
Chernozhukov, Victor; Fernández-Val, Iván; Hahn, Jinyong; Newey, Whitney

Working Paper

Identification and estimation of marginal effects in
nonlinear panel models

cemmap working paper, No. CWP25/08

Provided in Cooperation with:
The Institute for Fiscal Studies (IFS), London

Suggested Citation: Chernozhukov, Victor; Fernández-Val, Iván; Hahn, Jinyong; Newey, Whitney
(2008) : Identification and estimation of marginal effects in nonlinear panel models, cemmap
working paper, No. CWP25/08, Centre for Microdata Methods and Practice (cemmap), London,
https://doi.org/10.1920/wp.cem.2008.2508

This Version is available at:
https://hdl.handle.net/10419/64764

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1920/wp.cem.2008.2508%0A
https://hdl.handle.net/10419/64764
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


  

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Identification and estimation 
of marginal effects in 
nonlinear panel models 
 
 
Victor Chernozhukov 
Iván Fernández-Val 
Jinyong Hahn 
Whitney Newey 
 
 
 

The Institute for Fiscal Studies 
Department of Economics, UCL 
 
cemmap  working paper CWP25/08 



Identification and Estimation of Marginal Effects in Nonlinear

Panel Models 1

Victor Chernozhukov

MIT

Iván Fernández-Val

BU

Jinyong Hahn

UCLA

Whitney Newey

MIT

September 9, 2008

1First version of May 2007. We thank J. Angrist, B. Graham, and seminar participants of CEMFI,

CEMMAP Microeconometrics: Measurement Matters Conference, CEMMAP Inference in Partially Iden-

tified Models with Applications Conference, Harvard/MIT, MIT, UC Berkeley, USC, and 2007 WISE

Panel Data Conference for helpful comments. Chernozhukov, Fernández-Val, and Newey gratefully ac-

knowledge research support from the NSF.



Abstract

This paper gives identification and estimation results for marginal effects in nonlinear panel

models. We find that linear fixed effects estimators are not consistent, due in part to marginal

effects not being identified. We derive bounds for marginal effects and show that they can

tighten rapidly as the number of time series observations grows. We also show in numerical

calculations that the bounds may be very tight for small numbers of observations, suggesting

they may be useful in practice. We give an empirical illustration.



1 Introduction & Motivation

Marginal effects are commonly used in practice to quantify the effect of variables on an outcome

of interest. They are known as average treatment effects, average partial effects, and average

structural functions in different contexts (e.g., see Wooldridge, 2002, Blundell and Powell, 2003).

In panel data marginal effects average over unobserved individual heterogeneity. Chamberlain

(1984) gave important results on identification of marginal effects in nonlinear panel data using

control functions. Our paper gives identification and estimation results for marginal effects in

panel data under strict exogeneity, time stationarity, and discrete regressors.

It is sometimes thought that marginal effects can be estimated using linear models, as shown

by Hahn (2001) in an example and Wooldridge (2005) under strong independence conditions.

We find that the situation is more complicated. The marginal effect may not be identified.

Furthermore, with a binary regressor the linear model uses the wrong weighting in estimation

when the number of time periods T exceeds three. We show that correct weighting can be

obtained by averaging individual regression coefficients. We also derive bounds for the marginal

effect when it is not identified.

We find that these bounds can be wide when no restrictions are placed on the outcome, but

tighten substantially for some semiparametric models. In binary choice models with additive

heterogeneity we find in numerical results that the bounds can be very tight even when T is

small. We also give theorems showing that the bounds tighten quickly as T grows.

These results suggest how the bounds can be used in practice. Although they can be difficult

to compute for large T , their tightness for small T makes it feasible to compute them for different

small time intervals and combine results to improve efficiency. To illustrate their usefulness

we provide an empirical illustration based on Chamberlain’s (1984) labor force participation

example.

This paper is closely related to Honoré and Tamer (2006) and Chernozhukov, Hahn, and

Newey (2004). These papers derived bounds for slope coefficients in autoregressive and static

models respectively. Here we focus on marginal effects and give results on the rate of convergence

of bounds as T grows. Also, we find that the linear programming algorithm proposed by Honoré

and Tamer (2006) needs to be replaced in practice by some other method, and here propose

using quadratic minimum distance. We give empirical results.

Browning and Carro (2007) give results on marginal effects in autoregressive panel models.

They find that more than additive heterogeneity is needed to describe some interesting appli-

cation. They also find that marginal effects are not generally identified in dynamic models.

Graham and Powell (2008) consider identification with continuous regressors.

Hahn and Newey (2004) gave theoretical and simulation results showing that fixed effects es-
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timators of marginal effects in nonlinear models may have little bias, as suggested by Wooldridge

(2002). Fernández-Val (2008) found that averaging fixed effects estimates of individual marginal

effects has bias that shrinks faster as T grows than does the bias of slope coefficients. We show

that, with small T, fixed effects consistently estimates an identified component of the marginal

effects. We also give numerical results showing that the bias of fixed effects estimators of the

marginal effect is very small in a range of examples.

The bounds approach we take is different from the bias correction methods of Hahn and

Kuersteiner (2002), Alvarez and Arellano (2003), Woutersen (2002), Hahn and Newey (2004),

Hahn and Kuersteiner (2007), and Fernández-Val (2008). The bias corrections are based on large

T approximations. The bounds approach takes explicit account of possible nonidentification for

fixed T . Inference accuracy of bias corrections will depend on T being the right size relative to

the number of cross-section observations n, while inference for bounds does not.

In Section 2 we give a general nonparametric conditional mean model with correlated unob-

served individual effects and analyze the properties of linear estimators. Section 3 gives bounds

for marginal effects in these models and results on the rate of convergence of these bounds as

T grows. Section 4 gives similar results, with tighter bounds, in a binary choice model with a

location shift individual effect. Section 5 gives results and numerical examples on calculation of

population bounds. Section 6 discusses estimation and Section 7 inference. Section 8 gives an

empirical example.

2 A Conditional Mean Model and Linear Estimators

The data consist of n observations of time series Yi = (Yi1, ..., YiT )′ and Xi = [Xi1, ..., XiT ]′, for a

dependent variable Yit and a vector of regressors Xit. We will assume throughout that (Yi, Xi),

(i = 1, ..., n), are independent and identically distributed observations. A case we consider in

some depth is binary choice panel data where Yit ∈ {0, 1}. For simplicity we also give some

results for binary Xit, where Xit ∈ {0, 1}.
A general model we consider is a nonseparable conditional mean model as in Wooldridge

(2005). Here there is an unobserved individual effect αi and a function m(x, α) such that

E[Yit|Xi, αi] = m(Xit, αi), (t = 1, ..., T ). (1)

The individual effect αi may be a vector of any dimension. For example, αi could include

individual slope coefficients in a binary choice model, where Yit ∈ {0, 1}, F (·) is a CDF, and

Pr(Yit = 1|Xi, αi) = E[Yit|Xi, αi] = F (X ′
itαi2 + αi1).

Such models have been considered by Browning and Carro (2007) in a dynamic setting. More

familiar models with scalar αi are also included. For example, the binary choice model with an
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individual location effect has

Pr(Yit = 1|Xi, αi) = E[Yit|Xi, αi] = F (X ′
itβ

∗ + αi1).

This model has been studied by Chamberlain (1980, 1984, 1992), Hahn and Newey (2004), and

others. The familiar linear model E[Yit|Xi, αi] = X ′
itβ

∗ + αi is also included as a special case of

the general conditional mean model.

The two critical assumptions made in equation (1) are that Xi is strictly exogenous condi-

tional on α and that m(x, α) does not vary with time. These conditions lead to identification

from differences across time. Without time stationarity, identification becomes more difficult.

Our primary object of interest is the marginal effect given by

µ0 =
∫

[m(x̃, α)−m(x̄, α)]Q∗(dα)
D

,

where x̃ and x̄ are two possible values for the Xit vector, Q∗ denotes the marginal distribution

of α, and D is the distance, or number of units, corresponding to x̃ − x̄. This object gives the

average, over the marginal distribution, of the per unit effect of changing x from x̄ to x̃. It is the

average treatment effect in the treatment effects literature. For example, suppose x̄ = (x̄1, x
′
2)
′

where x̄1 is a scalar, and x̃ = (x̃1, x
′
2)
′. Then D = x̃1 − x̄1 would be an appropriate distance

measure and

µ0 =
∫

[m(x̃1, x2, α)−m(x̄1, x2, α)]Q∗(dα)
x̃1 − x̄1

,

would be the per unit effect of changing the first component of Xit. Here one could also consider

averages of the marginal effects over different values of x2.

For example, consider an individual location effect for binary Yit where m(x, α) = F (x′β0+α).

Here the marginal effect will be

µ0 = D−1

∫
[F (x̃′β∗ + α)− F (x̄′β∗ + α)]Q∗(dα).

The restrictions this binary choice model places on the conditional distribution of Yit given Xi

and αi will be useful for bounding marginal effects, as further discussed below.

In this paper we focus on the discrete case where the support of Xi is a finite set. Thus, the

events Xit = x̃ and Xit = x̄ have positive probability and no smoothing is required. It would

also be interesting to consider continuous Xit .

Linear fixed effect estimators are used in applied research to estimate marginal effects. For

example, the linear probability model with fixed effects has been applied when Yit is binary.

Unfortunately, this estimator is not generally consistent for the marginal effect. There are two

reasons for this. The first is the marginal effect is generally not identified, as further explained

below. Second, the fixed effects estimator uses incorrect weighting.
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To explain, we compare the limit of linear fixed effects estimators with the marginal effect

µ0. Suppose that Xi has finite support {X1, ..., XK} and let Q∗
k(α) denote the CDF of the

distribution of α conditional on Xi = Xk. Define

µk =
∫

[m(x̃, α)−m(x̄, α)]Q∗
k(dα)/D, Pk = Pr(Xi = Xk).

This µk is the marginal effect conditional on the entire time series Xi = [Xi1, ..., XiT ]′ being

equal to Xk. By iterated expectations,

µ0 =
K∑

k=1

Pkµk. (2)

We will compare this formula with the limit of linear fixed effects estimators.

An implication of the conditional mean model that is crucial for identification is

E[Yit|Xi = Xk] =
∫

m(Xk
t , α)Q∗

k(dα). (3)

This equation allows us to identify some of the µk from differences across time periods of iden-

tified conditional expectations.

To simplify the analysis of linear fixed effect estimators we focus on binary Xit ∈ {0, 1}.
Consider β̂w from least squares on

Yit = Xitβ + γi + vit, (t = 1, ..., T ; i = 1, ..., n),

where each γi is estimated. This is the usual within estimator, where for X̄i =
∑T

t=1 Xit/T ,

β̂w =

∑
i,t(Xit − X̄i)Yit∑
i,t(Xit − X̄i)2

.

Here the estimator of the marginal effect is just β̂w. To describe its limit, let rk = #{t : Xk
t =

1}/T be the proportion of component of Xk that are equal to one and σ2
k = rk(1 − rk) be the

variance of a binomial with probability rk.

Theorem 1: If equation (1) is satisfied, (Xi, Yi) has finite second moments, and
∑K

k=1 Pkσ
2
k >

0, then

β̂w
p−→

∑K
k=1 Pkσ

2
kµk∑K

k=1 Pkσ
2
k

. (4)

Comparing equations (2) and (4) we see that the linear fixed effects estimator converges to

a weighted average of µk, weighted by σ2
k, rather than the simple average in equation (2). The

weights are never completely equal, so that the linear fixed effects estimator is not consistent

for the marginal effect unless µk does not depend on k, i.e., unless the distribution of α given
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Xi = Xk does not vary with k (in its effect on µk). This amounts to exogeneity of α as far as

the marginal effect goes, which is not very interesting.

One reason for inconsistency of β̂w is that certain µk receive zero weight. For notational

purposes let X1 = (0, ..., 0)′ and XK = (1, ..., 1)′ (where we implicitly assume that these are

included in the support of Xi). Note that σ2
1 = σ2

K = 0 so that µ1 and µK are not included in

the weighted average. The explanation for their absence is that µ1 and µK are not identified.

These are marginal effects conditional on Xi equal a vector of constants, where there are no

changes over time to help identify the effect from equation (3).

Another reason for inconsistency of β̂w is that for T ≥ 4 the weights on µk will be different

than the corresponding weights for µ0. This is because rk varies for k /∈ {1,K} except when

T = 2 or T = 3.

This result is different from Hahn (2001), who found that β̂w consistently estimates the

marginal effect. The reason he obtained such a result is that he restricted the support of Xi to

exclude both (0, ..., 0)′ or (1, ..., 1)′. Also, he only considered a case with T = 2. Thus, neither

feature that causes inconsistency of β̂w was present in his example. Thus, as noted by Hahn

(2001), the conditions that lead to consistency of the linear fixed effects estimator in his example

are quite special.

The inconsistency result is also different from Wooldridge (2005). There it is shown that

if bi = m(1, αi) −m(0, αi) is mean independent of Xit − X̄i for each t then linear fixed effects

is consistent. The problem is that this independence assumption is very strong when Xit is

discrete. Note that for T = 2, Xi2 − X̄i takes on the values 0 when Xi = (1, 1) or (0, 0), −1/2

when Xi = (1, 0) , and 1/2 when Xi = (0, 1). Thus mean independence of bi and Xi2 − X̄i

actually implies that µ2 = µ3 and that these are equal to the marginal effect conditional on

Xi ∈ {X1, X4}. This is quite close to independence of bi and Xi, which is not very interesting

if we want to allow correlation between the regressors and the individual effect.

The result of Theorem 1 is related to Angrist (1998), who found that the probability limits

of linear regression estimators are variance weighted average effects in cross sectional models

with heterogenous effects. He focuses on estimation of averages of the identified effects.

The lack of identification of µ1 and µK means the marginal effect is actually not identified.

Therefore, no consistent estimator of it exists. Nevertheless, it is possible to find informative

bounds for µ0, as we show in the following sections.

We can correct the second reason for inconsistency of β̂w by modifying the estimator. A

simple way to do this is to estimate a different slope coefficient for each individual and then

average. This estimator is obtained from averaging across individuals the least squares estimates

of βi in

Yit = Xitβi + γi + vit, (t = 1, ..., T ; i = 1, ..., n),
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For s2
xi =

∑T
t=1(Xit − X̄i)2 and n∗ =

∑n
i=1 1(s2

xi > 0), this estimator takes the form

β̂ =
1
n∗

n∑

i=1

1(s2
xi > 0)

∑T
t=1(Xit − X̄i)Yit

s2
xi

.

This is equivalent to running least squares in the model

Yit = βkXit + γk + vit, (5)

for individuals with Xi = Xk, and averaging β̂k over k weighted by the sample frequencies of

Xk.

Theorem 2: If equation (1) is satisfied and (Xi, Yi) have finite second moments then

β̂
p−→ µI =

K−1∑

k=2

P∗kµk, (6)

where P∗k = Pk/
∑K−1

k=2 Pk.

To see how big the inconsistency can be we consider a numerical example, where Xit ∈ {0, 1}
is i.i.d across i and t, Pr(Xit = 1) = pX , ηit is i.i.d. N(0, 1),

Yit = 1(Xit + αi + ηit > 0), αi =
√

T (X̄i − pX)/pX(1− pX).

Here we consider the marginal effect for x̃ = 1, x̄ = 0, D = 1, given by

µ0 =
∫

[Φ(1 + α)− Φ(α)]Q∗(dα).

Table 1 and Figure 1 give numerical values for
[
lim(β̂w)− µ0

]
/µ0 and

[
lim(β̂)− µ0

]
/µ0 for

several values of T and pX .

We find that the biases (inconsistencies) can be large in percentage terms. We also find that

biases are largest when pX is small. In this example, the inconsistency of fixed effects estimators

of marginal effects seems to be largest when the regressor values are sparse. Also we find that

differences between the limits of β̂ and β̂w are larger for larger T , which is to be expected due

to the weights differing more for larger T .

The estimator β̂ of the identified marginal effect µI can easily be extended to any discrete

Xit. To describe the extension, let d̃it = 1(Xit = x̃), d̄it = 1(Xit = x̄), r̃i =
∑T

t=1 d̃it/T, r̄i =
∑T

t=1 d̄it/T , and n∗ =
∑n

i=1 1(r̃i > 0)1(r̄i > 0). The estimator is given by

β̂ =
1
n∗

n∑

i=1

1(r̃i > 0)1(r̄i > 0)[
∑T

t=1 d̃itYit

T r̃i
−

∑T
t=1 d̄itYit

T r̄i
].

This estimator is the same as doing individual by individual least squares on a fully saturated

model and then averaging the result. It will be identical to the previous β̂ when Xit is binary.
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It should be noted that β̂ is not efficient for T ≥ 3. The reason is that it is least squares

over time, which does not account properly for time series heteroskedasticity or autocorrelation.

An efficient estimator could be obtained by a minimum distance procedure, though that is

complicated. Also, one would have only few observations to estimate needed weighting matrices,

so its properties may not be great in small to medium sized samples. For these reasons we leave

construction of an efficient estimator to future work.

To describe the limit of the estimator β̂ in general, let K∗ = {k :there is t̃ and t̄ such that

Xk
t̃

= x̃ and Xk
t̄ = x̄}. This is the set of possible values for Xi where both x̃ and x̄ occur for

at least one time period, allowing identification of the marginal effect from differences. For all

other values of k, either x̃ or x̄ will be missing from the observations and the marginal effect

will not be identified. In the next Section we will consider bounds for those effects.

Theorem 3: If equation (1) is satisfied, (Xi, Yi) have finite second moments and
∑

k∈K∗ Pk >

0, then

β̂
p−→ µI =

∑

k∈K∗
P∗kµk,

where P∗k = Pk/
∑

k∈K∗ Pk.

3 Bounds in the Conditional Mean Model

Although the marginal effect µ0 is not identified it is straightforward to bound it. Also, as we

will show below, these bounds can be quite informative, motivating the analysis that follows.

Some additional notation is useful for describing the results. Let

m̄k
t = E[Yit|Xi = Xk]/D

be the identified conditional expectations of each time period observation on Yit conditional on

the kth support point. Also, let ∆(α) = [m(x̃, α)−m(x̄, α)] /D. The next result gives identifi-

cation and bound results for µk, which can then be used to obtain bounds for µ0.

Lemma 4: If there is t̃ and t̄ such that Xk
t̃

= x̃ and Xk
t̄ = x̄ then

µk = m̄k
t̃
− m̄k

t̄ .

Suppose that B` ≤ m(x, α)/D ≤ Bu. If there is t̃ such that Xk
t̃

= x̃ then

m̄k
t̃
−Bu ≤ µk ≤ m̄k

t̃
−B`.

Also, if there is t̄k such that Xk
t̄

= x̄ then

B` − m̄k
t̄ ≤ µk ≤ Bu − m̄k

t̄ .
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Suppose that ∆(α) has the same sign for all α. Then if for some k there is t̃ and t̄ such that

Xk
t̃

= x̃ and Xk
t̄ = x̄, the sign of ∆(α) is identified. Furthermore, if ∆(α) is positive then the

lower bounds may be replaced by zero and if ∆(α) is negative then the upper bounds may be

replaced by zero.

The bounds on each µk can be combined to obtain bounds for the marginal effect µ0. Let

K̃ = {k : there is t̃ such that Xk
t̃

= x̃ but no t̄ such that Xk
t = x̄},

K̄ = {k : there is t̄ such that Xk
t̃

= x̄ but no t̃ such that Xk
t = x̃}.

Also, let P 0 = Pr(Xi : Xit 6= x̃ and Xit 6= x̄ for every t). The following result is obtained by

multiplying the kth bound in Lemma 4 by Pk and summing.

Theorem 5: If B` ≤ m(x, α)/D ≤ Bu then µ` ≤ µ0 ≤ µu for

µ` = P0(B` −Bu) +
∑

k∈K̃

Pk(m̄k
t̃
−Bu) +

∑

k∈K̄

Pk(B` − m̄k
t̄ ) +

∑

k∈K∗
Pkµk,

µu = P0(Bu −B`) +
∑

k∈K̃

Pk(m̄k
t̃
−B`) +

∑

k∈K̄

Pk(Bu − m̄k
t̄ ) +

∑

k∈K∗
Pkµk.

If ∆(α) has the same sign for all α and there is some k∗ such that Xk∗
t̃

= x̃ and Xk∗
t̄ = x̄, the

sign of µ0 is identified, and if µ0 > 0 (< 0) then µ` (µu) can be replaced by
∑

k∈K∗ Pkµk.

As an example, consider the binary X case where Xit ∈ {0, 1}, x̃ = 1 , and x̄ = 0. Let XK

denote a T × 1 unit vector and X1 be the T × 1 zero vector, assumed to lie in the support of

Xi. Here the bounds will be

µ` = PK(m̄K
t̃
−Bu) + P1(B` − m̄1

t̄ ) +
∑

1<k<K

Pkµk, (7)

µu = PK(m̄K
t̃
−B`) + P1(Bu − m̄1

t̄ ) +
∑

1<k<K

Pkµk.

It is interesting to ask how the bounds behave as T grows. If the bounds converge to µ0 as

T goes to infinity then µ0 is identified for infinite T . If the bounds converge rapidly as T grows

then one might hope to obtain tight bounds for T not very large. The following result gives a

simple condition under which the bounds converge to µ0 as T grows.

Theorem 6: Suppose that B` ≤ m(x, α)/D ≤ Bu and
−→
X i = (Xi1, Xi2, ...) is stationary and,

conditional on αi, the support of each Xit is the marginal support of Xit and
−→
X i is ergodic.

Then µ` −→ µ0 and µu −→ µ0 as T −→∞.
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The rate at which the bounds converge in the general model is a complicated question. Here

we will address it in an example and leave general treatment to another setting. The example

we consider is that where Xit ∈ {0, 1}.

Theorem 7: If B` ≤ m(x, α)/D ≤ Bu and
−→
Xi is i.i.d. conditional on αi then for P (αi) =

Pr(Xit = 1|αi),

max{|µ` − µ0|, |µu − µ0|} ≤ (Bu −B`)E[{1− P (αi)}T + P (αi)T ].

If there is ε > 0 such that ε ≤ P (αi) ≤ 1− ε for almost every αi, then

max{|µ` − µ0|, |µu − µ0|} ≤ (Bu −B`)2(1− ε)T .

If P (αi) = 1 or P (αi) = 0 with positive probability either µ` 9 µ0 or µu 9 µ0.

When P (αi) is bounded away from zero and one the bounds will converge at an exponential

rate. We conjecture that an analogous result could be shown in the general case above. Having

P (αi) = 1 with positive probability violates a condition of Theorem 6, that the conditional

support of Xit equals the marginal support. Theorem 7 shows that in this case the bounds may

not shrink to the marginal effect.

The bounds may converge, but not exponentially fast, depending on P (αi) and the distri-

bution of αi. For example, suppose that Xit = 1(αi − εit > 0), αi ∼ N(0, 1), εit ∼ N(0, 1), with

εit i.i.d. over t and independent of αi. Then

PK = E[Φ(αi)T ] =
∫

Φ(α)T φ(α)dα = [
Φ(α)T+1

T + 1
]
∣∣∣∣
+∞

−∞
=

1
T + 1

.

In this example the bounds will converge at the slow rate 1/T . More generally, the convergence

rate will depend on the distribution of P (αi).

It is interesting to note that the convergence rates we have derived so far depend only on

the properties of the joint distribution of (Xi, αi), and not on the properties of the conditional

distribution of Yi given (Xi, αi). This feature of the problem is consistent with us placing no

restrictions on m(x, α). In the next Section we find that the bounds and rates may be improved

when the conditional distribution of Yi given (Xit, αi) is restricted.

4 Semiparametric Multinomial Choice

The bounds for marginal effects derived in the previous section did not use any functional form

restrictions on the conditional distribution of Yi given (Xi, α). If this distribution is restricted one

may be able to tighten the bounds. To illustrate we consider a semiparametric multinomial choice
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model where the conditional distribution of Yi given (Xi, αi) is specified and the conditional

distribution of αi given Xi is uknown.

We assume that the vector Yi of outcome variables can take J possible values Y 1, . . . , Y J .

As before, we also assume that Xi has a discrete distribution and can take K possible values

X1, . . . , XK . Suppose that the conditional probability of Yi given (Xi, αi) is

Pr(Yi = Y j |Xi = Xk, αi) = L(Y j |Xk, αi, β
∗)

for some finite dimensional β∗ and some known function L(Y |X,α, β). Let Q∗
k denote the un-

known conditional distribution of αi given Xi = Xk. Let Pjk denote the conditional probability

of Yi = Y j given Xi = Xk. We then have

Pjk =
∫
L

(
Y j |Xk, α, β∗

)
Q∗

k (dα) , (j = 1, ..., J ; k = 1, ...,K),

where Pjk is identified from the data and the right hand side are the probabilities predicted by the

model. This model is semiparametric in having a likelihood L (
Y j |Xk, α, β

)
that is parametric

and conditional distributions Qk (α) for the individual effect that are completely unspecified. In

general the parameters of the model may be set identified, so the previous equation is satisfied

by a set of values B that includes β∗ and a set of distributions for Qk that includes Q∗
k for

k = 1, ..., K. We discuss identification of model parameters more in detail in the next Section.

Here we will focus on bounds for the marginal effect when this model holds.

For example consider a binary choice model where Yit ∈ {0, 1}, Yi1, ..., YiT are independent

conditional on (Xi, αi), and

Pr(Yit = 1|Xi, αi, β
∗) = F (X ′

itβ
∗ + αi)

for a known CDF F (·). Then each Y j consists of a T × 1 vector of zeros and ones, so with

J = 2T possible values. Also,

L (Y |X, α, β) =
T∏

t=1

F (X ′
tβ + α)Yt [1− F (X ′

tβ + α)]1−Yt .

The observed conditional probabilities then satisfy

Pjk =
∫ {

T∏

t=1

F (Xk′
t β∗ + α)Y j

t [1− F (Xk′
t β∗ + α)]1−Y j

t

}
Q∗

k (dα) , (j = 1, ..., 2T ; k = 1, ..., K).

As discussed above, for the binary choice model the marginal effect of a change in Xit from

x̄ to x̃, conditional on Xi = Xk, is

µk = D−1

∫
[F

(
x̃′β∗ + α

)− F
(
x̄′β∗ + α

)
]Q∗

k(dα), (8)
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for a distance D. This marginal effect is generally not identified. Bounds can be constructed

using the results of Section 3 with B` = 0 and Bu = 1, since m(x, α) = F (x′β∗ + α) ∈ [0, 1].

Moreover, in this model the sign of ∆(α) = D−1[F (x̃′β∗ + α) − F (x̄′β∗ + α)] does not change

with αi, so we can apply the result in Lemma 4 to reduce the size of the bounds. These bounds,

however, are not tight because they do not fully exploit the structure of the model. Sharper

bounds are given by

µ
k

= minβ∈B,Qk
D−1

∫
[F (x̃′β + α)− F (x̄′β + α)]Qk (dα)

s.t. Pjk =
∫ L (

Y j |Xk, α, β
)
Qk (dα) ∀j,

(9)

and
µk = maxβ∈B,Qk

D−1
∫

[F (x̃′β + α)− F (x̄′β + α)]Qk (dα)

s.t. Pjk =
∫ L (

Y j |Xk, α, β
)
Qk (dα) ∀j.

(10)

In the next Sections we will discuss how these bounds can be computed and estimated. Here

we will consider how fast the bounds shrink as T grows.

First, note that since this model is a special case of (more restricted than) the conditional

mean model, the bounds here will be sharper than bounds previously given. Therefore, the

bounds here will converge at least as fast as the previous bounds. Imposing the structure here

does improve convergence rates. In some cases one can obtain fast rates without any restrictions

on the joint distribution of Xi and αi.

We will consider carefully the logit model and leave other models to future work. The logit

model is simpler than others because β∗ is point identified. In other cases one would need to

account for the bounds for β∗. To keep the notation simple we focus on the binary X case,

Xit ∈ {0, 1}, where x̃ = 1 and x̄ = 0. We find that the bounds shrink at rate T−r for any finite

r, without any restriction on the joint distribution of Xi and αi.

Theorem 8: For k = 1 or k = K and for any r > 0, as T −→∞,

µk − µ
k

= O(T−r).

Fixed effects maximum likelihood estimators (FEMLEs) are a common approach to estimate

model parameters and marginal effects in multinomial panel models. Here we compare the

probability limit of these estimators to the identified sets for the corresponding parameters.

The FEMLE treats the realizations of the individual effects as parameters to be estimated. The

corresponding population problem can be expressed as

β̃ = argmaxβ

K∑

k=1

Pk

J∑

j=1

Pjk logL
(
Y j |Xk, αjk(β), β

)
, (11)

where

αjk(β) = argmaxa logL
(
Y j |Xk, α, β

)
,∀j, k. (12)
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Here, we first concentrate out the support points of the conditional distributions of α and then

solve for the parameter β.

Fixed effects estimation therefore imposes that the estimate of Qk has no more than J points

of support. The distributions implicitly estimated by FE take the form

Q̃kβ(α) =

{
Pjk, for α = αjk(β);

0, otherwise.
(13)

The following example illustrates this point using a simple two period model.

Example 1 Consider a two-period binary choice model with binary regressor and symmetric

CDF, i.e., F (−x) = 1− F (x). In this case the estimand of the fixed effects estimators are

αjk(β) =





−∞, if Y j = (0, 0);

−β(Xk
1 + Xk

2 )/2, if Y j = (1, 0) or Y j = (0, 1);

∞, if Y j = (1, 1),

(14)

and the corresponding distribution for α has the form

Q̃kβ(α) =





Pr{Y = (0, 0)|Xk}, if α = −∞;

Pr{Y = (1, 0)|Xk}+ Pr{Y = (0, 1)|Xk}, if α = −β(Xk
1 + Xk

2 )/2;

Pr{Y = (1, 1)|Xk}, if α = ∞.

(15)

This formulation of the problem is convenient to analyze the properties of the fixed effects

estimators of marginal effects. Thus, for example, the fixed effects estimator of the marginal

effect µk takes the form:

µ̃k(β) = D−1

∫
[F (x̃′β + α)− F (x̄′β + α)]Q̃kβ(α). (16)

This estimator is consistent for identified effects when X is binary for any symmetric CDF. This

result is shown here analytically for the two-period case and through numerical examples for

T ≥ 3.

Theorem 9: If k 6∈ {1,K} and F (−x) = 1− F (x), then µ̃k(β̃)
p−→ µk.

For not identified effects the fixed effects estimators are usually biased toward zero. To see

this consider a logit model with binary regressor, Xk = (0, 0), x̄ = 0 and x̃ = 1. Using that

β̃ = 2β∗ (Andersen, 1973) and F ′(x) = F (x)(1− F (x)) ≤ 1/4, we have
∣∣∣µ̃k(β̃)

∣∣∣ =
∣∣∣F (β̃)− F (0)

∣∣∣ [P (Y = (1, 0)|Xk) + P (Y = (0, 1)|Xk)]

≤
∣∣∣β̃/2

∣∣∣
∫

F (α)(1− α)Qk(dα) =
∣∣∣E[β∗F ′(x̄β∗ + α)|X = Xk]

∣∣∣ ≈ |µk| .

This conjecture is further explored numerically in the next section.
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5 Calculating Population Bounds

We will begin our discussion of calculating bounds by considering bounds for the parame-

ter β. Letting Q ≡ (Q1, . . . , QK), we can write the individual log likelihood compactly as

L (Yi, Xi;β,Q). Due to the usual argument based on Jensen’s inequality, we can see that (β∗, Q∗)

is such that

E [L (Yi, Xi; β, Q)] ≤ E [L (Yi, Xi; β∗, Q∗)]

for every (β,Q). This implies that

sup
Q

E [L (Yi, Xi; β, Q)] ≤ sup
Q

E [L (Yi, Xi; β∗, Q)]

for every β. Therefore, if we define B to be the set of β’s that maximizes supQ E [L (Yi1, Yi2; β, Q)],

i.e.,

B ≡
{

β : sup
Q

E [L (Yi, Xi;β, Q)] ≥ sup
Q

E
[
L

(
Yi, Xi; β′, Q

)]
, ∀β′

}
.

We can easily see that β∗ ∈ B. In other words, β∗ is set identified by the set B.

It follows from results of Lindsay (1995) that one need only search over discrete distributions

for Q to find B. Note that

Lemma 10: If the support C of αi is compact and L (
Y j |Xk, α, β

)
is continuous in α for

each β, j, and k, then, for each β ∈ B and k, a solution to

Q̄kβ = arg max
Qk

E[ln
∫
L

(
Y j |Xk, α, β

)
Qk (dα) |Xi = Xk]

exists that is a discrete distribution with at most J points of support, and
∫ L (

Y j |Xk, α, β
)
Q̄kβ (dα) =

Pjk, ∀j, k.

It is also true that bounds for the marginal effect can be found by searching over discrete

distributions. We will focus on the upper bound µk; an analogous result holds for the lower

bound µ
k
.

Lemma 11: If the support C of αi is compact and L (
Y j |Xk, α, β

)
is continuous in α for

each β, j, and k, then, for each β ∈ B and k, a solution to

Q̄kβ = arg max
Qk

D−1

∫
[F (x̃′β + α)− F (x̄′β + α)]Qk (dα) s.t.

∫
L

(
Y j |Xk, α, β

)
Qk (dα) = Pjk

can be obtained from a discrete distribution with at most J points of support.

We carry out some numerical calculations to illustrate and complement the previous analyt-

ical results. We use the following binary choice model

Yit = 1{Xitβ + αi + εit ≥ 0}, (17)
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with εit i.i.d. normal or logistic with zero mean and unit variance. The explanatory variable

Xit is binary, independent across time periods with pX = Pr{Xit = 1} = 0.5. The unobserved

individual effects αi is correlated with the explanatory variable for each individual. In particular,

we generate these effects as a mixture of a random component and the standardized individual

sample mean of the regressor. The random part is independent of the regressors and follows a

discretized standard normal distribution, as in Honoré and Tamer (2006). Thus, we have

αi = α1i + α2i,

where

Pr {α1i = am} =





Φ
(

am+1+am

2

)
, for am = −3.0;

Φ
(

am+1+am

2

)
− Φ

(
am+am−1

2

)
, for am = −2.8,−2.6, ..., 2.8;

1− Φ
(

am+am−1

2

)
, for am = 3.0.

and α2i =
√

T (X̄ − pX)/
√

pX(1− pX).

Identified sets for parameters and marginal effects are calculated for panels with 2, 3, and

4 periods based on the general conditional expectation model and semiparametric logit and

probit models. For logit and probit models the sets are obtained using the linear programming

algorithm of Honoré and Tamer (2006) for discrete regressors. Thus, for the parameter we have

that B = {β : L(β) = 0},1 where

L(β) = min
wk,vjk,πkm

K∑

k=1

wk +
J∑

j=1

K∑

k=1

vjk (18)

vjk +
∑M

m=1 πkmL
(
Y j |Xk, αm, β

)
= Pjk ∀j, k,

wk +
∑M

m=1 πkm = 1 ∀k,

vjk ≥ 0, wk ≥ 0, πkm ≥ 0 ∀j, k, m.

For marginal effects, we solve

µk/µ
k

= max / min
πkm,β∈B

M∑

m=1

πkm[F (β + αm)− F (αm)]

∑M
m=1 πkmL

(
Y j |Xk, αm, β

)
= Pjk ∀j,

∑M
m=1 πkm = 1, πkm ≥ 0 ∀j, m.

The identified sets are also compared to the probability limits of linear and nonlinear fixed effects

estimators.
1In calculating the identified sets, we search over a wide grid of support points for the mixing distribution that

contains the points of support of αi. In many cases the estimate of mixing distribution has points of support

outside the range of true points of support of the true distribution.
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Figure 2 shows identified sets for the index coefficient β in the logit model. The figures

agree with the well-known result that the model parameter is point identified when T ≥ 2, e.g.,

Andersen (1973). The fixed effect estimator is inconsistent and has a probability limit that is

biased away from zero. For example, for T = 2 it coincides with the value 2β∗ obtained by

Andersen (1973). For T > 2, the proportionality β̃ = cβ0 for some constant c breaks down.

Identified sets for marginal effects are plotted in Figures 3 - 7, together with the probability

limits of fixed effects maximum likelihood estimators (Figures 4 - 6) and linear probability model

estimators (Figure 7).2 Figure 3 shows identified sets based on the general conditional mean

model. The bounds of these sets are obtained using the general bounds (G-bound) for binary

regressors in (7), and imposing the monotonicity restriction ∆(α) > 0 in Lemma 4 (GM-bound).

In this example the monotonicity restriction has important identification content in reducing

the size of the bounds.

Figures 4 - 6 show that marginal effects are point identified for individuals with switches

in the value of the regressor, and fixed effects estimators are consistent for these effects. This

numerical finding suggests that the consistency result for fixed effects estimators extends to more

than two periods. Marginal effects for individuals without switches in the regressor are not point

identified, unless β∗ = 0, which also precludes point identification of the average effects. Fixed

effects estimators are biased toward zero for the unidentified effects, and have probability limits

that usually lie outside of the identified set. However, both the size of the identified sets and

the asymptotic biases of the fixed effects estimators shrink very fast with the number of time

periods. In Figure 7 we see that linear probability model estimators have probability limits that

usually fall outside the identified set for the marginal effect.

For the probit, Figure 8 shows that the model parameter is not point identified, but the size

of the identified set shrinks very fast with the number of time periods. The identified sets and

limits of fixed effects estimators in Figures 9 - 13 are analogous to the results for logit.

6 Estimation

The population problem for the parameter β has the convenient linear programming formulation

(18) when the regressors are discrete. To estimate B, Honoré and Tamer (2006) suggest solving

the linear programming problem replacing the conditional probabilities Pjk by consistent sample

2We consider the version of the linear probability model that allows for individual specific slopes in addition

to the fixed effects.
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estimates Pjk. The proposed estimate of the identified set is Bn = {β : L̂(β) = 0} where

L̂(β) = min
wk,vjk,πkm

K∑

k=1

wk +
J∑

j=1

K∑

k=1

vjk

vjk +
∑M

m=1 πkmL
(
Y j |Xk, αm, β

)
= Pjk ∀j, k,

wk +
∑M

m=1 πkm = 1 ∀k,

vjk ≥ 0, wk ≥ 0, πkm ≥ 0 ∀j, k,m.

Here Pjk are the observed probabilities in the sample.

There are two important practical difficulties in the implementation of this approach for

estimation. First, the solution for Q to the linear programming problem is very sensitive to

the presence of empty cells, that is, when Y j is not observed for some Xk. Then Pjk = 0 and

Q̂k is a degenerate distribution at −∞. This issue is an artifact of the way the restrictions

are formulated, which only allows for negative differences between model and true probabilities,

together with the properties of the common specifications for the model probabilities, such as

logit of probit, which only are zero at −∞. We introduce a variation of a minimum distance

procedure proposed by Honoré and Tamer (2006) that is less sensitive to the empty cell problem.

A second important drawback of the linear programming formulation, also shared by the

minimum distance procedure, is that the solution for the identified set is generally an empty set

because the minimum of the objective function is always positive. The source of this problem is

sampling error in the estimated probabilities and model misspecification. This problem can be

addressed by choosing Bn as the set of values of β for which the minimized objective function

L̂(β) attains its minimum (instead of zero) up to a cut-off parameter. We apply this solution to

the objective function of the minimum distance problem.

The modified minimum distance estimator that we propose is the solution to the following

penalized weighted quadratic programming problem:

Bn =
{

β : T̂ (β) ≤ min
β∈B

T̂ (β) + εn

}
, (19)

where εn ≥ 0 is a cut-off parameter that shrinks to zero as a function of the sample size as in

Manski and Tamer (2002); and

T̂ (β) = min
zkm

∑

j,k


ωjk

(
Pjk −

M∑

m=1

πkmL
(
Y j |Xk, αm, β

))2

+ λn

M∑

m=1

z2
km


 , (20)

s.t.
m∑

m=1

πkm = 1, πkm ≥ 0, ∀j, k.

This formulation is less sensitive to the empty cell problem because it allows for positive and

negative differences between model and observed probabilities. The weights ωjk are chosen in
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order to have a chi-square type objective function and to increase the efficiency of the estimator

by weighting more the sequences of X with higher sample frequencies. In particular, we set

ωjk = nPk/

M∑

m=1

π̃kmL
(
Y j |Xk, αm, β̃

)
,

where Pk is the observed probability of the sequence Xk in the sample and (β̃, {π̃km : k =

1, ..., K; m = 1, ..., M}) are preliminary estimates of the parameters. These estimates can be

obtained by setting ωjk = nPk.

The penalty λn acts choosing a distribution among the set of discrete distributions with sup-

port contained in {α1, ..., αM}. This regularization solves the fundamental identification problem

for Qk, while keeping the computationally convenient quadratic programming formulation. In

general there is an infinite number of solutions for Qk to the population problem, one of them

is a discrete distribution with no more than J support points by Lemma 10. Here, instead of

searching for the solution with the minimal support, we search over discrete distributions with

support points contained in a large partition of an interval of the real line. By making the par-

tition fine enough we guarantee to cover the solutions to the problem with few support points,

without having to find explicitly the location of those points.3 The penalty favors distributions

with large supports. Moreover, by setting λn = o(1), the penalty does not affect the distribution

of the objective function in large samples.

The solution to the penalized minimum distance problem cannot be directly used to ob-

tain estimates for the marginal effects. The restrictions of the linear programs for these effects

generally cannot be satisfied for any β ∈ Bn due to sampling variation in the estimated proba-

bilities and/or model misspecification. To make the problem feasible we replace the estimates

of the conditional probabilities by the probabilities predicted by the model at the solution to

the quadratic problem. These probabilities are consistent if the model is correctly specified, and

equal to the probabilities predicted by the model at the solution to the quadratic problem by

construction. To simplify the computation it is useful to note that we only need to solve the lin-

ear programming problem for the marginal effects that are not identified. For identified effects,

we can use sample analogs of the results in Lemma 4 based on the recentered probabilities.

Another way to estimate B is by the the level set of the finite-sample profile likelihood

Bn =

{
β : sup

Q

1
n

n∑

i=1

L (Yi, Xi;β,Q) ≥ sup
β

sup
Q

1
n

n∑

i=1

L (Yi, Xi;β,Q)− εn

}
,

where εn > 0 is a cut-off parameter that shrinks to zero as a function of the sample size, following

Manski and Tamer (2002). Estimators for the bounds of the marginal effects defined above can
3Finding the explicit location of the support points is the main computational difficulty in the estimation of

distribution of mixtures; see, e.g., Aitkin (1999).
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be obtained by solving these problems with Bn in place of B.

Following Chernozhukov, Hahn, and Newey (2004) we can show consistency of this estimator

under two conditions.

Assumption 1: (i) L (
Y j |Xk, α, β

)
is continuous in (α, β) for all (j, k); (ii) β∗ ∈ B for some

compact B; and (iii) αi has a support contained in a compact set C.

The other condition concerns the cut-off parameter.

Assumption 2: If B is a singleton, B = {β∗}, then εn = 0. Otherwise, εn ∝ n−1/2an for some

an →∞ and n−1/2an → 0 .

We can now give a consistency result

Theorem 12: If Assumptions 1 and 2 are satisfied

dH (Bn, B) = op(1),

where dH is the Hausdorff distance between sets

dH (Bn, B) = max
[

sup
bn∈Bn

inf
b∈B

|bn − b| , sup
b∈B

inf
bn∈Bn

|bn − b|
]

We can obtain a corresponding result for the marginal effect.

Corollary 13: Let µ̂
k

and µ̂k denote the solutions to the programs (9) and (10) when B

is replaced by Bn. If Assumptions 1 and 2 are satisfied then

µ̂
k

p→ µ
k

and µ̂k
p→ µk

7 Inference

Theorem 12 does not provide any practical guidance on the choice of the cut-off level εn. It

is desirable that this choice be tied to inferential statements, which appear to pose special

challenges in this setting. In this Section we propose to base inference on the inversion of the

objective function of the quadratic program, embedding the previous semi-parametric likelihood

in a more general nonparametric family. This approach provides conservative inferences about

β and marginal effects.

From the proof of Theorem 12, it follows that the model-implied probabilities coincide with

the true choice probabilities for any β∗ ∈ B and some (generally non-unique) pseudo-true Q∗:

Pjk =
∫

C
L

(
Y j |Xk, α, β∗

)
Q∗

k(dα) := Ljk(β∗, Q∗
k), ∀j, k.

18



Let Pjk be the empirical probabilities. A chi-square type statistic evaluated at (β, Q) takes the

form

T (β,Q) = n
∑

j,k

Pk
(Pjk − Ljk(β, Qk))

2

Ljk(β, Qk)
.

The quantity of especial interest is the profile statistic:

T (β) = n
∑

j,k

Pk

(
Pjk − Ljk(β, Q̂kβ)

)2

Ljk(β, Q̂kβ)
, (21)

where Q̂kβ is the solution to the quadratic program (20) with the model parameter fixed to β.

Since λn
p→ 0 as n →∞, with probability approaching to one T (β) ≤ T (β,Q) and the α-quantile

of T (β) is bounded from above by

cα (β) = inf
c
{c : Pr{T (β, Q) ≤ c} ≥ α} .

A conservative confidence interval for β∗ is then given by

Iα (β∗) = {β : T (β) ≤ cα(β)} .

The upper bound of the quantile cα (β) is asymptotically pivotal by the classical Pearson’s

argument T (β∗, Q∗) ⇒ χ2 (K(J − 1)), hence we have that cα (β) can be consistently estimated

by the α− quantile of a χ2 (K(J − 1)) variable, denoted as ĉα. An approximate confidence

region is then given by

Îα (β∗) = {β : T (β) ≤ ĉα} .

The preceding argument established the following result.

Theorem 14: If Assumption 1 is satisfied then

P{β∗ ∈ Îα(β∗)} → ᾱ ≥ α

as n →∞.

Theorem 14 also leads to a more precise choice of the cut-off level needed to insure consistent

estimation in the previous section. One such choice is given by

εn = ĉαn −min
β∈B

T (β),

where the significance level αn should tend to 1 such that the αn -th quantile of χ2 (K(J − 1))

variable satisfies Assumption 2 as n → ∞ slowly enough. This choice guarantees the estimating

set Bn coincides with the desired confidence region of probability level αn. In practice, αn may

be set equal to some conventional value such as .90 or .95.
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Confidence regions for marginal effects can be formed as the union of the solutions to the

linear programming problem for these effects for the values of the parameter in the confidence

interval Îα (β∗). Computation can be greatly simplified if the marginal effects are monotone

on the value of the parameter. In this case, which includes logit and probit models, the linear

programs for the effects need only to be solved for values at the boundary of the confidence

region for the parameter. The resulting confidence regions have coverage probability at least α

in large samples by the continuous mapping theorem.

The previous projection method is computationally attractive because it typically involves

repeating the two step estimation procedure only a few times, but it shares the problems common

to objective function based inference procedures. In particular, the method can be conservative

if the degree of over-identification of the model is high. Overidentification here is the difference

between the dimension of the parameter and the degrees of freedom of the chi-square distribution

(number of free probabilities), what determines the excess of degrees of freedom used above what

is needed to test hypotheses about the parameter. More importantly, these procedures are very

sensitive to model misspecification since the objective function increases with the difference

between the true probabilities and the best approximating model probabilities. If the degree of

misspecification is high enough the procedure can actually produce empty confidence regions.

The reason is that the objective function-based tests are in fact omnibus tests for both model

specification and the value of the parameters. The degree of overidentification has therefore

two opposite effects on the confidence regions as it increases the size by raising the number of

degrees of freedom of the test statistics, but also makes model misspecification more acute as

the total number of free probabilities to fit becomes larger.

7.1 Bootstrap

An alternative to objective function inversion methods to make inference on the identified sets

of interest is to use resampling techniques. If the outcome and regressors are discrete, nonpara-

metric bootstrap corresponds to parametric bootstrap on the bivariate multinomial distribution

for all the sequences of outcomes and regressors. Thus, we can construct bootstrap confidence

regions for the identified sets of the parameters and marginal effects using the following proce-

dure:

1. Draw bootstrap a dataset {X(r)
i , Y

(r)
i }n

i=1 from the observed bivariate multinomial frequen-

cies {Xi, Yi}n
i=1.

2. Estimate the identified sets for the parameter B
(r)
n and the corresponding marginal effects

[µ̂(r)
k , µ̂

(r)
k ] by solving the nonparametric MLE quadratic and linear programming problems.
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3. Repeat the procedure R times.

4. Construct the α-level confidence regions as the smallest sets that fully contain a pro-

portion α of the estimated regions for the parameters {B(r)
n }R

r=1 and marginal effects

{[µ̂(r)
k , µ̂

(r)
k ]}R

r=1.

This nonparametric bootstrap procedure is less sensitive to model misspecification since it

does not impose the conditional model on the bootstrap data generating process (DGP). The

confidence regions can therefore be interpreted as confidence regions for the best approximating

model to the DGP. However, an important issue here is to show the consistency of bootstrap for

the distribution of the estimators. The estimators of the model parameters and marginal effect

are non regular and it is not clear if their distributions vary with perturbations of the DGP in

a continuous way. We are not aware of any result on bootstrap validity for this problem or the

related problem of estimation of finite mixture models.4

7.2 Perturbed Bootstrap

Dufour (2006) develops simulation methods to conduct inference in non regular cases where the

estimators of the parameters of interest might have asymptotic distributions that depend on

nuisance parameters in a discontinuous way, or even when they do not converge in distribution,

see also Romano and Wolf (2000). These methods do not rely on point identification of the

parameter of interest and can therefore be applied to set-identified models, see, e.g., Rytchkov

(2006). The idea of this approach is to generate a class of distributions that covers the true

DGP with probability one, and find the least favorable distribution for the estimators of interest

within this class. The quantiles of this distribution can be used to construct confidence regions

for the identified sets. We implement this method by a variation of the bootstrap described

below that we denominate as perturbed bootstrap (Chernozhukov, 2007).

To describe how this method works, consider the general problem of making inference on a

parameter θ based on a sample statistic Tn with distribution Gn(t, F ) under the DGP F ∈ F .

The set F is a class of distribution functions restricted to have compact support. The goal is to

estimate the distribution of the statistic under the true F0, i.e., to find Gn(t, F0). The method

proceeds by constructing a confidence region CR1−γn(F0) that contains the true DGP F0 with

probability approaching to one, i.e., γn → 0, and such that, as n →∞,

d(CR1−γn(F0), F0) := inf
F∈CR1−γn (F0)

dK(F, F0)
p→ 0, (22)

4Feng and McCulloch (1996) conjecture the validity of bootstrap for the distribution of the likelihood ratio

test for the number of components of the mixture distribution and provide some numerical evidence. See also the

monograph on finite mixture models by McLachlan and Peel (2000).
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where dK is the sup (Kolmogorov) distance defined by dK(F, G) := supt |F (t)−G(t)|. The least

favorable distributions for Gn(t, F0) are given by

Gn(t, F0)/Gn(t, F0) = inf / sup
F∈CRγn(F0)

Gn(t, F ). (23)

Romano and Wolf (2000) show that the (α− γn)/2 quantile of Gn(t, F0) and the 1− (α− γn)/2

quantile of Gn(t, F0) can be used to form valid confidence regions of level 1−α. Moreover, if the

test statistic is efficient for the parameter, then these confidence regions are as efficient asymp-

totically as the confidence regions that use the true sampling distribution Gn(t, F0) provided

that dK(Gn(t, F0), Gn(t, F0))
p→ 0 and dK(Gn(t, F0), Gn(t, F0))

p→ 0.

For panel data models with discrete outcomes and regressors, this inference approach can be

implemented using this procedure (perturbed bootstrap):

1. Draw a potential DGP from the observed bivariate multinomial obtained from {Xi, Yi}n
i=1.

2. Test that the observed sample is consistent with the potential DGP with high probability.

This step can be carried out by checking that the observed dataset passes a chi-square

test with small level γn (e.g., set γn = .01). Note that since we are not imposing the

conditional model the chi-square distribution has JK − 1 degrees of freedom under the

hypothesis that the observed distribution comes from the potential DGP.

3. Repeat steps 1 and 2 until a DGP, DGPp, passes the test.

4. Estimate the distribution of the estimator by nonparametric bootstrap from DGPp (see

the previous subsection for details on implementation).

5. Repeat the steps (1) to (4) for p = 1, ..., P .

6. Obtain

Ĝ(t, F0)/Ĝ(t, F0) = min /max{Ĝ(t,DGP1), ..., Ĝ(t,DGPP )}.

7. Construct a 1− α confidence region for the parameter of interest as

CRα(θ) =
{
θ, θ

}

where θ is the (α − γn)/2 quantile of Ĝ(t, F0) and θ is the 1 − (α − γn)/2 quantile of

Ĝ(t, F0).
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8 Empirical Example

We now turn to an an empirical application of our methods to a binary choice panel model of

female labor force participation. It is based on a sample of married women in the National Lon-

gitudinal Survey of Youth 1979 (NLSY79). We focus on the relationship between participation

and the presence of young children in the years 1990, 1992, 1994, and 1996. The NLSY79 data

set is convenient to apply our methods because it provides a relatively homogenous sample of

women between 25 and 33 year-old in 1990, what reduces the extent of other potential con-

founding factors that may affect the participation decision, such as the age profile, and that are

difficult to incorporate in our methods. Other studies that estimate similar models of partic-

ipation in panel data include Heckman and MaCurdy (1980), Heckman and MaCurdy (1982),

Chamberlain (1984), Hyslop (1999), Chay and Hyslop (2000), Carrasco (2001), Carro (2007),

and Fernández-Val (2008).

The sample consists of 1,587 married women. Only women continuously married, not stu-

dents or in the active forces, and with complete information on the relevant variables in the entire

sample period are selected from the survey. Descriptive statistics for the sample are shown in

Table 2. The labor force participation variable (LFP ) is an indicator that takes the value one if

the woman employment status is “in the labor force” according to the CPS definition, and zero

otherwise. The fertility variable (kids) indicates whether the woman has any child less than 3

year-old. We focus on very young preschool children as most empirical studies find that their

presence have the strongest impact on the mother participation decision. LFP is stable across

the years considered, whereas kids initially increases to peak in 1994 and drops sharply in the

last year of the sample. The proportion of women that change fertility status grows steadily

with the number of time periods of the panel, but there are still 40% of the women in the sample

for which the effect of fertility is not identified after 4 periods.

The empirical specification we use is similar to Chamberlain (1984). In particular, we esti-

mate the following equation

LFPit = 1 {β · kidsit + αi + εit ≥ 0} , (24)

where αi is an individual specific effect. The parameters of interest are the marginal effects

of fertility on participation for different groups of individuals including the entire population.

These effects are estimated using the general conditional expectation model and semiparametric

logit and probit models described in Sections 3 and 4, together with linear and nonlinear fixed

effects estimators. Analytical and Jackknife large-T bias corrections are also considered, and

conditional fixed effects estimates are reported for the logit model.5 The estimates from the
5The analytical corrections use the estimators of the bias based on expected quantities in Fernández-Val (2008).
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general model impose monotonicity of the effects. For the semiparametric estimators, we choose

a penalty λn = 1/ ln n and iterate the quadratic program 3 times, what makes the estimates

insensitive to the penalty and the weighting. We search over discrete distributions with 23

support points at {−∞,−4,−3.6, ..., 3.6, 4,∞} in the quadratic problem, and with 163 support

points at {−∞,−8,−7.9, ..., 7.9, 8,∞} in the linear programming problems. The estimates are

based on panels of 2, 3, and 4 time periods, all of them starting in 1990.

Tables 3 to 5 report estimates of the model parameters and marginal effects for 2, 3, and

4 period panels, together with 95% confidence regions obtained using the procedures described

in the previous Section. For the general model these regions are constructed using the normal

approximation (N − CI) and nonparametric bootstrap with 200 repetitions (B − CI). For the

logit and probit models, the confidence regions are obtained by inversion of the objective function

or projection method (P − CI), nonparametric bootstrap with 200 repetitions (B − CI), and

perturbed bootstrap (PB − CI) with βn = .01, 100 DGP’s, and 200 bootstrap repetitions for

each DGP. For the fixed effects estimators, the confidence regions are based on the asymptotic

normal approximation. The semiparametric estimates are shown for εn = 0, which is for the

solution that gives the minimum value in the quadratic problem.6

Overall, we find that the estimates and confidence regions based on the general model are too

wide to provide informative evidence about the relationship between participation and fertility

for the entire population. The semiparametric estimates seem to offer a good compromise

between producing more accurate results without adding too much structure to the model. Thus,

these estimates are always inside the confidence regions of the general model and do not suffer of

important efficiency losses relative to the more restrictive fixed effects estimates. Another salient

feature of the results is that the misspecification problem of the projection method clearly shows

up in this application. Thus, this procedure gives empty confidence regions for panels of 3 and

4 periods. Note that in this case, where we only have one parameter and binary outcome and

regressor, the degree of over-identification is 11, 55, and 239 for the 2, 3, and 4 period panels,

respectively.

9 Possible Extensions

Our analysis is yet confined to models with only discrete explanatory variables. It would be

interesting to extend the analysis to models with continuous explanatory variables. It may be

possible to come up with a sieve-type modification. We expect to obtain a consistent estimator

The Jackknife bias correction uses the procedure described in Hahn and Newey (2004).
6For the logit model the parameter β is identified and this choice of εn is justified by Theorem 12. For the probit

model the reported estimate is only guaranteed to be contained in the identified set with probability approaching

to one.
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of the bound by applying the semiparametric method combined with increasing number of par-

titions of the support of the explanatory variables, but we do not yet have any proof. Empirical

likelihood based methods should work in a straightforward manner if the panel model of interest

is characterized by a set of moment restrictions instead of a likelihood. We may be able to

improve the finite-sample property of our confidence region by using Bartlett type corrections.

10 Appendix: Proofs

Proof of Theorem 1: By eq. (3),

∑
t

(Xk
t − rk)E[Yit|Xi = Xk] = Trk(1− rk)

∫
m(1, α)Q∗

k(dα) (25)

+T (1− rk)(−rk)
∫

m(0, α)Q∗
k(dα) = Tσ2

kµk.

Note also that X̄i = rk when Xi = Xk. Then by the law of large numbers,

∑

i,t

(Xit − X̄i)2/n
p−→ E[

∑
t

(Xit − X̄i)2] =
∑

k

Pk

∑
t

(Xk
t − rk)2 =

∑

k

PkTσ2
k,

∑

i,t

(Xit − X̄i)Yit/n
p−→ E[

∑
t

(Xit − X̄i)Yit] =
∑

k

Pk

∑
t

(Xk
t − rk)E[Yit|Xi = Xk]

=
∑

k

PkTσ2
kµk.

Dividing and applying the continuous mapping theorem gives the result. Q.E.D.

Proof of Theorem 2: Note that
∑T

t=1(X
k
t − X̄k)2 = Trk(1− rk) = Tσ2

k > 0 for all 2 ≤ k ≤
K − 1, so by eq. (25) and the law of large numbers,

1
n

n∑

i=1

1(s2
xi > 0)

∑T
t=1(Xit − X̄i)Yit

s2
xi

p−→ E[1(s2
xi > 0)

∑T
t=1(Xit − X̄i)Yit

s2
xi

]

= E[1(s2
xi > 0)

∑T
t=1(Xit − X̄i)E[Yit|Xi]

s2
xi

] =
K−1∑

k=2

Pk

∑T
t=1(X

k
t − rk)E[Yit|Xi = Xk]

Tσ2
k

=
K−1∑

k=2

Pk
Tσ2

kµk

Tσ2
k

=
K−1∑

k=2

Pkµk,

1
n

n∑

i=1

1(s2
xi > 0)

p−→ E[1(s2
xi > 0)] =

K−1∑

k=2

Pk.

Dividing and applying the continuous mapping theorem gives the result. Q.E.D.

Proof of Theorem 3: The set of Xi where r̃i > 0 and r̄i > 0 coincides with the set for which

Xi = Xk for k ∈ K∗. On this set it will be the case that r̃i and r̄i are bounded away from zero.
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Note also that for t̃ such that Xk
t̃

= x̃ we have E[Yit̃|Xi = Xk] =
∫

m(x̃, α)Q∗
k(dα). Therefore,

for r̃k = #{t : Xk
t = x̃}/T and r̄k = #{t : Xk

t = x̄}/T , by the law of large numbers,

1
n

n∑

i=1

1(r̃i > 0)1(r̄i > 0){
∑T

t=1 d̃itYit

T r̃i
−

∑T
t=1 d̄itYit

T r̄i
}/D

p−→ E[1(r̃i > 0)1(r̄i > 0){
∑T

t=1 d̃itYit

T r̃i
−

∑T
t=1 d̄itYit

T r̄i
}]/D

= E[1(r̃i > 0)1(r̄i > 0){
∑T

t=1 d̃itE[Yit|Xi]
T r̃i

−
∑T

t=1 d̄itE[Yit|Xi]
T r̄i

}]/D

=
∑

k∈K∗
Pk{

T r̃k
∫

m(x̃, α)Q∗
k(dα)

T r̃k
− T r̄k

∫
m(x̄, α)Q∗

k(dα)
T r̄k

}/D =
∑

k∈K∗
Pkµk,

1
n

n∑

i=1

1(r̃i > 0)1(r̄i > 0)
p−→ E[1(r̃i > 0)1(r̄i > 0)] =

∑

k∈K∗
Pk.

Dividing and applying the continuous mapping theorem gives the result. Q.E.D.

Proof of Lemma 4: As before let Q∗
k(α) denote the conditional CDF of α given Xi = Xk.

Note that

m̄k
t =

E[Yit|Xi = Xk]
D

=
∫

m(Xk
t , α)Q∗

k(dα)
D

.

Also we have

µk =
∫

∆(α)Q∗
k(dα) =

∫
m(x̃, α)Q∗

k(dα)
D

−
∫

m(x̄, α)Q∗
k(dα)

D
.

Then if there is t̃ and t̄ such that Xk
t̃

= x̃ and Xk
t̄ = x̄

m̄k
t̃
− m̄k

t̄ =
∫

m(x̃, α)Q∗
k(dα)

D
−

∫
m(x̄, α)Q∗

k(dα)
D

= µk.

Also, if B` ≤ m(x, α)/D ≤ Bu, then for each k,

B` ≤
∫

m(x̃, α)Q∗
k(dα)

D
≤ Bu,−Bu ≤ −

∫
m(x̄, α)Q∗

k(dα)
D

≤ −B`

Then if there is t̃ such that Xk
t̃

= x̃ we have

m̄k
t̃
−Bu =

∫
m(x̃, α)Q∗

k(dα)
D

−Bu ≤ µk ≤
∫

m(x̃, α)Q∗
k(dα)

D
−B` = m̄k

t̃
−B`.

The second inequality in the statement of the theorem follows similarly.

Next, if ∆(α) has the same sign for all α and if for some k∗ there is t̃ and t̄ such that

Xk∗
t̃

= x̃ and Xk∗
t̄ = x̄, then sgn(∆(α)) = sgn(µk∗). Furthermore, since sgn(µk) = sgn(µk∗) is

then known for all k, if it is positive the lower bounds, which are nonpositive, can be replaced by

zero, while if it is negative the upper bounds, which are nonnegative, can be replaced by zero.

Q.E.D.
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Proof of Theorem 5: See text.

Proof of Theorem 6: Let ZiT = min{∑T
t=1 1(Xit = x̃)/T,

∑T
t=1 1(Xit = x̄)/T}. Note that if

ZiT > 0 then 1(AiT ) = 1 for the event AiT that there exists t̃ such that Xit̃ = x̃ and Xit̄ = x̄. By

the ergodic theorem and continuity of the minimum, conditional on αi we have ZiT
as−→ b(αi) =

min{Pr(Xit = x̃|αi), Pr(Xit = x̄|αi)} > 0. Therefore Pr(AiT |αi) ≥ Pr(ZiT > 0|αi) −→ 1 for

almost all αi. It then follows by the dominated convergence theorem that

Pr(AiT ) = E[Pr(AiT |αi)] −→ 1.

Also note that Pr(AiT ) = 1− P0 −∑
k∈K̃ Pk −

∑
k∈K̄ Pk, so that

|µ` − µ0| ≤ (Bu −B`)(P0 +
∑

k∈K̃

Pk +
∑

k∈K̄

Pk) −→ 0.Q.E.D.

Proof of Theorem 7: Let P1 and PK be as in equation (7). Since Xi1, . . . , XiT are i.i.d.

conditional on αi we have

P1 = Pr(Xi1 = · · · = XiT = 0) = E[Pr(Xi1 = · · · = XiT = 0|αi)]

= E[ΠT
t=1 Pr(Xit = 0|αi)] = E[{1− P (αi)}T ].

PK = E[P (αi)T ].

The first bound then follows as in (7). The second bound then follows from P (αi) ≤ 1− ε and

1− P (αi) ≤ 1− ε. Now suppose that P (αi) = 1 with positive probability. Then

PK ≥ E[1(P (αi) = 1) · P (αi)T ] = Pr(P (αi) = 1) > 0.

Therefore, for all T the probability PK is bounded away from zero, and hence µ` 9 µ0 or

µu 9 µ0.Q.E.D.

Proof of Theorem 8: The size of the identified set for the marginal effect is

µk−µ
k

= max
Qk∈Qkβ ,β∈B

D−1

∫
[F (β + α)−F (α)]Qk(dα)− min

Qk∈Qkβ ,β∈B
D−1

∫
[F (β + α)−F (α)]Qk(dα),

where Qkβ = {Qk :
∫ L (

Y j |Xk, α, β
)
Qk (dα) = Pjk, j = 1, ..., J}. The feasible set of distribu-

tions Qkβ can be further characterized in this case. Let FT (β, α) := (1, F (Xk
1 β+α), ..., F (Xk

T β+

α)) and FJ(β, α) denote the J × 1 power vector of FT (β, α) including all the different products

of the elements of FT (β, α), i.e.,

FJ(β, α) = (1, ..., F (Xk
T β + α), F (Xk

1 β + α)F (Xk
2 β + α), ....,

T∏

t=1

F (Xk
t β + α)).
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Note that L (
Y j |Xk, α, β

)
=

∏T
t=1 F (Xk

t β +α)Y j
t {1−F (Xk

t β +α)}1−Y j
t , so the model probabil-

ities are linear combinations of the elements of FJ(β, α). Therefore, for Πk = (P1k, ...,PJk) we

have Qkβ = {Qk : AJ

∫ FJ(β, α)Qk (dα) = Πk}, where AJ is a J×J matrix of known constants.

The matrix AJ is nonsingular, so we have:

Qkβ =
{

Qk :
∫
FJ(β, α)Qk (dα) = Mk

}
,

where the J × 1 vector Mk = A−1
J Πk is identified from the data.

Now we turn to the analysis of the size of the identified sets. We focus on the case where

k = 1, i.e., Xk is a vector of zeros, and a similar argument applies to k = K. For k = 1 we have

that F (Xk
t β + α) = F (α) for all t, so the power vector has only T + 1 different elements given

by (1, F (α), ..., F (α)T ). The feasible set simplifies to:

Qkβ =
{

Qk :
∫

F (α)tQk (dα) = Mtk, t = 0, ..., T

}
,

where the moments Mkt are identified by the data. Here
∫

F (α)Qk (dα) = M1k is fixed in Qkβ ,

so the size of the identified set is given by:

µk − µ
k

= max
Qk∈Qkβ ,β∈B

D−1

∫
F (β + α) Qk(dα)− min

Qk∈Qkβ ,β∈B
D−1

∫
F (β + α) Qk(dα).

By a change of variable Z = F (α), we can express the previous problem in a form that is

related to a Hausdorff truncated moment problem:

µk − µ
k

= max
Gk∈Gkβ ,β∈B

D−1

∫ 1

0
hβ(z)Gk(dz)− max

Gk∈Gkβ ,β∈B
D−1

∫ 1

0
hβ(z)Gk(dz), (26)

where Gkβ = {Gk :
∫ 1
0 ztGk(dz) = Mtk, t = 0, ..., T}, hβ(z) = F (β + F−1(z)), and F−1 is the

inverse of F .

If the objective function is r times continuously differentiable, hβ ∈ Cr[0, 1], with uniformly

bounded r-th derivative, ‖hr
β(z)‖∞ ≤ h̄r

β, then we can decompose hβ using standard approxi-

mation theory techniques as

hβ(z) = Pβ(z, T ) + Rβ(z, T ), (27)

where Pβ(z, T ) is the T -degree best polynomial approximation to hβ and Rβ(z, T ) is the re-

mainder term of the approximation, see, e.g., Judd (1998) Chap. 3. By Jackson’s Theorem the

remainder term is uniformly bounded by

‖Rβ(z, T )‖∞ ≤ (T − r)!
T !

(π

4

)r
h̄r

β = O
(
T−r

)
, (28)

as T →∞, and this is the best possible uniform rate of approximation by a T -degree polynomial.
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Next, note that for any Gk ∈ Gkβ we have that
∫ 1
0 Pβ(z, T )Gk(dz) is fixed, since the first T

moments of Z are fixed at Gkβ . Moreover,
∫ 1
0 Pβ(z, T )Gk(dz) is fixed at B if the parameter is

point identified, B = {β∗}. Then, we have

µk − µ
k

= max
Gk∈Gkβ

∫ 1

0
Rβ∗(z, T )Gk(dx)− min

Gk∈Gkβ

∫ 1

0
Rβ∗(z, T )Gk(dx) ≤ 2h̄r

β∗ = O
(
T−r

)
. (29)

To complete the proof, we need to check the continuous differentiability condition and the

point identification of the parameter for the logit model. Point identification follows from Cham-

berlain (1992). For differentiability, note that for the logit model

hβ(z) =
zeβ

1− (1− eβ)z
, (30)

with derivatives

hr
β(z) = r!

eβ(1− eβ)r−1

[1− (1− eβ)z]r
. (31)

These derivatives are uniformly bounded by h̄r
β = r! e|β|(e|β| − 1|)r−1 < ∞ for any finite r.

Q.E.D.

Proof of Theorem 9: Consider the case where Xk = (0, 1), a similar argument applies to

Xk = (1, 0). By Lemma 4 we have that the marginal effect µk is identified by

µk = P{Y = (0, 1)|X = (0, 1)} − P{Y = (1, 0)|X = (0, 1)}. (32)

The probability limit of the fixed effects estimator for this marginal effect is

µ̃k(β̃) = [2F (β̃/2)− 1][P{Y = (0, 1)|X = (0, 1)}+ P{Y = (1, 0)|X = (0, 1)}]. (33)

The condition for consistency µ̃k(β̃) = µk is therefore

F (β̃/2) =
P{Y = (0, 1)|X = (0, 1)}

P{Y = (0, 1)|X = (0, 1)}+ P{Y = (1, 0)|X = (0, 1)} , (34)

but this is precisely the first order condition of the program (11). This result follows, after some

algebra, using that P{Y = (1, 0)|X = (1, 0)} = P{Y = (0, 1)|X = (0, 1)} and P{Y = (0, 1)|X =

(1, 0)} = P{Y = (1, 0)|X = (0, 1)}. Q.E.D.

Proof of Lemma 10: Let the vector of conditional choice probabilities for (Y 1, ...., Y J) be

Lk (β, α) ≡ (L1k (β, α) , ...,LJk (β, α))′ .

Let Γk(β) ≡ {Lk (β, α) : α ∈ C}. Note that, for each β ∈ B, Γk (β) is a closed and bounded set

due to compactness of C. Now, let Mk (β) denote the convex hull of Γk (β). By Lindsay (1995,
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Theorem 18, p. 112), it follows that there exists a unique L̄k (β) on the boundary of Mk (β)

that maximizes
∑J

j=1 Pjk log (ljk) over all (l1k, ..., lJk) ∈ Mk (β). By Lindsay (1995, Theorem

21, p. 116), the solution L̄k (β) can be represented as
(∫

L1k (β, α) Q̄k (dα) , ...,

∫
LJk (β, α) Q̄kβ (dα)

)′
,

where Q̄kβ has no more than J points of support. Also, by β ∈ B, we have that arg max(l1k,...,lJk)∈Mk(β)

∑J
j=1 Pjk log (ljk)

satisfies ljk = Pjk. Q.E.D.

Proof of Lemma 11: For β ∈ B, let Qkβ = {Qk :
∫ L (

Y j |Xk, α, β
)
Qk (dα) = Pjk, j =

1, ..., J}. Let Qkβ ∈ Qkβ denote some maximizing value such that

µkβ = D−1

∫

C
[F

(
x̃′β + α

)− F
(
x̄′β + α

)
]Qkβ (dα) .

Note that, for any ε > 0 we can find a distribution Q̄M
kβ ∈ Qkβ with a large number M À J of

support points (α1, ..., αM ) such that

µkβ − ε < D−1

∫

C
[F

(
x̃′β + α

)− F
(
x̄′β + α

)
]Q̄M

kβ (dα) ≤ µkβ.

Our goal is to show that given such Q̄M
kβ it suffices to allocate its mass over only at most J

support points. Indeed, consider the problem of allocating (π1k, ..., πMk) among (α1, ..., αM ) in

order to solve

max
(π1k,...,πMk)

M∑

m=1

[F
(
x̃′β + αm

)− F
(
x̄′β + αm

)
]πmk

subject to the constraints:

πmk ≥ 0, m = 1, . . . ,M
M∑

m=1

πmkL
(
Y j |Xk, αm, β

)
= Pjk, j = 1, ..., J,

M∑

m=1

πmk = 1.

This a linear program of the form

max
π∈RM

c′π such that π ≥ 0, Aπ = b, 1′π = 1,

and any basic feasible solution to this program has M active constraints, of which at most

rank (A) + 1 can be equality constraints. This means that at least M − rank(A) − 1 of active

constraints are the form πmk = 0.7 Hence a basic solution to this linear programming problem
7See, e.g., Theorem 2.3 and Definition 2.9 (ii) in Bertsimas and Tsitsiklis (1997).
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will have at least M − J zeroes, that is at most J strictly positive πmk’s.8 Thus, we have shown

that given the original Q̄M
kβ with M À J points of support there exists a distribution Q̄L

kβ ∈ Qkβ

with just J points of support such that

µkβ−ε < D−1

∫

C
[F

(
x̃′β + α

)−F
(
x̄′β + α

)
]Q̄M

kβ (dα) ≤ D−1

∫

C
[F

(
x̃′β + α

)−F
(
x̄′β + α

)
]Q̄L

kβ (dα) ≤ µkβ.

This construction works for every ε > 0.

The final claim is that there exists a distribution Q̄L
kβ ∈ Qkβ with J points of support

(α1, ..., αJ) such that

µkβ = D−1

∫

C
[F

(
x̃′β + α

)− F
(
x̄′β + α

)
]Q̄L

kβ (dα) .

Suppose otherwise, then it must be that

µkβ > µkβ − ε ≥ D−1

∫

C
[F

(
x̃′β + α

)− F
(
x̄′β + α

)
]Q̄L

kβ (dα) ,

for some ε > 0 and for all Q̄L
kβ with J points of support. This immediately gives a contradiction

to the previous step where we have shown that, for any ε > 0, µkβ and the right hand side can

be brought close to each other by strictly less than ε. Q.E.D.

Some Lemmas are useful for proving Theorem 12. For the proof of Theorem 12 we will

assume for simplicity of notation that the regressor only takes one value Xk = (x1, x2) and drop

the dependence on k. We will also assume a two-period binary choice model with individual

location effect. The proof for the general case follows by an identical argument, but the notation

is more cumbersome.

The first Lemma establishes uniform consistency of 1
n

∑n
i=1 L (Yi1, Yi2;β,Q), as is useful for

showing consistency of Bn.

Lemma A1: If Assumption 1 is satisfied then for Q equal to the collection of distributions

with support contained in a compact set C.

sup
β∈B,Q∈Q

∣∣∣∣∣
1
n

n∑

i=1

L (Yi1, Yi2; β, Q)−E [L (Yi1, Yi2;β,Q)]

∣∣∣∣∣ = Op∗

(
1√
n

)

8Note that rank(A) ≤ J − 1, since
PJ

j=1 L
`
Y j |Xk, α, β

´
= 1. The exact rank of A depends on the sequence

Xk, the parameter β, the function F and T . For T = 2 and X binary, for example, rank(A) = J − 2 = 2 when

x1 = x2, β = 0, or F is the logistic distribution; whereas rank(A) = J − 1 = 3 for Xk
1 6= Xk

2 , β 6= 0, and F is any

continuous distribution different from the logistic.
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Proof: Note that

1
n

n∑

i=1

L (Yi1, Yi2; β, Q)

=

[
1
n

n∑

i=1

Yi1Yi2

]
· log

(∫
F

(
x′1β + α

)
F

(
x′2β + α

)
Q (dα)

)

+

[
1
n

n∑

i=1

Yi1 (1− Yi2)

]
· log

(∫
F

(
x′1β + α

) (
1− F

(
x′2β + α

))
Q (dα)

)

+

[
1
n

n∑

i=1

(1− Yi1) Yi2

]
· log

(∫ (
1− F

(
x′1β + α

))
F

(
x′2β + α

)
Q (dα)

)

+

[
1
n

n∑

i=1

(1− Yi1) (1− Yi2)

]
· log

(∫ (
1− F

(
x′1β + α

)) (
1− F

(
x′2β + α

))
Q (dα)

)

and

E [L (Yi1, Yi2; β, Q)]

= E [Yi1Yi2] · log
(∫

F
(
x′1β + α

)
F

(
x′2β + α

)
Q (dα)

)

+E [Yi1 (1− Yi2)] · log
(∫

F
(
x′1β + α

) (
1− F

(
x′2β + α

))
Q (dα)

)

+E [(1− Yi1) Yi2] · log
(∫ (

1− F
(
x′1β + α

))
F

(
x′2β + α

)
Q (dα)

)

+E [(1− Yi1) (1− Yi2)] · log
(∫ (

1− F
(
x′1β + α

)) (
1− F

(
x′2β + α

))
Q (dα)

)

Further note that 1
n

∑n
i=1 Yi1Yi2 = E [Yi1Yi2] + Op

(
1√
n

)
, etc. Therefore, the requisite uniform

convergence with rate Op

(
1√
n

)

∆n = sup
β∈B,Q∈Q

∣∣∣∣∣
1
n

n∑

i=1

L (Yi1, Yi2; β, Q)−E [L (Yi1, Yi2;β,Q)]

∣∣∣∣∣ = Op

(
1√
n

)

follows, provided
∣∣∣∣log

(∫
F

(
x′1β + α

)
F

(
x′2β + α

)
Q (dα)

)∣∣∣∣ ,

∣∣∣∣log
(∫

F
(
x′1β + α

) (
1− F

(
x′2β + α

))
Q (dα)

)∣∣∣∣ ,

∣∣∣∣log
(∫ (

1− F
(
x′1β + α

))
F

(
x′2β + α

)
Q (dα)

)∣∣∣∣ ,

∣∣∣∣log
(∫ (

1− F
(
x′1β + α

)) (
1− F

(
x′2β + α

))
Q (dα)

)∣∣∣∣
are bounded, which in turn is implied by Assumption 1. Q.E.D.

From Lemma A1, we obtain one-sided uniform convergence:

Lemma A2: If Assumption 1 is satisfied then

sup
β∈B

∣∣∣∣∣sup
Q∈Q

1
n

n∑

i=1

L (Yi1, Yi2;β,Q)− sup
Q∈Q

E [L (Yi1, Yi2; β, Q)]

∣∣∣∣∣ = Op∗

(
1√
n

)
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Proof: Define

Q∗(β) ∈ arg sup
Q∈Q

1
n

n∑

i=1

L (Yi1, Yi2;β,Q) , Q#(β) ∈ arg sup
Q∈Q

E [L (Yi1, Yi2;β,Q)] .

By definition of Q∗(β) and Q#(β), we have uniformly in β and for all n,

1
n

n∑

i=1

L(Yi1, Yi2;β,Q#(β))− E
[
L

(
Yi1, Yi2; β, Q#(β)

)]

≤ 1
n

n∑

i=1

L (Yi1, Yi2;β,Q∗(β))− E
[
L

(
Yi1, Yi2; β, Q#(β)

)]

≤ 1
n

n∑

i=1

L (Yi1, Yi2;β,Q∗(β))− E [L (Yi1, Yi2; β, Q∗(β))]

Hence
∣∣∣∣∣
1
n

n∑

i=1

L (Yi1, Yi2;β,Q∗(β))− E
[
L

(
Yi1, Yi2; β, Q#(β)

)]∣∣∣∣∣ ≤ 2∆n = Op∗

(
1√
n

)

uniformly in β, where ∆n was defined in (35). Because ∆n = Op

(
1√
n

)
, we obtain the desired

result. Q.E.D.

Lemma A3: If Assumption 1 is satisfied then maxQ∈QE [L (Yi1, Yi2; β, Q)] is continuous in

β.

Proof: The problem

max
Q∈Q

E [L (Yi1, Yi2; β, Q)]

can be rewritten as

max
(α1,...,αJ )∈C
(π1,...,πJ )∈S

J∑

j=1

Pj log

[
J∑

m=1

L (
Y j |X,αm, β

)
πm

]
,

where J = 4, Pj = Pr(Yi = Y j) and S denotes the unit simplex in RJ . Here, (α1, . . . , αj) and

(π1, . . . , πJ) characterize a discrete distribution with no more than J points of support. Because

the objective function is continuous in (β, α1, . . . , αJ , p1, . . . , pJ), and because C×S is compact,

we can apply the Theorem of the Maximum (e.g. Stokey and Lucas 1989, Theorem 3.6), and

obtain the desired conclusion. Q.E.D.

Proof of Theorem 12: If B is a singleton the result follows by the uniform convergence of

the profile objective function from Lemma A2 and the continuity of the limit objective function

from Lemma A3. The proof for case where B is not a singleton consists of two parts.
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Part 1: The first part of the proof modifies slightly the argument of Manski and Tamer

(2002) for the present context. Define

L̄∗n ≡ sup
β∈B

sup
Q∈Q

1
n

n∑

i=1

L (Yi1, Yi2; β, Q) ,

L∗n ≡ inf
β∈B

sup
Q∈Q

1
n

n∑

i=1

L (Yi1, Yi2;β,Q) ,

L∗ ≡ sup
β∈B

sup
Q∈Q

E [L (Yi1, Yi2; β, Q)] = sup
β∈B

sup
Q∈Q

E [L (Yi1, Yi2; β, Q)] ,

∆n ≡ sup
β∈B,Q∈Q

∣∣∣∣∣
1
n

n∑

i=1

L (Yi1, Yi2; β, Q)− E [L (Yi1, Yi2; β, Q)]

∣∣∣∣∣ . (35)

Note that supQ∈QE [L (Yi1, Yi2;β,Q)] is constant over B by definition, which implies that

L∗ = inf
β∈B

sup
Q∈Q

E [L (Yi1, Yi2; β, Q)]

Therefore, we obtain

|L∗n − L∗| =

∣∣∣∣∣ inf
β∈B

sup
Q∈Q

1
n

n∑

i=1

L (Yi1, Yi2;β,Q)− inf
β∈B

sup
Q∈Q

E [L (Yi1, Yi2; β, Q)]

∣∣∣∣∣

≤ sup
β∈B

∣∣∣∣∣sup
Q∈Q

1
n

n∑

i=1

L (Yi1, Yi2;β,Q)− sup
Q∈Q

E [L (Yi1, Yi2; β, Q)]

∣∣∣∣∣

≤ sup
β∈B,Q∈Q

∣∣∣∣∣
1
n

n∑

i=1

L (Yi1, Yi2; β, Q)− E [L (Yi1, Yi2; β, Q)]

∣∣∣∣∣ = ∆n

Also note that

∣∣L̄∗n − L∗
∣∣ =

∣∣∣∣∣sup
β∈B

sup
Q∈Q

1
n

n∑

i=1

L (Yi1, Yi2; β, Q)− sup
β∈B

sup
Q∈Q

E [L (Yi1, Yi2; β, Q)]

∣∣∣∣∣ ≤ ∆n

It follows that ∣∣L̄∗n − L∗n
∣∣ ≤ ∣∣L̄∗n − L∗

∣∣ + |L∗n − L∗| ≤ ∆n + ∆n = 2∆n.

Suppose now that b ∈ B. Note that

L̄∗n − sup
Q∈Q

1
n

n∑

i=1

L (Yi1, Yi2; b,Q) ≤ L̄∗n − inf
β∈B

sup
Q∈Q

1
n

n∑

i=1

L (Yi1, Yi2; β, Q) = L̄∗n − L∗n

Therefore, if εn > L̄∗n − L∗n, then we have L̄∗n − supQ∈Q
1
n

∑n
i=1 L (Yi1, Yi2; b,Q) ≤ εn, or

b ∈ Bn

by definition of Bn. In other words, εn > L̄∗n − L∗n, then εn > L̄∗n − L∗n, infbn∈Bn |bn − b| = 0.

Because the choice of b was arbitrary, we can conclude that

sup
b∈B

inf
bn∈Bn

|bn − b| = 0
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if εn > L̄∗n − L∗n. Because εn > 2∆n with probability converging to one due to Lemma A2 and

the choice of εn, it follows that supb∈B infbn∈Bn |bn − b| = 0 with probability converging to one.9

Part 2: Define

B(ε) ≡
{

β : L∗ − sup
Q∈Q

E [L (Yi1, Yi2; β, Q)] ≤ ε

}

It suffices to show that Bn ⊆ B(ε) with probability converging to one. This is because it would

imply infb∈B |bn − b| < δ(ε) for (bn ∈ Bn), which implies

sup
bn∈Bn

inf
b∈B

|bn − b| < δ(ε),

with probability converging to one. Here δ(ε) that can be made arbitrarily small by making

ε sufficiently small by continuity of supQ∈QE [L (Yi1, Yi2;β,Q)] in β, which was established in

Lemma A3. This would prove that supbn∈Bn
infb∈B |bn − b| = op(1).

It remains to show that, for any ε > 0, we have Bn ⊆ B(ε) with probability converging to

one. For this purpose it suffices to show that

sup
β∈Bn

[
L∗ − sup

Q∈Q
E [L (Yi1, Yi2;β,Q)]

]
≤ ε.

Note that
∣∣∣∣∣ sup
β∈Bn

(
L∗ − sup

Q∈Q
E [L (Yi1, Yi2; β, Q)]

)
− sup

β∈Bn

(
L̄∗n − sup

Q∈Q
1
n

n∑

i=1

L (Yi1, Yi2; β, Q)

)∣∣∣∣∣

≤ sup
β∈Bn

∣∣∣∣∣

(
L∗ − sup

Q∈Q
E [L (Yi1, Yi2; β, Q)]

)
−

(
L̄∗n − sup

Q∈Q
1
n

n∑

i=1

L (Yi1, Yi2; β, Q)

)∣∣∣∣∣

≤ ∣∣L∗ − L̄∗n
∣∣ + sup

β∈Bn

∣∣∣∣∣sup
Q∈Q

1
n

n∑

i=1

L (Yi1, Yi2;β, Q)− sup
Q∈Q

E [L (Yi1, Yi2; β, Q)]

∣∣∣∣∣
≤ 2∆n.

By definition of the level set Bn, we have

sup
β∈Bn

[
L̄∗n − sup

Q∈Q
1
n

n∑

i=1

L (Yi1, Yi2;β,Q)

]
≤ εn.

It follows that

sup
β∈Bn

[
L∗ − sup

Q∈Q
E [L (Yi1, Yi2; β, Q)]

]
≤ εn + 2∆n

9The “probability” here actually means the inner probability. We ignore such measure theoretic subtlety in

this paper.
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By Lemma A1 and choice of εn, we have εn +2∆n < ε with probability converging to one, which

shows the requisite claim. Q.E.D.

Proof of Corollary 13: The results follows from Theorem 12 and the continuous mapping

theorem. Q.E.D.
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T
w w w

2 34.63 34.63 -91.20 -91.20 -31.07 -31.07

4 12.77 9.91 -61.52 -59.77 20.52 25.32

8 5.76 0.74 -33.16 -20.40 19.90 30.38

 (0.62) (0.49) (0.74)

Notes: probit model with a single binary regressor with parameter equal to one.  The individual 

effect is the standardized mean of the regressor. 
w

 is the probability limit of the linear fixed 

effects estimator with constant slopes and  is the probability limit of the average of the linear 

fixed effects estimators with individual specific slopes.

(0.61) (0.47) (0.75)

(0.60) (0.45) (0.77)

Table 1: Biases of linear probability model estimators in percentage of marginal 

effect (average probability of the response in parenthesis)

pX

0.5 0.1 0.9
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Variable Mean Changes (%)

LFP1990 0.75

LFP1992 0.74 0.17

LFP1994 0.75 0.28

LFP1996 0.76 0.35

kids1990 0.38

kids1992 0.35 0.31

kids1994 0.45 0.51

kids1996 0.21 0.60

Table 2: Descriptive Statistics for NLSY79 sample

Notes: LFP - 1 if woman is in the labor force, 0 

otherwise; kid - number of children of age less than 3. 

Changes (%) measures the proportion of women who 

change status between 1990 and the year 

corresponding to the row.

(n = 1,587)
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Figure 4: Logit model (T = 2). Identification sets for marginal effects and probability limits of

fixed effects estimators.
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Figure 5: Logit model (T = 3). Identification sets for marginal effects and probability limits of

fixed effects estimators.
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Figure 6: Logit model (T = 4). Identification sets for marginal effects and probability limits of

fixed effects estimators.
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Figure 10: Probit model (T = 2). Identification sets for marginal effects and probability limits

of fixed effects estimators.
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Figure 11: Probit model (T = 3). Identification sets for marginal effects and probability limits

of fixed effects estimators.
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Figure 12: Probit model (T = 4). Identification sets for marginal effects and probability limits

of fixed effects estimators.
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