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For Locally Stationary Time Series

Michael Vogt*

University of Cambridge

July 27, 2012

Abstract

In this paper, we study nonparametric models allowing for locally stationary re-
gressors and a regression function that changes smoothly over time. These models
are a natural extension of time series models with time-varying coefficients. We
introduce a kernel-based method to estimate the time-varying regression function
and provide asymptotic theory for our estimates. Moreover, we show that the
main conditions of the theory are satisfied for a large class of nonlinear autore-
gressive processes with a time-varying regression function. Finally, we examine
structured models where the regression function splits up into time-varying addi-
tive components. As will be seen, estimation in these models does not suffer from
the curse of dimensionality. We complement the technical analysis of the paper
by an application to financial data.

Key words: local stationarity, nonparametric regression, smooth backfitting.

AMS 2010 subject classifications: 62G08, 62G20, 62M10, 62P20.

1 Introduction

Classical time series analysis is based on the assumption of stationarity. However, many

time series exhibit a nonstationary behaviour. Examples come from fields as diverse as

finance, sound analysis and neuroscience.

One way to model nonstationary behaviour is provided by the theory of locally sta-

tionary processes introduced by Dahlhaus (cf. [6], [7], and [8]). Intuitively speaking, a

process is locally stationary if over short periods of time (i.e. locally in time) it behaves

approximately stationary. So far, locally stationary models have been mainly consid-

ered within a parametric context. Usually, parametric models are analyzed in which

the coefficients are allowed to change smoothly over time.

*I would like to thank Enno Mammen, Oliver Linton and Suhasini Subba Rao for numerous helpful
suggestions and comments. Support by the DFG-SNF research group FOR916 is gratefully acknowl-
edged.
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There is a considerable amount of papers that deal with time series models with time-

varying coefficients. Dahlhaus et al. [9], for example, study wavelet estimation in autore-

gressive models with time-dependent parameters. Dahlhaus & Subba Rao [10] analyze

a class of ARCH models with time-varying coefficients. They propose a kernel-based

quasi-maximum likelihood method to estimate the parameter functions; a kernel-based

normalized-least-squares method is suggested by Fryzlewicz et al. [11]. Linton & Hafner

[19] provide estimation theory for a multivariate GARCH model with a time-varying

unconditional variance. Finally, a diffusion process with a time-dependent drift and

diffusion function is investigated in Koo & Linton [15].

In this paper, we introduce a nonparametric framework which can be regarded as a

natural extension of time series models with time-varying coefficients. In its most

general form, the model is given by

Yt,T = m
( t
T
,Xt,T

)
+ εt,T for t = 1, . . . , T (1)

with E[εt,T |Xt,T ] = 0, where Yt,T and Xt,T are random variables of dimension 1 and

d, respectively. The model variables are assumed to be locally stationary and the

regression function as a whole is allowed to change smoothly over time. As usual in

the literature on locally stationary processes, the function m does not depend on real

time t but rather on rescaled time t
T

. This goes along with the model variables forming

a triangular array instead of a sequence. Throughout the introduction, we stick to

an intuitive concept of local stationarity. A technically rigorous definition is given in

Section 2.

There is a wide range of interesting nonlinear time series models that fit into the general

framework (1). An important example is the nonparametric autoregressive model

Yt,T = m
( t
T
, Yt−1,T , . . . , Yt−d,T

)
+ εt,T for t = 1, . . . , T (2)

with E[εt,T |Yt−1,T , . . . , Yt−d,T ] = 0, which is analyzed in Section 3. As will be seen

there, the process defined in (2) is locally stationary and strongly mixing under suitable

conditions on the function m and the error terms εt,T . Note that independently to the

present work, Kristensen [17] has developed results on local stationarity of the process

given in (2) under a set of assumptions similar to ours.

In Section 4, we develop estimation theory for the nonparametric regression function in

the general framework (1). As described there, the regression function is estimated by

nonparametric kernel methods. We provide a complete asymptotic theory for our esti-

mates. In particular, we derive uniform convergence rates and an asymptotic normality

result. To do so, we split up the estimates into a variance part and a bias part. In

order to control the variance part, we generalize results on uniform convergence rates

for kernel estimates as provided for example in Bosq [4], Masry [22], and Hansen [13].

The locally stationary behaviour of the model variables also changes the asymptotic
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analysis of the bias part. In particular, it produces an additional bias term which can

be regarded as measuring the deviation from stationarity.

Even though model (1) is theoretically interesting, it has an important drawback. Es-

timating the time-varying regression function in (1) suffers from an even more severe

curse of dimensionality problem than in the standard strictly stationary setting with

a time-invariant regression function. The reason is that in model (1), we fit a fully

nonparametric function m(u, ·) locally around each rescaled time point u. Compared

to the standard case, this means that we additionally smooth in time direction and

thus increase the dimensionality of the estimation problem by one. This makes the

procedure even more data consuming than in the standard setting and thus infeasible

in many applications.

In order to countervail this severe curse of dimensionality, we impose some structural

constraints on the regression function in (1). In particular, we consider additive models

of the form

Yt,T =
d∑
j=1

mj

( t
T
,Xj

t,T

)
+ εt,T for t = 1, . . . , T (3)

with Xt,T = (X1
t,T , . . . , X

d
t,T ) and E[εt,T |Xt,T ] = 0. In Section 5, we will show that the

component functions of this model can be estimated with two-dimensional nonpara-

metric convergence rates, no matter how large the dimension d. In order to do so, we

extend the smooth backfitting approach of Mammen et al. [20] to our setting.

To show the practical usefulness of our theory, we apply an additive volatility model

with time-varying component functions to a sample of financial data in Section 6. The

analysis makes visible how the component functions estimated at time points before

and during the recent financial crisis differ from each other.

2 Local Stationarity

Heuristically speaking, a process {Xt,T : t = 1, . . . , T}∞T=1 is locally stationary if it

behaves approximately stationary locally in time. This intuitive concept can be turned

into a rigorous definition in different ways. One way is to require that locally around

each rescaled time point u, the process {Xt,T} can be approximated by a stationary

process {Xt(u) : t ∈ Z} in a stochastic sense (cf. for example Dahlhaus & Subba Rao

[10]). This idea also underlies the following definition.

Definition 2.1. The process {Xt,T} is locally stationary if for each rescaled time point

u ∈ [0, 1] there exists an associated process {Xt(u)} with the following two properties:

(i) {Xt(u)} is strictly stationary with density fXt(u),

(ii) it holds that ∥∥Xt,T −Xt(u)
∥∥ ≤ (∣∣∣ t

T
− u
∣∣∣+

1

T

)
Ut,T (u) a.s.,
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where {Ut,T (u)} is a process of positive variables satisfying E[(Ut,T (u))ρ] < C for

some ρ > 0 and C < ∞ independent of u, t, and T . ‖ · ‖ denotes an arbitrary

norm on Rd.

Since the ρ-th moments of the variables Ut,T (u) are uniformly bounded, it holds that

Ut,T (u) = Op(1). As a consequence of the above definition, we thus have∥∥Xt,T −Xt(u)
∥∥ = Op

(∣∣∣ t
T
− u
∣∣∣+

1

T

)
.

The constant ρ can be regarded as a measure of how well Xt,T is approximated by Xt(u):

The larger ρ can be chosen, the less mass is contained in the tails of the distribution of

Ut,T (u). Thus, if ρ is large, then the bound (| t
T
−u|+ 1

T
)Ut,T (u) will take rather moderate

values for most of the time. In this sense, the bound and thus the approximation of

Xt,T by Xt(u) is getting better for larger ρ.

3 Locally Stationary Nonlinear AR Models

In this section, we examine a large class of nonlinear autoregressive processes with a

time-varying regression function that fit into the general framework (1). We show that

these processes are locally stationary and strongly mixing under suitable conditions on

the model components. To shorten notation, we repeatedly make use of the following

abbreviation: For any array of variables {Zt,T}, we let Zt−k
t,T := (Zt−k,T , . . . , Zt,T ) for

k > 0.

3.1 The Time-Varying Nonlinear AR (tvNAR) Process

We call an array {Yt,T : t ∈ Z}∞T=1 a time-varying nonlinear autoregressive (tvNAR)

process if Yt,T evolves according to the equation

Yt,T = m
( t
T
, Y t−d

t−1,T

)
+ σ
( t
T
, Y t−d

t−1,T

)
εt. (4)

A tvNAR process is thus an autoregressive process of the form (2) with errors εt,T =

σ( t
T
, Y t−d

t−1,T )εt. In the above definition, m(u, y) and σ(u, y) are smooth functions of

rescaled time u and y ∈ Rd. We stipulate that for u ≤ 0, m(u, y) = m(0, y) and

σ(u, y) = σ(0, y). Analogously, we set m(u, y) = m(1, y) and σ(u, y) = σ(1, y) for

u ≥ 1. Furthermore, the variables εt are assumed to be i.i.d. with mean zero. For each

u ∈ R, we additionally define the associated process {Yt(u) : t ∈ Z} by

Yt(u) = m
(
u, Y t−d

t−1 (u)
)

+ σ
(
u, Y t−d

t−1 (u)
)
εt, (5)

where the rescaled time argument of the functions m and σ is fixed at u.

As stipulated above, the functions m and σ in (4) do not change over time for t ≤ 0.

Put differently, Yt,T = m
(
0, Y t−d

t−1,T
)

+ σ
(
0, Y t−d

t−1,T
)
εt for all t ≤ 0. We can thus assume
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that Yt,T = Yt(0) for t ≤ 0. Consequently, if there exists a process {Yt(0)} that satisfies

the system of equations (5) for u = 0, then this immediately implies the existence of

a tvNAR process {Yt,T} satisfying (4). As will turn out, under appropriate conditions

there exists a strictly stationary solution {Yt(u)} to (5) for each u ∈ R, in particular

for u = 0. We can thus take for granted that the tvNAR process {Yt,T} defined by (4)

exists.

Before we turn to the analysis of the tvNAR process, we compare it to some re-

lated nonstationary models. Zhou & Wu [29] and Zhou [30] consider the framework

Zt,T = G( t
T
, ψt), where ψt = (. . . , εt−1, εt) with i.i.d. variables εt and G is a measurable

function. In their theory, the variables Zt(u) = G(u, ψt) play the role of a stationary

approximation at u ∈ [0, 1]. Under suitable assumptions, we can iterate equation (5)

to obtain that Yt(u) = F (u, ψt) for some measurable function F . Note however that

Yt,T 6= F ( t
T
, ψt) in general. This is due to the fact that when iterating (5), we use the

same functions m(u, ·) and σ(u, ·) in each step. In contrast to this, different functions

show up in each step when iterating the tvNAR variables Yt,T . Thus, the relation be-

tween the tvNAR process {Yt,T} and the approximations {Yt(u)} is in general different

from that between the processes {Zt,T} and {Zt(u)} in the setting of Zhou & Wu.

Another related model is analyzed in Karlsen & Tjøstheim [14]. They are concerned

with estimating the conditional mean function m(y) = E[Yt|Yt−1 = y], when the Markov

process {Yt} is nonstationary. In particular, they consider the situation that {Yt}
belongs to the class of null recurrent Markov chains. The concept of null recurrence is

quite distinct from that of local stationarity. The latter restricts the behaviour of the

process in the time domain: it requires the process to change its stochastic behaviour

not too fast over time. Null recurrence in contrast restricts the behaviour in the state

domain: it requires the time series to recur to each point in its range almost surely,

i.e. the process is not allowed to wander off for good. This difference in concepts is

reflected in the fact that the analysis of null recurrent time series requires techniques

substantially different from those for the analysis of locally stationary processes.

3.2 Assumptions

We now list some conditions which are sufficient to ensure that the tvNAR process is

locally stationary and strongly mixing. To start with, the function m is supposed to

satisfy the following conditions.

(M1) m is absolutely bounded by some constant Cm <∞.

(M2) m is Lipschitz continuous with respect to rescaled time u, i.e. there exists a

constant L <∞ such that |m(u, y)−m(u′, y)| ≤ L|u− u′| for all y ∈ Rd.

(M3) m is continuously differentiable with respect to y. The partial derivatives
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∂jm(u, y) := ∂
∂yj
m(u, y) have the property that for some K1 <∞,

sup
u∈R,‖y‖∞>K1

|∂jm(u, y)| ≤ δ < 1.

An exact formula for the bound δ is given in (35) in Appendix A.

The function σ is required to fulfill analogous assumptions.

(Σ1) σ is bounded by some constant Cσ <∞ from above and by some constant cσ > 0

from below, i.e. 0 < cσ ≤ σ(u, y) ≤ Cσ <∞ for all u and y.

(Σ2) σ is Lipschitz continuous with respect to rescaled time u.

(Σ3) σ is continuously differentiable with respect to y. The partial derivatives

∂jσ(u, y) := ∂
∂yj
σ(u, y) have the property that for some K1 < ∞, |∂jσ(u, y)| ≤

δ < 1 for all u ∈ R and ‖y‖∞ > K1.

Finally, the error terms are required to have the following properties.

(E1) The variables εt are i.i.d. with E[εt] = 0 and E|εt|1+η < ∞ for some η > 0.

Moreover, they have an everywhere positive and continuous density fε.

(E2) The density fε is bounded and Lipschitz, i.e. there exists a constant L <∞ such

that |fε(z)− fε(z′)| ≤ L|z − z′| for all z, z′ ∈ R.

To show that the tvNAR process is strongly mixing, we additionally need the following

condition on the density of the error terms:

(E3) Let d0, d1 be any constants with 0 ≤ d0 ≤ D0 < ∞ and |d1| ≤ D1 < ∞. The

density fε fulfills the condition∫
R
|fε([1 + d0]z + d1)− fε(z)|dz ≤ CD0,D1

(
d0 + |d1|

)
with CD0,D1 <∞ only depending on the bounds D0 and D1.

We shortly give some remarks on the above conditions:

(i) Our set of assumptions can be regarded as a strengthening of the assumptions needed

to show geometric ergodicity of nonlinear AR processes of the form Yt = m(Y t−d
t−1 ) +

σ(Y t−d
t−1 )εt. The main assumption in this context requires the functions m and σ not

to grow too fast outside a large bounded set. More precisely, it requires them to

be dominated by linear functions with sufficiently small slopes (cf. Tjøstheim [26],

Bhattacharya & Lee [3], An & Huang [2] or Chen & Chen [5] among others). (M3)

and (Σ3) are very close in spirit to this kind of assumption. They restrict the growth

of m and σ by requiring the derivatives of these functions to be small outside a large

bounded set.
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(ii) If we replace (M3) and (Σ3) with the stronger assumption that the partial derivatives

|∂jm(u, y)| and |∂jσ(u, y)| are globally bounded by some sufficiently small number δ <

1, then some straightforward modifications allow to dispense with the boundedness

assumptions (M1) and (Σ1) in the local stationarity and mixing proofs.

(iii) Condition (M3) implies that the derivatives ∂jm(u, y) are absolutely bounded.

Hence, there exists a constant ∆ < ∞ such that |∂jm(u, y)| ≤ ∆ for all u ∈ R and

y ∈ Rd. Similarly, (Σ3) implies that the derivatives ∂jσ(u, y) are absolutely bounded

by some constant ∆ <∞.

(iv) As already noted, (E3) is only needed to prove that the tvNAR process is strongly

mixing. It is for example fulfilled for the class of bounded densities fε whose first

derivative f ′ε is bounded, satisfies
∫
|zf ′ε(z)|dz <∞, and declines monotonically to zero

for values |z| > C for some constant C > 0. (See also Section 3 in Fryzlewicz & Subba

Rao [12] who work with assumptions closely related to (E3).)

3.3 Properties of the tvNAR Process

We now show that the tvNAR process is locally stationary and strongly mixing under

the assumptions listed above. In addition, we will see that the auxiliary processes

{Yt(u)} have densities that vary smoothly over rescaled time u. As will turn out, these

three properties are central for the estimation theory developed in Sections 4 and 5.

The first theorem summarizes some properties of the tvNAR process and of the auxiliary

processes {Yt(u)} that are needed to prove the main results.

Theorem 3.1. Let (M1)–(M3), (Σ1)–(Σ3), and (E1) be fulfilled. Then

(i) for each u ∈ R, the process {Yt(u), t ∈ Z} has a strictly stationary solution with

εt independent of Yt−k(u) for k > 0,

(ii) the variables Y t−d
t−1 (u) have a density fY t−dt−1 (u) w.r.t. Lebesgue measure,

(iii) the variables Y t−d
t−1,T have densities fY t−dt−1,T

w.r.t. Lebesgue measure.

The next result states that {Yt,T} can be locally approximated by {Yt(u)}. Together

with Theorem 3.1, it shows that the tvNAR process {Yt,T} is locally stationary in the

sense of Definition 2.1.

Theorem 3.2. Let (M1)–(M3), (Σ1)–(Σ3), and (E1) be fulfilled. Then

|Yt,T − Yt(u)| ≤
(∣∣∣ t
T
− u
∣∣∣+

1

T

)
Ut,T (u) a.s., (6)

where the variables Ut,T (u) have the property that E[(Ut,T (u))ρ] < C for some ρ > 0 and

C <∞ independent of u, t, and T .
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To get an idea of the proof of Theorem 3.2, consider the model Yt,T = m( t
T
, Yt−1,T ) + εt

for a moment. Our arguments are based on a backward expansion of the difference

Yt,T −Yt(u). Exploiting the smoothness conditions of (M2) and (M3) together with the

boundedness of m, we obtain that

∣∣Yt,T − Yt(u)
∣∣ ≤ C

n−1∑
r=0

r∏
k=1

|∂m(u, ξt−k)|
(∣∣∣ t
T
− u
∣∣∣+

r

T

)
+ C

n∏
k=1

|∂m(u, ξt−k)|,

where ∂m(u, y) is the derivative of m(u, y) with respect to y and ξt−k is an intermediate

point between Yt−k,T and Yt−k(u). To prove (6), we have to show that the product∏n
k=1 |∂m(u, ξt−k)| is contracting in some stochastic sense as n tends to infinity. The

heuristic idea behind the proof is the following: Using the conditions (M1) and (E1),

we can show that at least a certain fraction of the terms ξt−1, . . . , ξt−n take a value in

the region {y : |y| > K1} as n grows large. Since the derivative |∂m| is small in this

region according to (M3), this ensures that at least a certain fraction of the elements

in the product
∏n

k=1 |∂m(u, ξt−k)| are small in value. This prevents the product from

exploding and makes it contract to zero as n goes to infinity.

Next, we come to a result which shows that the densities of the approximating variables

Y t−d
t−1 (u) change smoothly over time.

Theorem 3.3. Let f(u, y) := fY t−dt−1 (u)(y) be the density of Y t−d
t−1 (u) at y ∈ Rd. If

(M1)–(M3), (Σ1)–(Σ3), and (E1)–(E2) are fulfilled, then

|f(u, y)− f(v, y)| ≤ Cy|u− v|p

with some constant 0 < p < 1 and Cy <∞ continuously depending on y.

We finally characterize the mixing behaviour of the tvNAR process. To do so, we first

give a quick reminder of the definitions of an α- and β-mixing array. Let (Ω,A,P) be

a probability space and let B and C be subfields of A. Define

α(B, C) = sup
B∈B,C∈C

|P(B ∩ C)− P(B)P(C)|

β(B, C) = E sup
C∈C
|P(C)− P(C|B)|.

Moreover, for an array {Zt,T : 1 ≤ t ≤ T}, define the coefficients

α(k) = sup
t,T :1≤t≤T−k

α
(
σ(Zs,T , 1 ≤ s ≤ t), σ(Zs,T , t+ k ≤ s ≤ T )

)
(7)

β(k) = sup
t,T :1≤t≤T−k

β
(
σ(Zs,T , 1 ≤ s ≤ t), σ(Zs,T , t+ k ≤ s ≤ T )

)
, (8)

where σ(Z) is the σ-field generated by Z. The array {Zt,T} is said to be α-mixing (or

strongly mixing) if α(k) → 0 as k → ∞. Similarly, it is called β-mixing if β(k) → 0.

Note that β-mixing implies α-mixing. The final result of this section shows that the

tvNAR process is β-mixing with coefficients that converge exponentially fast to zero.
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Theorem 3.4. If (M1)–(M3), (Σ1)–(Σ3), and (E1)–(E3) are fulfilled, then the tvNAR

process {Yt,T} is geometrically β-mixing, i.e. there exist positive constants γ < 1 and

C <∞ such that β(k) ≤ Cγk.

The strategy of the proof is as follows: The (conditional) probabilities that show up

in the definition of the β-coefficient in (8) can be written in terms of the functions m,

σ, and the error density fε. To do so, we derive recursive expressions of the model

variables Yt,T and of certain conditional densities of Yt,T . Rewriting the β-coefficient

with the help of these expressions allows us to derive an appropriate bound for it. The

overall strategy is thus similar to that of Fryzlewicz & Subba Rao [12] who also derive

bounds of mixing coefficients in terms of conditional densities. The specific steps of the

proof, however, are quite different. The details together with the proofs of the other

theorems can be found in Appendix A.

3.4 The Additive tvNAR Process

An interesting special case of the tvNAR process arises, when the functions m and σ

split up into additive components. In this case, the process is defined as

Yt,T =
d∑
j=1

mj

( t
T
, Yt−j,T

)
+
( d∑
j=1

σj

( t
T
, Yt−j,T

))1/2
εt. (9)

In this setting, we can replace the conditions (M1)–(M3) and (Σ1)–(Σ3) on the func-

tions m and σ by analogous conditions on the additive component functions. Most

importantly, (M3) (and analogously (Σ3)) can be replaced by

(Madd3) m1, . . . ,md are continuously differentiable with respect to y. The partial

derivatives ∂mj(u, yj) := ∂
∂yj
mj(u, yj) are such that for some K1 <∞,

sup
u∈R,|yj |>K1

|∂mj(u, yj)| ≤ δadd < 1.

Here, δadd is given by a similar expression as δ in (M3).

Inspecting the proofs of Theorems 3.1–3.4, it is straightforward to see that the theorems

still hold true under these modified conditions.

4 Kernel Estimation

In this section, we consider kernel estimation in the general model (1),

Yt,T = m
( t
T
,Xt,T

)
+ εt,T for t = 1, . . . , T

with E[εt,T |Xt,T ] = 0. Note that m( t
T
, ·) is the conditional mean function in model (1)

at the time point t. The function m is thus identified almost surely on the grid of points
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t
T

for t = 1, . . . , T . These points form a dense subset of the unit interval as the sample

size grows to infinity. As a consequence, m is identified almost surely at all rescaled

time points u ∈ [0, 1] if it is continuous in time direction (which we will assume in what

follows).

4.1 Estimation Procedure

We restrict attention to Nadaraya-Watson (NW) estimation. It is straightforward to

extend the theory to local linear (or more generally local polynomial) estimation. The

NW estimator of model (1) is given by

m̂(u, x) =

∑T
t=1Kh

(
u− t

T

)∏d
j=1Kh

(
xj −Xj

t,T

)
Yt,T∑T

t=1Kh

(
u− t

T

)∏d
j=1Kh

(
xj −Xj

t,T

) . (10)

Here and in what follows, we write Xt,T = (X1
t,T , . . . , X

d
t,T ) and x = (x1, . . . , xd) for

any vector x ∈ Rd, i.e. we use subscripts to indicate the time point of observation and

superscripts to denote the components of the vector. K denotes a one-dimensional

kernel function and we use the notation Kh(v) = K( v
h
). For convenience, we work with

a product kernel and assume that the bandwidth h is the same in each direction. Our

results can however be easily modified to allow for non-product kernels and different

bandwidths.

The estimate defined in (10) differs from the NW estimator in the standard strictly

stationary setting in that there is an additional kernel in time direction. We thus do

not only smooth in the direction of the covariates Xt,T but also in the time direction.

This takes into account that the regression function is varying over time. In what

follows, we derive the asymptotic properties of our NW estimate. The proofs are given

in Appendix B.

4.2 Assumptions

The following three conditions are central to our results:

(C1) The process {Xt,T} is locally stationary in the sense of Definition 2.1. Thus, for

each time point u ∈ [0, 1], there exists a strictly stationary process {Xt(u)} having

the property that ‖Xt,T−Xt(u)‖ ≤ (| t
T
−u|+ 1

T
)Ut,T (u) a.s. with E[(Ut,T (u))ρ] ≤ C

for some ρ > 0.

(C2) The densities f(u, x) := fXt(u)(x) of the variables Xt(u) are smooth in u. In

particular, f(u, x) is differentiable w.r.t. u for each x ∈ Rd and the derivative

∂0f(u, x) := ∂
∂u
f(u, x) is continuous.

(C3) The array {Xt,T , εt,T} is α-mixing.

10



As seen in Section 3, these three conditions are essentially fulfilled for the tvNAR

process: (C1) and (C3) follow immediately from Theorems 3.2 and 3.4. Moreover,

Theorem 3.3 shows that the tvNAR process satisfies a weakened version of (C2) which

requires the densities fXt(u) to be continuous rather than differentiable in time direction.

Note that we could do with this weakened version of (C2), however at the cost of getting

slower convergence rates for the bias part of the NW estimate.

In addition to the above three assumptions, we impose the following regularity condi-

tions:

(C4) f(u, x) is partially differentiable w.r.t. x for each u ∈ [0, 1]. The derivatives

∂jf(u, x) := ∂
∂xj
f(u, x) are continuous for j = 1, . . . , d.

(C5) m(u, x) is twice continuously partially differentiable with first derivatives ∂jm(u, x)

and second derivatives ∂2ijm(u, x) for i, j = 0, . . . , d.

(C6) The kernel K is symmetric about zero, bounded and has compact support, i.e.

K(v) = 0 for all |v| > C1 with some C1 < ∞. Furthermore, K is Lipschitz, i.e.

|K(v)−K(v′)| ≤ L|v − v′| for some L <∞ and all v, v′ ∈ R.

Finally, note that throughout the paper the bandwidth h is assumed to converge to

zero at least at polynomial rate, i.e. there exists a small ξ > 0 such that h ≤ CT−ξ for

some constant C > 0.

4.3 Uniform Convergence Rates for Kernel Averages

As a first step in the analysis of the NW estimate (10), we examine kernel averages of

the general form

ψ̂(u, x) =
1

Thd+1

T∑
t=1

Kh

(
u− t

T

) d∏
j=1

Kh(x
j −Xj

t,T )Wt,T (11)

with {Wt,T} being an array of one-dimensional random variables. A wide range of

kernel-based estimators including the NW estimator defined in (10) can be written as

functions of averages of the above form. The asymptotic behaviour of such averages is

thus of wider interest. For this reason, we investigate the properties of these averages for

a general array of variables {Wt,T}. Later on we will employ the results with Wt,T = 1

and Wt,T = εt,T .

We now derive the uniform convergence rate of ψ̂(u, x)− Eψ̂(u, x). To do so, we make

the following assumptions on the components in (11):

(K1) It holds that E|Wt,T |s ≤ C for some s > 2 and C <∞.

(K2) The array {Xt,T ,Wt,T} is α-mixing. The mixing coefficients α have the property

that α(k) ≤ Ak−β for some A <∞ and β > 2s−2
s−2 .
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(K3) Let fXt,T and fXt,T ,Xt+l,T be the densities of Xt,T and (Xt,T , Xt+l,T ), respectively.

For any compact set S ⊆ Rd, there exists a constant C = C(S) such that

supt,T supx∈S fXt,T (x) ≤ C and supt,T supx∈S E
[
|Wt,T |s

∣∣Xt,T = x
]
fXt,T (x) ≤ C.

Moreover, there exists a natural number l∗ < ∞ such that for all l ≥ l∗,

supt,T supx,x′∈S E
[
|Wt,T ||Wt+l,T |

∣∣Xt,T = x,Xt+l,T = x′
]
fXt,T ,Xt+l,T (x, x′) ≤ C.

The next theorem generalizes uniform convergence results of Hansen [13] for the strictly

stationary case to our setting. See Kristensen [16] for related results.

Theorem 4.1. Assume that (K1)–(K3) are satisfied with

β >
2 + s(1 + (d+ 1))

s− 2
(12)

and that the kernel K fulfills (C6). In addition, let the bandwidth satisfy

φT log T

T θhd+1
= o(1) (13)

with φT slowly diverging to infinity (e.g. φT = log log T ) and

θ =
β(1− 2

s
)− 2

s
− 1− (d+ 1)

β + 3− (d+ 1)
. (14)

Finally, let S be a compact subset of Rd. Then it holds that

sup
u∈[0,1],x∈S

∣∣ψ̂(u, x)− Eψ̂(u, x)
∣∣ = Op

(√ log T

Thd+1

)
. (15)

The convergence rate in the above theorem is identical to the rate obtained for a (d+1)-

dimensional nonparametric estimation problem in the standard strictly stationary set-

ting. This reflects the fact that additionally smoothing in time direction, we essentially

have a (d+1)-dimensional problem in our case. Moreover, note that with (12) and (14),

we can compute that θ ∈ (0, 1 − 2
s
]. In particular, θ = 1 − 2

s
if the mixing coefficients

decay exponentially fast to zero, i.e. if β = ∞. The restriction (13) on the bandwidth

is thus a strengthening of the usual condition that Thd+1 →∞.

4.4 Uniform Convergence Rates for NW Estimates

The next theorem characterizes the uniform convergence behaviour of our NW estimate.

Theorem 4.2. Assume that (C1)–(C6) hold and that (K1)–(K3) are fulfilled both for

Wt,T = 1 and Wt,T = εt,T . Let β satisfy (12) and suppose that infu∈[0,1],x∈S f(u, x)

> 0. Moreover, assume that the bandwidth h satisfies

φT log T

T θhd+1
= o(1) and

1

T rhd+r
= o(1) (16)

12



with θ given in (14), φT = log log T , r = min{ρ, 1} and ρ introduced in (C1). Defining

Ih = [C1h, 1− C1h], it then holds that

sup
u∈Ih,x∈S

∣∣m̂(u, x)−m(u, x)
∣∣ = Op

(√ log T

Thd+1
+

1

T rhd
+ h2

)
. (17)

To derive the above result, we decompose the difference m̂(u, x)−m(u, x) into a stochas-

tic part and a bias part. Using Theorem 4.1, the stochastic part can be shown to be

of the order Op(
√

log T/Thd+1). The bias term splits up into two parts, a standard

component of the order O(h2) and a nonstandard component of the order O(T−rh−d).

The latter component results from replacing the variables Xt,T by Xt(
t
T

) in the bias

term. It thus captures how far these variables are from their stationary approxima-

tions Xt(
t
T

). Put differently, it measures the deviation from stationarity. As will be

seen in Appendix B, handling this nonstationarity bias requires techniques substantially

different from those needed to treat the bias term in a strictly stationary setting.

Note that the additional nonstationarity bias converges faster to zero for larger r =

min{ρ, 1}. This makes perfect sense if we recall from Section 2 that r measures how well

Xt,T is locally approximated by Xt(
t
T

): The larger r, the smaller the deviation of Xt,T

from its stationary approximation and thus the smaller the additional nonstationarity

bias.

4.5 Asymptotic Normality

We conclude the asymptotic analysis of our NW estimate with a result on asymptotic

normality.

Theorem 4.3. Assume that (C1)–(C6) hold and that (K1)–(K3) are fulfilled both for

Wt,T = 1 and Wt,T = εt,T . Let β ≥ 4 and T rhd+2 →∞ with r = min{ρ, 1}. Moreover,

suppose that f(u, x) > 0 and that σ2( t
T
, x) := E[ε2t,T |Xt,T = x] is continuous. Finally,

let r > d+2
d+5

to ensure that the bandwidth h can be chosen to satisfy Thd+5 → ch for a

constant ch. Then

√
Thd+1

(
m̂(u, x)−m(u, x)

) d−→ N(Bu,x, Vu,x), (18)

where Bu,x =
√
ch

κ2
2

∑d
i=0[2∂im(u, x)∂if(u, x) + ∂2i,im(u, x)f(u, x)]/f(u, x) and Vu,x =

κd+1
0 σ2(u, x)/f(u, x) with κ0 =

∫
K2(ϕ)dϕ and κ2 =

∫
ϕ2K(ϕ)dϕ.

The above theorem parallels the asymptotic normality result for the standard strictly

stationary setting. In particular, the bias and variance expressions Bu,x and Vu,x are

very similar to those from the standard case. By requiring that T rhd+2 →∞, we make

sure that the additional nonstationarity bias is asymptotically negligible.
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5 Locally Stationary Additive Models

We now put some structural constraints on the regression function m in model (1).

In particular, we assume that for all rescaled time points u ∈ [0, 1] and all points

x in a compact subset of Rd, say [0, 1]d, the regression function can be split up into

additive components according to m(u, x) = m0(u) +
∑d

j=1mj(u, x
j). This means that

for x ∈ [0, 1]d, we have the additive regression model

E[Yt,T |Xt,T = x] = m0

( t
T

)
+

d∑
j=1

mj

( t
T
, xj
)
. (19)

To identify the component functions of model (19) within the unit cube [0, 1]d, we

impose the condition that
∫
mj(u, x

j)pj(u, x
j)dxj = 0 for all j = 1, . . . , d and all rescaled

time points u ∈ [0, 1]. Here, the functions pj(u, x
j) =

∫
p(u, x)dx−j are the marginals

of the density

p(u, x) =
I(x ∈ [0, 1]d)f(u, x)

P(X0(u) ∈ [0, 1]d)
,

where as before f(u, ·) is the density of the strictly stationary process {Xt(u)}. Note

that this normalization of the component functions varies over time in the sense that

for each rescaled time point u, we integrate with respect to a different density.

To estimate the functions m0, . . . ,md, we adapt the smooth backfitting technique of

Mammen et al. [20] to our setting. To do so, we first introduce the auxiliary estimates

p̂(u, x) =
1

T[0,1]d

T∑
t=1

I(Xt,T ∈ [0, 1]d)Kh

(
u,

t

T

) d∏
j=1

Kh

(
xj, Xj

t,T

)
m̂(u, x) =

1

T[0,1]d

T∑
t=1

I(Xt,T ∈ [0, 1]d)Kh

(
u,

t

T

) d∏
j=1

Kh

(
xj, Xj

t,T

)
Yt,T
/
p̂(u, x).

p̂(u, x) is a kernel estimate of the density p(u, x) and m̂(u, x) is a (d + 1)-dimensional

NW smoother that estimates m(u, x) for x ∈ [0, 1]d. In the above definitions,

T[0,1]d =
T∑
t=1

Kh

(
u,

t

T

)
I(Xt,T ∈ [0, 1]d)

is the number of observations in the unit cube [0, 1]d, where only time points close to u

are taken into account, and

Kh(v, w) = I(v, w ∈ [0, 1])
Kh(v − w)∫ 1

0
Kh(s− w)ds

is a modified kernel weight. This weight has the property that
∫ 1

0
Kh(v, w)dv = 1 for

all w ∈ [0, 1], which is needed to derive the asymptotic properties of the backfitting

estimates.
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Given the smoothers p̂ and m̂, we define the smooth backfitting estimates m̃0(u),

m̃1(u, ·), . . . , m̃d(u, ·) of the functions m0(u), m1(u, ·), . . . ,md(u, ·) at the time point

u ∈ [0, 1] as the minimizers of the criterion∫ (
m̂(u,w)− g0 −

d∑
j=1

gj(w
j)
)2
p̂(u,w)dw, (20)

where the minimization runs over all additive functions g(x) = g0 +g1(x
1)+ . . .+gd(x

d)

whose components are normalized to satisfy
∫
gj(w

j)p̂j(u,w
j)dwj = 0 for j = 1, . . . , d.

Here, p̂j(u, x
j) =

∫
p̂(u, x)dx−j is the marginal of the kernel density p̂(u, ·) at the point

xj.

According to (20), the backfitting estimate m̃(u, ·) = m̃0(u) +
∑d

j=1 m̃j(u, ·) is an L2-

projection of the full dimensional NW estimate m̂(u, ·) onto the subspace of additive

functions, where the projection is done with respect to the density estimate p̂(u, ·).
Note that (20) is a d-dimensional projection problem. In particular, rescaled time does

not enter as an additional dimension. The projection is rather done separately for each

time point u ∈ [0, 1]. We thus fit a smooth backfitting estimate to the data separately

around each point in time u.

By differentiation, we can show that the minimizer of (20) is characterized by the system

of integral equations

m̃j(u, x
j) = m̂j(u, x

j)−
∑
k 6=j

∫
m̃k(u, x

k)
p̂j,k(u, x

j, xk)

p̂j(u, xj)
dxk − m̃0(u) (21)

together with
∫
m̃j(u,w

j)p̂j(u,w
j)dwj = 0 for j = 1 . . . , d. Here, p̂j and p̂j,k are kernel

density estimates and m̂j is a NW smoother defined as

p̂j(u, x
j) =

1

T[0,1]d

T∑
t=1

I(Xt,T ∈ [0, 1]d)Kh

(
u,

t

T

)
Kh(x

j, Xj
t,T )

p̂j,k(u, x
j, xk) =

1

T[0,1]d

T∑
t=1

I(Xt,T ∈ [0, 1]d)Kh

(
u,

t

T

)
Kh(x

j, Xj
t,T )Kh(x

k, Xk
t,T )

m̂j(u, x
j) =

1

T[0,1]d

T∑
t=1

I(Xt,T ∈ [0, 1]d)Kh

(
u,

t

T

)
Kh(x

j, Xj
t,T )Yt,T

/
p̂j(u, x

j).

Moreover, the estimate m̃0(u) of the model constant at time point u is given by m̃0(u) =

T−1
[0,1]d

∑T
t=1 I(Xt,T ∈ [0, 1]d)Kh(u,

t
T

)Yt,T .

We next summarize the assumptions needed to derive the asymptotic properties of the

smooth backfitting estimates. First of all, the conditions of Section 4 must be satisfied

for the kernel estimates that show up in the system of integral equations (21). This is

ensured by the following assumption.

(Add1) (C1)–(C6) are fulfilled together with (K1)–(K3) for Wt,T = 1 and Wt,T =

εt,T . The parameter β satisfies the condition that β > max{4, 2+3s
s−2 } and

infu∈[0,1],x∈[0,1]d f(u, x) > 0.
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In addition to (Add1), we need some restrictions on the admissible bandwidth. For

convenience, we stipulate somewhat stronger conditions than in Section 4 to get rid of

the additional nonstationarity bias from the very beginning.

(Add2) The bandwidth h is such that (i) Th5 → ∞, (ii) φT log T
T θh2

= o(1) with φT =

log log T and θ = min{β−4
β
,
β(1− 2

s
)− 2

s
−3

β+1
}, and (iii) (T rh)−1 = o(h2) and T−

r
r+1 =

o(h2) with r = min{ρ, 1} and ρ given in (C1).

The condition (ii) is already known from Section 4. As will be seen in Appendix C, (iii)

ensures that the additional nonstationarity bias is of smaller order than O(h2) and can

thus be asymptotically neglected. The expressions for β and θ in (Add1) and (Add2)

are calculated as follows: Using the formulas (12) and (14) from Theorem 4.1, we get

a pair of expressions for β and θ for each of the kernel estimates occurring in (21).

Combining these expressions yields the formulas in (Add1) and (Add2).

Under the above assumptions, we can establish the following results, the proofs of

which are given in Appendix C. Firstly, the backfitting estimates uniformly converge

to the true component functions at the two-dimensional rates no matter how large the

dimension d of the full regression function.

Theorem 5.1. Let Ih = [2C1h, 1− 2C1h]. Then under (Add1) and (Add2),

sup
u,xj∈Ih

∣∣m̃j(u, x
j)−mj(u, x

j)
∣∣ = Op

(√ log T

Th2
+ h2

)
. (22)

Secondly, the estimates are asymptotically normal if rescaled appropriately.

Theorem 5.2. Suppose that (Add1) and (Add2) hold. In addition, let θ > 1
3

and r > 1
2

to ensure that the bandwidth h can be chosen to satisfy T[0,1]dh
6 → ch for a constant ch.

Then for any u, x1, . . . , xd ∈ (0, 1),

√
T[0,1]dh2

 m̃1(u, x
1)−m1(u, x

1)
...

m̃d(u, x
d)−md(u, x

d)

 d−→ N(Bu,x, Vu,x). (23)

Here, Vu,x is a diagonal matrix whose diagonal entries are given by the expressions

vj(u, x
j) = κ20σ

2
j (u, x

j)/pj(u, x
j) with κ0 =

∫
K2(ϕ)dϕ. Moreover, the bias term has

the form Bu,x =
√
ch[β1(u, x

1)−γ1(u), . . . , βd(u, x
d)−γd(u)]T . The functions βj(u, ·) in

this expression are defined as the minimizers of the problem∫ [
β(u, x)− b0 − b1(x1)− . . .− bd(xd)

]2
p(u, x)dx,

where the minimization runs over all additive functions b(x) = b0 + b1(x
1) + . . .+ bd(x

d)

with
∫
bj(x

j)pj(u, x
j)dxj = 0 and the function β is given in Lemma C4 of Appendix C.

Moreover, the terms γj can be characterized by the equation
∫
αT,j(u, x

j)p̂j(u, x
j)dxj =

h2γj(u) + op(h
2), where the functions αT,j are again defined in Lemma C4.
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6 Application

To illustrate our estimation theory, we apply it to a sample of NASDAQ Composite

index data from 01/01/2000 to 31/12/2011.1 For each day, our sample contains the

return and the so-called high-low range. The latter is defined as the difference between

the highest and lowest logarithmic price of a day. The range is a measure of daily

volatility and has a long history in finance. It has been employed for example in the

studies of Rogers & Satchell [24], Yang & Zhang [28], Alizadeh et al. [1], and Martens

& van Dijk [21].
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Figure 1: High-low range and returns of the NASDAQ Composite series.

In what follows, yt,T denotes the logarithm of the high-low range and rt,T is the daily

return. With this notation, we define the model

yt,T = m0

( t
T

)
+m1

( t
T
, yt−1,T

)
+m2

( t
T
, rt−1,T

)
+ εt,T , (24)

where E[εt,T |yt−1,T , rt−1,T ] = 0 and the functions m1 and m2 are normalized as described

at the beginning of Section 5. Model (24) can be regarded as a localized version of the

setting studied in Wu & Xiao [27].2 The function m1 specifies how today’s volatility

level depends on yesterday’s level. The m2-component is the news impact curve of the

model. It captures how return shocks influence volatility.

We fit model (24) locally around three different time points in our sample, using an

Epanechnikov kernel and choosing the bandwidth in time direction to span approxi-

mately one year and a half. As a result, we estimate the model for three different time

periods, each spanning roughly three years. We include the period from 03/2000 to

03/2003 which corresponds to the aftermath of the technology bubble and the events

of 9/11, the period from 11/2007 to 11/2010 which spans a great deal of the recent

financial crisis, and an intermediate non-crisis period from 11/2003 to 11/2006.

1The data are available on the Yahoo Finance website.
2Wu & Xiao consider a model in which the component functions m1 and m2 do not depend on time

and the first component m1 is restricted to be linear. Moreover, implied volatility instead of the range

is used as a daily volatility measure.
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The estimation results are shown in Figure 2. The solid, dashed and dotted lines are

the nonparametric fits for the three different periods and the grey shaded areas are 95%

pointwise confidence intervals. The estimates are normalized as described in Section 5.
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Figure 2: Estimation results for the additive model (24).

We have made several robustness checks. The first one concerns the choice of band-

widths. The bandwidth in time direction is handpicked rather than automatically

selected. Given this, the bandwidths with respect to the two covariates are selected

via a mean-squared error criterion. To check whether the estimation results are robust

against different choices of bandwidth in time direction, we have gradually reduced the

bandwidth to span only one year. This has virtually no effect on the fits. Moreover,

we have smoothly varied the time points around which the model is estimated. As ex-

pected, this results in smooth changes of the nonparametric fits. In particular, shifting

the time points only by a couple of months does not have major effects on the fits and

preserves their qualitative form.

We now have a closer look at the estimation results in Figure 2. The estimates of m1 are

fairly linear. Interestingly, the fit for the financial crisis period (and presumably also the

one for the period from 2000 to 2003) is much steeper than that for the intermediate non-

crisis period from 2003 to 2006. This suggests that in more tense economic situations or

crisis periods, today’s volatility reacts more strongly to changes in yesterday’s volatility.

Put differently, the market is more sensitive to changes in volatility. The estimates of

m2 suggest that the overall form of the news impact curve is rather robust over time.

Moreover, one can clearly see the asymmetric form of the curve which has been reported

in numerous other studies before.

In the next step of our empirical analysis, we use the nonparametric fits of (24) as a

guideline to set up a parametric model. We choose a specification with a linear m1-

component and a quadratic m2-component that is flexible enough to allow for asym-

metries. The model is given by

yt,T = m0,par

( t
T

)
+m1,par

( t
T
, yt−1,T

)
+m2,par

( t
T
, rt−1,T

)
+ εt,T (25)
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with

m1,par

( t
T
, yt−1,T

)
= a1

( t
T

)
yt−1,T

m2,par

( t
T
, rt−1,T

)
= a2

( t
T

)
r2t−1,T I(rt−1,T < 0) + a3

( t
T

)
r2t−1,T I(rt−1,T ≥ 0),

where a1, a2 and a3 are time-varying parameters. We estimate (25) locally around

the same time points as the additive model (24) using the same bandwidth in time

direction. The estimation is done by minimizing a least-squares criterion localized in

time. Rather than reporting the estimates of the time-varying parameters in a table,

we plot the fits of m1,par and m2,par in Figure 3.

−5.5 −4.5 −3.5 −2.5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

yt−1,T

m
1,

pa
r

−5.5 −4.5 −3.5 −2.5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

yt−1,T

m
1,

pa
r

−5.5 −4.5 −3.5 −2.5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

yt−1,T

m
1,

pa
r

03/2000 − 03/2003
11/2003 − 11/2006
11/2007 − 11/2010

−0.06 −0.02 0.02 0.06

−
0.

1
0.

1
0.

3
0.

5

rt−1,T

m
2,

pa
r

−0.06 −0.02 0.02 0.06

−
0.

1
0.

1
0.

3
0.

5

rt−1,T

m
2,

pa
r

−0.06 −0.02 0.02 0.06

−
0.

1
0.

1
0.

3
0.

5

rt−1,T

m
2,

pa
r

Figure 3: Estimation results for the parametric model (25).

The fits of m1,par give a very similar picture as their nonparametric counterparts. The

estimates of m2,par, however, do not. In particular, they suggest that the news impact

curve in the intermediate non-crisis period from 2003 to 2006 substantially differs from

the curves in the two crisis periods. Figure 4 makes visible the differences between the

parametric and nonparametric fits of the news impact curve.
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Figure 4: Comparison of the parametric function m2,par (dashed) and its nonparametric

counterpart m2 (solid).
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As can be seen from Figure 4, the parametric estimates roughly capture the overall

form of their nonparametric counterparts. However, they are not flexible enough to

reproduce all important characteristics. In particular, the parametric estimate for the

intermediate non-crisis period strongly exaggerates the slightly concave form of the

corresponding nonparametric fit. This gives the impression that the news impact curve

in the non-crisis period drastically differs from that in the two crisis periods.

The above considerations make visible an important shortcoming of the parametric

analysis: If the parametric model is not flexible enough, then the fits may spuriously

generate time-varying effects. Thus, the news impact curve may after all be much more

robust over time than suggested by many parametric specifications.

7 Concluding Remarks

In this paper, we have studied nonparametric models with a time-varying regression

function and locally stationary covariates. We have developed a complete asymptotic

theory for kernel estimates in these models. In addition, we have shown that the main

assumptions of the theory are satisfied for a large class of nonlinear autoregressive

processes with a time-varying regression function.

Our analysis can be extended in several directions. An important issue is bandwidth

selection in our framework. As shown in Theorem 4.3, the asymptotic bias and variance

expressions of our NW estimate are very similar in structure to those from a standard

stationary random design. We thus conjecture that the techniques to choose the band-

width in such a design can be adapted to our setting. In particular, using the formulas

for the asymptotic bias and variance from Theorem 4.3, it should be possible to select

the bandwidth via plug-in methods.

Another issue concerns forecasting. The convergence results of Theorems 4.2 and 5.1

are only valid for rescaled time lying in a subset [Ch, 1− Ch] of the unit interval. For

forecasting purposes, it would be important to provide convergence rates also in the

boundary region (1−Ch, 1]. This can be achieved by using boundary-corrected kernels.

Another possibility is to work with one-sided kernels. In both cases, we have to ensure

that the kernels have compact support and are Lipschitz to get the theory to work.

Appendix A

In this appendix, we prove the results on the tvNAR process from Section 3. To

shorten notation, we frequently make use of the abbreviations Y t,T = Y t−d+1
t,T , Y t(u) =

Y t−d+1
t (u) and εt = εt−d+1

t . Moreover, throughout the appendices, the symbol C denotes

a universal real constant which may take a different value on each occurrence.
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Preliminaries

Before we come to the proofs of the theorems, we state some useful facts needed for the

arguments later on.

Linearization of m and σ

Consider the function m. The mean value theorem allows us to write

m
(
v, Y t−1(v)

)
−m

(
u, Y t−1(u)

)
= ∆m

t,0 +
d∑
j=1

∆m
t,j

(
Yt−j(v)− Yt−j(u)

)
, (26)

where we have used the shorthands ∆m
t,0 = m(v, Y t−1(v)) −m(u, Y t−1(v)) and ∆m

t,j =

∆m
j (u, Y t−1(u), Y t−1(v)) for j = 1, . . . , d with the functions ∆m

j (u, y, y′) =
∫ 1

0
∂jm(u, y+

s(y′ − y))ds.

The terms ∆m
t,j have the property that∣∣∆m

t,j

∣∣ ≤ ∆t := ∆I(‖εt−1‖∞ ≤ K2) + δI(‖εt−1‖∞ > K2) (27)

for j = 1, . . . , d with K2 = (K1 + Cm)/cσ and ∆ ≥ supu,y |∂jm(u, y)|. This can be seen

as follows: Using the shorthands mu,k = m(u, Y t−k−1(u)) and σu,k = σ(u, Y t−k−1(u)),

we obtain

‖Y t−1(u) + s(Y t−1(v)− Y t−1(u))‖∞ (28)

= max
k=1,...,d

|Yt−k(u) + s(Yt−k(v)− Yt−k(u))|

= max
k=1,...,d

|mu,k + s(mv,k −mu,k) + εt−k(σu,k + s(σv,k − σu,k))|

≥ cσ‖εt−1‖∞ − Cm,

since |mu,k+s(mv,k−mu,k)| ≤ Cm and |σu,k+s(σv,k−σu,k)| ≥ cσ > 0. Now assume that

‖εt−1‖∞ > K2. In this case, (28) implies that ‖Y t−1(u) + s(Y t−1(v)−Y t−1(u))‖∞ > K1

for all s ∈ [0, 1]. Hence, the region over which the integral in ∆m
t,j runs completely lies

outside the area [−K1, K1]
d. Therefore, the integrand ∂jm is always smaller than δ in

absolute value, which immediately implies that |∆m
t,j| ≤ δ. Next let ‖εt−1‖∞ ≤ K2. As

supu,y |∂jm(u, y)| ≤ ∆ < ∞, the term |∆m
t,j| is always bounded by ∆, in particular for

‖εt−1‖∞ ≤ K2.

Repeating the above considerations for the function σ, we obtain analogous terms ∆σ
t,j

that are again bounded by ∆t for j = 1, . . . , d.

Recursive formulas for Yt,T

For the proof of Theorem 3.4, we rewrite Yt,T in a recursive fashion: Letting yt−k2t−k1 and

et−k2t−k1 be values of Y t−k2
t−k1 and εt−k2t−k1 , respectively, we recursively define the functions m

(i)
t,T
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by m
(0)
t,T (yt−dt−1) = m( t

T
, yt−dt−1) and for i ≥ 1 by

m
(i)
t,T

(
et−it−1, y

t−i−d
t−i−1

)
= m

(i−1)
t,T

(
et−i+1
t−1 ,m

(0)
t−i,T (yt−i−dt−i−1)

+ σ
(0)
t−i,T (yt−i−dt−i−1)et−i, y

t−i−d+1
t−i−1

)
.

Using analogous recursions for the function σ, we can additionally define functions σ
(i)
t,T

for i ≥ 0. With this notation at hand, Yt,T can represented as

Yt,T = m
(i)
t,T

(
εt−it−1, Y

t−i−d
t−i−1,T

)
+ σ

(i)
t,T

(
εt−it−1, Y

t−i−d
t−i−1,T

)
εt.

Moreover, for i ≥ d we can write

m
(i)
t,T

(
et−it−1, y

t−i−d
t−i−1

)
= m

( t
T
,m

(i−1)
t−1,T (et−it−2, y

t−i−d
t−i−1) + σ

(i−1)
t−1,T (et−it−2, y

t−i−d
t−i−1)et−1, . . .

. . . ,m
(i−d)
t−d,T (et−it−d−1, y

t−i−d
t−i−1) + σ

(i−d)
t−d,T (et−it−d−1, y

t−i−d
t−i−1)et−d

)
.

The term σ
(i)
t,T (et−it−1, y

t−i−d
t−i−1) can be reformulated in the same way.

Formulas for conditional densities

Throughout the appendix, the symbol fV |W is used to denote the density of V con-

ditional on W . If the residuals εt have a density fε, then it can be shown that for

1 ≤ r ≤ d,

fYt,T |Y t−r+1
t−1,T ,ε−st−r,Y

−s−d
−s−1,T

(yt|yt−r+1
t−1 , e−st−r, z) =

1

σt,T
fε

(yt −mt,T

σt,T

)
. (29)

Here, yt, y
t−r+1
t−1 , e−st−r, and z are values of Yt,T , Y t−r+1

t−1,T , ε−st−r, and Y −s−d−s−1,T , respectively.

Moreover,

mt,T = m
( t
T
, yt−r+1
t−1 ,m

(t−r+s)
t−r,T (e−st−r−1, z) + σ

(t−r+s)
t−r,T (e−st−r−1, z)et−r, . . .

. . . ,m
(t−d+s)
t−d,T (e−st−d−1, z) + σ

(t−d+s)
t−d,T (e−st−d−1, z)et−d

)
and σt,T is defined analogously.

Proof of Theorem 3.1

(i) follows by standard arguments to be found for example in Chen & Chen [5]. (ii)

immediately follows with the help of (29). For (iii), recall that Y t−d
t−1,T = Y t−d

t−1 (0) for

t ≤ 1. This allows us to write the density of Y t−d
t−1,T as

fY t−dt−1,T
(y) =

∫
fY t−dt−1,T |ε

1
t−d−1,Y

−d+1
0 (0)(y|e, z)

t−d−1∏
i=1

fε(ei)fY −d+1
0 (0)(z) dedz,

where e = e1t−d−1 and the conditional density fY t−dt−1,T |ε
1
t−d−1,Y

−d+1
0 (0) can be expressed in

terms of the error density fε with the help of (29).
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Proof of Theorem 3.2

We apply the triangle inequality to get∣∣Yt,T − Yt(u)
∣∣ ≤ ∣∣∣Yt,T − Yt( t

T

)∣∣∣+
∣∣∣Yt( t

T

)
− Yt(u)

∣∣∣
and bound the terms |Yt,T − Yt( tT )| and |Yt( tT )− Yt(u)| separately. In what follows, we

restrict attention to the term |Yt( tT ) − Yt(u)|, the arguments for |Yt,T − Yt(
t
T

)| being

analogous.

Notation. Throughout the proof, the symbol ‖z‖ denotes the Euclidean norm for

vectors z ∈ Rd and ‖A‖ is the spectral norm for d × d matrices A = (aik)i,k=1,...,d. In

addition, ‖A‖1 = maxk=1,...,d

∑d
j=1 |ajk|. Furthermore, for z ∈ R, we define the family

of matrices

B(z) =


z . . . z z

1 0 0
. . .

...

0 1 0

 .

Finally, as already noted at the beginning of the appendix, we make use of the short-

hands Y t,T = Y t−d+1
t,T , Y t(u) = Y t−d+1

t (u) and εt = εt−d+1
t .

Backward Iteration. By the smoothness conditions on m and σ,

Yt

( t
T

)
− Yt(u) =

(
∆m
t,0 + ∆σ

t,0εt
)

+
d∑
j=1

(
∆m
t,j + ∆σ

t,jεt
)(
Yt−j

( t
T

)
− Yt−j(u)

)
with ∆m

t,0 = m( t
T
, Y t−1(

t
T

))−m(u, Y t−1(
t
T

)) and ∆m
t,j = ∆m

j (u, Y t−1(u), Y t−1(
t
T

)) for j =

1, . . . , d as introduced in (26). The terms ∆σ
t,j for j = 0, . . . , d are defined analogously.

In matrix notation, we obtain

Y t

( t
T

)
− Y t(u) = At

(
Y t−1

( t
T

)
− Y t−1(u)

)
+ ξ

t
(30)

with ξ
t

= (∆m
t,0 + ∆σ

t,0εt, 0, . . . , 0)T and

At =


∆m
t,1 + ∆σ

t,1εt . . . ∆m
t,d−1 + ∆σ

t,d−1εt ∆m
t,d + ∆σ

t,dεt

1 0 0
. . .

...

0 1 0

 .

Iterating (30) n times yields∥∥∥Y t

( t
T

)
− Y t(u)

∥∥∥ ≤ ‖ξ
t
‖+

∥∥∥ n−1∑
r=0

r∏
k=0

At−kξt−r−1

∥∥∥
+
∥∥∥ n∏
k=0

At−k

(
Y t−n−1

( t
T

)
− Y t−n−1(u)

)∥∥∥.
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Note that the rescaled time argument t
T

plays the same role as the argument u and

thus remains fixed when iterating backwards. Next define matrices Bt by

Bt = (1 + |εt|)B(∆t) (31)

with ∆t = ∆I(‖εt−1‖∞ ≤ K2) + δI(‖εt−1‖∞ > K2). As shown in the preliminaries

section of the appendix, |∆m
t,j + ∆σ

t,jεt| ≤ ∆t(1 + |εt|) for j = 1, . . . , d. Therefore,

the entries of the matrix Bt are all weakly larger in absolute value than those of At.

This implies that ‖
∏n

k=0At−kz‖ ≤ ‖
∏n

k=0Bt−k|z|‖ with z = (|z1|, . . . , |zd|). Using

this together with the boundedness of m and σ and the fact that |∆m
t,0 + ∆σ

t,0εt| ≤
C| t

T
− u|(1 + |εt|), we finally arrive at∥∥∥Y t

( t
T

)
− Y t(u)

∥∥∥ ≤ ∣∣∣ t
T
− u
∣∣∣Vt,n +Rt,n

with

Vt,n = C(1 + |εt|) + C
n−1∑
r=0

(
1 + |εt−r−1|

)∥∥∥ r∏
k=0

Bt−k

∥∥∥
Rt,n = C(1 + ‖εt−n−1‖)

∥∥∥ n∏
k=0

Bt−k

∥∥∥.
Bounding Vt,n and Rt,n. The convergence behaviour of Vt,n and Rt,n for n → ∞
mainly depends on the properties of the product ‖

∏n
k=0Bt−k‖. The behaviour of the

latter is described by the following lemma.

Lemma A1. If δ is sufficiently small, in particular if it satisfies (35), then there exists

a constant ρ > 0 such that for some γ < 1,

E
[∥∥∥ n∏

k=0

Bt−k

∥∥∥ρ] ≤ Cγn. (32)

The proof of Lemma A1 is postponed until the arguments for Theorem 3.2 are com-

pleted. The following statement is a direct consequence of Lemma A1.

(R) There exists a constant ρ > 0 such that E[Rρ
t,n] ≤ Cγn for some γ < 1. In

particular, Rt,n
a.s.−→ 0 as n→∞.

In addition, it holds that

(V) Vt,n ≤ Vt, where the variables Vt have the property that E[V ρ
t ] ≤ C for a positive

constant ρ < 1 and all t.

This can be seen as follows. First note that

Vt,n ≤ C(1 + |εt|) +
n−1∑
r=0

Rt,r ≤ Vt := C(1 + |εt|) +
∞∑
r=0

Rt,r.
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Using the monotone convergence theorem and Loève’s inequality with ρ < 1, we obtain

E[V ρ
t ] ≤ CE(1 + |εt|)ρ +

∑∞
r=0 E[Rρ

t,r]. As the right-hand side of the previous inequality

is finite by (R), we arrive at (V).

(R) and (V) imply that |Yt( tT ) − Yt(u)| ≤ | t
T
− u|Vt a.s. with variables Vt whose ρ-th

moment is uniformly bounded by some finite constant C. An analogous result can be

derived for |Yt,T − Yt( tT )|. This completes the proof.

Proof of Lemma A1. We want to show that the ρ-th moment of the product

‖
∏n

k=0Bt−k‖ converges exponentially fast to zero as n→∞. This is a highly nontrivial

problem and as far as we can see, it cannot be solved by simply adapting techniques

from related papers on models with time-varying coefficients. The problem is that the

techniques used therein are either tailored to products of deterministic matrices (see

e.g. Proposition 13 in Moulines et al. [23]) or they heavily draw on the independence

of the random matrices involved (see e.g. Proposition 2.1 in Subba Rao [25]).

We now describe our proving strategy in detail. To start with, we replace the spectral

norm ‖ · ‖ in (32) by the norm ‖ · ‖1 which is much easier to handle. As these two

norms are equivalent, there exists a finite constant C such that ‖
∏n

k=0Bt−k‖ ≤ CBn
with Bn = ‖

∏n
k=0Bt−k‖1. Next, we split up the term Bn into two parts,

Bn = InBn + (1− In)Bn =: Bn,1 + Bn,2,

where In = I(
∑n

k=0 Jk > κn) with Jk = I(minl=1,...,d |εt−k−l| ≤ K2) and a constant

0 < κ < 1 to be specified later on. Lemma A1 is a direct consequence of the following

two facts:

(i) There exists a constant ρ > 0 such that E[Bρn,1] ≤ Cγn for some γ < 1.

(ii) E[Bn,2] ≤ Cγn for some γ < 1.

We start with the proof of (i). Letting φn = λn with some positive constant λ < 1, we

can write

E
[
Bρn,1

]
= E

[
I(Bn,1 > φn)Bρn,1

]
+ E

[
I(Bn,1 ≤ φn)Bρn,1

]
≤
(
E
[
B2ρ
n,1

]
P(Bn,1 > φn)

)1/2
+ φρn.

It is easy to see that E[B2ρ
n,1] ≤ Cρn for a sufficiently large constant C, where Cρ can

be made arbitrarily close to one by choosing ρ > 0 small enough. To show (i), it thus

suffices to verify that

P
(
Bn,1 > φn

)
≤ Cγn for some γ < 1. (33)

For the proof of (33), we write

P
(
Bn,1 > φn

)
≤ P

(
In > 0

)
= P

( n∑
k=0

(Jk − E[Jk]) > κ0n
)
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with κ0 := κ − E[Jk]. As the variables εt have an everywhere positive density by

assumption, the expectation E[Jk] is strictly smaller than one. We can thus choose

0 < κ < 1 slightly larger than E[Jk] to get that 0 < κ0 < 1. As the variables Jk −E[Jk]

for k = 0, . . . , n are 2d-dependent, a simple blocking argument together with Hoeffding’s

inequality shows that

P
( n∑
k=0

(Jk − E[Jk]) > κ0n
)
≤ Cγn

for some γ < 1. This yields (33) and thus completes the proof of (i).

Let us now turn to the proof of (ii). We have that

Bn,2 = (1− In)
n∏
k=0

(1− |εt−k|)
∥∥∥ n∏
k=0

B(∆t−k)
∥∥∥
1
.

The random matrix B(∆t−k) in the above expression can only take two forms: If

‖εt−k−1‖∞ > K2, it equals B(δ), and if ‖εt−k−1‖∞ ≤ K2, it equals B(∆). Moreover,

if minl=1,...,d |εt−k−l| > K2, it holds that ‖εt−k−l‖∞ > K2 for all l = 1, . . . , d and thus∏d−1
l=0 B(∆t−k−l) = B(δ)d. Importantly, the term Bn,2 is unequal to zero only if In = 0,

i.e. only if minl=1,...,d |εt−k−l| > K2 for at least (1− κ)n terms. From this, we can infer

that

E
[
Bn,2

]
≤ E

[ n∏
k=0

(1 + |εt−k|)
]∥∥B(∆)

∥∥κn
1

∥∥B(δ)d
∥∥ (1−κ)n

d

1
. (34)

By direct calculations, we can verify that ‖B(δ)d‖1 ≤ Cdδ with the constant Cd =∑d−1
l=0

∑l
k=0

(
l
k

)
that only depends on the dimension d. Moreover, ‖B(∆)‖1 ≤ (∆ + 1).

Plugging this into (34) yields

E
[
Bn,2

]
≤ (1 + E|ε0|)

[
(1 + E|ε0|)(∆ + 1)κ(Cdδ)

(1−κ)
d

]n
.

Straightforward calculations show that the term in square brackets is strictly smaller

than one for

δ <
[
(1 + E|ε0|)

d
1−κ (∆ + 1)

κd
1−κCd

]−1
. (35)

Assuming that δ satisfies the above condition, we thus arrive at (ii).

Proof of Theorem 3.3

Throughout the proof, we use the following notation: yj and zj are values of the variables

Yt−j(u) and Yt−d−j(u) for j = 1, . . . , d. Moreover, we write y = (y1, . . . , yd) together

with z = (z1, . . . , zd) and define

Fu : distribution function of Y t−2d
t−d−1(u)

Fu,v : joint distribution function of Y t−2d
t−d−1(u) and Y t−2d

t−d−1(v)

fu(y) : density of Y t−d
t−1 (u) at y

fu(y|z) : density of Y t−d
t−1 (u) at y conditional on Y t−2d

t−d−1(u) = z.
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In addition, we let fu,j = fu(yj|yj+1, . . . , yd, z1, . . . , zj) denote the conditional density

of Yt−j(u) given Y t−j−d
t−j−1 (u). Note that fu(y|z) =

∏d
j=1 fu,j and that the conditional

densities fu,j can be expressed in terms of the error density as fu,j = 1
σu,j

fε(
yj−mu,j
σu,j

),

where mu,j = m(u, (yj+1, . . . , yd, z1, . . . , zj)) and σu,j = σ(u, (yj+1, . . . , yd, z1, . . . , zj)).

With this notation at hand, we can now analyze the term |fu(y) − fv(y)|. Letting

z′ = (z′1, . . . , z
′
d) be some value taken by the random vector Y t−2d

t−d−1(v), we can apply a

telescoping argument to obtain∣∣fu(y)− fv(y)
∣∣ =

∣∣∣ ∫
R2d

[
fu(y|z)− fv(y|z′)

]
dFu,v(z, z

′)
∣∣∣

≤
d∑

k=1

∫
R2d

∣∣fu,k − fv,k∣∣dFu,v(z, z′) =:
d∑

k=1

Q[k]
u,v(y).

Using the boundedness of m, σ, and fε yields

Q[k]
u,v(y) =

∫
R2d

∣∣∣ 1

σu,k
fε

(yk −mu,k

σu,k

)
− 1

σv,k
fε

(yk −mv,k

σv,k

)∣∣∣dFu,v(z, z′)
≤ C

∫
R2d

∣∣∣fε(yk −mu,k

σu,k

)
− fε

(yk −mv,k

σv,k

)∣∣∣dFu,v(z, z′)
+ C

∫
R2d

∣∣σu,k − σv,k∣∣dFu,v(z, z′)
=: Q[k,1]

u,v (y) +Q[k,2]
u,v (y).

Exploiting the Lipschitz continuity of fε together with the smoothness conditions on m

and σ, we further obtain

Q[k,1]
u,v (y) ≤ C(1 + |yk|)

∫ (
|u− v|+ |z1 − z′1|+ . . .+ |zk − z′k|

)
dFu,v(z, z

′)

= C(1 + |yk|)
(
|u− v|+

k∑
j=1

E
∣∣Yt−d−j(u)− Yt−d−j(v)

∣∣)
together with an analogous expression for Q

[k,2]
u,v (y). As an intermediate result, we have

thus shown that∣∣fu(y)− fv(y)
∣∣ ≤ C(1 + ‖y‖1)

(
|u− v|+ E

∣∣Yt(u)− Yt(v)
∣∣), (36)

where C < ∞ is some sufficiently large constant and ‖ · ‖1 denotes the usual l1-norm

for Rd-valued vectors.

In the remainder of the proof, we derive a bound for the expression E|Yt(u)−Yt(v)|. By

the proof of Theorem 3.2, it holds that |Yt(u)−Yt(v)| ≤ |u−v|Ut with random variables

Ut having the property that E[Uρ
t ] ≤ C for some ρ > 0. Letting q be a constant with

0 < q < ρ, we arrive at

E
∣∣Yt(u)− Yt(v)

∣∣ = E
[∣∣Yt(u)− Yt(v)

∣∣I(Ut ≤ C

|u− v|q
)]

+ E
[∣∣Yt(u)− Yt(v)

∣∣I(Ut > C

|u− v|q
)]

=: E1(u, v) + E2(u, v).
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It is straightforward to show that E1(u, v) ≤ C|u− v|1−q and E2(u, v) ≤ C|u− v|r for

some r > 0. This completes the proof.

Proof of Theorem 3.4

To start with, note that the process {Yt,T} is d-Markovian. This implies that

β(k) = sup
T∈Z

sup
t∈Z

β
(
σ(Y t−k,T ), σ(Y t+d−1,T )

)
with

β
(
σ(Y t−k,T ), σ(Y t+d−1,T )

)
= E

[
supS∈σ(Y t+d−1,T )

∣∣P(S)− P(S|σ(Y t−k,T ))
∣∣].

In the following, we bound the expression |P(S) − P(S|σ(Y t−k,T ))| for arbitrary sets

S ∈ σ(Y t+d−1,T ). This provides us with a bound for the mixing coefficients β(k) of the

process {Yt,T}.
We use the following notation: Throughout the proof, we let y = ytt+d−1, e = et−k+1

t−1 ,

and z = zt−k−d+1
t−k be values of Y t+d−1,T , εt−k+1

t−1 and Y t−k,T , respectively. Moreover, we

use the shorthand

fj(yt+j|z) = fYt+j,T |Y tt+j−1,T ,ε
t−k+1
t−1 ,Y t−k,T

(yt+j|ytt+j−1, e, z)

for j = 0, . . . , d−1, where we suppress the dependence on the arguments ytt+j−1 and e in

the notation. Finally, note that by (29), the above conditional density can be expressed

in terms of the error density fε as

fj(yt+j|z) =
1

σt,T,j(z)
fε

(yt+j −mt,T,j(z)

σt,T,j(z)

)
(37)

with

mt,T,j(z) = m
(t+ j

T
, ytt+j−1,m

(k−2)
t−1,T (et−k+1

t−2 , z) + σ
(k−2)
t−1,T (et−k+1

t−2 , z)et−1, . . .

. . . ,m
(k−j+d−1)
t+j−d,T (et−k+1

t+j−d−1, z) + σ
(k−j+d−1)
t+j−d,T (et−k+1

t+j−d−1, z)et+j−d

)
and σt,T,j(z) defined analogously. The functions m

(k−2)
t−1,T , σ

(k−2)
t−1,T , . . . were introduced in

the preliminaries section of the appendix.

With this notation at hand, we can write

P(S|σ(Y t−k,T )) = E
[
E
[
I(Y t+d−1,T ∈ S)|εt−k+1

t−1 , Y t−k,T
]∣∣Y t−k,T

]
=

∫
I(y ∈ S)fY t+d−1,T |ε

t−k+1
t−1 ,Y t−k,T

(y|e, Y t−k,T )
k−1∏
l=1

fε(et−l)dedy

=

∫
I(y ∈ S)

d−1∏
j=0

fj(yt+j|Y t−k,T )
k−1∏
l=1

fε(et−l)dedy
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and likewise P(S) =
∫
I(y ∈ S)

∏d−1
j=0 fj(yt+j|z)

∏k−1
l=1 fε(et−l)fY t−k,T (z)dedzdy. Using

the shorthand Y = Y t−k,T , we thus arrive at∣∣P(S)− P(S|σ(Y ))
∣∣

≤
∫ [ ∫ ∣∣∣ d−1∏

j=0

fj(yt+j|z)−
d−1∏
j=0

fj(yt+j|Y )
∣∣∣dy]︸ ︷︷ ︸

=:(∗)

k−1∏
l=1

fε(et−l)fY (z)dedz.

We next consider (∗) more closely. A telescoping argument together with Fubini’s

theorem yields that

(∗) ≤
d−1∑
i=0

∫ [ i−1∏
j=0

fj(yt+j|Y )
∣∣fi(yt+i|z)− fi(yt+i|Y )

∣∣ d−1∏
j=i+1

fj(yt+j|z)
]
dy

=
d−1∑
i=0

∫ [ ∫ [ ∫ d−1∏
j=i+1

fj(yt+j|z)dyt+d−1 . . . dyt+i+1

]
×
∣∣fi(yt+i|z)− fi(yt+i|Y )

∣∣dyt+i] i−1∏
j=0

fj(yt+j|Y )dyt+i−1 . . . dyt

≤
d−1∑
i=0

∫ [ ∫ ∣∣fi(yt+i|z)− fi(yt+i|Y )
∣∣dyt+i]︸ ︷︷ ︸

=:(∗∗)

i−1∏
j=0

fj(yt+j|Y )dyt+i−1 . . . dyt,

where the last inequality exploits the fact that
∫ ∏d−1

j=i+1 fj(yt+j|z)dyt+d−1 . . . dyt+i+1 is

a conditional probability and thus almost surely bounded by one. Using the formula

(37) together with (E3), it is straightforward to see that

(∗∗) =

∫ ∣∣∣ 1

σt,T,i(z)
fε

(yt+i −mt,T,i(z)

σt,T,i(z)

)
− 1

σt,T,i(Y )
fε

(yt+i −mt,T,i(Y )

σt,T,i(Y )

)∣∣∣dyt+i
≤ C

(∣∣mt,T,i(z)−mt,T,i(Y )
∣∣+
∣∣σt,T,i(z)− σt,T,i(Y )

∣∣)
≤ C(2Cm + 2Cσ)

(∣∣mt,T,i(z)−mt,T,i(Y )
∣∣+
∣∣σt,T,i(z)− σt,T,i(Y )

∣∣)p,
where p is some constant with 0 < p < 1. Iterating backwards n ≤ k − 2d times in the

same way as in Theorem 3.2, we can further show that∣∣mt,T,i(z)−mt,T,i(Y )
∣∣+
∣∣σt,T,i(z)− σt,T,i(Y )

∣∣
≤ C

d−i∑
j=1

∥∥∥ n∏
m=0

Bt−j−m

∥∥∥(1 + ‖et−j−n−dt−j−n−1‖
)
, (38)

where ‖ · ‖ denotes the Euclidean norm for vectors and the spectral norm for matrices.

The matrix Bt was introduced in (31). Note that Bt was defined there in terms of the

random vector εt−dt . Slightly abusing notation, we here use the symbol Bt to denote

the matrix with εt−dt replaced by the realization et−dt . Keeping in mind that the matrix
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Bt only depends on the residual values et−dt , we can plug (38) into the bound for (∗∗)
and insert this into the bound for (∗) to arrive at

(∗) ≤ C
( d∑
j=1

∥∥∥ n∏
m=0

Bt−j−m

∥∥∥(1 + ‖et−j−n−dt−j−n−1‖
))p

.

As a consequence,

∣∣P(S)− P(S|σ(Y ))
∣∣ ≤ CE

( d∑
j=1

∥∥∥ n∏
m=0

Bt−j−m

∥∥∥(1 + ‖εt−j−n−dt−j−n−1‖
))p

.

Using the arguments from Lemma A1, we can show that for p > 0 sufficiently small,

the expectation on the right-hand side is bounded by Cλn for some positive constant

λ < 1. Choosing n = k − 2d for instance, we thus arrive at∣∣P(S)− P(S|σ(Y t−k,T ))
∣∣ ≤ Cλk−(d+1) ≤ Cγk

for some constant γ < 1. This immediately implies that β(k) ≤ Cγk.

Appendix B

In this appendix, we prove the results of Section 4. Before we turn to the proofs, we

state two auxiliary lemmas which are repeatedly used throughout the appendix. The

proofs are straightforward and thus omitted.

Lemma B1. Suppose the kernel K satisfies (C6) and let Ih = [C1h, 1 − C1h]. Then

for k = 0, 1, 2,

sup
u∈Ih

∣∣∣ 1

Th

T∑
t=1

Kh

(
u− t

T

)(u− t
T

h

)k
−
∫ 1

0

1

h
Kh(u− ϕ)

(u− ϕ
h

)k
dϕ
∣∣∣ = O

( 1

Th2

)
.

Lemma B2. Suppose K satisfies (C6) and let g : [0, 1]× Rd → R, (u, x) 7→ g(u, x) be

continuously differentiable w.r.t. u. Then for any compact set S ⊂ Rd,

sup
u∈Ih,x∈S

∣∣∣ 1

Th

T∑
t=1

Kh

(
u− t

T

)
g
( t
T
, x
)
− g(u, x)

∣∣∣ = O
( 1

Th2

)
+ o(h).

Proof of Theorem 4.1

The proof extends Theorem 2 of Hansen [13]. Define B = {(u, x) ∈ Rd+1 : u ∈ [0, 1], x ∈
S} and τT = ρTT

1
s with ρT slowly diverging to infinity as T → ∞. To simplify the

calculations in later parts of the proof, we choose

ρT = (log T )
1

1+βφ
(1+β−d

2
) 1
1+β

T
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with φT = log log T . With this notation at hand, we write

ψ̂(u, x)− E[ψ̂(u, x)] =
(
ψ̂1(u, x)− E[ψ̂1(u, x)]

)
+
(
ψ̂2(u, x)− E[ψ̂2(u, x)]

)
, (39)

where

ψ̂1(u, x) =
1

Thd+1

T∑
t=1

Kh

(
u− t

T

) d∏
j=1

Kh(x
j −Xj

t,T )Wt,T I(|Wt,T | ≤ τT )

ψ̂2(u, x) =
1

Thd+1

T∑
t=1

Kh

(
u− t

T

) d∏
j=1

Kh(x
j −Xj

t,T )Wt,T I(|Wt,T | > τT ).

In what follows, we compute the uniform convergence rates of the two terms on the

right-hand side of (39). We proceed in several steps.

Step 1. First consider the term ψ̂2(u, x) − E[ψ̂2(u, x)]. Defining aT =
√

log T/Thd+1,

it holds that

P
(

sup
(u,x)∈B

|ψ̂2(u, x)| > CaT

)
≤ P

(
|Wt,T | > τT for some 1 ≤ t ≤ T

)
≤ τ−sT

T∑
t=1

E|Wt,T |s ≤ CTτ−sT = ρ−sT → 0.

Using (K3), we additionally obtain that

E
∣∣ψ̂2(u, x)

∣∣ ≤ 1

Thd+1

T∑
t=1

Kh

(
u− t

T

)∫
Rd

d∏
j=1

Kh(x
j − wj)

× E
[
|Wt,T |I(|Wt,T | > τT )

∣∣Xt,T = w
]
fXt,T (w)dw

=
1

Th

T∑
t=1

Kh

(
u− t

T

)∫
Rd

d∏
j=1

K(ϕj)

× E
[
|Wt,T |I(|Wt,T | > τT )

∣∣Xt,T = x− hϕ
]
fXt,T (x− hϕ)dϕ

≤ 1

Th

T∑
t=1

Kh

(
u− t

T

) 1

τ s−1T

∫
Rd

d∏
j=1

K(ϕj)

× E
[
|Wt,T |sI(|Wt,T | > τT )

∣∣Xt,T = x− hϕ
]
fXt,T (x− hϕ)dϕ

≤ C

τ s−1T

1

Th

T∑
t=1

Kh

(
u− t

T

)
︸ ︷︷ ︸
≤C uniformly in u

≤ C

τ s−1T

= Cρ
−(s−1)
T T−

s−1
s ≤ CaT .

As a result,

sup
(u,x)∈B

∣∣ψ̂2(u, x)− Eψ̂2(u, x)
∣∣ = Op(aT ).

Note that Hansen [13] uses the more slowly diverging truncation sequence τT = a
−1/(s−1)
T .

He shows that with this choice of τT , |ψ̂2(u, x)−Eψ̂2(u, x)| = Op(aT ). It is however not
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clear at all whether supu,x |ψ̂2(u, x)− Eψ̂2(u, x)| = Op(aT ) in his case, which is needed

for the proof. To be on the safe side, we work with the sequence τT = ρTT
1/s.

Step 2. We now turn to the analysis of ψ̂1(u, x)−E[ψ̂1(u, x)]. Cover the region B with

N ≤ Ch−(d+1)a
−(d+1)
T balls Bn = {(u, x) ∈ Rd+1 : ‖(u, x) − (un, xn)‖∞ ≤ aTh} and use

(un, xn) to denote the midpoint of Bn. In addition, let K∗(v) = C
∏d

j=0 I(|vj| ≤ 2C1)

for v ∈ Rd+1 and note that for (u, x) ∈ Bn and T sufficiently large,∣∣∣Kh

(
u− t

T

) d∏
j=1

Kh(x
j −Xj

t,T )−Kh

(
un −

t

T

) d∏
j=1

Kh(x
j
n −X

j
t,T )
∣∣∣

≤ aTK
∗
h

(
un −

t

T
, xn −Xt,T

)
with K∗h(v) = K∗( v

h
). Defining

ψ̃1(u, x) =
1

Thd+1

T∑
t=1

K∗h

(
u− t

T
, x−Xt,T

)
|Wt,T |I(|Wt,T | ≤ τT )

and noticing that E|ψ̃1(u, x)| ≤M <∞ for some sufficiently large M , we obtain

sup
(u,x)∈Bn

∣∣ψ̂1(u, x)− Eψ̂1(u, x)
∣∣

≤
∣∣ψ̂1(un, xn)− Eψ̂1(un, xn)

∣∣+ aT
(∣∣ψ̃1(un, xn)

∣∣+ E
∣∣ψ̃1(un, xn)

∣∣)
≤
∣∣ψ̂1(un, xn)− Eψ̂1(un, xn)

∣∣+
∣∣ψ̃1(un, xn)− Eψ̃1(un, xn)

∣∣+ 2MaT .

As a consequence,

P
(

sup
(u,x)∈B

∣∣ψ̂1(u, x)− Eψ̂1(u, x)
∣∣ > 4MaT

)
≤ N max

1≤n≤N
P
(

sup
(u,x)∈Bn

∣∣ψ̂1(u, x)− Eψ̂1(u, x)
∣∣ > 4MaT

)
≤ Q̂T + Q̃T

with

Q̂T = N max
1≤n≤N

P
(∣∣ψ̂1(un, xn)− Eψ̂1(un, xn)

∣∣ > MaT

)
Q̃T = N max

1≤n≤N
P
(∣∣ψ̃1(un, xn)− Eψ̃1(un, xn)

∣∣ > MaT

)
.

As Q̂T and Q̃T can be analyzed in the same way, we restrict attention to Q̂T in what

follows. To bound Q̂T , we write

P
(∣∣ψ̂1(u, x)− Eψ̂1(u, x)

∣∣ > MaT

)
= P

(∣∣∣ T∑
t=1

Zt,T (u, x)
∣∣∣ > MaTTh

d+1
)

(40)

with

Zt,T (u, x) = Kh

(
u− t

T

){ d∏
j=1

Kh(x
j −Xj

t,T )Wt,T I(|Wt,T | ≤ τT )

− E
[ d∏
j=1

Kh(x
j −Xj

t,T )Wt,T I(|Wt,T | ≤ τT )
]}
.
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Note that for each fixed (u, x), the array {Zt,T (u, x)} is α-mixing with mixing coefficients

αZT satisfying αZT (k) ≤ α(k). This allows us to apply an exponential inequality for mixing

arrays to the right-hand side of (40) in the next step.

Step 3. We now bound Q̂T with the help of an exponential inequality from Liebscher

(see Theorem 2.1 in [18]).

Lemma. Let Zt,T be a zero-mean triangular array such that |Zt,T | ≤ bT with strong

mixing coefficients α(k). Then for any ε > 0 and ST ≤ T with ε > 4ST bT ,

P
(∣∣∣ T∑

t=1

Zt,T

∣∣∣ > ε
)
≤ 4 exp

(
− ε2

64σ2
ST ,T

T
ST

+ 8
3
εbTST

)
+ 4

T

ST
α(ST ),

where σ2
ST ,T

= sup0≤j≤T−1 E[(
∑min{j+ST ,T}

t=j+1 Zt,T )2].

We apply this exponential inequality with ε = MaTTh
d+1, bT = CτT for some suffi-

ciently large C, and ST = a−1T τ−1T . Moreover, a straightforward extension of Theorem

1 in Hansen [13] shows that σ2
ST ,T
≤ ΘSTh

d+1 with a constant Θ independent of (u, x).

It is easy to see that with these choices, the conditions of the above lemma are fulfilled.

For any fixed (u, x) and T sufficiently large, we now get

P
(∣∣∣ T∑

t=1

Zt,T (u, x)
∣∣∣ > MaTTh

d+1
)

≤ 4 exp
(
− ε2

64ΘSThd+1 T
ST

+ 8
3
εST bT

)
+ 4

T

ST
α(ST )

≤ 4 exp
(
− M2 log T

64Θ + 8
3
CM

)
+ 4

T

ST
AS−βT

≤ 4 exp
(
− M log T

64 + 3C

)
+ 4ATS−1−βT

= 4T−
M

64+3C + 4ATS−1−βT ,

where we choose M > Θ to get the last inequality. Since N ≤ Ch−(d+1)a
−(d+1)
T , it

follows that

Q̂T ≤ O(R1T ) +O(R2T )

with

R1T = h−(d+1)a
−(d+1)
T T−

M
64+3C

R2T = h−(d+1)a
−(d+1)
T TS−1−βT .

Choosing M sufficiently large, we obtain that R1T ≤ T−η for some small η > 0. As
φT log T
T θhd+1 = o(1) by assumption, we further get that

R2T = h−(d+1)a
−(d+1)
T T (aT τT )1+β

=
(φT log T

hd+1

)1+β−d
2
T 1−β−d

2
+ 1+β

s

= o
(
T θ(1+

β−d
2

)+1−β−d
2

+ 1+β
s

)
.
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By our assumptions on θ and β, it holds that R2T = o(1). This shows the result.

Proof of Theorem 4.2

We write

m̂(u, x)−m(u, x) =
1

f̂(u, x)

(
ĝV (u, x) + ĝB(u, x)−m(u, x)f̂(u, x)

)
with

f̂(u, x) =
1

Thd+1

T∑
t=1

Kh

(
u− t

T

) d∏
j=1

Kh(x
j −Xj

t,T )

ĝV (u, x) =
1

Thd+1

T∑
t=1

Kh

(
u− t

T

) d∏
j=1

Kh(x
j −Xj

t,T )εt,T

ĝB(u, x) =
1

Thd+1

T∑
t=1

Kh

(
u− t

T

) d∏
j=1

Kh(x
j −Xj

t,T )m
( t
T
,Xt,T

)
.

We first derive some intermediate results for the above expressions:

(i) By Theorem 4.1 with Wt,T = εt,T ,

sup
u∈[0,1],x∈S

∣∣ĝV (u, x)
∣∣ = Op

(√ log T

Thd+1

)
.

(ii) Applying the arguments for Theorem 4.1 to ĝB(u, x)−m(u, x)f̂(u, x) yields

sup
u∈[0,1],x∈S

∣∣ĝB(u, x)−m(u, x)f̂(u, x)

− E[ĝB(u, x)−m(u, x)f̂(u, x)]
∣∣ = Op

(√ log T

Thd+1

)
.

(iii) It holds that

sup
u∈Ih,x∈S

∣∣E[ĝB(u, x)−m(u, x)f̂(u, x)]
∣∣

= h2
κ2
2

d∑
i=0

(
2∂im(u, x)∂if(u, x) + ∂2iim(u, x)f(u, x)

)
+O

( 1

T rhd

)
+ o(h2)

with r = min{ρ, 1}. The proof is postponed until the arguments for Theorem 4.2

are completed.

(iv) We have that

sup
u∈Ih,x∈S

∣∣f̂(u, x)− f(u, x)
∣∣ = op(1).

For the proof, we split up the term f̂(u, x)− f(u, x) into a variance part f̂(u, x)−
Ef̂(u, x) and a bias part Ef̂(u, x)− f(u, x). Applying Theorem 4.1 with Wt,T = 1

yields that the variance part is op(1) uniformly in u. The bias part can be analyzed

by a simplified version of the arguments used to prove (iii).
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Combining the intermediate results (i)–(iii), we arrive at

sup
u∈Ih,x∈S

∣∣m̂(u, x)−m(u, x)
∣∣

≤
(

sup f̂(u, x)−1
)(

sup
∣∣ĝV (u, x)

∣∣+ sup
∣∣ĝB(u, x)−m(u, x)f̂(u, x)

∣∣)
=
(

sup f̂(u, x)−1
)
Op

(√ log T

Thd+1
+

1

T rhd
+ h2

)
with r = min{ρ, 1}. Moreover, (iv) and the condition that infu∈[0,1],x∈S f(u, x) > 0

immediately imply that sup f̂(u, x)−1 = Op(1). This completes the proof.

Proof of (iii). Let K̄ : R → R be a Lipschitz continuous function with support

[−qC1, qC1] for some q > 1. Assume that K̄(x) = 1 for all x ∈ [−C1, C1] and write

K̄h(x) = K̄(x
h
). Then

E[ĝB(u, x)−m(u, x)f̂(u, x)] = Q1(u, x) + . . .+Q4(u, x)

with

Qi(u, x) =
1

Thd+1

T∑
t=1

Kh

(
u− t

T

)
qi(u, x)

and

q1(u, x) = E
[ d∏
j=1

K̄h(x
j −Xj

t,T )
{ d∏
j=1

Kh(x
j −Xj

t,T )

−
d∏
j=1

Kh

(
xj −Xj

t (
t
T

)
)}{

m
( t
T
,Xt,T

)
−m(u, x)

}]
q2(u, x) = E

[ d∏
j=1

K̄h(x
j −Xj

t,T )
d∏
j=1

Kh

(
xj −Xj

t (
t
T

)
)

×
{
m
( t
T
,Xt,T

)
−m

( t
T
,Xt(

t
T

)
)}]

q3(u, x) = E
[{ d∏

j=1

K̄h(x
j −Xj

t,T )−
d∏
j=1

K̄h

(
xj −Xj

t (
t
T

)
)}

×
d∏
j=1

Kh

(
xj −Xj

t (
t
T

)
){
m
( t
T
,Xt(

t
T

)
)
−m(u, x)

}
q4(u, x) = E

[ d∏
j=1

Kh

(
xj −Xj

t (
t
T

)
){
m
( t
T
,Xt(

t
T

)
)
−m(u, x)

}]
.

We first consider Q1(u, x). As the kernel K is bounded, we can use a telescoping

argument to get that |
∏d

j=1Kh(x
j−Xj

t,T )−
∏d

j=1Kh(x
j−Xj

t (
t
T

))| ≤ C
∑d

k=1 |Kh(x
k−

Xk
t,T )−Kh(x

k −Xk
t ( t

T
))|. Once again exploiting the boundedness of K, we can find a

constant C <∞ with |Kh(x
k−Xk

t,T )−Kh

(
xk−Xk

t ( t
T

))| ≤ C|Kh(x
k−Xk

t,T )−Kh(x
k−
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Xk
t ( t

T
))|r for r = min{ρ, 1}. Hence,

∣∣∣ d∏
j=1

Kh(x
j −Xj

t,T )−
d∏
j=1

Kh

(
xj −Xj

t (
t
T

)
)∣∣∣

≤ C
d∑

k=1

∣∣Kh(x
k −Xk

t,T )−Kh

(
xk −Xk

t ( t
T

)
)∣∣r. (41)

Using (41), we obtain

|Q1(u, x)| ≤ C

Thd+1

T∑
t=1

Kh

(
u− t

T

)
E
[ d∑
k=1

∣∣Kh(x
k −Xk

t,T )−Kh

(
xk −Xk

t ( t
T

)
)∣∣r

×
d∏
j=1

K̄h(x
j −Xj

t,T )
∣∣∣m( t

T
,Xt,T

)
−m(u, x)

∣∣∣]
with r = min{ρ, 1}. The term

∏d
j=1 K̄h(x

j −Xj
t,T )|m( t

T
, Xt,T ) −m(u, x)| in the above

expression can be bounded by Ch. Since K is Lipschitz, |Xk
t,T − Xk

t ( t
T

)| ≤ C
T
Ut,T ( t

T
),

and the variables Ut,T ( t
T

) have finite r-th moment, we can infer that

|Q1(u, x)| ≤ C

Thd

T∑
t=1

Kh

(
u− t

T

)
E
[ d∑
k=1

∣∣Kh(x
k −Xk

t,T )−Kh

(
xk −Xk

t ( t
T

)
)∣∣r]

≤ C

Thd

T∑
t=1

Kh

(
u− t

T

)
E
[ d∑
k=1

∣∣∣ 1

Th
Ut,T ( t

T
)
∣∣∣r] ≤ C

T rhd−1+r

uniformly in u and x.

We next turn to Q2(u, x). Note that the expression in the expectation of q2(u, x) is

non-zero only if Xt,T ∈ [xj − 2C1h, x
j + 2C1h]dj=1 and Xt(

t
T

) ∈ [xj − C1h, x
j + C1h]dj=1.

As m is continuous, this implies that |m( t
T
, Xt,T )−m( t

T
, Xt(

t
T

))| ≤ C for some constant

C <∞, whenever the expression in the expectation is non-zero. This allows us to use

the bound∣∣∣m( t
T
,Xt,T

)
−m

( t
T
,Xt(

t
T

)
)∣∣∣ ≤ C

∣∣∣m( t
T
,Xt,T

)
−m

( t
T
,Xt(

t
T

)
)∣∣∣r

with r = min{ρ, 1} and some constant C <∞. We thus arrive at

|q2(u, x)| ≤ CE
[ d∏
j=1

K̄h(x
j −Xj

t,T )
d∏
j=1

Kh

(
xj −Xj

t (
t
T

)
)

×
∣∣∣m( t

T
,Xt,T

)
−m

( t
T
,Xt(

t
T

)
)∣∣∣r]

≤ CE
[( d∑

j=1

|Xj
t,T −X

j
t (

t
T

)|
)r]

≤ CE
[( 1

T
Ut,T ( t

T
)
)r]
≤ C

T r
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uniformly in u and x. As a result, supu,x |Q2(u, x)| ≤ C
T rhd

.

Using analogous arguments as for Q1(u, x), we can further show that supu,x |Q3(u, x)| ≤
C

T rhd−1+r . Finally, applying Lemmas B1 and B2 and exploiting the smoothness condi-

tions on m and f , we obtain that

Q4(u, x) = h2
κ2
2

d∑
i=0

(
2∂im(u, x)∂if(u, x) + ∂2iim(u, x)f(u, x)

)
+ o(h2)

uniformly in u and x. Combining the results on Q1(u, x), . . . , Q4(u, x) yields (iii).

Proof of Theorem 4.3

With ĝV (u, x) and ĝB(u, x) as in the proof of Theorem 4.2, we let

√
Thd+1

(
m̂(u, x)−m(u, x)

)
=

√
Thd+1

f̂(u, x)

(
ĝV (u, x) + ĝB(u, x)−m(u, x)f̂(u, x)

)
and use the shorthands

B(u, x) =
√
Thd+1

(
ĝB(u, x)−m(u, x)f̂(u, x)

)
V (u, x) =

√
Thd+1ĝV (u, x).

In what follows, we refer to B(u, x) as the bias part and to V (u, x) as the stochastic

part.

The bias part converges in probability to the term Bu,x defined in the statement of

Theorem 4.3. This follows from (iii) in the proof of Theorem 4.2 and the fact that

B(u, x) − E[B(u, x)] = op(1). In order to prove the latter, it suffices to show that

Var(B(u, x)) = o(1), which can be achieved by slightly varying the arguments of The-

orem 1 in Hansen [13].

The stochastic part is asymptotically normal. In particular,

V (u, x)
d−→ N(0, κd+1

0 σ2(u, x)f(u, x)) (42)

with κ0 =
∫
K2(ϕ)dϕ. The proof proceeds by the usual blocking argument. Decompos-

ing V (u, x) alternately into big blocks and small blocks, we can neglect the small blocks

and exploit the mixing conditions to replace the big blocks by independent random

variables. This allows us to apply a Lindeberg theorem to get the result. We omit the

details, as the proof is very similar to that for the standard strictly stationary setting.

We however shortly comment on how to calculate the variance of V (u, x). First, by the

same steps as in Theorem 1 of Hansen [13],

Var(V (u, x)) = Var
( 1√

Thd+1

T∑
t=1

Kh

(
u− t

T

) d∏
j=1

Kh(x
j −Xj

t,T )εt,T

)
=

1

Thd+1

T∑
t=1

K2
h

(
u− t

T

)
E
[ d∏
j=1

K2
h(xj −Xj

t,T )ε2t,T

]
+ o(1).
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Moreover, by similar steps as for (iii) in the proof of Theorem 4.2,

1

Thd+1

T∑
t=1

K2
h

(
u− t

T

)
E
[ d∏
j=1

K2
h(xj −Xj

t,T )ε2t,T

]
= κd+1

0 σ2(u, x)f(u, x) + o(1)

with κ0 =
∫
K2(ϕ)dϕ. Hence,

Var
(
V (u, x)

)
= κd+1

0 σ2(u, x)f(u, x) + o(1).

As f̂(u, x)−f(u, x) = op(1) and f̂(u, x)−1 = Op(1), we can now combine the asymptotic

normality result (42) with the fact that B(u, x) = Bu,x+op(1) to complete the proof.

Appendix C

In this appendix, we prove the results concerning the smooth backfitting estimates of

Section 5. Throughout the appendix, conditions (Add1) and (Add2) are assumed to be

satisfied.

Auxiliary Results

Before we come to the proof of Theorems 5.1 and 5.2, we provide results on uniform

convergence rates for the kernel smoothers that are used as pilot estimates in the smooth

backfitting procedure. We start with an auxiliary lemma which is needed to derive the

various rates.

Lemma C1. Define T0 = E[T[0,1]d ]. Then uniformly for u ∈ Ih,

T0
T

= P(X0(u) ∈ [0, 1]d) +O(T−
ρ

1+ρ ) + o(h) (43)

with ρ defined in assumption (C1) and

T[0,1]d − T0
T0

= Op

(√ log T

Th

)
. (44)

Proof. We first show (43). Let Ut,T := Ut,T ( t
T

) for short and recall that ‖Xt,T −
Xt(

t
T

)‖ ≤ 1
T
Ut,T almost surely with E[Uρ

t,T ] ≤ C for some ρ > 0. It holds that

E
[
I(Xt,T ∈ [0, 1]d)

]
= E

[
I
(
Xt,T ∈ [0, 1]d, ‖Xt,T −Xt(

t
T

)‖ ≤ 1
T
Ut,T

)]≥ E
[
I
(
Xt(

t
T

) ∈
[
C
T
Ut,T , 1− C

T
Ut,T

]d)]
≤ E

[
I
(
Xt(

t
T

) ∈
[
− C

T
Ut,T , 1 + C

T
Ut,T

]d)]
for some sufficiently large C <∞. Hence, defining

BL =
1

T

T∑
t=1

Kh

(
u,

t

T

)
E
[
I
(
Xt(

t
T

) ∈
[
C
T
Ut,T , 1− C

T
Ut,T

]d)]
BU =

1

T

T∑
t=1

Kh

(
u,

t

T

)
E
[
I
(
Xt(

t
T

) ∈
[
− C

T
Ut,T , 1 + C

T
Ut,T

]d)]
,
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we get BL ≤ T0
T
≤ BU . Now let 0 < q < 1 and write BU = BU,1 +BU,2 with

BU,1 =
1

T

T∑
t=1

Kh

(
u,

t

T

)
E
[
I
(
Xt(

t
T

) ∈
[
− C

T
Ut,T , 1 + C

T
Ut,T

]d
, Ut,T ≤ T q

)]
and BU,2 = BU −BU,1. Using Lemma B2, we can show that uniformly for u ∈ Ih,

BU,1 ≤
1

T

T∑
t=1

Kh

(
u,

t

T

)
E
[
I
(
Xt(

t
T

) ∈
[
− C

T 1−q , 1 + C
T 1−q

]d)]
=

∫
I
(
x ∈

[
− C

T 1−q , 1 + C
T 1−q

]d) 1

T

T∑
t=1

Kh

(
u,

t

T

)
f
( t
T
, x
)
dx

=

∫
I
(
x ∈ [0, 1]d

)
f(u, x)dx+O

( 1

T 1−q

)
+ o(h).

Moreover, it is easy to see that BU,2 ≤ CT−qρ. Setting q = (1 + ρ)−1, we thus arrive at

BU ≤ P(X0(u) ∈ [0, 1]d) +O(T−
ρ

1+ρ ) + o(h) (45)

uniformly in u. By similar arguments, BL ≥ P(X0(u) ∈ [0, 1]d)+O(T−
ρ

1+ρ )+o(h). This

yields (43). Equation (44) now follows immediately:

T[0,1]d − T0
T0

=
T

T0
· 1

T
(T[0,1]d − T0) = Op

(√ log T

Th

)
uniformly in u, since 1

T
(T[0,1]d − T0) = Op(

√
log T/Th) by Theorem 4.1 and T0

T
= Op(1)

by (43).

We now examine the convergence behaviour of the pilot estimates of the backfitting

procedure. We first consider the density estimates p̂j and p̂j,k.

Lemma C2. Define vT,2 =
√

log T/Th2, vT,3 =
√

log T/Th3, and bT,r = T−rh−(d+r)

with r = min{ρ, 1}. Moreover, let κ0(w) =
∫
Kh(w, v)dv. Then

sup
u,xj∈Ih

∣∣p̂j(u, xj)− pj(u, xj)∣∣ = Op(vT,2) +O(bT,r) + o(h)

sup
u∈Ih, xj∈[0,1]

∣∣p̂j(u, xj)− κ0(xj)pj(u, xj)∣∣ = Op(vT,2) +O(bT,r) +O(h)

sup
u,xj ,xk∈Ih

∣∣p̂j,k(u, xj, xk)− pj,k(u, xj, xk)∣∣ = Op(vT,3) +O(bT,r) + o(h)

sup
u∈Ih,

xj ,xk∈[0,1]

∣∣p̂j,k(u, xj, xk)− κ0(xj)κ0(xk)pj,k(u, xj, xk)∣∣ = Op(vT,3) +O(bT,r) +O(h).

Proof. We only consider the term p̂j, the proof for p̂j,k being analogous. Defining

p̌j(u, x
j) = (T0)

−1∑T
t=1 I(Xt,T ∈ [0, 1]d)Kh(u,

t
T

)Kh(x
j, Xj

t,T ) with T0 = E[T[0,1]d ], we

obtain that

p̂j(u, x
j) =

[
1 +

T[0,1]d − T0
T0

]−1
p̌j(u, x

j)

=
[
1−

T[0,1]d − T0
T0

+Op

(T[0,1]d − T0
T0

)2]
p̌j(u, x

j).
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By (44) from Lemma C1, this implies that p̂j(u, x
j) = p̌j(u, x

j) + Op(
√

log T/Th)

uniformly for u ∈ Ih and xj ∈ [0, 1]. Applying the proving strategy of Theorem 4.2 to

p̌j(u, x
j) completes the proof.

We next examine the Nadaraya-Watson smoother m̂j. To this purpose, we decompose it

into a variance part m̂A
j and a bias part m̂B

j . The decomposition is given by m̂j(u, x
j) =

m̂A
j (u, xj) + m̂B

j (u, xj) with

m̂A
j (u, xj) =

1

T[0,1]d

T∑
t=1

I(Xt,T ∈ [0, 1]d)Kh

(
u,

t

T

)
Kh(x

j, Xj
t,T )εt,T

/
p̂j(u, x

j)

m̂B
j (u, xj) =

1

T[0,1]d

T∑
t=1

I(Xt,T ∈ [0, 1]d)Kh

(
u,

t

T

)
Kh(x

j, Xj
t,T )

×
(
m0

( t
T

)
+

d∑
k=1

mk

( t
T
,Xk

t,T

))/
p̂j(u, x

j).

The next two lemmas characterize the asymptotic behaviour of m̂A
j and m̂B

j .

Lemma C3. It holds that

sup
u,xj∈[0,1]

∣∣m̂A
j (u, xj)

∣∣ = Op

(√ log T

Th2

)
. (46)

Proof. Replacing the occurrences of T[0,1]d in m̂A
j by T0 = E[T[0,1]d ] and then applying

Theorem 4.1 gives the result.

Lemma C4. It holds that

sup
u,xj∈Ih

∣∣m̂B
j (u, xj)− µ̂T,j(u, xj)

∣∣ = op(h
2) (47)

sup
u∈Ih, xj∈Ich

∣∣m̂B
j (u, xj)− µ̂T,j(u, xj)

∣∣ = Op(h
2) (48)

with Ich = [0, 1] \ Ih and

µ̂T,j(u, x
j) = αT,0(u) + αT,j(u, x

j) +
∑
k 6=j

∫
αT,k(u, x

k)
p̂j,k(u, x

j, xk)

p̂j(u, xj)
dxk

+ h2
∫
β(u, x)

p(u, x)

pj(u, xj)
dx−j.

Here,

αT,0(u) = m0(u) + hκ1(u)∂um0(u) +
h2

2
κ2(u)∂2uum0(u)

αT,k(u, x
k) = mk(u, x

k) + h
[
κ1(u)∂umk(u, x

k) +
κ0(u)κ1(x

k)

κ0(xk)
∂xkmk(u, x

k)
]
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β(u, x) = κ2∂um0(u)∂u log p(u, x)

+
d∑

k=1

{
κ2∂umk(u, x

k)∂u log p(u, x) +
κ2
2
∂2uumk(u, x

k)

+ κ2∂xkmk(u, x
k)∂xk log p(u, x) +

κ2
2
∂2xkxkmk(u, x

k)
}
,

where the symbol ∂zg denotes the partial derivative of the function g with respect to z

and κ2 =
∫
w2K(w)dw as well as κl(v) =

∫
wlKh(v, w)dw for l = 0, 1, 2.

Proof. By definition

m̂B
j (u, xj) =

1

T[0,1]d

T∑
t=1

It,TKh

(
u,

t

T

)
Kh(x

j, Xj
t,T )m0

( t
T

)/
p̂j(u, x

j)

+
1

T[0,1]d

T∑
t=1

It,TKh

(
u,

t

T

)
Kh(x

j, Xj
t,T )mj

( t
T
,Xj

t,T

)/
p̂j(u, x

j)

+
∑
k 6=j

1

T[0,1]d

T∑
t=1

It,TKh

(
u,

t

T

)
Kh(x

j, Xj
t,T )mk

( t
T
,Xk

t,T

)/
p̂j(u, x

j)

=: m̂B,0
j (u, xj) + m̂B,j

j (u, xj) +
∑
k 6=j

m̂B,k
j (u, xj),

where we have used the shorthand It,T = I(Xt,T ∈ [0, 1]d). We show that

m̂B,0
j (u, xj) = m0(u) + hκ1(u)∂um0(u)

+ h2
[
κ2(u)∂um0(u)

∂upj(u, x
j)

pj(u, xj)
+

1

2
κ2(u)∂2uum0(u)

]
+R0

T (u, xj) (49)

with supu,xj∈Ih |R
0
T (u, xj)| = op(h

2) and supu∈Ih, xj∈Ich |R
0
T (u, xj)| = Op(h

2),

m̂B,j
j (u, xj) = mj(u, x

j)

+ h
[
κ1(u)∂umj(u, x

j) +
κ0(u)κ1(x

j)

κ0(xj)
∂xjmj(u, x

j)
]

+ h2
[
κ2(u)∂umj(u, x

j)
∂upj(u, x

j)

pj(u, xj)
+

1

2
κ2(u)∂2uumj(u, x

j)

+
κ0(u)κ2(x

j)

κ0(xj)
∂xjmj(u, x

j)
∂xjpj(u, x

j)

pj(u, xj)

+
1

2

κ0(u)κ2(x
j)

κ0(xj)
∂2xjxjmj(u, x

j)
]

+Rj
T (u, xj), (50)
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where Rj
T is of the same uniform order as R0

T , and

m̂B,k
j (u, xj) =

∫
mk(u, x

k)
p̂j,k(u, x

j, xk)

p̂j(u, xj)
dxk

+ h

∫ [
κ1(u)∂umk(u, x

k)

+
κ0(u)κ1(x

k)

κ0(xk)
∂xkmk(u, x

k)
] p̂j,k(u, xj, xk)

p̂j(u, xj)
dxk

+ h2
[
κ2(u)

∫
κ0(x

k)∂umk(u, x
k)
∂upj,k(u, x

j, xk)

pj(u, xj)
dxk

+ κ0(u)

∫
κ2(x

k)∂xkmk(u, x
k)
∂xkpj,k(u, x

j, xk)

pj(u, xj)
dxk

+ κ2(u)

∫
κ0(x

k)
1

2
∂2uumk(u, x

k)
pj,k(u, x

j, xk)

pj(u, xj)
dxk

+ κ0(u)

∫
κ2(x

k)
1

2
∂2xkxkmk(u, x

k)
pj,k(u, x

j, xk)

pj(u, xj)
dxk
]

+Rk
T (u, xj), (51)

where again Rk
T is of the same uniform order as R0

T . Combining (49)–(51) completes

the proof.

We only give the proof of (51), as this is the most complicated term: Recalling that∫
Kh(x

k, Xk
t,T )dxk = 1, a second-order Taylor expansion of mk(

t
T
, Xk

t,T ) around (u, xk)

yields

m̂B,k
j (u, xj) =

∫
p̂j,k(u, x

j, xk)

p̂j(u, xj)
mk(u, x

k)dxk

+
1

T[0,1]d

T∑
t=1

(
V k
t,T (u, xj) +W k

t,T (u, xj)
)/
p̂j(u, x

j) + op(h
2)

uniformly for u ∈ Ih and xj ∈ [0, 1] with

V k
t,T (u, xj) = I(Xt,T ∈ [0, 1]d)Kh

(
u,

t

T

)
Kh(x

j, Xj
t,T )

∫
Kh(x

k, Xk
t,T )

×
[
∂umk(u, x

k)
( t
T
− u
)

+ ∂xkmk(u, x
k)(Xk

t,T − xk)
]
dxk

W k
t,T (u, xj) = I(Xt,T ∈ [0, 1]d)Kh

(
u,

t

T

)
Kh(x

j, Xj
t,T )

∫
Kh(x

k, Xk
t,T )

×
[1

2
∂2uumk(u, x

k)
( t
T
− u
)2

+ ∂2uxkmk(u, x
k)
( t
T
− u
)

(Xk
t,T − xk)

+
1

2
∂2xkxkmk(u, x

k)(Xk
t,T − xk)2

]
dxk.

We now have a closer look at the expectations of V k
t,T (u, xj) and W k

t,T (u, xj). First, note
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that

E[V k
t,T (u, xj)]

= E
[
I
(
Xt(

t
T

) ∈ [0, 1]d
)
Kh

(
u,

t

T

)
Kh

(
xj, Xj

t (
t
T

)
)∫

Kh

(
xk, Xk

t ( t
T

)
)

×
{
∂umk(u, x

k)
( t
T
− u
)

+ ∂xkmk(u, x
k)
(
Xk
t ( t

T
)− xk

)}
dxk
]

+O
( 1

T
r
r+1

+
1

T rh

)
(52)

with r = min{ρ, 1} uniformly for u ∈ Ih and xj ∈ [0, 1]. This is shown by successively

replacing the occurrences of Xt,T in E[V k
t,T (u, xj)] by Xt(

t
T

). In order to replace the

occurrence in the indicator function I(Xt,T ∈ [0, 1]d), similar arguments as in Lemma

C1 can be used. For replacing the occurrences in Kh(x
j, Xj

t,T ) and Kh(x
k, Xk

t,T ), we

exploit the Lipschitz continuity of K and use arguments similar to those for (iii) in the

proof of Theorem 4.2. With (52), we can now write

1

T[0,1]d

T∑
t=1

E[V k
t,T (u, xj)] =

1

T[0,1]d

T∑
t=1

Kh

(
u,

t

T

)∫
Kh(x

j, wj)Kh(x
k, wk)

×
[
∂umk(u, x

k)
( t
T
− u
)

+ ∂xkmk(u, x
k)(wk − xk)

]
×
(∫

I(w ∈ [0, 1]d)f
( t
T
, w
)
dw−j,k

)
dwjdwkdxk

+O
( 1

T
r
r+1

+
1

T rh

)
uniformly for u ∈ Ih and xj ∈ [0, 1], where w−j,k denotes all but the j-th and k-th

component of the vector w. Noting that O(T−
r
r+1 + 1

T rh
) = o(h2) by (Add2), using a

first-order Taylor expansion of f( t
T
, w) and recalling the definition of the density p, we

can infer that

1

T[0,1]d

T∑
t=1

E[V k
t,T (u, xj)]

=
T

T[0,1]d
P (X0(u) ∈ [0, 1]d)

×
{ 1

T

T∑
t=1

Kh

(
u,

t

T

)( t
T
− u
)∫

κ0(x
j)κ0(x

k)∂umk(u, x
k)pj,k(u, x

j, xk)dxk

+
1

T

T∑
t=1

Kh

(
u,

t

T

)∫
hκ0(x

j)κ1(x
k)∂xkmk(u, x

k)pj,k(u, x
j, xk)dxk

+
1

T

T∑
t=1

Kh

(
u,

t

T

)( t
T
− u
)2 ∫

κ0(x
j)κ0(x

k)∂umk(u, x
k)∂upj,k(u, x

j, xk)dxk

+
1

T

T∑
t=1

Kh

(
u,

t

T

)∫
h2κ0(x

j)κ2(x
k)∂xkmk(u, x

k)∂xkpj,k(u, x
j, xk)dxk

}
+ op(h

2)
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uniformly for u ∈ Ih and xj ∈ [0, 1]. Next note that by Lemma C1,

T

T[0,1]d
P (X0(u) ∈ [0, 1]d) = 1 +O

(√ log T

Th

)
+O(T−

ρ
1+ρ ) + o(h)

uniformly in u. Using this together with Lemmas B1 and B2 from Appendix B, we get

1

T[0,1]d

T∑
t=1

E[V k
t,T (u, xj)]

= h
[
κ1(u)κ0(x

j)

∫
κ0(x

k)∂umk(u, x
k)pj,k(u, x

j, xk)dxk

+ κ0(u)κ0(x
j)

∫
κ1(x

k)∂xkmk(u, x
k)pj,k(u, x

j, xk)dxk
]

+ h2
[
κ2(u)κ0(x

j)

∫
κ0(x

k)∂umk(u, x
k)∂upj,k(u, x

j, xk)dxk

+ κ0(u)κ0(x
j)

∫
κ2(x

k)∂xkmk(u, x
k)∂xkpj,k(u, x

j, xk)dxk
]

+RV
T (u, xj) (53)

with supu,xj∈Ih |R
V
T (u, xj)| = o(h2) and supu∈Ih,xj∈Ich |R

V
T (u, xj)| = O(h2). Since κ1(u) =

0 for all u ∈ Ih and∫
∂xkmk(u, x

k)
[ 1

κ0(xk)
p̂j,k(u, x

j, xk)− κ0(xj)pj,k(u, xj, xk)
]
hκ1(x

k)dxk = Op(h
2)

uniformly for u ∈ Ih and xj ∈ [0, 1], we can rewrite (53) as

1

T[0,1]d

T∑
t=1

E[V k
t,T (u, xj)]

= h
[
κ1(u)

∫
∂umk(u, x

k)p̂j,k(u, x
j, xk)dxk

+ κ0(u)

∫
κ1(x

k)

κ0(xk)
∂xkmk(u, x

k)p̂j,k(u, x
j, xk)dxk

]
+ h2

[
κ2(u)κ0(x

j)

∫
κ0(x

k)∂umk(u, x
k)∂upj,k(u, x

j, xk)dxk

+ κ0(u)κ0(x
j)

∫
κ2(x

k)∂xkmk(u, x
k)∂xkpj,k(u, x

j, xk)dxk
]

+ R̃V
T (u, xj), (54)

where R̃V
T is of the same uniform order as RV

T . By analogous arguments as above, we

can further show that

1

T[0,1]d

T∑
t=1

E[W k
t,T (u, xj)]

=
h2

2

[
κ2(u)κ0(x

j)

∫
κ0(x

k)∂2uumk(u, x
k)pj,k(u, x

j, xk)dxk
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+ κ0(u)κ0(x
j)

∫
κ2(x

k)∂2xkxkmk(u, x
k)pj,k(u, x

j, xk)dxk
]

+RW
T (u, xj) (55)

with supu,xj∈Ih |R
W
T (u, xj)| = o(h2) and supu∈Ih,xj∈Ich |R

W
T (u, xj)| = O(h2). Finally, ap-

plying the same proving strategy as in Theorem 4.1, one can show that

sup
u∈Ih, xj∈[0,1]

∣∣∣ 1

T[0,1]d

T∑
t=1

(
V k
t,T (u, xj)− E[V k

t,T (u, xj)]
)∣∣∣ = op(h

2)

sup
u∈Ih, xj∈[0,1]

∣∣∣ 1

T[0,1]d

T∑
t=1

(
W k
t,T (u, xj)− E[W k

t,T (u, xj)]
)∣∣∣ = op(h

2).

Therefore,

m̂B,k
j (u, xj) =

∫
mk(u, x

k)
p̂j,k(u, x

j, xk)

p̂j(u, xj)
dxk

+
1

T[0,1]d

T∑
t=1

(
E[V k

t,T (u, xj)] + E[W k
t,T (u, xj)]

)/
p̂j(u, x

j) + op(h
2)

uniformly for u ∈ Ih and xj ∈ [0, 1]. Plugging (54) and (55) into the above expression

and using the fact that p̂j(u, x
j) converges uniformly to κ0(x

j)pj(u, x
j) yields (51).

We finally state a result on the convergence behaviour of the term m̃0(u).

Lemma C5. It holds that

sup
u∈Ih

∣∣m̃0(u)−m0(u)
∣∣ = Op

(√ log T

Th
+ h2

)
. (56)

Proof. The claim can be shown by replacing T[0,1]d with T0 = E[T[0,1]d ] in the expression

for m̃0(u) and then using arguments from Theorem 4.2.

Proof of Theorems 5.1 and 5.2

To prove Theorems 5.1 and 5.2, it suffices to show that the high-level conditions (A1)–

(A6), (A8), and (A9) of Mammen et al. [20] are satisfied. This allows us to apply their

Theorems 1–3, which imply the statements of Theorems 5.1 and 5.2. As will be seen,

the high-level conditions are satisfied uniformly for u ∈ Ih rather than only pointwise.

Inspecting the proofs of Theorems 1–3 in [20], we can thus infer that the convergence

rates in (22) hold uniformly over u ∈ Ih rather than only pointwise. In what follows,

we consider the high-level conditions one after the other.

(A1) For all j 6= k, it holds that∫
p2j,k(u, x

j, xk)

pk(u, xk)pj(u, xj)
dxjdxk <∞

uniformly for u ∈ Ih.
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This condition follows immediately from the assumptions on the density f(u, x). These

imply that pj(u, x
j) ≥ c > 0 and pj,k(u, x

j, xk) ≤ C < ∞ for all u ∈ [0, 1] and xj,

xk ∈ [0, 1] with some appropriately chosen constants c and C.

(A2) For all j 6= k, it holds that ∫ [ p̂j(u, xj)− pj(u, xj)
pj(u, xj)

]2
pj(u, x

j)dxj = op(1)∫ [ p̂j,k(u, x
j, xk)

pk(u, xk)pj(u, xj)
− pj,k(u, x

j, xk)

pk(u, xk)pj(u, xj)

]2
pk(u, x

k)pj(u, x
j)dxjdxk = op(1)∫ [ p̂j,k(u, x

j, xk)

pk(u, xk)p̂j(u, xj)
− pj,k(u, x

j, xk)

pk(u, xk)pj(u, xj)

]2
pk(u, x

k)pj(u, x
j)dxjdxk = op(1)

uniformly for u ∈ Ih. Furthermore, for each u ∈ Ih, p̂j(u, ·) and p̂j,k(u, ·) vanish

outside the support of pj(u, ·) and pj,k(u, ·), respectively.

This condition as well as (A4) and (A8) can easily be proven by using the uniform

convergence results for the kernel densities derived in Lemma C2.

(A3) There exists a finite constant C such that with probability tending to 1,∫
m̂2
j(u, x

j)pj(u, x
j)dxj <∞

uniformly for u ∈ Ih.

Both this condition and (A5) directly follow from Lemmas C3 and C4, which describe

the asymptotic behaviour of the variance part m̂A
j and the bias part m̂B

j of the Nadaraya-

Watson estimate m̂j.

(A4) There exists a finite constant C such that with probability tending to 1,

sup
xk∈Ih

∫
p̂2j,k(u, x

j, xk)

p̂2k(u, x
k)pj(u, xj)

dxj ≤ C

for all j 6= k uniformly for u ∈ Ih.

(A5) There exists a finite constant C such that with probability tending to 1,∫
m̂A
j (u, xj)2pj(u, x

j)dxj ≤ C∫
m̂B
j (u, xj)2pj(u, x

j)dxj ≤ C

uniformly for u ∈ Ih.
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(A6) For j 6= k, it holds that

sup
xj∈Ih

∣∣∣ ∫ p̂j,k(u, x
j, xk)

p̂j(u, xj)
m̂A
k (u, xk)dxk

∣∣∣ = op(h
2)∥∥∥∫ p̂j,k(u, x

j, xk)

p̂j(u, xj)
m̂A
k (u, xk)dxk

∥∥∥
2

= op(h
2)

uniformly for u ∈ Ih, where ‖ · ‖2 denotes the norm in the space L2(pj(u, ·)).

To prove (A6), it suffices to show that

sup
u∈Ih, xj∈[0,1]

∣∣∣ ∫ p̂j,k(u, x
j, xk)

p̂j(u, xj)
m̂A
k (u, xk)dxk

∣∣∣ = Op

(√ log T

Th

)
. (57)

For the proof of (57), we write

Sk,j(u, x
j) =

∫
p̂j,k(u, x

j, xk)

p̂j(u, xj)
m̂A
k (u, xk)dxk

=

∫
p̂j,k(u, x

j, xk)

p̂j(u, xj)p̂k(u, xk)
ψ̂k(u, x

k)dxk,

where m̂A
k (u, xk) = ψ̂k(u, x

k)/p̂k(u, x
k) with

ψ̂k(u, x
k) =

1

T[0,1]d

T∑
t=1

I(Xt,T ∈ [0, 1]d)Kh

(
u,

t

T

)
Kh(x

k, Xk
t,T )εt,T .

In a first step, we replace Sk,j(u, x
j) by the term

S∗k,j(u, x
j) =

∫
pj,k(u, x

j, xk)

pj(u, xj)pk(u, xk)
ψ̂k(u, x

k)dxk

and show that the resulting error is asymptotically negligible. This is done as follows:

sup
u∈Ih,xj∈[0,1]

∣∣Sk,j(u, xj)− S∗k,j(u, xj)∣∣
= sup

u,xj

∣∣∣ ∫ { p̂j,k(u, x
j, xk)

p̂j(u, xj)p̂k(u, xk)
− κ0(x

j)κ0(x
k)pj,k(u, x

j, xk)

κ0(xj)pj(u, xj)κ0(xk)pk(u, xk)

}
ψ̂k(u, x

k)dxk
∣∣∣

= Op

(√ log T

Th3
+ h
)
Op

(√ log T

Th2

)
= Op

( log T

Th5/2
+

√
log T

T

)
,

as ψ̂k(u, x
k) = Op(

√
log T/Th2) and the term in curly brackets is of the order

Op(
√

log T/Th3 + h) uniformly in u, xj, and xk. In a second step, we show that

sup
u∈Ih,xj∈[0,1]

∣∣S∗k,j(u, xj)∣∣ = Op

(√ log T

Th

)
.

To prove this, we write

S∗k,j(u, x
j) =

1

T[0,1]d

T∑
t=1

wk,j(u, x
j, Xk

t,T )εt,T (58)
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with

wk,j(u, x
j, Xk

t,T ) = I(Xt,T ∈ [0, 1]d)Kh

(
u,

t

T

)
×
(∫ pj,k(u, x

j, xk)

pj(u, xj)pk(u, xk)
Kh(x

k, Xk
t,T )dxk

)
.

Applying the techniques from the proof of Theorem 4.1 to (58) completes the proof of

(57), which in turn yields (A6).

(A8) It holds that

sup
xj∈Ih

∫ ∣∣∣ pj,k(u, x
j, xk)

pj(u, xj)pk(u, xk)
− p̂j,k(u, x

j, xk)

p̂j(u, xj)p̂k(u, xk)

∣∣∣pk(u, xk)dxk = op(1)

uniformly for u ∈ Ih.

(A9) There exist deterministic functions

αT,0(u), αT,1(u, x
1), . . . , αT,d(u, x

d)

γT,1(u), . . . , γT,d(u)

and a function β(u, x) (not depending on T ) such that uniformly for u ∈ Ih∫
α2
T,j(u, x

j)pj(u, x
j)dxj <∞ (59)∫

β2(u, x)p(u, x)dx <∞ (60)

sup
x1∈Ih,...,xd∈Ih

|β(u, x)| <∞ (61)∫
αT,j(u, x

j)p̂j(u, x
j)dxj = γT,j(u) + op(h

2) (62)

with γT,j(u) = O(h2) and

sup
u,xj∈Ih

∣∣m̂B
j (u, xj)− µ̂T,0(u)− µ̂T,j(u, xj)

∣∣ = op(h
2) (63)

sup
u∈Ih

∫ ∣∣m̂B
j (u, xj)− µ̂T,0(u)− µ̂T,j(u, xj)

∣∣2pj(u, xj)dxj = op(h
4). (64)

Here, µ̂T,0(u) is some random function and

µ̂T,j(u, x
j) = αT,0(u) + αT,j(u, x

j) +
∑
k 6=j

∫
αT,k(u, x

k)
p̂j,k(u, x

j, xk)

p̂j(u, xj)
dxk

+ h2
∫
β(u, x)

p(u, x)

pj(u, xj)
dx−j.

We finally prove (A9). Equations (63) and (64) immediately follow from the uniform

expansion of the bias part m̂B
j proven in Lemma C4. Furthermore, it is trivial to see

that (59)–(61) are fulfilled for αT,j(u, x
j) and β(u, x) as defined in Lemma C4. Finally,

straightforward calculations yield a term γT,j(u) in (62) which is of order h2 uniformly

for u ∈ Ih.

This completes the proof of Theorems 5.1 and 5.2.
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