
Arellano, Manuel; Bonhomme, Stéphane

Working Paper

Identifying distributional characteristics in random
coefficients panel data models

cemmap working paper, No. CWP22/09

Provided in Cooperation with:
The Institute for Fiscal Studies (IFS), London

Suggested Citation: Arellano, Manuel; Bonhomme, Stéphane (2009) : Identifying distributional
characteristics in random coefficients panel data models, cemmap working paper, No. CWP22/09,
Centre for Microdata Methods and Practice (cemmap), London,
https://doi.org/10.1920/wp.cem.2009.2209

This Version is available at:
https://hdl.handle.net/10419/64789

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1920/wp.cem.2009.2209%0A
https://hdl.handle.net/10419/64789
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


  

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Identifying distributional 
characteristics in random 
coefficients panel data 
models 
 
Manuel Arellano 
Stéphane Bonhomme 
 
 
 
 
 
 

The Institute for Fiscal Studies 
Department of Economics, UCL 
 
cemmap  working paper CWP22/09 



Identifying Distributional Characteristics in

Random Coefficients Panel Data Models∗

Manuel Arellano
CEMFI, Madrid
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Abstract

We study the identification of panel models with linear individual-specific coeffi-
cients, when T is fixed. We show identification of the variance of the effects under
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1 Introduction

Fixed effects methods are a standard way of controlling for endogeneity and/or unobserved

heterogeneity in the estimation of common parameters from panel data models. However,

sometimes one is willing to treat a model parameter as a heterogeneous quantity (as a “fixed

effect”) and therefore characteristics of its distribution or the density itself become central

objects of interest in estimation.

In a static panel model that is nonlinear in common parameters but linear in random

coefficients, the expected value of the random coefficients is fixed-T identified under the

assumptions of unrestricted intertemporal distribution of the errors and unrestricted distri-

bution of the effects conditioned on the regressors (Chamberlain, 1992). However, variances

and covariances of random coefficients as well as other distributional characteristics are not

identified. The reason is that by permitting arbitrary forms of dependence among the errors

at all lags, it becomes impossible to separate out what part of the overall time variation is

due to unobserved heterogeneity, no matter how long the panel is.

The point of departure of this paper is to consider the identifying content of limited time

dependence of time-varying errors. The idea is that we may expect a stronger association

between errors that are close to each other than errors that are far apart in time. Moving

average and autoregressive processes are convenient implementations of this notion. Sub-

ject to limited time series error dependence, alternative identification arrangements become

available. In particular variances, higher order moments and densities of random coefficients

may be identifiable. We explore such identification trade-offs and provide conditions under

which different distributional characteristics are identified. Throughout we adopt a “fixed

effects approach” in the sense that the conditional distribution of the random coefficients

given explanatory variables is left unrestricted.

A linear random coefficient model is a useful framework of analysis in many microe-

conometric applications. These include earning dynamics models with individual-specific

age profiles and persistent shocks,1 as well as production function models with firm-specific

technological parameters.2 The estimation of heterogeneous treatment effects is another

1For examples of earnings models with individual-specific slopes or profiles, see Lillard and Weiss (1979),
Baker (1997), Haider (2001), and Guvenen (2007, 2009).

2See for example Mairesse and Grilliches (1990) and Dobbelaere and Mairesse (2008). Other examples
can be found in the literature on the education production function and teacher quality (e.g., Aaronson et
al., 2007).
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area of application. In contrast with the cross-sectional case, panel data on repeated treat-

ments offer the opportunity to estimate a time-invariant distribution of treatment effects

across units.3 For example, in our empirical application, we look at the extent of hetero-

geneity in the effect of smoking during pregnancy on children outcomes at birth, building on

Abrevaya (2006)’s results for mothers with multiple births. There is interest in document-

ing the determinants of inequality at birth, particularly in relation to policy interventions

(e.g. Rosenzweig and Wolpin, 1991) and accounting for heterogeneity in the effects of those

determinants is certainly important.

Most statistical approaches to random coefficient models have adopted a random effects

perspective, which rules out or restricts the correlation between individual-specific effects

and regressors.4 In economic applications, though, unit-specific effects often represent het-

erogeneity in preferences or technology, on which economic theory has typically little to say.

For this reason, it is often thought (as we do here) that a fixed effects approach, which does

not restrict the form of the heterogeneity is preferable.5 Thus, we regard individual specific

parameters as random draws from an unrestricted conditional distribution given regressors.

In an important paper, Chamberlain (1992) derived efficiency bounds for conditional

moment restrictions with a nonparametric component, and applied the results to a random

coefficient model for panel data. In that model the role of the nonparametric component

was played by the conditional expectation of the random coefficients given the regressors.

Chamberlain suggested an instrumental-variable estimator of the common parameters and

average effects, which attained the bound.

Chamberlain (1992) assumed that time-varying errors were mean independent of individ-

ual effects and regressors at all lags and leads (a strict exogeneity assumption). Extending the

approach, we consider a similar model with the additional assumption that the autocovari-

ance matrix of the errors conditioned on regressors satisfy moving-average (MA) exclusion

restrictions. Non-zero autocovariances are treated as nonparametric functions of regressors.

Therefore, they are consistent with an underlying moving average model with unobserved

3In a cross-sectional setting only the marginal distributions of potential outcomes may be identified under
standard assumptions, to the exclusion of the distribution of gains from treatment (Heckman et al., 1997).

4See Demidenko (2004) for a survey on random-effects (or “mixed”) models in statistics. Recent work
using semi- and nonparametric approaches can be found in Lesaffre and Verbeke (1996), Kleinman and
Ibrahim (1998), and Davidian and Zhang (2001).

5For example, Cameron and Trivedi (2005, p.777) claim that random coefficient models, although they
“are especially popular in the statistics literature (...) are less used in the econometrics literature, because
of the reluctance to impose structure on the time-invariant individual-specific fixed effect”.
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heterogeneity in second-order moments. In this setting, conditional and unconditional vari-

ances of effects and errors are point identified, as long as sufficiently many autocovariance

restrictions are imposed. For example, identification will require that the order of an MA

process be small enough. We also discuss how the results can be generalized to ARMA-type

restrictions.

Moreover, we show how Chamberlain’s analysis can be extended to obtain a semipara-

metric efficiency bound for all common parameters and first and second moments of the

random coefficients. The result holds for a parametric specification of the error second mo-

ments conditioned on regressors and effects, which is either linear in or independent of the

effects. We also show how fixed-T consistent and asymptotically normal estimates of these

coefficients can be obtained using a system GMM procedure that combines errors in lev-

els with errors in (generalized) deviations. The bound provides guidance on the choice of

optimal instruments.

Next, strengthening the mean independence assumption to one of conditional statisti-

cal independence between effects and errors given regressors, we study the identification of

higher-order moments and distributions. When time-varying errors follow suitably restricted

ARMA processes with independent underlying innovations, we obtain fixed-T point identi-

fication results for the densities of individual effects and errors. To obtain these results, we

first use that (cumulant) independence assumptions lead to higher-order moment restrictions

that mimic covariance restrictions. Then we exploit the fact that (statistical) independence

assumptions lead to functional restrictions on the second derivatives of log characteristic

functions, which are formally analogous to the covariance restrictions. We show that these

restrictions nicely extend those for second and higher-order moments, and may be used to

establish the identification of distributions.

Our identification proofs are constructive. Thus, they suggest consistent estimators for

the distributional quantities of interest. We construct consistent method-of-moment estima-

tors of variances and higher-order moments. We also discuss ways of estimating the densities

of individual effects and errors, emphasizing the connection with the literature on nonpara-

metric deconvolution (see Carroll and Hall, 1988, among many other references). As an

interesting special case, we consider a model with an heterogeneous intercept and a binary

heterogeneous regressor. This corresponds to our empirical application where the smoking

effect is heterogeneous across mothers. In this setting, we propose a simple nonparametric

3



estimator of the density of the mother-specific smoking effect.

In the last section of the paper we apply this methodology to a matched panel dataset

of mothers and births constructed in Abrevaya (2006). We find that the mean smoking

effect on birthweight is significantly negative (−160 grams). Moreover, the effect shows

substantial heterogeneity across mothers, the effect being very negative (−400 g) below the

20th percentile. In addition, we discuss the validity of the strict exogeneity assumption

in the context of this application. Although the mean effect is not point identified in this

setting,6 we show that several interesting average effects can be identified and estimated

when there are no time-varying regressors. The results suggest that the smoking effect is

strongly correlated with smoking choices, justifying the fixed-effects perspective. Moreover,

we do not find strong evidence against strict exogeneity on these data.

This paper is related to the literature on the estimation of linear and nonlinear panel

data models with fixed effects. A general solution has recently been proposed that relies

on reduction of the small-T bias of the maximum likelihood estimator first documented in

Neyman and Scott (1948), see Arellano and Hahn (2006) for a survey. Here we show that all

marginal effects, including the density of individual-specific effects, are identified for fixed T

in a model that is linear in random coefficients. Hence, our approach leads to full elimination

of the bias on the quantities of interest.

Related identification strategies for densities have been used in the literature on nonpara-

metric identification and estimation of linear factor models with independent factors. See

for example Horowitz and Markatou (1996), Székely and Rao (2000), and Bonhomme and

Robin (2009b). We contribute to that literature by allowing for correlation patterns that

may be natural in applications, individual effects being correlated in an unrestricted way,

and errors being possibly serially correlated. We also allow for conditioning covariates.

The rest of the paper is as follows. In Section 2 we present the framework of analysis.

Section 3 derives the identifying restrictions on the variances of individual effects and errors.

In Section 4, we extend the analysis to the full distributions of effects and errors. We discuss

estimation in Section 5, and apply our methodology in Section 6 to study the effect of

smoking during pregnancy on birth outcomes. Lastly, Section 7 concludes.

6Chamberlain (1993) and Arellano and Honoré (2001) discuss the lack of identification when regressors are
predetermined. Recently, Murtazashvili and Wooldridge (2008) derive conditions under which identification
holds in the endogenous case, imposing individual effects to be mean independent of detrended regressors
(see also Wooldridge, 2005, for the exogenous case).
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2 Preliminaries

2.1 Model and assumptions

We consider a model that relates a vector of T endogenous variables yi = (yi1, ..., yiT )′ to a

set of regressors Wi = [Zi,Xi] and a vector of zero-mean error terms vi = (vi1...viT )′:

yi = Ziδ + Xiγi + vi (i = 1...N) . (1)

We distinguish two types of regressors: Zi = (z′i1, ..., z
′
iT )′ is a T ×K matrix associated to a

vector of K common parameters δ, while Xi = (x′
i1, ...,x

′
iT )′ is a T × q matrix associated to

a vector of q unit specific parameters γi. We start by stating the assumptions.

Assumption 1 (mean independence)

E (vi | Wi,γi) = 0. (2)

Assumption 1 requires Zi and Xi to be strictly exogenous.7 It is possible to treat the

case of predetermined or endogenous Zi’s within the framework of this paper, and we discuss

this extension below. However, strict exogeneity of Xi is essential. If one of the components

of xit is predetermined or endogenous, then the moments of γi are not point identified in

general.

Note that we do not specify the conditional distribution of individual effects. In our

“fixed-effect” approach, γi are random draws from a population, along with yit, zit and xit,

but their conditional distribution given regressors is left unspecified. Thus, regressors are

strictly exogenous with respect to to time-varying errors but endogenous with respect to

fixed effects. We will discuss the validity of this assumption in the context of our empirical

application in Section 6.

Mean independence will be used to identify the vector of common parameters δ and the

means, variances and covariances of individual-specific parameters γi. When studying the

identification of higher-order moments of the effects and their distributions, we will need a

stronger assumption.

Assumption 2 (conditional statistical independence)

γi and vi are statistically independent given Wi. (3)

7Throughout the paper, all (in)equalities conditional on Wi are understood to hold with probability one.
In addition, moments are assumed well-defined (i.e., finite).
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Conditional independence restrictions are commonly made in the literature on nonpara-

metric identification and estimation (e.g., Hu and Schennach, 2008, and references therein).

Moreover, restriction (3) is in the nature of a fixed-effects approach, where γi represent

individual-specific parameters such as preferences or technology. However, note that As-

sumption 2 is more restrictive than Assumption 1 as, for example, it rules out the presence

of individual effects in the conditional variance of vi.

Lastly, we will also assume that regressors Xi are not perfectly collinear within each

individual sequence of observations.

Assumption 3 (absence of multicollinearity)

rank(Xi) = q. (4)

In particular, Assumption 3 requires that T ≥ q. This condition is necessary in our

approach, as one needs to identify q parameters from a T -dimensional vector of data, for

each individual unit. In effect, because of the presence of common parameters, we will need

strictly more time periods than individual-specific parameters. This requirement shows that

the panel dimension is essential in our setting.8

Assumption 3 is restrictive as it implies that, when Xi takes discrete values, the moments

of individual effects will be identified on a subpopulation of individuals only. For example, in

our empirical application, we will focus on mothers who changed smoking status at least once

between births. A related model with continuous Xi’s has been recently studied by Graham

and Powell (2008). Their analysis suggests that average effects for the total population of

individuals, including individuals for whom (4) is not satisfied, may be consistently estimated

using nonparametric methods with trimming.

2.2 Within and between transformations

To motivate our identification analysis, we start by providing an intuition for our approach.

Given a vector of common parameters δ, one can estimate each γi by least squares, yielding:

γ̂i = (X′
iXi)

−1
X′

i (yi − Ziδ) .

8This is very different from situations where restrictions on γi are imposed, such as independence between
γi and regressors Xi. There, cross-sectional data may be enough for identification (see, e.g., Beran and Hall,
1992, and Hoderlein et al., 2007).
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Let us introduce the two following matrices:

Qi = IT − Xi (X
′
iXi)

−1
X′

i,

Hi = (X′
iXi)

−1
X′

i.

Qi (T × T ) is the projection matrix on the orthogonal of the span of the columns of Xi. Qi

is a familar object in least squares algebra, and is symmetric idempotent with rank T − q.

Hi (q × T ) is simply the least squares operator associated with Xi.

Left-multiplying (1) by Qi and Hi, respectively, we obtain the following equations:

Qi (yi − Ziδ) = Qivi (within-group), (5)

γ̂i − γi = Hivi (between-group). (6)

While equation (6) expresses the difference between the least-squares estimate of γi (for

known δ) and its true value, equation (5) shows the link between the residuals in the

individual-specific least-squares regressions and the population errors. We will start from

these equations to study the identification of common parameters, the error structure, and

the distribution of individual effects.

Two preliminary remarks are in order. First, since Qi has rank T − q, it is not possible

to invert (5) unless some additional restrictions on the time-series process of errors vit are

imposed. Second, equation (6) shows that γ̂i is a noisy estimate of γi. Likewise, any

distributional characteristic of γ̂i (mean, variance, quantile) will be a noisy estimate of the

same feature of γi, the identification of which we are after. Importantly, this noise does not

vanish when N tends to infinity for fixed T , so unit-by-unit estimates of γi are not directly

informative about the distribution of the underlying effects.

We end this subsection by presenting two simple examples.

Example 1. The first example is a random trend model:

yit = αi + βit + vit, i = 1, ..., N, t = 1, ..., T, (7)

where vit are serially correlated, for example through an AR(1) process.

Model (7), or a restricted version of it (e.g., with βi = 0), is often used to model the

dynamics of earnings (see Guvenen, 2009, for a recent reference). In this model the between-

7



group equations (6) are:

α̂i = αi + vi −
∑T

t=1

(
t − t

)
(vit − vi)∑T

t=1

(
t − t

)2 t (8)

β̂i = βi +

∑T
t=1

(
t − t

)
(vit − vi)∑T

t=1

(
t − t

)2 , (9)

whereas the within-group equations (5) are:

yit − α̂i − β̂it = vit −
(

vi −
∑T

s=1

(
s − t

)
(vis − vi)∑T

s=1

(
s − t

)2 t

)
−
(∑T

s=1

(
s − t

)
(vis − vi)∑T

s=1

(
s − t

)2

)
t.

(10)

Example 2. The second example is a model with a binary regressor sij ∈ {0, 1}:

yiℓ = αi + βisiℓ + viℓ, i = 1, ..., N, ℓ = 1, ..., L. (11)

This is the model we use in our empirical application, where siℓ denotes the smoking status

of mother i during the pregnancy of child ℓ, and yiℓ is the birthweight of child ℓ.

Denoting as ni =
∑L

ℓ=1 siℓ, we obtain:

α̂i = αi +
1

L − ni

L∑

ℓ=1

(1 − siℓ) viℓ (12)

β̂i = βi +
1

ni

L∑

ℓ=1

siℓviℓ −
1

L − ni

L∑

ℓ=1

(1 − siℓ) viℓ, (13)

and:

yiℓ − α̂i − β̂isiℓ = viℓ − siℓ
1

ni

L∑

k=1

sikvik − (1 − siℓ)
1

L − ni

L∑

k=1

(1 − sik) vik.

(14)

2.3 Extensions

Nonlinearity in variables and common parameters. Although we discuss identifica-

tion of the linear model (1), the approach of this paper can be generalized to other settings.

A more general formulation is:

yi = a(Wi; θ) + B(Wi; θ)γi + vi, (15)

where θ is a vector of common parameters that enter nonlinearly functions a (which is T ×1)

and B (T × q).
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Following Chamberlain (1992), one can consider the generalized within- and between-

group equations:

Qi (θ) (yi − a(Wi; θ)) = Qi (θ)vi (within-group), (16)

γ̂i − γi = Hi (θ)vi (between-group), (17)

where

Qi (θ) = IT − B(Wi; θ) [B(Wi; θ)′B(Wi; θ)]
−1

B(Wi; θ)′, (18)

Hi (θ) = (B(Wi; θ)′B(Wi; θ))
−1

B(Wi; θ)′. (19)

Qi (θ) and Hi (θ) are well-defined provided that: rank [B(Wi; θ)] = q. Because of the

within- and between-group equations (16) and (17), the identification analysis of model (15)

follows very closely that of the linear model (1). We will indicate the differences in the course

of the exposition.

It is instructive to consider examples of model (15). A simple special case is the one-factor

model:

yit = z′itδ + µtαi + vit, (20)

where µ1, ..., µT are time-varying parameters and αi is scalar (e.g., Holtz-Eakin et al., 1988).

In a wage regression, αi could be workers’ unobserved skills on the labor market, and µt

their time-varying price. Multiple-equation versions of (20), where yit is multi-dimensional,

could also be considered. Moreover, the model can be generalized to allow for time-varying

unobservable individual effects which follow a factor structure (Bai, 2009, Ahn et al., 2007).

Other interesting special cases of (15) are models where the regressors include lags (or

leads) of the dependent variable. For example, a first-order autoregressive model:

yit = δyi,t−1 + x′
itγi + vit, |δ| < 1. (21)

That (21) is a special case of (15) is seen by writing the reduced-form:

yit =
(
xit + δxi,t−1 + ... + δt−1xi1

)′
γi + δtyi0 + vit + δvi,t−1 + ... + δt−1vi1,

which is of the form (15) with the (q + 1) × 1 vector of individual effects: γ̃i = (γ ′
i, yi0)

′.

General predetermined variables. Assumption 1 posits the strict exogeneity of Zi and

Xi given γi. The critical role of this assumption is to ensure that within and between

9



errors, Qivi and Hivi, have zero conditional mean given all lags and leads of the regressors.

However, our approach can be generalized to situations where Zi includes predetermined

or endogenous variables (although the remainder of the paper assumes strict exogeneity for

simplicity). The idea is to replace Assumption 1 for the error vit = yit − z′itδ − x′
itγi with

the following generalization:

E (vit | ri1, ..., rit,Xi,γi) = 0 (t = 1, ..., T ) , (22)

where rit is a predetermined instrumental variable, which may be external to the model or

not. For example, if rit = zit the explanatory variable zit itself is predetermined; if rit = zit−1

then zit is contemporaneously endogenous but its lags are predetermined, whereas if rit is

an external instrument zit is treated as endogenous at all lags.

Contrary to Assumption 1, the orthogonality between original errors and conditioning

variables in the new assumption is not transmitted to ordinary within errors. The reason

is that (22) implies a pattern of sequential orthogonality and each within error depends on

the full time series of original errors. However, there is an alternative within transformation

that preserves sequential orthogonality, which is provided by a generalization of forward

orthogonal deviations (Arellano and Bover, 1995). Let Ai be a (T − q)×T upper triangular

decomposition of Qi such that A′
iAi= Qi and AiA

′
i= IT−q. The orthogonal within errors

Aivi ≡
(
v∗

i1, ..., v
∗
i(T−q)

)′
satisfy assumption (22):

E (v∗
it | ri1, ..., rit,Xi,γi) = 0 (t = 1, ..., T − q) .

Strict exogeneity of Xi is an essential ingredient of the previous argument, but as long

as this is preserved, nonlinear extensions are also possible. For example, it is possible to

consider assumption (22) in conjunction with a model of the form

a (Yi,Xi,θ) = B (Xi,θ) γi + vi,

where the columns of Yi contain endogenous and predetermined variables.

3 Identification of first and second moments

In this section we study the identification of common parameters, and means and variances

of individual effects and errors.
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3.1 Common parameters and averages of individual effects

We start with a proposition which shows the identification of δ and E (γi). All proofs are

in Appendix A.

Proposition 1 (common parameters and mean effects)

Let Assumptions 1 and 3 hold. Then:

E (Qi (yi − Ziδ) |Wi) = 0 (23)

and

E (γ̂i|Wi) = E (γi|Wi) . (24)

So E (γi) is identified. Moreover, δ is identified if E (Z′
iQiZi) has rank K, the number of

common parameters.

Proposition 1 shows that δ can be interpreted as a generalized within-group estimand.

Similarly, E (γi) can be understood as a mean-group estimand. For example, consider a

model with a heterogeneous intercept:

yit = z′itδ + γi1 + vit. (25)

Then, δ and E (γi) satisfy:

E
(
yit − yi − (zit − zi)

′
δ|Zi

)
= 0,

E (γi1) = E (yi − z′iδ) .

Applied researchers often find it useful to regress individual effects estimates γ̂i on strictly

exogenous regressors Fi, see MaCurdy (1981) for an early application. An interesting corol-

lary of Proposition 1 is that the population projection coefficients in the regression of γ̂i on

Fi are equal to the projection coefficients in the regression of γi on Fi.

Corollary 1 (projection coefficients)

Let Assumptions 1 and 3 hold. Let also Fi be a random vector such that E (vit|Wi,Fi) =

0. Then:

[Var (Fi)]
−1 Cov (Fi,γi) = [Var (Fi)]

−1 Cov (Fi, γ̂i) . (26)

11



Similar results can be obtained for the more general formulation (15). The next corollary

derives moment conditions satified by common parameters θ.

Corollary 2 (Chamberlain’s model)

Consider model (15), and suppose that E (vi|Wi) = 0 and that matrix B(Wi; θ) has rank

q. Then:

E [Qi (θ) (yi − a(Wi; θ)) |Wi] = 0, (27)

and

E [Hi (θ) (yi − a(Wi; θ)) |Wi] = E (γi|Wi) , (28)

where Qi (θ) and Hi (θ) are given by (18) and (19), respectively.

Corollary 2 provides conditional moment restrictions that may or may not be sufficient

to identify θ. For example, consider an AR(1) model with fixed effects without strictly

exogenous regressors:

yit = δyi,t−1 + γi1 + vit, |δ| < 1. (29)

In the absence of restrictions on the vit process, δ is not identified in model (29). Identifica-

tion may be achieved by restricting the variance-covariance matrix of vi and by exploiting

covariance restrictions (Holtz-Eakin et al., 1988, Arellano and Bond, 1991). We will study

the identification content of covariance restrictions in the next subsection.

Remark that, once θ is identified, there is no essential difference between model (1) and

model (15). Indeed, one can define ỹi = yi − a(Wi; θ) as the new dependent variable and

X̃i = B(Wi; θ) as the new set of regressors, and use the identification results obtained for

model (1).

Information bound on common parameters and average effects. Chamberlain

(1992) obtained the optimal moment conditions of common parameters and average effects

for model (15). The moments are optimal in the sense that an estimator based on them

attains the semiparametric information bound.

Following the argument developed in Appendix C, the joint optimal moments for θ and

γ = E (γi) can be expressed as

E

( {
∂

∂θ′
[ai + BiE (γi | Wi)]

}′
A′

i (AiViA
′
i)
−1 Ai (yi − ai)(

B′
iV

−1
i Bi

)−1
B′

iV
−1
i (yi−ai−Biγ)

)
= 0, (30)
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where ai= a (Wi,θ), Bi= B (Wi,θ), Vi= Var (yi|Wi), and Ai is a (T − q)× T orthogonal

decomposition of Qi (θ).

3.2 Variances

Variances of individual effects. To recover the variance of individual effects, we impose

restrictions on the variance-covariance matrix of errors vi. For exposition, we start with the

case where Ωi = Var (vi|Wi) is known. The following theorem shows that the variance of

individual effects is identified under those conditions. The proof is immediate using (6).

Theorem 1 (variances of effects)

Let Assumptions 1 and 3 hold. Then:

Var (γi|Wi) = Var (γ̂i|Wi) − HiΩiH
′
i (31)

and, unconditionally:

Var (γi) = Var (γ̂i) − E (HiΩiH
′
i) . (32)

Theorem 1 shows that the variance-covariance matrix of individual effects is identified

given that of errors. In the special case where Ωi = σ2IT , (32) yields:

Var (γi) = Var (γ̂i) − σ2E
[
(X′

iXi)
−1
]
. (33)

A familiar expression is obtained in model (25), with a single heterogeneous intercept and

classical errors, in which case: Var (γi1) = Var (yi − z′iδ) − σ2/T .

It is instructive to write (32) as

Var (γ̂i) = Var (γi) + E (HiΩiH
′
i) , (34)

which expresses the variance of individual effects estimates as the sum of a between-group

and a within-group variance. The between-group term is equal to the variance of individual

effects in the population.9 The within-group variance generally tends to zero when T tends

to infinity,10 but is non zero for fixed T . This clearly decomposes the total variance of γ̂i

into two sources: the true cross-sectional variation of individual effects, and the noise due

to T being fixed. It is important to note that the linearity of the model in the individual

effects is essential for this result to hold.
9This is because E (γ̂i|γi) = γi, so: Var (E (γ̂i|γi)) = Var (γi).

10This will be the case if, for any k > 0, X′

iXi/T k and X′

iΩiXi/T k tend in probability to non zero
constants as T tends to infinity. In regular cases like Example 2, we can take k = 1. In Example 1, γ̂i is
superconsistent for γi as T tends to infinity, and we can take k = 3.

13



Variances of errors: MA restrictions. We now turn to the identification of Ωi. We will

contrast the identifying content of two types of restrictions. Covariance restrictions in levels

are obtained when using the full variance-covariance matrix of yi, that is, using Assumption

1:

E
[
(yi − Ziδ) (yi − Ziδ)′ |Wi

]
= XiE (γiγ

′
i|Wi)X

′
i + Ωi

+XiE (γiv
′
i|Wi) + E (viγ

′
i|Wi)X

′
i

= XiE (γiγ
′
i|Wi)X

′
i + Ωi. (35)

The within restrictions are obtained from the within-group equation (5), hence:

QiE
[
(yi − Ziδ) (yi − Ziδ)′ |Wi

]
Q′

i = QiΩiQ
′
i. (36)

The within equations (36) are effectively a subset of the level equations (35). However,

unlike (35), the within covariance restrictions (36) do not depend on errors vit being mean

independent of individual effects γi.

We start by studying the identifying content of restrictions in levels. In vector form, (35)

yields:

E [(yi − Ziδ) ⊗ (yi − Ziδ) |Wi] = (Xi ⊗ Xi)E (γi ⊗ γi|Wi) + vec (Ωi) . (37)

Note that the variance of individual effects is left unrestricted. Let us define the projection

matrix on the orthogonal of Xi ⊗ Xi:

Mi = IT 2 −
[
Xi (X

′
iXi)

−1
X′

i

]
⊗
[
Xi (X

′
iXi)

−1
X′

i

]
(38)

= IT 2 − [IT − Qi] ⊗ [IT − Qi] .

Left-multiplying (37) by Mi we obtain:

MiE [(yi − Ziδ) ⊗ (yi − Ziδ) |Wi] = Mi vec (Ωi) . (39)

As Mi has rank T 2 − q2,11 we cannot invert (39) and recover Ωi unless we impose

restrictions. We start by imposing uncorrelatedness restrictions on errors vit. A particular

example is a moving average (MA) process of order r, in which case the conditional covariance

between vit and vi,t+r+1 given Wi is zero for all t.

Formally, we make the following assumption.

11Note that rank (Mi) = Tr (Mi) = T 2 − [T − (T − q)]2.
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Assumption 4 There exists a vector of m parameters ωi, possibly dependent on Wi, and

a known (selection) matrix S2 such that:

vec (Ωi) = S2ωi. (40)

Note that since Var (vi| Wi) = E [Var (vi | Wi,γi) | Wi], Assumption 4 is consistent

with an underlying moving average model with unobserved heterogeneity of the form

Var (vi | Wi,γi) = S2φ (Wi,γi)

for an unspecified function φ such that ωi = E [φ (Wi,γi) | Wi], possibly including a larger

vector of fixed effects than those present in the conditional mean.

Assumption 4 contains the case where all errors are conditionally uncorrelated, in which

case m = T and S2 is a selection matrix that has zeros everywhere except at positions (1, 1),

(T + 2, 2),..., (T 2, T ). More generally, Assumption 4 contains moving-average processes of

the form

vit = uit + θ1tui,t−1 + ... + θrtui,t−r, t = 1, ..., T, (41)

where θ11, ..., θrT are unrestricted parameters,12 and ui,1−r, ..., uiT are mutually uncorrelated

given regressors. In the MA(r) case, m = T + T − 1 + ... + T − r = (r + 1) (T − r/2).

Now, combining (39) and (40) we obtain:

MiE [(yi − Ziδ) ⊗ (yi − Ziδ) |Wi] = MiS2ωi. (42)

We thus have the following identification theorem.

Theorem 2 (variances of errors, information in levels)

Let Assumptions 1, 3 and 4 hold. Suppose that

rank [MiS2] = m. (43)

Then matrix Ωi is identified from covariance restrictions in levels (35).

In the particular case where errors are i.i.d. homoskedastic (and so m = 0) we also have

the following corollary.

12θ11, ..., θrT may depend on regressors Wi, although we omit the i subindex for clarity. They could also
depend on individual effects ξi, as long as E (uit|Wi,γi, ξi) = 0.
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Corollary 3 (variances of errors, i.i.d.)

If errors are i.i.d. independent of Wi with variance σ2 we have

σ2 =
1

T − q
E
[
(yi − Ziδ)′ Qi (yi − Ziδ)

]
.

It is interesting to study the order condition associated with the rank condition (43).

One can check that

rank [MiS2] ≤
T (T + 1)

2
− q(q + 1)

2
,

with equality when S2 selects all T (T +1)/2 non-redundant elements of vec (Ωi), see Lemma

A1 i) in Appendix A. So, the order condition associated with (43) is:

T (T + 1)

2
− q(q + 1)

2
≥ m. (44)

In particular, in the MA(r) case we need that

T (T + 1)

2
− q(q + 1)

2
≥ (r + 1)

(
T − r

2

)
. (45)

The left-hand-side in (45) is decreasing in q, while the right-hand side is increasing in r. So,

equation (45) emphasizes a trade-off between the number of individual-specific effects and

the order of the moving-average process.

Working with the within-group equation (5) alone requires stronger conditions for iden-

tification, as shown in the following theorem.

Theorem 3 (variance of errors, within information)

Let Assumptions 1, 3 and 4 hold. Suppose that

rank [(Qi ⊗ Qi)S2] = m. (46)

Then matrix Ωi is identified from the within-group covariance restrictions (36) alone.

The order condition associated with the rank condition (46) is (see Lemma A1 ii) in

Appendix A):
(T − q)(T − q + 1)

2
≥ m.

Hence, the order condition is more restrictive than the one which was obtained using covari-

ance restrictions in levels, see equation (44).

For example, consider the AR(1) model (29) with a single heterogeneous intercept, and

T = 3. The autoregressive parameter ρ is not identified from within-group equations alone.

However, ρ is identified from covariance restrictions in levels, as the IV estimand in the

regression of (yi3 − yi2) on (yi2 − yi1) using yi1 as instrument.
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Variances of errors: AR restrictions. Autoregressive errors are very popular in applied

work, and are not covered by assumption (40) because autoregressive processes are correlated

at all lags. Nevertheless, a similar approach can be adopted to study identification.13 To see

how, consider the following model:

vit = ρ1tvi,t−1 + ... + ρptvi,t−p + uit, t = p + 1, ..., T, (47)

where ρ1,p+1, ..., ρpT are unrestricted parameters and ui,p+1, ..., uiT satisfy Assumption 4. In

the case where uit is MA(r), vit given by (47) follows an ARMA(p,r) process.

Let ui = (ui,p+1, ..., uiT )′, and let R be the (T − p) × T matrix:

R =




−ρp,p+1 −ρp−1,p+1 ... −ρ1,p+1 1 0 ... ... ... ... 0 0
0 −ρp,p+2 ... −ρ2,p+2 −ρ1,p+2 1 ... ... ... ... 0 0
... ... ... ... ... ... ... ... ... ... ... ...
0 0 ... 0 0 0 ... −ρp,T−1 −ρp−1,T−1 ... 1 0
0 0 ... 0 0 0 ... 0 −ρpT ... −ρ1T 1




.

Left-multiplying (1) by R we obtain, as Rvi = ui:

Ryi = RZiδ + RXiγi + ui. (48)

Let ωi be an m × 1 vector of parameters such that:

vec (Var (ui|Wi)) = S2ωi.

Let also:

M̃i = I(T−p)2 −
[
RXi (X

′
iR

′RXi)
−1

X′
iR

′
]
⊗
[
RXi (X

′
iR

′RXi)
−1

X′
iR

′
]
.

Variance restrictions in model (48) imply that

M̃iE [(Ryi − RZiδ) ⊗ (Ryi − RZiδ) |Wi] = M̃iS2ωi. (49)

Note that, by multiplying by R we have lost degrees of freedom, as the rank of M̃i is

[(T − p)2 − q2] while Mi has rank [T 2 − q2]. These additional restrictions on the variance-

covariance matrix of errors are intuitive, as there are p extra individual-specific parameters

to difference out, the initial shocks vi,1−p, ..., vi0. Multiplying by R permits to eliminate these

p individual effect. Then, multiplication by M̃i allows to eliminate the q remaining ones.

13However, contrary to the moving average case, an autoregressive model with unobserved heterogeneity
does not generally imply an autoregressive structure for Var (vi| Wi).
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It follows from (49) that, for the variances of ui,p+1, ..., uiT and parameters ρ1,p+1, ..., ρpT

to be identified from equation (42) the following rank condition needs to be satisfied:

rank
(
M̃iS2

)
= m. (50)

In particular, we need that:

(T − p)(T − p + 1)

2
− q(q + 1)

2
≥ m.

So the maximal q that can be allowed for is inversely related to p. In the case where uit is

MA(r), q is inversely related to both p and r.

Before ending this discussion, three remarks are in order. First, contrary to the moving

average case, (50) is not strictly sufficient for identification to hold. Indeed, we also need

parameters ρ1,p+1, ..., ρpT to be identified from (49).

Next, one could similarly analyze the case of AR-type restrictions using within informa-

tion only, as opposed to using restrictions in levels as we have done in this paragraph. The

order condition for identification then becomes more restrictive, as it requires that:

(T − p − q)(T − p − q + 1)

2
≥ m.

Lastly, the analysis in this section focuses on non-stationary ARMA models. Under

stationarity, additional identifying restrictions could be obtained, although non-linear in the

autoregressive parameters.

Illustrations. We first illustrate the results in Example 2 with L = 3, which corresponds

to our empirical application. We focus on the subpopulation of individuals who have siℓ = 1

only in one period, i.e. such that ni = 1, the analysis being similar for other values of ni.

We assume without loss of generality that si1 = 1, and si2 = si3 = 0.

In this case, levels restrictions (39) are:




Var (yi1) = Var (αi) + 2 Cov (αi, βi) + Var (βi) + Var (vi1) ,
Var (yi2) = Var (αi) + Var (vi2) ,
Var (yi3) = Var (αi) + Var (vi3) ,
Cov (yi1, yi2) = Var (αi) + Cov (αi, βi) + Cov (vi1, vi2) ,
Cov (yi1, yi3) = Var (αi) + Cov (αi, βi) + Cov (vi1, vi3) ,
Cov (yi2, yi3) = Var (αi) + Cov (vi2, vi3) .

We see that, when errors are uncorrelated with unrestricted variances, Var (βi) and

Var (vi1) are not separately identified. Although the order condition for identification is
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satisfied,14 the rank condition is not. Remark also that, if we impose the stationarity restric-

tion that all three variances of vi1, vi2 and vi3 are equal, then they are identified along with

the covariance matrix of individual effects.

It is easy to see that Var (vi3 − vi2) is identified from the within-group restrictions (36)

alone. So, if we assume that vi2 and vi3 are uncorrelated and have equal variance, then

Var (vi2) = Var (vi3 − vi2) /2 is also identified from those restrictions.

As a second illustration, consider Example 1 with AR(1) errors:

vit = ρvi,t−1 + uit.

We start by assuming that ρ is known. Applying the R transformation to equation (7) we

obtain:

yit − ρyi,t−1︸ ︷︷ ︸
y∗

it
(ρ)

= (1 − ρ)αi + βi (t − ρ(t − 1)) + uit

= (1 − ρ)αi + ρβi︸ ︷︷ ︸
α∗

i
(ρ)

+ t(1 − ρ)βi︸ ︷︷ ︸
tβ∗

i
(ρ)

+ uit.

When T = 4, we obtain:15





Var (y∗
i2(ρ)) = Var (α∗

i (ρ)) + 4 Cov (α∗
i (ρ), β∗

i (ρ))
+4 Var (β∗

i (ρ)) + Var (ui2) ,
Var (y∗

i3(ρ) − y∗
i2(ρ)) = Var (β∗

i (ρ)) + Var (ui3 − ui2) ,
Var (y∗

i4(ρ) − 2y∗
i3(ρ) + y∗

i2(ρ)) = Var (ui4 − 2ui3 + ui2) ,
Cov (y∗

i2(ρ), y∗
i3(ρ) − y∗

i2(ρ)) = Cov (α∗
i (ρ), β∗

i (ρ)) + 2 Var (β∗
i (ρ))

+ Cov (ui2, ui3 − ui2) ,
Cov (y∗

i2(ρ), y∗
i4(ρ) − 2y∗

i3(ρ) + y∗
i2(ρ)) = Cov (ui2, ui4 − 2ui3 + ui2) ,

Cov (y∗
i3(ρ) − y∗

i2(ρ), y∗
i4(ρ) − 2y∗

i3(ρ) + y∗
i2(ρ)) = Cov (ui3 − ui2, ui4 − 2ui3 + ui2) .

It is easy to check that, if ui2, ui3 and ui4 are assumed uncorrelated, then they are

identified from this set of restrictions, together with the covariance matrix of individual

effects. This is consistent with the order condition (44) being satisfied in this case.

Note that ρ is not identified from levels equations when T = 4. When T = 5 we obtain

additional identifying restrictions which may suffice for ρ to be identified. For example:

Var (β∗
i (ρ)) = Cov [y∗

i3(ρ) − y∗
i2(ρ), y∗

i5(ρ) − y∗
i4(ρ)]

= Var (y∗
i3(ρ) − y∗

i2(ρ)) +
1

2
Cov [y∗

i3(ρ) − 2y∗
i2(ρ), y∗

i4(ρ) − 2y∗
i3(ρ) + y∗

i2(ρ)] .

14As: 3(3 + 1)/2 − 2(2 + 1)/2 = 3, see equation (45).
15T = 4 means that we have 3 observations on y∗

it(ρ) for given ρ (t = 2, 3, 4).
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Note that, when T = 5, the order condition (44) is satisfied even when uit follows an

unrestricted MA(1) process. This suggests that the conditions for identification become

rapidly less demanding as T increases.

3.3 Efficiency bounds

Here we show how Chamberlain’s analysis can be extended to obtain a joint information

bound for common parameters, means and variances of random coefficients, and a parame-

terization of the variances of errors. Let us write down model (1) as:

E (yi|Wi,γi) = Ziδ + Xiγi (51)

together with a specification of the conditional variance of vi given Wi and γi:

E (vi ⊗ vi|Wi,γi) = ωi (φ) , (52)

where ωi is a T 2 × 1 vector of functions of a parameter φ, which may also depend on Wi.

However, we assume that the variance of vi does not depend on γi.
16

Using (52) together with Assumption 1 we obtain the following expression for the condi-

tional second-order moments of yi:

E (yi ⊗ yi|Wi,γi) = (Ziδ ⊗ Ziδ) + ωi (φ) + (Xi ⊗ Ziδ + Ziδ ⊗ Xi) γi

+ (Xi ⊗ Xi) (γi ⊗ γi) . (53)

Stacking (51) and (53) together yields

E (y∗
i |Wi,γ

∗
i ) = d (Wi,θ) + R (Wi,θ) γ∗

i , (54)

where θ = (δ,φ), and

γ∗
i =

(
γi

γi ⊗ γi

)
, d (Wi,θ) =

(
Ziδ

(Ziδ ⊗ Ziδ) + ωi (φ)

)
,

and

R (Wi,θ) =

(
Xi 0

(Xi ⊗ Ziδ + Ziδ ⊗ Xi) (Xi ⊗ Xi)

)
.

16In cases where E (vi ⊗ vi|Wi,γi, ξi) = Γ (Wi,φ)

(
γi

ξi

)
, we could extend the model and apply a

similar approach treating ξi as additional random coefficients.
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Equation (54), which combines mean and covariance restrictions in levels, is a special case

of model (15).17 Therefore, the optimal moments (and associated semiparametric bound)

for δ, φ, and γ∗ = E (γ∗
i ) = E

(
γi

γi ⊗ γi

)
are of the form given in expression (30).

In particular, using (54) instead of the conditional mean model (51) we obtain in general

a tighter bound for the common parameters δ. This is because we have restricted the

covariance structure of errors via equation (52). Moreover, if those covariance restrictions

do not suffice for E (γi ⊗ γi) to be identified, then the information bound for the variance

of individual effects will be zero.

4 Identification of distributions

In this section, we discuss the identification of distributions. We start with third and fourth-

order moments of errors and individual effects, and then study the identification of their

densities.

4.1 Higher-order moments

In applications, it may be of interest to document the skewness and kurtosis of individual

effects in addition to mean and variance. It turns out that the model’s linearity makes it

easy to generalize the previous analysis to higher-order moments.

Definitions. Let U be an n-dimensional random vector with zero mean and well-defined

moments to the fourth-order. We denote by κ3(U) the n3-dimensional cumulant vector

of order 3 whose elements κi,j,k
3 (U), for (i, j, k) ∈ {1, ..., n}3, are arranged in lexicographic

order. Likewise, we denote by κ4(U) the vector of n4 cumulants of order 4 κi,j,k,ℓ
4 (U). There

is a mapping between moments and cumulants but in our context it is more convenient to

work with the latter because of their properties (see Appendix D for further details). In

particular, cumulants satisfy a useful multilinearity property. Namely, for any conformable

matrix A we have:

κ3(AU) = (A ⊗ A ⊗ A) κ3(U),

κ4(AU) = (A ⊗ A ⊗ A ⊗ A) κ4(U).

17The only difference is that E (γ∗

i |Wi) is not fully unrestricted, as its components are first and second
moments of the same underlying γi. However, these extra restrictions imply moment inequalities that do
not affect the bound.
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Cumulants of effects. To recover the higher-order cumulants of individual effects we

assume that individual effects are independent of errors conditionally on regressors (As-

sumption 2). Full independence will not be needed to derive the identification results in this

subsection. For this purpose, the assumption that γi and vi have zero cross-cumulants of

order 3 and 4 will be sufficient. However, full independence will be needed to recover the

distribution of individual effects in the next subsection.

Using the between-group equation (6) together with Assumption 2, we obtain that:

κ3 (γi|Wi) = κ3 (γ̂i|Wi) − κ3 (Hivi|Wi) ,

= κ3 (γ̂i|Wi) − (Hi ⊗ Hi ⊗ Hi) κ3 (vi|Wi) , (55)

and, similarly:

κ4 (γi|Wi) = κ4 (γ̂i|Wi) − (Hi ⊗ Hi ⊗ Hi ⊗ Hi) κ4 (vi|Wi) . (56)

It follows that the conditional cumulants of individual effects are identified given error cumu-

lants. Remark that, as conditional moments can be recovered from conditional cumulants,

it follows from these results that conditional and thus unconditional moments of individual

effects are also identified.

Consider for example model (25), with a single heterogeneous intercept and i.i.d. errors.

We obtain:

κ3 (γi1|Zi) = κ3 (yi − z′iδ|Zi) −
κ3 (vit)

T 2
,

κ4 (γi1|Zi) = κ4 (yi − z′iδ|Zi) −
κ4 (vit)

T 3
.

Interestingly, (55) and (56) show that the bias on the cumulant of individual effects estimates

γ̂i is of a smaller order of magnitude than the bias on the variance.18

Error cumulants. We now turn to the identification of the cumulants of time-varying

errors. Taking third- and fourth-order cumulants in model (1), we obtain the following

restrictions (in levels):

κ3 (yi|Wi) = (Xi ⊗ Xi ⊗ Xi) κ3 (γi|Wi) + κ3 (vi|Wi) , (57)

κ4 (yi|Wi) = (Xi ⊗ Xi ⊗ Xi ⊗ Xi) κ4 (γi|Wi) + κ4 (vi|Wi) . (58)

18When
X

′

i
Xi

T

p→ constant > 0 as T tends to infinity, the biases on third- and fourth-order cumulants of
individual effects are O(1/T 2) and O(1/T 3), respectively, while the bias on the variance is O(1/T ).
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As in the case of variances, these systems of equations are singular unless we impose

restrictions on the dependence of errors over time. We adopt a similar approach as in (40)

and assume that:

κ3 (vi|Wi) = S3ω3i, (59)

κ4 (vi|Wi) = S4ω4i, (60)

where S3 and S4 are selection matrices and ω3i and ω4i are vectors of m3 and m4 parameters,

respectively, possibly dependent on Wi. Under these assumptions, identification of error

cumulants can be shown if rank conditions analog to (43) are satisfied.

To motivate restrictions (59) and (60), let us consider a moving average model of the

form (41), where innovations ui,1−r, ..., uiT are now assumed mutually independent given

regressors. Errors are thus modelled as linear combinations of independent (and not simply

uncorrelated) underlying shocks.19 Because of linearity and independence, it follows that for

any time periods t and t′ such that vit and vi,t′ are independent, the cumulants κt,t′,s
3 (vi|Wi)

and κt,t′,s,s′

4 (vi|Wi) are zero for all s, s′ (see Lemma 1 in Bonhomme and Robin, 2009a). So,

these error structures satisfy (59) and (60) for particular selection matrices.

Specifically, in an independent moving average model of order r, vit is conditionally

independent of vi,t+r+1 for all t. Simple combinatorics then shows that third and fourth-

order cumulants depend on m3(r) and m4(r) free parameters, respectively, where:

m3(r) = T + 2(T − 1) + ... + (r + 1)(T − r),

m4(r) = T +

(
3
2

)
(T − 1) + ... +

(
r + 2

2

)
(T − r).

It can be shown that the order conditions for identification are, in this case:
(

T + 2
3

)
−
(

q + 2
3

)
≥ m3(r) , and

(
T + 3

4

)
−
(

q + 3
4

)
≥ m4(r). (61)

Hence, again, a trade-off between the number of individual-specific effects and the order

of the MA process. Interestingly, the order conditions for higher-order cumulants are less

stringent than for the variance, compare (61) with (45).

It is also possible to show identification of higher-order moments in autoregressive models

of the form (47), if the underlying shocks uit follow an independent moving average model.

For that, it suffices to compute cumulants in the equation in quasi-differences (49).

19See Rao (1969) and more recently the literature on Independent Component Analysis (ICA) (e.g., Hyväri-
nen et al., 2001), for references on linear independent factor models in the statistical literature.
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Lastly, one can similarly study the identification of higher-order cumulants using within

information alone, see equation (5). The conditions for identification then become more

restrictive.20

Remark on efficiency bounds. The arguments of Subsection 3.3 can be extended to

higher-order moments. To do so, consider further extending the model to specify the third-

order moments of errors as:

E (vi ⊗ vi ⊗ vi|Wi,γi) = µ3i (φ3) . (62)

We can write third-order moment restrictions as:

E (yi ⊗ yi ⊗ yi|Wi,γi) = (Ziδ ⊗ Ziδ ⊗ Ziδ) + PT (ωi ⊗ Ziδ) + µ3i

+PT [(Ziδ ⊗ Ziδ + ωi) ⊗ Xi] γi + PT [Ziδ ⊗ Xi ⊗ Xi] (γi ⊗ γi)

+ (Xi ⊗ Xi ⊗ Xi) (γi ⊗ γi ⊗ γi) ,

where ωi = ωi (φ2), µ3i = µ3i (φ3), and PT denotes the T 3 × T 3 “triplicating” permutation

matrix that satisfies, for all (a,b, c) ∈ R3T :

PT (a ⊗ b ⊗ c) = a ⊗ b ⊗ c + b ⊗ c ⊗ a + c ⊗ a ⊗ b.

We can then stack first, second, and third-order moment restrictions to obtain:

E
(
y3∗

i |Wi,γ
3∗
i

)
= d3 (Wi,θ3) + R3 (Wi,θ3) γ3∗

i , (63)

where θ3 = (δ,φ2,φ3), and:

γ3∗
i =




γi

γi ⊗ γi

γi ⊗ γi ⊗ γi


 .

Equation (63) still falls into the framework considered in Chamberlain (1992). Note that

this approach can be extended to the m-th order, yielding:

E (ym∗
i |Wi,γ

m∗
i ) = dm (Wi,θm) + Rm (Wi,θm) γm∗

i , (64)

20It can be shown that, in an independent MA(r) model, the order conditions for identification when
working with within information are:

(
T − q + 2

3

)
≥ m3(r) , and

(
T − q + 3

4

)
≥ m4(r).
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where θm = (δ,φ2,φ3, ...,φm), with φ3, ...,φm a parameterization of error moments up to

the m-th order, and where:

γm∗
i =




γi

γi ⊗ γi

γi ⊗ γi ⊗ γi

...
γi ⊗ ... ⊗ γi︸ ︷︷ ︸

m times




.

This framework can be used to compute semiparametric efficiency bounds under the

independence assumption between individual effects and errors (Assumption 2). We focus

on computing bounds for δ, although any moment of individual effects or errors could be

analyzed in a similar way.

Consider the increasing sequence of moment conditions (64), for m = 2, 3, ... Let V(m)

be the efficiency bound on the asymptotic variance for δ obtained from the first m of those

moment conditions. V(m) can be computed using Chamberlain’s (1992) results. Following

the discussion in Appendix C, V(m) is the efficiency bound corresponding to the conditional

moment restriction:

E [Ami (y
m∗
i − dm (Wi,θm)) |Wi] = 0,

where Ami is a generalized orthogonal deviation operator such that:

A′
miAmi = I − Rm (Wi,θm)

(
Rm (Wi,θm)′ Rm (Wi,θm)

)−1
Rm (Wi,θm)′ .

The sequence V(m) being nonincreasing in the semi-definite sense (as a larger m means

that a larger number of moment conditions is used), we can define the limit:21

V(∞) = lim
m→+∞

V(m).

Let V0 be the semiparametric bound for δ under independence. Clearly, as V0 ≤ V(m) for

all m, it follows that V0 ≤ V(∞).

Newey (2004) studies under which conditions, in a given model, the asymptotic variance

of the optimal GMM estimator based on an increasing sequence of conditional moment

conditions tends to the semiparametric bound, that is, when V0 = V(∞). He finds that for

this to hold, a spanning condition is sufficient. This condition requires that the restrictions

21See Lemma B.1 in Newey (2004).
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imposed by the moment conditions are equivalent to those imposed by the semiparametric

model.

Intuitively, we expect a spanning condition to hold in our case, as the increasing se-

quence of moment conditions (64) exhausts all the restrictions implied by independence. We

therefore conjecture that V0 = V(∞).

4.2 Densities

We now turn to the identification of the densities of effects and errors. We work under

Assumption 2, which requires conditional independence between vi and γi.

To derive the identification results, it is very convenient to work with characteristic

functions. Let (Y,X) be a pair of random vectors, Y ∈ RL, and let j be a square root of

−1.22 The conditional characteristic function of Y given X = x, is defined as:

ΨY|X(t|x) = E (exp(jt′Y)|x) , t ∈ RL.

Some useful properties of characteristic functions are discussed in Appendix D.

Densities of individual effects. The following theorem shows that, if the distribution

of the error terms is known, then the characteristic function, and hence the distribution, of

individual effects is identified.

Theorem 4 (characteristic functions of effects)

Let Assumptions 2 and 3 hold. Suppose that the characteristic function of vi given Wi

is nonvanishing on RT . Then we have, for all τ ∈ Rq:

Ψγi|Wi
(τ |Wi) =

Ψγ̂i|Wi
(τ |Wi)

Ψvi|Wi
(H′

iτ |Wi)
(65)

and, unconditionally:

Ψγi
(τ ) = E

(
exp (jτ ′γ̂i)

Ψvi|Wi
(H′

iτ |Wi)

)
. (66)

The assumption that the characteristic function of errors has no real zeros is very com-

mon in the literature on nonparametric deconvolution; see Schennach (2004) and references

therein. For example, the characteristic function of the normal distribution has no (real or

complex) zeros.

22We work with the notation j2 = −1 instead of i2 = −1 to avoid confusion with the index of individual
units.
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We immediately obtain the following corollary, which shows that the logarithm of the

characteristic function of γi given regressors is identified under similar conditions.

Corollary 4 (cumulants of effects)

Suppose in addition to the assumptions of Theorem 4 that the characteristic function of

γi given Wi is almost everywhere nonvanishing on Rq. Then we have, for all τ ∈ Rq:

ln Ψγi|Wi
(τ |Wi) = ln Ψγ̂i|Wi

(τ |Wi) − ln Ψvi|Wi
(H′

iτ |Wi). (67)

Using Corollary 4, we can see that the identification result for the distribution of indi-

vidual effects is a generalization of the results that we have obtained for the first moments.

Indeed, taking second-order derivatives in (67) evaluated at τ = 0 we obtain the covariance

restrictions (31). Taking third and fourth-order derivatives yields the restrictions for third-

and fourth-order cumulants (55) and (56), respectively.

Applying the inverse Fourier transform we obtain the following corollary.

Corollary 5 (density of effects)

Under the assumptions of Theorem 4 we have, for all q-dimensional vector γ:

fγi|Wi
(γ|Wi) =

1

(2π)q

∫
exp(−jτ ′γ)

Ψγ̂i|Wi
(τ |Wi)

Ψvi|Wi
(H′

iτ |Wi)
dτ (68)

and, unconditionally:

fγi
(γ) =

1

(2π)q

∫
exp(−jτ ′γ)E

(
exp(jτ ′γ̂i)

Ψvi|Wi
(H′

iτ |Wi)

)
dτ . (69)

Corollary 5 shows the identification of the conditional and unconditional densities of

individual effects. To interpret this result, we use a large-T approximation, which relies on

the fact that the distribution of Hivi is approximately normal for large T . We obtain (see

Appendix A for a derivation):23

fγi|Wi
(γ|Wi) = fγ̂i|Wi

(γ|Wi)

−1

2
Tr

(
HiΩiH

′
i

∂2fγ̂i|Wi
(γ|Wi)

∂γ∂γ ′

)
+ Op

(
1

T 2

)
,

(70)

where Tr() is the trace operator.

23In order to derive the asymptotic expansion, we assume that
X

′

i
Xi

T

p→ constant > 0 as T tends to infinity.
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In model (25) with a single heterogeneous intercept, no exogenous regressors, and i.i.d.

errors with variance σ2, this yields:

fγi
(γ) = fγ̂i

(γ) − σ2

2T

d2fγ̂i
(γ)

dγ2
+ O

(
1

T 2

)
. (71)

Equation (71) is intuitive: in regions of high curvature (such as the mode of the distribution),

the density of fixed effects estimates understates the density of population effects.

Densities of time-varying errors. We now consider the identification of the distribution

of the error terms. It is convenient to define the following object:

κY|X (t|x) = −vec

(
∂2 ln ΨY|X(t|x)

∂t∂t′

)
.

κY|X is well-defined if the variance of Y given X exists (e.g., Székely and Rao, 2000).

Moreover:

κY|X (0|x) = vec (Var (Y|X)) .

The function κY|X will be useful to extend covariance equalities to equalities involving the

full distribution of the random variables.

Assumption 2 implies that, provided that the corresponding characteristic functions do

not vanish then, for any t ∈ RT :

ln Ψyi−Ziδ|Wi
(t|Wi) = ln ΨXiγi|Wi

(t|Wi) + ln Ψvi|Wi
(t|Wi) (72)

= ln Ψγi|Wi
(X′

it|Wi) + ln Ψvi|Wi
(t|Wi).

Taking (minus) second derivatives we obtain, in vector form:

κyi−Ziδ|Wi
(t|Wi) = (Xi ⊗ Xi) κγi|Wi

(X′
it|Wi) + κvi|Wi

(t|Wi).

So, left-multiplying by Mi (which projects on the orthogonal of Xi ⊗ Xi), this yields:

Miκyi−Ziδ|Wi
(t|Wi) = Miκvi|Wi

(t|Wi) , t ∈ RT , (73)

where Mi is given by (38).

Equation (73) nicely extends covariance restrictions to restrictions on the entire distri-

bution of the error terms. Indeed, evaluating (73) at t = 0 yields the covariance restrictions

in levels (39). Now, as in the case of variances, Mi having rank T 2 − q2 it is not possible to

invert (73) unless the dependence structure of errors is restricted.
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We study identification under the assumption that errors follow an independent moving

average process of order r of the form (41), where ui,1−r, ..., uiT are mutually independent

given regressors. Extensions to autoregressive and ARMA processes with independent un-

derlying innovations can be done along the lines of Section 3.

Lemma A2 in Appendix A shows that, in an independent MA model, the partial deriva-

tives of the log characteristic function of errors are zero for all indices t and t′ such that vit

and vit′ are independent. It follows that there exists an m-dimensional vector of functions

ωi(t) (t ∈ RT ), possibly dependent on regressors, such that:

κvi|Wi
(t|Wi) = S2ωi(t), t ∈ RT . (74)

The selection matrix S2 is the same that appeared in the covariance restrictions (40). Indeed,

(74) evaluated at t = 0 yields (40). In particular, m = (r + 1)(T − r/2).

Combining (73) with (74), we obtain the folowing identification theorem.

Theorem 5 (characteristic function of errors)

Let Assumptions 1, 2 and 3 hold. Suppose that (74) holds, and that the rank condition

(43) is satisfied. Lastly, suppose that the conditional characteristic function of errors Ψvi|Wi

is non-vanishing on RT . Then Ψvi|Wi
is identified from the restrictions in levels (72).

The identification of ln Ψvi|Wi
comes from the fact that its second derivatives are identi-

fied, and that both the log-characteristic function and its first derivatives are zero at t = 0.

This last part comes from the first derivative of the log-characteristic function at the origin

being the mean of the random variable, which is zero because of Assumption 1.

Note that the rank condition for identification, equation (43), is the one that was needed

for the identification of error variances in Section 3. Remark also that Theorem 5 implies

the identification of the density of errors, using the inverse Fourier transformation, as in

Corollary 5 above.

To summarize the results so far, we have obtained the nonparametric identification of the

distributions of individual effects and time-varying errors under two main conditions: the

independence of effects and errors, and conditional independence restrictions on errors that

are sufficiently spaced. These results extend Kotlarski (1967) and Székely and Rao (2000) to

cases where conditioning regressors are present, and the multivariate conditional distribution

of some components (including the individual effects) is left unrestricted.
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To end the discussion of identification, we remark that the identification of time-varying

errors could be similarly studied in the context of the independent MA models (74), if the

within-group information alone is used. Doing so, and as in the case of variances, we would

require more restrictive order and rank conditions for identification to hold. The formal

analysis is somewhat more involved and is not presented here.

Illustration. Let us consider again Example 2 with T = 3, with si = (1, 0, 0)′. We assume

that errors vi1, vi2 and vi3 are independent of each other. It can be shown that the levels

restrictions on error distributions imply that Ψvi2
and Ψvi3

are identified. Indeed, using (73)

we have, for example:

3
∂2

∂t22
ln Ψvi2

(t2) −
∂2

∂t23
ln Ψvi3

(t3) = 3
∂2

∂t22
ln Ψyi

(t1, t2, t3) − 2
∂2

∂t2∂t3
ln Ψyi

(t1, t2, t3)

− ∂2

∂t23
ln Ψyi

(t1, t2, t3),

3
∂2

∂t23
ln Ψvi3

(t3) −
∂2

∂t22
ln Ψvi2

(t2) = − ∂2

∂t22
ln Ψyi

(t1, t2, t3) − 2
∂2

∂t2∂t3
ln Ψyi

(t1, t2, t3)

+3
∂2

∂t23
ln Ψyi

(t1, t2, t3),

from which it follows that ∂2

∂t22
ln Ψvi2

(t2) and ∂2

∂t23
ln Ψvi3

(t3) are identified. Hence, using that

∂
∂t2

ln Ψvi2
(0) = 0 (as E(vi2) = 0) and ln Ψvi2

(0) = 0, and similarly for vi3, it follows that

ln Ψvi2
(t2) and ln Ψvi3

(t3) are identified.

This discussion shows the identification of the distributions of vi2 and vi3.
24 Remark

that the distribution of vi1 is not identified. This is not surprising as the rank condition for

identification (43) is not satisfied in this case. However, the error distribution is identified

when errors are assumed stationary.

It is interesting to contrast the identification result using the equations in levels, with

the one using only the within-group information (5). In that case, only the distribution of

vi3 − vi2 is identified. So, even in the stationary case, the distribution of vi2 (which is equal

to that of vi3) is not identified in general. For example, the third-order cumulant κ3(vi2) is

not identified, as:

κ3(vi3 − vi2) = κ3(vi3) − κ3(vi2) = 0.

24In this case, the identification of the distributions of vi2 and vi3 is also a direct application of a theorem
due to Kotlarski (1967).
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It can be shown that, if in addition to stationarity error distributions are assumed symmetric

around zero, then error distributions are identified.25

5 Estimation

In this section we first briefly discuss estimation of parameters and moments of interest,

using a i.i.d. sample {yi,Zi,Xi}, i = 1, ..., N . Then, we discuss how to estimate densities.

5.1 Common parameters and average effects

We start by discussing the estimation of common parameters and mean effects. Using (30),

the optimal moments for δ and γ = E (γi) corresponding to model (1) can be written as:

E

(
Z′

iA
′
i (AiViA

′
i)
−1 Ai (yi − Ziδ)(

X′
iV

−1
i Xi

)−1
X′

iV
−1
i (yi − Ziδ − Xiγ)

)
= 0,

where Ai is a (T − q)×T orthogonal decomposition of Qi = IT −Xi (X
′
iXi)

−1 X′
i, and where

Vi= Var (yi|Wi). Thus, given any conformable matrix Ψi, δ can be estimated as:

δ̂ =

(
N∑

i=1

Z′
iA

′
i (AiΨiA

′
i)
−1

AiZi

)−1 N∑

i=1

Z′
iA

′
i (AiΨiA

′
i)
−1

Aiyi. (75)

When Ψi = IT , δ̂ is the OLS estimator of δ in the within-group equations (5). When

Ψi is such that (AiΨiA
′
i)
−1 = (AiViA

′
i)
−1, δ̂ coincides with the infeasible GLS estimator

of δ. To construct a feasible version of δ̂ that is semiparametric efficient, the quantity

AiViA
′
i = E (Aiviv

′
iA

′
i|Wi) needs to be replaced by a consistent estimator. Note that

Aivi = Aiyi − AiZiδ. Therefore, this is a standard application of semiparametric GLS as

in Robinson (1987).26

Likewise, a consistent method-of-moments estimator of γ is the weighted mean-group

estimator:

γ̂ =
1

N

N∑

i=1

(
X′

iΨ
−1
i Xi

)−1
X′

iΨ
−1
i

(
yi − Ziδ̂

)
. (76)

When Ψi = IT , γ̂ is simply the mean-group estimator of γ (e.g., Hsiao and Pesaran, 2006).

In view of the discussion in Appendix C, when Ψi is such that
(
X′

iΨ
−1
i Xi

)−1
X′

iΨ
−1
i =

25This is because, in this case Ψvi2
(t) = [Ψvi3−vi2

(t)]
1/2

, see Horowitz and Markatou (1996). Ψvi2
(t) is

real and strictly positive because, by assumption, vi2 is symmetric and Ψvi2
does not vanish.

26If Ωi = Ω (conditional homoskedasticity of vi with respect to Wi), a feasible GLS estimator that replaces

AiViA
′

i with AiΩ̃A′

i, where Ω̃ = 1

N

∑N
i=1

(
yi − Ziδ̂

)(
yi − Ziδ̂

)
′

, would be asymptotically efficient.
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(
X′

iV
−1
i Xi

)−1
X′

iV
−1
i the variance matrix of γ̂ attains the efficiency bound.27

It is instructive to compare the mean-group estimator of γ given by (76) with the pooled

OLS estimator

γ̃ =

(
N∑

i=1

X′
iXi

)−1 N∑

i=1

X′
i

(
yi − Ziδ̂

)
.

Consistency of γ̃ requires lack of correlation between Xi and (Xi(γi − γ) + vi). This is true

if the individual effects γi are independent of Xi, but not with correlated effects in general.

In contrast, the mean-group estimator γ̂ is still consistent when effects and regressors are

correlated.

A similar approach may be adopted to deal with Chamberlain’s model given by equation

(15). A method-of-moment estimator of θ based on (27) will be consistent. A particular

choice for the matrix Qi (θ) or its orthogonal decomposition yields semiparametric efficiency

(see Appendix C).

Chamberlain (1992) emphasizes an important difference between the linear model (1) and

the more general formulation (15). Indeed, in the linear model (1) the estimator δ̂ coincides

with the joint fixed effects estimator of δ and γ1, ...,γN , see Cornwell and Schmidt (1987).

In contrast, in the nonlinear model (15), the fixed effects estimator of θ is inconsistent in

general, but a method-of-moments estimator based on (27) yields a consistent estimate for

θ.28

Turning to projection coefficients, Corollary 1 shows that the coefficients estimates ob-

tained when regressing fixed effects estimates:

γ̂i = (X′
iXi)

−1
X′

i

(
yi − Ziδ̂

)
,

on a set of strictly exogenous regressors Fi, yields consistent estimates for the coefficients of

the projection of the population individual effects γi on the regressors Fi. However, because

common parameters δ̂ have been estimated beforehand, the standard errors of the estimates

of the projection coefficients need to be corrected. In particular, this point applies to the

mean-group estimator of the unconditional mean γ = E (γi), given by (76). We provide

corrected formulas in Appendix B.

27Thus, feasible semiparametric efficient estimation of mean effects requires to estimate the conditional
variance Var (yi|Wi).

28The key difference is the dependence of B (Wi,θ) on the common parameters. In such a situation we
can see from (30) that optimal estimation requires not only estimates of Vi, but also of E (γi|Wi).
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Interestingly, the regression-provided R2 in the regression of γ̂i on Fi is inconsistent for

the population R2 in the regression of γi on Fi, with a downward bias. The reason is that

the denominator of the R2 is the variance of individual effects, which is overestimated by the

variance of γ̂i, see (32). In order to compute a correct R2, we need to consistently estimate

the variance of γi, which we discuss next.

5.2 Variances and higher-order moments

Variances. We now turn to estimation of variances under the conditions of Theorem 4,

that is under MA-type restrictions on the variance matrix of errors. The extension to au-

toregressive or ARMA structures presents no difficulty and will not be detailed here. In

the following, A− denotes any generalized inverse of a full-column rank matrix A, e.g.

A− = (A′A)−1 A′.

The following estimator of the unconditional variance matrix of errors, based on (42),

uses covariance restrictions in levels:

vec
(
V̂ar (vi)

)
=

1

N

N∑

i=1

S2 (MiS2)
− Mi (v̂i ⊗ v̂i) , (77)

where Mi is given by (38), and where we have denoted: v̂i = yi − Ziδ̂.

Alternatively, the following estimation uses only the within information:

vec
(
Ṽar (vi)

)
=

1

N

N∑

i=1

S2 [(Qi ⊗ Qi)S2]
− (Qiv̂i ⊗ Qiv̂i) . (78)

V̂ar (vi) given by (77) will be consistent as long as (40) is satisfied. In the particular

case where errors are i.i.d. with variance σ2, Corollary 3 motivates estimating σ2 as:

σ̂2 =
1

N (T − q)

N∑

i=1

(
yi − Ziδ̂

)′
Qi

(
yi − Ziδ̂

)

=
1

N (T − q)

N∑

i=1

v̂′
iQiv̂i. (79)

The first-order asymptotic distributions of (77), (78), and (79) can be easily derived.

Standard arguments show that they coincide with the distribution treating common param-

eters δ as known. Interestingly, while σ̂2 is non-negative by construction, V̂ar (vi) in (77)

and (78) are not necessarily non-negative definite.

33



Turning to estimation of the variance of individual effects, a consistent estimator based

on (32) and (42) is:

vec
(
V̂ar (γi)

)
=

1

N

N∑

i=1

(γ̂i − γ̂) ⊗ (γ̂i − γ̂)

− 1

N

N∑

i=1

(Hi ⊗ Hi)S2 (MiS2)
− Mi [v̂i ⊗ v̂i] . (80)

Note that, as in the case of the variance of errors, the variance estimator V̂ar (γi) in (80) is

not necessarily non-negative definite.

In the case where errors are i.i.d. but not necessarily homoskedastic, an alternative

estimator is:

V̂ar (γi) =
1

N

N∑

i=1

(γ̂i − γ̂) (γ̂i − γ̂)′ − 1

N(T − q)

N∑

i=1

v̂′
iQiv̂i (X

′
iXi)

−1
. (81)

Lastly, if in addition errors are assumed homoskedastic then we can estimate the variance

of γi by:

V̂ar (γi) =
1

N

N∑

i=1

(γ̂i − γ̂) (γ̂i − γ̂)′ − σ̂2 1

N

N∑

i=1

(X′
iXi)

−1
, (82)

where σ̂2 is given by (79). The estimator given by (82) was introduced by Swamy (1970).

Note that it is inconsistent in general if vit is conditionally heteroskedastic. In addition, both

estimators given by (81) and (82) will be inconsistent if errors are not mutually uncorrelated

given regressors.

Remark 1 (testing the covariance structure of errors). In practice, it may be im-

portant to empirically determine the order of the MA process of the error terms. This is of

special importance in order to estimate the variance of individual effects, as misspecifying

the form of the variance matrix of errors would result in inconsistent estimates. This can be

done easily using the above results, as we now explain.

Let S2 be a selection matrix with m columns, and suppose that one wants to test

H0 : vec (Ωi) = S2ωi

against an unrestricted alternative. Using (39) we have, under H0:

MiE [(yi − Ziδ) ⊗ (yi − Ziδ) |Wi] = MiS2 (MiS2)
− MiE [(yi − Ziδ) ⊗ (yi − Ziδ) |Wi] .

(83)
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This suggests to consider a test of significance of the following quantity:

T̂ =
1

N

N∑

i=1

GiMi

(
IT 2 − S2 (MiS2)

− Mi

)
(v̂i ⊗ v̂i) ,

where G
i
is a

(
T (T+1)

2
− q(q+1)

2

)
× T 2 matrix such that MiDT = G′

iCi, with DT the dupli-

cation matrix (Magnus and Neudecker, 1988, p.49), and Ci a full row matrix.29

The minimum chi-square statistic then satisfies:

T̂ ′V̂−1T̂ d→ χ2
d,

where d = T (T+1)
2

− q(q+1)
2

− m, and where the matrix V̂ depends on fourth-order moments

of the data.

This strategy may be interpreted as an extension of the test of covariance structures

proposed in Abowd and Card (1989) to random coefficient models. In particular, it is

immediate to extend the approach to sequentially test various MA structures, starting with

the less restrictive one (e.g., testing MA(q), then MA(q-1), etc...). However, a distinctive

feature of our test relative to Abowd and Card is that it also incorporates information in

levels (see the discussion in Arellano, 2003, p.67).

Remark 2 (efficient estimation of variances). We have seen in Subsection 3.3 that

model (1) with parametric covariance restrictions on errors can be put into the framework

of Chamberlain (1992), where the parameters of interest are common parameters, mean and

variances of individual effects, and variances of errors.

Guided by the form of the optimal moments, we can consider estimators θ̂ =
(
δ̂, φ̂

)
that

solve the following estimating equations (using the notation of Subsection 3.3):

1

N

N∑

i=1

{
∂

∂θ′ [d (Wi,θ) + R (Wi,θ)hi]

}′

A′
i (AiΨiA

′
i)
−1

Ai [y
∗
i − d (Wi,θ)] = 0

for some choice of Ψi and hi. The matrix Ai depends on θ and is an orthogonal decompo-

sition of I − Ri (R
′
iRi)

−1 R′
i, where Ri is a shorthand for R (Wi,θ).

When Ψi is such that AiΨiA
′
i = AiVar (y∗

i |Wi)A
′
i and hi = E (γ∗

i | Wi), the estimator

θ̂ attains the asymptotic variance bound. A feasible version will replace population by

estimated quantities. In particular, note that the conditional mean E (γ∗
i | Wi) can be

29Note that transformation by Gi eliminates redundancies.
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expressed in terms of observable quantities since:

E (γ∗
i | Wi) = E

[
(R′

iRi)
−1

R′
i (y

∗
i − d (Wi,θ)) | Wi

]
.

Likewise, the optimal moments result suggests estimators of γ∗ = E (γ∗
i ) of the form

γ̂∗ =
1

N

N∑

i=1

(
R′

iΨ
−1
i Ri

)−1
R′

iΨ
−1
i [y∗

i − d (Wi,θ)] .

The estimator γ̂∗ attains the efficiency bound when Ψi satisfies:

(
R′

iΨ
−1
i Ri

)−1
R′

iΨ
−1
i =

(
R′

iVar (y∗
i |Wi)

−1 Ri

)−1
R′

iVar (y∗
i |Wi)

−1 .

Remark 3 (higher-order moments). The identification analysis in section 4.1 directly

suggests an estimation approach for conditional higher order cumulants of error terms and

fixed effects. Using moment restrictions in levels (57) and (58), together with the independent

moving-average restrictions (59) and (60), we see that the vectors of third- and fourth-order

conditional cumulants of time-varying errors can be estimated as:

κ̂3 (vi|Wi) = S3

[
M

(3)
i S3

]−
M

(3)
i κ̂3 (yi|Wi) ,

κ̂4 (vii|Wi) = S4

[
M

(4)
i S4

]−
M

(4)
i κ̂4 (yi|Wi) ,

where M
(3)
i and M

(4)
i are analogs of Mi for third- and fourth-order restrictions, respectively.

For example: M
(3)
i has rank T 3 − q3 and satisfies M

(3)
i (Xi ⊗ Xi ⊗ Xi) = 0. In addition,

κ̂3 (yi|Wi) and κ̂4 (yi|Wi) denote nonparametric estimates of the conditional cumulants of

the data.

Third- and fourth-order conditional cumulants of individual effects can be estimated by:

κ̂3 (γi|Wi) = κ̂3 (γ̂i|Wi) − (Hi ⊗ Hi ⊗ Hi)S3

[
M

(3)
i S3

]−
M

(3)
i κ̂3 (yi|Wi) ,

κ̂4 (γi|Wi) = κ̂4 (γ̂i|Wi) − (Hi ⊗ Hi ⊗ Hi ⊗ Hi)S4

[
M

(4)
i S4

]−
M

(4)
i κ̂4 (yi|Wi) ,

where κ̂3 (γ̂i|Wi) and κ̂4 (γ̂i|Wi) are nonparametric estimates of the conditional cumulants

of the fixed-effects estimates.

The unconditional third-order cumulants of error terms can be directly obtained without

involving nonparametric conditional expectation terms as follows:

κ̂3 (vi) =
1

N

N∑

i=1

S3

[
M

(3)
i S3

]−
M

(3)
i (v̂i ⊗ v̂i ⊗ v̂i) .
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However, this is not the case of fourth-order cumulants and of cumulants of random coeffi-

cients, due to the nonlinearity of their mapping with moments.

Finally, recall that in Subsection 4.1 we obtained the optimal instruments for common

parameters and unconditional moments of fixed effects for a model with a parametric spec-

ification of the conditional higher order moments of transitory errors. This suggests that

at least in this case it is possible to obtain asymptotically efficient estimates of uncondi-

tional moments of fixed effects (and therefore also cumulants), which do not depend on

nonparametric quantities.

Illustration. Consider again Example 2 with L = 3, for a sequence of covariates si1 = 1,

si2 = 0, si3 = 0. Assume in addition that viℓ are i.i.d. Using the within information, only

the moments of vi3 − vi2 = yi3 − yi2 are identified. So the third-order cumulant of viℓ is not

identified, unless we assume that viℓ is symmetric (in which case it is zero). The fourth-order

cumulant of viℓ can be estimated by

κ̂4 (viℓ) =
1

2
κ̂4 (yi3 − yi2) , (84)

where the right-hand side in (84) is simply an empirical fourth-order cumulant. Using (84)

and the symmetry assumption, one can estimate the cumulants of αi and βi.

In this example, it is possible to compute simple estimates of the cumulants of βi that

do not require the symmetry assumption. Indeed, taking first differences we get:

yi1 − yi2 = βi + vi1 − vi2,

yi2 − yi3 = vi2 − vi3.

This motivates computing the estimators:

κ̂3 (βi) = κ̂3 (yi1 − yi2) − κ̂3 (yi2 − yi3) , (85)

κ̂4 (βi) = κ̂4 (yi1 − yi2) − κ̂4 (yi2 − yi3) . (86)

5.3 Densities

General solutions. Although the main focus of this paper is on identification, in this

subsection we discuss ways to estimate the densities of individual effects and errors. A

possibility is to estimate the densities of errors and individual effects jointly, for example

using sieve maximum likelihood (Ai and Chen, 2003, Hu and Schennach, 2008). A difficulty
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with this approach is that one should account for the conditioning on possibly continuous

regressors Wi. For this reason, a sequential approach might be preferable.

Starting with error terms, a possibility is to assume a flexible parametric family for

errors, for example using normal mixtures.30 Ghosal and Van der Vaart (2001, 2007) provide

results on the ability of normal mixtures to approximate unknown densities. Imposing a

flexible parametric structure should not be seen as a severe limitation if the conditions

of the identification theorems are satisfied. Note that it is easy to implement maximum

likelihood estimation when working with the within-group equations (5). Following this

approach, however, it does not seem straightforward to use the information contained in the

restrictions in levels (73).

Instead of postulating a parametric model for errors, it may be possible to estimate their

densities nonparametrically using characteristic-function based methods that have been pro-

posed in the literature. For example, Horowitz and Markatou (1996) estimate the distri-

bution of errors from within-group equations in a simple model with an individual-specific

intercept and symmetric errors, see also Li and Vuong (1998), Hall and Yao (2003), Delaigle

et al. (2008), and Bonhomme and Robin (2009b) for related approaches in similar or more

general models. We are not aware of extensions of these methods to deal with the presence

of conditioning covariates.

Once the density of errors (or their characteristic function) has been estimated, there re-

mains to estimate the density of individual effects. The identifying equation (69) of Corollary

5 suggests that one could use kernel deconvolution techniques, replacing the expectation by a

sample mean and trimming the integral to ensure convergence. Formally, we could consider

f̂γi
(γ) =

1

N

N∑

i=1

1

(2π)q

∫
exp(−jτ ′γ)

exp(jτ ′γ̂i)

Ψ̂vi|Wi
(H′

iτ |Wi)
KN(τ )dτ , (87)

where Ψ̂vi|Wi
is an estimate of the characteristic function of errors, and KN(τ ) is a truncation

factor, depending on the sample size N , whose values go to zero when |τ | tends to infinity.

KN(τ ) is supported on a cube [−TN , TN ]q, where TN diverges to infinity with N (see Delaigle

and Gijbels, 2004, for examples of functions KN).

There has been considerable work on nonparametric deconvolution in the statistics liter-

ature. In standard settings, many estimators are now available: standard Fourier inversion

with trimming (Carroll and Hall, 1988, among many other references), wavelets (Fan and

30Possibly allowing for conditional heteroskedasticity of a restricted form with respect to the regressors.
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Koo, 2002) and recently the Tikhonov-regularization technique of Carrasco and Florens

(2007). These estimators have typically low convergence rates, especially if the errors in the

regression have smoother distributions than the one of the variable to be estimated (Fan,

1991). The smoothness of a distribution refers to the thinness of the tails of its characteris-

tic function: the thinner the tails, the smoother the characteristic function. In cases where

errors follow a “supersmooth” distribution such as the normal, asymptotic convergence rates

may be as slow as logarithmic. Despite these slow theoretical rates, existing simulation evi-

dence is rather encouraging, especially if the bandwidth or trimming parameters that these

estimators require are well chosen (Delaigle and Gijbels, 2004).

However, a potential problem with the deconvolution estimator (87) is that, even if we

expect f̂γi
to converge to the density of individual effects when N gets large, its convergence

rate will be governed by the smoothest of all the distributions of Hivi given Wi, i = 1, ..., N .

So the estimator could behave badly in the presence of strong heteroskedasticity (see Delaigle

and Meister, 2008, for a related argument). Modifying and studying nonparametric decon-

volution estimators to estimate the distribution of individual effects in model (1) is outside

of the scope of this paper. However, in simple cases under more restrictive assumptions,

existing estimators can be used for estimation, as we now explain.

A special case. We now discuss estimation of the distributions in the special case of

Example 2, which is the setting of our empirical application in the next section:

yiℓ = αi + βisiℓ + viℓ, ℓ = 1, ..., L. (88)

Including strictly exogenous regressors poses no difficulty, as common parameters can be

estimated beforehand.

Consider a sequence s = (s1, ..., sL)′, and consider all individuals having sequence si = s.

If s consists of L zeros, or of L ones, then αi and βi are unidentified. We thus focus on the

cases where s’s change over time. Define, for m ∈ {−1, 0, 1}

Lm (s) = {(i, ℓ) ∈ {1, ..., N} × {2, ..., L}, si = s, ∆siℓ = m},

where ∆siℓ = siℓ − si,ℓ−1.
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We have:

∆yiℓ = ∆viℓ, for all (i, ℓ) ∈ L0 (s) , (89)

∆yiℓ = βi + ∆viℓ, for all (i, ℓ) ∈ L1 (s) , (90)

−∆yiℓ = βi − ∆viℓ, for all (i, ℓ) ∈ L−1 (s) . (91)

We assume that errors are i.i.d. given si = s. This implies that all ∆viℓ, ℓ = 2, ..., L, have

the same distribution. So one can interpret (90) and (91) as simple deconvolution equations,

where the left-hand side is the sum of the unobserved βi, and the independent error ±∆viℓ,

and where, because of equation (89), we also observe a random sample from ∆viℓ.

Having reformulated the problem of estimating the distribution of βi in model (88) as a

simple deconvolution problem, it is now possible to use any existing deconvolution technique

to estimate its density nonparametrically. For example, the characteristic function of ∆viℓ

given si = s could be estimated as:

Ψ̂∆viℓ|si=s (τ |si = s) =
1

L0 (s)

∑

(i,ℓ)∈L0(s)

exp(jτ∆yiℓ),

where Lm (s) is the number of observations in Lm (s). Thus, the characteristic function of

βi given si = s could be estimated as:31

Ψ̂βi|si=s (τ |si = s) =
1

2

1
L1(s)

∑
(i,ℓ)∈L1(s) exp(jτ∆yiℓ) + 1

L−1(s)

∑
(i,ℓ)∈L−1(s) exp(−jτ∆yiℓ)

1
L0(s)

∑
(i,ℓ)∈L0(s) exp(jτ∆yiℓ)

.

Then the density of βi given si = s could be recovered by inverse Fourier transformation

(with trimming).

In the application below, we will use another approach to estimate the density of βi. We

use a method due to Mallows (2007), which has a number of attractive features. It relies

on (simulated) samples rather than on characteristic functions or densities, and thus does

not require to select a bandwidth or truncation parameter. In addition, the method is very

simple to implement, and it shows a very good behavior in simulation experiments, compared

to standard kernel deconvolution. We present the algorithm, along with some illustrative

simulations, in Appendix E.

Lastly, note that the approach taken in the case of Example 2 allows us to estimate the

density of βi, but not the density of αi. It is certainly of interest, in many cases, to estimate

31We have used that, because of the i.i.d. assumption, ∆viℓ and −∆viℓ have the same distribution given
si = s.
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the distribution of the effect of a binary treatment, as for example in our application. How-

ever, knowing the joint density of (αi, βi) is also useful, if only to estimate the distributions

of potential outcomes in the model.32 For this reason, it is of interest to develop extensions

of the deconvolution approach that allow to estimate the distribution of individual effects

and errors in general linear panel data models like model (1). We are currently extending

the approach in Mallows (2007) to accomodate three types of extensions: how to deal with

multivariate effects, to treat the error distributions nonparametrically, and how to allow

for continuous conditioning covariates. This is done in a companion paper (Arellano and

Bonhomme, in progress).

6 Application

6.1 Model and data

We study the effect of smoking during pregnancy on birth outcomes, building on Abrevaya

(2006). We estimate the following model:

yiℓ = αi + βisiℓ + ziℓ
′δ + viℓ, i = 1, ..., N, ℓ = 1, ..., L, (92)

where i and ℓ index mothers and children, respectively.

In this equation, the dependent variable yiℓ is the weight at birth of child ℓ of mother i,

siℓ is the smoking status of mother i when she was pregnant of child ℓ (siℓ = 1 indicating

that the mother was smoking), and ziℓ gathers other determinants of birthweight.

Weight at birth strongly correlates with outcomes later in life. For this reason, the

determinants of birthweight have been extensively studied.33 Abrevaya (2006), using a panel

data approach, finds strong negative effects of smoking on birthweights. He assumes that βi

is homogeneous across mothers in (92). Here we take advantage of the panel dimension to

account for heterogeneity in the smoking effect.

The parameters αi and βi in model (92) are mother-specific effects. They stand for

persistent health characteristics of the mother, which could be partly genetic. It is possible

32In Example 2, potential outcomes take the form:

yiℓ(0) = αi + viℓ,

yiℓ(1) = αi + βi + viℓ.

33See Rosensweig and Wolpin (1991) for a study of various determinants. Studies of the effect of smoking
during pregnancy on birthweight are Permutt and Hebel (1989), and Evans and Ringel (1999).
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to interpret model (92) as describing a production function, the output of which being the

child and the producer being the mother. The production technology is then represented

by the mother-specific characteristics αi and βi. These characteristics are supposed to stay

constant between births. In addition, they may be correlated with smoking status. In

particular, a mother could decide not to smoke if she knows that her children will suffer from

it (i.e., if she has a very negative βi).

However, strict exogeneity (Assumption 1) requires that mothers will not change their

smoking behavior because one of their children had a low birthweight, as the shocks viℓ are

assumed uncorrelated with the sequence of smoking statuses. This assumption will fail to

hold if for example mothers do not know their αi and βi before they have had a child, and

learning takes place over time. This is a common concern when estimating any type of

production function, where there can be feedback effects on the choice of inputs. We will

try to relax the strict exogeneity assumption at the end of this section.

Data. We use a sample of mothers from Abrevaya (2006). Abrevaya uses the Natality

Data Sets for the US for the years 1990 and 1998. As there are no unique identifiers in these

data, he develops a method to match mothers to children, in particular focusing on pairs of

states of birth (for mother and child) that have a small number of observation. Abrevaya

carefully documents the possible errors caused by this matching strategy. We will use the

“matched panel #3”, which is likely to be less contaminated by matching error.

This results in a panel dataset where children are matched to mothers. The determinants

ziℓ gathers determinants of birthweights that present between-children variation: the gender

of the child, the age of the mother at the time of birth, dummy variables indicating the

existence of prenatal visits, and the value of the “Kessner” index of the quality of prenatal

care (see Abrevaya, 2006, p.496).

To allow for heterogeneity, we focus on mothers who had at least 3 children during the

period (1989-1998). In the dataset, the number of children is exactly 3 for every mother.

In addition, we need the smoking indicator siℓ to vary (at least once) for every mother. So

we only consider mothers who changed smoking status between the three births. The final

sample contains 1445 mothers.34

34Descriptive statistics show that this subsample is somewhere in-between the subsample of women who
always smoked, and the one of women who never smoked. For example, women who smoke during a larger
number of pregnancies are younger on average, and their children have lower weight at birth.
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6.2 Results

Testing for heterogeneity. As a preliminary exercise, and to motivate the subsequent

results, we start by testing that βi is heterogeneous in (92). Bonhomme (2008) shows that,

although a standard F -test that of the null hypothesis:

H0 : βi = β for all i = 1, ..., N,

is not valid under non-normality when N tends to infinity, a simple rescaling of the F statistic

is asymptotically distributed as a standard normal under the null. In our case, the F -statistic

has a value of 1.32 (for (1444, 1437) degrees of freedom), and the rescaled F -statistic has a

value of 4.47. This indicates the presence of heterogeneous β’s in the sample we study.

Common parameters. Next, we estimate common parameters δ in (92). For this, we

use the generalized within-group estimator (75), with the identity as weighting matrix. The

results are shown in Table 1. Although they have the expected signs, the variables indicating

the number of prenatal visits and the quality of prenatal care are never significant. The only

significant covariate is the gender of the child, boys having higher birthweight.

Table 1: Estimates of common parameters δ

Variable Estimate Standard error

Male 130 22.8
Age 39.0 32.0
Age-sq -.638 .577
Kessner=2 -82.0 52.7
Kessner=3 -159 81.9
No visit -18.0 124
Visit=2 83.2 53.9
Visit=3 136 99.2

Note: Estimates of δ using (75) with Ψi = IT . The dataset is the “Matched panel data #3” in

Abrevaya (2006). The sample only includes mothers who had three children and changed smoking

status between births (1445 mothers). Standard errors are clustered at the mother level.

Average effects. We now turn to mother-specific effects. Table 2 shows the estimates

of the moments of αi and βi. The mean smoking effect, computed using the mean-group
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formula (76) with the identity as weighting matrix, is −161 grams. This represents a negative

and significant effect of smoking on birthweight. Note that this value is close to the fixed-

effects estimate obtained by Abrevaya: −144 g, when imposing homogeneity of the β’s in

model (92). In comparison, the mean of αi is 2782 g, significant.

Table 2: Moments of αi and βi

Moment Estimate Standard error

Means
Mean αi 2782 435
Mean βi -161 17.0

Variances (i.i.d. errors)
Variance αi 127647 15161
Variance βi 98239 21674
Covariance (αi, βi) -52661 14375

Variances (non stationary errors)
Variance αi 120423 24155
Variance βi 85673 34550
Covariance (αi, βi) -45437 24165

Higher-order moments (within)
Skewness αi -1.67 .428
Skewness βi -1.29 .909
Kurtosis αi 7.12 2.28
Kurtosis βi -.34 7.84

Higher-order moments (first differences)
Skewness βi -1.06 1.25
Kurtosis βi 7.50 7.10

Note: Estimates of moments of αi and βi. The dataset is the “Matched panel data #3” in Abrevaya

(2006). The sample only includes mothers who had three children and changed smoking status

between births (1445 mothers). See the text for an explanation of the various estimators reported.

Standard errors are clustered at the mother level.

To interpret the mother-specific effects, we estimate the projection coefficients in a re-

gression of αi and βi on a set of mother-specific characteristics: the education of the mother,

her marital status, and the mean of the smoking indicators over the three births. Results

are given in Table 3. The coefficient estimates are simply calculated by regressing the fixed-
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effects estimates α̂i and β̂i on the mother-specific covariates. Standard errors are corrected

as explained in Subsection 5.1.

Table 3 shows that black mothers have children with lower birthweight, however, they

seem to be less sensitive to smoking. Also, the children of mothers who smoke more have

on average lower birthweights. The R2 in the regressions are .113 and .021 for αi and βi,

respectively. This shows that observed covariates explain little of the variation in βi.
35 One

can interpret this finding as a motivation for treating βi as unobserved mother heterogeneity.

Table 3: Regression of αi and βi on mother-specific characteristics

Variable Estimate Standard error

αi

High-school 15.1 42.7
Some college 38.5 55.3
College graduate 58.7 72.1
Married 3.51 34.6
Black -364 54.0
Mean smoking -161 83.9
Constant 2879 419

R2= .113

βi

High-school -15.9 42.8
Some college -15.9 42.8
College graduate 64.5 63.8
Married 31.9 41.8
Black 132 60.6
Mean smoking -49.8 101
Constant -172 67.1

R2= .021

Note: Estimates of projection coefficients of of αi and βi on mother-specific characteristics. The

dataset is the “Matched panel data #3” in Abrevaya (2006). The sample only includes mothers

who had three children and changed smoking status between births (1445 mothers). Standard

errors are clustered at the mother level.

35Remark that the R2 needs to be corrected, as explained in Subsection 5.1. For comparison, the uncor-
rected R2 are .055 and .005 for αi and βi, respectively.
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Variances. We now turn to variances of mother-specific effects. Rows 3 to 5 in Table 2

show the estimates of the coefficients of the variance matrix of (αi, βi) obtained from the

levels restrictions, see (80), assuming that errors are i.i.d. given covariates.36 Given the i.i.d.

assumption, the estimates are numerically equal to those using the Swamy formula (82).

Both αi and βi show substantial dispersion. In particular, the standard deviation of βi

is 313 g.37 This can be compared to the standard deviation of 628 g of the least squares

estimates β̂i. So in this example, removing the sample noise due to the very small number of

observations per mother (3 children) leads to a drastic decrease in the variance. In addition,

the estimate of the correlation between αi and βi is −.47. Given those estimates, the standard

deviation of αi + βi is estimated to be 347 g, compared to 357 g for αi. This means that the

two potential outcomes, for smokers and non smokers, have roughly the same variance.

Having three observations per mother, we need to impose strong restrictions on the

variance matrix of errors in order to preserve identification. Using restrictions in levels (39),

one can slighty relax the i.i.d. assumption. Rows 6 to 8 in Table 2 show variance estimates

under a weaker assumption, which permits the variances of errors for the first, second and

third children to be different. As we saw in Subsection 3.2, one cannot leave those three

variances unrestricted, however. In rows 6 to 8 we impose that the variance of errors for the

jth child is a + bj, where a and b are scalars.38 The results show that the variances of αi

and βi are not much affected. For example, the standard deviation of βi is now 292 g. This

suggests that the i.i.d. assumption is not rejected on these data.39

Higher-order moments. Results for higher-order moments are reported in rows 9 to 14

of Table 2. Rows numbered 9 to 12 in the table show the result of the estimation of skewness

and kurtosis under the i.i.d. assumption, using the within-group equations (5). The skewness

of errors is not identified from these equations, and we assume that errors are symmetrically

distributed. The results show that αi is negatively skewed and kurtotic, while the skewness

and kurtosis of βi are not significantly different from the ones of the normal distribution (0

and 3, respectively).40

36Hence, the selection matrix in (80) is S2 = vec (I3).
37Interestingly, when including the number of cigarettes smoked during pregnancy as an additional control,

the average smoking effect drops to −135 g, but the standard deviation remains almost unchanged.
38Technically, this translates into a different selection matrix S2 in (80).
39We also tried to allow for limited correlation between errors, using (39), and found similar results.
40In order to estimate the asymptotic standard errors of higher-order moments we have used the nonpara-

metric bootstrap clustered at the mother level (500 replications).
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As we saw in Subsection 5.2, it is possible to compute a simple estimator of the moments

of βi that does not depend on the symmetry assumption, see equations (85) and (86). These

estimates (aggregated over smoking sequences) are shown in rows 13 and 14 of Table 2. In

that case also, the skewness and kurtosis are not significantly different from those of the

normal.

Density and quantiles. Lastly, we present the estimates of the density and quantile

function of the smoking effect βi, estimated using Mallows’ (2007) deconvolution algorithm

as explained in Subsection 5.3. The results are shown on the left column of Figure 1. For

comparison, density and quantile estimates of the least squares estimates γ̂i are reported on

the right column of the figure.

We see that correcting for sample noise in the estimation has strong effects on density

and quantile estimates. The density of βi is much less dispersed than that of β̂i, and its mode

is much higher. This last finding is consistent with equation (70) above, which suggested

that the density of fixed effects estimates typically underestimates the truth at the mode.

In addition, our approach allows to estimate the smoking effect at various quantiles.

When corrected for the presence of sample noise, the effect is mostly negative (up to percentile

75), and reaches very negative values for some mothers (around 400 g at percentile 20). This

points to strong heterogeneity in the effect, suggesting that the cost of smoking (in terms of

children outcomes) is very high for some mothers.

6.3 Predeterminedness of smoking behavior

The previous results have been derived under the assumption that the smoking status is

strictly exogenous. We now relax the strict exogeneity assumption and assume that smoking

is predetermined in model (92), that is:

E (viℓ|αi, βi, siℓ, si,ℓ−1, ...) = 0. (93)

Condition (93) is less restrictive than the strict exogeneity condition (Assumption 1). In

particular, (93) could hold in contexts where mothers react to an unexpected birth outcome

by changing their smoking behavior.

We consider a simple version of the model without exogenous time-varying regressors.

Including time-varying regressors reduces the possibilities of point identification of effects
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Figure 1: Density and quantile estimates of the smoking effect

Density

βi β̂i

Quantile function

βi β̂i

Note: The left column shows the density and quantile function estimates of the smoking effect

βi, obtained using Mallows’ (2007) deconvolution algorithm. The right column shows density and

quantiles of the fixed effects estimates β̂i. Densities were estimated using a Gaussian kernel with

Silverman’s rule of thumb for the bandwidth. Thick solid lines represent point estimates, dashed lines

show 95% bootstrapped pointwise confidence bands (clustered at the mother level, 300 replications).

48



of interest, requiring to restrict the correlation between individual effects and regressors.

Taking differences between child ℓ and child m < ℓ we have:

yiℓ − yim = βi [siℓ − sim] + viℓ − vim. (94)

It turns out that interesting average effects are point identified in this framework under

the predeterminedness condition (93). To see why, remark that, for k = 0, 1:

E (yiℓ − yim|sim = k) = E (βi [siℓ − sim] |sim = k) + E (viℓ − vim|sim = k)

= E (βi [siℓ − sim] |sim = k) ,

where we have used that, because of (93), both viℓ and vim are mean independent of sim.

Moreover, using that siℓ can take only two values:

E (βi [siℓ − sim] |sim = k) = (1 − 2k) Pr (siℓ = 1 − k|sim = k)E (βi|sim = k, siℓ = 1 − k) .

Hence, the following average effects are identified:

E (βi|sim = k, siℓ = 1 − k) = (1 − 2k)
E (yiℓ − yim|sim = k)

Pr (siℓ = 1 − k|sim = k)
. (95)

Table 4: Average smoking effects under predeterminedness

Predetermined Strictly exogenous

Smoking Estimate Standard error Estimate Standard error Number
sequence obs.

(0, 1, .) -85.0 43.0 -117 28.9 482
(1, 0, .) -221 36.4 -189 28.8 460
(., 0, 1) -168 38.0 -150 28.0 452
(., 1, 0) -139 45.9 -151 33.9 386
(0, ., 1) -123 33.9 -146 25.8 599
(1, ., 0) -218 37.7 -213 29.3 511

Note: Estimates of the mean of βi in model (92) without exogenous regressors, for various smoking

sequences. For example, (0, 1, .) refers to mothers who did not smoke during the pregnancy of their

first child, and smoked while pregnant of their second child. Estimates in column 1 are computed

under predeterminedness of the smoking status, while estimates in column 3 are computed under

strict exogenity. Standard errors are clustered at the mother level.

We report empirical estimates of (95) in Table 4, for various values of m, ℓ and k. In the

same table (column 3), we report the estimates calculated under strict exogeneity.41 Table

41That is, computing the mean of β̂i on the various sequences of smoking statuses.
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4 shows a wide dispersion of average effects estimates between types of smoking sequences.

For example, the mean smoking effect is −221 g for mothers who quitted smoking between

the first and second child, while it is −85.0 g for mothers who started to smoke during

the second pregnancy, the difference between the two estimates being significant at 1%. A

similarly striking difference can be observed for women who changed their smoking status

between the first and third pregnancies (effects of −218 g and −123 g, respectively). The

effects for the second to third pregnancies are not statistically different (see rows 3 and 4).

These findings are consistent with mothers taking into account their own effect of smoking

on children outcomes (their βi) when deciding whether to smoke or not. Moreover, they

reinforce the evidence that the smoking effect is heterogeneous across mothers, in a setting

where smoking choices are predetermined.

Another interesting result from Table 4 is that, though quantitatively distinct, the results

obtained under predeterminedness and strict exogeneity of smoking behavior are qualitatively

similar. For example, under strict exogeneity the mean effect is −189 g for mothers who

quitted smoking between the first and second child, while it is −117 g for mothers who started

to smoke during the second pregnancy, the difference being significant at 5%. Indeed, none

of the effects obtained under strict exogeneity is statistically different from the one obtained

under predeterminedness (for a given smoking sequence) at the 5% level.42 This suggests

that the strict exogeneity assumption is not unreasonable on these data.

7 Conclusion

Documenting heterogeneity in behavior and response to interventions is one of the main

goals of modern econometrics. For this purpose, panel data have an important value-added

compared to (single or repeated) cross-sectional data. The reason is that by observing the

same units (individuals, households, firms...) over time, it is possible to allow for the presence

of unobserved heterogeneity with a clear empirical content. The main goal of this paper has

been to derive conditions under which the distribution of heterogeneous components can be

consistently estimated in a class of panel data models with multiple sources of heterogeneity.

In many microeconomic applications, it is of interest to estimate the distributions of

individual-specific effects. We have provided fixed-T identification results for variances and

more generally densities of random coefficients and time-varying errors, in linear panel data

42The only significant difference at the 10% level is the one for the sequence (1, 0, .).
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models with strictly exogenous regressors. Distributional characteristics of individual effects

(other than the mean) are not identified under the assumptions of unrestricted intertemporal

distribution of the errors and unrestricted distribution of the effects conditioned on the

regressors. In our results we have exploited the identifying content of limited time dependence

of time varying errors.

In addition, we have proposed fixed-T consistent estimators of variances, as well as a

nonparametric estimator of the density of the individual effect of a binary regressor in a

model with i.i.d. errors. Constructing consistent density estimators in more general settings

is important. We plan to pursue this task in another paper (Arellano and Bonhomme, in

progress).

It is also of interest to relax some of the model’s assumptions, in particular strict exogene-

ity is a concern in many applications. Our analysis of the effect of smoking on birthweight

suggests that, in cases where regressors are predetermined instead of strictly exogenous,

some average effects may still be point identified. Chernozhukov et al. (2009) obtain similar

results in some nonlinear panel data models. This seems an interesting route for further

research.
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APPENDIX

A Proofs

A.1 Proofs of Section 3

Proposition 1. Assumption 3 implies that Hi and Qi exist. We have, using (2):

E (Qi(yi − Ziδ)|Wi) = E (Qivi|Wi)

Likewise, again using assumption (2):

E (Hi(yi − Ziδ)|Wi) = E (γi + Hivi|Wi) = E (γi|Wi) .

Corollary 1. Using that E(vi|Wi,Fi) = 0 it is immediate to see that:

E (γ̂i|Wi,Fi) = E (γi + Hivi|Wi,Fi) = E (γi|Wi,Fi) .

By the law of iterated expectations we obtain:

E
(
Fiγ̂

′
i

)
= E

(
Fiγ

′
i

)
.

Lastly, (24) implies that E (γ̂i) = E (γi), so:

Cov (Fi, γi) = E
(
Fiγ

′
i

)
− E (Fi)E

(
γ ′

i

)
= E

(
Fiγ̂

′
i

)
− E (Fi)E

(
γ̂ ′

i

)
= Cov (Fi, γ̂i) .

The conclusion follows.

Corollary 2. Similar to the proof of Proposition 1.

Theorem 1.

Var (γ̂i|Wi) = Var (γi + Hivi|Wi)

= Var (γi|Wi) + Var (Hivi|Wi)

= Var (γi|Wi) + HiΩiH
′
i

where we have used Assumption 1 in the second equality. Hence (31). Unconditionally we have:

Var (γi) = E (Var (γi|Wi)) + Var (E (γi|Wi))

= E
[
Var (γ̂i|Wi) − HiΩiH

′
i

]
+ Var (E (γi|Wi))

= Var (γ̂i) − E
(
HiΩiH

′
i

)
.

Corollary 3. Taking the trace in (39) we obtain:

TrE
[
(yi − Ziδ) (yi − Ziδ)′ − (IT − Qi) (yi − Ziδ) (yi − Ziδ)′ (IT − Qi) |Wi

]

= Tr (Ωi) − Tr ((IT − Qi)Ωi (IT − Qi)) .

In the particular case where errors are i.i.d. independent of Wi with variance σ2, this yields:

E
[
(yi − Ziδ)′ (yi − Ziδ) − (yi − Ziδ)′ (IT − Qi) (yi − Ziδ)

]
= (T − q)σ2,

where we have use that Tr (Qi) = T − q. Hence:

σ2 =
1

T − q
E((yi − Ziδ)′ Qi (yi − Ziδ)).
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Lemma A1 Let P be a symmetric idempotent n×n matrix with rank p. Let Dn be the n2×n(n+
1)/2 duplication matrix that transforms vech (A) into vec (A), for any n × n matrix A (Magnus
and Neudecker, 1988, p.49). Then:

i) rank [(In2 − P ⊗ P)Dn] = n(n+1)
2 − p(p+1)

2 .

ii) rank {[(In − P) ⊗ (In − P)]Dn} = (n−p)(n−p+1)
2 ,

Proof. Part i). The proof uses results from Magnus and Neudecker (1988, MN hereafter).
From MN’s Theorem 13 p.49-50 we have:

(In2 − P ⊗ P)Dn = DnD
−
n (In2 − P ⊗ P)Dn

= Dn

(
In(n+1)

2

− D−
n (P ⊗ P)Dn

)
,

where D−
n = (D′

nDn)−1
D′

n denotes the Moore-Penrose generalized inverse of Dn.
Hence, because Dn has full column rank, the rank of: (In2 − P ⊗ P)Dn is equal to that of:

Bn = In(n+1)
2

− D−
n (P ⊗ P)Dn. But, using equations (14) and (15) in MN (Theorem 13 p.50) it

is easy to show that Bn is idempotent. So, using MN’s Theorem 21 (p.20): rank (Bn) = Tr (Bn).
Now:

Tr
(
D−

n (P ⊗ P)Dn

)
= Tr

(
DnD

−
n (P ⊗ P)

)

=
1

2
Tr (P ⊗ P) +

1

2
Tr (Kn (P ⊗ P))

=
p2

2
+

1

2
Tr (Kn (P ⊗ P)) ,

where Kn is the commutation matrix (MN, p.47). Let Eij be a n×n matrix with zeros everywhere,
except a one at position (i, j). Let also P = [pij ](i,j).

Tr (Kn (P ⊗ P)) =
n∑

i=1

n∑

j=1

vec (Eij)
′
Kn (P ⊗ P)vec (Eij)

=
n∑

i=1

n∑

j=1

vec (Eij)
′
vec

(
PE′

ijP
′
)

=
n∑

i=1

n∑

j=1

pijpji

=
n∑

i=1

pii = p,

where the next to last equality comes from idempotence of P. So:

Tr (Bn) =
n(n + 1)

2
− p2

2
− p

2
.

This ends the proof.
Part ii). Because of idempotence: rank (In − P) = n − p. Let v1, ...,vp be a basis of the

vector space spanned by the columns of In − P. Clearly, {vi ⊗ vj , (i, j) ∈ {1, ..., p}2} forms a
linearly independent family. So does {vi ⊗ vj , (i, j) ∈ {1, ..., p}2, i ≤ j}. As this family has
(n − p)(n − p + 1)/2 elements, the conclusion follows.
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A.2 Proofs of Section 4

Theorem 4. Let τ ∈ Rq. Using (6) and Assumption 2 we obtain:

Ψγ̂i|Wi
(τ |Wi) = Ψγi|Wi

(τ |Wi)ΨHivi|Wi
(τ |Wi)

= Ψγi|Wi
(τ |Wi)Ψvi|Wi

(H′
iτ |Wi).

If Ψvi
is almost everywhere nonvanishing we obtain (65). Moreover, (66) follows from taking

expectations:

Ψγi
(τ ) = E

(
Ψγi|Xi

(τ |Wi)
)

= E

(
Ψγ̂i|Wi

(τ |Wi)

Ψvi|Wi
(H′

iτ |Wi)

)

= E

(
E (exp (jτ ′γ̂i) |Wi)

Ψvi|Wi
(H′

iτ |Wi)

)

= E

(
exp (jτ ′γ̂i)

Ψvi|Wi
(H′

iτ |Wi)

)
.

Theorem 5. Clearly, because of (43), (73) and Assumption 4: ωi (t), t ∈ RT , is identified.
Hence κvi|Wi

(t|Wi) is identified for all t ∈ RT .
By successive integration and using that, because of Assumption 1:

∂ lnΨvi|Wi
(0|Wi)

∂t
= E (vi|Wi) = 0,

and that, because of the definition of a characteristic function:

lnΨvi|Wi
(0|Wi) = 0,

it follows that the characteristic function of errors is identified.

Corollary 5. Inverse Fourier transformation yields:

fγi|Wi
(γ|Wi) =

1

(2π)q

∫
exp(−jτ ′γ)Ψγi|Wi

(τ |Wi)dτ

=
1

(2π)q

∫
exp(−jτ ′γ)

Ψγ̂i|Wi
(τ |Wi)

Ψvi|Wi
(H′

iτ |Wi)
dτ .

The unconditional result is similarly obtained.

Proof of equation (70). Under regularity conditions, and provided that
X′

i
Xi

T

p→ constant > 0
as T tends to infinity, we have, for all τ ∈ Rq:

Ψvi|Wi
(H′

iτ |Wi) = ΨHivi|Wi
(τ |Wi)

= exp

[
−1

2
τ ′ Var (Hivi|Wi) τ + Op

(
1

T 2

)]

= exp

[
−1

2
τ ′HiΩiH

′
iτ + Op

(
1

T 2

)]
.
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So:

fγi|Wi
(γ|Wi) =

1

(2π)q

∫
exp(−jτ ′γ)

Ψγ̂i|Wi
(τ |Wi)

Ψvi|Wi
(H′

iτ |Wi)
dτ

=
1

(2π)q

∫
exp(−jτ ′γ)Ψγ̂i|Wi

(τ |Wi) exp

[
1

2
τ ′HiΩiH

′
iτ + Op

(
1

T 2

)]
dτ

=
1

(2π)q

∫
exp(−jτ ′γ)Ψγ̂i|Wi

(τ |Wi)

[
1 +

1

2
τ ′HiΩiH

′
iτ

]
dτ + Op

(
1

T 2

)

= fγ̂i|Wi
(γ|Wi) −

1

2
Tr

(
HiΩiH

′
i

∂2fγ̂i|Wi
(γ|Wi)

∂γ∂γ ′

)
+ Op

(
1

T 2

)
,

where the last equality comes from taking second derivatives in (68).

A lemma. Here we extend Lemma 1 in Bonhomme and Robin (2009a). Consider an independent
factor model: Y = ΛX, where Y = (Y1, ..., YL)′, X = (X1, ..., XL)′, Λ is a matrix of L × S
parameters (possibly dependent on conditioning covariates), and the S components of the vector
X are independent (also possibly conditionally). Note that L can be less than S. We assume that
the variances of Xs (and thus also of Yℓ) are finite.

Lemma A2 Let (i, j) ∈ {1, ..., L}2 such that Yi and Yj are independent. Then:

∂2 ln ΨY (t)

∂ti∂tj
= 0, t ∈ RL.

Proof. We denote the elements of Λ as λis, i = 1, ..., L, s = 1, ..., S. It follows from independence
that:

∂2 lnΨY (t)

∂ti∂tj
=

S∑

s=1

λisλjs




∂2 lnΨXs

(∑L
i′=1 λi′sti′

)

∂τ2


 .

By the Darmois theorem (Comon, 1994, p.306), as Yi and Yj are independent it follows that, for
all s, either λisλjs = 0, or Xs is Gaussian.

When Xs is Gaussian:
∂2 ln ΨXs

(
∑

λ
i′s

t
i′

)
∂τ2 =

∂2 ln ΨXs
(0)

∂τ2 is constant, independent of t. So we have:

∂2 lnΨY (t)

∂ti∂tj
=

S∑

s=1

λisλjs

(
∂2 lnΨXs

(0)

∂τ2

)

= Cov (Yi, Yj)

= 0.

This end the proof.

B Consistent standard errors for the linear projection

coefficients

The regression coefficients in:
γℓi = F′

iπℓ + ξℓi, ℓ = 1, ..., q (B1)

61



where Fi is such that E(vi|Wi,Fi) = 0, are given by

πℓ =
[
E
(
FiF

′
i

)]−1
E (Fiγℓi) , (B2)

and a root-N -consistent estimator of πℓ is

π̂ℓ =

(
1

N

N∑

i=1

FiF
′
i

)−1
1

N

N∑

i=1

Fiγ̃ℓi, (B3)

where, if h′
iℓ denotes the ℓth row of matrix Hi:

γ̃ℓi ≡ h′
iℓ

(
yi − Ziδ̂

)
.

We have:

γ̃ℓi = h′
iℓ

(
Ziδ + Xiγi + vi − Ziδ̂

)

= F′
iπℓ + ξℓi − h′

iℓZi

(
δ̂ − δ

)
+ h′

iℓvi.

Hence, letting ΨN = N−1
∑N

i=1 FiF
′
i we have

ΨN (π̂ℓ − πℓ) =

(
1

N

N∑

i=1

Fiξℓi

)
−
(

1

N

N∑

i=1

Fih
′
iℓZi

)(
δ̂ − δ

)
+

(
1

N

N∑

i=1

Fih
′
iℓvi

)
.

Also

δ̂ − δ =

(
1

N

N∑

i=1

Z′
iQiZi

)−1
1

N

N∑

i=1

Z′
iQivi. (B4)

It is easily shown (e.g., Wooldridge, 2002, p.321 for a special case) that a consistent estimator

of Avar
[√

N (π̂ℓ − πℓ)
]

is given by:

Ψ−1
N

(
1

N

N∑

i=1

aia
′
i

)
Ψ−1

N ,

where

ai = Fi

(
h′

iℓ

(
yi − Ziδ̂

)
− F′

iπ̂ℓ

)
−




N∑

j=1

Fjh
′
jℓZj






N∑

j=1

Z′
jQjZj




−1

Z′
iQi

(
yi − Ziδ̂

)
.

C Computing Chamberlain’s semiparametric bound

Model and notation. Consider the general panel model that is linear in fixed effects but
nonlinear in variables and common parameters:

yi = a (Wi, θ) + B (Wi, θ)γ + B (Wi, θ) εi + vi

E (vi | Wi, γi) = 0, E (εi) = 0,

where γ = E (γi) and εi = γi − γ. For shortness, write Bi = B (Wi, θ) and ai = a (Wi, θ).
Moreover, let Var (yi | Wi) = Vi, Var (vi | Wi) = Ωi, and Var (εi | Wi) = Σi. Thus,

Vi = BiΣiB
′
i + Ωi

The interest is in the optimal estimation of θ and γ following Chamberlain (1992).
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Optimal estimation of common parameters. Define the idempotent matrix

Qi = IT − Bi

(
B′

iBi

)−1
B′

i

and let Ai be a (T − q) × T semi-triangular matrix such that Qi = A′
iAi and AiA

′
i = IT−q.

All information about θ is contained in the (T − q) conditional moments

E (Ai (yi − ai) | Wi) = 0.

The conditional variance matrix of the transformed residuals is

E
[
Ai (yi − ai) (yi − ai)

′
A′

i | Wi

]
= AiΩiA

′
i = AiViA

′
i.

The corresponding optimal instruments are

E
[
D′

i

(
AiViA

′
i

)−1
(Aiyi − Aiai)

]
= 0,

where

Di = E

[
∂

∂θ′Ai (yi − ai) | Wi

]
.

We show below that

Di = −Ai


∂ai

∂θ′ +

q∑

j=1

∂bji

∂θ′ E
(
γji | Wi

)

 , (C5)

where Bi = (b1i, ...,bqi) , and γi =
(
γ1i, ..., γqi

)′
. Therefore, the optimal moment for θ is

E

[
∂

∂θ
[ai + BiE (γi | Wi)]

′
A′

i

(
AiViA

′
i

)−1
(Aiyi − Aiai)

]
= 0. (C6)

Proof of (C5). We need ∂Ai/∂θk. First note that the partial derivatives of Qi are given by

∂Qi

∂θk
= −Qi

∂Bi

∂θk

(
B′

iBi

)−1
B′

i − Bi

(
B′

iBi

)−1 ∂B′
i

∂θk
Qi. (C7)

To see the connection between dQi and dAi note that

dQi = A′
i (dAi) +

(
dA′

i

)
Ai

(dAi)A
′
i + Ai

(
dA′

i

)
= 0,

so that

AidQi = (dAi) + Ai

(
dA′

i

)
Ai = (dAi) − (dAi)A

′
iAi = (dAi)Bi

(
B′

iBi

)−1
B′

i.

Post-multiplying by Bi, the partial derivatives satisfy

Ai
∂Qi

∂θk
Bi =

∂Ai

∂θk
Bi.

Finally, inserting (C7) and noting that AiBi = 0 it turns out that

∂Ai

∂θk
Bi = −Ai

∂Bi

∂θk
. (C8)

63



Now, to see that (C5) holds note that

Di = E

[
∂

∂θ′Ai (yi − ai) | Wi

]
= E

[
∂

∂θ1
Ai (yi − ai) · · · ∂

∂θK
Ai (yi − ai) , | Wi

]

and using (C8) we obtain the k-th column of Di as follows

E

[
∂

∂θk
Ai (yi − ai) | Wi

]
=

(
∂Ai

∂θk

)
E (yi − ai | Wi) − Ai

(
∂ai

∂θk

)

=

(
∂Ai

∂θk

)
E (Biγi + vi | Wi) − Ai

(
∂ai

∂θk

)

=

(
∂Ai

∂θk

)
BiE (γi | Wi) − Ai

(
∂ai

∂θk

)

= −Ai

(
∂ai

∂θk
+

∂Bi

∂θk
E (γi | Wi)

)

= −Ai


∂ai

∂θk
+

q∑

j=1

∂bji

∂θk
E
(
γji | Wi

)

 .

Optimal estimation of expected fixed effects. Using matrix inversion formulas, we obtain
the following expressions linking V−1

i and Ω−1
i , which will be used below:

Ω−1
i = V−1

i + V−1
i Bi

(
Σ−1

i − B′
iV

−1
i Bi

)−1
B′

iV
−1
i

(
B′

iV
−1
i Bi

)−1
= Σi +

(
B′

iΩ
−1
i Bi

)−1
.

Suppose for the sake of the argument that θ is known so that wi = yi−ai and Bi are observable.
The model implies the following moments:

E
[(

C′
iBi

)−1
C′

i (wi − Biγ)
]

= 0,

for some Ci. So we consider the asymptotic distribution of estimators of the form

γ̂ =
1

N

N∑

i=1

(
C′

iBi

)−1
C′

iwi.

The scaled estimation error satisfies

√
N (γ̂ − γ) =

1√
N

N∑

i=1

εi +
1√
N

N∑

i=1

(
C′

iBi

)−1
C′

ivi
d→ N (0,Υ) ,

where
Υ = E

(
εiε

′
i

)
+ E

[(
C′

iBi

)−1
C′

iΩiCi

(
B′

iCi

)−1
]
.

An optimal choice of Ci satisfies

(
C′

iBi

)−1
C′

i =
(
B′

iΩ
−1
i Bi

)−1
B′

iΩ
−1
i ,

which leads to
Υ = E

(
εiε

′
i

)
+ E

[(
B′

iΩ
−1
i Bi

)−1
]
, (C9)

or
Υ = Var [E (εi | Wi)] + E

[(
B′

iV
−1
i Bi

)−1
]
. (C10)
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One optimal choice is C′
i = B′

iΩ
−1
i . To characterize the range of optimal choices, let us define

Ψi for some q × q matrix Ki ≥ 0 such that:

Ψ−1
i = V−1

i + V−1
i BiKi

[
I −

(
B′

iV
−1
i Bi

)
Ki

]−1
B′

iV
−1
i

Note that setting Ki = Σi we have Ψi = Ωi. However, while Ψi depends on Ki the quantity(
B′

iΨ
−1
i Bi

)−1
B′

iΨ
−1
i does not:43

(
B′

iΨ
−1
i Bi

)−1
B′

iΨ
−1
i =

(
B′

iV
−1
i Bi

)−1
B′

iV
−1
i =

(
B′

iΩ
−1
i Bi

)−1
B′

iΩ
−1
i

The conclusion is that an optimal moment uses C′
i = B′

iΨ
−1
i , and all optimal instruments of

the form
(
B′

iΨ
−1
i Bi

)−1
B′

iΨ
−1
i are the same regardless of the value of Ki. Thus, we can set Ki = 0

without lack of generality and use C′
i = B′

iV
−1
i .

Therefore, the form of an estimator that attains the bound is

γ̂ =
1

N

N∑

i=1

(
B′

iΨ
−1
i Bi

)−1
B′

iΨ
−1
i wi,

which is numerically identical for all permissible values of Ki.
The optimal moment conditions for γ can be written as

E
[(

B′
iV

−1
i Bi

)−1
B′

iV
−1
i (wi − Biγ)

]
= 0. (C11)

Joint optimal moments: system GMM. It is easy to see that the optimal moments for θ

and γ, (C6) and (C11) respectively, are uncorrelated:

E

((
B′

iV
−1
i Bi

)−1
B′

iV
−1
i (Biεi + vi)v

′
iA

′
i

(
AiViA

′
i

)−1
Ai

∂

∂θ′ [ai + BiE (γi | Wi)]

)
= 0.

Therefore, the optimal moments for estimation of θ and γ are:

E

(
∂
∂θ

[ai + BiE (γi | Wi)]
′
A′

i (AiViA
′
i)
−1 (Aiyi − Aiai)(

B′
iV

−1
i Bi

)−1
B′

iV
−1
i (yi − ai − Biγ)

)
= 0.

D Multivariate cumulants and characteristic functions

Here we collect some standard definitions and properties of cumulants and characteristic functions
that are used in the paper, with a view to make the discussion as self-contained as possible.

Cumulants. Let U = (U1, ..., Un)′ be an n-dimensional random vector with zero mean and well-
defined moments to the fourth-order. We define its cumulant vector of order 3 as the n3-dimensional
vector κ3(U) whose elements κi,j,k

3 (U), for (i, j, k) ∈ {1, ..., n}3, are arranged in lexicographic order
and are such that

κi,j,k
3 (U) = E (UiUjUk) , (i, j, k) ∈ {1, ..., n}3.

43Note that
B′

iΨ
−1

i =
[
I −

(
B′

iV
−1

i Bi

)
Ki

]−1

B′

iV
−1

i

B′

iΨ
−1

i Bi =
[
I −

(
B′

iV
−1

i Bi

)
Ki

]−1

B′

iV
−1

i Bi.
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Likewise, we define κ4(U) whose n4 elements are

κi,j,k,ℓ
4 (U) = E (UiUjUkUℓ) − E (UiUj)E (UkUℓ)

−E (UiUk)E (UjUℓ) − E (UiUℓ)E (UjUk) , (i, j, k, ℓ) ∈ {1, ..., n}4.

For a nonzero mean random vector V, we define κ3(V) = κ3 (V − E (V)), and we similarly define
κ4(V).

The skewness of Uj (i ∈ {1, ..., n}) and its kurtosis are given by: κj,j,j
3 (U)/ Var(Uj)

3/2 and[
κj,j,j,j

4 (U)/ Var(Uj)
2
]
+3, respectively. We may similarly define conditional cumulants by replacing

the expectations in these formulas by conditional expectations.
Cumulants satisfy a multilinearity property, and can be interpreted as tensors (Kofidis and

Regalia, 2000). Namely, for any s × n matrix A we have:

κ3(AU) = (A ⊗ A ⊗ A) κ3(U),

κ4(AU) = (A ⊗ A ⊗ A ⊗ A)κ4(U).

Moreover, cumulants of the sums of independent random variables satisfy: κ3(U + V) = κ3(U) +
κ3(V), and: κ4(U + V) = κ4(U) + κ4(V). Because of these properties, it is sometimes more
convenient to work with cumulants than with moments, although there exists a mapping between
the two.

Here we have only defined cumulants of order 3 and 4. We could easily generalize these results
to cumulants of order 5 or higher. The first-order cumulant is simply the mean, and the cumulants
of order 2 are the variances and covariances.

Characteristic functions. Let (Y,X) be a pair of random vectors, Y ∈ RL, and let j be a
square root of −1. The conditional characteristic function of Y given X = x, is defined as:

ΨY|X(t|x) = E
(
exp(jt′Y)|x

)
, t ∈ RL.

We make use of the following properties of characteristic functions in the paper (e.g., Lindgren,
1993, p.128-131). First, there exists a mapping between the (conditional) characteristic function
and the (conditional) density, the so-called inverse Fourier transform:

fY|X(y|x) =
1

(2π)L

∫
exp

(
−jt′y

)
ΨY|X(t|x)dt. (D12)

This means that all the information about a random variable is contained in its characteristic
function. Second, if Y1 and Y2 are independent given X then:

ΨY1+Y2|X(t|x) = ΨY1|X(t|x)ΨY2|X(t|x). (D13)

Lastly, cumulants (when they exist) can be obtained from the successive derivatives of the logarithm
of the characteristic function (also called cumulant generating function) evaluated at t = 0.

E Mallows’ algorithm (2007)

The algorithm. The model is:
Ai = Bi + Ci,

where Bi and Ci are independent of each other. Two unrelated random samples from Ai and Ci

are available, that we denote as A and C, respectively. We assume that A and C are sorted in
ascending order. The objective of the algorithm is to draw approximate random samples from Bi.

The algorithm is as follows.
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1. Start with B0 = sort{A − C}.

2. Start step one. Permute B0 randomly, this yields B̃0.

3. Let Ã0 be the permutation of A sorted according to B̃0 + C.

4. Set B1 = sort{Ã0 − C}. Go to step two.

In our experiments, the algorithm always converged to a stationary chain after a short “burn-in”
period. In practice, we removed the first 500 initial iterations out of total of 2000.

Lastly, note that, for this algorithm to work, A and C must have the same size. If this is not
the case, one may replace them by m bootstrap draws with replication from A and C, respectively,
where m is the desired common size. In the application A is twice the size of C. We simply used
the stacked vector [C′,C′]′ instead of C.

Illustration. We here briefly present some simulation results, which suggest that Mallows’ al-
gorithm works well in practice. The Monte-Carlo design is the random trend model of Example 1,
with stationary AR(1) errors. The parameter values are chosen to roughly replicate the results by
Guvenen (2009) on PSID data: T is 20, N is 1000, ρ is .80, the variances of αi and βi are .04 and
.0004, respectively, their covariance is −.001, and uit has variance .02. Lastly, we use two different
designs for the marginal distributions of αi and βi: the normal, and a symmetric bimodal normal
mixture with two components.

We apply Mallows’ algorithm to equations (8) and (9). We use a random sample from the errors
vi. The densities of αi and βi are then estimated using a Gaussian kernel with a rule-of-thumb
bandwidth. Figure E1 shows the results of 100 simulations. We observe that the estimator is
unbiased in the case where αi and βi are normal. Interestingly, the confidence bands are very thin
in the tails of the density. In the bimodal case, the estimation is somewhat worse. However, the
estimator succeeds at replicating the bimodality of the latent variables.
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Figure E1: Density estimates on simulated data using Mallows’ algorithm

αi and βi normal
αi βi

αi and βi bimodal
αi βi

Note: αi and βi are obtained using Mallows’ (2007) deconvolution algorithm. The DGP is that of

Example 1 with parameters roughly chosen to match Guvenen (2009). Thick line is the pointwise

median across simulations, dashed lines are the 10%-90% pointwise confidence bands.
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