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Abstract

This paper gives identification and estimation results for marginal effects in nonlinear panel
models. We find that linear fixed effects estimators are not consistent, due in part to marginal
effects not being identified. We derive bounds for marginal effects and show that they can
tighten rapidly as the number of time series observations grows. We also show in numerical
calculations that the bounds may be very tight for small numbers of observations, suggesting

they may be useful in practice. We give an empirical illustration.



1 Introduction & Motivation

Marginal effects are commonly used in practice to quantify the effect of variables on an outcome
of interest. They are known as average treatment effects, average partial effects, and average
structural functions in different contexts (e.g., see Wooldridge, 2002, Blundell and Powell, 2003).
In panel data marginal effects average over unobserved individual heterogeneity. Chamberlain
(1984) gave important results on identification of marginal effects in nonlinear panel data using
control functions. Our paper gives identification and estimation results for marginal effects in
panel data under strict exogeneity, time stationarity, and discrete regressors.

It is sometimes thought that marginal effects can be estimated using linear models, as shown
by Hahn (2001) in an example and Wooldridge (2005) under strong independence conditions.
We find that the situation is more complicated. The marginal effect may not be identified.
Furthermore, with a binary regressor the linear model uses the wrong weighting in estimation
when the number of time periods T exceeds three. We show that correct weighting can be
obtained by averaging individual regression coefficients. We also derive bounds for the marginal
effect when it is not identified.

We find that these bounds can be wide when no restrictions are placed on the outcome, but
tighten substantially for some semiparametric models. In binary choice models with additive
heterogeneity we find in numerical results that the bounds can be very tight even when T is
small. We also give theorems showing that the bounds tighten quickly as T' grows.

These results suggest how the bounds can be used in practice. Although they can be difficult
to compute for large T, their tightness for small 7" makes it feasible to compute them for different
small time intervals and combine results to improve efficiency. To illustrate their usefulness
we provide an empirical illustration based on Chamberlain’s (1984) labor force participation
example.

This paper is closely related to Honoré and Tamer (2006) and Chernozhukov, Hahn, and
Newey (2004). These papers derived bounds for slope coefficients in autoregressive and static
models respectively. Here we focus on marginal effects and give results on the rate of convergence
of bounds as T" grows. Also, we find that the linear programming algorithm proposed by Honoré
and Tamer (2006) needs to be replaced in practice by some other method, and here propose
using quadratic minimum distance. We give empirical results.

Browning and Carro (2007) give results on marginal effects in autoregressive panel models.
They find that more than additive heterogeneity is needed to describe some interesting appli-
cation. They also find that marginal effects are not generally identified in dynamic models.
Graham and Powell (2008) consider identification with continuous regressors.

Hahn and Newey (2004) gave theoretical and simulation results showing that fixed effects es-



timators of marginal effects in nonlinear models may have little bias, as suggested by Wooldridge
(2002). Ferndndez-Val (2008) found that averaging fixed effects estimates of individual marginal
effects has bias that shrinks faster as T' grows than does the bias of slope coefficients. We show
that, with small T, fixed effects consistently estimates an identified component of the marginal
effects. We also give numerical results showing that the bias of fixed effects estimators of the
marginal effect is very small in a range of examples.

The bounds approach we take is different from the bias correction methods of Hahn and
Kuersteiner (2002), Alvarez and Arellano (2003), Woutersen (2002), Hahn and Newey (2004),
Hahn and Kuersteiner (2007), and Ferndndez-Val (2008). The bias corrections are based on large
T approximations. The bounds approach takes explicit account of possible nonidentification for
fixed T'. Inference accuracy of bias corrections will depend on T' being the right size relative to
the number of cross-section observations n, while inference for bounds does not.

In Section 2 we give a general nonparametric conditional mean model with correlated unob-
served individual effects and analyze the properties of linear estimators. Section 3 gives bounds
for marginal effects in these models and results on the rate of convergence of these bounds as
T grows. Section 4 gives similar results, with tighter bounds, in a binary choice model with a
location shift individual effect. Section 5 gives results and numerical examples on calculation of
population bounds. Section 6 discusses estimation and Section 7 inference. Section 8 gives an

empirical example.

2 A Conditional Mean Model and Linear Estimators

The data consist of n observations of time series Y; = (Yj1, ..., Y;r) and X; = [X;1, ..., Xy, for a
dependent variable Y;; and a vector of regressors X;;. We will assume throughout that (Y;, X;),
(i = 1,...,n), are independent and identically distributed observations. A case we consider in
some depth is binary choice panel data where Y;; € {0,1}. For simplicity we also give some
results for binary X, where X;; € {0,1}.

A general model we consider is a nonseparable conditional mean model as in Wooldridge

(2005). Here there is an unobserved individual effect «; and a function m(z, o) such that
E[}/zt|X17a'L} :m(Xit,ozi),(t: 1,...,T). (1)

The individual effect «; may be a vector of any dimension. For example, «; could include

individual slope coefficients in a binary choice model, where Y;; € {0,1}, F(-) is a CDF, and

Pr(Yi = 1|1Xi, a;) = E[Yy| X;, ] = F(Xj0u0 + ).

(2

Such models have been considered by Browning and Carro (2007) in a dynamic setting. More

familiar models with scalar «; are also included. For example, the binary choice model with an



individual location effect has
Pr(Yi = 1|1Xi, i) = B[Yi|Xi, ou] = F(X[, 5" 4 cin).

This model has been studied by Chamberlain (1980, 1984, 1992), Hahn and Newey (2004), and
others. The familiar linear model E[Y;|X;, ;] = X[,3* + «; is also included as a special case of
the general conditional mean model.

The two critical assumptions made in equation (1) are that X; is strictly exogenous condi-
tional on a and that m(x,«) does not vary with time. These conditions lead to identification
from differences across time. Without time stationarity, identification becomes more difficult.

Our primary object of interest is the marginal effect given by

JIm(z, o) — m(z, 0)]Q" (da)

Mo = D )

where T and T are two possible values for the X;; vector, Q* denotes the marginal distribution
of , and D is the distance, or number of units, corresponding to £ — Z. This object gives the
average, over the marginal distribution, of the per unit effect of changing x from z to Z. It is the
average treatment effect in the treatment effects literature. For example, suppose T = (Z1, z5)’
where 7 is a scalar, and & = (Z1,25)". Then D = #; — Z; would be an appropriate distance

measure and
JIm(&1, 22, @) — m(Z1, x2, )] Q* (dev)

T1—T1

Ho =

)

would be the per unit effect of changing the first component of X;;. Here one could also consider
averages of the marginal effects over different values of x,.
For example, consider an individual location effect for binary Y;; where m(x, o) = F(2/Go+a).

Here the marginal effect will be
po=D7" /[F(gz’ﬂ* +a) — F(Z'8* + a)|Q* (da).

The restrictions this binary choice model places on the conditional distribution of Yj; given Xj;
and «; will be useful for bounding marginal effects, as further discussed below.

In this paper we focus on the discrete case where the support of X; is a finite set. Thus, the
events X;; = & and X;; = T have positive probability and no smoothing is required. It would
also be interesting to consider continuous Xj; .

Linear fixed effect estimators are used in applied research to estimate marginal effects. For
example, the linear probability model with fixed effects has been applied when Yj; is binary.
Unfortunately, this estimator is not generally consistent for the marginal effect. There are two
reasons for this. The first is the marginal effect is generally not identified, as further explained

below. Second, the fixed effects estimator uses incorrect weighting.



To explain, we compare the limit of linear fixed effects estimators with the marginal effect
fo- Suppose that X; has finite support {X?', ..., X*} and let Qf(«) denote the CDF of the

distribution of @ conditional on X; = X*. Define
g = / m(z, ) — m(7,0)]Q%(da)/D, Py = Pr(Xi — X¥).

This py is the marginal effect conditional on the entire time series X; = [X;1, ..., X;r|" being

equal to X*. By iterated expectations,

K
po = > Prbtk. (2)
k=1

We will compare this formula with the limit of linear fixed effects estimators.

An implication of the conditional mean model that is crucial for identification is
Bl = XY = [ m(x}.0)Qi(da). 3)

This equation allows us to identify some of the u; from differences across time periods of iden-
tified conditional expectations.
To simplify the analysis of linear fixed effect estimators we focus on binary X;; € {0,1}.

Consider f3,, from least squares on
}/;t = thﬂ + Vi + Vit (t - 17 7T7Z - 17 eeey n)?

where each v; is estimated. This is the usual within estimator, where for X; = Z;‘il Xt/ T,

. > i (Xie — XY

v Zz‘,t(Xi _Xi)2 ‘

Here the estimator of the marginal effect is just Bw. To describe its limit, let 78 = #{t : X} =
1}/T be the proportion of component of X* that are equal to one and o7 = r*(1 — r*) be the

variance of a binomial with probability 7¥.

THEOREM 1: If equation (1) is satisfied, (X;,Y;) has finite second moments, and Zszl Proi >
0, then
5 D Zszl Proi p
Puw — —K o 3 " (4)
> k=1 Proyj;
Comparing equations (2) and (4) we see that the linear fixed effects estimator converges to
a weighted average of i, weighted by a,ﬁ, rather than the simple average in equation (2). The
weights are never completely equal, so that the linear fixed effects estimator is not consistent

for the marginal effect unless u, does not depend on k, i.e., unless the distribution of « given



X; = X* does not vary with & (in its effect on pz). This amounts to exogeneity of « as far as
the marginal effect goes, which is not very interesting.

One reason for inconsistency of Bw is that certain i receive zero weight. For notational
purposes let X! = (0,...,0)" and XX = (1,...,1) (where we implicitly assume that these are
included in the support of X;). Note that 0% = O'%( = 0 so that pu; and pg are not included in
the weighted average. The explanation for their absence is that p; and pux are not identified.
These are marginal effects conditional on X; equal a vector of constants, where there are no
changes over time to help identify the effect from equation (3).

Another reason for inconsistency of 3, is that for 7 > 4 the weights on py will be different
than the corresponding weights for p19. This is because r*
T=2orT=23.

This result is different from Hahn (2001), who found that B, consistently estimates the

varies for k ¢ {1, K'} except when

marginal effect. The reason he obtained such a result is that he restricted the support of X; to
exclude both (0, ...,0)" or (1,...,1)". Also, he only considered a case with 7' = 2. Thus, neither
feature that causes inconsistency of Bw was present in his example. Thus, as noted by Hahn
(2001), the conditions that lead to consistency of the linear fixed effects estimator in his example
are quite special.

The inconsistency result is also different from Wooldridge (2005). There it is shown that
if b; = m(1, ;) — m(0, ;) is mean independent of X;; — X; for each ¢ then linear fixed effects
is consistent. The problem is that this independence assumption is very strong when Xj;; is
discrete. Note that for T = 2, X;3 — X; takes on the values 0 when X; = (1,1) or (0,0), —1/2
when X; = (1,0), and 1/2 when X; = (0,1). Thus mean independence of b; and X;» — X;
actually implies that pue = ps and that these are equal to the marginal effect conditional on
X; € {X', X*}. This is quite close to independence of b; and X;, which is not very interesting
if we want to allow correlation between the regressors and the individual effect.

The result of Theorem 1 is related to Angrist (1998), who found that the probability limits
of linear regression estimators are variance weighted average effects in cross sectional models
with heterogenous effects. He focuses on estimation of averages of the identified effects.

The lack of identification of 1 and pux means the marginal effect is actually not identified.
Therefore, no consistent estimator of it exists. Nevertheless, it is possible to find informative
bounds for pg, as we show in the following sections.

We can correct the second reason for inconsistency of 3, by modifying the estimator. A
simple way to do this is to estimate a different slope coefficient for each individual and then
average. This estimator is obtained from averaging across individuals the least squares estimates
of B; in

Yie = XaBi +vi v, ¢t =1,...,T5i = 1,...,n),



For 52, = S (Xy — X;)? and n* = 327 1(s2; > 0), this estimator takes the form

N T (Xu - X))V
B=— 1(s7; > O)Zt_l( ztg )Y :
[ S
This is equivalent to running least squares in the model
Yit = e Xit + vk + vit, (5)

for individuals with X; = X*, and averaging Bk over k weighted by the sample frequencies of
Xk,

THEOREM 2: If equation (1) is satisfied and (X;,Y;) have finite second moments then

K-1

B =Y Pl (6)

k=2

where PF = Pr) S5 Py
To see how big the inconsistency can be we consider a numerical example, where X;; € {0,1}
is i.i.d across ¢ and ¢, Pr(X; = 1) = px, 1 is i.i.d. N(0,1),

Yie = 1(Xi + i + 1 > 0), a; = VT(X; — px)/px (1 — px).

Here we consider the marginal effect for z =1,z = 0, D = 1, given by

o= 121+ ) - B(0))Q"(do).

Table 1 and Figure 1 give numerical values for {lim(ﬁw) - MO] /o and [lim(ﬁ) - HO} /o for
several values of T' and px.

We find that the biases (inconsistencies) can be large in percentage terms. We also find that
biases are largest when px is small. In this example, the inconsistency of fixed effects estimators
of marginal effects seems to be largest when the regressor values are sparse. Also we find that
differences between the limits of @ and Bw are larger for larger 1", which is to be expected due
to the weights differing more for larger 7.

The estimator B of the identified marginal effect u; can easily be extended to any discrete
X;t. To describe the extension, let d;; = (X = 2),dy = 1( Xy = T), 75 = Z?:l Jit/T, 7=
I dit)T, and n* = 31" | 1(7; > 0)1(7; > 0). The estimator is given by
Zthl ditYi _ ZtT:1 ditYit
Tr; T7;

1
n* 4

7

B: 1(@' >0)1(’F¢ >0)[

1

].

n

This estimator is the same as doing individual by individual least squares on a fully saturated

model and then averaging the result. It will be identical to the previous B when X;; is binary.



It should be noted that B is not efficient for T' > 3. The reason is that it is least squares
over time, which does not account properly for time series heteroskedasticity or autocorrelation.
An efficient estimator could be obtained by a minimum distance procedure, though that is
complicated. Also, one would have only few observations to estimate needed weighting matrices,
so its properties may not be great in small to medium sized samples. For these reasons we leave
construction of an efficient estimator to future work.

To describe the limit of the estimator @ in general, let X* = {k :there is ¢ and ¢ such that
X t]" = 7 and Xf = z}. This is the set of possible values for X; where both # and z occur for
at least one time period, allowing identification of the marginal effect from differences. For all
other values of k, either £ or  will be missing from the observations and the marginal effect

will not be identified. In the next Section we will consider bounds for those effects.

THEOREM 3: If equation (1) is satisfied, (X;,Y;) have finite second moments and ) ;. i« Pr >
0, then

B pr =Y Pipk:
kek*
where P; = Pr/ > rexc P

3 Bounds in the Conditional Mean Model

Although the marginal effect g is not identified it is straightforward to bound it. Also, as we
will show below, these bounds can be quite informative, motivating the analysis that follows.

Some additional notation is useful for describing the results. Let
—k _ _ vk
k= B[Yal X = X*)/D

be the identified conditional expectations of each time period observation on Yj; conditional on
the k" support point. Also, let A(a) = [m(Z, ) — m(Z, )] /D. The next result gives identifi-

cation and bound results for uy, which can then be used to obtain bounds for pug.

LEMMA 4: If there is t and t such that ka =T and Xf = T then

mi — By < pu < i — By

Also, if there is t, such that Xf =T then

By —inf < py < By —mf.

7



Suppose that A(c) has the same sign for all o. Then if for some k there is t and t such that
Xf =T and Xf = &, the sign of A(«) is identified. Furthermore, if A(a) is positive then the
lower bounds may be replaced by zero and if A(a) is negative then the upper bounds may be

replaced by zero.

The bounds on each pj can be combined to obtain bounds for the marginal effect pg. Let

K = {k:thereis f such that Xf = i but no ¢ such that X} = 7},

K = {k: there is  such that Xf = Z but no ¢ such that XF = z}.

Also, let PY = Pr(X; : X # @ and Xy # Z for every t). The following result is obtained by

multiplying the k" bound in Lemma 4 by P} and summing.
THEOREM 5: If By < m(z,a)/D < By, then puy < po < iy, for

pe = PUBe—Bu)+ Y Pu(mf—Bu)+ > Pu(Be—mf)+ Y Pru,

keK keK keK*
pu = P(Bu—Bo)+ Y Pr(mf —By)+ > Pu(Bu—mf)+ Y Pusu.
keK kek keK*

If A(«) has the same sign for all « and there is some k* such that th“* =T and Xf* =T, the

sign of o is identified, and if po > 0 (< 0) then pp () can be replaced by > ree Prptk-

As an example, consider the binary X case where X;; € {0,1}, # =1, and = 0. Let XX
denote a T x 1 unit vector and X! be the T x 1 zero vector, assumed to lie in the support of
X,;. Here the bounds will be

pe = Px(mf —Bu)+Pi(Be—mi)+ Y. Pu, (7)
1<k<K

Ky = ,PK(th - BZ) + Pl(Bu - m%) + Z Pkﬂk-
1<k<K

It is interesting to ask how the bounds behave as T' grows. If the bounds converge to pg as
T goes to infinity then pg is identified for infinite 7T'. If the bounds converge rapidly as T' grows
then one might hope to obtain tight bounds for 1" not very large. The following result gives a

simple condition under which the bounds converge to g as T grows.

THEOREM 6: Suppose that By < m(z,«a)/D < B, and )_(21 = (Xi1, Xi2, ...) is stationary and,
conditional on oy, the support of each X; is the marginal support of X and )—5, is ergodic.

Then py — po and p, — po as T — oo.



The rate at which the bounds converge in the general model is a complicated question. Here
we will address it in an example and leave general treatment to another setting. The example

we consider is that where X;; € {0,1}.

THEOREM 7: If By < m(x,a)/D < B, and Z is i.i.d. conditional on «; then for P(ay) =
PI‘(Xit = 1’0@),

max{|pe — o, [itu — 0|} < (Bu = Be) E[{1 = P(c)}" + P(a)"].
If there is € > 0 such that € < P(o;) < 1—¢ for almost every «;, then

max{|pe — pol, [t — pol} < (Bu — Bp)2(1 — )"
If P(ay) =1 or P(a;) = 0 with positive probability either g - po or py - po.

When P(q;) is bounded away from zero and one the bounds will converge at an exponential
rate. We conjecture that an analogous result could be shown in the general case above. Having
P(«a;) = 1 with positive probability violates a condition of Theorem 6, that the conditional
support of X;; equals the marginal support. Theorem 7 shows that in this case the bounds may
not shrink to the marginal effect.

The bounds may converge, but not exponentially fast, depending on P(«;) and the distri-
bution of «;. For example, suppose that X;; = 1(co; — i > 0), a; ~ N(0,1), g5z ~ N(0, 1), with

git 1.i.d. over ¢t and independent of ;. Then

(I)(a)T+1]+OO_ 1
T+1 ST+

Pic = El@(e)T) = [ @) o(a)da = |

—o0
In this example the bounds will converge at the slow rate 1/7". More generally, the convergence
rate will depend on the distribution of P(«;).

It is interesting to note that the convergence rates we have derived so far depend only on
the properties of the joint distribution of (Xj, a;), and not on the properties of the conditional
distribution of Y; given (Xj;,a;). This feature of the problem is consistent with us placing no
restrictions on m(z, ). In the next Section we find that the bounds and rates may be improved

when the conditional distribution of Y; given (Xj, ;) is restricted.

4 Semiparametric Multinomial Choice

The bounds for marginal effects derived in the previous section did not use any functional form
restrictions on the conditional distribution of ¥; given (Xj, «). If this distribution is restricted one

may be able to tighten the bounds. To illustrate we consider a semiparametric multinomial choice



model where the conditional distribution of Y; given (X, ;) is specified and the conditional
distribution of «; given X; is uknown.

We assume that the vector Y; of outcome variables can take J possible values Y1,... Y.
As before, we also assume that X; has a discrete distribution and can take K possible values

X1, ..., XK Suppose that the conditional probability of ¥; given (X;, a;) is
Pr(Y; = YI|X; = X* o) = L(YI|XF, o, B7)

for some finite dimensional 8* and some known function L(Y|X,a, 3). Let Q} denote the un-
known conditional distribution of o; given X; = X*. Let Pji. denote the conditional probability
of Y; = Y7 given X; = X*. We then have

Pj = /.c (Yj\Xk,a,ﬁ*) Qi (da),(j=1,..J;k=1,...K),

where Pjj, is identified from the data and the right hand side are the probabilities predicted by the
model. This model is semiparametric in having a likelihood £ (Yj 1X*, B) that is parametric
and conditional distributions Qf («) for the individual effect that are completely unspecified. In
general the parameters of the model may be set identified, so the previous equation is satisfied
by a set of values B that includes 3* and a set of distributions for @ that includes @, for
k=1,..., K. We discuss identification of model parameters more in detail in the next Section.
Here we will focus on bounds for the marginal effect when this model holds.

For example consider a binary choice model where Y; € {0,1}, Yi1,..., Yir are independent

conditional on (X;, «;), and
Pr(Yy = 11X;, i, %) = F(X{8" + )

for a known CDF F(-). Then each Y7 consists of a 7' x 1 vector of zeros and ones, so with

J = 2T possible values. Also,

T
LYIX,a,8) = [[ F(X{B+ ) [1 - F(X{B+a)]" "
t=1

The observed conditional probabilities then satisfy

T ) )
Pik = / {HF(XZ“B* +a)" 1 - F(Xf'3" +a>1”5}@z (do),(j =1, 2Tk =1, K).
t=1

As discussed above, for the binary choice model the marginal effect of a change in X;; from

Z to &, conditional on X; = X%, is
pp =D / [F (2’8" + a) = F (78" + a)|Qj(da), (8)

10



for a distance D. This marginal effect is generally not identified. Bounds can be constructed
using the results of Section 3 with By = 0 and B,, = 1, since m(z,a) = F(2/3* + a) € [0,1].
Moreover, in this model the sign of A(a) = D7YUF(#'8* + a) — F(z'8* + «)] does not change
with a;, so we can apply the result in Lemma 4 to reduce the size of the bounds. These bounds,
however, are not tight because they do not fully exploit the structure of the model. Sharper

bounds are given by

Py = minge ., D ! f /ﬂ +a) = F (7' + a)]Q (da)

9
St P = fz(mxk,a,ﬂ) Qx (da) Vj, ?)

and

I = maxgepg, D' [[F (38 +a)— F (28 + a)|Qy (da)
st. Pig= L (Yj]Xk,a,ﬂ) Q. (da) Vj.

In the next Sections we will discuss how these bounds can be computed and estimated. Here

(10)

we will consider how fast the bounds shrink as T grows.

First, note that since this model is a special case of (more restricted than) the conditional
mean model, the bounds here will be sharper than bounds previously given. Therefore, the
bounds here will converge at least as fast as the previous bounds. Imposing the structure here
does improve convergence rates. In some cases one can obtain fast rates without any restrictions
on the joint distribution of X; and «.

We will consider carefully the logit model and leave other models to future work. The logit
model is simpler than others because §* is point identified. In other cases one would need to
account for the bounds for 5*. To keep the notation simple we focus on the binary X case,
Xit € {0,1}, where £ =1 and £ = 0. We find that the bounds shrink at rate 77" for any finite

r, without any restriction on the joint distribution of X; and «;.

THEOREM 8: For k=1 or k=K and for any r >0, as T — o0,

ir — 1, = O(T™"),

Fixed effects maximum likelihood estimators (FEMLESs) are a common approach to estimate
model parameters and marginal effects in multinomial panel models. Here we compare the
probability limit of these estimators to the identified sets for the corresponding parameters.
The FEMLE treats the realizations of the individual effects as parameters to be estimated. The

corresponding population problem can be expressed as

K J
8= argmaxg ZPk Zij log £ <Yj|Xk7 ik (8), 5) ) (11)
k=1 j=1
where
a;i(B) = argmax, log £ (YJ|X’C a, ﬁ) Vi, k. (12)
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Here, we first concentrate out the support points of the conditional distributions of o and then
solve for the parameter .

Fixed effects estimation therefore imposes that the estimate of QQ; has no more than J points
of support. The distributions implicitly estimated by FE take the form

~ { Pk, for a = a;i(B);

Qrp(a) = (13)

0, otherwise.

The following example illustrates this point using a simple two period model.

Example 1 Consider a two-period binary choice model with binary regressor and symmetric

CDF, i.e., F(—x) =1 — F(z). In this case the estimand of the fized effects estimators are

—00, if Y7 = (0,0);
wp(B) =< —BXF+ X5)/2, if YI=(1,0) or Y7 =(0,1); (14)
00, ifY7=(1,1),

and the corresponding distribution for o has the form

Pr{Y = (0,0)|X*}, if @ = —00;
Qra(@) = ¢ Pr{Y = (1,0)[X*} + Pr{Y = (0, 1)|X*}, if a = —B(Xf + X§)/2; (15)
Pr{Y = (1,1)|X*}, if a = o0.

This formulation of the problem is convenient to analyze the properties of the fixed effects
estimators of marginal effects. Thus, for example, the fixed effects estimator of the marginal

effect uy takes the form:

in(8) = D! / [F('5 + a) — F(@P + a)|Qus(a). (16)

This estimator is consistent for identified effects when X is binary for any symmetric CDF. This
result is shown here analytically for the two-period case and through numerical examples for

T2>3.
THEOREM 9: If k & {1,K} and F(—z)=1— F(x), then ju.(8) - .

For not identified effects the fixed effects estimators are usually biased toward zero. To see
this consider a logit model with binary regressor, X* = (0,0), # = 0 and & = 1. Using that

B = 26* (Andersen, 1973) and F'(x) = F(z)(1 — F(z)) < 1/4, we have

3| = |FB) - FO)|PK = (1,0)1X*) + P(Y = (0,1)|X*)]

IN

52| [ Pla)(1 ~ @)Qu(da) = |EI5"F'(a5" + )l X = X = pul.
This conjecture is further explored numerically in the next section.
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5 Calculating Population Bounds

We will begin our discussion of calculating bounds by considering bounds for the parame-
ter 5. Letting Q@ = (Q1,...,Qk), we can write the individual log likelihood compactly as
L (Y;, X;; 8,Q). Due to the usual argument based on Jensen’s inequality, we can see that (5%, Q)
is such that
E[L (Y, X:;3,Q)] < E[L (Yi, Xi; 8, Q")
for every ((3,Q). This implies that
Sng [L(Yi, X35 8,Q)] < Sng [L (Y, Xi; 6%, Q)]

for every . Therefore, if we define B to be the set of 3’s that maximizes supg F [L (Yi1,Yie; 5,Q)],

i.e.,

B= {ﬁ : sng[L (Y, Xi58,Q)] > sng L (Y, Xi;8,Q)], Vﬁ’}-

We can easily see that 8* € B. In other words, 5* is set identified by the set B.
It follows from results of Lindsay (1995) that one need only search over discrete distributions
for @) to find B. Note that

LEMMA 10: If the support C of «; is compact and L (Yj|Xk,a,ﬁ) s continuous in « for
each B3, j, and k, then, for each B € B and k, a solution to

Qup = argmax Elln [ £ (YI1X*,0.8) Qi (da) X = X

exists that is a discrete distribution with at most J points of support, and [ L (Yj|Xk, a, 5) Qi (da) =
Pijk, Vj, k.

It is also true that bounds for the marginal effect can be found by searching over discrete
distributions. We will focus on the upper bound fi;; an analogous result holds for the lower

bound By -

LEmMMA 11: If the support C of «y; is compact and L (Yj\Xk,a,ﬂ) is continuous in « for
each B3, j, and k, then, for each B € B and k, a solution to

Qup = argmax D [[F(@0+0) = F@5+ a))Qu(da) st [ £(YIIX*,05) Qu(da) =,

can be obtained from a discrete distribution with at most J points of support.
We carry out some numerical calculations to illustrate and complement the previous analyt-

ical results. We use the following binary choice model
Yie = 1{Xuf + a; +eir > 0}, (17)
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with €;; i.i.d. normal or logistic with zero mean and unit variance. The explanatory variable
X is binary, independent across time periods with px = Pr{X;; = 1} = 0.5. The unobserved
individual effects «; is correlated with the explanatory variable for each individual. In particular,
we generate these effects as a mixture of a random component and the standardized individual
sample mean of the regressor. The random part is independent of the regressors and follows a

discretized standard normal distribution, as in Honoré and Tamer (2006). Thus, we have

Q; = a1 + Qg

where
¢ 7(1’”“;&” , for a,, = —3.0;
Pr{ag;=an}=4¢ @ W - & (%) , for a,, = —2.8,—-2.6,...,2.8;
1—d (“m*#) : for an, = 3.0.

and ag; = VT(X — px)//px (1 — px).

Identified sets for parameters and marginal effects are calculated for panels with 2, 3, and
4 periods based on the general conditional expectation model and semiparametric logit and
probit models. For logit and probit models the sets are obtained using the linear programming
algorithm of Honoré and Tamer (2006) for discrete regressors. Thus, for the parameter we have
that B = {3 : L(B) = 0},! where

L(p) = min Zwk—i—ZZv]k (18)

wkv”]kﬂrkm

=1 k=1
Vjk + Zm:l 7Tkm (YJ ’Xk (6797 %) /6) ]k VJ, k?
Wg + E%:l Tem = 1 Vk,
UjkzoawkZQkaZO Vj,k',m.

For marginal effects, we solve

ﬁk/ﬁk = max/ mln Z Tem[F (B + am) — F(an)]

ﬂ-kma
Zi\n/lzl Trem L (Y]’Xk O‘mug) ]k V7,
Zi\n/lzl Tkm = 157Tkm >0 ijm

The identified sets are also compared to the probability limits of linear and nonlinear fixed effects

estimators.

'In calculating the identified sets, we search over a wide grid of support points for the mixing distribution that
contains the points of support of a;. In many cases the estimate of mixing distribution has points of support

outside the range of true points of support of the true distribution.
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Figure 2 shows identified sets for the index coefficient 3 in the logit model. The figures
agree with the well-known result that the model parameter is point identified when T' > 2, e.g.,
Andersen (1973). The fixed effect estimator is inconsistent and has a probability limit that is
biased away from zero. For example, for T = 2 it coincides with the value 23" obtained by
Andersen (1973). For T > 2, the proportionality 3 = ¢ for some constant ¢ breaks down.

Identified sets for marginal effects are plotted in Figures 3 - 7, together with the probability
limits of fixed effects maximum likelihood estimators (Figures 4 - 6) and linear probability model
estimators (Figure 7).2 Figure 3 shows identified sets based on the general conditional mean
model. The bounds of these sets are obtained using the general bounds (G-bound) for binary
regressors in (7), and imposing the monotonicity restriction A(a) > 0 in Lemma 4 (GM-bound).
In this example the monotonicity restriction has important identification content in reducing
the size of the bounds.

Figures 4 - 6 show that marginal effects are point identified for individuals with switches
in the value of the regressor, and fixed effects estimators are consistent for these effects. This
numerical finding suggests that the consistency result for fixed effects estimators extends to more
than two periods. Marginal effects for individuals without switches in the regressor are not point
identified, unless #* = 0, which also precludes point identification of the average effects. Fixed
effects estimators are biased toward zero for the unidentified effects, and have probability limits
that usually lie outside of the identified set. However, both the size of the identified sets and
the asymptotic biases of the fixed effects estimators shrink very fast with the number of time
periods. In Figure 7 we see that linear probability model estimators have probability limits that
usually fall outside the identified set for the marginal effect.

For the probit, Figure 8 shows that the model parameter is not point identified, but the size
of the identified set shrinks very fast with the number of time periods. The identified sets and

limits of fixed effects estimators in Figures 9 - 13 are analogous to the results for logit.

6 Estimation

The population problem for the parameter 8 has the convenient linear programming formulation
(18) when the regressors are discrete. To estimate B, Honoré and Tamer (2006) suggest solving

the linear programming problem replacing the conditional probabilities P;; by consistent sample

2We consider the version of the linear probability model that allows for individual specific slopes in addition

to the fixed effects.
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estimates Pj,. The proposed estimate of the identified set is B, = {3 : L(B) = 0} where

. K J K
L(ﬁ) = min Zwk + szjk
k=1

Wi, Vjk,Tk 3
JrEenEm j=1k=1

Vjk + Z,,Ale 7Tkm[’ (Y]|Xk7 amnﬁ) = P]k VJ, k7
Wg + Zn]\le Tem = 1 Vk,
vjk207wk20777km20 Vj,k?,m.

Here Pj are the observed probabilities in the sample.

There are two important practical difficulties in the implementation of this approach for
estimation. First, the solution for ) to the linear programming problem is very sensitive to
the presence of empty cells, that is, when Y7 is not observed for some X*. Then Pjr, = 0 and
Qk is a degenerate distribution at —oo. This issue is an artifact of the way the restrictions
are formulated, which only allows for negative differences between model and true probabilities,
together with the properties of the common specifications for the model probabilities, such as
logit of probit, which only are zero at —oo. We introduce a variation of a minimum distance
procedure proposed by Honoré and Tamer (2006) that is less sensitive to the empty cell problem.

A second important drawback of the linear programming formulation, also shared by the
minimum distance procedure, is that the solution for the identified set is generally an empty set
because the minimum of the objective function is always positive. The source of this problem is
sampling error in the estimated probabilities and model misspecification. This problem can be
addressed by choosing B,, as the set of values of # for which the minimized objective function
ﬁ(ﬁ) attains its minimum (instead of zero) up to a cut-off parameter. We apply this solution to
the objective function of the minimum distance problem.

The modified minimum distance estimator that we propose is the solution to the following
penalized weighted quadratic programming problem:

By = {5579 < i 79+ e |, (19)

BeB

where €, > 0 is a cut-off parameter that shrinks to zero as a function of the sample size as in
Manski and Tamer (2002); and

M 2 M
T(B) = min) o (ij—zmmc (Yj|X’f,am,ﬂ)> A D | (20)
" i,k m=1 m=1

m
s.t. Zﬂ'km:L Tem = 0, V7, k.

m=1
This formulation is less sensitive to the empty cell problem because it allows for positive and

negative differences between model and observed probabilities. The weights w;; are chosen in
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order to have a chi-square type objective function and to increase the efficiency of the estimator

by weighting more the sequences of X with higher sample frequencies. In particular, we set
M
Wik = nPk/ Z 7?krnﬁ (YJ‘Xk7am76> ;
m=1

where Py is the observed probability of the sequence X* in the sample and (3, {Tem + k =
1,...K;m = 1,...,M}) are preliminary estimates of the parameters. These estimates can be
obtained by setting w;r = np.

The penalty A, acts choosing a distribution among the set of discrete distributions with sup-
port contained in {ay, ..., aps }. This regularization solves the fundamental identification problem
for @), while keeping the computationally convenient quadratic programming formulation. In
general there is an infinite number of solutions for Qi to the population problem, one of them
is a discrete distribution with no more than J support points by Lemma 10. Here, instead of
searching for the solution with the minimal support, we search over discrete distributions with
support points contained in a large partition of an interval of the real line. By making the par-
tition fine enough we guarantee to cover the solutions to the problem with few support points,
without having to find explicitly the location of those points.® The penalty favors distributions
with large supports. Moreover, by setting A\, = o(1), the penalty does not affect the distribution
of the objective function in large samples.

The solution to the penalized minimum distance problem cannot be directly used to ob-
tain estimates for the marginal effects. The restrictions of the linear programs for these effects
generally cannot be satisfied for any 8 € B,, due to sampling variation in the estimated proba-
bilities and/or model misspecification. To make the problem feasible we replace the estimates
of the conditional probabilities by the probabilities predicted by the model at the solution to
the quadratic problem. These probabilities are consistent if the model is correctly specified, and
equal to the probabilities predicted by the model at the solution to the quadratic problem by
construction. To simplify the computation it is useful to note that we only need to solve the lin-
ear programming problem for the marginal effects that are not identified. For identified effects,
we can use sample analogs of the results in Lemma 4 based on the recentered probabilities.

Another way to estimate B is by the the level set of the finite-sample profile likelihood
1« 1 «
By =4B:sup— > L(Y;,X;;3,Q) >supsup— Y L(Y;, X;;3,Q) —en ¢
Q "N QN
where €, > 01is a cut-off parameter that shrinks to zero as a function of the sample size, following

Manski and Tamer (2002). Estimators for the bounds of the marginal effects defined above can

3Finding the explicit location of the support points is the main computational difficulty in the estimation of

distribution of mixtures; see, e.g., Aitkin (1999).
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be obtained by solving these problems with B,, in place of B.
Following Chernozhukov, Hahn, and Newey (2004) we can show consistency of this estimator

under two conditions.

Assumption 1: (i) £ (Y7|X*, «a, 3) is continuous in (a, 8) for all (j,k); (ii) * € B for some

compact B; and (iii) ; has a support contained in a compact set C.
The other condition concerns the cut-off parameter.

Assumption 2: If B is a singleton, B = {3*}, then ¢, = 0. Otherwise, €, x n~1/2a,, for some

an, — 00 and n*1/2an —0.
We can now give a consistency result

THEOREM 12: If Assumptions 1 and 2 are satisfied
do (B'mB) = OP(1)7
where dyr is the Hausdorff distance between sets

dp (Bpn, B) = max | sup inf |b, — b|, sup 1nf |b, — b
bnGBnbeB EB n€ n

We can obtain a corresponding result for the marginal effect.

COROLLARY 13: Let f1, and Ty, denote the solutions to the programs (9) and (10) when B
is replaced by B,,. If Assumptions 1 and 2 are satisfied then

~ D -~ P —
by = by, and T = T

7 Inference

Theorem 12 does not provide any practical guidance on the choice of the cut-off level ¢,. It
is desirable that this choice be tied to inferential statements, which appear to pose special
challenges in this setting. In this Section we propose to base inference on the inversion of the
objective function of the quadratic program, embedding the previous semi-parametric likelihood
in a more general nonparametric family. This approach provides conservative inferences about
0 and marginal effects.

From the proof of Theorem 12, it follows that the model-implied probabilities coincide with

the true choice probabilities for any §* € B and some (generally non-unique) pseudo-true Q*:
P = [ £ (VIX" 0.67) Qifda) == £30(5".Q}). Vi b
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Let Pj;, be the empirical probabilities. A chi-square type statistic evaluated at (3, Q) takes the

form

- L]k(ﬂ7 Qk))Q
Lix (B, Qr) '

The quantity of especial interest is the profile statistic:

7(5,Q) =n " AL
7.k

R 2
P — L.(0,
() anpk< Jk Jk(ﬂ Qkﬂ))

= 21

where ng is the solution to the quadratic program (20) with the model parameter fixed to .
Since A, 2 0 as n — oo, with probability approaching to one T(8) < T(B,Q) and the a-quantile
of T'() is bounded from above by

ca (B) = irclf {c:Pr{T(5,Q) <c} > a}.

A conservative confidence interval for 5* is then given by

The upper bound of the quantile ¢, () is asymptotically pivotal by the classical Pearson’s
argument T (5%, Q*) = x? (K(J — 1)), hence we have that c, (3) can be consistently estimated
by the a— quantile of a x? (K(J — 1)) variable, denoted as é,. An approximate confidence
region is then given by

In (%) ={B: T(B) < éa}-

The preceding argument established the following result.
THEOREM 14: If Assumption 1 is satisfied then

P{g* e Ia(8")} > a>a

as n — oQ.

Theorem 14 also leads to a more precise choice of the cut-off level needed to insure consistent
estimation in the previous section. One such choice is given by

€n = Cay,, — glelIIB}T(ﬁ)’

where the significance level v, should tend to 1 such that the a,, -th quantile of x? (K (J — 1))
variable satisfies Assumption 2 as n — oo slowly enough. This choice guarantees the estimating
set B, coincides with the desired confidence region of probability level «,,. In practice, o, may

be set equal to some conventional value such as .90 or .95.
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Confidence regions for marginal effects can be formed as the union of the solutions to the
linear programming problem for these effects for the values of the parameter in the confidence
interval I, (6*). Computation can be greatly simplified if the marginal effects are monotone
on the value of the parameter. In this case, which includes logit and probit models, the linear
programs for the effects need only to be solved for values at the boundary of the confidence
region for the parameter. The resulting confidence regions have coverage probability at least «
in large samples by the continuous mapping theorem.

The previous projection method is computationally attractive because it typically involves
repeating the two step estimation procedure only a few times, but it shares the problems common
to objective function based inference procedures. In particular, the method can be conservative
if the degree of over-identification of the model is high. Overidentification here is the difference
between the dimension of the parameter and the degrees of freedom of the chi-square distribution
(number of free probabilities), what determines the excess of degrees of freedom used above what
is needed to test hypotheses about the parameter. More importantly, these procedures are very
sensitive to model misspecification since the objective function increases with the difference
between the true probabilities and the best approximating model probabilities. If the degree of
misspecification is high enough the procedure can actually produce empty confidence regions.
The reason is that the objective function-based tests are in fact omnibus tests for both model
specification and the value of the parameters. The degree of overidentification has therefore
two opposite effects on the confidence regions as it increases the size by raising the number of
degrees of freedom of the test statistics, but also makes model misspecification more acute as

the total number of free probabilities to fit becomes larger.

7.1 Bootstrap

An alternative to objective function inversion methods to make inference on the identified sets
of interest is to use resampling techniques. If the outcome and regressors are discrete, nonpara-
metric bootstrap corresponds to parametric bootstrap on the bivariate multinomial distribution
for all the sequences of outcomes and regressors. Thus, we can construct bootstrap confidence
regions for the identified sets of the parameters and marginal effects using the following proce-

dure:

1. Draw bootstrap a dataset { X i(r) , Yi(T)}?:1 from the observed bivariate multinomial frequen-
cies {X;,Y;}7 ..

2. Estimate the identified sets for the parameter BT(IT) and the corresponding marginal effects

[g,(:), ﬁ,(f)] by solving the nonparametric MLE quadratic and linear programming problems.
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3. Repeat the procedure R times.

4. Construct the a-level confidence regions as the smallest sets that fully contain a pro-
portion a of the estimated regions for the parameters {By)}f}:l and marginal effects
(i i H

This nonparametric bootstrap procedure is less sensitive to model misspecification since it

does not impose the conditional model on the bootstrap data generating process (DGP). The
confidence regions can therefore be interpreted as confidence regions for the best approximating
model to the DGP. However, an important issue here is to show the consistency of bootstrap for
the distribution of the estimators. The estimators of the model parameters and marginal effect
are non regular and it is not clear if their distributions vary with perturbations of the DGP in
a continuous way. We are not aware of any result on bootstrap validity for this problem or the

related problem of estimation of finite mixture models.*

7.2 Perturbed Bootstrap

Dufour (2006) develops simulation methods to conduct inference in non regular cases where the
estimators of the parameters of interest might have asymptotic distributions that depend on
nuisance parameters in a discontinuous way, or even when they do not converge in distribution,
see also Romano and Wolf (2000). These methods do not rely on point identification of the
parameter of interest and can therefore be applied to set-identified models, see, e.g., Rytchkov
(2006). The idea of this approach is to generate a class of distributions that covers the true
DGP with probability one, and find the least favorable distribution for the estimators of interest
within this class. The quantiles of this distribution can be used to construct confidence regions
for the identified sets. We implement this method by a variation of the bootstrap described
below that we denominate as perturbed bootstrap (Chernozhukov, 2007).

To describe how this method works, consider the general problem of making inference on a
parameter 6 based on a sample statistic T;, with distribution G,,(t, F') under the DGP F € F.
The set F is a class of distribution functions restricted to have compact support. The goal is to
estimate the distribution of the statistic under the true Fp, i.e., to find G, (t, Fy). The method
proceeds by constructing a confidence region CR;_, (Fy) that contains the true DGP Fj with
probability approaching to one, i.e., 7, — 0, and such that, as n — oo,

d(CRy—, (Fy), Fy) := e Rilnf - di (F, Fp) 20, (22)
—In

“Feng and McCulloch (1996) conjecture the validity of bootstrap for the distribution of the likelihood ratio
test for the number of components of the mixture distribution and provide some numerical evidence. See also the

monograph on finite mixture models by McLachlan and Peel (2000).
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where dg is the sup (Kolmogorov) distance defined by dg (F,G) := sup, |F(t) — G(t)|. The least
favorable distributions for G, (¢, Fy) are given by

G, (£, F0)/Gn(t, Fo) =inf/  sup  Gnlt, F). (23)
FECR,,, (Fo)

Romano and Wolf (2000) show that the (o —,,)/2 quantile of G, (¢, Fy) and the 1 — (o —v5,)/2
quantile of G, (¢, Fy) can be used to form valid confidence regions of level 1 — . Moreover, if the
test statistic is efficient for the parameter, then these confidence regions are as efficient asymp-
totically as the confidence regions that use the true sampling distribution G, (¢, Fy) provided
that dg (G, (t, Fy), Gn(t, Fo)) 2 0 and dg (G (t, Fo), Gu(t, Fy)) 2 0.

For panel data models with discrete outcomes and regressors, this inference approach can be

implemented using this procedure (perturbed bootstrap):

1. Draw a potential DGP from the observed bivariate multinomial obtained from {X;, Y;}7 ;.

2. Test that the observed sample is consistent with the potential DGP with high probability.
This step can be carried out by checking that the observed dataset passes a chi-square
test with small level =, (e.g., set 7, = .01). Note that since we are not imposing the
conditional model the chi-square distribution has JK — 1 degrees of freedom under the

hypothesis that the observed distribution comes from the potential DGP.
3. Repeat steps 1 and 2 until a DGP, DGP,, passes the test.

4. Estimate the distribution of the estimator by nonparametric bootstrap from DGP, (see

the previous subsection for details on implementation).
5. Repeat the steps (1) to (4) for p=1,..., P.

6. Obtain
G(t, Fy)/G(t, Fy) = min / max{G(t, DGP,), ...,G(t, DGPp)}.

7. Construct a 1 — a confidence region for the parameter of interest as
CR.(0) = {0,0}

where 6 is the (o — v,)/2 quantile of G(t, Fy) and 0 is the 1 — (o — ,)/2 quantile of
G(t, Fo).
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8 Empirical Example

We now turn to an an empirical application of our methods to a binary choice panel model of
female labor force participation. It is based on a sample of married women in the National Lon-
gitudinal Survey of Youth 1979 (NLSY79). We focus on the relationship between participation
and the presence of young children in the years 1990, 1992, 1994, and 1996. The NLSY79 data
set is convenient to apply our methods because it provides a relatively homogenous sample of
women between 25 and 33 year-old in 1990, what reduces the extent of other potential con-
founding factors that may affect the participation decision, such as the age profile, and that are
difficult to incorporate in our methods. Other studies that estimate similar models of partic-
ipation in panel data include Heckman and MaCurdy (1980), Heckman and MaCurdy (1982),
Chamberlain (1984), Hyslop (1999), Chay and Hyslop (2000), Carrasco (2001), Carro (2007),
and Fernandez-Val (2008).

The sample consists of 1,587 married women. Only women continuously married, not stu-
dents or in the active forces, and with complete information on the relevant variables in the entire
sample period are selected from the survey. Descriptive statistics for the sample are shown in
Table 2. The labor force participation variable (LF P) is an indicator that takes the value one if
the woman employment status is “in the labor force” according to the CPS definition, and zero
otherwise. The fertility variable (kids) indicates whether the woman has any child less than 3
year-old. We focus on very young preschool children as most empirical studies find that their
presence have the strongest impact on the mother participation decision. LF' P is stable across
the years considered, whereas kids initially increases to peak in 1994 and drops sharply in the
last year of the sample. The proportion of women that change fertility status grows steadily
with the number of time periods of the panel, but there are still 40% of the women in the sample
for which the effect of fertility is not identified after 4 periods.

The empirical specification we use is similar to Chamberlain (1984). In particular, we esti-

mate the following equation
LFPy; =1{( kidsi + o + € > 0}, (24)

where «; is an individual specific effect. The parameters of interest are the marginal effects
of fertility on participation for different groups of individuals including the entire population.
These effects are estimated using the general conditional expectation model and semiparametric
logit and probit models described in Sections 3 and 4, together with linear and nonlinear fixed
effects estimators. Analytical and Jackknife large-T" bias corrections are also considered, and

conditional fixed effects estimates are reported for the logit model.> The estimates from the

The analytical corrections use the estimators of the bias based on expected quantities in Ferndndez-Val (2008).
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general model impose monotonicity of the effects. For the semiparametric estimators, we choose
a penalty A, = 1/Inn and iterate the quadratic program 3 times, what makes the estimates
insensitive to the penalty and the weighting. We search over discrete distributions with 23
support points at {—oo, —4, —3.6,...,3.6,4, 00} in the quadratic problem, and with 163 support
points at {—o0, —8,—7.9,...,7.9,8,00} in the linear programming problems. The estimates are
based on panels of 2, 3, and 4 time periods, all of them starting in 1990.

Tables 3 to 5 report estimates of the model parameters and marginal effects for 2, 3, and
4 period panels, together with 95% confidence regions obtained using the procedures described
in the previous Section. For the general model these regions are constructed using the normal
approximation (N — CTI) and nonparametric bootstrap with 200 repetitions (B — C1I). For the
logit and probit models, the confidence regions are obtained by inversion of the objective function
or projection method (P — CT), nonparametric bootstrap with 200 repetitions (B — C1), and
perturbed bootstrap (PB — CI) with 3, = .01, 100 DGP’s, and 200 bootstrap repetitions for
each DGP. For the fixed effects estimators, the confidence regions are based on the asymptotic
normal approximation. The semiparametric estimates are shown for ¢, = 0, which is for the
solution that gives the minimum value in the quadratic problem.b

Overall, we find that the estimates and confidence regions based on the general model are too
wide to provide informative evidence about the relationship between participation and fertility
for the entire population. The semiparametric estimates seem to offer a good compromise
between producing more accurate results without adding too much structure to the model. Thus,
these estimates are always inside the confidence regions of the general model and do not suffer of
important efficiency losses relative to the more restrictive fixed effects estimates. Another salient
feature of the results is that the misspecification problem of the projection method clearly shows
up in this application. Thus, this procedure gives empty confidence regions for panels of 3 and
4 periods. Note that in this case, where we only have one parameter and binary outcome and
regressor, the degree of over-identification is 11, 55, and 239 for the 2, 3, and 4 period panels,

respectively.

9 Possible Extensions

Our analysis is yet confined to models with only discrete explanatory variables. It would be
interesting to extend the analysis to models with continuous explanatory variables. It may be

possible to come up with a sieve-type modification. We expect to obtain a consistent estimator

The Jackknife bias correction uses the procedure described in Hahn and Newey (2004).
5For the logit model the parameter § is identified and this choice of €, is justified by Theorem 12. For the probit

model the reported estimate is only guaranteed to be contained in the identified set with probability approaching

to one.
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of the bound by applying the semiparametric method combined with increasing number of par-
titions of the support of the explanatory variables, but we do not yet have any proof. Empirical
likelihood based methods should work in a straightforward manner if the panel model of interest
is characterized by a set of moment restrictions instead of a likelihood. We may be able to

improve the finite-sample property of our confidence region by using Bartlett type corrections.

10 Appendix: Proofs
Proof of Theorem 1: By eq. (3),

S (XF—MEYy X = X" = Trk(l—rk)/m(l,a)QZ(da) (25)

t
+T(1 —r* /m (0,0)Qj(do) = To} .

Note also that X; = 7* when X; = X*. Then by the law of large numbers,

> (X — Xi)?/n 5 ED (X — X0)?] = D Pe Y (XF—rF)? =) PiTay,
k t k

it t

S (X = XiYa/n 2 B3 (Xa— XYl = S Pu IO (XF — rh) B[Yil X = X*]
k t

it t

= Z ’PkTO',%,LLk.
k
Dividing and applying the continuous mapping theorem gives the result. Q.E.D.

Proof of Theorem 2: Note that Z;‘F:l(Xf — X2 =Trk(1 —r*)=To} >0forall2 <k <
K — 1, so by eq. (25) and the law of large numbers,

RS T (Xy—X)Y; T (x., _ X\Y:
- E 1(392m > O)thl( zt2 i)Yt N E[l(sii > O)Etzl( 1152 i) zt]
. S s

X1 xi
T v K-1 T k k k
_ 2 thl(Xit — X;) E[Yi| Xi] o Zt:l(Xt — ") ElYu| X; = X7]
= E[1(s%, > 0) z =Y P To?
k=2
K-1 K—-1
Toj
= P kLR 7) 7
k=2 =
1 n K-1
521(531 > 0) 2 E[1(s2; > 0)] = > P
i=1 k=2

Dividing and applying the continuous mapping theorem gives the result. Q.E.D.

Proof of Theorem 3: The set of X; where 7; > 0 and 7; > 0 coincides with the set for which
X; = X* for k € K*. On this set it will be the case that 7; and 7; are bounded away from zero.
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Note also that for £ such that Xf = 7 we have E[Y;|X; = X*] = [ m(%,a)Qj(da). Therefore,
for 7% = #{t : X} = z}/T and 7% = #{t : X} = 2} /T, by the law of large numbers,

=1 ditYu _ S diYa

IS s o> o= }/D

P Tr; Tr;
T 7 T 7
diY; _1ditY;
o E[1(7 > 0)1(r > o>{ZtT17;f L
ZtT 1 CZitE[Yz‘t\Xz‘] Sty din B[V | Xi]
= E[1 — == D
Trk ma:aQ do Trk mxaQ do)
kelC* kek*

1
=3CUFE > 01 > 0) 5 E[L(F > 0)1(7 > 0)] = Y Py
i ke

Dividing and applying the continuous mapping theorem gives the result. Q.E.D.

Proof of Lemma 4: As before let Q}(a) denote the conditional CDF of a given X; = X*.

Note that k >
e BlYalXi = X" [ m(XF, )@ (da)
my = D = D .

Also we have

= [ B0)Qide = LMED) [t Qi (de),

Then if there is ¢ and ¢ such that Xf = 7 and Xf =7z

Sk J m(z, 0)Q;(da) B [ m(z,a)Qj(da)

Also, if By < m(z,a)/D < By, then for each k,
D D
Then if there is ¢ such that X tk = T we have

SR

m

B, <

I m(z,a)Q(da)

(d
m’f—Bu_fm a)—Bu< 5

i D —Mké

—Bg:m?—Bg.

The second inequality in the statement of the theorem follows similarly.

Next, if A(a) has the same sign for all a and if for some k* there is ¢ and  such that
th“* =% and XF" = z, then sgn(A()) = sgn(uy+). Furthermore, since sgn(u;) = sgn(u-) is
then known for all k, if it is positive the lower bounds, which are nonpositive, can be replaced by
zero, while if it is negative the upper bounds, which are nonnegative, can be replaced by zero.
Q.E.D.
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Proof of Theorem 5: See text.

Proof of Theorem 6: Let Z;7 = min{zz;l (X =2)/T, Z?:l 1(Xit = z)/T}. Note that if
Zir > 0 then 1(A;7) = 1 for the event A;7 that there exists ¢ such that X;; = # and X;; = z. By
the ergodic theorem and continuity of the minimum, conditional on a; we have Zjp — b(oy) =
min{Pr(Xy; = #|a;), Pr(Xi = z|ay)} > 0. Therefore Pr(A;r|a;) > Pr(Zyr > 0|la;) — 1 for

almost all ;. It then follows by the dominated convergence theorem that
PI‘(AZ‘T) = E[PI’(AZT|OQ>] — 1.
Also note that Pr(A;p) =1—P% =3, 2 Pr— Y rci Pr, so that

e — ol < (Bu— Be)(P°+ > Pr+ Y Pr) — 0.Q.E.D.
kekK keK

Proof of Theorem 7: Let P; and Pk be as in equation (7). Since Xj1,..., X;r are i.i.d.

conditional on «; we have

Pl = PI“(XM == ZTZO):E[PI'(XM == ZTZO‘OQ)]
= B, Pr(Xye = 0lay)] = B[{1 - P(ai)}']-
Px = E[P(a)?].

The first bound then follows as in (7). The second bound then follows from P(«a;) <1 —¢ and
1— P (a;) <1—e. Now suppose that P(«;) =1 with positive probability. Then

Pr > E[1(P(e;) = 1) - P(a;)"] = Pr(P(ey) = 1) > 0.

Therefore, for all T" the probability P is bounded away from zero, and hence puy - pg or
oy = 1o-Q.E.D.

Proof of Theorem 8: The size of the identified set for the marginal effect is

fi—p, = max D! / [F (84 0)—F (a)]Qi(da)— min_ D! / [F (8 + a)—F ()]Qx(da),

QrEQkp,0EB QreQrs,0EB

where Qi ={Qr: [ L (Yj|Xk,oz,ﬂ) Qk (do) = Pji, j=1,...,J}. The feasible set of distribu-
tions Qg can be further characterized in this case. Let Fr(8,a) := (1, F(Xf3+a), ..., F(Xk3+
«)) and F; (3, «) denote the J x 1 power vector of Fr(3,a) including all the different products
of the elements of Fr(3,a), i.e.,

T

Fr(B,e) = (1, ... F(X18+ a), F(X{ B+ a)F(X58+ ), ..., [ [ F(XF B+ ).
t=1
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Note that £ (Y7|X*, a, 8) = H?Zl F(X[FB+ a)Ytj{l — F(X[FB+ a)}l_ytj, so the model probabil-
ities are linear combinations of the elements of F;(/3,«). Therefore, for Il = (Pix, ..., Pjx) we
have Qig = {Q : Ay [ Fs(8,a)Qk (da) = I}, where Aj is a J x J matrix of known constants.

The matrix Aj; is nonsingular, so we have:
Qrp = {Qk : /f}(@ a)Qy, (do) = Mk}7

where the J x 1 vector My = A;lﬂk is identified from the data.

Now we turn to the analysis of the size of the identified sets. We focus on the case where
k=1, 1ie., X*is a vector of zeros, and a similar argument applies to k = K. For k = 1 we have
that F(X}3 4 a) = F(a) for all ¢, so the power vector has only 7'+ 1 different elements given
by (1, F(a), ..., F(a)T). The feasible set simplifies to:

Qip = {Qk : /F(Oé)tQk (do) = My, t =0, ---,T},

where the moments My, are identified by the data. Here [ F(a)Qy (da) = My, is fixed in Qyg,
so the size of the identified set is given by:

A —f, =  max D1 /F (B+a)Qr(da)— min D71 /F (6 + a) Qr(da).

Qr€EQkp,BEB QreQrs,0€B

By a change of variable Z = F(a), we can express the previous problem in a form that is
related to a Hausdorff truncated moment problem:

1 1
T — 1, = DV [ hs(2)Gr(dz) — D—l/h G(d 26
T /0 o6 — s D7 [ ha)Gud. (20)

where Gg = {G}, fol 2Gr(dz) = My, t=0,..,T}, hg(z) = F(B+ F~1(2)), and F~! is the
inverse of F'.

If the objective function is r times continuously differentiable, hg € C"[0, 1], with uniformly
bounded r-th derivative, [[hj(2)[o0 < ﬁg, then we can decompose hg using standard approxi-

mation theory techniques as
hg(z) = P3(2,T) + Rg(z,T), (27)

where Pg(z,T') is the T-degree best polynomial approximation to hg and Rg(z,T) is the re-
mainder term of the approximation, see, e.g., Judd (1998) Chap. 3. By Jackson’s Theorem the

remainder term is uniformly bounded by

1Bz Dl < T2 (7Y Ry = 0 (177) (28)

as T — oo, and this is the best possible uniform rate of approximation by a T-degree polynomial.
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Next, note that for any G}, € Grs we have that fol Ps(z,T)Gi(dz) is fixed, since the first T’
moments of Z are fixed at Gg. Moreover, fol Pg(z,T)Gg(dz) is fixed at B if the parameter is
point identified, B = {3*}. Then, we have

1 1
. — = * T d — i * T d < Q;LT* = Tﬁr . 2
i = guase | R (2. T)Guldo) = min [ Ry (2. T)Gy(da) <205 = 0 (177). (29)

To complete the proof, we need to check the continuous differentiability condition and the
point identification of the parameter for the logit model. Point identification follows from Cham-

berlain (1992). For differentiability, note that for the logit model

g
ze
ha(z) = —
5(2) = 1=z (30)
with derivatives ,6’( ﬁ) .
e’ (1 —eP)
r = rl . 1
ﬂ(z) r [1 - (1 - 65)Z]T (3 )

These derivatives are uniformly bounded by Bg = 7l elfl(elfl — 1))"~! < oo for any finite 7.
Q.E.D.

Proof of Theorem 9: Consider the case where X* = (0,1), a similar argument applies to

X*¥ =(1,0). By Lemma 4 we have that the marginal effect j;, is identified by
e = P{Y = (0,1]X = (0,1)} — P{Y = (1,0)X = (0, 1)}. (32)
The probability limit of the fixed effects estimator for this marginal effect is

fn(B) = [2F(B/2) = 1][P{Y = (0,1)|X = (0, )} + P{Y = (L,0)|X = (0, )}].  (33)

The condition for consistency fix(3) = u is therefore

. P{Y = (0,1)|X = (0,1)}
F(B/2) = P{Y = (0,1)|X = (0,)} + P{Y = (1,0)|X = (0,1)}’ (34

but this is precisely the first order condition of the program (11). This result follows, after some
algebra, using that P{Y = (1,0)|X = (1,0)} = P{Y = (0,1)|X = (0,1)} and P{Y = (0,1)|X =
(1,0)} = P{Y = (1,0)|X = (0,1)}. Q.E.D.

Proof of Lemma 10: Let the vector of conditional choice probabilities for (Y!,....,Y/) be

Ek (B,Oé) = (Elk (ﬁ, Oé) s ...,,Cjk (ﬁ, Oz)), .

Let I'y(8) = {Lk (6, ) : a € C}. Note that, for each § € B, I';, () is a closed and bounded set
due to compactness of C. Now, let My, (3) denote the convex hull of T'y (3). By Lindsay (1995,
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Theorem 18, p. 112), it follows that there exists a unique £ (3) on the boundary of My (3)
that maximizes ijl Pjilog (Lji) over all (lig,...,ljk) € My (8). By Lindsay (1995, Theorem
21, p. 116), the solution £ (3) can be represented as

(/le B,a) Qy (da) , /Ejk (B, a Qk,@ (da)) )

where ng has no more than J points of support. Also, by 8 € B, we have that argmax,, .1, )eMm,(8) Z;-le Pii
satisfies /j; = Pj. Q.E.D.

Proof of Lemma 11: For 8 € B, let Qi3 = {Qk : [ L (Yj|Xk,a,ﬂ) Qr (do) = Pji,, J =

., J}. Let Qrp € Qgp denote some maximizing value such that

Note that, for any € > 0 we can find a distribution Q% € Qpp with a large number M > J of

support points (aq, ..., aps) such that
fips — €< D! /C[F (#6 +a) - F (6 + a)|QY, (da) < Tigg.

Our goal is to show that given such Q% it suffices to allocate its mass over only at most J
support points. Indeed, consider the problem of allocating (mg, ..., Tasx) among (aq, ..., apr) in

order to solve
M

max Z [F (284 am) — F (Z'8 + am) ] Tmk

(Trlk""vﬂ-Mk) m=1

subject to the constraints:
7ka >0, m=1,....,.M

Z T (Y71 XF, s B) = Pity = 1,0,

Z Tmk = L.
m=1

This a linear program of the form
max dm  suchthat 7>0, Ar=b, 1Un=1,
TeRM

and any basic feasible solution to this program has M active constraints, of which at most
rank (A) + 1 can be equality constraints. This means that at least M — rank(A) — 1 of active

constraints are the form m,,; = 0.7 Hence a basic solution to this linear programming problem

"See, e.g., Theorem 2.3 and Definition 2.9 (ii) in Bertsimas and Tsitsiklis (1997).

30



will have at least M — J zeroes, that is at most J strictly positive m,,;’s.® Thus, we have shown
that given the original Q% with M > J points of support there exists a distribution Qéﬁ € Qg
with just J points of support such that

figg—c < D! /C F (#+a)—F (26 + a)]QY, (da) < D! /C [F (#5 + 0)—F (#8 + 0)]Qk; (da) < Tixs.

This construction works for every ¢ > 0.
The final claim is that there exists a distribution Qﬁﬁ € Qg with J points of support

(a1, ..., ay) such that
frg =D [C[F (#B+a) — F(Z8+a)]Qks (da).
Suppose otherwise, then it must be that
Hrg > P — € 2 D! /(C[F (ZB+a)—F(z'8+ 04)]@5,3 (da),

for some € > 0 and for all Qﬁﬁ with J points of support. This immediately gives a contradiction
to the previous step where we have shown that, for any € > 0, i3 and the right hand side can

be brought close to each other by strictly less than €. Q.E.D.

Some Lemmas are useful for proving Theorem 12. For the proof of Theorem 12 we will
assume for simplicity of notation that the regressor only takes one value X* = (z1, 22) and drop
the dependence on k. We will also assume a two-period binary choice model with individual
location effect. The proof for the general case follows by an identical argument, but the notation
is more cumbersome.

The first Lemma establishes uniform consistency of % S L(Yi1,Yi2; 8,Q), as is useful for
showing consistency of B,,.

LEMMA Al: If Assumption 1 is satisfied then for Q equal to the collection of distributions

with support contained in a compact set C.

1 « 1
sup |= > L(Yia,Yiz; 8, Q) — E[L(Yir, Yig; 8, Q)]| = Opr <>
BEB,QEQ | i Vn
8Note that rank(A) < J — 1, since Z}I:l L (Yj|X’1“7 a,3) = 1. The exact rank of A depends on the sequence
X" the parameter 3, the function F' and T. For T = 2 and X binary, for example, rank(A) = J — 2 = 2 when
x1 =2, B =0, or F is the logistic distribution; whereas rank(A) = J —1 = 3 for X¥ # X% 8 +# 0, and F is any

continuous distribution different from the logistic.
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Proof: Note that

;gum,m;ﬁ,@)

1%%%-M<
+ fZYll 1—Yi)
+ 72 (1—Yi)Ya
+ —Z (1Y) (1Y)

F@W+aﬂﬂ%ﬂ+@@@®)

kg(/F@w+aM1—F@w+a»me>
kg(/@—ﬁ%ﬂﬁ+®)F@ﬂHﬁOQ@@>

l%</@—F@W+aD@—F@%+aDQM®>

and
E[L(Ya1,Yi2; 8,Q)]
= Enanﬂ4%(/?%%ﬂ+®ﬁw%ﬂ+aw9wm>

+B[Ya (1= V)] tog ([ F (515 +0) (1= F (55+ ) Qda)
+EI = Y)Yl dog ([ (1 F (@404 ) F (544 ) Q do) )
+EI = V) (1= Yol o ([ (1= F (@404 0) (1= F (a5 +)) Qo))

Further note that %Z?:l YinYie = E [YaYie] + Op (ﬁ), etc. Therefore, the requisite uniform

convergence with rate O, (ﬁ)

A, = sup
BeB,QeQ | T

ZL 1, Yi2:3,Q) — E[L( il,Y;‘%ﬂaQ)]‘ =0p <\}ﬁ>

follows, provided
log </F (218+ ) F (2564 a) Q (da)) log (/F (218+a)(1-F (258 + ) Q (da)> ,

bg(/@—ﬁ%%ﬁ+aDF@yﬂwﬂQum> k%</@_pw@g+@)@_fm@g+@)gu®/

are bounded, which in turn is implied by Assumption 1. Q.E.D.

)

Y

From Lemma Al, we obtain one-sided uniform convergence:

LEMMA A2: If Assumption 1 is satisfied then

sup — ZL il Z27ﬂ7Q)_SupE[L(}/il,}/;Q;ﬁ7Q)] :Op* <
QeQn i=1 QeQ

Si-
N~—"7

sup
BB
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Proof: Define
Q*(B) € arg sup — ZL i, Y 8,Q), QF(B) € argsup E[L (Yir, Yiz; 8, Q)]
QeQ n i=1 QReQ

By definition of Q*(3) and Q% (3), we have uniformly in 3 and for all n,
LS 1V Vo 8. OF(3)) v 3. 0%
n;L(EI7E27ﬁ7Q (ﬁ)) E[L (El?YtLZ?ﬁvQ (/8)):|

< iiL(Yﬂ,Yb;ﬁ’ Q (B) - E [L (Yil’YiQ;ﬁ’ Q#(ﬁ)ﬂ

IN

—ZL 0. Y1 5,Q%(9)) — E (L (Yir, Yo 5.Q* ()]

Hence

iiL (Yo, Yie: B,Q%(B)) — E [L (YibYéz;ﬁ, Q#(ﬁ))}

i=1

can 0 ()

uniformly in 3, where A,, was defined in (35). Because A, = O, (
result. Q.E.D.

T)’ we obtain the desired

LEMMA A3: If Assumption 1 is satisfied then maxgeq E (L (Yi1, Yio; 8, Q)] is continuous in
3.
Proof: The problem

glgéE[L (Yi1,Yi2; 8, Q)]

can be rewritten as

max ijlog Za Y| X, my B) Tom |

(011: :OZJ 1
(150 aWJ)ESJ

where J = 4, P; = Pr(Y; = Y7) and S denotes the unit simplex in R’. Here, (aq,..., a;) and
(m1,...,ms) characterize a discrete distribution with no more than J points of support. Because
the objective function is continuous in (3, a1,...,as,p1,...,ps), and because C x S is compact,
we can apply the Theorem of the Maximum (e.g. Stokey and Lucas 1989, Theorem 3.6), and
obtain the desired conclusion. Q.E.D.

Proof of Theorem 12: If B is a singleton the result follows by the uniform convergence of
the profile objective function from Lemma A2 and the continuity of the limit objective function

from Lemma A3. The proof for case where B is not a singleton consists of two parts.
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PART 1: The first part of the proof modifies slightly the argument of Manski and Tamer
(2002) for the present context. Define

1 n
L = supsup—ZL(Yi17Yi2;ﬁ7Q)7
BeB QeQ M i

1 n
L* = i f - L Y; 7Y; 7 ) 9
. 52322%71; (Yi1,Yi2; 8,Q)
L* = Sup sup E [L (Yvila }/7,2a /67 Q)] = Sup sup E [L (Y;h YZQ; ﬂa Q)] )
BEB QEQ BEB QEQ
1 n
Ay = sup | L(Ya,Yi8,Q) —E[L(Y;hm;ﬂ,cm‘. (35)
BEB,QEQ | M T

Note that supgeq £ [L (Yi1, Yie; 3, Q)] is constant over B by definition, which implies that

L* = inf sup E [L (Yil; }/12’ /Bv Q)]
BeB QeQ

Therefore, we obtain

1 n
L} —L* = |inf sup — L (Y;1,Y59;8,Q) — inf sup E[L (Y;1,Y;9; 5,
| n | ﬁGBQe%n; ( il, £42 ﬁ Q) ﬁGBQe% [ ( ily £42 B Q)]‘
1 n
< sup |sup — > L (Yi,Yig; 3,Q) — sup E[L (Ya, Yi; 8, Q)]
BeB |QeQ M QeQ
1 n
S sup 7ZL(E17K27/87Q)_E[L(E17E27/87Q>] :ATL
BEB,QEQ | T

Also note that

_ 1 &
‘L:; - L*‘ = [Sup sup — ZL (Elaﬁ?aﬁa@) — sSup sup E [L (EI7Y£2;/Ba Q)]
BeEBQEQ M i BEB QEQ

<Ay

It follows that
Ly — Li| < |Lh = L*| + L — L*| < Ap + Ay =24,

Suppose now that b € B. Note that

1 & _ 1 & _
L —sup =S L (Yiy,Yio:b,Q) < L* — inf sup =Y L (Y1, Yio: 3,Q) = L* — L*
. Zlé%n; (Yi1,Yi2;0,Q) < L, BlrelBglé%n; (Yi1, Yiz; 5, Q) n— Ly

Therefore, if ¢, > L — L, then we have L} — SUPQe % Yo L(Yi1,Yi2:0,Q) < €y, or
be B,

by definition of B,. In other words, e, > L} — L¥, then ¢, > L} — L, inf, ¢p, |bn — b = 0.

Because the choice of b was arbitrary, we can conclude that

sup inf |b, —b| =0
begbnGBn’ " |
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if €, > LY — L*. Because ¢, > 2A,, with probability converging to one due to Lemma A2 and

the choice of €y, it follows that sup,cp infy,ep, |bn, — b| = 0 with probability converging to one.”

PART 2: Define

B(e) = {ﬁ L7 —sup E[L (Y, Yi2; 8, Q)] < e}
QeQ

It suffices to show that B,, C B(e) with probability converging to one. This is because it would
imply infyep |by, — b] < (€) for (b, € By,), which implies

inf |b, — b| < d(e),
Sup fnf | | <d(e)

with probability converging to one. Here d(€) that can be made arbitrarily small by making
¢ sufficiently small by continuity of supgeq £ [L (Yi1, Yiz; 3, Q)] in 8, which was established in
Lemma A3. This would prove that sup, g infyep |b, —b] = op(1).

It remains to show that, for any ¢ > 0, we have B,, C B(e) with probability converging to

one. For this purpose it suffices to show that

sup [L* — sup E[L (Y1, Yio; 3, Q)]] <e

BEBn QeQ
Note that
_ 1 &
sup | L* — sup E[L (Y1, Yie; B, Q)] | — sup | Ly, — sup — > L (Y1, Yiz; 5, Q)
BEBy, QeQ BEBy, QeQ M i
_ 1 &
S sup L*—SUPE[L(El,EQ,ﬂ,Q)] - LZ—SUP*ZL(KLX/;Q’ﬁ,Q)
BEBy QeQ QeQ M
* T * 1 -
< |L*—Li| + sup [sup = > L(Yi1,Yie; 8,Q) — sup E[L (Y1, Yia; 8, Q)]
BeBn |QEQ T 1 QeQ
< 20,

By definition of the level set B,,, we have

sup
BEBn

_ 1 <&
L — — L (Y;1,Y0; < €.
n gg%n; ( il z%ﬂy@)] > €p

It follows that

sup
BEB,

L* — ZH%E [L (Yi1, Yi2; B, Q)]] <en+ 24,
€

9The “probability” here actually means the inner probability. We ignore such measure theoretic subtlety in

this paper.
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By Lemma A1 and choice of €, we have €, +2A,, < € with probability converging to one, which

shows the requisite claim. Q.E.D.

Proof of Corollary 13: The results follows from Theorem 12 and the continuous mapping

theorem. Q.E.D.
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Table 1: Biases of linear probability model estimators in percentage of marginal
effect (average probability of the response in parenthesis)

Px
0.5 0.1 09

T B p B p By B

2 34.63 34.63 -91.20 -91.20 -31.07 -31.07
(0.60) (0.45) 0.77)

4 12.77 991 -61.52 -59.77 20.52 25.32
0.61) 0.47) (0.75)

8 5.76 0.74 -33.16 -20.40 19.90 30.38
(0.62) (0.49) (0.74)

Notes: probit model with a single binary regressor with parameter equal to one. The individual
effect is the standardized mean of the regressor. B, is the probability limit of the linear fixed
effects estimator with constant slopes and B is the probability limit of the average of the linear
fixed effects estimators with individual specific slopes.
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Table 2: Descriptive Statistics for NLSY79 sample

(n =1,587)
Variable Mean Changes (%)

LFP1990 0.75

LFP1992 0.74 0.17
LFP1994 0.75 0.28
LFP1996 0.76 0.35
kids1990 0.38

kids1992 0.35 0.31
kids1994 0.45 0.51
kids1996 0.21 0.60

Notes: LFP - 1 if woman is in the labor force, 0
otherwise; kid - number of children of age less than 3.
Changes (%) measures the proportion of women who
change status between 1990 and the year
corresponding to the row.
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Figure 4: Logit model (T = 2). Identification sets for marginal effects and probability limits of

fixed effects estimators.

47



X =(0,0,0) X=(0,0,1)

— True — True
0 | .-++ GM-Bound 0 | NPMLE
© NPMLE © - - FEMLE
FEMLE
X o X o
2 A ¥ 2
[Te] [Te]
o o
I I
[ [ [ [ [ [ [ [ [ [ [ [ [ [
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
Bo Bo
xK = (1,1,2) Average
— True — True )
w | -+ GM-Bound v | -+ GM-Bound
© NPMLE © NPMLE
- - FEMLE FEMLE
X o o o
3 o | 3 o |
[Te] [Te]
o o
] I
[ [ [ [ [ [ [ [ [ [ [ [ [ [
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
Bo Bo

Figure 5: Logit model (T = 3). Identification sets for marginal effects and probability limits of

fixed effects estimators.
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Figure 10: Probit model (T = 2). Identification sets for marginal effects and probability limits

of fixed effects estimators.
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Figure 11: Probit model (T = 3). Identification sets for marginal effects and probability limits

of fixed effects estimators.
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Figure 12: Probit model (T = 4). Identification sets for marginal effects and probability limits

of fixed effects estimators.
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