
Chesher, Andrew

Working Paper

Semiparametric structural models of binary response:
Shape restrictions and partial identification

cemmap working paper, No. CWP31/11

Provided in Cooperation with:
Institute for Fiscal Studies (IFS), London

Suggested Citation: Chesher, Andrew (2011) : Semiparametric structural models of binary response:
Shape restrictions and partial identification, cemmap working paper, No. CWP31/11, Centre for
Microdata Methods and Practice (cemmap), London,
https://doi.org/10.1920/wp.cem.2011.3111

This Version is available at:
https://hdl.handle.net/10419/64769

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1920/wp.cem.2011.3111%0A
https://hdl.handle.net/10419/64769
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Semiparametric structural
models of binary response:
shape restrictions and partial
identification

Andrew Chesher

The Institute for Fiscal Studies
Department of Economics, UCL

cemmap working paper CWP31/11



Semiparametric Structural Models of Binary Response: Shape
Restrictions and Partial Identi�cation

Andrew Chesher�

CeMMAP & UCL

September 22nd 2011

Abstract. The paper studies the partial identifying power of structural
single equation threshold crossing models for binary responses when explana-
tory variables may be endogenous. The paper derives the sharp identi�ed set
of threshold functions for the case in which explanatory variables are discrete
and provides a constructive proof of sharpness. There is special attention to
a widely employed semiparametric shape restriction which requires the thresh-
old crossing function to be a monotone function of a linear index involving the
observable explanatory variables. It is shown that the restriction brings great
computational bene�ts, allowing direct calculation of the identi�ed set of index
coe¢ cients without calculating the nonparametrically speci�ed threshold func-
tion. With the restriction in place the methods of the paper can be applied to
produce identi�ed sets in a class of binary response models with mis-measured
explanatory variables.
Keywords: Binary Response, Endogeneity, Incomplete models, Index Re-

strictions, Instrumental variables, Measurement Error Models, Partial Identi�-
cation, Probit Models, Shape Restrictions, Threshold Crossing Models.
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1. Introduction

This paper gives new results on the identifying power of a single equation, limited
information, instrumental variable (IV) model for a binary response in a structural
econometric model that admits the possibility that explanatory variables are endoge-
nous. The model involves a scalar continuously distributed latent variable U and a
threshold crossing function p(X) which depends on a vector random variable X some
of whose elements may be jointly dependently distributed with U .

In this threshold crossing model realizations of U exceeding p(X) lead to the
outcome Y = 1; realizations less than or equal to p(X) lead to Y = 0. The marginal
distribution of U is normalized uniform on the unit interval. Realizations of (Y;X;Z)
are observed where Z is a list of instrumental variables excluded from the threshold
crossing function. The structural latent variable U is independent of Z in the sense
that Pr[U � ujZ = z] is independent of z for all values u in the unit interval and for
all values z in some support set Z.

�I thank Martin Cripps, Lars Nesheim, Adam Rosen and Richard Spady for stimulating comments
and discussions and Konrad Smolinski for excellent research assistance. Some of the results of this
paper were presented at seminars at Caltech, UCLA and USC in November 2007, at the Malinvaud
Seminar in Paris in December 2007 and at the inaugural Asian Econometric Theory Lecture at the
SETA Conference, Kyoto, Japan, July 30th 2009. I thank participants for comments. I gratefully
acknowledge the �nancial support of the UK Economic and Social Research Council through a grant
(RES-589-28-0001) to the ESRC Centre for Microdata Methods and Practice (CeMMAP).
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The model is partially identifying for the threshold crossing function p and for its
parameters if semi-parametric or parametric restrictions are imposed. The identi�ed
set can be topologically complex. In the discrete endogenous variable case it is the
union of many convex sets but may not itself be convex, nor even connected.

The paper derives the sharp identi�ed set for the case in which endogenous vari-
ables are discrete and illustrates the identi�ed set in this case. The paper studies the
impact of a very commonly imposed monotonicity restriction on the function p when
there is an index restriction on the way in which explanatory variables X a¤ect the
function. This shape restriction brings the substantial computational advantage that
the identi�ed set for the index coe¢ cients can be obtained without calculating the
identi�ed set of threshold crossing functions, p. One possible cause of endogeneity is
mis-measurement of explanatory variables. It is shown how the methods of the paper
can be applied to characterize identi�ed sets when there is additive measurement
error and a monotone index restriction.

1.1. Alternative models built on conditional independence restrictions.
The leading alternative to the IV model of this paper is the widely used triangular
equation system model that motivates the use of control function methods.

This model is studied in parametric contexts in Rivers and Vuong (1988) and
Smith and Blundell (1986) and in semi- and non-parametric settings in, for example,
Blundell and Powell (2003, 2004), Chesher (2003, 2005, 2007), Vytlacil and Yildiz
(2007), Florens, Heckman, Meghir and Vytlacil (2008), Imbens and Newey (2009)
and Shaikh and Vytlacil (2011). There are early examples of the use of control
function methods in econometrics in Hausman (1978) and Heckman (1979). There
are commands in STATA 10 (Statacorp (2007)) and LIMDEP 9.0 (Greene (2007)) to
perform parametric probit control function estimation in triangular models for binary
responses.

The triangular system control function model is attractive because under cer-
tain conditions it is point identifying. One requirement is that, in the absence of a
fully parametric speci�cation such as employed in Heckman (1978), the endogenous
variables are determined by a structural function, X = g(Z; V ), in which there is a
one-to-one mapping from latent variables, V , to the endogenous variables, X, at each
value of the instrumental variables, Z. This ensures that there exists a single-valued
control function g�1(Z;X) which delivers the value of V that caused a particular
value of X to arise for some value of Z. The restriction rules out cases in which there
are discrete endogenous variables or V is high-dimensional such as arises when there
is a random coe¢ cients model for X.

The control function model also requires that the latent variables (U; V ), be jointly
distributed independently of the instrumental variables. This, along with triangular-
ity, ensures that U and X are independent conditional on V . Blundell and Matzkin
(2010) demonstrate that it is only under very special conditions that a nonlinear
simultaneous equations model for the joint determination of Y and X satis�es the
restrictions of the triangular system model.

Other types of conditional independence restrictions have been studied. For ex-
ample Lewbel (2000) studies threshold crossing models for binary outcomes with
an index restriction and the requirement that the unobservable is distributed inde-
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pendently of a continuously distributed explanatory variable (a �special regressor�),
conditional on other explanatory and instrumental variables. The model is point
identifying when the special regressor has large support. Magnac and Maurin (2007)
replace the large support restriction with an alternative that delivers point identi�-
cation and Magnac and Maurin (2008) relax the support restrictions on the special
regressor and obtain a partially identifying model.

1.2. Bene�ts and costs of the IV approach. A virtue of the IV model studied
in this paper is that it is less restrictive than the triangular system model and it
does not rely on knowledge of a special regressor. But the IV model is essentially
incomplete in the sense that the model does not specify a structural function for
the endogenous variables. As a result the model is generally partially identifying
for certain structural features.1 Inference obtained using the IV model is robust
to failure of some of the conditional independence restrictions commonly employed
in structural binary response models but the model does not deliver unambiguous
information about some structural features.

The IV model is encompassing for some of the conditional independence based
alternatives, for example the triangular system model and the special regressor model
with instrument independence,2 in the sense that the values of structural features
which those models point identify are points in the sets identi�ed by the IV model.

The sets identi�ed by the IV model can be large. In this circumstance the restric-
tions of the conditional independence based models are extremely informative, and,
in the context of the partially identifying IV model, not falsi�able. The results deliv-
ered in this paper open the door to calculations which expose the possible fragility
of inferences based on point identifying conditional independence restrictions.

In some cases, even when the identi�ed sets delivered by the IV model are large
they can deliver useful information about the structural threshold function. For ex-
ample: it will always be possible to falsify the hypothesis that the threshold function is
insensitive to variation in potentially endogenous explanatory variables; calculations
reported here show that, even with relatively weak instruments, hypotheses about
the monotonicity of structural threshold functions and the direction of dependence
can be falsi�able.

1.3. Related results on IV models. Outer regions for threshold crossing func-
tions in IV models for scalar ordered outcomes, of which the binary outcome model is
a special case, were given in Chesher (2010). The sharp identi�ed set for a threshold
crossing function in a binary outcome model with a continuous endogenous variable
was given in that paper.

This paper adds to these results by providing the sharp identi�ed set for the
binary outcome model with discrete endogenous variables and giving a constructive
proof of sharpness.

1Chesher and Rosen (2011) explore the relationship between model completeness, coherence and
point identi�cation.

2A special regressor model with instrument independence requires U and the instruments Z to
be independently distributed in place of the uncorrelatedness restriction E[UZ] = 0 proposed in
Lewbell (2000).
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The paper explores the impact of particular restrictions available in the binary
response model, namely that the threshold crossing function is a monotone function of
a linear index function through which the explanatory variables act. This restriction
is satis�ed in most of the parametric binary outcome models used in practice, for
example the probit and logit models.

Other related papers are Chesher and Smolinski (in press) which delivers the sharp
identi�ed set and a constructive proof of sharpness in an IV scalar ordered outcome
model with a binary endogenous variable and Chesher, Rosen and Smolinski (2010)
which, using tools drawn from the theory of random sets, develops sharp identi�ed
sets for random utility functions in multiple discrete choice models with instrumental
variable restrictions.

2. Identifying power of the single equation IV binary response model

2.1. The single equation model. In the single equation IV model the value of
a binary variable Y is determined by a structural function as follows.

Y =

�
0 ; 0 � U � p(X)
1 ; p(X) < U � 1

Here U is an unobserved scalar continuously distributed random variable and X is a
vector random variable which may be jointly dependently distributed with U . The
marginal distribution of U is normalized to be uniform on [0; 1].

There are instrumental (exogenous) variables arranged in a vector Z. The support
of (U;X;Z) is [0; 1]�X �Z. The model excludes Z from the function p and imposes
the restriction that U and Z are independently distributed in the sense that the
conditional distribution of U given Z = z does not depend on z for values in the
support set Z.

In what follows all probabilities are conditioned on values of Z so the instrumental
variables can appear as arguments of the threshold-crossing function p. Of course for
a model to deliver a non-trivial identi�ed set it will have to include some restriction
on the impact of Z on p, for example restricting some elements of Z to be excluded
from p. Z will appear as an argument of p when index restrictions are considered in
Section 4.3 but for now, to simplify notation, the model will require all elements of
Z to be excluded from p.

The identifying power of this single equation model is now considered. The ques-
tion to be answered is: what can be known of the function p from knowledge of the
probability distribution of Y and X given Z = z when z varies within the set Z and
the data generating process satis�es the restrictions of the single equation IV model.

2.2. Identi�cation. The single equation IV model, denoted M, is de�ned as
follows.

Model M. Y is a binary random variable determined as follows:

Y =

�
0 ; 0 � U � p(X)
1 ; p(X) < U � 1 (1)
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where U is a continuously distributed scalar random variable normalized marginally
Unif(0; 1) and independent of Z which is a list of instrumental variables excluded
from the threshold-crossing function p and taking values in a set Z.

In this de�nition independence, denoted U k Z, signi�es that Pr[U 2 SjZ = z]
is independent of z for all sets S � [0; 1] and z 2 Z, allowing the possibility that Z
is not a random variable. For example its values could be purposively chosen by an
experimenter.

Consider a data generating structure S0 � fp0; F 0U jXZ ; F
0
XjZg admitted by this

model in which p0 is a particular threshold-crossing function, F 0U jXZ denotes a partic-

ular conditional distribution function for U given X given Z and F 0XjZ is a particular
conditional distribution function for X given Z.

To be admitted by the modelM the distribution functions fF 0U jXZ ; F
0
XjZg, equiv-

alently the distribution function F 0UXjZ , must have associated with them marginal
distributions for U given Z which respect the independence restriction and the uni-
form distribution normalization, that is:

F 0U jZ(ujz) = u

for all u 2 [0; 1] and z 2 Z. Henceforth �for all u�signi�es for all u 2 [0; 1].
Let F 0Y XjZ denote the joint distribution function of Y and X given Z generated

by the structure S0. This is determined as follows.

F 0Y XjZ(0; xjz) = F
0
UXjZ(p0(x); xjz)

F 0Y XjZ(1; xjz) = F
0
XjZ(xjz)

Let Pr0[�jZ = z] indicate probabilities calculated with respect to these measures.
Observationally equivalent admissible structures, S�, have threshold crossing func-

tions p� for which there exist distribution functions F �UXjZ that respect the indepen-
dence property and satisfy the following condition.

F �Y XjZ(0; xjz) � F
�
UXjZ(p�(x); xjz) = F

0
Y XjZ(0; xjz) 8 (x; z) 2 X � Z: (2)

Let P0(Z) denote the identi�ed set of threshold crossing functions associated with
F 0Y XjZ and the set Z. It comprises all admissible functions p that satisfy (2).

Theorem 1 gives a system of inequalities which is satis�ed by functions in the
identi�ed set P0(Z).

Theorem 1
A structure S0 admitted by the model M generates a distribution F 0Y XjZ . If a

function p is a threshold crossing function in a structure admitted by the model M
and observationally equivalent to S0 then p satis�es the inequalities (3) and (4) for
all u and all z 2 Z.

c0l(u; z; p) � Pr0[Y = 0 ^ p(X) � ujZ = z] � u (3)

c0u(u; z; p) � 1� Pr0[Y = 1 ^ u � p(X)jZ = z] � u (4)
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Here subscripts �l�and �u�indicate respectively lower and upper bounding prob-
ability functions. The subscript �0�indicates that a function (c0l or c0u) is calculated
using the distribution functions F 0Y XjZ generated by the structure S0. Because there
is conditioning on Z = z Theorem 1 continues to hold when the threshold-crossing
function p includes Z as an argument.

Proof of Theorem 1
It is �rst shown that, when p = p0, (3) and (4) hold for all u and all z 2 Z.
Consider the inequality (3) with p = p0 and probabilities conditional on X and

Z. For all x such that p0(x) > u,

Pr0[Y = 0 ^ p0(X) � ujX = x;Z = z] = 0

and for all x such that p0(x) � u:

Pr0[Y = 0 ^ p0(X) � ujX = x;Z = z] = Pr0[Y = 0jX = x;Z = z]

= Pr0[U � p0(x)jX = x;Z = z]

� Pr0[U � ujX = x; Z = z]

and so for all x there is the following inequality

Pr0[Y = 0 ^ p0(X) � ujX = x;Z = z] � Pr0[U � ujX = x;Z = z] (5)

Now consider the inequality (4) with p = p0. For all x such that u > p0(x),

1� Pr0[Y = 1 ^ u � p0(X)jX = x;Z = z] = 1

and for all x such that u � p0(x):

1� Pr0[Y = 1 ^ u � p0(X)jX = x;Z = z] = 1� Pr0[Y = 1jX = x;Z = z]

= Pr0[U � p0(x)jX = x;Z = z]

� Pr0[U � ujX = x; Z = z]

and so for all x there is the following inequality.

1� Pr0[Y = 1 ^ u � p0(X)jX = x;Z = z] � Pr0[U � ujX = x;Z = z] (6)

Taking expected value over X given Z = z on the left and right hand sides of (5) and
(6) using the distribution function F 0XjZ and exploiting the independence restriction

U k Z and the uniform distribution normalization yields the inequalities (3) and (4)
with p = p0.

The result of the Theorem now follows directly since, if some threshold crossing
function p� is an element of a structure observationally equivalent to S0 then it
generates the same probability measure as S0 does, so (3) and (4) hold for all u and
all z 2 Z with p = p�. �
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Discussion. The functions c0l and c0u in (3) and (4) are non-decreasing in u
and satisfy inequalities:

0 � c0l(u; z; p) � F 0Y jZ(0jz) � c0u(u; z; p) � 1 (7)

which hold for all functions p in the identi�ed set, all z 2 Z and u. The functions
attain their lower and upper bounds as u approaches respectively 0 and 1. Examples
are drawn in Section 4.2.

The inequalities (3) and (4) hold for all z 2 Z so structural functions in the
identi�ed set satisfy

c0l(u; p) � max
z2Z

c0l(u; z; p) � u � min
z2Z

c0u(u; z; p) � c0u(u; p) (8)

for all u. The envelope functions c0u(u; p) and c0l(u; p) are non-decreasing functions
of u and it follows from (7) that for all u and any admissible p:

0 � c0l(u; p) � max
z2Z

F 0Y jZ(0jz)

min
z2Z

F 0Y jZ(0jz) � c0u(u; p) � 1

the bounds being approached as u passes to 0 or 1. For all functions p in the identi�ed
set c0u(u; p) � c0l(u; p) for every u 2 [0; 1] but for functions p outside the identi�ed
set violation of this inequality is possible.

Structural equations for general discrete outcomes, Y = h(X;U) with h monotone
in scalar continuously distributed U and with U restricted to be distributed indepen-
dently of instrumental variables Z and normalized Unif(0; 1) are studied in Chesher
(2010). It is shown there that structural functions in the identi�ed set associated
with distributions F 0Y XjZ and a set of instrumental values Z satisfy the system of
inequalities

max
z2Z

Pr0[Y < h(X;u)jZ = z] < u � min
z2Z

Pr0[Y � h(X;u)jZ = z] (9)

for all u and that this system de�nes the sharp identi�ed set of functions h when Y
is binary and X is continuous.

The binary outcome model studied here is a special case with h de�ned by (1).
In the binary response case the lower bound in (9) can be expressed as

max
z2Z

Pr0[Y = 0 ^ p(X) < ujZ = z] < u

which has strong inequalities where (3) has weak inequalities. The restrictions im-
posed by the two lower bounds are e¤ectively the same when X is continuously
distributed. However when X is discrete the lower bound (3) in Theorem 1 can be
more demanding than the lower bound in (9).3 In the next Section it is shown that
the inequalities of Theorem 1 characterize the identi�ed set of structural functions in
the case in which X is discrete.

3Because the event fp(X) = ug may occur with non-zero probability.
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A restricted version of the modelM may require the threshold-crossing function,
p, to be a member of a parametric family of functions. Later the case in which p(x) has
the probit form is considered. When there are parametric restrictions the inequalities
(3) and (4) sharply de�ne the identi�ed set of values of parameters associated with
the distribution F 0Y XjZ and the modelM.

In the parametric case it may be possible to obtain a complete characterization of
the identi�ed set but in general this is di¢ cult without further restriction. In econo-
metric practice many of the parametric models that are used satisfy a �monotone
index� restriction, requiring that the threshold-crossing function to be a monotone
function of a scalar index through which the explanatory variables act. Probit and
logit models are leading examples.

The force of this semiparametric shape restriction is considered in Section 4. It
leads to a result which allows visualization of identi�ed sets of nonparametrically
speci�ed monotone structural functions and simple characterization of identi�ed sets
of values of index coe¢ cients. The restriction also opens the way to an analysis of
identi�cation when explanatory variables are measured with error.

3. Discrete Endogenous Variables
3.1. Identi�ed sets. The probability inequalities that appear in Theorem 1 are
now given explicit representations for the case in which X is discrete and it is shown
that in that case the inequalities of Theorem 1 de�ne the sharp identi�ed set for the
threshold crossing function.

Some new notation is required. Let X have support X = fx1; x2; : : : ; xKg and
for k 2 f1; : : : ;Kg de�ne 
k � p(xk), 
0 � 0, 
K+1 � 1. De�ne 
 � f
1; : : : ; 
Kg.
For k 2 f1; : : : ;Kg de�ne conditional probabilities associated with the probability
distributions F 0Y XjZ as follows.

�0k(z) � Pr0[Y = 0jX = xk; Z = z] �0k(z) � Pr0[X = xkjZ = z]

�0k(z) � Pr0[Y = 0 ^X = xkjZ = z] = �0k(z)�0k(z)

The values f�01(z); : : : ; �0K(z)g are required to all be non-zero for all z 2 Z.4 Adopt
the convention that sums from 1 to 0 are zero,

P0
s=1(�)s � 0.

Theorem 2. For a structural function p, assign indexes to the elements in the
support set X so that 
1 � 
2 � � � � � 
K . The inequalities (3) and (4) of Theorem 1
obtained as u varies in [0; 1] de�ne a set of values of 
 characterized by the following
inequalities.

kX
j=1

�0j (z) � 
k �
k�1X
j=1

�0j (z) +

KX
j=k

�0j (z) 8 k 2 f1; : : : ;Kg (10)

If more than one element in 
 is equal to 
k then their associated values �j(z) all
contribute to the summations from 1 to k on the left hand side and from k to K on
the right hand side.

4This restriction could be dropped at the cost of complicating the notation.
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Proof of Theorem 2. Consider a value u 2 [0; 1] and an index value k such that

k�1 < u � 
k. Considering the lower bounding probability (3), since

fx : p(x) � ug =
�
fx1; : : : ; xk�1g ; u < 
k
fx1; : : : ; xkg ; u = 
k

there is, for u 2 (
k�1; 
k]:

Pr0[Y = 0 ^ p(X) � ujZ = z] =
k�1X
j=1

�0j (z) + �
0
k(z)1[u = 
k]: (11)

Here 1[C] is 1 if the condition C is true and 0 otherwise.
Considering the upper bounding probability (4), since

fx : u � p(x)g = fxk; : : : ; xKg; u � 
k

there is, for u 2 (
k�1; 
k]:

1� Pr0[Y = 1 ^ u � p(X)jZ = z] =
k�1X
j=1

�0j (z) +

KX
j=k

�0j (z): (12)

Setting u = 
k in (11) and (12) and substituting in the inequalities (3) and (4)
delivers the inequalities (10).

All values of u in an interval (
k�1; 
k] deliver just the 
k inequality in the se-
quence (10) and the union of the intervals obtained as k passes from 1 to K is (0; 1].
Setting u equal to zero in (11) and (12) does not deliver informative inequalities.
Therefore evaluating the inequalities (11) and (12) at all u 2 [0; 1] delivers only the
K inequalities (10). �

A consequence of Theorem 2 is that structural functions that show no variation
with x cannot lie in the identi�ed set if Pr0[Y = 0jZ = z] varies at all as z varies in
Z. This is so because if 
1 = 
2 = � � � = 
K are equal, say to some value �
, then the
left and the right hand sides of all the inequalities (10) are equal to

KX
j=1

�0j (z) = Pr0[Y = 0jZ = z] � ��0(z) (13)

so the only vector 
 that satis�es the inequalities has every element equal to ��0(z) =
�
. If ��0(z) is not constant for variations of z in Z then there is no admissible
constant value �
 (recall there is the IV restriction excluding Z from the threshold
crossing function) so threshold crossing functions p(x) which do not vary with x are
not contained in the identi�ed set.

Systems of inequalities for di¤erent permutations of 
 are obtained by exchange
of indices in the inequalities of Theorem 2.

For each permutation the set of values of 
 de�ned by the inequalities (10) is
precisely the subset of the identi�ed set for the modelM associated with the permu-
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tation. This is the subject of Theorem 3.

Theorem 3
Consider a value z 2 Z. For every sequence 
1 � 
2 � � � � � 
K for which, at

that value z, the system of inequalities (10) de�nes a non-empty set, there exists a
distribution function FU jXZ(ujx; z) such that the following conditions hold for k 2
f1; : : : ;Kg.

1. Proper conditional distribution functions:

0 � FU jXZ(
1jxk; z) � � � � � FU jXZ(
K jxk; z) � 1

2. Independence:5
KX
j=1

�0j (z)FU jXZ(
kjxj ; z) = 
k

3. Observational equivalence:

FU jXZ(
kjxk; z) = �0k(z)

A constructive proof of Theorem 3 is given in the Annex to the paper. Combining
the result of Theorems 1 and 3 leads to Theorem 4.

Theorem 4
A structure S0 admitted by the model M generates a distribution F 0Y XjZ . De�ne

the set of functions ~P0(Z):

~P0(Z) = fp : max
z2Z

c0l(u; z; p) � u � min
z2Z

c0u(u; z; p); 8u 2 [0; 1]g

where c0l(u; z; p) and c0u(u; z; p) are de�ned in respectively equations (3) and (4). The
set ~P0(Z) is the identi�ed set of threshold crossing functions, that is ~P0(Z) = P0(Z).

Proof of Theorem 4. Theorem 1 implies that all functions p in the identi�ed set
satisfy

c0l(u; z; p) � u � c0u(u; z; p)

for all u 2 [0; 1] and for each z 2 Z. Since only functions p that satisfy these
inequalities for all z 2 Z at each value of u are in the identi�ed set, P0(Z) �
~P0(Z). Theorem 3 states that for each z 2 Z and each function p that satis�es
these inequalities there is a distribution function FU jXZ(ujx; z) which combined with
F 0XjZ(xjz) delivers the probability distribution F

0
Y XjZ(y; xjz). It follows that P0(Z) �

~P0(Z) and combining results, ~P0(Z) = P0(Z). �
The development to this point has been concerned with the case in which the

explanatory variables X are discrete. The sharp identi�ed set for the continuous
X, binary Y case is characterized in Chesher (2010). The inequalities derived there

5This incorporates a normalisation, namely that U is marginally uniformly distributed. The point
is that the distribution function of U given Z = z alone must be independent of z.
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are as in Theorem 4 except that a strong inequality appears in the de�nition of the
function c0l(u; z; p) and the resulting function is required to be strictly less than u.
When X is continuous these variations have no e¤ect on the content of the sets of
functions and we will proceed using the inequalities of Theorem 4 to de�ne the sharp
identi�ed set in the discrete and continuous X case.

3.2. Illustration. Each admissible permutation of the elements of 
 delivers a
system of linear inequalities (10) that de�nes a convex subset of the unit K-cube.6

In general there are up to K! permutations so the identi�ed set is the union of as
many as K! convex sets. However in practice some of the component sets may be
empty and shape restrictions can rule some permutations inadmissible.

In this Section identi�ed sets are visualized for a case in which discreteX has three
points of support. There are then three structural features of interest: 
1 � p(x1),

2 � p(x2) and 
3 � p(x3). They take values in the unit 3-cube and identi�ed sets
can be examined in perspective 3D graphical displays. De�ne 
 � f
1; 
2; 
3g.

The probability distributions for Y and X given Z used in this example are
generated using Gaussian triangular structures as follows.

Y = 1[X +W > 0] X =

8<:
�1 ; �1 < X� � �0:5
0 ; �0:5 < X� � 0:5
1 ; 0:5 < X� � +1

X� = b1Z + V

�
W
V

�
k Z � N2 (0; I2)

The instrumental variable Z takes values in the following set.

Z = f�1:5;�1:0;�0:5; 0:0;+0:5;+1:0;+1:5g

The coe¢ cient b1 is varied across the interval [0:15; 1:45], generating a sequence of
graphs that show how the strength of the instrument a¤ects the identi�ed set.

This structure is of the sort admitted by simultaneous equations model with
dummy endogenous variable studied in Heckman (1978). Heckman�s (1978) model
is parametric and Gaussian and is point identifying. In the absence of the fully
parametric restriction the model would not be point identifying as the endogenous
explanatory variable is not continuous as explained in Chesher (2005) where some
partial identi�cation results are provided.

The structure is triangular andX is exogenous because the covariance of Gaussian
W and V is zero. This information is not embodied in the single equation instru-
mental variable nonparametric model whose set identifying power is now studied.

Figure 1 shows the identi�ed set when b1 = 0:15. It is the union of 6 convex sets,
one lying in each of the orthoschemes of the unit 3-cube. The orthoschemes of the
unit cube are the six right tetrahedra each of which is a set of values of 
 that satisfy

6Convex because each subset is an intersection of linear half planes.
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a particular ordering, for example:7

O123 � f
 : 
1 � 
2 � 
3g:

The orthoschemes have intersections only at their faces and along the ray of equality.
For example the orthoschemes O123 and O213 have non-empty intersection f
 : 
1 =

2 � 
3g. The set f
 : 
1 = 
2 = 
3g is the ray of equality. It is a subset of all the
orthoschemes and is their common intersection.

In Figure 1 the instrument is very weak and the identi�ed set has elements in
each of the six orthoschemes. Any ordering of the elements of 
 could have produced
the probability distributions used in the computations. In the structure generating
the probabilities used in this exercise:


 = f0:691; 0:500; 0:308g:

This point in the unit 3-cube is at the intersection of the three green rays that lie
parallel to the axes in the various �gures.

The ray of equality which connects the points f0; 0; 0g and f1; 1; 1g is drawn
brown. Notice that it does not intersect the identi�ed set at all. This is because the
instrument, although weak, does a¤ect ��0(z) = Pr0[Y = 0jZ = z].8 At this value of
the coe¢ cient on the instrumental variable the hypothesis that p(x) does not depend
on x is falsi�able. The identi�ed set is not convex but it is connected.

In the structure generating Figure 2, b1 = 0:25 and this increase in value is
su¢ cient to remove a set occupying one of the orthoschemes, speci�cally O123. At
this value of the coe¢ cient on the instrumental variable the hypothesis that p(x) is
monotone increasing is falsi�able.9 The identi�ed set remains connected and has no
intersection with the ray of equality.

Increasing the value of b1 to 0:45 - see Figure 3 - causes the identi�ed set to become
disconnected. The sets lying in orthoschemes O132 and O213 have no intersection with
each other nor with other parts of the identi�ed set. They have small volumes and
on increasing b1 further to 0:55 they disappear, see Figure 4. At this value of b1 the
identi�ed set lies in just three of the orthoschemes, O312, O321 and O231. The value
of 
 in the structures generating probabilities for this example lies in O321. At this
value of b1 the identi�ed set is connected.

Increasing the value of b1 further reduces the volumes of the remaining three com-
ponents of the identi�ed set. With b1 = 1:25 the volumes are very small and Figure 5
shows that the identi�ed set is again disconnected. With b1 = 1:45 the identi�ed set
becomes connected again, occupying only the orthoscheme O321. As Figure 6 shows
the identi�ed set is now arranged on and very close to the ray connecting

f0:691; 0:308; 0:308g and f0:691; 0:691; 0:308g
7See Coxeter (1973) for properties of orthoschemes. There is the following de�nition: Oijk � f
 :


i � 
j � 
kg:
8See the discussion following the proof of Theorem 2 in Section 3.1.
9 In the structures generating the probabilities employed in this example p(x) is monotone de-

creasing so we expect the orthoscheme in which p is monotone increasing to be one of the �rst to go
as the instrument is strengthened.
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and 
1 and 
3 are essentially point identi�ed by the model. The value of 
2 remains
set identi�ed and further increases in b1 do nothing to alter this.

In this example allowing the set of instrumental values to cover the interval
[�1:5;+1:5] more densely fails to deliver point identi�cation of 
2. The parame-
ters 
1 and 
3 are associated with extreme values of X and the approach to point
identi�cation as b1 increases is of the sort referred to as identi�cation at in�nity in
for example Heckman (1990). In the absence of a parametric speci�cation of p(x)
this mechanism fails to deliver point identi�cation of 
2 which is associated with a
value of X in the interior of its support.

Many of the features of the identi�ed set seen in this example appear when X has
more points of support. When X has K points of support 
 lies in a unit K-cube
and the identi�ed set is the union of up to K! convex sets, each lying in one of the
K! orthoschemes of the unit K-cube. The identi�ed set may be disconnected and
is generally not convex. The ray of equality does not intersect the identi�ed set if
Pr0[Y = 0jZ = z] varies with z.

4. Monotonicity and index restrictions

Almost all parametric models for binary outcomes used in practice require the thresh-
old crossing function to be a monotone function of an scalar index function of ex-
planatory variables. Probit and logit models are leading examples. The impact of
such a monotone index restriction in a semiparametric single equation IV model with
endogenous explanatory variables is now considered

First the case in which discrete or continuous X is scalar is considered.10 The
threshold function is speci�ed as p(x) with p strictly monotone in x. There is no
restriction on the direction of the dependence on x although this is easy to incor-
porate. The identi�ed set of threshold functions is shown to comprise all monotone
functions that lie between one of two pairs of bounding functions; one pair increasing,
the other pair decreasing. These functions are shown to be simple functionals of the
joint distribution of the binary outcome and the endogenous variable conditional on
the instrumental variables.

When instruments are not strong the identi�ed set can contain both increasing
and decreasing functions, but not functions that are insensitive to variations in x.
In a sense then the identi�ed set of structural functions may not be connected. The
results are illustrated using a probability measure generated by a Gaussian triangular
system and the impact of imposing parametric restrictions is considered.

The identi�ed set of threshold functions is the intersection of sets determined by
pairs of upper and lower bounding functions. Each distinct value of the instrumen-
tal variables generates a pair of bounds. The monotonicity restriction is falsi�able
because for a particular probability distribution of (Y;X) given Z the bounding func-
tions may intersect in which case there is no monotone threshold function in the IV
model�s identi�ed set.

Attention is then turned to models in which X may be a vector. Now Z is allowed
to appear in the structural function, possibly subject to some exclusion restrictions.
10The characterization of the identi�ed set given in Theorem 4 is used. As explained in Section

3.1 this applies for discrete and continuous X.
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The models considered have threshold functions of the form p(X 0� + Z 0�) with the
function p monotone. The identi�ed set comprises a set of parameter values with
each element of which is associated a set of monotone functions, p. For each value
of (�; �) in the identi�ed set, bounding functions are derived which de�ne the set of
functions associated with (�; �). Under the monotonicity restriction there is no need
to consider particular alternative functions p when developing the identi�ed set of
index coe¢ cients. This substantially simpli�es the computation and estimation of
that identi�ed set.

4.1. Monotone threshold functions with scalar X. Let X be scalar and let
p�1 denote the inverse function of p.11 If the threshold function is restricted to be
monotone then:

fx : p(x) � ug =
�
fx : x � p�1(u)g ; p increasing
fx : x � p�1(u)g ; p decreasing

so the inequalities (3) and (4) can be written as follows.

� Increasing p.

c"0l(u; z; p) = Pr0[Y = 0 ^X � p�1(u)jz] � u (14)

c"0u(u; z; p) = 1� Pr0[Y = 1 ^X � p�1(u)jz] � u (15)

� Decreasing p.

c#0l(u; z; p) = Pr0[Y = 0 ^X � p�1(u)jz] � u (16)

c#0u(u; z; p) = 1� Pr0[Y = 1 ^X � p�1(u)jz] � u (17)

Evaluating any of these functions at u = p(�) with � 2 X has the e¤ect of moving
the threshold function out of the bounding function. For example

c"0l(p(�); z; p) � d
"
0l(�; z) = Pr0[Y = 0 ^X � �jz] � u = p(�)

and there are therefore the following inequalities which are satis�ed under the monotonic-
ity restriction for all � 2 X and z 2 Z by all functions p in the identi�ed set, and
only by these functions..

� Increasing p.

d"0l(�; z) � Pr0[Y = 0 ^X � �jz] � p(�) (18)

d"0u(�; z) � 1� Pr0[Y = 1 ^X � �jz] � p(�) (19)

11For weakly monotonic functions p, de�ne p�1 as follows

p increasing: p�1(u) � inffx : p(x) � ug

p decreasing: p�1(u) � inffx : p(x) � ug
and restrict increasing p to be càdlàg and decreasing p to be càglàd.
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� Decreasing p.

d#0l(�; z) � Pr0[Y = 0 ^X � �jz] � p(�) (20)

d#0u(�; z) � 1� Pr0[Y = 1 ^X � �jz] � p(�) (21)

It is very convenient to have the threshold-crossing function outside the bounding
functions because the functions can be derived or estimated just once and then com-
pared with any candidate threshold function. This brings a computational advantage
because in many cases calculating the probabilities that appear in the inequalities
requires numerical integration which would be prohibitively expensive if it were done
for every candidate function p.

De�ne envelope functions as follows.

d"0l(�) � maxz2Z
d"0l(�; z) d"0u(�) � min

z2Z
d"0u(�; z) (22)

d#0l(�) = maxz2Z
d#0l(�; z) d#0u(�) � min

z2Z
d#0u(�; z) (23)

The arguments set out above lead to the following Theorem.

Theorem 4. In the model M let the threshold crossing function p be a monotone
function of a scalar argument. The identi�ed set of threshold functions is the union
of two sets of functions as follows.n

p : d"0l(�) � p(�) � d
"
0u(�); 8� 2 X

o
[
n
p : d#0l(�) � p(�) � d

#
0u(�); 8� 2 X

o
One of these sets may be empty and this will tend to happen when instruments

are strong with rich support as illustrated shortly. Prior restrictions may eliminate
one of the sets by restricting the threshold function to be, say, increasing.

If a model further restricts p to lie in a parametric family then only parameter
values leading to functions in the family that lie within the union of the sets just
de�ned fall in the identi�ed set of parameter values. Parametric probit restrictions
are considered shortly in an illustrative example.

The functions d"0l and d
"
0u are increasing in � and the functions d

#
0l and d

#
0u are

decreasing in �. It is easy to show that the functions obey the following inequalities
with left and right hand bounds achieved as � approaches respectively �1 and +1:

0 � d"0l(�; z) � Pr0[Y = 0jz] � d
"
0u(�; z) � 1 (24)

1 � d#0u(�; z) � Pr0[Y = 0jz] � d
#
0l(�; z) � 0 (25)

and that.

lim�!�1 d
"
0u(�)

lim�!+1 d
#
0u(�)

)
= min

z2Z
Pr0[Y = 0jz] � max

z2Z
Pr0[Y = 0jz] =

(
lim�!+1 d

"
0l(�)

lim�!�1 d
#
0l(�)

:

The bounding functions are illustrated in the next Section.
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Figure a0 a1 b0 b1 swv svv

7 0 �1 0 0:3 0:5 1

8 0 �1 0 0:4 0:5 1

9 0 �1 0 0:3 0:05 0:1

Table 1: Parameter values for Figures 7, 8 and 9

4.2. Illustration. These results are illustrated using probability measures gener-
ated by a triangular Gaussian structure which satis�es the restrictions of the single
equation IV model. The structural function for binary Y has a probit form with an
endogenous explanatory variable. This choice makes the calculation of the bounding
functions easy, it highlights the relative power of the control function model which
would be point identifying in this case, and it places us in familiar applied economet-
rics territory.12

The structure has binary Y recording whether Y � is positive. Latent Y � andX are
generated by structures with linear equations and jointly Gaussian latent variables.

Y = 1(Y � > 0) Y � = a0 + a1X +W X = b0 + b1Z + V�
W
V

�
k Z � N

��
0
0

�
;

�
1 swv
swv svv

��
The joint distribution of Y � and X given Z = z is N(�(z);�).

�(z) =

�
a0 + a1b0 + a1b1z

b0 + b1z

�
� =

�
1 + 2a1swv + a

2
1svv swv + a1svv

�wv + a1svv svv

�
The probabilities that appear in the inequalities (18) - (21) are bivariate normal
orthant probabilities.13 The threshold function for the structures employed in this
example is p(x) = �(�a0�a1x) where � is the standard normal distribution function.

The identifying power of the following nonparametric model is considered.

Y = h(X;U) =

�
0 ; 0 � U � p(X)
1 ; p(X) < U � 1 U k Z p monotone (26)

Graphs show the bounding functions (18) - (21) varying with � for 10 values of
the instrument z equally spaced in [�1; 1]. The functions are calculated using the
probability measure generated by Gaussian triangular structures de�ned above with
the parameter values as shown in the �rst row of Table 1. At these parameter values
the structural threshold function is the standard normal distribution function.

In Figure 7 the value of b1, the coe¢ cient on the instrumental variable in the
equation for endogenous X, is 0:3. The upper pane shows the increasing bounding
functions (18) - (19); the lower pane shows the decreasing functions (20) - (21).

12This structure with its linear equations and Gaussian latent variables is of the sort admitted by
the triangular model underlying STATA�s ivprobit command; see Statacorp (2007). The ML version
of that command uses the Gaussian speci�cation employed in this illustration.
13The function pmvnorm in the mvtnorm package of R (R Core Development Team (2011)) is used.
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The envelope bounding functions (22) and (23) are obtained at each value of �
as the maximum of the lower bounding functions and the minimum of the upper
bounding functions. They are drawn as dashed red lines. The identi�ed set of
structural threshold functions comprises all increasing functions which pass between
the upper and lower envelope bounding functions in the upper pane and all decreasing
functions that pass between the upper and lower envelope bounding functions in the
lower pane.

The structural threshold function in the Gaussian triangular structure used to
generate the probability measure employed in these calculations, is the increasing
dashed line passing between the upper and lower bounding functions in the upper
pane. Any monotone increasing (decreasing) function passing between the red dashed
lines in the upper (lower) pane in Figure 7, together with a suitable chosen (typically
non-Gaussian) distribution for U and X given Z = z 2 Z also generates the same
probability measure.

When the power of the instrument is increased by setting the parameter b1 = 0:4
the identi�ed set is reduced as shown in Figure 8. The envelope bounding functions in
the lower pane now intersect and no decreasing function can pass between these func-
tions. The instrument is now su¢ ciently strong to eliminate all monotone decreasing
functions from the identi�ed set.

For Figure 9 the coe¢ cient b1 is reset to its Figure 7 value, 0:3, and the strength
of the instrument is increased by drastically raising its predictive power, a situation
achieved by reducing svv tenfold, from 1 to 0:1, while reducing swv to 0:05 so that
the correlation between W and V is unchanged at 0:25. This strengthening of the
instrument also serves to remove decreasing functions from the identi�ed set and
produces a noticeable narrowing of the bounds around increasing functions but the
situation is still a long way from point identi�cation even with this small value of svv.

When this nonparametric model is augmented with parametric restrictions the
identi�ed set is reduced to the subset of the identi�ed set of nonparametric functions
containing only those functions that are members of the family of functions speci�ed
in the parametric model. To illustrate, consider the identifying power of the following
parametric probit model,

Y = h(X;U) =

�
0 ; 0 � U � �(��0 � �1X)
1 ; �(��0 � �1X) < U � 1 U k Z

when Y and X are determined by the structure used to produce Figure 7 for which
the parameter values are given in the �rst row of Table 1. At these parameter values
the structural threshold-crossing function is �(x) corresponding to a negative value
�1 = �1 in the parameterization used here.

Figure 10 redraws Figure 7 and superimposes some of the probit functions that lie
in the identi�ed set. In the upper pane monotone increasing functions (�1 < 0) are
drawn. Functions drawn in violet, black and green have intercept term �0 equal to
respectively �0:4, 0 and +0:4. In the lower pane, which shows decreasing functions
(�1 > 0), only functions with �0 = 0 are shown.

The identi�ed set of parameter values comprises the set of values of (�0; �1)
which deliver functions �(��0��1X) that lie between the envelope upper and lower
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bounding functions graphed (red dashed) in Figure 7. These identi�ed sets are drawn
in Figure 11 which shows two cases. The light blue coloured region in the lower part of
the �gure is the identi�ed set for the parameter settings in row 2 of Table 1. Here the
coe¢ cient on the instrumental variable in the equation for endogenous X is b1 = 0:4
for which the bounding functions are shown in Figure 8. On reducing b1 to 0:3, the
value used to generate Figure 10, the identi�ed set expands by the amount coloured
dark blue and it becomes disconnected with a small region in the upper part of the
Figure where �1 > 0.

4.3. Monotone index restriction. Now consider models in which there is a
monotone index restriction, namely that for all values, x and z, of X and Z the
threshold crossing function can be written as p(�0x + �0z) for some constant �nite
dimensional vectors � and �, where p is a monotone function. X can be non-scalar
and Z is allowed to appear in the threshold function. The monotone index binary
outcome IV model is as follows.

Y =

�
0 ; 0 < U � p(�0X + �0Z)
1 ; p(�0X + �0Z) < U � 1 ; U k Z; p monotone

There will typically be a restriction excluding some components of Z from the index.
There will also be a normalization; for example one might set equal to 1 an element
of � or � corresponding to a variable whose coe¢ cient is restricted to be non-zero.

Consider a threshold function p(�0x+�0z) which lies in the identi�ed set associated
with a structure S0 that delivers conditional distributions F 0Y XjZ for values of Z in
the support set Z. As before let Pr0 indicate probabilities calculated using these
measures.

Analogous to (14) and (15) there is, for increasing p:

c"0l(u; z;h) = Pr0[Y = 0 ^ �0X + �0Z � p�1(u)jz] � u (27)

c"0u(u; z;h) = 1� Pr0[Y = 1 ^ �0X + �0Z � p�1(u)jz] � u (28)

with inequalities reversed in the de�nitions of events when p is decreasing.
Continuing along the lines taken in Section 4.1 there is, on substituting u = p(�),

the following inequalities.

� Increasing p.

d"0l(�; z;�; �) � Pr0[Y = 0 ^ �0X � � � �0zjz] � p(�) (29)

d"0u(�; z;�; �) � 1� Pr0[Y = 1 ^ �0X � � � �0zjz] � p(�) (30)

� Decreasing p.

d#0l(�; z;�; �) � Pr0[Y = 0 ^ �0X � � � �0zjz] � p(�) (31)

d#0u(�; z;�; �) � 1� Pr0[Y = 1 ^ �0X � � � �0zjz] � p(�) (32)

A threshold crossing function, characterized by (p; �; �) with monotone p lies
in the identi�ed set if and only if one of these pairs of inequalities holds at each



Semiparametric Structural Models of Binary Response 19

� 2 X for all z 2 Z. At each value of � it is the largest and smallest values of
the respectively lower and upper bounding probabilities that are relevant. De�ning
envelope functions:

d"0l(�;�; �) � max
z2Z

d"0l(�; z;�; �) d"0u(�; a; �) � min
z2Z

d"0u(�; z;�; �)

d#0l(�;�; �) � max
z2Z

d#0l(�; z;�; �) d#0u(�;�; �) � min
z2Z

d#0u(�; z;�; �)

there are the following inequalities:

increasing p: d"0l(�;�; �) � p(�) � d
"
0u(�; a; �) (33)

decreasing p: d#0l(�;�; �) � p(�) � d
#
0u(�;�; �) (34)

which, under the monotone index restriction, hold for all � 2 X and all, and only,
structural functions (p; �; �) in the identi�ed set.

The identi�ed set I0 associated with a structure S0 comprises all (p; �; �) with
monotone p for which one of the inequalities (33) and (34) hold for all � 2 X .

The identi�ed set can be characterized as follows. There are two coupled compo-
nents: a set of values of the �nite dimensional parameters, � and �, denoted I��0 and
for each element of this set, a non-empty set of monotone functions Ip0 (�; �). This set
of monotone functions is the union of two sets:

Ip0 (�; �) = A
"
0(�; �) [A

#
0(�; �)

one, A"0(�; �), containing no decreasing functions, the other, A
#
0(�; �) containing no

increasing functions. These sets of functions are de�ned as follows.

A"0(�; �) � fp : d
"
0l(�;�; �) � p(�) � d

"
0u(�;�; �) 8� 2 Xg

A#0(�; �) � fp : d
#
0l(�;�; �) � p(�) � d

#
0u(�;�; �) 8� 2 Xg

One, but not both of these sets may be empty.
Considering the inequalities (4.3), the functions d"0l and d

"
0u are increasing func-

tions of � so there is at least one increasing function p satisfying these inequalities for
all � if and only if there is no value of � at which the functions intersect.14 Similarly
there is at least one decreasing function p satisfying the inequalities (34) if and only
if there is no value of � at which the bounding functions in (34) intersect.

The arguments set out above lead to the following theorem.

Theorem 5. In the model M let the threshold crossing function p be a monotone
function of a scalar index �0X + �0Z. The identi�ed set of values of (�; �) is the

14For this purpose a point of tangency is not a point of intersection.
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union of two sets of values as follows.

I��0 =

�
�; � : min

�2X

�
d"0u(�;�; �)� d

"
0l(�;�; �)

�
� 0

�
[
�
�; � : min

�2X

�
d#0u(�;�; �)� d

#
0l(�;�; �)

�
� 0

�
Associated with each element (�; �) 2 I��0 there is an identi�ed set of monotone
functions p, the union of two sets as follows.n

p : d"0l(�;�; �) � p(�) � d
"
0u(�; a; �); 8� 2 X

o
[
n
p : d#0l(�;�; �) � p(�) � d

#
0u(�;�; �); 8� 2 X

o

The monotonicity restriction delivers big computational bene�ts because it allows
the identi�ed set of index coe¢ cient values to be characterized without calculating
the identi�ed set of threshold crossing functions.

4.4. Illustration: speci�cation. The probability measures used in this illustra-
tion are, as earlier, generated by triangular structures with one endogenous variable.

Y = 1[�a1X � Z2 +W > 0] X = b0 + b1Z1 + b2Z2 + V�
W
V

�
k Z � N

��
0
0

�
;

�
1 swv
swv svv

��
There are two exogenous variables, Z = (Z1; Z2) and Z1 is excluded from the struc-
tural function for Y . The coe¢ cient on the included exogenous variable, Z2 is nor-
malized to -1. There is

Y = 1[U > �(a1X + Z2)]

where U � �(W ) � Unif(0; 1) and so the structural function determining Y is

Y =

�
0 ; 0 < U � �(a1X + Z2)
1 ; �(a1X + Z2) < U � 1

while the semiparametric model whose identifying power is considered has the fol-
lowing restrictions.

Y =

�
0 ; 0 < U � p(�1X + Z2)
1 ; p(�1X + Z2) < U � 1 U k Z p monotone

To calculate the identi�ed set the joint distribution of Y � and �1X given Z =
(z1; z2) is required. Here �1 is a trial value for inclusion in the identi�ed set I��0 . The
distribution is N(�;�) with parameters as follows.

� �
�
a0 + a1b0 + a1b1z1 + (a1b2 � 1) z2

�1(b0 + b1z1 + b2z2)

�
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z2 2 [�2; 2] z2 2 [�3; 3]
p # p " p # p "

b1 L U L U L U L U

0.170 -2.38 -0.38 0.11 8.69 -2.38 -0.21 0.09 8.14
0.175 -2.21 -0.41 0.11 8.41 -2.16 -0.26 0.10 7.90
0.190 -1.57 -0.49 0.12 7.67 -1.69 -0.37 0.11 7.26
0.250 0.17 5.72 0.15 5.51
0.500 0.33 3.15 0.31 2.94
0.750 0.45 2.82 0.44 2.21
1.000 0.54 2.83 0.54 1.83
1.500 0.60 2.87 0.66 1.75
2.000 0.60 2.80 0.70 1.77

Table 2: Identi�ed sets for �1 for a sequence of values of b1 and two ranges of values
of z2. At small values of b1 the set is the union of two disjoint sets one containing
negative values associated with monotone decreasing threshold functions, one con-
taining positive values, associated with monotone increasing threshold functions. L
and U are respectively lower and upper limits of intervals.

� �
�
1 + 2a1swv + a

2
1svv �1(swv + a1svv)

�1(swv + a1svv) �21svv

�
Given this distribution it is straightforward to compute the bounding functions (29),
(30), (31) and (32) as bivariate normal orthant probabilities. The envelope bounding
functions that appear in (33) and (34) are obtained by �nding minimum and maxi-
mum values for z � (z1; z2) 2 Z � Z1 �Z2. In this illustration Z1 = [�2; 2] and two
intervals Z2 are considered: [�2; 2] and [�3; 3].

The parameter values used in the illustrative calculations are as follows.

a1 = 1 b0 = 0 b1 2 [0:17; 1:5] b2 = 0 swv = 0:5 svv = 1

The coe¢ cient b2 is zero, so in this illustration X is uncorrelated with Z2. The
variable Z2 e¤ectively provides a scale against which the impact of endogenous X on
the index is measured. If Z2 were not present, for example because it exhibited no
variation at all or because d2 were actually zero, then the model would not have any
identifying power for �1 without further restriction on the threshold function. This
suggests that identi�ed sets will be smaller when Z2 exhibits more variation.

In the structures and at the parameter values employed in this illustration the
structural threshold function p(�1X +Z2) is �(X +Z2). So the probability distribu-
tions used in this exercise are generated by a monotone increasing threshold function
with �1 taking the value 1.

4.5. Illustration: results. The identi�ed sets are shown in Table 2. For small
values of b1 (the value of the coe¢ cient on Z1 in the equation for endogenous X) the
identi�ed sets are not connected - there is an interval containing negative values of
�1 and an interval containing positive values, including of course the value �1 = 1.
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Intervals containing negative, respectively positive, values are associated with only
monotone decreasing, respectively increasing threshold functions.

The value �1 = 0 and values close to zero do not lie in the identi�ed set. This
is because in the structure that generates the probability measure in this illustration
the distribution of the outcome Y conditional on Z does depend on the value of Z.

For values of b1 larger than around 0:2 the identi�ed set is connected, containing
only positive values of �1, associated with monotone increasing threshold functions.
The size of the identi�ed set decreases as the value of b1 increases. That reduction
reduces as b1 increases. Substantial further reductions in the size of the identi�ed set
can only be achieved by increasing the predictive power of the instrument, that is by
reducing svv. As anticipated, identi�ed sets are smaller when the range of Z2, the
exogenous variable in the index in the structural equation, is large.

5. Concluding remarks

An incomplete single equation IV threshold crossing model for a binary response
is generally partially, not point, identifying for the threshold function even when
the function is parametrically restricted. In this paper sharp identi�ed sets have
been characterized for the case in which endogenous variables are discrete and a
constructive proof of sharpness has been provided.

Most parametric models for binary outcomes satisfy a monotone index restric-
tion under which the threshold function is a monotone function of a linear index
constructed from explanatory variables. It has been shown that in a semiparamet-
ric model this shape restriction considerably simpli�es the characterization of the
identi�ed set, leading to substantial computational bene�ts. In particular the identi-
�ed set of index coe¢ cients can be obtained without calculating the set of threshold
crossing functions, placing semiparametric IV estimation of index coe¢ cients in bi-
nary response models on the same computational footing as obtains in parametric IV
estimation.

The results of this paper can be used to develop identi�ed sets in monotone
index binary response models with mis-measured explanatory variables. Consider a
threshold crossing model with a monotone index restriction as in Section 4.3:

Y =

�
0 ; 0 < U � p(�0X + �0Z)
1 ; p(�0X + �0Z) < U � 1 ; U k Z; p monotone

and suppose that ~X � X + V is observed in place of X where V is measurement
error and (U; V ) and Z are independently distributed. Considering the case in which
p is increasing, de�ne W � p�1(U)+�0V , let q(�) denote the distribution function of
W and de�ne ~U � q(W ) which is uniformly distributed on [0; 1].

Written in terms of ~U , ~X and q the model for Y with measurement error and
observable ~X is then:

Y =

�
0 ; 0 < ~U � q(�0 ~X + �0Z)

1 ; q(�0 ~X + �0Z) < ~U � 1 ; ~U k Z; q monotone

which is identical to the original monotone index model for Y with unobserved X
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except that the threshold function is now q rather than the original p and X is
replaced by the observed ~X.15 The analysis of Section 4.3 applies and delivers the
sharp identi�ed set for (�; �). In some applications the endogeneity of the observed
explanatory variable may arise only because of measurement error. The analysis
of this paper applies then and also when there is additionally endogeneity in the
unobserved error free explanatory variables.

The monotone index restriction applies in many parametric models for non-binary
ordered outcomes, for example ordered probit models and many count data models.
Consider a threshold crossing model for an M -valued ordered outcome with Y = m
if and only if pm�1 < U � pm(x) where x is a list of explanatory variables. For each
value m 2 f1; : : : ;M � 1g there is a threshold crossing model for the binary outcome
Ym � 1[Y > m] in which the threshold function is pm(x) and the methods of this
paper apply to each of these models. With semiparametric or parametric restrictions
there may be common parameters in theM�1 threshold crossing functions and there
may be monotone index restrictions. The identi�ed sets developed using the methods
of this paper can be intersected to deliver outer regions. Sharp set identi�cation would
require simultaneous consideration of theM�1 binary responses which are all driven
by a common latent variable but the monotone index restriction would not be so easy
to bring into play in such an analysis. The outer regions obtained using the methods
of this paper could be useful in their own right or as a step on the way to calculating
the sharp identi�ed set.

When the predictive power of instrumental variables for the endogenous variable is
not great, the identi�ed sets delivered by the IV model can be large. In this situation
the identifying power of the additional restrictions embodied in the triangular model
that motivates control function estimation or in special regressor restrictions is very
substantial. This is all to the good if those restrictions are plausible in the application
being considered. But if there is doubt about their validity then it is prudent to
consider the sets identi�ed by the single equation IV model studied here. Even
when the IV model�s identi�ed sets are large they can carry useful information about
the direction of dependence of the response on potentially endogenous explanatory
variables.
15 If p is monotone decreasing then q(�0 ~X + �0Z) is replaced by 1� q(�0 ~X + �0Z).
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Annex: Proof of Theorem 3

Theorem 3 is proved by constructing a conditional distribution function with the
required properties.16 The construction is done for a representative value z 2 Z and
a particular permutation of 
 = f
kgKk=1. Without loss of generality it is assumed
that indices are assigned to the elements of X so that 
1 � 
2 � � � � � 
K . Assume
the system of inequalities associated with this permutation given in equation (10)
holds.17 De�ne 
0 � 0 and 
K+1 � 1.

The notation is simpli�ed in two respects. First the superscript �0�which indi-
cates a probability calculated using the probability distributions F 0Y XjZ delivered by
a structure S0 is omitted. Second, dependence of various conditional probabilities
on z is not made explicit in the notation. Thus �0k(z) is written as �k and �

0
k(z) is

written as �k.
De�ne

�� � Pr[Y = 0jZ = z] =
KX
j=1

�j�j :

For all k 2 f0; 1; : : : ;K + 1g de�ne:

~
k = min(
k; ��) 
̂k = max(0; 
k � ��)

and note that
~
k + 
̂k = 
k

and that the inequalities (10) imply the following inequality.


1 � �� � 
K

De�ne (K +2)�K arrays [�j~�kj ] and [�j �̂kj ] with elements (which depend on z)
de�ned recursively for each k 2 f0; 1; : : : ;K + 1g as follows as j ascends through the
sequence f1; : : : ;Kg.

�j~�kj = min

(
�j�j ;max

(
0; ~
k �

j�1X
s=1

�s~�ks

))
(35)

�j �̂kj = min

(
�j (1� �j) ;max

(
0; 
̂k �

j�1X
s=1

�s�̂ks

))
(36)

De�ne the required conditional distribution function at u = 
k for k 2 f0; 1; : : : ;K+
1g as:

FU jXZ(
kjxj ; z) � ~�kj + �̂kj (37)

which implies18 FU jXZ(0jxj ; z) = 0, FU jXZ(1jxj ; z) = 1. The distribution function is
endowed with non-decreasing line segments between each successive distinct pair of

16The construction builds on a suggestion of Martin Cripps.
17The systems of inequalities associated with other permutations of 
 are obtained simply by

exchange of indices.
18Since 
0 � 0, ~
0 = 
̂0 = 0, so ~�0j = 0 and �̂0j = 0 for all j which yields FUjXZ(0jxj ; z) = 0.
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elements in 
.19

Before proceeding with the proof it is helpful to describe the resulting arrays of
conditional distribution function values.

For each value of k, as j increases, �j~�kj is assigned the value �j�j until a value

of j is reached such that ~
k �
Pj�1
s=1 �s�s � �j�j . This the value of j such that

~
k �
Pj
s=1 �s�s � 0. At this value of j, denoted ~j(k), �j~�kj is assigned the value

~
k �
Pj�1
s=1 �s�s which equals ~
k �

Pj�1
s=1 �s

~�ks and values of �j~�kj for larger values

of j are assigned the value zero. The result is that
PK
s=1 �s

~�ks = ~
k. The function
~j(k) has the following representation.

~j(k) = maxfj : ~
k �
j�1X
s=1

�s�s � 0g (38)

Since the ~
k�s are a non-decreasing sequence ~j(k) is a non-decreasing function of k.
It is shown below that for all j the sequence f�j~�kjgKk=1 is non-decreasing.

For each value of k, as j increases, �j �̂kj is assigned the value �j (1� �j) until a
value of j is reached such that 
̂k �

Pj�1
s=1 �s�̂ks � �j (1� �j). This is the value of j

such that 
̂k�
Pj
s=1 �s(1��s) � 0. At this value of j, denoted bj(k), �j �̂kj is assigned

the value 
̂k �
Pj�1
s=1 �s(1��s) which equals 
̂k �

Pj�1
s=1 �s�̂ks and values of �j �̂kj for

larger values of j are assigned the value zero. The result is that
PK
s=1 �s�̂ks = 
̂k.

The function bj(k) has the following representation.
bj(k) = maxfj : 
̂k � j�1X

s=1

�s (1� �s) � 0g (39)

Since the 
̂k�s are a non-decreasing sequence bj(k) is a non-decreasing function of k. At
low values of k the value of 
̂k can be zero in which case bj(k) = 0 and every element
in f�j �̂kjgKj=1 is zero. It is shown below that for all j the sequence f�j �̂kjgKk=1 is
non-decreasing.

Here is an example - a case in which K = 5 with � � f�jgKj=1, � � f�jgKj=1 (for
some value of z) and 
 � f
jgKj=1 take the following values.

� =
�
0:1 0:2 0:3 0:1 0:3

�
� =

�
0:5 0:3 0:4 0:5 0:8

�

 =

�
0:3 0:4 0:5 0:6 0:8

�
Since 
K+1 = 1, ~
K+1 = �� and 
̂K+1 = 1� ��, so for all j, ~�K+1j = �j and �̂K+1j = 1 � �j which
yields FUjXZ(1jxj ; z) = 1.
19Linear segments will deliver piecewise uniform conditional distributions of U given X and Z.
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The (7� 5) arrays [�j~�kj ] and [�j �̂kj ] are as follows.

[�j~�kj ] =

2666666664

0:00 0:00 0:00 0:00 0:00
0:05 0:06 0:12 0:05 0:02
0:05 0:06 0:12 0:05 0:12
0:05 0:06 0:12 0:05 0:22
0:05 0:06 0:12 0:05 0:24
0:05 0:06 0:12 0:05 0:24
0:05 0:06 0:12 0:05 0:24

3777777775
[�j �̂kj ] =

2666666664

0:00 0:00 0:00 0:00 0:00
0:00 0:00 0:00 0:00 0:00
0:00 0:00 0:00 0:00 0:00
0:00 0:00 0:00 0:00 0:00
0:05 0:03 0:00 0:00 0:00
0:05 0:14 0:09 0:00 0:00
0:05 0:14 0:18 0:05 0:06

3777777775
The values of the constructed distribution functions of U conditional on X = x 2
fx1; : : : ; x5g (and Z = z) at the 7 values 
0; : : : ; 
6 are given in the columns of the
(7� 5) array [�kj ], below with the associated values 
0; : : : ; 
6 shown alongside.

[�kj ] =

2666666664

0:00 0:00 0:00 0:00 0:00

0:50 0:30 0:40 0:50 0:0_6
0:50 0:30 0:40 0:50 0:40

0:50 0:30 0:40 0:50 0:7_3
1:00 0:45 0:40 0:50 0:80
1:00 1:00 0:70 0:50 0:80
1:00 1:00 1:00 1:00 1:00

3777777775
[
k] =

2666666664

0:0
0:3
0:4
0:6
0:6
0:8
1:0

3777777775
The proof now proceeds by showing the distribution function (37) is: (1) proper,

(2) satis�es the independence restriction, and, (3) has the observational equivalence
property. It will be shown that the properness and independence conditions are
satis�ed by construction. Satisfaction of the observational equivalence condition relies
on the elements of 
 satisfying the system of inequalities (10).

1. Proper conditional distributions
The proposed conditional distribution functions are proper if, for all j:

0 � ~�1j � � � � � ~�Kj

0 � �̂1j � � � � � �̂Kj

and ~�Kj + �̂Kj � 1.
It is evident that all elements of the arrays [~�ij ] and [�̂ij ] are non-negative. For

all i each element ~�ij is bounded above by �j and each element �̂ij is bounded above

by 1� �j and so there can be no values of i and j at which ~�ij + �̂ij exceeds 1.
It is now shown that for all j and k, �j~�kj � �j~�k+1j . Use is made of the fact

that ~j(k) is a non-decreasing function of k.

� If j < ~j(k) then j < ~j(k + 1) so �j~�kj = �j~�k+1j = �j�j .

� If j > ~j(k) then �j~�kj = 0 and, since all elements of the array [~�ij ] are non-
negative, �j~�kj � �j~�k+1j .
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� There remains only the possibility that j = ~j(k). In this case �j~�kj = ~
k �Pj�1
s=1 �s�s � �j�j .

� If j < ~j(k + 1) then �j~�k+1j = �j�j and �j~�kj � �j~�k+1j .
�Otherwise j = ~j(k+1) and �j~�k+1j = ~
k+1�

Pj�1
s=1 �s�s and since ~
k+1 �

~
k there is �j~�kj � �j~�k+1j .

It is now shown that for all j and k, �j �̂kj � �j �̂k+1j . Again use is made of the
fact that bj(k) is a non-decreasing function of k.
� If j < bj(k) then j < bj(k + 1) so �j �̂kj = �j �̂k+1j = �j(1� �j).
� If j > bj(k) then �j �̂kj = 0 and, since all elements of the array [�̂ij ] are non-

negative, �j �̂kj � �j �̂k+1j .

� There remains only the possibility that j = bj(k). In this case �j �̂kj = 
̂k �Pj�1
s=1 �s(1� �s) � �j(1� �j).

� If j < bj(k + 1) then �j �̂k+1j = �j(1� �j) and �j �̂kj � �j �̂k+1j .
�Otherwise j = bj(k + 1) and �j �̂k+1j = ~
k+1 �

Pj�1
s=1 �s(1 � �s) and since


̂k+1 � 
̂k there is �j �̂kj � �j �̂k+1j .

2. Independence
It was noted above that, for all k:

KX
j=1

�j~�kj = ~
k

KX
j=1

�j �̂kj = 
̂k

from which it follows that for all k:

KX
j=1

�j

�
~�kj + �̂kj

�
= ~
k + 
̂k = 
k

as required.

3. Observational equivalence
The observational equivalence property holds if, for all k:

�k~�kk + �k�̂kk = �k�k:

The inequalities (10) can be written as follows.

kX
j=1

�j�j � 
k � ��+

k�1X
j=1

�j(1� �j) (40)

There are two cases to consider.
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First suppose 
k � ��. Then ~
k = 
k and 
̂k = 0. From (40) there is on
substituting 
k = ~
k:

~
k �
k�1X
j=1

�j�j � �k�k

and so �k~�kk = �k�k. Since 
̂k = 0, �k�̂kk = 0 and the result follows.
Now suppose that 
k > ��. Then ~
k = ��, 
̂k = 
k � ��. Since �� �

Pk�1
j=1 �j�j �

�k�k, �k~�kk = �k�k. From (40) there is on substituting 
k � �� = 
̂k:


̂k �
k�1X
j=1

�j(1� �j)

and so in the de�nition of �k�̂kk, max
n
0; 
̂k �

Pk�1
s=1 �s�̂ks

o
= 0 so �k�̂kk = 0 and

the result follows.
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Figure 1: Binary Y , ternary X: identi�ed set for f
1; 
2; 
3g. b1 = 0:15
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Figure 2: Binary Y , ternary X: identi�ed set for f
1; 
2; 
3g. b1 = 0:25
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Figure 3: Binary Y , ternary X: identi�ed set for f
1; 
2; 
3g. b1 = 0:45
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Figure 4: Binary Y , ternary X: identi�ed set for f
1; 
2; 
3g. b1 = 0:55
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Figure 5: Binary Y , ternary X: identi�ed set for f
1; 
2; 
3g. b1 = 1:25
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Figure 6: Binary Y , ternary X: identi�ed set for f
1; 
2; 
3g. b1 = 1:45
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Figure 7: Bounding functions (blue) at 10 values of z 2 [�1; 1] with tight bounds
(dashed red) between which lie the monotone functions in the identi�ed set. A
relatively weak instrument with b1 = 0:3.
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Figure 8: Bounding functions (blue) at 10 values of z 2 [�1; 1] with tight bounds
(dashed red) between which lie the monotone functions in the identi�ed set. A slightly
stronger instrument than in Figure 1 with b1 = 0:4. The set of decreasing functions
(lower pane) is empty because the tight bonds intersect.
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Figure 9: Bounding functions (blue) at 10 values of z 2 [�1; 1] with tight bounds
(dashed red) between which lie the monotone functions in the identi�ed set. A slightly
stronger instrument than in Figure 1 with more predictive power for X: b1 = 0:3 as
in Figure 1 but �wv = 0:05, �vv = 0:1 (0:5 and 1 in Figures 1 and 2). The set of
decreasing functions (lower pane) is empty.
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Figure 10: Some parametric probit functions falling in the identi�ed set when b1 = 0:3
with �0 equal to �0:4 (violet), 0 (black), +0:4 (green)
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Figure 11: Identi�ed sets for a parametric probit model for the structure set out in
the �rst row of Table 1 with b1 = 0:3 (dark blue) and b1 = 0:4 (light blue)


