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INFERENCE ON COUNTERFACTUAL DISTRIBUTIONS

VICTOR CHERNOZHUKOV† IVÁN FERNÁNDEZ-VAL§ BLAISE MELLY‡

Abstract. In this paper we develop procedures for performing inference in regression

models about how potential policy interventions affect the entire marginal distribution of

an outcome of interest. These policy interventions consist of either changes in the dis-

tribution of covariates related to the outcome holding the conditional distribution of the

outcome given covariates fixed, or changes in the conditional distribution of the outcome

given covariates holding the marginal distribution of the covariates fixed. Under either of

these assumptions, we obtain uniformly consistent estimates and functional central limit

theorems for the counterfactual and status quo marginal distributions of the outcome

as well as other function-valued effects of the policy, including, for example, the effects

of the policy on the marginal distribution function, quantile function, and other related

functionals. We construct simultaneous confidence sets for these functions; these sets take

into account the sampling variation in the estimation of the relationship between the out-

come and covariates. Our procedures rely on, and our theory covers, all main regression

approaches for modeling and estimating conditional distributions, focusing especially on

classical, quantile, duration, and distribution regressions. Our procedures are general and

accommodate both simple unitary changes in the values of a given covariate as well as

changes in the distribution of the covariates or the conditional distribution of the outcome

given covariates of general form. We apply the procedures to examine the effects of labor

market institutions on the U.S. wage distribution.
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regression, distribution regression
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1. Introduction

A basic objective in empirical economics is to predict the effect of a potential policy

intervention or a counterfactual change in economic conditions on some outcome variable

of interest. For example, we might be interested in what the wage distribution would be

in 2000 if workers have the same characteristics as in 1990, what the distribution of infant

birth weights would be for black mothers if they receive the same amount of prenatal care

as white mothers, what the distribution of consumers expenditure would be if we change

the income tax, or what the distribution of housing prices would be if we clean up a local

hazardous waste site. In other examples, we might be interested in what the distribution

of wages for female workers would be in the absence of gender discrimination in the labor

market (e.g., if female workers are paid as male workers with the same characteristics),

or what the distribution of wages for black workers would be in the absence of racial

discrimination in the labor market (e.g., if black workers are paid as white workers with

the same characteristics). More generally, we can think of a policy intervention either

as a change in the distribution of a set of explanatory variables X that determine the

outcome variable of interest Y, or as a change in the conditional distribution of Y given

X. Policy analysis consists of estimating the effect on the distribution of Y of a change in

the distribution of X or in the conditional distribution of Y given X.

In this paper we develop procedures to perform inference in regression models about

how these counterfactual policy interventions affect the entire marginal distribution of Y .

The main assumption is that either the policy does not alter the conditional distribution

of Y given X and only alters the marginal distribution of X, or that the policy does not

alter the marginal distribution of X and only alters the conditional distribution of Y given

X. Starting from estimates of the conditional distribution or quantile functions of the

outcome given covariates, we obtain uniformly consistent estimates for functionals of the

marginal distribution function of the outcome before and after the intervention. Examples

of these functionals include distribution functions, quantile functions, quantile policy ef-

fects, distribution policy effects, means, variances, and Lorenz curves. We then construct

confidence sets around these estimates that take into account the sampling variation com-

ing from the estimation of the conditional model. These confidence sets are uniform in the

sense that they cover the entire functional of interest with pre-specified probability. Our

analysis specifically targets and covers the principal approaches to estimating conditional

distribution models most often used in empirical work, including classical, quantile, du-

ration, and distribution regressions. Moreover, our approach can be used to analyze the
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effect of both simple interventions consisting of unitary changes in the values of a given

covariate as well as more elaborate policies consisting of general changes in the covariate

distribution or in the conditional distribution of the outcome given covariates. Moreover,

the counterfactual distribution of X and conditional distribution of Y given X can corre-

spond to known transformations of these distributions or to the distributions in a different

subpopulation or group. This array of alternatives allows us to answer a wide variety of

policy questions such as the ones mentioned in the first paragraph.

To develop the inference results, we establish the functional (Hadamard) differentiability

of the marginal distribution functions before and after the policy with respect to the limit

of the functional estimators of the conditional model of the outcome given the covariates.

This result allows us to derive the asymptotic distribution for the functionals of interest

taking into account the sampling variation coming from the first stage estimation of the

relationship between the outcome and covariates by means of the functional delta method.

Moreover, this general approach based on functional differentiability allows us to establish

the validity of convenient resampling methods, such as bootstrap and other simulation

methods, to make uniform inference on the functionals of interest. Because our analysis

relies only on the conditional quantile estimators or conditional distribution estimators

satisfying a functional central limit theorem, it applies quite broadly and we show it covers

the major regression methods listed above. As a consequence, we cover a wide array of

techniques, though in the discussion we devote attention primarily to the most practical

and commonly used methods of estimating conditional distribution and quantile functions.

This paper contributes to the previous literature on estimating policy effects using re-

gression methods. In particular, important developments include the work of Stock (1989),

which introduced regression-based estimators to evaluate the mean effect of policy inter-

ventions, and of Gosling, Machin, and Meghir (2000) and Machado and Mata (2005),

which proposed quantile regression-based policy estimators to evaluate distributional ef-

fects of policy interventions, but did not provide distribution or inference theory for these

estimators. Our paper contributes to this literature by providing regression-based policy

estimators to evaluate quantile, distributional, and other effects (e.g., Lorenz and Gini

effects) of a general policy intervention and by deriving functional limit theory as well

as practical inferential tools for these policy estimators. Our policy estimators are based

on a rich variety of regression models for the conditional distribution, including classical,
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quantile, duration, and distribution regressions.1 In particular, our theory covers the pre-

vious estimators of Gosling, Machin, and Meghir (2000) and Machado and Mata (2005) as

important special cases. In fact, our limit theory is generic and applies to any estimator of

the conditional distribution that satisfies a functional central limit theorem. Accordingly,

we cover not only a wide array of the most practical current approaches for estimating

conditional distributions, but also many other existing and future approaches, including,

for example, approaches that accommodate endogeneity (Abadie, Angrist, and Imbens,

2002, Chesher , 2003, Chernozhukov and Hansen, 2005, and Imbens and Newey, 2009).2

Our paper is also related to the literature that evaluates policy effects and treatment

effects using propensity score methods. The influential article of DiNardo, Fortin, and

Lemieux (1996) developed estimators for counterfactual densities using propensity score

reweighting in the spirit of Horvitz and Thompson (1952). Important related work by

Hirano, Imbens, and Ridder (2003) and Firpo (2007) used a similar reweighting approach

in exogenous treatment effects models to construct efficient estimators of average and

quantile treatment effects, respectively. As we comment later in the paper, it is possible

to adapt the reweighting methods of these articles to develop policy estimators and limit

theory for such estimators. Here, however, we focus on developing inferential theory for

policy estimators based on regression methods, thus supporting empirical research using

regression techniques as its primary method (Buchinsky, 1994, Chamberlain, 1994, Han

and Hausman, 1990, Machado and Mata, 2005). The recent book of Angrist and Pischke

(2008, Chap. 3) provides a nice comparative discussion of regression and propensity score

methods. Finally, a related work by Firpo, Fortin, and Lemieux (2007) studied the effects

of special policy interventions consisting of marginal changes in the values of the covari-

ates. As we comment later in the paper, their approach, based on a linearization of the

functionals of interest, is quite different from ours. In particular, our approach focuses

on more general non-marginal changes in both the marginal distribution of covariates and

conditional distribution of the outcome given covariates.

1We focus on semi-parametric estimators due to their dominant role in empirical work (Angrist and

Pischke, 2008). In contrast, fully nonparametric estimators are practical only in situations with a small

number of regressors. In future work, however, we hope to extend the analysis to nonparametric estimators.
2In this case, the literature provides estimators for FYd

, the distribution of potential outcome Y under

treatment d, and FD,Z , the joint distributions of (endogenously determined) treatment status D and

exogenous regressors Z before and after policy. As long as the estimator of FYd
satisfies the functional

central limit theorem specified in the main text and the estimator of FD,Z satisfies the functional central

limit theorem specified in Appendix D, our inferential theory applies to the resulting policy estimators.
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We illustrate our estimation and inference procedures with an analysis of the evolution of

the U.S. wage distribution. Our analysis is motivated by the influential article by DiNardo,

Fortin, and Lemieux (1996), which studied the institutional and labor market determinants

of the changes in the wage distribution between 1979 and 1988 using data from the CPS.

We complement and complete their analysis by using a wider range of techniques, including

quantile regression and distribution regression, providing standard errors for the estimates

of the main effects, and extending the analysis to the entire distribution using simultaneous

confidence bands. Our results reinforce the importance of the decline in the real minimum

wage in explaining the increase in wage inequality. They also indicate the importance of

changes in both the composition of the workforce and the returns to worker characteristics

in explaining the evolution of the entire wage distribution. Our results show that, after

controlling for other composition effects, the process of de-unionization during the 80s

played a minor role in explaining the evolution of the wage distribution.

We organize the rest of the paper as follows. In Section 2 we describe methods for

performing counterfactual analysis, setting up the modeling assumptions for the counter-

factual outcomes, and introduce the policy estimators. In Section 3 we derive distributional

results and inferential procedures for the policy estimators. In Section 4 we present the

empirical application, and in Section 5 we give a summary of the main results. In the

Appendix, we include proofs and additional theoretical results.

2. Methods for Counterfactual Analysis

2.1. Observed and counterfactual outcomes. In our analysis it is important to distin-

guish between observed and counterfactual outcomes. Observed outcomes come from the

population before the policy intervention, whereas (unobserved) counterfactual outcomes

come from the population after the potential policy intervention. We use the observed

outcomes and covariates to establish the relationship between outcome and covariates and

the distribution of the covariates, which, together with either a postulated distribution of

the covariates under the policy or a postulated conditional distribution of outcomes given

covariates under the policy, determine the distribution of the outcome after the policy

intervention, under conditions precisely stated below.

We divide our population in two groups or subpopulations indexed by j ∈ {0, 1}. Index

0 corresponds to the status quo or reference group, whereas index 1 corresponds to the

group from which we obtain the marginal distribution of X or the conditional distribution
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of Y given X to generate the counterfactual outcome distribution.3 In order to discuss

various regression models of outcomes given covariates, it is convenient to consider the

following representation. Let QYj
(u|x) be the conditional u-quantile of Y given X in

group j, and let FXk
be the marginal distribution of the p-vector of covariates X in group

k, for j, k ∈ {0, 1}. We can describe the observed outcome Y j
j in group j as a function of

covariates and a non-additive disturbance U j
j via the Skorohod representation:

Y j
j = QYj

(U j
j |Xj), where U j

j ∼ U(0, 1) independently of Xj ∼ FXj
, for j ∈ {0, 1}.

Here the conditional quantile function plays the role of a link function. More generally

we can think of QYj
(u|x) as a structural or causal function mapping the covariates and

the disturbance to the outcome, where the covariate vector can include control variables

to account for endogeneity. In the classical regression model, the disturbance is separable

from the covariates, as in the location shift model described below, but generally it need

not be. Our analysis will cover either case.

We consider two different counterfactual experiments. The first experiment consists

of drawing the vector of covariates from the distribution of covariates in group 1, i.e.,

X1 ∼ FX1
, while keeping the conditional quantile function as in group 0, QY0

(u|x). The

counterfactual outcome Y 1
0 is therefore generated by

Y 1
0 := QY0

(U1
0 |X1), where U1

0 ∼ U(0, 1) independently of X1 ∼ FX1
. (2.1)

This construction assumes that we can evaluate the quantile function QY0
(u|x) at each

point x in the support of X1. This requires that either the support of X1 is a subset of

the support of X0 or we can extrapolate the quantile function outside the support of X0.

For purposes of analysis, it is useful to distinguish two different ways of constructing

the alternative distributions of the covariates. (1) The covariates before and after the

policy arise from two different populations or subpopulations. These populations might

correspond to different demographic groups, time periods, or geographic locations. Spe-

cific examples include the distributions of worker characteristics in different years and

distributions of socioeconomic characteristics for black versus white mothers. (2) The

covariates under the policy intervention arise as some known transformation of the covari-

ates in group 0; that is X1 = g(X0), where g(·) is a known function. This case covers, for

3Our results also cover the policy intervention of changing both the marginal distribution of X and

the conditional distribution of Y given X . In this case the counterfactual outcome corresponds to the

observed outcome in group 1.



7

example, unitary changes in the location of one of the covariates,

X1 = X0 + ej,

where ej is a unitary p-vector with a one in the position j; or mean preserving redistribu-

tions of the covariates implemented as X1 = (1 − α)E[X0] + αX0. These types of policies

are useful for estimating the effect of smoking on the marginal distribution of infant birth

weights, the effect of a change in taxation on the marginal distribution of food expendi-

ture, or the effect of cleaning up a local hazardous waste site on the marginal distribution

of housing prices (Stock, 1991). Even though these two cases correspond to conceptually

different thought experiments, our econometric analysis will cover either situation within

a unified framework.

The second experiment consists of generating the outcome from the conditional quantile

function in group 1, QY1
(u|x), while keeping the marginal distributions of the covariates

as in group 0, that is, X0 ∼ FX0
. The counterfactual outcome Y 0

1 is therefore generated by

Y 0
1 := QY1

(U0
1 |X0), where U0

1 ∼ U(0, 1) independently of X0 ∼ FX0
. (2.2)

This construction assumes that we can evaluate the quantile function QY1
(u|x) at each

point x in the support of X0. This requires that either the support of X0 is a subset of

the support of X1 or we can extrapolate the quantile function outside the support of X1.

In this second experiment, the conditional quantile functions before and after the policy

intervention may arise from two different populations or subpopulations. These popu-

lations might correspond to different demographic groups, time periods, or geographic

locations. This type of policy is useful for conceptualizing, for example, what the distri-

bution of wages for female workers would be if they were paid as male workers with the

same characteristics, or similarly for blacks or other minority groups.

We formally state the assumptions mentioned above as follows:

Condition M. Counterfactual outcome variables of interest are generated by either

(2.1) or (2.2). The conditional distributions of the outcome given the covariates in both

groups, namely the conditional quantile functions QYj
(·|·) or the conditional distribution

functions FYj
(·|·) for j ∈ {0, 1}, apply or can be extrapolated to all x ∈ X , where X is a

compact subset of Rp that contains the supports of X0 and X1.

2.2. Parameters of interest. The primary (function-valued) parameters of interest are

the distribution and quantile functions of the outcome before and after the policy as well

as functionals derived from them.
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In order to define these parameters, we first recall that the conditional distribution

associated with the quantile function QYj
(u|x) is:

FYj
(y|x) =

∫ 1

0

1
{
QYj

(u|x) ≤ y
}
du, j ∈ {0, 1}. (2.3)

Given our definitions (2.1) or (2.2) of the counterfactual outcome, the marginal distribu-

tions of interest are:

F k
Yj

(y) := Pr
{
Y k
j ≤ y

}
=

∫

X

FYj
(y|x)dFXk

(x), j, k ∈ {0, 1} (2.4)

The corresponding marginal quantile functions are:

Qk
Yj

(u) = inf{y : F k
Yj

(y) ≥ u}, j, k ∈ {0, 1}.

The u-quantile policy effect and the y-distribution policy effect are:

QEk
Yj

(u) = Qk
Yj

(u) −Q0
Y0

(u) and DEk
Yj

(y) = F k
Yj

(y) − F 0
Y0

(y), j, k ∈ {0, 1}.

It is useful to mention a couple of examples to understand the notation. For instance,

Q1
Y0

(u)−Q0
Y0

(u) is the quantile effect under a policy that changes the marginal distribution

of covariates from FX0
to FX1

, fixing the conditional distribution of outcome to FY0
(y|x).

On the other hand, Q0
Y1

(u) − Q0
Y0

(u) is the quantile effect under a policy that changes

the conditional distribution of the outcome from FY0
(y|x) to FY1

(y|x), fixing the marginal

distribution of covariates to FX0
.

Other parameters of interest include, for example, Lorenz curves of the observed and

counterfactual outcomes. Lorenz curves, commonly used to measure inequality, are ratios

of partial means to overall means

L(y, F k
Yj

) =

∫ y

0

tdF k
Yj

(t)/

∫ ∞

0

tdF k
Yj

(t),

defined for non-negative outcomes only. More generally, we might be interested in arbitrary

functionals of the marginal distributions of the outcome before and after the interventions

HY (y) := φ
(
y, F 0

Y0
, F 1

Y1
, F 1

Y0
, F 0

Y1

)
. (2.5)

These functionals include the previous examples as special cases as well as other examples

such as means, with HY (y) =
∫ ∞

−∞
tdF k

Yj
(t) =: µkYj

; mean policy effects, with HY (y) =

µkYj
−µ0

Y0
; variances, with HY (y) =

∫ ∞

−∞
t2dF k

Yj
(t)−(µkYj

)2 =: (σkYj
)2; variance policy effects,

with HY (y) = (σkYj
)2− (σ0

Y0
)2; Lorenz policy effects, with HY (y) = L(y, F k

Yj
)−L(y, F 0

Y0
) =:



9

LEk
Yj

(y); Gini coefficients, with HY (y) = 1 − 2
∫

R
L(F k

Yj
, y)dy =: Gk

Yj
; and Gini policy

effects, with HY (y) = Gk
Yj

−G0
Y0

=: GEk
Yj

.4

In the case where the policy consists of either a known transformation of the covariates,

X1 = g(X0), or a change in the conditional distribution of Y given X, we can also identify

the distribution and quantile functions for the effect of the policy, ∆k
j = Y k

j − Y 0
0 , by:

F k
∆j

(δ) =

∫

X

∫ 1

0

1
{
Q∆j

(u|x) ≤ δ
}
dudFX0

(x), j, k ∈ {0, 1}, (2.6)

where Q∆0
(u|x) = QY0

(u|g(x)) −QY0
(u|x) and Q∆1

(u|x) = QY1
(u|x) −QY0

(u|x); and

Qk
∆j

(u) = inf{δ : F k
∆j

(δ) ≥ u}, j, k ∈ {0, 1}, (2.7)

under the additional assumption (Heckman, Smith, and Clements, 1997):

Condition RP. Conditional rank preservation: U1
0 = U0

0 |X0 and U0
1 = U0

0 |X0.

2.3. Conditional models. The preceding analysis shows that the marginal distribution

and quantile functions of interest depend on either the underlying conditional quantile

function or conditional distribution function. Thus, we can proceed by modeling and esti-

mating either of these conditional functions. We can rely on several principal approaches

to carrying out these tasks. In this section we drop the dependence on the group index to

simplify the notation.

Example 1. Classical regression and generalizations. Classical regression is one

of the principal approaches to modeling and estimating conditional quantile functions.

The classical location-shift model takes the form

Y = m(X) + V, V = QV (U), (2.8)

where U ∼ U(0, 1) is independent of X, and m(·) is a location function such as the

conditional mean. The disturbance V has the quantile function QV (u), and Y therefore has

conditional quantile function QY (u|x) = m(x)+QV (u). This model is parsimonious in that

covariates impact the outcome only through the location. Even though this is a location

model, it is clear that a general change in the distribution of covariates or the conditional

quantile function can have heterogeneous effects on the entire marginal distribution of Y ,

affecting its various quantiles in a differential manner. The most common model for the

4In the rest of the discussion we keep the distribution, quantile, quantile policy effects, and distribution

policy effects functions as separate cases to emphasize the importance of these functionals in practice.

Lorenz curves are special cases of the general functional with HY (y) =
∫ y

−∞
tdF k

Yj
(t)/

∫ ∞

−∞
tdF k

Yj
(t), and

will not be considered separately.
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regression function m(x) is linear in parameters, m(x) = x′β, and we can estimate it using

least squares or instrumental variable methods. We can leave the quantile function QV (u)

unrestricted and estimate it using the empirical quantile function of the residuals. Our

results cover such common estimation schemes as special cases, since we only require the

estimates to satisfy a functional central limit theorem.

The location model has played a classical role in regression analysis. Many endogenous

and exogenous treatment effects models, for example, can be analyzed and estimated

using variations of this model (Cameron and Trivedi, 2005 Chap. 25, and Imbens and

Wooldridge, 2008). A variety of standard survival and duration models also imply (2.8)

after a transformation such as the Cox model with Weibull hazard or accelerated failure

time model, cf. Docksum and Gasko (1990).

The location-scale shift model is a generalization that enables the covariates to impact

the conditional distribution through the scale function as well:

Y = m(X) + σ(X) · V, V = QV (U),

where U ∼ U(0, 1) independently of X, and σ(·) is a positive scale function. In this model

the conditional quantile function takes the form QY (u|x) = m(x) + σ(x)QV (u). It is clear

that changes in the distribution of X or in QY (u|x) can have a nontrivial effect on the

entire marginal distribution of Y , affecting its various quantiles in a differential manner.

This model can be estimated through a variety of means (see, e.g., Rutemiller and Bowers,

1968, and Koenker and Xiao, 2002).

Example 2. Quantile regression. We can also rely on quantile regression as a

principal approach to modeling and estimating conditional quantile functions. In this

approach, we have the general non-separable representation

Y = QY (U |X).

The model permits covariates to impact the outcome by changing not only the location

and scale of the distribution but also its entire shape. An early convincing example of such

effects goes back to Doksum (1974), who showed that real data can be sharply inconsistent

with the location-scale shift paradigm. Quantile regression precisely addresses this issue.

The leading approach to quantile regression entails approximating the conditional quantile
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function by a linear form QY (u|x) = x′β(u).5 Koenker (2005) provides an excellent review

of this method.

Quantile regression allows researchers to fit parsimonious models to the entire condi-

tional distribution. It has become an increasingly important empirical tool in applied

economics. In labor economics, for example, quantile regression has been widely used to

model changes in the wage distribution (Buchinsky, 1994, Chamberlain, 1994, Abadie,

1997, Gosling, Machin, and Meghir, 2000, Machado and Mata, 2005, Angrist, Cher-

nozhukov, and Fernández-Val, 2006, and Autor, Katz, and Kearney, 2006b). Variations

of quantile regression can be used to obtain quantile and distribution treatment effects in

endogenous and exogenous treatment effects models (Abadie, Angrist, and Imbens, 2002,

Chernozhukov and Hansen, 2005, and Firpo, 2007).

Example 3. Duration regression. A common way to model conditional distribution

functions in duration and survival analysis is through the transformation model:

FY (y|x) = exp(exp(m(x) + t(y))), (2.9)

where t(·) is a monotonic transformation. This model is rather rich, yet the role of co-

variates is limited in an important way. In particular, the model leads to the following

location-shift representation:

t(Y ) = m(X) + V,

where V has an extreme value distribution and is independent of X. Therefore, covariates

impact a monotone transformation of the outcome only through the location function. The

estimation of this model is the subject of a large and important literature (e.g., Lancaster,

1990, Donald, Green, and Paarsch, 2000, and Dabrowska, 2005).

Example 4. Distribution regression. Instead of restricting attention to transfor-

mation models for the conditional distribution, we can consider directly modeling FY (y|x)
separately for each threshold y. An example is the model

FY (y|x) = Λ(m(y, x)),

where Λ is a known link function and m(y, x) is unrestricted in y. This specification

includes the previous example as a special case (put Λ(v) = exp(exp(v)) and m(y, x) =

m(x) + t(y)) and allows for more flexible effect of the covariates. The leading example of

5Throughout, by “linear” we mean specifications that are linear in the parameters but could be highly

non-linear in the original covariates; that is, if the original covariate is X , then the conditional quantile

function takes the form z′β(u) where z = f(x).
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this specification would be a probit or logit link function Λ and m(y, x) = x′β(y), were

β(y) is an unknown function in y (Han and Hausman, 1990, and Foresi and Peracchi,

1995). This approach is similar in spirit to quantile regression. In particular, as quantile

regression, this approach leads to the specification Y = QY (U |X) = m−1(Λ−1(U), X)

where U ∼ U(0, 1) independently of X.

2.4. Policy estimators and inference questions. All of the preceding approaches gen-

erate estimates F̂Yj
(y|x), j ∈ {0, 1}, of the conditional distribution functions either directly

or indirectly using the relation (2.3):

F̂Yj
(y|x) =

∫ 1

0

1
{
Q̂Yj

(u|x) ≤ y
}
du, j ∈ {0, 1}, (2.10)

where Q̂Yj
(u|x) is a given estimate of the conditional quantile function.

We then estimate the marginal distribution functions and quantile functions for the

outcome by

F̂ k
Yj

(y) =

∫
F̂Yj

(y|x)dFXk
(x), and Q̂k

Yj
(u) = inf{y : F̂ k

Yj
(y) ≥ u},

respectively, for j, k ∈ {0, 1}. We estimate the quantile and distribution policy effects by

Q̂E
k

Yj
(u) = Q̂k

Yj
(u) − Q̂0

Y0
(u), and D̂E

k

Yj
(y) = F̂ k

Yj
(y) − F̂ 0

Y0
(y).

We estimate the general functionals introduced in (2.5) similarly, using the plug-in rule:

ĤY (y) = φ
(
y, F̂ 0

Y0
, F̂ 1

Y1
, F̂ 1

Y0
, F̂ 0

Y1

)
. (2.11)

For example, in this way we can construct estimates of the distribution and quantiles of

the effects defined in (2.6) and (2.7).

Common inference questions that arise in policy analysis involve features of the dis-

tribution of the outcome before and after the intervention. For example, we might be

interested in the average effect of the policy, or in quantile policy effects at several quan-

tiles to measure the impact of the policy on different parts of the outcome distribution.

More generally, in this analysis many questions of interest involve the entire distribution

or quantile functions of the outcome. Examples include the hypotheses that the policy

has no effect, that the effect is constant, or that it is positive for the entire distribution

(McFadden, 1989, Barrett and Donald, 2003, Koenker and Xiao, 2002, Linton, Maasoumi,

and Whang, 2005). The statistical problem is to account for the sampling variability in

the estimation of the conditional model to make inference on the functionals of interests.

Section 3 provides limit distribution theory for the policy estimators. This theory applies
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to the entire marginal distribution and quantile functions of the outcome before and after

the policy, and therefore is valid for performing either uniform inference about the en-

tire distribution function, quantile function, or other functionals of interest, or pointwise

inference about values of these functions at a specific point.

2.5. Alternative approaches. An alternative way to proceed with policy analysis is to

use reweighting methods (DiNardo, 2002). Indeed, under Condition M, we can express

the marginal distribution of the counterfactual outcome in (2.4) as

F k
Yj

(y) =

∫

X

∫

Y

1{Y j
j ≤ y}wkj (x)dFYj

(y|x)dFXj
(x), j, k ∈ {0, 1}, (2.12)

where wkj (x) = fXk
(x)/fXj

(x) = (1 − pj)pj(x)/[pj(1 − pj(x))], pj(x) := Pr{J = j|X = x}
is the propensity score, pj = Pr{J = j}, J is an indicator for group j, fXj

is the density

of the covariate given J = j, and Y is the support of Y . The second form of the weighting

function wkj follows from Bayes’ rule. We can use the expression (2.12) along with either

density or propensity score weighting to construct policy estimators. Firpo (2007) used

a similar propensity score reweighting approach to derive efficient estimators of quantile

effects in treatment effect models.6 With some work, one can adapt the nice results of Firpo

(2007) to obtain the results needed to perform pointwise inference, namely, inference on

quantile policy effects at a specific point. However, we need to do more work to develop the

results needed to perform uniform inference on the entire quantile or distribution function.

We are carrying out such work in a companion paper.

In a recent important development, Firpo, Fortin, and Lemieux (2007) propose an al-

ternative useful procedure to estimate policy effects of changes in the distribution of X.

Given a functional of interest φ, they use a first order approximation of the policy effect:

φ(F 1
Y0

) − φ(F 0
Y0

) = φ′(F 1
Y0

− F 0
Y0

) +R(F 1
Y0
, F 0

Y0
),

where φ′(F 1
Y0
−F 0

Y0
) =

∫
a(y, F 0

Y0
)d(F 1

Y0
(y)−F 0

Y0
(y)) is the first order linear approximation

term, where function a is the influence or the score function, and R(F 1
Y0
, F 0

Y0
) is the re-

maining approximation error. In the context of our problem, this approximation error is

generally not equal to zero and does not vanish with the sample size. Firpo, Fortin, and

Lemieux (2007) propose a practical mean regression method to estimate the first order

term φ′(F 1
Y0

− F 0
Y0

); this method cleverly exploits the law of iterated expectations and the

6See Angrist and Pischke (2008) for a detailed review of propensity score methods and a comparison

to regression methods in the context of treatment effect models. The pros and cons of these two methods

are also likely to apply to policy analysis. In this paper we focus on the regression method.
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linearity of the term in the distributions. In contrast to our approach, the estimand of

this method is an approximation to the policy effect with a non-vanishing approximation

error, whereas we directly estimate the exact effect φ(F 1
Y0

)−φ(F 0
Y0

) without approximation

error.

3. Limit Distribution and Inference Theory for Policy Estimators

In this section we provide a set of simple, general sufficient conditions that facilitate

inference in large samples. We design the conditions to cover the principal practical ap-

proaches and to help us think about what is needed for various approaches to work. Even

though the conditions are reasonably general, they do not exhaust all scenarios under

which the main inferential methods will be valid.

3.1. Conditions on estimators of the conditional distribution and quantile func-

tions. We provide general assumptions about the estimators of the conditional quantile

or distribution function, which allow us to derive the limit distribution for the policy es-

timators constructed from them. These assumptions hold for commonly used parametric

and semiparametric estimators of conditional distribution and quantile functions, such as

classical, quantile, duration, and distribution regressions.

We begin the analysis by stating regularity conditions for estimators of conditional

quantile functions, such as classical or quantile regression. In the sequel, let ℓ∞((0, 1)×X )

denote the space of bounded functions mapping from (0, 1) × X to R, equipped with

the uniform metric. We assume we have a sample {(Xi, Yi), i = 1, ...., n} of size n for

the outcome and covariates before the policy intervention. In this sample n0 = n/λ0

observations come from group 0 and n1 = n/λ1 observations come from group 1. In what

follows we use ⇒ to denote weak convergence.

Condition C. The conditional density fYj
(y|x) of the outcome given covariates exists,

and is continuous and bounded above and away from zero, uniformly on y ∈ Y and x ∈ X ,

where Y is a compact subset of R, for j ∈ {0, 1}.
Condition Q. The estimators (u, x) 7→ Q̂Yj

(u|x) of the conditional quantile functions

(u, x) 7→ QYj
(u|x) of outcome given covariates jointly converge in law to continuous Gauss-

ian processes:

√
n

(
Q̂Yj

(u|x) −QYj
(u|x)

)
⇒

√
λjVj(u, x), j ∈ {0, 1} (3.1)
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in ℓ∞((0, 1) × X ), where (u, x) 7→ Vj(u, x), j ∈ {0, 1}, have zero mean and covariance

function ΣVjr
(u, x, ũ, x̃) := E[Vj(u, x)Vr(ũ, x̃)], for j, r ∈ {0, 1}.

These conditions appear reasonable in practice when the outcome is continuous. If the

outcome is discrete, the conditions C and Q do not hold. However, in this case we can use

the distribution approach discussed below. Condition C and Q focus on the case where

the outcome has a compact support with a density bounded away from zero, which is

a reasonable first case to analyze in detail. Condition Q applies to the most common

estimators of conditional quantile functions under suitable regularity conditions (Doss and

Gill, 1992, Gutenbrunner and Jureckova, 1992, Angrist, Chernozhukov, and Fernandez-Val,

2006, and Appendix F). Conditions C and Q could be extended to include other cases,

without affecting subsequent results. For instance, given set Y in Condition C over which

we want to estimate the counterfactual distribution, Condition Q needs only to hold over

a smaller region UX = {(u, x) ∈ (0, 1) × X : QY (u|x) ∈ Y} ⊂ (0, 1) × X , which leads to

a less restrictive convergence requirement, without affecting any subsequent results. The

joint convergence holds trivially if the samples for each group are mutually independent.

We next state regularity conditions for estimators of conditional distribution functions,

such as duration or distribution regressions. Let ℓ∞(Y × X ) denote the space of bounded

functions mapping from Y × X to R, equipped with the uniform metric, where Y is a

compact subset of R.

Condition D. The estimators (y, x) 7→ F̂Yj
(y|x) of the conditional distribution func-

tions (y, x) 7→ F̂Yj
(y|x) of the outcome given covariates converges in law to a continuous

Gaussian processes:

√
n

(
F̂Yj

(y|x) − FYj
(y|x)

)
⇒

√
λjZj(y, x), j ∈ {0, 1}, (3.2)

in ℓ∞(Y×X ), where (y, x) 7→ Zj(y, x), j ∈ {0, 1}, have zero mean and covariance function

ΣZjr
(y, x, ỹ, x̃) := E[Zj(y, x)Zr(ỹ, x̃)], for j, r ∈ {0, 1}.

This condition holds for common estimators of conditional distribution functions (Beran,

1977, Burr and Doss, 1993, and Appendix F). These estimators, however, might produce

estimates that are not monotonic in the level of the outcome y (Foresi and Peracchi, 1995,

and Hall, Wolff, and Yao, 1999). A way to avoid this problem and to improve the finite

sample properties of the conditional distribution estimators is by rearranging the estimates

(Chernozhukov, Fernandez-Val, and Galichon, 2006). The joint convergence holds trivially

if the samples for each group are mutually independent.
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If we start from a conditional quantile estimator Q̂Yj
(u|x), we can define the conditional

distribution function estimator F̂Yj
(y|x) using the relation (2.10). It turns out that if

the original quantile estimator satisfies conditions C and Q, then the resulting conditional

distribution estimator satisfies condition D. This result allows us to give a unified treatment

of the policy estimators based on either quantile or distribution estimators.

Lemma 1. Under conditions C and Q, the estimators of the conditional distribution func-

tion defined by (2.10) satisfy the condition D with

Zj(y, x) = −fYj
(y|x)Vj(FYj

(y|x), x), j ∈ {0, 1}.

3.2. Examples of Conditional Estimators. Here we verify that the principal estima-

tors of conditional distribution and quantile functions satisfy the functional central limit

theorem, which we required to hold in our main Conditions D and Q. In this section we

drop the dependence on the group index to simplify the notation.

Example 1 continued. Classical regression. Consider the classical linear regression

model Y = X ′β0 + V , where the disturbance V is independent of X and has mean zero,

finite variance and quantile function α0(u). In this case, we can estimate β0 by mean

regression and quantiles of V by the empirical quantile function of the residuals. We

show in Appendix F that the resulting estimator θ̂(u) = (α̂(u), β̂ ′)′ of θ0(u) = (α0(u), β
′
0)

′

obeys a functional central limit theorem
√
n(θ̂(u) − θ0(u)) ⇒ G0(u)

−1Z(u), where Z is a

zero mean Gaussian process with covariance function Ω(u, ũ) specified in (F.6) and matrix

G0(u) := G(α0(u), β0, u)
′ specified in (F.5). The resulting estimator, Q̂Y (u|x) = α̂(u)+x′β̂,

of the conditional quantile function QY (u|x) obeys a functional central limit theorem,

√
n

(
Q̂Y (y|x) −QY (y|x)

)
⇒ (1, x′)G0(u)

−1Z(u) =: V (u, x),

in ℓ∞((0, 1)×X ), where V (u, x) is a zero mean Gaussian process with covariance function,

ΣV (u, x, ũ, x̃) = (1, x′)G0(u)
−1Ω(u, ũ)[G0(ũ)

−1]′(1, x̃′)′.

Example 2 continued. Quantile regression. Consider a linear quantile regression

model where QY (u|x) = x′β0(u). In Appendix F we show the canonical quantile regression

estimator satisfies a functional central limit theorem,
√
n(β̂(u) − β0(u)) ⇒ G0(u)

−1Z(u),

where Z(u) is a zero mean Gaussian process with covariance function Ω(u, ũ) = {min(u, ũ)−
u · ũ}E[XX ′] and G0(u) := G(β0(u), u) = −E[fY (X ′β0(u)|X)XX ′]. The estimator of the

conditional quantile function also obeys a functional central limit theorem,

√
n

(
Q̂Y (u|x) −QY (u|x)

)
=

√
n

(
x′β̂(u) − x′β0(u)

)
⇒ x′G0(u)

−1Z(u) := V (u, x),
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in ℓ∞((0, 1)×X ), where V (u, x) is a zero mean Gaussian process with covariance function

given by:

ΣV (u, x, ũ, x̃) = x′G0(u)
−1Ω(u, ũ)G0(ũ)

−1x̃.

Example 3 continued. Duration regression. Consider the transformation model

for the conditional distribution function stated in equation (2.9). A common duration

model that gives rise to this specification is the proportional hazard model of Cox (1972),

where the conditional hazard rate of an individual with covariate vector x is λY (y|x) =

λ0(y) exp(x′β0), β0 is a p-vector of regression coefficients, λ0 is the nonnegative base-

line hazard rate function, and y ∈ Y = [0, ȳ] for some maximum duration ȳ. Let

Λ0(y) =
∫ y

0
λ0(ỹ)dỹ denote the integrated baseline hazard function. Then FY (y|x) = 1 −

exp{− exp(x′β0+lnΛ0(y))}, delivering the transformation model (2.9) with t(y) = ln Λ0(y)

and m(x) = x′β0.

In order to discuss estimation, let us assume i.i.d. sampling of (Yi, Xi) without censoring.

Then Cox’s (1972) partial maximum likelihood estimator of β0 takes the form

β̂ = arg max
β

∫ n∑

i=1

log
{
Ji(y) exp(x′iβ)/

n∑

j=1

Jj(y) exp(x′jβ)
}
dNi(y),

and the Breslow-Nelson-Aalen estimator of Λ0 takes the form

Λ̂(y) =

∫ y

0

{ n∑

j=1

Jj(ỹ) exp(x′j β̂)
}−1

d
{ n∑

i=1

Ni(ỹ)
}
,

where Ni(y) := 1{Yi ≤ y} and Ji(y) := 1{Yi ≥ y}, y ∈ Y ; see Breslow (1972,1974).

Let W denote a standard Brownian motion on Y and let Z denote an independent

p-dimensional standard normal vector. Andersen and Gill (1982) show that

√
n(β̂ − β0, Λ̂(y) − Λ0(y)) ⇒ (Σ−1/2Z,W (a(y))− b(y)′Σ−1/2Z)

in Rp × ℓ∞(Y), with the terms a(y), b(y), and Σ, and regularity conditions defined in

Andersen and Gill (1982) and Burr and Doss (1993). Let F̂Y (y|x) = 1− exp{− exp(x′β̂ +

log Λ̂(y))} be the estimator of FY (y|x). Since FY (y|x) is Hadamard-differentiable in (β,Λ),

by the functional delta method we have the functional central limit theorem

√
n

(
F̂Y (y|x) − FY (y|x)

)
⇒ {1−FY (y|x)}

{
exp(x′β0)W (a(y)) + b(y, x)′Σ−1/2Z

}
=: Z(y, x),

in ℓ∞(Y × X ), where b(y, x) = λY (y|x)x − exp(x′β0)b(y), and Z(y, x) is a zero mean

Gaussian process with covariance function, for y ≤ ỹ,

ΣZ(y, x, ỹ, x̃) = {1−FY (y|x)}{1−FY (ỹ|x̃)}
{
exp(x′β0) exp(x̃′β0)a(y) + b(y, x)′Σ−1b(ỹ, x̃)

}
.
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In Appendix F we also discuss another estimator of this model.

Example 4 continued. Distribution regression. Consider the model FY (y|x) =

Λ(x′β0(y)) for the conditional distribution function, where Λ is a known link function,

such as the logistic or normal distribution. We can estimate the function β0(y) by applying

maximum likelihood to the indicator variables 1{Y ≤ y} for each value of y ∈ Y separately.

In Appendix F, we prove that the resulting estimator β̂(y) of β0(y) obeys a functional

central limit theorem
√
n

(
β̂(y) − β0(y)

)
⇒ −G0(y)

−1Z(y),

where G0(y) := G(β0(y), y) = E[λ[X ′β0(y)]
2XX ′/{Λ[X ′β0(y)](1 − Λ[X ′β0(y)])}], λ is the

derivative of Λ, and Z(y) is a zero mean Gaussian process with covariance function

Ω(y, ỹ) = E [XX ′λ[X ′β0(y)]λ[X ′β0(ỹ)]/{Λ[X ′β0(y)](1 − Λ[X ′β0(ỹ)])}] ,

for ỹ ≥ y. Hence the resulting estimator F̂Y (y|x) := Λ(x′β̂(y)) of the conditional distribu-

tion function also obeys the functional central limit theorem,

√
n

(
F̂Y (y|x) − FY (y|x)

)
⇒ −λ[x′β0(y)]x

′G0(y)
−1Z(y) =: Z(y, x),

in ℓ∞(Y × X ), where Z(y, x) is a zero mean Gaussian process with covariance function:

ΣZ(y, x, ỹ, x̃) = λ[x′β0(y)]λ[x̃′β0(ỹ)]x
′G0(y)

−1Ω(y, ỹ)G0(ỹ)
−1x̃.

3.3. Basic principles underlying the limit theory. The derivation of the limit theory

for policy estimators relies on several basic principles that allow us to link the properties

of the estimators of conditional (quantile and distribution) functions with the properties of

estimators of marginal functions. First, although there does not exist a direct connection

between conditional and marginal quantiles, we can always switch from conditional quan-

tiles to conditional distributions using Lemma 1, then use the law of iterated expectations

to go from conditional distribution to marginal distribution, and finally get to marginal

quantiles by inverting. Second, as the functionals of interest depend on the entire condi-

tional function, we must rely on the functional delta method to obtain the limit theory for

these functionals as well as to obtain intermediate limit results such as Lemma 1. Since the

estimated conditional distributions and quantile functions are usually non-monotone and

discontinuous in finite samples, we must use refined forms of the functional delta method.

Accordingly, the key ingredient in the derivation and one of the main theoretical con-

tributions of the paper is the demonstration of the Hadamard differentiability of the func-

tionals of interest with respect to the limit of the conditional processes, tangentially to the

subspace of continuous functions. Indeed, we need this refined form of differentiability to
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deal with our conditional processes, which typically are discontinuous random functions in

finite samples yet converge to continuous random functions in large samples. These refined

differentiability results in turn enable us to use the functional delta method to derive all

of the following limit distribution and inference theory.

3.4. Limit theory for counterfactual distribution and quantile functions. Our

first main result shows that the estimators of the marginal distribution and quantile func-

tions before and after the policy intervention satisfy a functional central limit theorem.

Theorem 1 (Limit distribution for marginal distribution functions). Under Conditions M

and D, the estimators F̂ k
Yj

(y) of the marginal distribution functions F k
Yj

(y) jointly converge

in law to the following Gaussian processes:

√
n

(
F̂ k
Yj

(y) − F k
Yj

(y)
)
⇒

√
λj

∫

X

Zj(y, x)dFXk
(x) =:

√
λjZ

k
j (y), j, k ∈ {0, 1}, (3.3)

in ℓ∞(Y), where y 7→ Zk
j (y), j ∈ {0, 1}, have zero mean and covariance function, for

j, k, r, s ∈ {0, 1},

Σks
Zjr

(y, ỹ) := E[Zk
j (y)Z

s
r(ỹ)] =

∫

X

∫

X

ΣZjr
(y, x, ỹ, x̃)dFXk

(x)dFXs
(x̃). (3.4)

Theorem 2 (Limit distribution for marginal quantile functions). Under Conditions M,

C, and D the estimators Q̂k
Yj

(u) of the marginal quantile functions Qk
Yj

(u) jointly converge

in law to the following Gaussian processes:

√
n

(
Q̂k
Yj

(u) −Qk
Yj

(u)
)
⇒ −Zk

j (Q
k
Yj

(u))/fkYj
(Qk

Yj
(u)) =: V k

j (u), j, k ∈ {0, 1}, (3.5)

in ℓ∞((0, 1)), where fkYj
(y) =

∫
X
fYj

(y|x)dFXk
(x), and u 7→ V k

j (u), j, k ∈ {0, 1}, have zero

mean and covariance function, for j, k, r, s ∈ {0, 1},

Σks
Vjr

(u, ũ) := E[V k
j (u)V s

r (ũ)] = Σks
Zjr

(Qk
Yj

(u), Qs
Yr

(ũ))/[fkYj
(Qk

Yj
(u))f sYr

(Qs
Yr

(ũ))].

Our second main result shows that the estimators of the marginal quantile and distri-

bution policy effects also satisfy a functional central limit theorem.

Corollary 1 (Limit distribution for quantile policy effects). Under Conditions M, C, and

D the estimators of the quantile policy effects converge in law to the following Gaussian

processes:

√
n

(
Q̂E

k

Yj
(u) −QEk

Yj
(u)

)
⇒

√
λjV

k
j (u) −

√
λ0V

0
0 (u) =: W k

j (u), k, j ∈ {0, 1}, (3.6)

in the space ℓ∞((0, 1)), where the processes u 7→ W k
j (u), j, k ∈ {0, 1}, have zero mean and

covariance function Σks
Wjr

(u, ũ) := E[W k
j (u)W s

r (ũ)], for j, k, r, s ∈ {0, 1}.
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Corollary 2 (Limit distribution for distribution policy effects). Under Conditions M and

D the estimators of the distribution policy effects converge in law to the following Gaussian

processes:

√
n

(
D̂E

k

Yj
(y) −DEk

Yj
(y)

)
⇒

√
λjZ

k
j (y) −

√
λ0Z

0
0(y) =: Skj (y), j, k ∈ {0, 1}, (3.7)

in the space ℓ∞(Y), where the processes y 7→ Skj (y), j, k ∈ {0, 1}, have zero mean and

variance function Σks
Sjr

(y, ỹ) := E[Skj (y)S
s
r(ỹ)], for j, k, r, s ∈ {0, 1}.

Our third main result shows that various functionals of the status quo and counterfactual

marginal distribution and quantile functions satisfy a functional central limit theorem.

Corollary 3 (Limit distribution for differentiable functionals). Let HY (y) =

φ(y, F 0
Y0
, F 1

Y1
, F 1

Y0
, F 0

Y1
), a functional taking values in ℓ∞(Y), be Hadamard differentiable

in (F 0
Y0
, F 1

Y1
, F 1

Y0
, F 0

Y1
) tangentially to the subspace of continuous functions with derivative

(φ′
00, φ

′
11, φ

′
01, φ

′
10). Then under Conditions M and D the plug-in estimator ĤY (y) defined

in (2.11) converges in law to the following Gaussian process:

√
n

(
ĤY (y) −HY (y)

)
⇒

∑

j,k∈{0,1}

√
λjφ

′
jk(y, F

0
Y0
, F 1

Y1
, F 1

Y0
, F 0

Y1
)Zk

j (y) =: TH(y), (3.8)

in ℓ∞(Y), where y 7→ TH(y) has zero mean and covariance function ΣTH
(y, ỹ) :=

E[TH(y)TH(ỹ)].

Examples of functionals covered by Corollary 3 include function-valued parameters,

such as Lorenz curves and Lorenz policy effects, as well as scalar-valued parameters, such

as Gini coefficients and Gini policy effects (Barrett and Donald, 2009). These examples

also include quantile and distribution functions of the effect of the policy defined under

Condition RP; in Appendix C we state the results for these effects separately in order to

give them some emphasis.

3.5. Uniform inference and resampling methods. We can readily apply the preced-

ing limit distribution results to perform inference on the distributions and quantiles of the

outcome before and after the policy at a specific point. For example, Corollary 1 implies

that the quantile policy effect estimator for a given quantile u is asymptotically normal

with mean QEk
Yj

(u) and variance Σkk
Wjj

(u, u)/n. We can therefore perform inference on

QEk
Yj

(u) for a particular quantile index u using this normal distribution and replacing

Σkk
Wjj

(u, u) by a consistent estimate.
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However, pointwise inference permits looking at the effect of the policy at a specific

point only. This approach might be restrictive for policy analysis where the quantities and

hypotheses of interest usually involve many points or a continuum of points. That is, the

entire distribution or quantile function of the observed and counterfactual outcomes is often

of interest. For example, in order to test hypotheses of the policy having no effect on the

distribution, having a constant effect throughout the distribution, or having a first order

dominance effect, we must use the entire outcome distribution, and not only a single specific

point. Moreover, simultaneous inference corrections to pointwise procedures based on the

normal distribution, such as Bonferroni-type corrections, can be very conservative for

simultaneous testing of highly dependent hypotheses, and become completely inadequate

for testing a continuum of hypotheses.

A convenient and computationally attractive approach for performing inference on func-

tion-valued parameters is to use Kolmogorov-Smirnov type procedures. Some complica-

tions arise in our case because the limit processes are non-pivotal, as their covariance

functions depend on unknown, though estimable, nuisance parameters.7 A practical and

valid way to deal with non-pivotality is to use resampling and related simulation meth-

ods. An attractive feature of our theoretical analysis is that validity of resampling and

simulation methods follows from the Hadamard differentiability of the policy functionals

with respect to the underlying conditional functions. Indeed, given that bootstrap and

other methods can consistently estimate the limit laws of the estimators of the conditional

distribution and quantile functions, they also consistently estimate the limit laws of our

policy estimators. This convenient result follows from preservation of validity of bootstrap

and other resampling methods for estimating laws of Hadamard differentiable functionals;

see more on this in Lemma 6 in Appendix A.

Theorem 3 (Validity of bootstrap and other simulation methods for estimating the laws of

policy estimators of function-valued parameters). If the bootstrap or any other simulation

method consistently estimates the laws of the limit stochastic processes (3.1) and (3.2) for

the estimators of the conditional quantile or distribution function, then this method also

consistently estimates the laws of the limit stochastic processes (3.3), (3.5), (3.6), (3.7),

and (3.8) for policy estimators of marginal distribution and quantile functions and other

functionals.

7Similar non-pivotality issues arise in a variety of goodness-of-fit problems studied by Durbin and others,

and are referred to as the Durbin problem by Koenker and Xiao (2002).
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Theorem 3 shows that the bootstrap is valid for estimating the limit laws of various

inferential processes. This is true provided that the bootstrap is valid for estimating the

limit laws of the (function-valued) estimators of the conditional distribution and quantile

functions. This is a reasonable condition, but, to the best of our knowledge, there are no

results in the literature that verify this condition for our principal estimators. Indeed, the

previous results on the bootstrap established its validity only for estimating the pointwise

laws of our principal estimators, which is not sufficient for our purposes.8 To overcome this

difficulty, in Appendix F we prove validity of the empirical bootstrap and other related

methods, such as Bayesian bootstrap, wild bootstrap, k out of n bootstrap, and subsam-

pling bootstrap, for estimating the laws of function-valued estimators, such as quantile

regression and distribution regression processes. These results may be of substantial inde-

pendent interest.

We can then use Theorem 3 to construct the usual uniform bands and perform inference

on the marginal distribution and quantile functions, and various functionals, as described

in detail in Chernozhukov and Fernandez-Val (2005) and Angrist, Chernozhukov, and

Fernandez-Val (2006). Moreover, if the sample size is large, we can reduce the computa-

tional complexity of the inference procedure by resampling the first order approximation

to the estimators of the conditional distribution and quantile functions (Chernozhukov

and Hansen, 2006); by using subsampling bootstrap (Chernozhukov and Fernandez-Val,

2005); or by simulating the limit processes Zj or Vj , j ∈ {0, 1}, appearing in expressions

(3.1) and (3.2), using multiplier methods (Barrett and Donald, 2003).

3.6. Incorporating uncertainty about the distribution of the covariates. In the

preceding analysis we assumed that we know the distributions of the covariates before and

after the policy intervention for the target population. In practice, however, we usually

observe such distributions only for individuals in the sample. If the individuals in the

sample are the target population, then the previous limit theory is valid for performing

inference without any adjustments. If a more general population group is the target

population, then the distributions of the covariates need to be estimated, and the previous

limit theory needs to be adjusted to take this into account. Here we highlight the main

ideas, while in Appendix D we present formal distribution and inference theory.

We begin by assuming that the estimators x 7→ F̂Xk
(x), k ∈ {0, 1}, of the covariate

distribution functions are well behaved, specifically that they converge jointly in law to

8Exceptions include Chernozhukov and Hansen (2006) and Chernozhukov and Fernandez-Val (2005),

but they looked at forms of subsampling only.



23

Gaussian processes BXk
, k ∈ {0, 1}:

√
n

(
F̂Xk

(x) − FXk
(x)

)
⇒

√
λjBXk

(x), k ∈ {0, 1},

as rigorously defined in Appendix D.1. This assumption is quite general and holds for

conventional estimators such as the empirical distribution under i.i.d. sampling as well as

various modifications of conventional estimators, as discussed further in Appendix D. The

joint convergence holds trivially in the leading cases where the distribution in group 1 is

a known transformation of the distribution in group 0, or when the two distributions are

estimated from independent samples.

The estimation of the covariate distributions affects limit distributions of functionals of

interests. Let us consider, for example, the marginal distribution functions. When the

covariate distributions are unknown, the plug-in estimators for these functions take the

form F̂ k
Yj

(y) =
∫
X
F̂Yj

(y|x)dF̂Xk
(x), j, k ∈ {0, 1}. The limit processes for these estimators

become

√
n

(
F̂ k
Yj

(y) − F k
Yj

(y)
)
⇒

√
λjZ

k
j (y) +

√
λk

∫

X

FYj
(y|x)dBXk

(x), j, k ∈ {0, 1},

where the familiar first component arises from the estimation of the conditional distribu-

tion and the second comes from the estimation of the distributions of the covariates. In

Appendix D we discuss further details.

4. Labor Market Institutions and the Distribution of Wages

The empirical application in this section draws its motivation from the influential article

by DiNardo, Fortin, and Lemieux (1996, DFL hereafter), which studied the effects of insti-

tutional and labor market factors on the evolution of the U.S. wage distribution between

1979 and 1988. The goal of our empirical application is to complete and complement

DFL’s analysis by using a wider range of techniques, including quantile regression and

distribution regression, and to provide confidence intervals for scalar-valued effects as well

as function-valued effects of the institutional and labor market factors, such as quantile,

distribution, and Lorenz policy effects.

We use the same dataset as in DFL, extracted from the outgoing rotation groups of the

Current Population Surveys (CPS) in 1979 and 1988. The outcome variable of interest

is the hourly log-wage in 1979 dollars. The regressors include a union status dummy,

nine education dummies interacted with experience, a quartic term in experience, two

occupation dummies, twenty industry dummies, and dummies for race, SMSA, marital
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status, and part-time status. Following DFL we weigh the observations by the product

of the CPS sampling weights and the hours worked. We analyze the data for men and

women separately.

The major factors suspected to have an important role in the evolution of the wage

distribution between 1979 and 1988 are the minimum wage, whose real value declined

by 27 percent, the level of unionization, whose level also declined from 32 percent to

21 percent for men and from 17 percent to 13 percent for women in our sample, and

the composition of the labor force, whose education levels and other characteristics have

also changed substantially during this period. Thus, following DFL, we decompose the

total change in the US wage distribution into the sum of four effects: (1) the effect of a

change in minimum wage, (2) the effect of de-unionization, (3) the effect of changes in the

composition of the labor force, and (4) the price effect. The effect (1) measures changes in

the marginal distribution of wages that occur due to a change in the minimum wage; the

effects (2) and (3) measure changes in the marginal distribution of wages that occur due

to a change in the distribution of a particular factor, having fixed the distribution of other

factors at some constant level; the effect (4) measures changes in the marginal distribution

of wages that occur due to a change in the wage structure, or conditional distribution of

wages given worker characteristics.

Next we formally define these four effects as differences between appropriately chosen

counterfactual distribution functions. Let FUr,Zv

Yt,ms
denote the counterfactual marginal dis-

tribution function of log-wages Y when the wage structure is as in year t, the minimum

wage, m, is as the level observed for year s, the distribution of union status, U, is as the

distribution observed in year r, and the distribution of other worker characteristics, Z, is

as the distribution observed in year v. We identify and estimate such counterfactual dis-

tributions using the procedures described below. Given these counterfactual distributions,

we can decompose the observed total change in the distribution of wages between 1979

and 1988 into the sum of four effects:

FU88,Z88

Y88,m88
− FU79,Z79

Y79,m79
= [FU88,Z88

Y88,m88
− FU88,Z88

Y88,m79
]

(1)

+ [FU88,Z88

Y88,m79
− FU79,Z88

Y88,m79
]

(2)

+ [FU79,Z88

Y88,m79
− FU79,Z79

Y88,m79
]

(3)

+ [FU79,Z79

Y88,m79
− FU79,Z79

Y79,m79
]

(4)

.
(4.1)

The first component is the effect of the change in the minimum wage, the second is the

effect of de-unionization, the third is the effect of changes in worker characteristics, and

the fourth is the price effect. As stated above, we see that the effects (2) and (3) measure

changes in the marginal distribution of wages that occur due to a change in the distribution
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of a particular factor, having fixed the distribution of other factors at some constant level.

The effect (4) captures changes in the wage structure or conditional distribution of wages

given observed characteristics; in particular, it captures the effect of changes in the market

returns to workers’ characteristics, including education and experience. Finally, we discuss

the interpretation of the minimum wage effect (1) in detail below.

The decomposition (4.1) is the distribution version of the Oaxaca-Blinder decomposition

for the mean. We obtain similar decompositions for other functionals φ(FUr,Zv

Yt,ms
) of interest,

such as marginal quantiles and Lorenz curves, by making an appropriate substitution in

equation (4.1) :

φ(FU88,Z88

Y88,m88
) − φ(FU79,Z79

Y79,m79
) = [φ(FU88,Z88

Y88,m88
) − φ(FU88,Z88

Y88,m79
)]

(1)

+ [φ(FU88,Z88

Y88,m79
) − φ(FU79,Z88

Y88,m79
)]

(2)

+ [φ(FU79,Z88

Y88,m79
) − φ(FU79,Z79

Y88,m79
)]

(3)

+ [φ(FU79,Z79

Y88,m79
) − φ(FU79,Z79

Y79,m79
)]

(4)

.

(4.2)

In constructing the decompositions (4.1) and (4.2), we follow the same sequential order as

in DFL.9 Also, like DFL, we follow a partial equilibrium approach, but, unlike DFL, we

do not incorporate supply and demand factors in our analysis because they do not fit well

in our framework.

We next describe how to identify and estimate the various counterfactual distributions

appearing in (4.1). The first counterfactual distribution we need is FU88,Z88

Y88,m79
, the distri-

bution of wages that we would observe in 1988 if the real minimum wage were as high

as in 1979. Identifying this quantity requires additional assumptions.10 Following DFL,

the first strategy we employ is to assume the conditional wage density at or below the

minimum wage depends only on the value of the minimum wage, and the minimum wage

has no employment effects and no spillover effects on wages above its level. The second

strategy we employ completely avoids modeling the conditional wage distribution below

the minimal wage by simply censoring the observed wages below the minimum wage to

the value of the minimum wage. Under the first strategy, DFL show that

FY88,m79
(y|u, z) =

{
FY79,m79

(y|u, z) FY88,m88
(m79|u,z)

FY79,m79
(m79|u,z)

, if y < m79;

FY88,m88
(y|u, z) , if y ≥ m79;

(4.3)

9The choice of sequential order matters and can affect the relative importance of the four effects. We

report some results for the reverse sequential order in the Appendix.
10We cannot identify this quantity from random variation in minimum wage, since the federal minimum

wage does not vary across individuals and varies little across states in the years considered.
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where FYt,ms
(y|u, z) denotes the conditional distribution of wages at year t given worker

characteristics when the level of the minimum wage is as in year s. Under the second

strategy, we have that

FY88,m79
(y|u, z) =

{
0, if y < m79;

FY88,m88
(y|u, z) , if y ≥ m79.

(4.4)

Given either (4.3) or (4.4) we identify the counterfactual distribution of wages using the

representation:

FU88,Z88

Y88,m79
(y) =

∫
FY88,m79

(y|u, z)dFUZ88
(u, z), (4.5)

where FUZt
is the joint distribution of worker characteristics and union status in year t.

We can then estimate this distribution using the plug-in principle. In particular, we esti-

mate the conditional distribution in expressions (4.3) and (4.4) using one of the regression

methods described below, and the distribution function FUZ88
using its empirical analog.

The other counterfactual marginal distributions we need are

FU79,Z88

Y88,m79
(y) =

∫ ∫
FY88,m79

(y|u, z)dFU79
(u|z)dFZ88

(z) (4.6)

and

FU79,Z79

Y88,m79
(y) =

∫
FY88,m79

(y|u, z)dFUZ79
(u, z) . (4.7)

Given either of our assumptions on the minimum wage all the components of these distribu-

tions are identified and we can estimate them using the plug-in principle. In particular, we

estimate the conditional distribution FY88,m79
(y|u, z) using one of the regression methods

described below, the conditional distribution FU79
(u|z), u ∈ {0, 1}, using logistic regression,

and FZ88
(z) and FUZ79

using the empirical distributions.

Formulas (4.5)–(4.7) giving the expressions for the counterfactual distributions reflect

the assumptions that give the counterfactual distributions a formal causal interpretation.

Indeed, we assume in (4.6) and (4.7) that we can fix the relevant conditional distributions

and change only the marginal distributions of the relevant covariates. In (4.5), we also

specify how the conditional distribution of wages changes with the level of the minimum

wage. Note that we directly observe the marginal distributions appearing on the left side

of the decomposition (4.1) and estimate them using the plug-in principle.

To estimate the conditional distributions of wages we consider three different regression

methods: classical regression, linear quantile regression, and distribution regression with

a logit link. The classical regression, despite its wide use in the literature, is not appro-

priate in this application due to substantial conditional heteroscedasticity in log wages
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(Lemieux, 2006, and Angrist, Chernozhukov, and Fernandez-Val, 2006). The linear quan-

tile regression is more flexible, but it also has shortcomings in this application. First,

there is a considerable amount of rounding, especially at the level of the minimum wage,

which makes the wage variable highly discrete. Second, a linear model for the conditional

quantile function may not provide a good approximation to the conditional quantiles near

the minimum wage, where the conditional quantile function may be highly nonlinear. The

distribution regression approach does not suffer from these problems, and we therefore

employ it to generate the main empirical results. In order to check the robustness of

our empirical results, we also employ the censoring approach described above. We set

the wages below the minimum wage to the value of the minimum wage and then apply

censored quantile and distribution regressions to the resulting data. In what follows, we

first present the empirical results obtained using distribution regression, and then briefly

compare them with the results obtained using censored quantile regression and censored

distribution regression.

We present our empirical results in Tables 1–3 and Figures 1–9. In Figure 1, we compare

the empirical distributions of wages in 1979 and 1988. In Table 1, we report the estimation

and inference results for the decomposition (4.2) of the changes in various measures of wage

dispersion between 1979 and 1988 estimated using distribution regressions.11 Figures 2–

7 refine these results by presenting estimates and 95% simultaneous confidence intervals

for several major functionals of interest, including the effects on entire quantile functions,

distribution functions, and Lorenz curves. We construct the simultaneous confidence bands

using 100 bootstrap replications and a grid of quantile indices {0.02, 0.021, ..., 0.98}. We

plot all of these function-valued effects against the quantile indices of wages. In Tables 2–3

and Figures 8–9, we present the estimates of the same effects as in Table 1 and Figures

2–3 estimated using various alternative methods, such as censored quantile regression and

censored distribution regression. Overall, we find that our estimates, confidence intervals,

and robustness checks all reinforce the findings of DFL, giving them a rigorous econometric

foundation. Indeed, we provide standard errors and confidence intervals, without which

we would not be able to assess the statistical significance of the results. Moreover, we

validate the results with a wide array of estimation methods. In what follows below, we

discuss each of our results in more detail.

11The estimation results parallel the results presented in DFL. Table A1 in the Appendix gives the

results for the decomposition in reverse order.



28

In Figure 1, we present estimates and uniform confidence intervals for the marginal

distributions of wages in 1979 and 1988. We see that the low end of the distribution is

significantly lower in 1988 while the upper end is significantly higher in 1988. This pattern

reflects the well-known increase in wage inequality during this period. Next we turn to the

decomposition of the total change into the sum of the four effects. For this decomposition

we focus mostly on quantile functions for comparability with recent studies and to facilitate

the interpretation. In Figures 2–3, we present estimates and uniform confidence intervals

for the total change in the marginal quantile function of wages and the four effects that

form a decomposition of this total change.12 We report the marginal quantile functions in

1979 and 1988 in the top left panels of Figures 2 and 3. In Figures 4–7, we plot analogous

results for the decomposition of the total change in marginal distribution functions and

Lorenz curves.

From Figures 2 and 3, we see that the contribution of union status to the total change is

quantitatively small and has a U-shaped effect across the quantile function for men. The

magnitude and shape of this effect on the marginal quantiles between the first and last

decile sharply contrast with the quantitatively large and monotonically decreasing shape of

the effect of the union status on the conditional quantile function for this range of indexes

(Chamberlain, 1994), and illustrates the difference between conditional and unconditional

effects.13 In general, interpreting the unconditional effect of changes in the distribution of

a covariate requires some care, because the covariate may change only over certain parts

of its support. For example, de-unionization cannot affect those who were not unionized

at the beginning of the period, which is 70 percent of the workers; and in our data, the

unionization declines from 32 to 21 percent, thus affecting only 11 percent of the workers.

Thus, even though the conditional impact of switching from union to non-union status can

be quantitatively large, it has a quantitatively small effect on the marginal distribution

since only 9 percent of the workers are affected.

From Figures 2 and 3, we also see that the change in the distribution of worker char-

acteristics (other than union status) is responsible for a large part of the increase in wage

inequality in the upper tail of the distribution. The importance of these composition effects

12Discreteness of wage data implies that the quantile functions have jumps. To avoid this erratic

behavior in the graphical representations of the results, we display smoothed quantile functions. The non-

smoothed results are available from the authors. The quantile functions were smoothed using a bandwidth

of 0.015 and a Gaussian kernel. The results in Tables 1–3 and A1 have not been smoothed.
13We find similar estimates to Chamberlain (1994) for the effect of union on the conditional quantile

function in our CPS data.
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has been recently stressed by Lemieux (2006) and Autor, Katz and Kearney (2008). The

composition effect is realized through at least two channels. The first channel operates

through between-group inequality. In our case, higher educated and more experienced

workers earn higher wages. By increasing their proportion, we induce a larger gap be-

tween the lower and upper tails of the marginal wage distribution. The second channel

is that within-group inequality varies by group, so increasing the proportion of high vari-

ance groups increases the dispersion in the marginal distribution of wages. In our case,

higher educated and more experienced workers exhibit higher within-group inequality. By

increasing their proportion, we induce a higher inequality within the upper tail of the

distribution. To understand the effect of these channels in wage dispersion it is useful to

consider a linear quantile model Y = X ′β(U), where X is independent of U . By the law

of total variance, we can decompose the variance of Y into:

V ar[Y ] = E[β(U)]′V ar[X]E[β(U)] + trace{E[XX ′]V ar[β(U)]}. (4.8)

The first channel corresponds to changes in the first term of (4.8) where V ar[X] represents

the heterogeneity of the labor force (between group inequality); whereas the second channel

corresponds to changes in the second term of (4.8) operating through the interaction of

between group inequality E[XX ′] and within group inequality V ar[β(U)].

In Figures 2 and 3, we also include estimates of the price effect. This effect captures

changes in the conditional wage structure. It represents the difference we would observe

if the distribution of worker characteristics and union status, and the minimum wage

remained unchanged during this period. This effect has a U-shaped pattern, which is

similar to the pattern Autor, Katz and Kearney (2006a) find for the period between 1990

and 2000. They relate this pattern to a bi-polarization of employment into low and high

skill jobs. However, they do not find a U-shaped pattern for the period between 1980 and

1990. A possible explanation for the apparent absence of this pattern in their analysis

might be that the declining minimum wage masks this phenomenon. In our analysis, once

we control for this temporary factor, we do uncover the U-shaped pattern for the price

component in the 80s.

In Tables 2–3 and Figures 8–9, we present several interesting robustness checks. As we

mentioned above, the assumptions about the minimum wage are particularly delicate, since

the mechanism that generates wages strictly below this level is not clear; it could be mea-

surement error, non-coverage, or non-compliance with the law. To check the robustness of

the results to the DFL assumptions about the minimum wage and to our semi-parametric
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model of the conditional distribution, we re-estimate the decomposition using censored

linear quantile regression and censored distribution regression with a logit link, using the

wage data censored below the minimum wage. For censored quantile regression, we use

Powell’s (1986) censored quantile regression estimated using Chernozhukov and Hong’s

(2002) algorithm. For censored distribution regression, we simply censor to zero the distri-

bution regression estimates of the conditional distributions below the minimum wage and

recompute the functionals of interest. Overall, we find the results are very similar for the

quantile and distribution regressions, and they are not very sensitive to the censoring.14

5. Conclusion

This paper develops methods for performing inference about the effect on an outcome of

interest of a change in either the distribution of policy-related variables or the relationship

of the outcome with these variables. The validity of the proposed inference procedures

in large samples relies only on the applicability of a functional central limit theorem for

the estimator of the conditional distribution or conditional quantile function. This condi-

tion holds for most important semiparametric estimators of conditional distribution and

quantile functions, such as classical, quantile, duration, and distribution regressions.
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Appendix

This Appendix contains proofs and additional results. Section A collects preliminary

lemmas on the functional delta method and derives the functional delta method for any

simulation method, extending its applicability beyond the bootstrap. Section B collects

the proofs for the results in the main text of the paper. Section C gives limit distribution

theory for policy effects estimators. Section D presents additional results for the case

where the covariate distributions are estimated. These results complement the results in

14We have additional results on quantile, distribution and Lorenz effects for the censored estimates;

these are available on request from the authors. We do not report them here to save space.
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the main text. Section E derives limit theory, including Hadamard differentiability, for

Z-processes and Section F applies this theory to the principal estimators of conditional

distribution and quantile functions. These results establish the validity of bootstrap and

other resampling schemes for the entire quantile regression process, the entire distribution

regression process, and related processes arising in the estimation of various conditional

quantile and distribution functions. These results may be of a substantial independent

interest.

Appendix A. Functional Delta Method, Bootstrap, and Other Methods

This section collects preliminary lemmas on the functional delta method and derives the

functional delta method for any simulation method, extending its applicability beyond the

bootstrap.

A.1. Some definitions and auxiliary results. We begin by quickly recalling from van

der Vaart and Wellner (1996) the details of the functional delta method.

Definition 1 (Hadamard-differentiability). Let D0, D, and E be normed spaces, with

D0 ⊂ D. A map φ : Dφ ⊂ D 7→ E is called Hadamard-differentiable at θ ∈ Dφ tangentially

to D0 if there is a continuous linear map φ′
θ : D0 7→ E such that

φ(θ + tnhn) − φ(θ)

tn
→ φ′

θ(h), n→ ∞,

for all sequences tn → 0 and hn → h ∈ D0 such that θ + tnhn ∈ Dφ for every n.

This notion works well together with the continuous mapping theorem.

Lemma 2 (Extended continuous mapping theorem). Let Dn ⊂ D be arbitrary subsets

and gn : Dn 7→ E be arbitrary maps (n ≥ 0), such that for every sequence xn ∈ Dn :

if xn′ → x ∈ D0 along a subsequence, then gn′(xn′) → g0(x). Then, for arbitrary maps

Xn : Ωn 7→ Dn and every random element X with values in D0 such that g0(X) is a random

element in E:

(i) If Xn ⇒ X, then gn(Xn) ⇒ g0(X);

(ii) If Xn →p X, then gn(Xn) →p g0(X).

The combination of the previous definition and lemma is known as the functional delta

method.
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Lemma 3 (Functional delta-method). Let D0, D, and E be normed spaces. Let φ : Dφ ⊂
D 7→ E be Hadamard-differentiable at θ tangentially to D0. Let Xn : Ωn 7→ Dφ be maps with

rn(Xn− θ) ⇒ X in D, where X is separable and takes its values in D0, for some sequence

of constants rn → ∞. Then rn (φ(Xn) − φ(θ)) ⇒ φ′
θ(X). If φ′

θ is defined and continuous

on the whole of D, then the sequence rn (φ(Xn) − φ(θ))−φ′
θ (rn(Xn − θ)) converges to zero

in outer probability.

The applicability of the method is greatly enhanced by the fact that Hadamard differ-

entiation obeys the chain rule.

Lemma 4 (Chain rule). If φ : Dφ ⊂ D 7→ Eψ is Hadamard-differentiable at θ ∈ Dφ

tangentially to D0 and ψ : Eψ 7→ F is Hadamard-differentiable at φ(θ) tangentially to

φ′(D0), then ψ ◦ φ : Dφ 7→ F is Hadamard-differentiable at θ tangentially to D0 with

derivative ψ′
φ(θ) ◦ φ′

θ.

Another technical result to be used in the sequel is concerns the equivalence of continuous

and uniform convergence.

Lemma 5 (Uniform convergence via continuous convergence). Let D and E be complete

separable metric spaces, with D compact. Suppose f : D 7→ E is continuous. Then a

sequence of functions fn : D 7→ E converges to f uniformly on D if and only if for any

convergent sequence xn → x in D we have that fn(xn) → f(x).

Proof of Lemmas 2–4: See van der Vaart and Wellner (1996) Chap. 1.11 and 3.9. �

Proof of Lemma 5: See, for example, Resnick (1987), page 2. �

A.2. Functional delta-method for bootstrap and other simulation methods. Let

Fn = (W1, ...,Wn) denote the data. Consider sequences of random elements Vn = Vn(Fn),

the original empirical process. In a normed space D, the sequence
√
n(Vn − V ) converges

unconditionally to the process G. Let the sequence of random elements

V̂n = Vn +Gn/
√
m (A.1)

where m = m(n) is a possibly random sequence such that m/m0 →P 1 for some sequence

of constants m0 → ∞ such that m0/n → c ≥ 0,15 and the “draw” Gn is produced by

15The random scaling is needed to cover wild bootstrap, for example.
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bootstrap, simulation, or any other consistent method that guarantees that the sequence

Gn converges conditionally given Fn in distribution to a tight random element G,

suph∈BL1(D)

∣∣E|Fn
h (Gn)

∗ −Eh(G)
∣∣ → 0, (A.2)

in outer probability, where BL1(D) denotes the space of function with Lipschitz norm at

most 1 and E|Fn
denotes the conditional expectation given the data. In the definition, we

can take G to be independent of Fn.

Given a map φ : Dφ ⊂ D 7→ E, we wish to show that

suph∈BL1(E)

∣∣∣E|Fn
h

(√
m(φ(V̂n) − φ(Vn))

)∗

−Eh(φ′
V (G))

∣∣∣ → 0, (A.3)

in outer probability.

Lemma 6 (Delta-method for bootstrap and other simulation methods). Let D0, D, and

E be normed spaces, with D0 ⊂ D. Let φ : Dφ ⊂ D 7→ E be Hadamard-differentiable at V

tangentially to D0. Let Vn and V̂n be maps as indicated previously with values in Dφ such

that
√
n(Vn−V ) ⇒ G and (A.2) holds in outer probability, where G is separable and takes

its values in D0. Then (A.3) holds in outer probability.

Proof of Lemma 6: The proof generalizes the functional delta-method for empirical

bootstrap in Theorem 3.9.11 of van der Vaart and Wellner (1996) to exchangeable boot-

strap. This expands the applicability of delta-method to a wide variety of resampling and

simulation schemes that are special cases of exchangeable bootstrap, including empirical

bootstrap, Bayesian bootstrap, wild bootstrap, k out of n bootstrap, and subsampling

bootstrap (see next section for details).

Without loss of generality, assume that the derivative φ′
V : D 7→ E is defined and contin-

uous on the whole space. Otherwise, replace E by its second dual E∗∗ and the derivative

by an extension φ′
V : D 7→ E∗∗. For every h ∈ BL1(E), the function h ◦ φ′

V is contained in

BL‖φ′
V
‖(D). Thus (A.2) implies suph∈BL1(E)

∣∣E|Fn
h (φ′

V (Gn))
∗ − Eh(φ′

V (G))
∣∣ → 0, in outer

probability. Next

suph∈BL1(E)

∣∣∣E|Fn
h

(√
m

(
φ(V̂n) − φ(Vn)

))∗

−E|Fn
h (φ′

V (Gn)))∗

∣∣∣
≤ ε+ 2P|Fn

(∥∥∥√m
(
φ(V̂n) − φ(Vn)

)
− φ′

V

(√
m(V̂n − Vn)

)∥∥∥
∗

> ε
)
.

(A.4)

The theorem is proved once it has been shown that the conditional probability on the right

converges to zero in outer probability.

Both sequences
√
m(Vn − V ) and Gn =

√
m(V̂n − V ) converge (unconditionally) in

distribution to separable random elements that concentrate on the space D0. The first
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sequence converges by assumption and Slutsky’s theorem when m/m0 →P 1 and m0/n→
c > 0 and converges to zero when m0/n → 0 by assumption and Slutsky’s theorem. The

second sequence converges, by noting that

√
m(V̂n − V ) =

√
m(V̂n − Vn) +

√
m(Vn − V )︸ ︷︷ ︸

tn

and that E|E|Fn
h(
√
m(V̂n− Vn)

∗ + tn)−E|Fn
h(G + tn)| ≤ suph∈BL1(Dn)E|E|Fn

h(
√
m(V̂n−

Vn))
∗ − E|Fn

h(G)| = suph∈BL1(Dn)E|E|Fn
h((Gn)

∗ − E|Fn
h(G)| which converges to zero by

(A.2), and by E|Fn
h(G) = Eh(G) due to independence of G from Fn.

By Lemma 3,

√
m

(
φ(V̂n) − φ(V )

)
= φ′

V

(√
m(V̂n − V )

)
+ o∗P (1),

√
m (φ(Vn) − φ(V )) = φ′

V (
√
m(Vn − V )) + o∗P (1).

(A.5)

Subtract these equations to conclude that the sequence
√
m(φ(V̂n)−φ(Vn))−φ′

V (
√
m(V̂n−

Vn)) converges unconditionally to zero in outer probability. Thus, the conditional proba-

bility on the right in (A.4) converges to zero in outer mean. �

A.3. Exchangeable Bootstrap. Let (W1, ...,Wn) denote the i.i.d. data. Next we define

the collection of exchangeable bootstrap methods that we can employ for inference. For

each n, let (en1, ..., enn) be an exchangeable, nonnegative random vector. Exchangeable

bootstrap uses the components of this vector as random sampling weights in place of

constant weights (1, ..., 1). A simple way to think of exchangeable bootstrap is as sampling

each variableWi the number of times equal to eni, albeit without requiring eni to be integer-

valued. Given an empirical process Vn(f) = 1
n

∑n
i=1 f(Xi), we define an exchangeable

bootstrap draw of this process as

V̂n(f) := Vn(f) +Gn(f)/
√
m, m = nē2n, Gn(f) :=

1√
n

n∑

i=1

(eni − ēn)f(Wi),

where ēn =
∑n

i=1 eni/n. This insures that each draw of V̂n assigns nonnegative weights to

each observation, which is important in applications of bootstrap to extremum estimators

to preserve convexity of criterion functions. We assume that, for some ε > 0

sup
n
E[e2+εn1 ] <∞, n−1

n∑

i=1

(eni − ēn)
2 →P 1, ē2n →P c ≥ 0, (A.6)

where the first two conditions are standard, see Van der Vaart and Wellner (1996), and

the last one is needed to apply the previous lemma. Let us consider the following special

cases: (1) The standard empirical bootstrap corresponds to the case where (en1, ..., enn)
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is a multinomial vector with parameters n and probabilities (1/n, ..., 1/n), so that ēn = 1

and m = n. (2) The Bayesian bootstrap corresponds to the case where U1, ..., Un are i.i.d.

nonnegative random variables, e.g. unit exponential, with E|U2+ε
1 ] < ∞ for some ε > 0,

and eni = Ui/Ūn, so that ēn = 1 and m = n. (3) The wild bootstrap corresponds to the

case where en1, ..., enn are i.i.d. vectors with E[e2+εn1 ] <∞ for some ε > 0, and V ar[en1] = 1,

so that m/n = ē2n →P Ee2n1 ≥ 0 and m0 = nEe2n1 → ∞. (4) The k out of n bootstrap

resamples k < n observations from W1, ...,Wn with replacement. This corresponds to

letting (en1, ..., enn) be equal to
√
n/k times multinomial vectors with parameters k and

probabilities (1/n, ..., 1/n). The condition (A.6) on the weights holds if k → ∞, so that

ē2n = k/n → c ≥ 0 and m = k → ∞. (5) The subsampling bootstrap corresponds to

resampling k < n observations from W1, ...,Wn without replacement. This corresponds to

letting (en1, ..., enn) be a row of k times the number n(n − k)−1/2k−1/2 and n − k times

the number 0, ordered at random, independent of the Wi’s. The condition (A.6) on the

weights holds if both k → ∞ and n − k → ∞. In this case ē2n = k/(n − k) → c ≥ 0 and

m = nk/(n− k) → ∞.

As a consequence of Lemma 6, we obtain the following result, which might be of inde-

pendent interest.

Lemma 7 (Functional delta method for exchangeable bootstrap). The exchangeable boot-

strap method described above satisfies condition (A.2), and therefore the conclusions of

Lemma 6 about validity of the functional delta method apply to this method.

Proof of Lemma 7: By Lemma 6, we only need to verify condition (A.2), which follows

by Theorem 3.6.13 of Van der Vaart and Wellner (1996). �

Appendix B. Inference Theory for Counterfactual Estimators (Proofs)

This section collects the proofs for the results in the main text of the paper.

B.1. Notation. Define Yx := QY (U |x), where U ∼ Uniform(U) with U = (0, 1). Denote

by Yx the support of Yx, YX := {(y, x) : y ∈ Yx, x ∈ X}, and UX := U × X . We assume

throughout that Yx ⊂ Y , which is a compact subset of R, and that x ∈ X , a compact subset

of Rp. In what follows, ℓ∞(UX ) denotes the set of bounded and measurable functions

h : UX 7→ R, and C(UX ) denotes the set of continuous functions mapping h : UX 7→ R.

B.2. Uniform Hadamard differentiability of conditional distribution functions

with respect to the conditional quantile functions. The following lemma establishes



36

the Hadamard differentiability of the conditional distribution function with respect to the

conditional quantile function. We use this result to prove Lemma 1 in the main text and

to derive the limit distribution for the policy estimators based on conditional quantile

models. We drop the dependence on the group index to simplify the notation.

Lemma 8 (Hadamard derivative of FY (y|x) with respect to QY (u|x)). Define FY (y|x, ht)
:=

∫ 1

0
1{QY (u|x) + tht(u|x) ≤ y}du. Under condition C, as tց 0,

Dht
(y|x, t) =

FY (y|x, ht) − FY (y|x)
t

→ Dh(y|x) := −fY (y|x)h(FY (y|x)|x).

The convergence holds uniformly in any compact subset of YX := {(y, x) : y ∈ Yx, x ∈ X},
for every ‖ht − h‖∞ → 0, where ht ∈ ℓ∞ (UX ), and h ∈ C(UX ).

Proof of Lemma 8: We have that for any δ > 0, there exists ǫ > 0 such that for

u ∈ Bǫ(FY (y|x)) and for small enough t ≥ 0

1{QY (u|x) + tht(u|x) ≤ y} ≤ 1{QY (u|x) + t(h(FY (y|x)|x) − δ) ≤ y};

whereas for all u 6∈ Bǫ(FY (y|x)),

1{QY (u|x) + tht(u|x) ≤ y} = 1{QY (u|x) ≤ y}.

Therefore, for small enough t ≥ 0
∫ 1

0
1{QY (u|x) + tht(u|x) ≤ y}du−

∫ 1

0
1{QY (u|x) ≤ y}du

t
(B.1)

≤
∫

Bǫ(FY (y|x))

1{QY (u|x) + t(h(FY (y|x)|x) − δ) ≤ y} − 1{QY (u|x) ≤ y}
t

du,

which by the change of variable ỹ = QY (u|x) is equal to

1

t

∫

J∩[y,y−t(h(FY (y|x)|x)−δ)]

fY (ỹ|x)dỹ,

where J is the image of Bǫ(FY (y|x)) under u 7→ QY (·|x). The change of variable is possible

because QY (·|x) is one-to-one between Bǫ(FY (y|x)) and J .

Fixing ǫ > 0, for t ց 0, we have that J ∩ [y, y − t(h(FY (y|x)|x) − δ)] = [y, y −
t(h(FY (y|x)|x) − δ)], and fY (ỹ|x) → fY (y|x) as FY (ỹ|x) → FY (y|x). Therefore, the right

hand term in (B.1) is no greater than

−fY (y|x) (h(FY (y|x)|x) − δ) + o (1) .

Similarly −fY (y|x) (h(FY (y|x)|x) + δ) + o (1) bounds (B.1) from below. Since δ > 0 can

be made arbitrarily small, the result follows.
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To show that the result holds uniformly in (y, x) ∈ K, a compact subset of YX , we use

Lemma 5. Take a sequence of (yt, xt) in K that converges to (y, x) ∈ K, then the preceding

argument applies to this sequence, since the function (y, x) 7→ −fY (y|x)h(FY (y|x)|x) is

uniformly continuous on K. This result follows by the assumed continuity of h(u|x),
FY (y|x) and fY (y|x) in both arguments, and the compactness of K. �

B.3. Proof of Lemma 1. This result follows by the Hadamard differentiability of the con-

ditional distribution function with respect to the conditional quantile function in Lemma

8, Condition Q, and the functional delta method in Lemma 3. �

B.4. Proof of Theorem 1. The joint uniform convergence result follows from Condition

D by the extended continuous mapping theorem in Lemma 2, since the integral is a contin-

uous operator. Gaussianity of the limit process follows from linearity of the integral. �

B.5. Proof of Theorem 2. The joint uniform convergence result and Gaussianity of the

limit process follow from Theorem 1 by the functional delta method in Lemma 3 , since

the quantile operator is Hadamard differentiable (see, e.g., Doss and Gill, 1992). �

B.6. Proof of Corollary 1. This result follows from Theorem 2 by the extended contin-

uous mapping theorem in Lemma 2. �

B.7. Proof of Corollary 2. This result follows from Theorem 1 by the extended contin-

uous mapping theorem in Lemma 2. �

B.8. Proof of Corollary 3. This result follows from Theorem 1 by the functional delta

method in Lemma 3 and the chain rule for Hadamard differentiable functionals in Lemma

4. �

B.9. Proof of Theorem 3. This result follows from the functional delta method for the

bootstrap and other simulation methods in Lemma 6. �

Appendix C. Limit distribution for the estimators of the effects

For policy interventions that can be implemented either as a known transformation

of the covariate, X1 = g(X0), or as a change in the conditional distribution of Y given

X, we can also identify and estimate the distribution of the effect of the policy, ∆k
j =

Y k
j − Y 0

0 , j, k ∈ {0, 1}, under Condition RP stated in the main text. The following
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results provide estimators for the distribution and quantile functions of the effects and

limit distribution theory for them. Let D = {δ ∈ R : δ = y − ỹ, y ∈ Y , ỹ ∈ Y}.

Lemma 9 (Limit distribution for estimators of conditional distribution and quantile func-

tions). Let Q̂∆0
(u|x) = Q̂Y0

(u|g(x)) − Q̂Y0
(u|x) and Q̂∆1

(u|x) = Q̂Y1
(u|x) − Q̂Y0

(u|x) be

estimators of the conditional quantile function of the effect Q∆j
(u|x), j ∈ {0, 1}.16 Under

the conditions C, Q, and RP, we have:

√
n

(
Q̂∆j

(u|x) −Q∆j
(u|x)

)
⇒ V∆j

(u, x), j ∈ {0, 1},

in ℓ∞((0, 1) × X ), where V∆0
(u, x) :=

√
λ0[V0(u, g(x)) − V0(u, x)] and V∆1

(u, x) :=√
λ1V1(u, x) −

√
λ0V0(u, x). The Gaussian processes (u, x) 7→ V∆j

(u, x), j ∈ {0, 1}, have

zero mean and covariance function ΩVjr
(u, x, ũ, x̃) := E[V∆j

(u, x)V∆r
(ũ, x̃)], for j, r ∈

{0, 1}.
Let F̂∆j

(δ|x) =
∫ 1

0
1{Q̂∆j

(u|x) ≤ δ}du be an estimator of the conditional distribution of

the effects F∆j
(δ|x), for j ∈ {0, 1}. Under the conditions C, Q, and RP, we have:

√
n

(
F̂∆j

(δ|x) − F∆j
(δ|x)

)
⇒ −f∆j

(δ|x)V∆j
(F∆j

(δ|x), x) =: Z∆j
(δ, x), j ∈ {0, 1},

in ℓ∞(D ×X ), and (δ, x) 7→ Z∆j
(δ, x), j ∈ {0, 1}, have zero mean and covariance function

ΩZjr
(δ, x, δ̃, x̃) := E[Z∆j

(δ, x)Z∆r
(δ̃, x̃)], for j, r ∈ {0, 1}. The conditional density of the

effect, f∆j
(δ|x), is assumed to be bounded above and away from zero.17

Proof of Lemma 9. The uniform convergence result for the conditional quantile processes
√
n(Q̂∆j

(u|x)−Q∆j
(u|x)), j ∈ {0, 1}, follows from Conditions Q and RP by the extended

continuous mapping theorem in Lemma 2. Uniform convergence of the conditional distri-

bution processes
√
n(F̂∆j

(δ|x) − F∆j
(δ|x)), j ∈ {0, 1}, follows from the covergence of the

quantile process by the functional delta method in Lemma 3. The Hadamard differentia-

bility of F∆j
(δ|x) with respect to Q∆j

(u|x) can be established using the same argument

as in the proof of Lemma 8. �

Theorem 4 (Limit distribution for estimators of the marginal distribution and quantile

functions). Under the conditions M, C, Q, and RP, the estimators F̂ k
∆j

(δ) =

16In the distribution approach, Q̂Yj
(u|x) can be obtained by inversion of the estimator of the conditional

distribution.
17This assumption rules out degenerated distributions for the distribution of effects, such as constant

policy effects. These “distributions” can be estimated using standard regression methods.
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∫
X
F̂∆j

(δ|x)dFXk
(x) of the marginal distributions of the effects F k

∆j
(δ) jointly converge

in law to the following Gaussian processes:

√
n

(
F̂ k

∆j
(δ) − F k

∆j
(δ)

)
⇒

∫

X

Z∆j
(δ, x)dFXk

(x) =: Zk
∆j

(δ), j, k ∈ {0, 1},

in ℓ∞(D), where δ 7→ Zk
∆j

(δ), j, k ∈ {0, 1}, have zero mean and covariance function

Ωks
Zjr

(δ, δ̃) := E[Zk
∆j

(δ)Zs
∆r

(δ̃)], for j, k, r, s ∈ {0, 1}.
Under the conditions M, C, Q, and RP, the estimators Q̂k

∆j
(u) = inf{δ : F̂ k

∆j
(δ) ≥ u} of

the marginal quantile functions of the effects Qk
∆j

(u) jointly converge in law to the following

Gaussian processes:

√
n

(
Q̂k

∆j
(u) −Qk

∆j
(u)

)
⇒ −Zk

∆j
(Qk

∆j
(u))/fk∆j

(Qk
∆j

(u)) =: V k
∆j

(u), j, k ∈ {0, 1},

in ℓ∞((0, 1)), where fk∆j
(δ) =

∫
X
f∆j

(δ|x)dFXk
(x) and u 7→ V k

∆j
(u), j ∈ {0, 1}, have zero

mean and variance function Ωks
Vjr

(u, ũ) := E[V k
∆j

(u)V s
∆r

(ũ)], for j, k, r, s ∈ {0, 1}.

Proof of Theorem 4. The uniform convergence result for the marginal distribution

functions follows from the convergence of the conditional processes in Lemma 9 by the

extended continuous mapping theorem in Lemma 2, since the integral is a continuous op-

erator. Gaussianity of the limit process follows from linearity of the integral. The uniform

convergence result for the quantile function follows from the convergence of the distribu-

tion function by the functional delta method in Lemma 3, since the quantile operator is

Hadamard differentiable (see, e.g., Doss and Gill, 1992). �

Appendix D. Inference Theory for Counterfactuals Estimators: The

Case with Estimated Covariate Distributions

This section presents additional results for the case where the covariate distributions

are estimated. These results complement the analysis in the main text.

D.1. Limit theory, bootstrap, and other simulation methods. We start by restat-

ing Condition D to incorporate the assumptions about the estimators of the covariate

distributions.

Condition DC. (a) Let Ẑj(y, x) :=
√
n(F̂Yj

(y|x) − FYj
(y|x)) and ĜXk

(f) :=
√
n

∫
fd(F̂Xk

(x)−FXk
(x)), where F̂Xk

are estimated probability measures, for j, k ∈ {0, 1}.
These measures must support the P-Donsker property, namely

(
Ẑ0, Ẑ1, Ĝ

0
X , Ĝ

1
X

)
⇒

(√
λ0Z0,

√
λ1Z1,

√
λ0GX0

,
√
λ1GX1

)
,
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in the space ℓ∞(Y × X ) × ℓ∞(Y × X ) × ℓ∞(F) × ℓ∞(F), for each FX-Donsker class F ,

where the right hand side is a zero mean Gaussian process and λj is the limit of the ratio

of the sample size in group j to the total sample size n, for j ∈ {0, 1}.
(b) The function class {FYj

(y|X), y ∈ Y} is FXk
-Donsker, for j, k ∈ {0, 1}.

The condition on the estimated measure is weak and is satisfied when F̂Xj
is an empirical

measure based on a random sample. Moreover, the condition holds for various smooth

empirical measures; in fact, in this case the class of functions F for which DC(a) holds can

be much larger than Glivenko-Cantelli or Donsker (see Radulovic and Wegkamp, 2003,

and Gine and Nickl, 2008). Condition DC(b) is also a weak condition that holds for rich

classes of functions, see, e.g., van der Vaart (1998).

Theorem 5 (Limit distribution and inference theory for counterfactual marginal distribu-

tions). (1) Under conditions M and DC the estimators F̂ k
Yj

(y) =
∫
X
F̂Yj

(y|x)dF̂Xk
(x) of the

marginal distribution functions F k
Yj

(y) jointly converge in law to the following Gaussian

processes:

√
n

(
F̂ k
Yj

(y) − F k
Yj

(y)
)
⇒

√
λjZ

k
j (y) +

√
λkGXk

(FYj
(y|·)) =: Z̃k

j (y), j, k ∈ {0, 1}, (D.1)

in ℓ∞(Y), where y 7→ Z̃k
j (y), j, k ∈ {0, 1}, have zero mean and covariance function, for

j, k, r, s ∈ {0, 1},

Σ̃ks
Zjr

(y, ỹ) :=
√
λjλrΣ

ks
Zjr

(y, ỹ) +
√
λkλsE

[
GXk

(FYj
(y|·))GXs

(FYr
(ỹ|·))

]
, (D.2)

where Σks
Zjr

is defined as in (3.4).

(2) Any bootstrap or other simulation method that consistently estimates the law of the

empirical process (Ẑ0, Ẑ1, ĜX0
, ĜX1

) in the space ℓ∞(Y × X )×ℓ∞(Y × X )×ℓ∞(F)×ℓ∞(F),

also consistently estimates the law of the empirical process (Z̃0
0 , Z̃

1
1 , Z̃

1
0 , Z̃

0
1) in the space

ℓ∞(Y) × ℓ∞(Y) × ℓ∞(Y) × ℓ∞(Y).

Proof of Theorem 5: The first part of the theorem follows by the functional delta method

in Lemma 3 and the Hadamard differentiability of the marginal functions demonstrated in

Lemma 10 below with t = 1/
√
n. The second part of the theorem follows by the functional

delta method for the bootstrap and other simulation methods in Lemma 6. �

The expressions for the covariance functions can be further characterized in some leading

cases:

(1) The distributions of the covariates in groups 0 and 1 correspond to different popula-

tions and are estimated by the empirical distributions using mutually independent random
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samples. In this case GX0
and GX1

are independent integrals over Brownian bridges, and

the second component of the covariance function in (D.2) is
∫
X
[FYj

(y|x)−F k
Yj

(y)][FYr
(ỹ|x)−

F k
Yr

(ỹ)]dFXk
(x) for k = s and zero for k 6= s.

(2) The covariates in group j are known transformations of the covariates in group

0, X1 = g(X0), and the covariate distribution in group 0 is estimated by the empirical

distribution from a random sample. In this case GX0
and GX1

are highly dependent

processes. The second components of the covariance function in (D.2) is
∫
X
[FYj

(y|x) −
F 0
Yj

(y)] [FYr
(ỹ|x) − F 0

Yr
(ỹ)]dFX0

(x) for k = s = 0,
∫
X
[FYj

(y|g(x)) − F 1
Yj

(y)]FYr
(ỹ|g(x)) −

F 1
Yr

(ỹ)]dFX0
(x) for k = s = 1, and

∫
X
[FYj

(y|x) − F 0
Yj

(y)][FYr
(ỹ|g(x)) − F 1

Yr
(ỹ)]dFX0

(x) for

k 6= s.

Corollary 4. Limit distribution theory and validity of bootstrap and other simulation

methods for the estimators of the marginal quantile function, quantile policy effects, distri-

bution policy effects, and differentiable functionals can be obtained using similar arguments

to Theorems 2 and 3, and Corollaries 1–3 with obvious changes of notation.

D.2. Hadamard derivatives of marginal functionals. In order to state the next re-

sult, we define the pseudometric ρL2(P ) on Y × X , and on F by

ρjL2(P )((y, x), (ỹ, x̃)) =

[
E

{
Zj(y, x) − Zj(ỹ, x̃)

}2
]1/2

, for j ∈ {0, 1},

ρkL2(P )(f, f̃) =

[
E

{
GXk

(f) −GXk
(f̃)

}2
]1/2

, for k ∈ {0, 1}.

It follows from Lemma 18.15 in van der Vaart (1998) that Y × X is totally bounded

under ρjL2(P ) and Zj has continuous paths with respect to ρjL2(P ) for each j. Moreover,

the completion of Y × X , denoted Y × X , with respect to either of the pseudometrics is

compact. Likewise, F is totally bounded under ρkL2(P ) for each k.

Lemma 10. Consider the mapping φ : Dφ ⊂ D = ℓ∞(YX ) × ℓ∞(F) 7→ E = ℓ∞(Y),

φ(FYj
, FXk

) :=

∫
FYj

(·|x)dFXk
(x), j, k ∈ {0, 1},

where the domain Dφ is the product of the space of the conditional distribution functions

FYj
(·|·) ∈ F on YX and the space of bounded maps f 7→

∫
fdFXk

, where FXk
is a dis-

tribution function on X , for j, k ∈ {0, 1}.18 Consider the sequence (F t
Yj
, F t

Xk
) ∈ Dφ such

18That is, we identify FXk
with the map f 7→

∫
fdFXk

in ℓ∞(F).
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that for αtj := (F t
Yj
− FYj

)/(t
√
λj), dβ

t
k := d(F t

Xk
− FXk

)/(t
√
λk), and βtk(f) :=

∫
fdβtk, as

tց 0

αtj → αj ∈ C(YX , ρjL2(P )) in ℓ∞(YX ),

βtk → βk ∈ C(F , ρkL2(P )) in ℓ∞(F),

for the FXk
-Donsker class F and j, k ∈ {0, 1}. Finally, we assume that {FYj

(y|x), y ∈ Y}
is FXk

-Donsker, for j, k ∈ {0, 1}. Then, as tց 0

φ(F t
Yj
, F t

Xk
) − φ(FYj

, FXk
)

t
→ φ′

FYj
,FXk

(αj , βk),

where

φ′
FYj

,FXk
(αj , βk) :=

√
λj

∫
αj(·|x)dFXk

(x) +
√
λk

∫
FYj

(·|x)dβk(x),

and the derivative map (α, β) 7→ φ′
FYj

,FXk
(α, β), mapping Dφ to E, is continuous.

Proof of Lemma 10. Write
φ(F t

Yj
,F t

Xk
)−φ(FYj

,FXk
)

t
− φ′

FYj
,FXk

(αj , βk) as

√
λj

∫
(αtj−αj)dFXk

+
√
λk

∫
FYj

(dβtk−dβk)+
√
λjλk

∫
αjtdβ

t
k+

√
λjλk

∫
(αtj−αj)tdβtk

(D.3)

The first term of (D.3) is bounded by ‖αtj−αj‖YX

∫
dFXk

→ 0. The second term vanishes,

since for any FXk
-Donsker set F ,

∫
fdβtk →

∫
fdβk in ℓ∞(F), and {FYj

(y|x), y ∈ Y} ⊂ F
by assumption. The third term vanishes by the argument provided below. The fourth

term vanishes, since |
∫

(αtj − αj)tdβ
t
k| ≤ ‖αtj − αj‖YX

∫
|tdβtk| ≤ 2‖αtj − αj‖YX → 0.

Since αj is continuous on the compact semi-metric space (YX , ρjL2(P )), there exists a

finite measurable partition ∪mi=1YX im of YX such that αj varies less than ǫ on each subset.

Let πm(y, x) = (yim, xim) if (y, x) ∈ YX im, where (yim, xim) is an arbitrarily chosen point

within YX im for each i; also let 1im(y, x) = 1{(y, x) ∈ YX im}. Then
∣∣∣∣
∫
αjtdβ

t
k

∣∣∣∣ ≤ 2‖αj − αj ◦ πm‖YX +
m∑

i=1

|αj(yim, xim)|tβtk(1im)

≤ 2ǫ+

m∑

i=1

|αj(yim, xim)|t(βk(1im + o(1))

≤ 2ǫ+ tm

[
‖αj‖YX max

i≤m
βk(1im) + o(1)

]
,

≤ 2ǫ+O(t),

since {1im, i ≤ m} is a FXk
-Donsker class. The constant ǫ is arbitrary, so the left hand

side of the preceding display converges to zero.
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Finally, the norm on D is given by ‖·‖YX∨‖·‖F . The second component of the derivative

map is trivially continuous with respect to ‖ · ‖F . The first component is continuous with

respect to ‖·‖YX by the first term in (D.3) vanishing, as shown above. Hence the derivative

map is continuous. �

Appendix E. Functional Delta Method and Bootstrap and Other

Simulation Methods for Z-processes

This section derives a preliminary result that is key to deriving the limit distribution and

inference theory for various estimators of the conditional distribution and quantile func-

tions. This result shows that suitably defined Z-estimators satisfy a functional central limit

theorem and that we can estimate their laws using bootstrap and related methods. The

result follows from a lemma that establishes Hadamard differentiability of Z-functionals in

spaces that are particularly well-suited for our applications.

E.1. Limit distribution and inference theory for approximate Z-processes. Let

us consider an index set T and a set Θ ⊂ Rp. We consider Z-estimation processes {θ̂(u), u ∈
T}, where for each u ∈ T , θ̂(u) satisfies ‖Ψ̂(θ̂(u), u)‖ ≤ infθ∈Θ ‖Ψ̂(θ, u)‖+ǫn, with ǫn ց 0 at

some rate. That is, θ̂(u) is an approximate solution to the problem of minimizing ‖Ψ̂(θ, u)‖
over θ ∈ Θ. The random function (θ, u) 7→ Ψ̂(θ, u) is an estimator of some fixed population

function (θ, u) 7→ Ψ(θ, u), and satisfies a functional central limit theorem. The following

lemma specifies conditions under which the Z-processes satisfy a functional central limit

theorem, and under which bootstrap and other simulation methods consistently estimate

the law of this process.

Lemma 11 (Limit distribution and inference theory for approximate Z-processes). Let T

be a relatively compact set of some metric space, and Θ be a compact subset of Rp. Assume

that

(i) for each u ∈ T , Ψ(·, u) : Θ 7→ Rp possesses a unique zero at θ0(u) ∈ interior Θ,

and has inverse Ψ−1(·, u) that is continuous at 0 uniformly in u ∈ T ,

(ii) Ψ(·, u) is continuously differentiable at θ0(u) uniformly in u ∈ T , with derivative

Ψ̇θ0(u),u that is uniformly non-singular, namely infu∈T inf‖h‖=1 ‖Ψ̇θ0(u),uh‖ > 0.

(iii)
√
n(Ψ̂− Ψ) ⇒ Z in ℓ∞(Θ × T ), where Z is a.s. continuous on Θ× T with respect

to the Euclidean metric,

(iv) Bootstrap or some other method consistently estimates the law of
√
n(Ψ̂ − Ψ).
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For each u ∈ T , let θ̂(u) be such that ‖Ψ̂(θ̂(u), u)‖ ≤ infθ∈Θ ‖Ψ̂(θ, u)‖ + ǫn, with ǫn =

o(n−1/2). Then, under conditions (i)–(iii)

√
n(θ̂(·) − θ0(·)) ⇒ −Ψ̇−1

θ0(·),· [Z(θ0(·), ·)] in ℓ∞(T ).

Moreover, any bootstrap or other method that satisfies condition (iv) consistently estimates

the law of the empirical process
√
n(θ̂ − θ0) in ℓ∞(T ).

Proof of Lemma 11. The results follow by the functional delta method in Lemma 3

and by the functional delta method for bootstrap and other methods in Lemma 6, and the

Hadamard differentiability of Z-functionals established in Lemma 12 with t = 1/
√
n. �

The proof of the preceding result relies on the following lemma. Let T be a relatively

compact set of some metric space, and Θ be a compact subset of Rp. An element θ ∈ Θ

is an r-approximate zero of the map θ 7→ z(θ, u) if for some r > 0

‖z(θ, u)‖ ≤ inf
θ′∈Θ

‖z(θ′, u)‖ + r.

Let φ(·, r) : ℓ∞(Θ) 7→ Θ be a map that assigns one of its r-approximate zeroes φ(z(·, u), r)
to each element z(·, u) ∈ ℓ∞(Θ).

Lemma 12. Assume that conditions (i) and (ii) on the function Ψ stated in the preceding

lemma hold. Take any zt → z uniformly on Θ × T as t ց 0, for a continuous map

z : Θ × T 7→ R
p, and suppose that qt ց 0 uniformly on T as t ց 0. Then, for the

tqt(u)-approximate zero of Ψ(·, u)+ tzt(·, u) denoted as θt(u) = φ(Ψ(·, u)+ tzt(·, u), tqt(u))
we have that, uniformly in u ∈ T ,

θt(u) − θ0(u)

t
→ φ′

Ψu,0(z(·, u)) := −Ψ̇−1
θ0(u),u[z(θ0(u), u)].

Here it is useful to think of t as 1/
√
n, where n is the sample size.

Remark. Our lemma is an alternative to van der Vaart and Wellner’s (1996) Lemma

3.9.34 on Hadamard differentiability of Z-functionals in general normed spaces. The con-

ditions of their lemma are difficult to meet in our context because they include the uniform

convergence of the functions zt over the parameter space F = ℓ∞(T ), the collection of all

bounded functions on T , which is an extremely large parameter space. In particular, to

apply their lemma we need that the empirical processes
√
n(Ψ̂−Ψ) indexed by F = ℓ∞(T )

converge weakly in the space ℓ∞(F × T ), which appears to be difficult to attain in appli-

cations such as quantile regression processes. Indeed, note that weak convergence in this

space requires F to be totally bounded, which is hard to attain when F is too rich a space.
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See Van der Vaart and Wellner (1996) p. 396 for a comment on the limitation of their

Lemma 3.9.34. Moreover, our lemma allows for approximate Z-estimators. This allows us

to cover quantile regression processes, where exact Z-estimators do not exist.

Proof of Lemma 12. We have that Ψ(θ0(u), u) = 0 for all u ∈ T . Let zt → z uniformly

on Θ × T for a map z : Θ × T 7→ ℓ∞(Θ × T ) that is continuous at each point, and qt ց 0

uniformly in u ∈ T as tց 0. By definition θt(u) = φ(Ψ(·, u) + tzt(·, u), tqt(u)) satisfies

‖Ψ(θt(u), u)−Ψ(θ0(u), u)+tzt(θt(u), u)‖ ≤ inf
θ∈Θ

‖Ψ(θ, u)+tzt(θ, u)‖+tqt(u) =: tλt(u)+tqt(u),

uniformly in u ∈ T . The the rest of the proof has three steps. In Step 1, we establish

a rate of convergence for θt(·) to θ(·). In Step 2, we verify the main claim of the lemma

concerning the linear representation for t−1(θt(·) − θ(·)), assuming that λt(·) = o(1). In

Step 3, we verify that λt(·) = o(1).

Step 1. Here we show that uniformly in u ∈ T , ‖θt(u) − θ0(u)‖ ≤ c−1‖Ψ(θt(u), u) −
Ψ(θ0(u), u)‖ = O(t). Note that λt(u) ≤ ‖t−1Ψ(θ0(u), u) + zt(θ0(u), u)‖ = ‖z(θ0(u), u) +

o(1)‖ = O(1) uniformly in u ∈ T . We conclude that uniformly in u ∈ T , as tց 0

t−1(Ψ(θt(u), u) − Ψ(θ0(u), u)) = −zt(θt(u), u) +O(λt(u) + qt(u)) = O(1)

and that uniformly in u ∈ T , ‖Ψ(θt(u), u) − Ψ(θ0(u), u)‖ = O(t). By assumption Ψ(·, u)
has a unique zero at θ0(u) and has an inverse that is continuous at zero uniformly in u ∈ T ;

hence it follows that uniformly in u ∈ T ,

‖θt(u) − θ0(u)‖ ≤ dH(Ψ−1(Ψ(θt(u), u), u),Ψ
−1(0, u)) → 0,

where dH is the Hausdorff distance. By continuous differentiability assumed to hold uni-

formly in u ∈ T , ‖Ψ(θt(u), u) − Ψ(θ0(u), u) − Ψ̇θ0(u),u[θt(u) − θ0(u)]‖ = o(‖θt(u) − θ0(u)‖)
so that uniformly in u ∈ T

lim inf
tց0

‖Ψ(θt(u), u) − Ψ(θ0(u), u)‖
‖θt(u) − θ0(u)‖

≥ lim inftց0

‖Ψ̇θ0(u),u[θt(u) − θ0(u)]‖
‖θt(u) − θ0(u)‖

≥ inf‖h‖=1 ‖Ψ̇θ0(u),u(h)‖ = c > 0,

where h ranges over Rp, and c > 0 by assumption. Thus, uniformly in u ∈ T , ‖θt(u) −
θ0(u)‖ ≤ c−1‖Ψ(θt(u), u) − Ψ(θ0(u), u)‖ = O(t).

Step 2. Here we verify the main claim of the lemma. Using continuous differentiability

uniformly in u again, conclude ‖Ψ(θt(u), u)− Ψ(θ0(u), u)− Ψ̇θ0(u),u[θt(u)− θ0(u)]‖ = o(t).

Below we will show that λt(u) = o(1) and we also have qt(u) = o(1) uniformly in u ∈
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T by assumption. Thus, we can conclude that uniformly in u ∈ T , t−1(Ψ(θt(u), u) −
Ψ(θ0(u), u)) = −zt(θt(u), u) + o(1) = −z(θ0(u), u) + o(1) and

t−1[θt(u) − θ0(u)] = Ψ̇−1
θ0(u),u

[
t−1(Ψ(θt(u), u)− Ψ(θ0(u), u)) + o(1)

]

= −Ψ̇−1
θ0(u),u [z(θ0(u), u)] + o(1).

Step 3. In this step we show that λt(u) = o(1) uniformly in u ∈ T . Note that for

θ̄t(u) := θ0(u) − tΨ̇−1
θ0(u),u [z(θ0(u), u)] = θ0(u) + O(t), we have that θ̄t ∈ Θ, for small

enough t, uniformly in u ∈ T ; moreover, λt(u) ≤ ‖t−1Ψ(θ̄t(u), u) + zt(θ̄t(u), u)‖ = ‖ −
Ψ̇θ0(u),u{Ψ̇−1

θ0(u),u[z(θ0(u), u)]} + z(θ0(u), u) + o(1)‖ = o(1), as tց 0. �

Appendix F. Z-Estimators of Conditional Quantile and Distribution

Functions

This section derives limit theory for the principal estimators of conditional distribution

and quantile functions. These results establish the validity of bootstrap and other re-

sampling plans for the entire quantile regression process, the entire distribution regression

process, and related processes arising in estimation of various conditional quantile and

distribution functions. These results may be of a substantial independent interest.

In order to prove the results, we use Lemmas 11 and 12. We also specify some primitive

conditions that cover all of our leading examples. In all these examples, we have functional

parameter values u 7→ θ(u) where u ∈ T ⊂ R and θ(u) ⊂ Θ ⊂ Rp, where for each u ∈ T ,

θ0(u) solves the equation

Ψ(θ, u) := E[g(W, θ, u)] = 0,

where g : W × Θ × T 7→ Rp, W := (X, Y ) is a random vector with support W. For

estimation purposes we have an empirical analog of the above moment functions

Ψ̂(θ, u) = En[g(Wi, θ, u)]

where En is the empirical expectation and (W1, ...,Wn) is a random sample from W .

For each u ∈ T , the estimator θ̂(u) satisfies ‖Ψ̂(θ̂(u), u)‖ ≤ infθ∈Θ ‖Ψ̂(θ, u)‖ + ǫn, with

ǫn = o(n−1/2).

Condition Z.1. The set Θ is a compact subset of Rp and T is either a finite subset

or a bounded open subset of Rd.

(i) For each u ∈ T , Ψ(θ, u) := Eg(W, θ, u) = 0 has a unique zero at θ0(u) :=

(α0(u)
′, β ′

0)
′ ∈ interior Θ.
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(ii) The map (θ, u) 7→ Ψ(θ, u) is continuously differentiable at (θ0(u), u) with a uni-

formly bounded derivative on T , where differentiability in u needs to hold for the

case of T being a bounded open subset of Rd ; Ψ̇θ,u = G(θ, u) = ∂
∂θ′
Eg(W, θ, u) is

uniformly nonsingular at θ0(u), namely infu∈T inf‖h‖=1 ‖Ψ̇θ0(u),uh‖ > 0.

(iii) The function set G = {g(W, θ, u), (θ, u) ∈ Θ × T} is P-Donsker with a square

integrable envelope Ḡ. The map (θ, u) 7→ g(W, θ, u) is continuous at each (θ, u) ∈
Θ × T with probability one.

Condition Z.2. Either of the following holds:

(a) the conditional distribution has the form FY (u|x) = Λ(x, θ0(u)); or

(b) the quantile functions have the form QY (u|x) = Q(x, θ0(u)), where the functions

θ 7→ Λ(x, θ) and θ 7→ Q(x, θ) are continuously differentiable in θ with derivatives

that are uniformly bounded over the set X .

Lemma 13. Condition Z.1 implies conditions (i)-(iv) of Lemma 11. In particular, condi-

tion (iii) holds with
√
n(Ψ̂−Ψ) ⇒ Z, in ℓ∞(T ), where Z is a zero mean Gaussian process

with continuous paths in u ∈ T and covariance function

Ω(u, ũ) = E[g(W, θ0(u), u)g(W, θ0(ũ), ũ)
′].

Condition (iv) holds with the set of consistent methods for estimating the law of
√
n(Ψ̂−Ψ)

consisting of bootstrap and exchangeable bootstraps, more generally. Consequently, the con-

clusions of Lemma 11 hold, namely
√
n(θ̂(·)−θ0(·)) ⇒ −G(θ0(·), ·)−1 [Z(θ0(·), ·)] in ℓ∞(T ).

Moreover, bootstrap and exchangeable bootstraps consistently estimate the law of the em-

pirical process
√
n(θ̂ − θ0).

This lemma presents a useful result in its own right. From the point of view of this paper,

the following result, a corollary of the lemma, is of immediate interest to us since it verifies

Condition D and Condition Q for a wide class of estimators of conditional distribution and

quantile functions.

Theorem 6 (Limit distribution and inference theory for Z-estimators of conditional dis-

tribution and quantile functions). 1. Under conditions Z.1-Z.2(a), the estimator (u, x) 7→
F̂Y (u|x) of the conditional distribution function (u, x) 7→ FY (u|x) converges in law to a

continuous Gaussian process:

√
n

(
F̂Y (u|x) − FY (u|x)

)
⇒ Z(u, x) := −∂Λ(x, θ0(u))

∂θ′
G(θ0(u), u)

−1Z(θ0(u), u) (F.1)
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in ℓ∞(Y×X ), where (u, x) 7→ Z(u, x) has zero mean and covariance function ΣZ(u, x, ũ, x̃) :=

E[Z(u, x)Z(ũ, x̃)]. Moreover, bootstrap and exchangeable bootstraps consistently estimate

the law of Z.

2. Under conditions Z.1-Z.2(b), the estimator (u, x) 7→ Q̂Y (u|x) of the conditional

quantile function (u, x) 7→ QY (u|x) converges in law to a continuous Gaussian process:

√
n

(
Q̂Y (u|x) −QY (u|x)

)
⇒ V (u, x) := −∂Q(x, θ(u))

∂θ′
G(θ0(u), u)

−1Z(θ0(u), u), (F.2)

in ℓ∞((0, 1)×X ), where the process (u, x) 7→ V (u, x) has zero mean and covariance func-

tion ΣV (u, x, ũ, x̃) := E[V (u, x)V (ũ, x̃)]. Moreover, bootstrap and exchangeable bootstraps

consistently estimate the law of V .

Proof of Lemma 13. We shall verify conditions (i)-(iv) of Lemma 11.

We consider the case where T is a bounded open subset of R. The proof for the case

with a finite T is simpler, and follows similarly. To show condition (i), we note that by

the implicit function theorem and uniqueness of θ0, the inverse map Ψ−1(µ, u) exists on a

open neighborhood of each pair (µ = 0, u), and it is continuously differentiable in (µ, u)

at each pair (µ = 0, u) with a uniformly bounded derivative. This implies that for any

sequence of points (µt, ut) → (0, u) with u ∈ T̄ , where T̄ is the closure of T , we have that

‖Ψ−1(µt, ut) − Ψ−1(0, ut)‖ = O(‖µt‖) = o(1), verifying the continuity of the inverse map

at 0 uniformly in u. We can also conclude that θ0(u) = Ψ−1(0, u) is uniformly continuous

on T and we can extend it to T̄ by taking limits.

To show condition (ii) we take any sequence (ut, ht) → (u, h) with u ∈ T, h ∈ Rp and

then note that, for t∗ ∈ [0, t]

∆t(ut, ht) = t−1{Ψ(θ0(ut) + tht, ut) − Ψ(θ0(ut), ut)} =
∂Ψ

∂θ
(θ0(ut) + t∗ht, ut)ht

→ ∂Ψ

∂θ
(θ0(u), u)h = G(θ0(u), u)h,

using the continuity hypotheses on the derivative ∂Ψ/∂θ and the continuity of u 7→ θ0(u).

Hence by Lemma 5, we conclude that supu∈T,‖h‖=1 |∆t(u, h)−G(θ0(u), u)h| → 0 as tց 0.

To show condition (iii), note that by the Donsker central limit theorem for Ψ̂(θ, u) =

En[g(Wi, θ, u)] we have that
√
n(Ψ̂ − Ψ) ⇒ Z, where Z is a zero mean Gaussian pro-

cess with covariance function Ω(u, ũ) = E[g(W, θ0(u), u)g(W, θ0(ũ), ũ)
′] that has contin-

uous paths with respect to the L2(P ) semi-metric on G. The map (θ, u) 7→ g(W, θ, u)

is continuous at each (θ, u) with probability one. The only result that is not immediate

from the assumptions stated is that Z also has continuous paths on Θ × T with respect
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to the Euclidean metric ‖ · ‖. By assumption Z has continuous paths with respect to

ρL2(P )((θ, u), (θ̃, ũ)) = {E[g(W, θ, u) − g(W, θ̃, ũ)]2}1/2. As ‖(θ, u) − (θ̃, ũ)‖ → 0, we have

that g(W, θ, u) − g(W, θ̃, ũ) → 0 almost surely. It follows by the dominated convergence

theorem, with dominating function equal to (2Ḡ)2, where Ḡ is the square integrable en-

velope for the function class G, that {E[g(W, θ, u)− g(W, θ̃, ũ)]2}1/2 → 0. This verifies the

continuity condition. The square integrable envelope Ḡ exists by assumption.

To show (iv), we simply invoke Theorem 3.6.13 in Van der Vaart and Wellner (1996)

which implies that the bootstrap and exchangeable bootstraps, more generally, consistently

estimate the limit law of
√
n(Ψ̂ − Ψ), say G, in the sense of equation (A.2). �

Proof of Theorem 6. This result follows directly from Lemma 12, the functional delta

method in Lemma 3, the chain rule for Hadamard differentiable functionals in Lemma 4,

and the preservation of validity of bootstrap and other methods for Hadamard differen-

tiable functionals in Lemma 6. �

F.1. Examples of conditional quantile estimation methods. We consider the loca-

tion and quantile regression models described in the text.

Example 2. Quantile regression. The conditional quantile function of the outcome

variable Y given the covariate vector X is given by X ′β0(·). Here we can take the moment

functions corresponding to the canonical quantile regression approach:

g(W,β, u) = (u− 1{Y ≤ X ′β})X. (F.3)

We assume that the conditional density fY (·|X) is uniformly bounded and is continuous

at X ′β0(u) uniformly in u ∈ T , almost surely; moreover, infu∈T fY (X ′β0(u)|X) ≥ c > 0

almost surely; and E[XX ′] is finite and of full rank. The true parameter β0(u) solves

Eg(W,β, u) = 0 and we assume that the parameter space Θ is such that β0(u) ∈ interior Θ

for each u ∈ (0, 1).

Lemma 14. Conditions Z.1-Z.2(b) hold for this example with moment function given

by (F.3), T = (0, 1), QY (u|x) = x′β0(u), G(β0(u), u) = −E[fY (X ′β0(u)|X)XX ′], and

Ω(u, ũ) = {min(u, ũ) − uũ}E[XX ′].

Proof of Lemma 14. To show Z.1, we need to verify conditions on the derivatives of

the map β 7→ Eg(W,β, u). It is straightforward to show that we have that at (β, u) =

(β0(u), u),

∂

∂(β ′, u)
Eg(W,β, u) = [G(β, u), EX] = [−E[fY (X ′β|X)XX ′], EX],
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and the right hand side is continuous at (β0(u), u). This follows using the dominated

convergence theorem, the a.s. continuity and boundedness of the mapping y 7→ fY (y|X)

atX ′β0(u), as well as finiteness of E‖X‖2. Finally, note that β0(u) is the unique solution to

Eg(W,β, u) = 0 for each u because it is a root of a gradient of convex function. Moreover,

uniformly in u ∈ (0, 1), G(β0(u), u) ≥ fEXX ′ > 0, where f is the uniform lower bound

on fY (X ′β0(u)|X).

To show Z.1(iii) we verify that the function class G is P-Donsker with a square integrable

envelope and the continuity hypothesis. The function classes F1 = T , F2 = 1{Y ≤
X ′β, β ∈ R

p} are VC classes. Therefore the function classes Fkj = FkXj are also VC

classes because they are formed as products of a VC class with a fixed function (Lemma

2.6.18 in van der Vaart and Wellner, 1996). The difference F1j−F2j is a Lipschitz transform

of VC classes, so it is P-Donkser by Example 19.9 in van der Vaart, 1998. The collection

G = {F1j − F2j, j = 1, ..., p} is thus also Donsker. The envelope is given by 2 maxj |Xj|
which is square-integrable. Finally, the map (θ, u) 7→ (u − 1(Y ≤ X ′β))X is continuous

at each (β, u) ∈ Θ × T with probability one by the absolute continuity of the conditional

distribution of Y .

To show Z.2(b), we note that the map (x, θ) 7→ x′θ trivially verifies the hypotheses of

Z.2(b) provided the set X is compact. �

Example 1. Classical regression. This is the location model Y = X ′β0 + V, where

X is independent of V , so the conditional quantile function of outcome variable Y given the

conditioning variable X is given by X ′β0+α0(·), where E[Y |X] = X ′β0 and α0(·) = QV (·).
Here we can take the moment functions corresponding to using least squares to estimate

β0 and sample quantiles of residuals to estimate α0.

g(W,α, β, u) = [(u− 1{Y −X ′β ≤ α}), (Y −X ′β)X ′]′. (F.4)

We assume that the density of V = Y − X ′β0, fV (·) is uniformly bounded and is con-

tinuous at α0(u) uniformly in u ∈ T , almost surely; moreover, infu∈T f(α0(u)) ≥ c > 0

almost surely; EXX ′ is finite, and full rank, and EY 2 < ∞. The true parameter value

(α0(u), β
′
0)

′ solves Eg(W,α, β, u) = 0 and we assume that the parameter space Θ is such

that (α0(u), β
′
0)

′ ∈ interior Θ for each u ∈ (0, 1).

Lemma 15. Conditions Z.1-Z.3(b) hold for this example with moment function given by

(F.4), T = (0, 1), QY (u|x) = x′β0 + α0(u),

G(α0(u), β0, u) = −
[
fV (α0(u)) fV (α0(u))E[X]′

0p×1 EXX ′

]
, (F.5)
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and

Ω(u, ũ) =

[
min(u, ũ) − uũ −E[V 1{V ≤ α0(u)}]E[X]′

−E[V 1{V ≤ α0(u)}]E[X] E[V 2]EXX ′

]
. (F.6)

Proof of Lemma 15. The proof follows analogously to the proof of Lemma 14. Unique-

ness of roots can also be argued similarly, with β0 uniquely solving the least squares normal

equation, and α0 uniquely solving the quantile equation. �

F.2. Examples of conditional distribution function estimation methods. We con-

sider the distribution regression model described in the text and an alternative estimator

for the duration model based on distribution regression.

Example 4. Distribution regression. The conditional distribution function of the

outcome variable Y given the covariate vector X is given by Λ(X ′β0(·)), where Λ is either

the probit or the logit link function. Here we can take the moment functions corresponding

to the pointwise maximum likelihood estimation:

g(W,β, y) =
Λ(X ′β) − 1{Y ≤ y}
Λ(X ′β)(1 − Λ(X ′β))

λ(X ′β)X, (F.7)

where λ is the derivative of Λ. Let Y be either a finite set or a bounded open subset of

Rd. For the latter case we assume that the conditional distribution function y 7→ FY (y|X)

admits a density y 7→ fY (y|x), which is continuous at each y ∈ Y , a.s. Moreover, EXX ′ is

finite and full rank; the true parameter value β0(y) belongs to the interior of the parameter

space Θ for each y ∈ Y ; and Λ(X ′β)(1 − Λ(X ′β)) ≥ c > 0 uniformly on β ∈ Θ, a.s.

Lemma 16. Conditions Z.1-Z.2(a) hold for this example with moment function given by

(F.7), T = Y, u = y, FY (y|x) = Λ(x′β0(y)),

G(β0(y), y) := E

[
λ(X ′β0(y))

2

Λ(X ′β0(y))[1 − Λ(X ′β0(y))]
XX ′

]
,

and, for ỹ ≥ y,

Ω(y, ỹ) = E

[
λ(X ′β0(y))λ(X ′β0(ỹ))

Λ(X ′β0(y))[1 − Λ(X ′β0(ỹ))]
XX ′

]
.

Proof of Lemma 16. We consider the case where Y is a bounded open subset of Rd.

The case where Y is a finite set is simpler and follows similarly.

To show Z.1, we need to verify conditions on the derivatives of the map β 7→ Eg(W,β, u).

By a straightforward calculation we have that at (β, y) = (β0(y), y),

∂

∂(β ′, y)
Eg(W,β, y) =

[
E[

∂

∂β ′
g(W,β, y)], [

∂

∂y
Eg(W,β, y)]

]
= [G(β, y), R(β, y)],
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where, for H(z) = λ(z)/{Λ(z)[1 − Λ(z)]} and h(z) = dH(z)/dz,

G(β, y) := E [{h(X ′β)[Λ(X ′β) − 1{Y ≤ y}] +H(X ′β)λ(X ′β)}XX ′] ,

R(β, y) = E [H(X ′β)fY (y|X)X}] .

Both terms are continuous in (β, y) at (β0(y), y) for each y ∈ Y . This follows from using by

the dominated convergence theorem and the following ingredients: (1) a.s. continuity of the

map (β, y) 7→ ∂
∂β′
g(W,β0(y), y), (2) domination of ‖ ∂

∂β′
g(W,β, y)‖ by a square-integrable

function const‖X‖, (3) a.s. continuity of the conditional density function y 7→ fY (y|X),

and (4) Λ(X ′β)(1 − Λ(X ′β)) ≥ c > 0 uniformly on β ∈ Θ, a.s. Finally, also note that

the solution β0(y) to Eg(W,β, y) = 0 is unique for each y ∈ Y because it is a root of a

gradient of a convex function.

To show Z.1(iii), we verify that the function class G is P-Donsker with a square integrable

envelope. Function classes F1 = {X ′β, β ∈ Θ}, F2 = {1{Y ≤ y}, y ∈ Y}, and {Xj},
j = 1, ..., p are VC classes of functions. The final class

G =

{
Λ(F1) −F2

Λ(F1)(1 − Λ(F1))
λ(F1)Xj , j = 1, ..., p

}
,

is a Lipschitz transformation of VC classes with Lipschitz coefficient bounded by cmaxj |Xj|
and the envelope function c′ maxj |Xj|, which are square-integrable; here 1 and c′ are some

positive constants. Hence G is Donsker by Example 19.9 in van der Vaart (1998). Finally,

the map

(β, y) 7→ Λ(X ′β) − 1{Y ≤ y}
Λ(X ′β)(1 − Λ(X ′β))

λ(X ′β)X

is continuous at each (β, y) ∈ Θ×Y with probability one by the absolute continuity of the

conditional distribution of Y and by the assumption that Λ(X ′β)(1 − Λ(X ′β)) ≥ c > 0

uniformly on β ∈ Θ, a.s.

To show Z.2(a), we note that the map (x, θ) 7→ Λ(x′θ) trivially verifies the hypotheses

of Z.2(a) provided the set X is compact. �

Example 3b. Duration regression. An alternative to the proportional hazard

model in duration and survival analysis is to specify the conditional distribution function

of the duration Y given the covariate vector X as Λ(α0(·) + X ′β0), where Λ is either the

probit or the logit link function. We normalize α0(y0) = 0 at some y0 ∈ Y . Here we can
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take the following moment functions:

g(W,α, β, y) =




Λ(α +X ′β) − 1{Y ≤ y}
Λ(α+X ′β)(1 − Λ(α +X ′β))

λ(α +X ′β)

Λ(X ′β) − 1{Y ≤ y0}
Λ(X ′β)(1 − Λ(X ′β))

λ(X ′β)X




where λ is the derivative of Λ. The first set of equations is used for estimation of α0(y)

and the second for estimation of β0.

Let Y be either a finite set or a bounded open subset of Rd. For the latter case we assume

that the conditional distribution function y 7→ FY (y|X) admits a density y 7→ fY (y|x),
which is continuous at each y ∈ Y , a.s. Moreover, EXX ′ is finite and full rank; the

true parameter value (α0(y), β
′
0)

′ belongs to the interior of the parameter space Θ for each

y ∈ Y ; and Λ(α+X ′β)(1 − Λ(α+X ′β)) ≥ c > 0 uniformly on (α, β ′)′ ∈ Θ, a.s.

Lemma 17. Conditions Z.1-Z.2(a) hold for this example with moment function given by

(F.7), T = Y, u = y, FY (y|x) = Λ(α0(y) + x′β0),

G(α0(y), β0, y) = E
∂

∂(α, β ′)
g(W,α0(y), β0),

and Ω(y, ỹ) = E[g(W,α0(y), β0)g(W,α0(ỹ), β0)
′].

Proof of Lemma 17. The proof follows analogously to the proof of Lemma 16. �
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Figure 1. Empirical CDFs and 95% simultaneous confidence intervals

for observed wages in 1979 and 1988. Distributions for men are plotted

in the upper panel and distributions for women are plotted in the bottom

panel. Confidence intervals were obtained by bootstrap with 100 repetitions.

Vertical lines are the levels of the minimum wage.
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Figure 2. 95% simultaneous confidence intervals for observed quantile

functions, observed quantile policy effects and decomposition of the quantile

policy effects for men. Confidence intervals were obtained by bootstrap with

100 repetitions.
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Figure 3. 95% simultaneous confidence intervals for observed quantile

functions, observed quantile policy effects and decomposition of the quantile

policy effects for women. Confidence intervals were obtained by bootstrap

with 100 repetitions.
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Figure 4. 95% simultaneous confidence intervals for observed distribu-

tion functions, observed distribution policy effects and decomposition of the

distribution policy effects for men. Confidence intervals were obtained by

bootstrap with 100 repetitions.
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Figure 5. 95% simultaneous confidence intervals for observed distribu-

tion functions, observed distribution policy effects and decomposition of the

distribution policy effects for women. Confidence intervals were obtained by

bootstrap with 100 repetitions.
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Figure 6. 95% simultaneous confidence intervals for observed Lorenz,

observed Lorenz policy effects and decomposition of the Lorenz policy effects

for men. Confidence intervals were obtained by bootstrap with 100 repeti-

tions.
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Figure 7. 95% simultaneous confidence intervals for observed Lorenz,

observed Lorenz policy effects and decomposition of the Lorenz policy effects

for women. Confidence intervals were obtained by bootstrap with 100 repe-

titions.
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Figure 8. Comparison of distribution regression, censored distribution

regression and censored quantile regression estimates of the decomposition

of quantile policy effects for men.
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Figure 9. Comparison of distribution regression, censored distribution

regression and censored quantile regression estimates of the decomposition

of quantile policy effects for women.
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