(θ)

hknπθ(θ̃)
+
V4(w, θ)

hkd
− 2V5(w, θ)

hkd
+ o

(
1

hk

)]
ϕj(θ), ϕj(θ̃) > ϕ2

j (θ;w)

+ 2

∞∑
j>m

1

(α+ λ2
j )(α+ λ2

m)
<

∫
Θ

[
V1(w, θ)πθ(θ)

hknπθ(θ̃)
+
V4(w, θ)

hkd
− 2V5(w, θ)

hkd
+ o

(
1

hk

)]
ϕj(θ), ϕm(θ̃) >

× ϕj(θ;w)ϕm(θ;w).
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where V1(θ, w) was defined in (A.13),

V4(θ, w) =

∫ (∫
C
fC|WZθπcz(c, w, z1, θ)

E(f̂CWZ)(c, w, z1)

E2(f̂WZ)(w, z1)
dc

)2 ∫
K2(t)dt

fWZ(w, z1)dz1

πθ(θ)

and V5(θ, w) =
∫ (∫

C fC|WZθπcz(c, w, z1, θ)
E(f̂CWZ)(c,w,z1)

E2(f̂WZ)(w,z1)
dc
)2 ∫

K(t, w)K( thnhd , w)dtfWZ(w,z1)dz1
πθ(θ) . Since,

∀α 6= 0 and ∀j ∈ N we have that (1 − λ2
j/(α + λ2

j ))
2 > 0 and since the other terms in V ar(Zn1)

not involving α are strictly positive, it is clear that hkα2V ar(Zn1) > 0. This shows that, under

the condition that nhk → ∞,
∑n

i=1 E
∣∣∣Zn1/

√
nV ar(Zn1)

∣∣∣3 → 0. This proves the first result that
A√
V (θ;w)

→d N (0, 1). To prove PcA√
Vc(θ;w)

→d N (0, 1) we use the functional delta method (see van der

Vaart (1998) Theorem 20.8). This requires that the projection operator Pc is Hadamard differen-
tiable. The (one-sided) Hadamard derivative of Pc in f †cθ|W is a projection as well, denoted by P†c , that
projects on the tangent cone of Fθ|W at f †cθ|W defined as in Lemma 4.1.
To prove the second result, let us decompose B as

B = (αI + T ∗T )−1T ∗
(
E(f̂C|WZ)− fC|WZ

)
(θ;w)−

(
(αI + T ∗T )−1T ∗fC|WZ − fθ|W

)
(θ;w) := B1 +B2.

Therefore,

B1√
V (θ;w)

=
[(αI + T ∗T )−1b(w, θ)]√

V (θ;w)
= O

(
max{h2

n, h
2
d}(nhk)

1
2

)
B2√
V (θ;w)

=
[α(αI + T ∗T )−1fθ|W ](θ;w)√

V (θ;w)
= O

(
α( β2∧1)−1(nhk)

1
2

)
which converge to 0 if α, hn and hd converges to 0 faster then the optimal ones (set as in Lemma

4.1). Since Pc is a nonexpansive map, these rates are not affected by replacing B1 and B2 by PcB1

and PcB2, respectively. Moreover, V (θ;w) and Vc(θ;w) have the same rate.

A.10 Proof of Theorem 4

(i) See proof of Theorem 2.4 in Neubauer (1988).

(ii) See proof of Theorem 2.7 in Neubauer (1988).
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B Figures

Figure 1: Example 1. Pcf̂θ|W (lower panel) vs. true fθ|W (upper panel). w = 1.2839
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Figure 2: Example 1. Pcf̂θ|W (lower panel) vs. true fθ|W (upper panel). w = 1.4849
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Figure 3: Example 1. Pcf̂θ|W (lower panel) vs. true fθ|W (upper panel). w = 1.673
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Figure 4: Example 1. Pcf̂θ|W (lower panel) vs. true fθ|W (upper panel). w = 1.2839
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Figure 5: Example 1. Pcf̂θ|W (lower panel) vs. true fθ|W (upper panel). w = 1.4849
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Figure 6: Example 1. Pcf̂θ|W (lower panel) vs. true fθ|W (upper panel). w = 1.673
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Figure 7: Example 1. Densities of WMSE for the Tikhonov estimator and the oracle estimator
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Figure 8: Example 2. Quartiles of income by age
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Figure 9: Example 2: Quartiles of consumption by age
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Figure 10: Example 2. Quartiles of assets by age
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Figure 11: Example 2. Density of δ : (low assets, low income)
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Figure 12: Example 2. Density of δ: (low assets, high income)
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Figure 13: Example 2. Density of δ: (high assets, low income)
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Figure 14: Example 2. Density of δ: (high assets, high income)
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Figure 15: Example 2. Quantile level sets of δ : (low assets, low income)
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Figure 16: Example 2. Quantile level sets of δ : (low assets, high income)
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Figure 17: Example 2. Quantile level sets of δ : (high assets, low income)
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Figure 18: Example 2. Quantile level sets of δ : (high assets, high income)
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