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Nonparametric Additive Models 

Joel L. Horowitz 

1.  INTRODUCTION 

 Much applied research in statistics, economics, and other fields is concerned with 

estimation of a conditional mean or quantile function.  Specifically, let ( , )Y X  be a random pair, 

where Y  is a scalar random variable and X  is a d -dimensional random vector that is 

continuously distributed.  Suppose we have data consisting of the random sample 

{ , : 1,..., }i iY X i n= .  Then the problem is to use the data to estimate the conditional mean function 

( ) ( | )g x E Y X x≡ =  or the conditional α −quantile function ( )Q xα .  The latter is defined by 

[ ( ) | ]P Y Q x X xα α≤ = =  for some α  satisfying 0 1α< < .  For example, the conditional median 

function is obtained if 0.50α = . 

 One way to proceed is to assume that g  or Qα  is known up to a finite-dimensional 

parameter θ , thereby obtaining a parametric model of the conditional mean or quantile function.  

For example, if g  is assumed to be linear, then 0 1( )g x xθ θ ′= + , where 0θ  is a scalar constant 

and 1θ  is a vector that is conformable with x .  Similarly, if Qα  is assumed to be linear, then 

0 1( )Q x xα θ θ ′= + .  Given a finite-dimensional parametric model, the parameter θ  can be 

estimated consistently by least squares in the case of conditional mean function and by least 

absolute deviations in the case of the conditional median function 0.5Q .  Similar methods are 

available for other quantiles.  However, a parametric model is usually arbitrary.  For example, 

economic theory rarely if ever provides one, and a misspecified parametric model can be 
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seriously misleading.  Therefore, it is useful to seek estimation methods that do not require 

assuming a parametric model for g  or Qα . 

 Many investigators attempt to minimize the risk of specification error by carrying out a 

specification search.  In a specification search, several different parametric models are estimated, 

and conclusions are based on the one that appears to fit the data best.  However, there is no 

guarantee that a specification search will include the correct model or a good approximation to it, 

and there is no guarantee that the correct model will be selected if it happens to be included in 

the search.  Therefore, the use of specification searches should be minimized. 

 The possibility of specification error can be essentially eliminated through the use of 

nonparametric estimation methods.  Nonparametric methods assume that g  or Qα  satisfies 

certain smoothness conditions, but no assumptions are made about the shape or functional form 

of g  or Qα .  See, for example, Fan and Gijbels (1996), Härdle 1990, Pagan and Ullah (1999), Li 

and Racine (2007), and Horowitz (2009), among many other references.  However, the precision 

of a nonparametric estimator decreases rapidly as the dimension of X  increases.  This is called 

the curse of dimensionality.  As a consequence of it, impracticably large samples are usually 

needed to obtain useful estimation precision if X  is multi-dimensional. 

 The curse of dimensionality can be avoided through the use of dimension-reduction 

techniques.  These reduce the effective dimension of the estimation problem by making 

assumptions about the form of g  or Qα  that are stronger than those made by fully 

nonparametric estimation but weaker than those made in parametric modeling.  Single-index and 

partially linear models (Härdle, Gao, and Liang 2000, Horowitz 2009) and nonparametric 

additive models, the subject of this chapter, are examples of ways of doing this.  These models 
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achieve greater estimation precision than do fully nonparametric models, and they reduce (but do 

not eliminate) the risk of specification error relative to parametric models.   

 In a nonparametric additive model, g  or Qα  is assumed to have the form 

(1) 1 2
1 2

( )
or ( ) ( ) ... ( )

( )

d
d

g x
f x f x f x

Q xα

µ

 = + + + +



, 

where µ  is a constant, jx  ( 1,...,j d= ) is the j ’th component of the d -dimensional vector x , 

and 1,..., df f  are functions that are assumed to be smooth but are otherwise unknown and are 

estimated nonparametrically.  Model (1) can be extended to 

(2) 1 2
1 2

( )
or [ ( ) ( ) ... ( )]

( )

d
d

g x
F f x f x f x

Q xα

µ

 = + + + +



, 

where F  is a strictly increasing function that may be known or unknown.   

It turns out that under mild smoothness conditions, the additive components 1,..., df f  can 

be estimated with the same precision that would be possible if X  were a scalar.  Indeed, each 

additive component can be estimated as well as it could be if all the other additive components 

were known.  This chapter reviews methods for achieving these results.  Section 2 describes 

methods for estimating model (1).  Methods for estimating model (2) with a known or unknown 

link function F  are described in Section 3.  Section 4 discusses tests of additivity.  Section 5 

presents an empirical example that illustrates the use of model (1), and Section 6 presents 

conclusions.  Estimation of derivatives of the functions 1,..., df f  is important in some 

applications.  Estimation of derivatives is not discussed in this chapter but is discussed by 

Severance-Lossin and Sperlich (1999) and Yang, Sperlich, and Härdle (2003).  The discussion in 

this chapter is informal.  Regularity conditions and proofs of results are available in the 
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references that are cited in the chapter.  The details of the methods described here are lengthy, so 

most methods are presented in outline form.  Details are available in the cited references.   

2.  METHODS FOR ESTIMATING MODEL (1) 

 We begin with the conditional mean version of model (1), which can be written as 

(3) 1 2
1 2( | ) ( ) ( ) ... ( )d

dE Y X x f x f x f xµ= = + + + + . 

The conditional quantile version of (1) is discussed in Section 2.1. 

 Equation (3) remains unchanged if a constant, say jγ , is added to jf  ( 1,...,j d= ) and µ  

is replaced by 
1

d
jj

µ γ
=

−∑ .  Therefore, a location normalization is needed to identify µ  and the 

additive components.  Let jX  denote the j ’th component of the random vector X .  Depending 

on the method that is used to estimate the jf ’s, location normalization consists of assuming that 

( ) 0j
jEf X =  or  that 

(4) ( ) 0jf v dv =∫  

 for each 1,...,j d= . 

 Stone (1985) was the first to give conditions under which the additive components can be 

estimated with a one-dimensional nonparametric rate of convergence and to propose an estimator 

that achieves this rate.  Stone (1985) assumed that the support of X  is [0,1]d , that the 

probability density function of X  is bounded away from 0 on [0,1]d , and that ( | )Var Y X x=  is 

bounded on [0,1]d .  He proposed using least squares to obtain spline estimators of the jf ’s 
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under the location normalization ( ) 0j
jEf X = .  Let ˆ

jf  denote the resulting estimator of jf .  For 

any function h  on [0,1] , define  

 
12 2
0

( )h h v dv= ∫ . 

Stone (1985) showed that if each jf  is p  times differentiable on [0,1] , then 

2 1 2 /(2 1)ˆ ,..., [ ]d p p
j j pE f f X X O n− + − = 

 
.  This is the fastest possible rate of convergence.  

However, Stone’s result does not establish pointwise convergence of ˆ
jf  to jf  or the asymptotic 

distribution of /(2 1) ˆ[ ( ) ( )]p p
j jn f x f x+ − . 

 Since the work of Stone (1985), there have been many attempts to develop 

estimators of the jf ’s that are pointwise consistent with the optimal rate of convergence and are 

asymptotically normally distributed.  Oracle efficiency is another desirable property of such 

estimators.  Oracle efficiency means that the asymptotic distribution of the estimator of any 

additive component jf  is the same as it would be if the other components were known. 

Buja, Hastie and Tibshirani (1989) and Hastie and Tibshirani (1990) proposed an 

estimation method called backfitting.  This method is based on the observation that 
1( ) [ ( ) | ( ,..., )]k j d

k j
j k

f x E Y f x X x xµ
≠

= − − =∑ .   

If µ  and the jf ’s for j k≠  were known, then kf  could be estimated by applying nonparametric 

regression to ( )j
j

j k
Y f Xµ

≠

− −∑ .  Backfitting replaces the unknown quantities by preliminary 

estimates.  Then each additive component is estimated by nonparametric regression, and the 

preliminary estimates are updated as each additive component is estimated.  In principle, this 

process continues until convergence is achieved.  Backfitting is implemented in many statistical 

software packages, but theoretical investigation of the statistical properties of backfitting 

estimators is difficult.  This is because these estimators are outcomes of an iterative process, not 

the solutions to optimization problems or systems of equations.  Opsomer and Ruppert (1997) 
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and Opsomer (2000) investigated the properties of a version of backfitting and found, among 

other things, that strong restrictions on the distribution of X  were necessary to achieve results 

and that the estimators are not oracle efficient.  Other methods described below are oracle 

efficient and have additional desirable properties.  Compared to these estimators, backfitting is 

not a desirable approach, despite its intuitive appeal and availability in statistical software 

packages. 

 The first estimator of the jf ’s that was proved to be pointwise consistent and 

asymptotically normally distributed was developed by Linton and Nielsen (1995) and extended 

by Linton and Härdle (1996).  Tjøstheim and Auestad (1994) and Newey (1994) present similar 

ideas.  The method is called marginal integration and is based on the observation that under the 

location normalization ( ) 0j
jEf X = , ( )E Yµ =  and  

(5) ( ) ( )( ) ( | ) ( )j j j
j jf x E Y X x p x dx µ− −

−= = −∫ , 

where ( )jx −  is the vector consisting of all components of x  except jx  and jp−  is the 

probability density function of ( )jX − .  The constant µ  is estimated consistently by the sample 

analog 

 1

1

ˆ
n

i
i

n Yµ −

=

= ∑ .  

To estimate, say, 1
1( )f x , let 1 ( 1)ˆ ( , )g x x −  be the following kernel estimator of 

1 1 ( 1) ( 1)( | , )E Y X x X x− −= = : 

(6) 
1 1 ( 1) ( 1)

1 ( 1) 1 ( 1) 1
1 2

1 21

ˆˆ ( , ) ( , )
n

i i
i

i

x X x Xg x x P x x Y K K
h h

− −
− − −

=

   − −
=       

   
∑ , 

where 

(7) 
1 1 ( 1) ( 1)

1 ( 1)
1 2

1 21

ˆ( , )
n

i i

i

x X x XP x x K K
h h

− −
−

=

   − −
=       

   
∑ , 
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1K  is a kernel function of a scalar argument, 2K  is a kernel function of a 1d −  dimensional 

argument, ( 1)
iX −  is the i ’th observation of ( 1)X − , and 1h  and 2h  are bandwidths.  The integral on 

the right-hand side of (5) is the average of 1 1 ( 1) ( 1)( | , )E Y X x X x− −= =  over ( 1)X −  and can be 

estimated by the sample average of 1 ( 1)ˆ ( , )g x X − .  The resulting marginal integration estimator of 

1f  is 

1 1 1 ( 1)
1

1

ˆ ˆ ˆ( ) ( , )
n

i
i

f x n g x X µ− −

=

= −∑ . 

Linton and Härdle (1996) give conditions under which 
2/5 1 1 1 1

1 1 1, 1,
ˆ[ ( ) ( )] [ ( ), ( )]d

MI MIn f x f x N x V xβ− →  for suitable functions 1,MIβ  and 1,MIV .  Similar 

results hold for the marginal integration estimators of the other additive components.  The most 

important condition is that each additive component is at least d  times continuously 

differentiable.  This condition implies that the marginal integration estimator has a form of the 

curse of dimensionality, because maintaining an 2/5n−  rate of convergence in probability 

requires the smoothness of the additive components to increase as d  increases.  In addition, the 

marginal integration estimator is not oracle efficient and can be hard to compute.   

There have been several refinements of the marginal integration estimator that attempt to 

overcome these difficulties.  See, for example, Linton (1997), Kim, Linton, and Hengartner 

(1999), and Hengartner and Sperlich (2005).  Some of these refinements overcome the curse of 

dimensionality, and others achieve oracle efficiency.  However, none of the refinements is both 

free of the curse of dimensionality and oracle efficient. 

 The marginal integration estimator has a curse of dimensionality because, as can be seen 

from (6) and (7), it requires full-dimensional nonparametric estimation of ( | )E Y X x=  and the 

probability density function of X .  The curse of dimensionality can be avoided by imposing 

additivity at the outset of estimation, thereby avoiding the need for full-dimensional 

nonparametric estimation.  This cannot be done with kernel-based estimators, such as those used 

in marginal integration, but it can be done easily with series estimators.  However, it is hard to 

establish the asymptotic distributional properties of series estimators.  Horowitz and Mammen 
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(2004) proposed a two-step estimation procedure that overcomes this problem.  The first step of 

the procedure is series estimation of the jf ’s.  This is followed by a backfitting step that turns 

the series estimates into kernel estimates that are both oracle efficient and free of the curse of 

dimensionality. 

 Horowitz and Mammen (2004) use the location normalization (4) and assume that the 

support of X  is [ 1,1]d− .  Let { : 1,2,...}k kψ =  be an orthonormal basis for smooth functions on 

[ 1,1]−  that satisfies (4).  The first step of the Horowitz-Mammen (2004) procedure consists of 

using least squares to estimate µ  and the generalized Fourier coefficients { }jkθ  in the series 

approximation 

(8) 
1 1

( | ) ( )
d

j
jk k

j k
E Y X x x

κ
µ θ ψ

= =

= ≈ +∑∑ , 

where κ  is the length of the series approximations to the additive components.  In this 

approximation, jf  is approximated by  

 
1

( ) ( )j j
j jk k

k
f x x

κ
θ ψ

=

≈∑ . 

Thus, the estimators of µ  and the jkθ ’s are given by  

2

, 1 1 1
{ , : 1,..., ; 1,..., } arg min ( )

jk

n d
j

jk i jk k i
i j k

j d k Y X
κ

µ θ
µ θ κ µ θ ψ

= = =

 
 = = = − −
  

∑ ∑∑

 , 

where j
iX  is the j ’th component of the vector iX .  Let jf  denote the resulting estimator of µ  

and jf  ( 1,...,j d= ).  That is, 

 
1

( ) ( )j j
j jk k

k
f x x

κ
θ ψ

=

=∑  . 
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Now let K  and h , respectively, denote a kernel function and a bandwidth.  The second-step 

estimator of, say, 1f  is 

(9) 
11 1 1 1

1 ( 1)
1 1

1 1

ˆ ( ) [ ( )]
n n

i i
i i

i i

x X x Xf x K Y f X K
h h

−
−

−
= =

    − −
= −            
∑ ∑  , 

where ( 1)
iX −  is the vector consisting of the i ’th observations of all components of X  except the 

first and 1 2 ... df f f− = + +   .  In other words, 1̂f  is the kernel nonparametric regression of  

( 1)
1( )Y f X −
−−   on 1X .  Horowitz and Mammen (2004) give conditions under which 

2/5 1 1 1 1
1 1 1, 1,
ˆ[ ( ) ( )] [ ( ), ( )]d

HM HMn f x f x N x V xβ− →  for suitable functions 1,HMβ  and 1,HMV .  

Horowitz and Mammen (2004) also show that the second-step estimator is free of the curse of 

dimensionality and oracle efficient.  Freedom from the curse of dimensionality means that the 

jf ’s need to have only two continuous derivatives, regardless of d .  Oracle efficiency means 

that the asymptotic distribution of 2/5 1 1
1 1
ˆ[ ( ) ( )]n f x f x−  is the same as it would be if the estimator 

1f−  in (9) were replaced with the true (but unknown) sum of additive components, 1f− .  Similar 

results apply to the second-step estimators of the other additive components.  Thus, 

asymptotically, each additive component jf  can be estimated as well as it could be if the other 

components were known.  Intuitively, the method works because the bias due to truncating the 

series approximations to the jf ’s in the first estimation step can be made negligibly small by 

making κ  increase at a sufficiently rapid rate as n  increases.  This increases the variance of the 

jf ’s, but the variance is reduced in the second estimation step because this step includes 
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averaging over the jf ’s.  Averaging reduces the variance enough to enable the second-step 

estimates to have an 2/5n−  rate of convergence in probability. 

 There is also a local linear version of the second step estimator.  For estimating 1f , this 

consists of choosing 0b  and 1b  on minimize 

1 1
1 1 1 ( 1) 2

0 1 0 1 1
1

( , ) ( ) [ ( ) ( ]
n

i
n i i i

i

X xS b b nh Y b b X x f X K
h

µ− −
−

=

 −
= − − − − −   

 
∑ 

 . 

Let 0 1
ˆ ˆ( , )b b  denote resulting value of 0 1( , )b b .  The local linear second-step estimator of 1

1( )f x  is 

1
1 0
ˆ ˆ( )f x b= .  The local linear estimator is pointwise consistent, asymptotically normal, oracle 

efficient, and free of the curse of dimensionality.  However, the mean and variance of the 

asymptotic distribution of the local linear estimator are different from those of the Nadaraya-

Watson (or local constant) estimator (9).  Fan and Gijbels (1996) discuss the relative merits of 

local linear and Nadaraya-Watson estimators. 

 Mammen, Linton, and Nielsen (1999) developed an asymptotically normal, oracle-

efficient estimation procedure for model (1) that consists of solving a certain set of integral 

equations.  Wang and Yang (2007) generalized the two-step method of Horowitz and Mammen 

(2004) to autoregressive time-series models.  Their model is 

 1 1
1( ) ... ( ) ( ,..., )d d

t t d t t t tY f X f X X Xµ σ ε= + + + + ;  1, 2,...t = , 

where j
tX  is the j ’th component of the d -vector tX , ( | ) 0t tE Xε = , and 2( | ) 1t tE Xε = .  The 

explanatory variables { : 1,..., }j
tX j d=  may include lagged values of the dependent variable tY .  

The random vector ( , )t tX ε  is required to satisfy a strong mixing condition, and the additive 

components have two derivatives.  Wang and Yang (2007) propose an estimator that is like that 
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of Horowitz and Mammen (2004), except the first step uses a spline basis that is not necessarily 

orthogonal.  Wang and Yang (2007) show that their estimator of each additive component is 

pointwise asymptotically normal with an 2/5n−  rate of convergence in probability.  Thus, the 

estimator is free of the curse of dimensionality.  It is also oracle efficient.  Nielsen and Sperlich 

(2005) and Wang and Yang (2007) discuss computation of some of the foregoing estimators. 

Song and Yang (2010) describe a different two-step procedure for obtaining oracle 

efficient estimators with time-series data.  Like Wang and Yang (2007), Song and Yang (2010) 

consider a nonparametric, additive, autoregressive model in which the covariates and random 

noise component satisfy a strong mixing condition.  The first estimation step consists of using 

least squares to make a constant-spline approximation to the additive components.  The second 

step is like that of Horowitz and Mammen (2004) and Wang and Yang (2007), except a linear 

spline estimator replaces the kernel estimator of those papers.  Most importantly, Song and Yang 

(2010) obtain asymptotic uniform confidence bands for the additive components.  They also 

report that their two-stage spline estimator can be computed much more rapidly than procedures 

that use kernel-based estimation in the second step.  Horowitz and Mammen (2004) and Wang 

and Yang (2007) obtained pointwise asymptotic normality for their estimators but did not obtain 

uniform confidence bands for the additive components.  However, the estimators of Horowitz 

and Mammen (2004) and Wang and Yang (2007) are, essentially, kernel estimators.  Therefore, 

these estimators are multivariate normally distributed over a grid of points that are sufficiently 

far apart.  It is likely that uniform confidence bands based on the kernel-type estimators can be 

obtained by taking advantage of this multivariate normality and letting the spacing of the grid 

points decrease slowly as n  increases.  
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 2.1  Estimating a Conditional Quantile Function 

 This section describes estimation of the conditional quantile version of (1).  The 

discussion concentrates on estimation of the conditional median function, but the methods and 

results also apply to other quantiles.  Model (1) for the conditional median function can be 

estimated using series methods or backfitting, but the rates of convergence and other asymptotic 

distributional properties of these estimators are unknown.  De Gooijer and Zerom (2003) 

proposed a marginal integration estimator.  Like the marginal integration estimator for a 

conditional mean function, the marginal integration estimator for a conditional median or other 

conditional quantile function is asymptotically normally distributed but suffers from the curse of 

dimensionality. 

 Horowitz and Lee (2005) proposed a two-step estimation procedure that is similar to that 

of Horowitz and Mammen (2004) for conditional mean functions.  The two-step method is oracle 

efficient and has no curse of dimensionality.  The first step of the method of Horowitz and Lee 

(2005) consists of using least absolute deviations (LAD) to estimate µ  and the jkθ ’s in the 

series approximation (8).  That is, 

 
, 1 1 1

{ , : 1,..., ; 1,..., } arg min ( )
jk

n d
j

jk i jk k i
i j k

j d k Y X
κ

µ θ
µ θ κ µ θ ψ

= = =

= = = − −∑ ∑∑

 , 

As before, jf  denote the first-step estimator of jf .  The second-step of the method of Horowitz 

and Lee (2005) is of a form local-linear LAD estimation that is analogous to the second-step of 

the method of Horowitz and Mammen (2004).  For estimating 1f , this step consists of choosing 

0b  and 1b  to minimize 

 
1 1

1 1 1 ( 1)
0 1 0 1 1

1
( , ) ( ) | ( ) ( |

n
i

n i i i
i

X xS b b nh Y b b X x f X K
h

µ− −
−

=

 −
= − − − − −   

 
∑ 

 , 
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where h  is a bandwidth, K  is a kernel function, and 1 2 ... df f f− = + +  .  Let 0 1
ˆ ˆ( , )b b  denote 

resulting value of 0 1( , )b b .  The estimator of 1
1( )f x  is 1

1 0
ˆ ˆ( )f x b= .  Thus, the second-step 

estimator of any additive component is a local linear conditional median estimator.  Horowitz 

and Lee (2005) give conditions under which 2/5 1 1 1 1
1 1 1, 1,
ˆ[ ( ) ( )] [ ( ), ( )]d

HL HLn f x f x N x V xβ− →  for 

suitable functions 1,HLβ  and 1,HLV .  Horowitz and Lee (2005) also show that that 1̂f  is free of the 

curse of dimensionality and oracle efficient.  Similar results apply to the estimators of the other 

jf ’s. 

3.  METHODS FOR ESTIMATING MODEL (2) 

 This section describes methods for estimating model (2) when the link function F  is not 

the identity function.  Among other applications, this permits extension of methods for 

nonparametric additive modeling to settings in which Y  is binary.  For example, an additive 

binary probit model is obtained by setting 

(10) 1
1( 1| ) [ ( ) ... ( )]d

dP Y X x f x f Xµ= = = Φ + + + , 

where Φ  is the standard normal distribution function.  In this case, the link function is F = Φ .  

A binary logit model is obtained by replacing Φ  in (10) with the logistic distribution function. 

Section 3.1 treats the case in which F  is known.  Section 3.2 treats bandwidth selection 

for one of the methods discussed in Section 3.1  Section 3.3 discusses estimation when F  is 

unknown. 
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 3.1  Estimation with a Known Link Function 

 In this section, it is assumed that the link function F  is known.  A necessary condition 

for point identification of µ  and the jf ’s is that F  is strictly monotonic.  Given this 

requirement, it can be assumed without loss of generality that F  is strictly increasing.  

Consequently, 1[ ( )]F Q xα
−  is the α  conditional quantile of 1( )F Y−  and has a nonparametric 

additive form.  Therefore, quantile estimation of the additive components of model (2) can be 

carried out by applying the methods of Section 2.1 to 1( )F Y− .  Accordingly, the remainder of 

this section is concerned with estimating the conditional mean version of model (2). 

 Linton and Härdle (1996) describe a marginal integration estimator of the additive 

components in model (2).  As in the case of model (1), the marginal integration estimator has a 

curse of dimensionality and is not oracle efficient.  The two-step method of Horowitz and 

Mammen (2004) is also applicable to model (2).  When F  has a Lipschitz continuous second 

derivative and the additive components are twice continuously differentiable, it yields 

asymptotically normal, oracle efficient estimators of the additive components.  The estimators 

have an 2/5n−  rate of convergence in probability and no curse of dimensionality. 

 The first step of the method of Horowitz and Mammen (2004) is nonlinear least squares 

estimation of truncated series approximations to the additive components.  That is, the 

generalized Fourier coefficients of the approximations are estimated by solving 

2

, 1 1 1
{ , : 1,..., ; 1,..., } arg min ( )

jk

n d
j

jk i jk k
i j k

j d k Y F x
κ

µ θ
µ θ κ µ θ ψ

= = =

    = = = − + 
    

∑ ∑∑

 . 

Now set 
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1

( ) ( )j j
j jk k

k
f x x

κ
θ ψ

=

=∑  . 

A second-step estimator of 1
1( )f x , say can be obtained by setting  

 

2
1 1

1
1

1 2
( ) arg min ( )

n d
j i

i j ib i j

x Xf x Y F b f X K
h

µ
= =

    −  = − + +           
∑ ∑

 

 , 

where, as before, K  is a kernel function and h  is a bandwidth.  However, this requires solving a 

difficult nonlinear optimization problem.  An asymptotically equivalent estimator can be 

obtained by taking one Newton step from 1
0 1( )b f x=   toward 1

1( )f x .  To do this, define  

{ }1 1 2
1 1 2

1

1 1
1 2

1 2

( , ) 2 [ ( ) ( ) ... ( )]

[ ( ) ( ) ... ( )]

n
d

n i i d i
i

d i
i d i

S x f Y F f x f X f X

x XF f x f X f X K
h

µ

µ

=

′ = − − + + + +

 −′× + + + +   
 

∑
 

and 

1 1
1 1 2 2

1 1 2
1

1 2
1 2

1

1 1
1 2

1 2

( , ) 2 [ ( ) ( ) ... ( )]

2 { [ ( ) ( ) ... ( )]}

[ ( ) ( ) ... ( )] .

n
d i

n i d i
i

n
d

i i d i
i

d i
i d i

x XS x f F f x f X f X K
h

Y F f x f X f X

x XF f x f X f X K
h

µ

µ

µ

=

=

 −′′ ′= + + + +   
 

− − + + + +

 −′′× + + + +   
 

∑

∑  

The second-step estimator is 

 1 1 1 1
1 1 1 1
ˆ ( ) ( ) ( ) / ( , )n nf x f x S x f S x f′ ′′= −   . 

Horowitz and Mammen (2004) also describe a local-linear version of this estimator. 
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 Liu, Yang, and Härdle (2011) describe a two-step estimation method for model (2) that is 

analogous to the method of Wang and Yang (2007) but uses a local pseudo log-likelihood 

objective function based on the exponential family at each estimation stage instead of a local 

least squares objective function.  As in Wang and Yang (2007), the method of Liu, Yang, and 

Härdle (2011) applies to an autoregressive model in which the covariates and random noise 

satisfy a strong mixing condition.  Yu, Park, and Mammen (2008) proposed an estimation 

method for model (2) that is based on numerically solving a system of nonlinear integral 

equations.  The method is more complicated than that of Horowitz and Mammen (2004), but the 

results of Monte Carlo experiments suggest that the estimator of Yu, Park, and Mammen (2008) 

has better finite-sample properties than that of Horowitz and Mammen (2004), especially when 

the covariates are highly correlated. 

3.2  Bandwidth Selection for the Two-Step Estimatorof Horowitz and Mammen 

(2004)  

This section describes a penalized least squares (PLS) method for choosing the 

bandwidth h  in the second step of the procedure of Horowitz and Mammen (2004).  The method 

is described here for the local-linear version of the method, but similar results apply to the local 

constant version.   The method described in this section can be used with model (1) by setting 

F  equal to the identity function. 

The PLS method simultaneously estimates the bandwidths for second-step estimation of 

all the additive components jf  ( 1,...,j d= ).  Let 1/5
j jh C n−=  be the bandwidth for ˆ

jf .  The 

PLS method selects the jC ’s that minimize an estimate of the average squared error (ASE): 
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1 2

1

ˆ( ) { [ ( )] [ ( )]}
n

i i
i

ASE h n F f X F f Xµ µ−

=

= + − +∑  , 

where 1
ˆ ˆ ˆ... df f f= + +  and 1/5 1/5

1( ,..., )dh C n C n− −= .  Specifically, the PLS method selects the 

jC ’s to 

1

1 2 1 2
,..., 1 1

4/5 1

1

ˆ ˆ ˆ(11) minimize : ( ) [ [ ( )] 2 (0) { [ ( )] ( )}

ˆ[ ( )] ,

d

n n

i i i i
C C i i

d
j

j j i
j

PLS h n Y F f X K n F f X V X

n C D X

µ µ− −

= =

−

=

′= − + + +

×

∑ ∑

∑

 

 

where the jC ’s are restricted to a compact, positive interval that excludes 0, 

 1 2

1

ˆ( ) ( ) [ ( )]
n j j

j i
j j i

ji

X xD x nh K F f X
h

µ−

=

 − ′= +  
 

∑   

and 

 

11 1

11

1 1
2

11

ˆ( ) ...

ˆ... { [ ( )] .

n d d
i i

di

n d d
i i

i i
di

X x X xV x K K
h h

X x X xK K Y F f X
h h

µ

−

=

=

    − −
=             

   − −
× − +      

   

∑

∑ 

 

The bandwidths for V̂  may be different from those used for f̂ , because V̂  is a full-dimensional 

nonparametric estimator.  Horowitz and Mammen (2004) present arguments showing that the 

solution to (11) estimates the bandwidths that minimize ASE. 

3.3  Estimation with an Unknown Link Function 

 This section is concerned with estimating model (2) when the link function F  is 

unknown.  When F  is unknown, model (2) contains semiparametric single-index models as a 
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special case.  This is important, because semiparametric single-index models and nonparametric 

additive models with known link functions are non-nested.  In a semiparametric single-index 

( | ) ( )E Y X x G xθ ′= =  for some unknown function G  and parameter vector θ .  This model 

coincides with the nonparametric additive model with link function F  only if the additive 

components are linear and F G= .  An applied researcher must choose between the two models 

and may obtain highly misleading results if an incorrect choice is made.  A nonparametric 

additive model with an unknown link function makes this choice unnecessary, because the model 

nests semiparametric single index models and nonparametric additive models with known link 

functions.  A nonparametric additive model with an unknown link function also nests the 

multiplicative specification 

 1 2
1 2( | ) [ ( ) ( )... ( )]d

dE Y X x F f x f x f x= = . 

 A further attraction of model (2) with an unknown link function is that it provides an 

informal, graphical method for checking the additive and single-index specifications. One can 

plot the estimates of F  and the jf ’s.  Approximate linearity of the estimate of F  favors the 

additive specification (1), whereas approximate linearity of the jf ’s favors the single-index 

specification.  Linearity of F  and the jf ’s favors the linear model ( | )E Y X Xθ ′= . 

Identification of the jf ’s in model (2) requires more normalizations and restrictions 

when F  is unknown than when F  is known.  First, observe that µ  is not identified when f  is 

unknown, because 1 * 1
1 1[ ( ) ... ( )] [ ( ) ... ( )]d d

d dF f x f x F f x f xµ + + + = + + , where the function *F  

is defined by *( ) ( )F v F vµ= +  for any real v .  Therefore, we can set 0µ =  without loss of 

generality.  Similarly, a location normalization is needed because model (2) remains unchanged 
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if each jf  is replaced by j jf γ+ , where jγ  is a constant, and ( )F v  is replaced by 

1*( ) ( ... )dF Fν ν γ γ= − − − .  In addition, a scale normalization is needed because model (2) is 

unchanged if each jf  is replaced by jcf  for any constant 0c ≠  and ( )F v  is replaced by 

*( ) ( / )F F cν ν= .  Under the additional assumption that F  is monotonic, model (2) with F  

unknown is identified if at least two additive components are not constant.  To see why this 

assumption is necessary, suppose that only 1f  is not constant. Then conditional mean function is 

of the form 1
1[ ( ) constant]F f x + .  It is clear that this function does not identify F  and 1f . The 

methods presented in this discussion use a slightly stronger assumption for identification.  We 

assume that the derivatives of two additive components are bounded away from 0.  The indices 

j  and k  of these components do not need to be known.  It can be assumed without loss of 

generality that j d=  and 1k d= − . 

Under the foregoing identifying assumptions, oracle-efficient, pointwise asymptotically 

normal estimators of the jf ’s can be obtained by replacing F  in the procedure of Horowitz and 

Mammen (2004) for model (2) with a kernel estimator.  As in the case of model (2) with F  

known, estimation takes place in two steps.  In the first step, a modified version of Ichimura’s 

(1993) estimator for a semiparametric single-index model is used to obtain a series 

approximation to each jf  and a kernel estimator of F .  The first-step procedure imposes the 

additive structure of model (2), thereby avoiding the curse of dimensionality.  The first-step 

estimates are inputs to the second step.  The second-step estimator of, say, 1f  is obtained by 

taking one Newton step from the first-step estimate toward a local nonlinear least-squares 

estimate.  In large samples, the second-step estimator has a structure similar to that of a kernel 

nonparametric regression estimator, so deriving its pointwise rate of convergence and asymptotic 
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distribution is relatively easy.  The details of the two-step procedure are lengthy.  They are 

presented in Horowitz and Mammen (2011).  The oracle-efficiency property of the two-step 

estimator implies that asymptotically, there is no penalty for not knowing F  in a nonparametric 

additive model.  Each jf  can be estimated as well as it would be if F  and the other jf ’s were 

known. 

Horowitz and Mammen (2007) present a penalized least squares (PLS) estimation 

procedure that applies to model (2) with an unknown F  and also applies to a larger class of 

models that includes quantile regressions and neural networks.  The procedure uses the location 

and scale normalizations 0µ = , (4), and 

(12) 2

1
( ) 1

d

j
j

f v dv
=

=∑∫ . 

The PLS estimator of Horowitz and Mammen (2007) chooses the estimators of F  and the 

additive components to solve 

1

1 2
1 1

, ,..., 1

1(13) minimize: { [ ( ) ... ( )]} ( , ,..., )

subject to: (4), (12),

d

n
d

i i d i n d
F f f i

Y F f X f X J F f f
n

λ
=

− + + +∑ 

   
 

 

where { }nλ  is a sequence of constants and J  is a penalty term that penalizes roughness of the 

estimated functions.  If F  and the jf ’s are k  times differentiable, the penalty term is 

1 2
1 1 11 2( , ,..., ) ( , ,..., ) ( , ,..., )d d dJ F f f J F f f J F f fν ν= +
     

  

, 

where 1ν  and 2ν  are constants satisfying 2 1 0ν ν≥ > , 

(2 1)/4
2 2

1 1 1
1

( , ,..., ) ( ) [ ( ) ( )]
k

d

d k j k j
j

J F f f T F T f T f
−

=

  = + 
  
∑

   
 

, 
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1/4
2 2

2 1 1 1
1

( , ,..., ) ( ) [ ( ) ( )]
d

d j k j
j

J F f f T F T f T f
=

  = + 
  
∑

   
 

, 

and 

2 ( ) 2( ) ( )T f f v dv= ∫ 



 

for 0 k≤ ≤  and any function f  whose  ’th derivative is square integrable.  The PLS estimator 

can be computed by approximating F


 and the jf


’s by B-splines and minimizing (13) over the 

coefficients of the spline approximation.  Denote the estimator by 1̂
ˆˆ , ,..., dF f f .  Assume without 

loss of generality that the X  is supported on [0,1]d .  Horowitz and Mammen (2007) give 

conditions under which the following result holds: 

 
1 2 2 /(2 1)
0

ˆ[ ( ) ( )] ( )k k
j j pf v f v dv O n− +− =∫  

for each 1,...,j d=  and 

2

1 2 /(2 1)

1 1

ˆ ( ) ( ) ... ( )
d d

j j d k k
j j p

j j
F f x F f x dx dx O n− +

= =

        − = 
        
∑ ∑∫ . 

In other words, the integrated squared errors of the PLS estimates of the link function and 

additive components converge in probability to 0 at the fastest possible rate under the 

assumptions.  There is no curse of dimensionality.  The available results do not provide an 

asymptotic distribution for the PLS estimator.  Therefore, it is not yet possible to carry out 

statistical inference with this estimator.   

4.  TESTS OF ADDITIVITY 

 Models (1) and (2) are misspecified and can give misleading results if the conditional 

mean or quantile of Y  is not additive.  Therefore, it is useful to be able to test additivity.  Several 
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tests of additivity have been proposed for models of conditional mean functions.  These tests 

undoubtedly can be modified for use with conditional quantile functions, but this modification 

has not yet been carried out.  Accordingly, the remainder of this section is concerned with testing 

additivity in the conditional mean versions of models (1) and (2).  Bearing in mind that model (1) 

can be obtained from model (2) by letting F  be the identity function, the null hypothesis to be 

tested is 

 1
0 1: ( | ) [ ( ) ... ( )]d

dH E Y X x F f x f xµ= = + + + . 

The alternative hypothesis is 

 1 : ( | ) [ ( )]H E Y X x F f xµ= = + , 

where there are no functions 1, ..., df f  such that  

 1
1[ ( ) ( ) ... ( )] 1d

dP f X f X f X= + + = . 

 Gozalo and Linton (2001) have proposed a general class of tests.  Their tests are 

applicable regardless of whether F  is the identity function.  Wang and Carriere (2011) and Dette 

and von Lieres und Wilkau (2001) proposed similar tests for the case of an identity link function.  

These tests are based on comparing fully a fully nonparametric estimator of f  with an estimator 

that imposes additivity.  Eubank, Hart, Simpson and Stefanski (1995) also proposed tests for the 

case in which F  is the identity function.  These tests look for interactions among the 

components of X  and are based on Tukey’s (1949) test for additivity in analysis of variance.  

Sperlich, Tjøstheim and Yang (2002) also proposed a test for the presence of interactions among 

components of X .  Other tests have been proposed by Abramovich, De Fesis, and Sapatinas 

(2009) and Derbort, Dette, and Munk (2002). 

 The remainder of this section outlines a test that Gozalo and Linton (2001) found though 

Monte Carlo simulation to have satisfactory finite sample performance.  The test statistic has the 

form 
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 1 1 2
1

1

ˆ ˆˆ ˆ{ [ ( )] [ ( ) ... ( )]} ( )
n

d
n i i d i i

i
F f X f X f X Xτ µ π−

=

= − + + +∑ , 

where ˆ ( )f x  is a full-dimensional nonparametric estimator of ( | )E Y X x= , µ̂  and the ˆ
jf ’s are 

estimators of µ  and jf  under 0H , and π  is a weight function.  Gozalo and Linton (2001) use a 

Nadaraya-Watson kernel estimator for f̂  and a marginal integration estimator for µ̂  and the 

ˆ
jf ’s.  Dette and von Lieres und Wilkau (2001) also use these marginal integration estimators in 

their version of the test.  However, other estimators can be used.  Doing so might increase the 

power of the test or enable some of the regularity conditions of Gozalo and Linton (2001) to be 

relaxed.  In addition, it is clear that ˆnτ  can be applied to conditional quantile models, though the 

details of the statistic’s asymptotic distribution would be different from those with conditional 

mean models.  If F  is unknown, then 1[ ( )]F f x−  is not identified, but a test of additivity can be 

based on the following modified version of ˆnτ : 

 1 2
1

1

ˆ ˆˆˆ ˆ{ ( ) [ ( ) ... ( )]} ( )
n

d
n i i d i i

i
f X F f X f X Xτ µ π

=

= − + + +∑ , 

where f̂  is a full-dimensional nonparametric estimator of the conditional mean function, F̂  is a 

nonparametric estimator of F , and the ˆ
jf ’s are estimators of the additive components. 

 Gozalo and Linton (2001) give conditions under which a centered, scaled version of ˆnτ  is 

asymptotically normally distributed as (0,1)N .  Dette and von Lieres und Wilkau (2001) provide 

similar results for the case in which F  is the identity function.  Gozalo and Linton (2001) and 

Dette and von Lieres und Wilkau (2001) also provide formulae for estimating the centering and 

scaling parameters.  Simulation results reported by Gozalo and Linton (2001) indicate that using 
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the wild bootstrap to find critical values produces smaller errors in rejection probabilities under 

0H  than using critical values based on the asymptotic normal distribution.  Dette and von Lieres 

und Wilkau (2001) also used the wild bootstrap to estimate critical values. 

5.  AN EMPIRICAL APPLICATION 

 This section illustrates the application of the estimator of Horowitz and Mammen (2004) 

by using it to estimate a model of the rate of growth of gross domestic product (GDP) among 

countries.  The model is 

 ( ) ( )T SG f T f S U= + + , 

where G  is the average annual percentage rate of growth of a country’s GDP from 1960 to 1965, 

T  is the average share of trade in the country’s economy from 1960 to 1965 measured as exports 

plus imports divided by GDP, and S  is the average number of years of schooling of adult 

residents of the country in 1960.  U  is an unobserved random variable satisfying ( | , ) 0E U T S = .  

The functions Tf  and Sf  are unknown and are estimated by the method of Horowitz and 

Mammen (2004).  The data are taken from the dataset Growth in Stock and Watson (2011).  

They comprise values of G , T , and S  for 60 countries. 

 Estimation was carried out using a cubic B-spline basis in the first step.  The second step 

consisted of Nadaraya-Watson (local constant) kernel estimation with the biweight kernel.  

Bandwidths of 0.5 and 0.8 were used for estimating Tf  and Sf , respectively.   

The estimation results are shown in Figures 1-2.  The estimates of Tf  and Sf  are  

INSERT FIGURES 1 AND 2 HERE 

nonlinear and differently shaped.  The dip in Sf  near 7S =  is almost certainly an artifact of 

random sampling errors.  The estimated additive components are not well-approximated by 
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simple parametric functions such as quadratic or cubic functions.  A lengthy specification search 

might be needed to find a parametric model that produces shapes like those in Figures 1-2.  If 

such a search were successful, the resulting parametric models might provide useful compact 

representations of Tf  and Sf  but could not be used for valid inference. 

6.  CONCLUSIONS 

 Nonparametric additive modeling with a link function that may or may not be known is 

an attractive way to achieve dimension reduction in nonparametric models.  It greatly eases the 

restrictions of parametric modeling without suffering from the lack of precision that the curse of 

dimensionality imposes on fully nonparametric modeling.  This chapter has reviewed a variety of 

methods for estimating nonparametric additive models.  An empirical example has illustrated the 

usefulness of the nonparametric additive approach.  Several issues about the approach remain 

unresolved.  One of these is to find ways to carry out inference about additive components based 

on the estimation method of Horowitz and Mammen (2007) that is described in Section 3.3.  This 

is the most general and flexible method that has been developed to date.  Another issue is the 

extension of the tests of additivity described in Section 5 to estimators other than partial 

integration and models of conditional quantiles.  Finally, finding data-based methods for 

choosing tuning parameters for the various estimation and testing procedures remains an open 

issue. 
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Figure 1:  Additive component Tf  in the growth model. 
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Figure 2:  Additive component Sf  in the growth model. 
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