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Abstract

This paper examines three distinct hypothesis testing problems that arise in the context

of identification of some nonparametric models with endogeneity. The first hypothesis testing

problem we study concerns testing necessary conditions for identification in some nonparamet-

ric models with endogeneity involving mean independence restrictions. These conditions are

typically referred to as completeness conditions. The second and third hypothesis testing prob-

lems we examine concern testing for identification directly in some nonparametric models with

endogeneity involving quantile independence restrictions. For each of these hypothesis testing

problems, we provide conditions under which any test will have power no greater than size

against any alternative. In this sense, we conclude that no nontrivial tests for these hypothesis

testing problems exist.
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1 Introduction

Instrumental variables (IV) methods have a prominent role in econometrics due to their ability

to uncover causal effects in observational studies. Though traditionally parametric in nature, an

important literature has extended IV methods to a variety of nonparametric settings. Among

these extensions, of particular prominence is the additively separable specification in which for an

outcome of interest Y , a regressor W , and an instrument Z it is assumed that

Y = θ(W ) + ε , (1)

with ε mean independent of Z. Under the maintained assumption that the model is correct, Newey

and Powell (2003) showed identification of θ to be equivalent to the conditional distribution of

W given Z satisfying a completeness condition. Complementing their prevalent use in statistics

(Lehmann and Scheffé, 1950, 1955), completeness conditions have since then been widely used in

econometrics – see Hall and Horowitz (2005), Blundell et al. (2007), Hu and Schennach (2008),

Berry and Haile (2010a), Darolles et al. (2011) and the references therein.

Despite the theoretical importance of completeness conditions, little evidence has been provided

for or against these assumptions being satisfied in datasets of interest to economists. We note,

however, that since completeness conditions impose restrictions on the distribution of the observed

data, it is potentially possible to provide such evidence by testing the validity of these assumptions.

This paper explores precisely this possibility. Specifically, we study whether it is possible to test

the null hypothesis that a completeness condition does not hold against the alternative that it does

hold. Such a hypothesis testing problem is consistent with a setting in which a researcher wishes

to assert the model is identified and hopes to find evidence in favor of this claim in the data. This

setup is also analogous to tests of rank conditions in linear models with endogeneity, where the null

hypothesis is that of rank-deficiency – see Remarks 3.1 and 3.4.

In this paper we show that, under commonly imposed restrictions on the distribution of the data,

the null hypothesis that the completeness condition does not hold is in fact untestable. Formally, we

establish that any test will have power no greater than size against any alternative. It is therefore

not possible to provide empirical evidence in favor of the completeness condition by means of such

a test. This conclusion is in contrast to the testability of a failure of the rank condition in linear

specifications of θ, for which nontrivial tests do exist. Thus, while completeness conditions provide

an intuitive generalization of the rank condition in a linear specification, we note that the empirical

implications of these assumptions are substantially different.

We additionally derive analogous results in two other prevalent nonparametric models with

endogeneity. The first such model follows the specification in (1) with a pre-specified conditional

quantile of ε assumed independent of Z – see Chernozhukov and Hansen (2005), Horowitz and

Lee (2007), Chernozhukov et al. (2010), and Chen and Pouzo (2012). The second such model
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follows a specification in which θ is allowed to depend nonseparably on both W and ε, with the

dependence on ε being monotonic, and all conditional quantiles of ε assumed independent of Z – see

Chernozhukov and Hansen (2005), Imbens and Newey (2009), Torgovitsky (2011), and Berry and

Haile (2009, 2010b). Due to the nonlinear nature of such models, simple, global rank conditions

such as completeness conditions are unavailable. For this reason, we instead directly consider the

testability of the null hypothesis that identification fails against the alternative hypothesis that it

holds. In accord with our results concerning the testability of completeness conditions, we obtain

conditions under which no nontrivial tests exist for these hypothesis testing problems either.

This paper contributes to an important literature on impossibility results in econometrics –

see Leeb and Pötscher (2008) and Müller (2008) for recent examples, and Dufour (2003) for an

excellent overview. First among such results is Bahadur and Savage (1956) who documented the

impossibility of conducting nontrivial inference on the mean without appropriate restrictions on the

data generating processes. Romano (2004) later showed that the Bahadur and Savage (1956) result

is the consequence of the set of distributions satisfying the null hypothesis being dense in the set of

distributions satisfying the alternative. Intuitively, if for every distribution in the alternative there

exists an arbitrarily close distribution satisfying the null, then it will be impossible to discriminate

between them from data – see Pötscher (2002) for related ideas in estimation. Our results share

this intuition, but require novel arguments for showing that distributions for which a completeness

condition or identification fails can approximate distributions for which it holds arbitrarily well.

We emphasize that our results should not be interpreted as an indictment against nonparametric

methods in models with endogeneity. The nontestability of completeness conditions or identification

does not imply these assumptions to be false. The impossibility of providing supporting empirical

evidence by means of such a test, however, does suggest that it is prudent to justify their use

with alternative arguments in favor of their validity. In situations where such arguments are

not available, empirical researchers may employ statistical methods that do not rely on these

assumptions. Recent work towards this end includes Chen et al. (2011), Freyberger and Horowitz

(2012) and Santos (2012), who propose inferential procedures that allow for partial identification in

these settings. Additionally, our results do not preclude the testability of completeness conditions

or identification under alternative restrictions on θ or the distribution of the observed data. For

instance, our arguments may not extend easily to settings where θ is restricted to be a density

(Hoderlein et al., 2012) or is semiparametrically specified (Ai and Chen, 2003). We further discuss

the possible implications of alternative restrictions on the data generating process in the text – see

Remarks 2.1 and 3.3.

The remainder of the paper is organized as follows. Section 2 elaborates on the nature of our

impossibility results, and reviews a general framework for deriving them. The main results are

developed in Section 3, while Section 4 briefly concludes. All proofs are contained in the Appendix.
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2 Setup

Before formally stating the three distinct hypothesis problems we consider, it will be useful to

introduce some notation and elaborate on the nature of our impossibility results. Toward this end,

we let {Vi}ni=1 be an i.i.d. sequence of random variables with distribution P ∈ P and Pn denote

the n-fold product
⊗n

i=1 P . The hypothesis testing problems we study may then be expressed as

H0 : P ∈ P0 versus H1 : P ∈ P1 , (2)

where P0 is the subset of P for which the null hypothesis holds and P1 = P \P0. For a sequence

of (possibly randomized) tests {φn}∞n=1, the corresponding size at sample size n is then

sup
P∈P0

EPn [φn] . (3)

In our analysis, we will show that under commonly imposed restrictions on the set of distribu-

tions P, the three hypothesis testing problems we examine share the property that

sup
P∈P1

EPn [φn] ≤ sup
P∈P0

EPn [φn] (4)

for any sequence of (possibly randomized) tests {φn}∞n=1 and any sample size n. Equivalently, result

(4) establishes that for all tests, the power against any alternative P ∈ P1 is always bounded

above by the size of the test. It also follows from such an assertion, that any sequence of (possibly

randomized) tests {φn}∞n=1 that controls asymptotic size at level α ∈ (0, 1) will have asymptotic

power no larger than α against any alternative. Formally, (4) immediately yields that

lim sup
n→∞

sup
P∈P0

EPn [φn] ≤ α =⇒ lim sup
n→∞

sup
P∈P1

EPn [φn] ≤ α . (5)

We therefore conclude that no nontrivial test exists for hypothesis testing problems satisfying

property (4). In other words, in such settings no test can outperform a procedure that simply

ignores the data and randomly rejects with a prespecified probability.

2.1 A Useful Lemma

Underlying our arguments is a powerful result originally found in Romano (2004), which we restate

due to its importance in our derivations. In the statement of the lemma, ‖P −Q‖TV denotes the

Total Variation distance between probability measures P and Q – e.g., for λ ≡ (P +Q)/2

‖P −Q‖TV ≡
1

2

∫ ∣∣∣dQ
dλ
− dP

dλ

∣∣∣dλ . (6)
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Lemma 2.1. Let M denote the space of Borel probability measures on a separable metric space V.

Suppose P ⊆M and P0 and P1 satisfy P = P0 ∪ P1. If for each P ∈ P1 there exists a sequence

{Pk}∞k=1 in P0 with ‖P − Pk‖TV = o(1), then every sequence of test functions {φn}∞n=1 satisfies

sup
P∈P1

EPn [φn] ≤ sup
P∈P0

EPn [φn] for all n ≥ 1 . (7)

Heuristically, Lemma 2.1 states that if each P ∈ P1 is on the boundary of the set of distributions

satisfying the null hypothesis, then, by continuity, the probability of rejection under any P ∈ P1

must be no larger than the size of the test. Theorem 1 in Romano (2004) establishes that the

appropriate topology for this purpose is that induced by the Total Variation distance. A metric

compatible with weak convergence, such as the Lévy-Prokhorov metric, would be insufficient as it

would not guarantee convergence of integrals defining rejection probabilities. By contrast, the Total

Variation distance between two measures P and Q is intimately related to the statistical properties

of the best test for distinguishing between P and Q, (LeCam, 1986). For this reason, some authors

have referred to the Total Variation distance as the testing metric (Donoho, 1988).

In each of the three hypothesis testing problems we consider, we establish nonexistence of

nontrivial tests by constructing for each P ∈ P1 a sequence {Pk}∞k=1 in P0 with ‖P −Pk‖TV = o(1)

and applying Lemma 2.1. In this way, our results are driven by P0 being dense in P1 with respect

to ‖ · ‖TV in all three settings we examine. It is worth emphasizing that the Total Variation metric

plays no role in determining P nor the null and alternative hypothesis. Indeed, P may posses other

natural topologies, such as that induced by the Euclidean metric in parametric models, or that

induced by a Hölder norm in sets of smooth densities. However, Lemma 2.1 reveals that, regardless

of what topology P originally has, for our purposes we must examine P under the topology induced

by the Total Variation metric – see also Remarks 2.1 and 3.3.

Remark 2.1. The converse of Lemma 2.1 implies that in order for nontrivial tests to exist, there

must be a P ∈ P1 that is not in the closure of P0 with respect to ‖ · ‖TV . For example, for some

functional Υ : P→ R that is continuous with respect to a metric ‖ · ‖P consider testing (2) with

P0 = {P ∈ P : Υ(P ) = 0} , (8)

and P1 = P\P0. If P is restricted to be a metric space under ‖·‖TV and compact under ‖·‖P, then

no P ∈ P1 is in the closure of P0 with respect to ‖ · ‖TV . For instance, when conducting inference

on the level of a density at a point, the Arzlá-Ascoli theorem implies it suffices to identify P with a

family of bounded equicontinuous densities with uniformly bounded support. Unfortunately, finding

appropriate restrictions on P for the settings we examine is far more challenging. In particular,

smoothness restrictions on densities are not sufficient for this purpose – see Remark 3.3.
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3 Main Results

In this section, we show for each of the three hypothesis testing problems we consider that the

power of any test against any alternative is always bounded above by the size of the test, i.e., we

show (4) holds. As mentioned previously, these results further imply that any test that controls

asymptotic size will have trivial asymptotic power against any alternative, i.e., they imply (5).

3.1 Testing Completeness

In order to formally state the first hypothesis testing problem we consider, let Vi = (Xi, Zi) ∈
Rdx × Rdz be random variables distributed according to P ∈ P. For Zi = (Z

(1)
i , Z

(2)
i ), with the

subvector Z
(1)
i possibly empty, we let Wi = (Xi, Z

(1)
i ) ∈ Rdw , and consider the condition

EP [θ(Wi)|Zi] = 0 P -a.s. for θ ∈ Θ(P ) =⇒ θ = 0 P -a.s. , (9)

where Θ(P ) is understood to be a set of measurable functions from Rdw to R. For 1 ≤ q ≤ ∞,

the distribution P is said to be Lq-complete with respect to W if condition (9) holds with Θ(P ) =

Lq(PW ). Here, PW denotes the marginal distribution of W under P and Lq(PW ) denotes (up to

PW -equivalence classes) the set of measurable functions from Rdw to R with finite Lq(PW )-norm.

For the special cases in which q = 1 or q = ∞, P is sometimes simply said to be complete with

respect to W or bounded complete with respect to W , respectively. See d’Haultfoeuille (2011) and

Andrews (2011) for further discussion.

We restrict attention to sets of measures P that have a common dominating measure. Specifi-

cally, letting Mx,z denote the set of all probability measures on Rdx ×Rdz , and defining

Mx,z(ν) ≡ {P ∈Mx,z : P � ν} , (10)

for some Borel measure ν on Rdx ×Rdz , we let P = Mx,z(ν). In this setting, the null hypothesis

corresponds to the set of measures for which the completeness condition fails, and hence we let

P1 = P \P0 = {P ∈ P : (9) holds under P} . (11)

Remark 3.1. We note that the null hypothesis H0 : P ∈ P0 states that P is such that the

completeness condition does not hold. For illustrative purposes, it is helpful to draw an analogy to

a simple parametric model where (Yi, Xi, Zi) ∈ R3 are distributed according to P , and in addition

for some θ ∈ R:

Yi = Xiθ + εi with EP [Zi(Yi −Xiθ)] = 0 . (12)

In this context, the usual rank condition required for identification is EP [XiZi] 6= 0, and thus our

setup is analogous to testing H0 : EP [XiZi] = 0 against H1 : EP [XiZi] 6= 0.
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We will make use of the following assumptions in establishing our result:

Assumption 3.1. ν is a positive σ−finite Borel measure on Rdx ×Rdz .

Assumption 3.2. ν = νx× νz, where νx and νz are Borel measures on Rdx and Rdz , respectively.

Assumption 3.3. The measure νx is atomless (on Rdx).

Note that since we impose the requirement that P = Mx,z(ν) for some ν satisfying Assumptions

3.1, 3.2 and 3.3, properties of ν translate into restrictions on P. For instance, if ν has bounded

support, then P = Mx,z(ν) implies that the support of (Xi, Zi) under P is uniformly bounded in

P ∈ P. In particular, by choosing νx and νz to be the Lebesgue measure on [0, 1]dx and [0, 1]dz ,

respectively, we may impose the requirement that the support of (Xi, Zi) under P is contained in

[0, 1]dx × [0, 1]dz for all P ∈ P. See Hall and Horowitz (2005) and Horowitz and Lee (2007) for

examples of the use of such an assumption. It is also worth emphasizing that while Assumption

3.2 imposes that ν be a product measure, the requirement that P = Mx,z(ν) for some such ν

does not imply that each P ∈ P is itself of such form. On the other hand, the requirement that

P = Mx,z(ν) for some ν satisfying Assumptions 3.2 and 3.3, does imply that P{Xi 6= Zi} > 0

for all P ∈ P. Finally, we point out that if dx > 1, then Assumption 3.3 may be weakened to

instead requiring that at least one component of Xi have an atomless marginal measure. For ease

exposition, however, we impose the stronger than necessary requirement in Assumption 3.3.

Theorem 3.1. Suppose Assumptions 3.1, 3.2 and 3.3 hold. If P = Mx,z(ν), for Mx,z(ν) as in

(10), and P0 and P1 are as in (11) with Θ(P ) = L∞(PW ), then, for any sequence of tests {φn}∞n=1

sup
P∈P1

EPn [φn] ≤ sup
P∈P0

EPn [φn] for all n ≥ 1 . (13)

Theorem 3.1 establishes the nonexistence of nontrivial tests for bounded completeness. The

conclusion of Theorem 3.1 continues to hold if Θ(P ) instead satisfies L∞(PW ) ⊆ Θ(P ). Any such

modification only enlarges P0, and hence P0 continues to be dense in P with respect to the Total

Variation distance. In particular, by setting Θ(P ) = Lq(PW ) for any 1 ≤ q < ∞, we are able to

conclude that there exist no nontrivial test of Lq-completeness conditions either.

While we focus on the testability of Lq-completeness conditions due to their importance in the

literature, it is worth noting that they are only necessary conditions for identification. Indeed, if

we consider P as a measure on R×Rdx ×Rdz instead, then PXZ being Lq-complete with respect

to W does not guarantee existence of a solution (in θ ∈ Lq(PW )) to the equation

EP [Yi − θ(Wi)|Zi] = 0 P -a.s. (14)

Rather, PXZ being Lq-complete with respect to W just ensures that if a solution to (14) does

exist, then it must be unique – see Proposition 2.1 in Newey and Powell (2003). Thus, PXZ being

Lq-complete with respect to W is only equivalent to identification under the additional assumption

that (14) holds for some θ ∈ Lq(PW ).
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Remark 3.2. In establishing Theorem 3.1, we construct for each P ∈ P1 a sequence {Pk}∞k=1 in

P0 such that ‖P −Pk‖TV = o(1). This approach requires us to exhibit for each Pk a corresponding

function θk ∈ Θ(Pk) such that θk 6= 0 Pk-a.s. and EPk
[θk(Xi)|Zi] = 0 Pk-a.s. While the θk that

appear in the proof are not differentiable everywhere, it is worth emphasizing this is not an essential

feature of the argument. In particular, by using Lemma 2.1 in Santos (2012), the Pk may be chosen

so that each corresponding θk is in fact infinitely differentiable. Therefore, no nontrivial test exists

even if Θ(P ) is further restricted to be a smooth class of functions, such as a Hölder space. By

rescaling θk appropriately, we may in fact even restrict Θ(P ) to be a Hölder ball.

Remark 3.3. As argued in Remark 2.1, it may be possible to restore testability by further re-

stricting P. Unfortunately, standard smoothness conditions are inadequate for this purpose. For

instance, if ν is the Lebesgue measure, P can be restricted to be the set of P ∈Mx,z(ν) such that

dP/dν lies in a Hölder ball, and the support of P ∈ P is contained in a common compact set. A

construction in Lemma 2.1 in Santos (2012), however, shows that if dP/dν is polynomial of finite

order, then P does not satisfy a completeness condition. Since polynomial densities are smooth

and dense with respect to ‖ · ‖TV in P, it follows that Lemma 2.1 again delivers (13).

Remark 3.4. In the context of identification of some linear, semiparametric models with endo-

geneity, full rank requirements on matrices arise instead of completeness conditions. Specifically,

P1 = P \P0 = {P ∈ P : EP [ZiW
′
i ] has full rank} .

Tests for this purpose have been proposed, among others, by Anderson (1951), Gill and Lewbel

(1992), Cragg and Donald (1993, 1997), Robin and Smith (2000), and Kleibergen and Paap (2006).

Contrary to the implications of Theorem 3.1, nontrivial tests that control asymptotic size do exist,

for example, if the support of (Xi, Zi) under P is bounded uniformly in P ∈ P.

Remark 3.5. Under additional restrictions, the requirement that νx be atomless in Assumption

3.3 may be relaxed to it being a mixture of an atomless and a discrete measure. However, the

conclusion of Theorem 3.1 may not apply if νx is a purely discrete measure. For example, suppose

that νx and νz have finite support {x1, . . . , xs} and {z1, . . . , zt}. Let Π(P ) be the s× t matrix with

entry Π(P )jk = P{Xi = xj |Zi = zk}. Theorem 2.4 in Newey and Powell (2003) fully characterizes

L1-completeness of P with respect to W in terms of rank conditions on submatrices of Π(P ). In

this setting, nontrivial tests for L1-completeness can therefore be constructed using, for example,

uniform confidence regions for Π(P ). See Anderson (1967) and Romano and Wolf (2000) for relevant

results about confidence regions for a univariate mean.

3.2 Testing Identification

In this section we proceed to consider two widely studied nonparametric models with endogeneity

that impose conditional quantile independence restrictions. Due to their nonlinear nature, simple,
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global rank conditions such as completeness conditions are unavailable for these models, and it is

for this reason that we directly examine tests for identification instead.

Throughout this section, we let Vi = (Yi, Xi, Zi) ∈ R × Rdx × Rdz be random variables dis-

tributed according to P ∈ P. As before, we let Zi = (Z
(1)
i , Z

(2)
i ), with the subvector Z

(1)
i possibly

empty, and let Wi = (Xi, Z
(1)
i ). We will once again focus on sets of distributions P that are domi-

nated by a common measure ν. Thus, by analogy with the notation used in the preceding section,

we let My,x,z be the set of all probability measures on R×Rdx ×Rdz and define

My,x,z(ν) ≡ {P ∈My,x,z : P � ν} . (15)

We will impose the following requirements on the dominating measure ν:

Assumption 3.4. ν is a positive σ−finite Borel measure on R×Rdx ×Rdz .

Assumption 3.5. ν = νy × νx × νz, where νy, νx and νz are Borel measures on R, Rdx and Rdz ,

respectively.

Assumptions 3.4 and 3.5 are modifications of Assumptions 3.1 and 3.2 from the previous section

to account for the fact that here the random variables take values in R×Rdx×Rdz rather than just

Rdx×Rdz . Note that in the following two theorems we impose the requirement that P ⊆My,x,z(ν)

for some ν satisfying Assumptions 3.3, 3.4 and 3.5. As in the previous section, properties of ν

therefore translate into restrictions on P. See the discussion preceding Theorem 3.1. Finally, we

note that in each of the following two theorems Assumption 3.3 may also be relaxed in the same

way as described preceding Theorem 3.1.

3.2.1 Single Quantile Restriction Model

The first model we consider is one where for an outcome of interest Yi, an endogenous variable Xi,

and an instrumental variable Zi and each P ∈ P there is some θ ∈ Θ(P ) such that

Yi = θ(Wi) + εi and P{Yi − θ(Wi) ≤ 0|Zi} = τ w.p.1 under P (16)

for some pre-specified τ ∈ (0, 1). Here, Θ(P ) is a set of measurable functions from Rdw to R,

often set to equal Lq(PW ) for some 1 ≤ q ≤ ∞. In analogy to our analysis of the testability

of completeness conditions, we let the null hypothesis be that identification fails in (16), and the

alternative hypothesis be that it holds. To this end, we therefore define

P1 = P \P0 = {P ∈ P : ∃! θ ∈ Θ(P ) s.t. (16) holds under P} , (17)

where uniqueness of θ ∈ Θ(P ) is understood to be up to sets of measure zero under P .

The next result shows that no nontrivial test of identification exists in models defined by (16).

9



Theorem 3.2. Suppose ν satisfies Assumptions 3.3, 3.4 and 3.5. Define My,x,z(ν) as in (15) and

let P be the set of all P ∈My,x,z(ν) for which there is some θ ∈ Θ(P ) = L∞(PW ) such that (16)

holds. If P0 and P1 are as in (17), then for any sequence of tests {φn}∞n=1

sup
P∈P1

EPn [φn] ≤ sup
P∈P0

EPn [φn] for all n ≥ 1 . (18)

In establishing Theorem 3.2, we show that for every P ∈ P1 there exists a sequence {Pk}∞k=1

in P0 such that ‖P − Pk‖TV = o(1). Our construction does not exploit the fact that P ∈ P1, but

rather just the fact that P ∈My,x,z(ν). It therefore follows that P0 is actually dense in My,x,z(ν)

with respect to the Total Variation distance. As a result, the conclusion of Theorem 3.2 continues

to hold if we instead set Θ(P ) = Lq(PW ) for any 1 ≤ q < ∞. It is worth noting that, in contrast

to the setting of Theorem 3.1, here letting Θ(P ) = Lq(PW ) for 1 ≤ q <∞ enlarges P itself, and so

potentially enlarges not only P0, but also P1.

Remark 3.6. In establishing the denseness of P0 in P, we construct a sequence {Pk}∞k=1 in P0

such that for each k there exist functions θ
(1)
k and θ

(2)
k in Θ(Pk) that differ not only on a set with

positive probability under Pk, but in the stronger sense of

EPk
[(1{Yi ≤ θ(1)k (Xi)} − 1{Yi ≤ θ(2)k (Xi)})2] > 0 ,

while still satisfying

Pk{Yi ≤ θ
(1)
k (Xi)|Zi} = Pk{Yi ≤ θ

(2)
k (Xi)|Zi} = τ

w.p.1 under Pk. This feature of the proof is noteworthy because it may still be the case that

1{Yi ≤ θ
(1)
k (Xi)} = 1{Yi ≤ θ

(2)
k (Xi)} w.p.1 under Pk for functions θ

(1)
k and θ

(2)
k that differ with

positive probability under Pk.

3.2.2 Nonseparable Model

The final model we consider is closely related to the single quantile independence model in (16).

Specifically, for an outcome of interest Yi, an endogenous variable Xi, and an instrumental variable

Zi, we now consider a setting in which for each P ∈ P there is some θ ∈ Θ(P ) such that

Yi = θ(Wi, εi) and P{Yi − θ(Wi, τ) ≤ 0|Zi} = τ w.p.1 under P for all τ ∈ (0, 1) . (19)

Here, Θ(P ) denotes a set of measurable functions θ : Rdw × [0, 1]→ R such that θ(Wi, ·) is strictly

increasing P -a.s. Often, boundedness restrictions are imposed on θ, and Θ(P ) is set to equal

T(P ) ≡
{
θ ∈ T : θ(Wi, ·) is strictly increasing P -a.s. and sup0≤τ≤1‖θ(·, τ)‖L∞(P ) <∞

}
, (20)

where T denotes the set of all measurable functions θ : Rdw × [0, 1]→ R.
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We again focus on the problem of testing directly for identification. To this end, we define

P1 = P \P0 = {P ∈ P : ∃! θ ∈ Θ(P ) s.t. (19) holds under P} , (21)

where uniqueness of θ ∈ Θ(P ) is again understood to be up to sets of measure zero under P . It

is worth noting that if (19) holds for a single fixed τ ∈ (0, 1), then this model is equivalent to the

model in (16) as we can always re-write Yi = θ(Wi, τ) + ε̃i for ε̃i ≡ θ(Wi, εi)− θ(Wi, τ). As a result

of this connection between models (16) and (19), it is perhaps to be expected that the conclusion

of Theorem 3.2 extends to the present setting. The following result establishes this point, showing

that under commonly used restrictions for P, no nontrivial test of identification exists in models

defined by (19) even if we impose that θ(Wi, ·) be strictly increasing w.p.1 under P .

Theorem 3.3. Let Assumptions 3.3, 3.4 and 3.5 hold, and let My,x,z(ν) be as in (15) and T(P )

be as in (20). If P equals the set of all P ∈My,x,z(ν) for which there is some θ ∈ Θ(P ) = T(P )

such that (19) holds, and P0 and P1 are as in (21), then for any sequence of tests {φn}∞n=1

sup
P∈P1

EPn [φn] ≤ sup
P∈P0

EPn [φn] for all n ≥ 1 . (22)

As in Theorem 3.2, our proof implies that P0 is dense in My,x,z(ν) with respect to the Total

Variation metric. It therefore follows that the conclusion of Theorem 3.3 continues to hold if we

instead require that each θ ∈ Θ(P ) be such that θ(Wi, ·) be strictly increasing and ‖θ(·, τ)‖Lq(P ) <

∞ for all τ ∈ (0, 1) and any 1 ≤ q <∞. Moreover, denseness of P0 is established by constructing

sequences {Pk}∞k=1 in P0 such that for each k there exist θ
(1)
k and θ

(2)
k in Θ(Pk) satisfying

EPk
[(1{Yi ≤ θ(1)k (Xi, τ)} − 1{Yi ≤ θ(2)k (Xi, τ)})2] > 0

for all τ ∈ (0, 1). Thus, θ
(1)
k (·, τ) and θ

(2)
k (·, τ) differ for every τ not just on a set with positive

probability under Pk, but in the stronger sense of Remark 3.6.

4 Conclusion

We have provided conditions under which nontrivial tests do not exist for completeness conditions

or identification in some nonparametric models with endogeneity. Our results should not be inter-

preted as an indictment against nonparametric methods in models with endogeneity. As any other

nontestable assumption, they can still be appropriate in applications where an empirical researcher

has other reasons for believing them to be true. Alternatively, inferential methods have also been

developed that do not rely on such assumptions by allowing for partial identification.

Whether testability of these assumptions can be restored under stronger requirements on either

θ or P remains an important open question. Unfortunately, Remarks 3.2 and 3.3 suggest that stan-

dard smoothness restrictions are insufficient for this purpose. We hope the results and arguments

in this paper provide some guidance for addressing these challenges in future research.
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5 Appendix

Throughout the Appendix we employ the following notation, not necessarily introduced in the text.

A4B For two sets A and B, A4B ≡ (A \B) ∪ (B \A).

B(A) For a Borel set A, the σ-algebra generated by all open subsets of A.

‖ · ‖Lq(λ) For 1 ≤ q <∞, a measure λ, and measurable function f , ‖f‖qLq(λ) ≡
∫
|f(u)|qλ(du).

‖ · ‖L∞(λ) For a measure λ, and measurable function f , ‖f‖∞ ≡ inf{M > 0 : |f(u)| ≤M for λ-a.s.}.
Lq(λ) For 1 ≤ q ≤ ∞ and a measure λ, Lq(λ) is the space of (λ-equivalence classes) of

measurable functions f such that ‖f‖Lq(λ) <∞

Lemma A.1. Let A ⊆ Rd be a Borel set, B(A) the σ-algebra generated by all open subsets of A, and

λ an atomless positive Borel measure on Rd satisfying 0 < λ{A} < ∞. Then, there exists a map

B̄ : [0, 1]→ B(A) such that: (i) B̄(0) = ∅ and B̄(1) = A, (ii) B̄(τ) ⊆ B̄(τ ′) for all 0 ≤ τ ≤ τ ′ ≤ 1,

(iii) λ{B̄(τ)} = τλ{A}. Additionally, there is B̃ : [0, 1] → B(A) satisfying properties (i)-(iii) and

such that λ{B̄(τ)4B̃(τ)} > 0 for all τ ∈ (0, 1).

Proof: Without loss of generality we assume λ{A} = 1, otherwise we may just renormalize. Let

µ denote the Lebesgue measure, and B([0, 1]) the σ-algebra generated by all open subsets of [0, 1].

For any U1, U2 ∈ B(A), define the equivalence relation U1 ∼ U2 if λ{U14U2} = 0, and denote

the set of resulting equivalence classes by Eλ. Similarly, denote by Eµ the equivalence classes on

B([0, 1]) generated by µ. Next, observe that since λ is a Borel measure on Rd, Theorem 7.1.7

in Bogachev (2007b) implies λ is Radon, and hence also separable by Proposition 7.14.12(ii) in

Bogachev (2007b). It therefore follows from Theorem 9.3.4 in Bogachev (2007b) that (Eλ, λ) is

isomorphic to (Eµ, µ), i.e., there exists a one to one mapping Γ : Eλ → Eµ such that:

µ{Γ(U1)} = λ{U1}, Γ(U1 \ U2) = Γ(U1) \ Γ(U2), Γ(U1 ∪ U2) = Γ(U1) ∪ Γ(U2) (23)

for any U1, U2 ∈ Eλ. Next, define a map B : (0, 1) → B(A) satisfying B(τ) ∈ Γ−1([0, τ ]) for any

τ ∈ (0, 1), and finally let B̄ : [0, 1]→ B(A) be given by B̄(0) = ∅, B̄(1) = A and for any τ ∈ (0, 1):

B̄(τ) ≡ [B(τ) ∪ {
⋃

0≤σ<τ,σ∈Q
B(σ)}] ∩ {

⋂
1≥σ>τ,σ∈Q

B(σ)} , (24)

where Q are the rational numbers. By construction, B̄ then satisfies properties (i) and (ii). More-

over, for any τ ∈ (0, 1), let {ai(τ)}∞i=1 = Q ∩ [0, τ), and note that by (23) we have:

λ{B̄(τ) \B(τ)} ≤ lim
n→∞

λ{{
n⋃
i=1

B(ai(τ))} \B(τ)} = lim
n→∞

µ{{
n⋃
i=1

[0, ai(τ)]} \ [0, τ ]} = 0 . (25)

Similarly, letting {bi(τ)}∞i=1 = Q ∩ (τ, 1] we also obtain by monotone convergence that:

λ{B(τ) \ B̄(τ)} = lim
n→∞

λ{B(τ) \ {
n⋂
i=1

B(bi(τ))}} = lim
n→∞

µ{[0, τ ] \ {
n⋂
i=1

[0, bi(τ)]}} = 0 . (26)
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We conclude from (25) and (26) that λ{B̄(τ)} = λ{B(τ)}, and since λ{B(τ)} = µ{[0, τ ]} = τ due

to (23) it follows that B̄ satisfies property (iii) as well.1

In order to establish the second claim of the Lemma, pointwise define B̃ : [0, 1]→ B(A) by:

B̃(τ) ≡ A \ B̄(1− τ) . (27)

It is then immediate that B̃(0) = ∅ and B̃(1) = A, while λ{B̄(τ)} = τ additionally yields that:

λ{B̃(τ)} = λ{A \ B̄(1− τ)} = 1− (1− τ) = τ . (28)

Furthermore, for any 0 ≤ τ ≤ τ ′ ≤ 1, note that τ ≤ τ ′ implies B̄(1− τ ′) ⊆ B̄(1− τ), and therefore:

B̃(τ) = A \ B̄(1− τ) ⊆ A \ B̄(1− τ ′) = B̃(τ ′) . (29)

Thus, from (28) and (29) we obtain that B̃ : [0, 1] → B(A) indeed satisfies properties (i)-(iii). To

conclude, note monotonicity of B̄ implies (A \ B̄(1− τ)) \ B̄(τ) = A \ B̄(max{τ, 1− τ}), and hence:

λ{B̃(τ)4B̄(τ)} ≥ λ{B̃(τ) \ B̄(τ)} = λ{A \ B̄(max{τ, 1 − τ})} = (1 − max{τ, 1 − τ}) . (30)

Therefore, it follows from (30) that λ{B̃(τ)4B̄(τ)} > 0 for all τ ∈ (0, 1).

Lemma A.2. Let Q be a Borel probability measure on R × Rdx × Rdz satisfying Q � λ for λ

a σ-finite positive Borel measure on R ×Rdx ×Rdz . If f ≡ dQ/dλ, then there exists a sequence

{fn}∞n=1 satisfying: (i) fn ≥ 0, (ii)
∫
fndλ = 1, (iii) ‖fn − f‖L1(λ) = o(1), and (iv) of the form:

fn(y, x, z) =
∑

1≤i,j,l≤Kn

πijln1{(y, x, z) ∈ Sijln} , (31)

where Sijln = Ain ×Bjn × Cln and for some Mn > 0 the collections {Ain}Kn
i=1, {Bjn}Kn

j=1, {Cln}Kn
l=1

are partitions of [−Mn,Mn], [−Mn,Mn]dx and [−Mn,Mn]dz respectively.

Proof: Note f ≥ 0 and f ∈ L1(λ). Since λ is a Borel measure it is also regular by Theorem 7.1.7

in Bogachev (2007b), and hence Theorem 13.9 in Aliprantis and Border (2006) implies there is a

sequence {f?n}∞n=1 of continuous, compactly supported functions such that f?n ≥ 0 for all n and:

‖f?n − f‖L1(λ) = o(1) . (32)

Next, let Ωn ⊂ R×Rdx×Rdz be the compact support of f?n and select Mn > 0 sufficiently large so

that Ωn ⊆ [−Mn,Mn]1+dx+dz . Additionally, select ξn ↓ 0 such that λ{[−Mn,Mn]1+dx+dz} = o(ξ−1n ),

and notice that f?n being uniformly continuous on [−Mn,Mn]1+dx+dz implies there exist partitions

{Ain}Kn
i=1, {Bjn}

Kn
j=1 and {Cln}Kn

l=1 of [−Mn, ,Mn], [−Mn,Mn]dx and [−Mn,Mn]dz , such that:

max
1≤i,j,l≤Kn

sup
(y,x,z)∈Ain×Bjn×Cln

sup
(ỹ,x̃,z̃)∈Ain×Bjn×Cln

|f?n(y, x, z)− f?n(ỹ, x̃, z̃)| ≤ ξn . (33)

1We would like to thank an anonymous referee for suggesting this method of proof.
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Letting Sijln ≡ Ain ×Bjn × Cln for 1 ≤ i, j, l ≤ Kn, we then pointwise define the functions:

f̃n(y, x, z) ≡
∑

1≤i,j,l≤Kn

π̃ijln1{(y, x, z) ∈ Sijln} π̃ijln ≡ sup
(y,x,z)∈Sijln

f?n(y, x, z) . (34)

By construction, π̃ijln ≥ 0 for all 1 ≤ i, j, l ≤ Kn and all n, and hence f̃n ≥ 0. Moreover, since

f?n, f̃n vanish outside [−Mn,Mn]1+dx+dz , and {Sijln}1≤i,j,l≤Kn is a partition of [−Mn,Mn]1+dx+dz ,

equations (33) and (34) imply sup(y,x,z) |f?n(y, x, z)− f̃n(y, x, z)| ≤ ξn λ-a.s. Thus, we obtain:

‖f?n − f̃n‖L1(λ) =

∫
[−Mn,Mn]1+dx+dz

|f?n − f̃n|dλ ≤ ξnλ{[−Mn,Mn]1+dx+dz} = o(1) , (35)

since ξn ↓ 0 was chosen so that λ{[−Mn,Mn]1+dx+dz} = o(ξ−1n ). Finally, let fn ≡ f̃n/‖f̃n‖L1(λ) and

note properties (i) and (ii) follow while (31) holds with πijln = π̃ijln/‖f̃n‖L1(λ). Moreover, since

‖f̃n − f‖L1(λ) = o(1) by (32) and (35) it follows that ‖f̃n‖L1(λ) → 1, and we conclude that:

‖fn − f‖L1(λ) ≤
‖f̃n − f‖L1(λ)

‖f̃n‖L1(λ)

+ |1− 1

‖f̃n‖L1(λ)

| × ‖f‖L1(λ) = o(1) , (36)

which verifies property (iii) and hence the claim of the Lemma follows.

Proof of Lemma 2.1: Fix P ∈ P1 and let {Pk}∞k=1 satisfy ‖Pk − P‖TV = o(1) and Pk ∈ P0

for all k. Since for any sequence of scalars {ai}ni=1, {bi}ni=1 satisfying |ai| ≤ 1 and |bi| ≤ 1 for all

1 ≤ i ≤ n we have |
∏n
i=1 ai −

∏n
i=1 bi| ≤

∑n
i=1 |ai − bi|, it follows that:

lim
k→∞

sup
A∈Bn(V)

|Pnk (A)− Pn(A)| ≤ n× lim
k→∞

sup
A∈B(V)

|Pk(A)− P (A)| = 0 , (37)

where B(V) denotes the σ−algebra generated by all open sets of V, and Bn(V) ≡
⊗n

i=1 B(V).

Since result (37) implies that for every n, ‖Pnk − Pn‖TV = o(1) as k ↑ ∞, the Lemma follows from

applying Theorem 1 in Romano (2004) to the sets P0,n ≡ {Q ∈
⊗n

i=1M : Q = Pn some P ∈ P0}
and P1,n ≡ {Q ∈

⊗n
i=1M : Q = Pn some P ∈ P1}.

Proof of Theorem 3.1: Fix P ∈ P1 and let f ≡ dP/dν. By Assumption 3.1 and Lemma A.2

applied to Q ≡ δ0×P and λ ≡ δ0×ν for δ0 a degenerate measure at 0 on R, there is {fk}∞k=1 with:

‖fk − f‖L1(ν) = o(1) , (38)

and in addition, for all k each fk satisfies fk ≥ 0,
∫
fkdν = 1, and is a simple function of the form:

fk(x, z) =
∑

1≤j,l≤Kk

πjlk1{(x, z) ∈ Sjlk} . (39)

Here, Sjlk = Bjk × Clk and for some Mk > 0, the collections {Bjk}Kk
j=1 and {Clk}Kk

l=1 are partitions

of [−Mk,Mk]
dx and [−Mk,Mk]

dz respectively. Therefore, defining:

Pk{E} ≡
∫
E
fkdν (40)
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for all Borel measurable E ⊆ Rdx ×Rdz , it follows that Pk is a probability measure with Pk � ν,

and hence Pk ∈ P = Mx,z(ν) for all k. Moreover, by (38), {Pk}∞k=1 satisfies ‖P − Pk‖TV = o(1).

In what follows, we aim to show that in fact Pk ∈ P0 for all k. Assumption 3.3 and Corollary

1.12.10 in Bogachev (2007a), then imply that for each 1 ≤ j ≤ Kk there exist Borel measurable

subsets (B
(1)
jk , B

(2)
jk ) such that Bjk = B

(1)
jk ∪B

(2)
jk , B

(1)
jk ∩B

(2)
jk = ∅ and in addition satisfy:

νx{B(1)
jk } = νx{B(2)

jk } =
1

2
νx{Bjk} . (41)

Since {Bjk}Kk
j=1 is a partition of [−Mk,Mk]

dx by Lemma A.2, we may define a function θk by:

θk(x) ≡
Kk∑
j=1

(1{x ∈ B(1)
jk } − 1{x ∈ B(2)

jk }) . (42)

Note that θk ∈ L∞(Pk), and θk 6= 0 Pk-a.s. due to (39), (42) and B
(1)
jk ∩B

(2)
jk = ∅ for all 1 ≤ j ≤ Kk.

Moreover, for any bounded z 7→ ψ(z) we obtain from (39), fk = dPk/dν and Assumption 3.2:

EPk
[ψ(Zi)θk(Xi)] =

∑
1≤j,l≤Kk

πjlk

∫
Clk

∫
Bjk

ψ(z)θk(x)νx(dx)νz(dz)

=
∑

1≤j,l≤Kk

πjlk(νx{B
(1)
jk } − νx{B

(2)
jk })

∫
Clk

ψ(z)νz(dz) = 0 (43)

where the final equality exploited (41). In particular, (43) must hold for ψ(·) = EPk
[θk(Xi)|Zi = ·],

and hence we obtain by the law of iterated expectations that EPk
[θk(Xi)|Zi] = 0, Pk-a.s. Note

that the functions {θk}∞k=1 can be viewed as a function of W = (X,Z(1)) that only depends on X,

which together with (43) suffices for concluding that Pk ∈ P0 for all k. Hence, since P ∈ P1 was

arbitrary and ‖P − Pk‖TV = o(1), the conclusion of the Theorem follows by Lemma 2.1.

Proof of Theorem 3.2: Fix P ∈ P1 and let f ≡ dP/dν. As in the proof of Theorem 3.1, we

begin by noting that Lemma A.2 and Assumption 3.4 imply there is a sequence {fk}∞k=1 such that:

‖fk − f‖L1(ν) = o(1) , (44)

and in addition, for all k each fk satisfies fk ≥ 0,
∫
fkdν = 1, and is a simple function of the form:

fk(y, x, z) =
∑

1≤i,j,l≤Kk

πijlk1{(y, x, z) ∈ Sijlk} . (45)

Here, Sijlk = Aik × Bjk × Clk and for some Mk > 0, {Aik}Kk
i=1, {Bjk}

Kk
j=1, and {Clk}Kk

l=1 form

partitions of [−Mk,Mk], [−Mk,Mk]
dx , and [−Mk,Mk]

dz respectively. Hence, defining

Pk{E} ≡
∫
E
fkdν (46)

for all Borel measurable E ⊆ R×Rdx ×Rdz we obtain a sequence of probability measure {Pk}∞k=1

satisfying Pk ∈My,x,z(ν) for all k, and ‖P − Pk‖TV = o(1) due to result (44).
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We next aim to show that Pk ∈ P0 for all k. Toward this end, note that Assumption 3.3 and

Lemma A.1 imply there exist collections {B(1)
jk (τ), B

(2)
jk (τ)}Kk

j=1 such that for all 1 ≤ j ≤ Kk:

νx{B(1)
jk (τ)} = τνx{Bjk} νx{B(2)

jk (τ)} = τνx{Bjk} , (47)

with B
(l)
jk (τ) ⊆ Bjk for l ∈ {1, 2}, and νx{B(1)

jk (τ)4B(2)
jk (τ)} > 0 for all 1 ≤ j ≤ Kk such that

νx{Bjk} > 0. For l ∈ {1, 2} we may then define functions θ
(l)
k (·, τ) pointwise in x by:

θ
(l)
k (x, τ) ≡

Kk∑
j=1

(2Mk1{x ∈ B
(l)
jk (τ)} − 2Mk1{x ∈ Bjk \B

(l)
jk (τ)}) , (48)

and note that θ
(l)
k (·, τ) ∈ L∞(Pk) for l ∈ {1, 2}. Moreover, Yi ∈ [−Mk,Mk] Pk-a.s., together with

Assumption 3.5 and fk = dPk/dν with fk as in (45) allows us to conclude that:

EPk
[(1{Yi ≤ θ(1)k (Xi, τ)} − 1{Yi ≤ θ(2)k (Xi, τ)})2]

= EPk
[(1{θ(1)k (Xi, τ) = 2Mk} − 1{θ(2)k (Xi, τ) = 2Mk})2]

=
∑

1≤i,j,l≤Kk

πijlkνy{Aik}νz{Clk}
∫
Bjk

(1{θ(1)k (x, τ) = 2Mk} − 1{θ(2)k (x, τ) = 2Mk})2νx(dx)

> 0 , (49)

where we exploited (1{θ(1)k (x, τ) = 2Mk} − 1{θ(2)k (x, τ) = 2Mk})2 = 1{x ∈ B(1)
jk (τ)4B(2)

jk (τ)} for

every x ∈ Bjk and νx{B(1)
jk (τ)4B(2)

jk (τ)} > 0 for some 1 ≤ j ≤ Kk due to Pk having support

[−Mk,Mk]
1+dx+dz implying Pk{Sijlk} = πijlkν{Sijlk} > 0 for some 1 ≤ i, j, l ≤ Kk.

We conclude from (49) that θ
(1)
k (·, τ) and θ

(2)
k (·, τ) are distinct under ‖ · ‖L∞(Pk). Additionally,

for l ∈ {1, 2}, we have 1{θ(l)k (x, τ) = 2Mk} = 1{x ∈ B(l)
jk (τ)} for every x ∈ Bjk by (48), and hence

νx{{θ(l)k (x, τ) = 2Mk}∩Bjk} = νx{B(l)
jk (τ)} = τνx{Bjk}. It follows that for any bounded z 7→ ψ(z):

EPk
[ψ(Zi)(1{Yi ≤ θ(l)k (Xi, τ)} − τ)]

=
∑

1≤i,j,l≤Kk

πijlk

∫
Aik

∫
Clk

∫
Bjk

ψ(z)(1{θ(l)k (x, τ) = 2Mk} − τ)νx(dx)νz(dz)νy(dy)

=
∑

1≤i,j,l≤Kk

πijlk(τνx{Bjk} − τνx{Bjk})
∫
Aik

∫
Clk

ψ(z)νz(dz)νy(dy)

= 0 . (50)

In particular, setting ψ(·) = Pk{Yi ≤ θ(l)(Xi, τ)|Zi = ·} − τ in (50), implies by the law of iterated

expectations that Pk{Yi ≤ θ
(l)
k (Xi, τ)|Zi} = τ , Pk-a.s. for l ∈ {1, 2}. Interpreting the functions

{θ(l)k }
∞
k=1 as functions of W = (X,Z(1)) that only depend on X, it follows that results (49) and

(50) suffice for concluding that Pk ∈ P0 for all k. Hence, since P ∈ P1 was arbitrary and result

(44) establishes that ‖P − Pk‖TV = o(1), the conclusion of the Theorem follows by Lemma 2.1.

Proof of Theorem 3.3: The proof is very similar to that of Theorem 3.2, and we therefore

provide only an outline, emphasizing the differences in the arguments. Fixing P ∈ P1, we may
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obtain a sequence {Pk}∞k=1 such that for all k, Pk ∈ My,x,z(ν), dPk/dν = fk for fk as defined

in (45), and such that (44) holds. To show Pk ∈ P0 for all k, let B(Bjk) denote the σ-algebra

generated by all the open subsets of Bjk. By Assumption 3.3 and Lemma A.1, there then exist

B
(1)
jk : [0, 1] → B(Bjk) and B

(2)
jk : [0, 1] → B(Bjk) such that for all 1 ≤ j ≤ Kk with νx{Bjk} > 0

and l ∈ {1, 2}: (i) νx{B(l)
jk (τ)} = τνx{Bjk}, (ii) B

(l)
jk (τ) ⊆ B

(l)
jk (τ ′) for all 0 ≤ τ ≤ τ ′ ≤ 1, and (iii)

νx{B(1)
jk (τ)4B(2)

jk (τ)} > 0 for all τ ∈ (0, 1). Following (48), we define functions θ
(l)
k pointwise by:

θ
(l)
k (x, τ) ≡

Kk∑
j=1

((2 + τ)Mk1{x ∈ B
(l)
jk (τ)} − (3− τ)Mk1{x ∈ Bjk \B

(l)
jk (τ)}) . (51)

Observe that |θ(l)k (x, τ)| ≤ 3Mk for all (x, τ) ∈ Rdx × [0, 1], and hence θk(Xi, τ) is bounded Pk-a.s.

uniformly in τ ∈ [0, 1]. Moreover, since B
(l)
jk (τ) ⊆ B(l)

jk (τ ′) for l ∈ {1, 2} and all 0 ≤ τ ≤ τ ′ ≤ 1 and

1 ≤ j ≤ Kk, it follows from (51) and the support of Xi under Pk being contained in [−Mk,Mk]
dx =⋃Kk

j=1Bjk that θ
(l)
k (Xi, τ) is strictly monotonic in τ Pk-a.s. In turn, notice that since τ ∈ [0, 1] and

the support of Yi is contained in [−Mk,Mk] under Pk, we obtain from (51) that for all x ∈ Bjk,
1{Yi ≤ θ(l)k (x, τ)} = 1{x ∈ B(l)

jk (τ)} Pk-a.s. Therefore, arguing as in (49) yields that:

EPk
[(1{Yi ≤ θ(1)k (Xi, τ)} − 1{Yi ≤ θ(2)k (Xi, τ)})2] > 0 , (52)

for all k and τ ∈ (0, 1). Thus, we may conclude from (52) that θ
(1)
k (·, τ) is distinct from θ

(2)
k (·, τ)

under ‖ · ‖L∞(Pk) for all τ ∈ (0, 1). In turn, arguing as in (50) further implies that for all k:

Pk{Yi ≤ θ
(l)
k (Xi, τ)|Zi} = τ (53)

Pk-a.s. for l ∈ {1, 2} and all τ ∈ (0, 1). Since we may view the functions {θ(l)k (·, τ)}∞k=1 as functions

of W = (X,Z(1)) that only depend on X, results (52) and (53) suffice for concluding that Pk ∈ P0

for all k. The argument can then be finished as in the proof of Theorem 3.2.
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