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Abstract

Behavioral choice models generate inequalities which, when combined with addi-

tional assumptions, can be used as a basis for estimation. This paper considers two

sets of such assumptions and uses them in two empirical examples. The second exam-

ple examines the structure of payments resulting from the upstream interactions in a

vertical market. We then mimic the empirical setting for this example in a numerical

analysis which computes actual equilibria, examines how their characteristics vary with

the market setting, and compares them to the empirical results. The final section uses

the numerical results in a Monte Carlo analysis of the robustness of the two approaches

to estimation to their underlying assumptions.

∗This is a revised version of part of my Fisher-Schultz Lecture presented at the World Congress of the
Econometric Society in London, August 2005. The paper draws extensively from past interactions with my
students and coauthors, and I would like to take this opportunity to express both my intellectual debt and
my thanks to them. I like to think they enjoyed the experience as much as I did, though that might have
been harder for the students in the group. For help on this paper I owe a particular debt to Robin Lee. I
also thank three referees and the editor, Daron Acemoglu, for their helpful comments.
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Behavioral choice models generate inequalities which, when combined with additional

assumptions, can be used as a basis for estimation. This paper considers two sets of as-

sumptions which suffice and uses them in two examples which have been difficult to analyze

empirically. In doing so we distinguish between the assumptions needed to estimate the

“structural” parameters defined by the primitives of the choice problem and the “reduced

form” coefficients obtained from regressing profits on variables of interest.

I begin with a single agent discrete choice problem; a consumer’s decision of which su-

permarket to shop at. This provides a transparent setting to illustrate the assumptions

underlying alternative estimators and motivates the more formal discussion in the rest of

the paper. The difficulty in analyzing this example arises from the size of its choice set;

all possible bundles of goods at “nearby” locations. Its importance stems from the need to

analyze similar problems to understand the implications of alternative local policies (zoning

laws, public transportation alternatives and the like).

Section 2 of the paper formalizes two sets of assumptions that take one from the choice

model to an estimation algorithm. This is done in a multiple agent setting (with the single

agent simplifications noted). The first approach is labeled the generalized discrete choice

approach as it generalizes familiar discrete choice theory to allow for multiple interacting

agents. The ideas behind this approach date to Tamer (2003), and are developed in more

detail in papers by Ciliberto and Tamer (2007) and Andrews, Berry and Jia (2007). It was

first considered in the context of analyzing two stage entry games, but is easily adapted to

other multiple agent problems.

The second approach is based upon the inequalities generated by the difference between

the expected profits from the choice made and those from an alternative feasible choice; so

we refer to it as the “profit inequality” approach. It is preceded by the first order (or Euler)

condition estimators for single agent dynamic models provided in Hansen and Singleton

(1984) and extended to incorporate transaction costs, and hence inequalities, by Luttmer

(1996). The approach considered here is a direct extension of the work in Pakes, Porter,

Ho and Ishii (2007) who provide assumptions that enable us to take “revealed preference”

inequalities to data (for related work on revealed preference in demand analysis, see Varian,

1982, and in the analysis of auctions, see Haile and Tamer, 1996). The two approaches are
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not nested and a comparison of their assumptions closes this section.

Section 3 applies the frameworks developed in Section 2 to the analysis of markets in

which a small number of sellers interact with a small number of buyers. This is typical of

upstream interactions in many vertical markets; markets where sellers re-market the goods

they buy to consumers. A difficulty in analyzing them is that the contracts that establish the

buyers’ costs are typically proprietary, and these costs determine both the prices the buyer

charges to consumers and the sellers’ investment incentives. Costs are also often proprietary

in consumer goods markets. However because there are many consumers in those markets

we typically assume a Nash in price (or quantity) equilibrium in them. Then the first order

conditions from that equilibrium can be used to back out marginal cost. The analogous

procedure for vertical markets leads us to moment inequalities: we observe who contracts

with whom and ask what features must the buyer’s cost functions have for each agent to be

doing better under the observed set of contracts than what they could have expected from

changing their contracting behavior.

The section begins by extending the empirical work of Ho(2009 ) which characterizes

cost functions in HMO-hospital networks. It shows that her approach can be extended to

allow for disturbances that are known to the agents when they make their decisions but not

to the econometrician. It then compares the empirical results she obtains to those obtained

once we allow for these disturbances. Next we compute equilibria for markets similar to

those used in the empirical analysis. The numerical results allow us to both investigate the

consistency of the empirical results with those obtained from an equilibrium computation,

and to engage in a more general examination of the correlates of equilibrium markups.

Section 4 uses the data underlying the numerical results of Section 3 in a Monte Carlo

analysis of the two approaches to estimation introduced in Section 2. It focuses on the

behavior of the two estimators when one or more of the assumptions needed to derive their

properties is violated. At least in our example the estimators were robust to all assumptions

but that on form of the disturbance distribution required only for the generalized discrete

choice model1.

1Since the theoretical restrictions brought to data are moment inequalities, they typically lead to set
valued estimators. Methods of inference for set valued estimators are an active and important area of
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1 A Motivating Example.

I begin with a single agent example taken from an unpublished thesis by Michael Katz

(2007; I thank him for permission to use it). Katz’s goal was to estimate the costs shoppers

assign to driving to supermarkets. Transportation costs are central to understanding store

location decisions and hence to the analysis of the impact of regulations (e.g. zoning laws)

and policy changes (e.g. public transportation projects) on retail trade. They have been

difficult to analyze empirically with traditional discrete choice models because of the size and

complexity of the choice set facing consumers (all possible bundles of goods at all “nearby”

stores). In contrast large choice sets facilitate moment inequality estimators, as they give

the empirical researcher a greater ability to chose a counterfactual that is likely to isolate

the effect of interest (here the cost of travel time).

Assume that the agents’ utility functions are additively separable functions of the utility

from the basket of goods the agent buys, expenditure on that basket, and drive time to the

supermarket. The agent’s decision, say di, consists of buying a basket of goods, say bi, at

a particular store, say si, so di = (bi, si). If zi represents individual characteristics, U(bi, zi)

and dt(si, zi) provides individual i′s utility from bi and drive time to si, respectively, and

e(bi, si) is the expenditure required to buy bi at si, then the agent’s utility from (bi, si) is

π(di, zi, θ) = U(bi, zi)− e(bi, si)− θidt(si, zi), (1)

where I have normalized the coefficient on expenditure to one so θi, the dis-utility of a unit

of drive time, is in dollars.

To proceed using moment inequalities we need to compare the utility from the choice

the individual made to the utility from a choice the individual could have made but chose

not to. This is a sample design question as it determines what variance is used to estimate

the parameter. For a particular di we chose the alternative, say d′(di), to be the purchase

of; (i) the same basket of goods, (ii) at a store which is further away from the consumer’s

home then the store the consumer shopped at. Note that, given the additive separability

assumption, this choice differences out the impact of the basket of goods chosen on utility;

econometric research that I do not discuss here; see, in particular, Chernozhukov, Hong and Tamer (2006),
Andrews and Soares (2010), and the papers cited above.
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i.e. it allows us to hold fixed the dimension of the choice that is not of direct interest and

investigate the impact of travel time in isolation.

Assume the agent makes its choice of store by maximizing its expected utility (equation

1) conditional on the information at its disposal when it chooses the store to shop at. We

denote the agent’s expectation operator by E(·) and its information set by Ji. Note that

when the agent makes this choice the goods that will be bought at the store are a random

variable, say b, as are their prices and hence total expenditure e(·). If the bundle bought

at the chosen store could have been bought at the alternate store then (s′, b′i), where b′i

is what would have been bought had the agent gone to s′, is preferred over (s′i, bi). Since

si was preferred over s′i, transitivity of preferences insures that if, for any function f(·) ,

∆f(d, d′, ·) ≡ f(d, ·)− f(d′, ·)

E
[
∆π(b, si, s

′
i, zi)|Ji

]
= E

[
−∆e(b, si, s

′
i)− θi∆dt(si, s

′
i, zi))|Ji

]
≥ 0.

We let ν1,i,s,s′ be the difference between realized and expected utility, i.e.

ν1,i,s,s′ ≡ ∆π(b, si, s
′
i, zi) − E

[
∆π(b, si, s

′
i, zi)|Ji

]
and consider two different assumptions on the distribution of the θi.

Case 1. Assume θi = θ0, or more generally, that all determinants of the costs of drive time

are observed and incorporated in the econometrician’s specification. Letting →P denote

convergence in probability, then since ∆dt(si, s
′
i, zi) < 0

N−1
∑

i

ν1,i,s,s′ →P 0, implies −
∑

i ∆e(bi, si, s
′
i)∑

i ∆dt(si, s′i, zi)
→p θ ≤ θ0. (2)

To obtain an upper bound for θ0 consider an alternative store (s′′i ) which was closer to

the individual. An analogous argument shows

N−1
∑

i

ν1,i,s,s′′ →P 0, implies −
∑

i ∆e(bi, si, s
′′
i ))∑

i ∆dt(si, s′′i , zi)
→p θ ≥ θ0. (3)

I.e. provided the average of the expectational errors converge to zero, equations (2) and (3)

give us asymptotic bounds for θ0.
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Case 2. Now assume that there is a determinant of the cost of drive time that the agent

knows but is not observed by the econometrician, i.e. θi = (θ0 + ν2,i), where
∑
ν2,i ≡ 0 , so

θ0 is the mean cost of drive time. Then our inequality becomes

E
[
∆e(bi, si, s

′
i)− (θ0 + ν2,i)∆dt(si, s

′
i, zi)|Ji

]
≥ 0.

Now assume the agent knows drive time in deciding where to shop, or ∆dt(·) ∈ Ji. Then

1

N

∑
i

∆dt(si, s
′
i, zi)

−1ν1,i,s,s′ →P 0, which implies
1

N

∑
i

(
∆e(bi, si, s

′
i)

∆dt(si, s′i, zi)

)
→P θ ≤ θ0.

(4)

An analogous upper bound to θ0 is generated by choosing an alternative whose drive time

is less then that of the chosen store.

Discussion. Case 1 uses a ratio of averages to bound the parameter of interest while case

2 uses the average of a ratio. The following points should be kept in mind.

Case 1 vs. Case 2. Case 2 allows for unobserved heterogeneity in the coefficient of interest

and does not need to specify what the distribution of that unobservable is. In particular the

unobservable can be freely correlated with the right hand side variable. “Drive time” is a

choice variable, so we might expect it to be correlated with the perceived costs of that time

(with ν2,i). If it is then Case 1 and Case 2 estimators should be different, otherwise they

should be the same. So there is a test for whether any unobserved differences in preferences

are correlated with the “independent” variable, and that test does not require us to specify

a conditional distribution for ν2,i. Similar issues arise in analyzing the choice of a durable

good when there is an intensity of use decision that follows the choice of the durable (for a

classic example see Dubin and McFadden,1984).

Behavioral Conditions. This is a “two-stage” model with uncertainty; an initial choice

of where to shop is made before knowing what prices are, and a choice of what to buy is

made after arriving at the store. Note, however, that we did not have to specify either the

information on prices the agent had at its disposal when it made its initial decision, or

the form of the agent’s prior price distribution conditional on that information. These are

objects econometricians seldom have access to.
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Conditions on the Choice Set. All we required of the choice set was one feasible alter-

native. In particular we did not need to specify and compute returns for the many possible

“inside” choices and we did not need to specify an “outside” alternative.

Finally note that our focus on the drive time coefficient lead us to chose an alternative

that differenced out any heterogeneity in preferences over bundles of goods. If instead we

were interested in the utility of a particular good we would compare baskets with and without

that good at the same store. If we had multiple observations on the same individual there

are many more (largely unexplored) possibilities.

1.1 Estimates from the Inequality and A Comparison Model.

Katz (2007) estimates his model using the Nielsen Homescan Panel, 2004, for household

expenditures and data from Retail Site Database of TradeDimensions for the characteristics

of stores. He uses the shopping trips of about 1,300 families in Massachusetts and surrounding

counties, and compares the results that use inequalities to the results that he obtains from

estimating a discrete choice comparison model.

The Comparison Model. To obtain the econometric implications of a behavioral model

of supermarket choice we would (i) specify the agent’s prior distribution of prices at each

store, (ii) compute the bundle of goods the agent would buy for each possible realization of

the price vector at the store and (iii) form the expected utility of going to the store. These

are demanding tasks. Similar considerations lead most (though not all, see below) analysis

of single agent discrete choice problems to reduced forms. The reduced form can be given

an appealing interpretation by constructing it from the regressions of expected returns from

each choice on variables of interest. If we then make a sufficiently powerful assumptions on

the joint distribution of the regressions function disturbances, the functions themselves can

be estimated. It is the fact that an analogous reduced form is not useful in multiple agent

problems that lead to the generalized discrete choice model considered below.

Unfortunately this reduced form can not be used in the supermarket choice problem

without first reducing the dimension of the choice set. Katz assumes the number of weekly

visits made to supermarkets is distributed as a Poisson random variable. At each visit the
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consumer chooses between ten expenditure bundles at each of the outlets within a given

radius of its home. The utility function for a given expenditure bundle and store is allowed

to differ with the number of shopping trips per week, but for a fixed number of trips is

given by equation (1) augmented with an additive “logit” error. The expenditure bundles

are constructed from typical purchase patterns for a given amount of expenditure which are

then priced at each outlet (giving us the expenditure level for each choice)2.

There are a number of reasons to doubt the estimates from this model. I focus on those

directly related to the price and drive time variables. First the prices for the expenditure

class need not reflect the prices of the goods the individual actually is interested in. So

there is an error in the price variable and if the individual shops at stores where the goods

they are interested in are less costly, that error is negatively correlated with the price itself.

Second the model does not allow for expectational errors. So agents are assumed to know all

relevant prices when store choice decisions were made (and there are a lot of them). Finally

the model does not allow for unobserved heterogeneity in the aversion to drive time. One

could allow for a random coefficient on drive time and integrate it out but this would require

an assumption on the conditional distribution for that variable, and given that the aversion

to drive time is likely to be related to drive time per se, a traditional random coefficient

assumption would be suspect.

Results. The specifications used for the models estimated were quite detailed; the compar-

ison model estimated about forty different parameters for each of three different number of

visits per week, while the revealed choice model estimated about fifteen. Both models were

estimated with specifications that included outlet characteristics and interactions between

expenditure and demographics; so the aversion to drive time varied with observed individual

characteristics. Like the original paper I focus on the estimates of the median (of the mean)

aversion to drive time.

The multinomial comparison models were estimated using maximum likelihood. The

median aversion to drive time was estimated at two hundred and forty dollars per hour. The

2For a discussion of alternative ways of building reduced forms for supermarket discrete choice problems
and an application; see Beckert et. al.,2009.
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median wage in the region was seventeen dollars an hour, so this estimate is implausibly

high. Also several of the other coefficients had the “wrong” sign.

The inequality estimators were obtained from differences between the chosen store and

four different counterfactual store choices (chosen to reflect price and distance differences

with the chosen store). Each comparison was interacted with positive functions of twenty

six “instruments” (variables that were assumed to be mean independent of the expectational

errors), producing over a hundred moment inequalities. As is not unusual for problems with

many more inequalities than bounds to estimate, the inequality estimation routine generated

point (rather than interval) estimates for the coefficients of interest (there was no value of

the parameter vector that satisfied all of the moment inequalities). However tests indicated

that one could accept the null that this result was due to sampling error.3

The inequality estimators that corresponded to case 1 above, i.e. those that did not allow

for unobserved heterogeneity in the drive time coefficient, produced median aversions to drive

time of about four dollars per hour. The estimators that corresponded to case 2 above, the

case that did allow for heterogeneity in the drive time coefficient, generated estimates of

the median aversion to drive time that varied between sixteen to eighteen dollars per hour,

depending on the specification. The difference between the two estimators is consistent with

their being unobserved heterogeneity in the drive time coefficient that is negatively correlated

with drive time itself; a result one would expect from a model where drive time itself was a

choice variable. Moreover in the model which allowed for heterogeneity the other coefficients

took on values which accorded with intuition.

3The finding that there is no value of the parameter vector that satisfies all the inequalities is not unusual
in moment inequality problems with many inequalities. Consider the one parameter case. When there are
many moment inequalities there are many upper and lower bounds for that parameter. The estimation
routine forms an interval estimate from the least upper and the greatest lower bound. The approximate
normality of finite sample means implies that in finite samples the least upper bound will have a negative
bias and the greatest lower bound will have a positive bias. So the two can easily cross. The test is a test
of whether such crossings could have been a result of sampling error.
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2 Conditions For Moment Inequality Estimators.

This section provides two sets of conditions that can be used to justify moment inequality

estimators in more general (both multiple and single agent) settings. For each of the two

approaches we consider estimation of both the parameters of the underlying behavioral model

and a “reduced form” constructed by regressing expected profits on variables of interest.

Each approach is defined by four assumptions, two of which are common across approaches

and two differ. I begin with the two common assumptions.

2.1 Common Assumptions.

The first condition is that agents expect their choice to lead to higher returns than alternative

feasible choices. Let π(·) be the profit function, di and d−i be the agent’s and its competitors’

choices, Di be the choice set, Ji be the agent’s information set, and E be the expectation

operator used by the agent to evaluate the implications of its actions. We assume

C1 : supd∈Di
E [π(d,d−i,yi, θ0)|Ji] ≤ E [π(di = d(Ji),d−i,yi, θ0)|Ji],

where yi is any variable (other than the decision variables) which affects the agent’s profits,

and the expectation is calculated using the agent’s beliefs on the likely values of (d−i,yi).

Throughout variables that the decision maker views as random will be boldface while real-

izations of those random variables will be represented by standard typeface.

Three points about C1 are central to what follows. First, there are no restrictions on

either the choice set or the objective function. In particular the objective function need

not be concave in d, D could be discrete (e.g.’s; a choice among bilateral contracts, ordered

choice, . . .) or continuous (e.g., the choice of the location and size of a retail outlet), and

when continuous di can be at a corner of the choice set. Second, C1 is a necessary condition

for a best response. As a result, were we to assume a Nash equilibrium C1 will be satisfied

regardless of the equilibrium selection mechanism. Finally note that C1 is meant to be a

rationality assumption in the sense of Savage (1954); i.e. the agent’s choice is optimal with

respect to the agent’s beliefs. In itself it does not place any restrictions on the relationship

10



of those beliefs to the data generating process. We will need to restrict beliefs to evaluate

estimators, but the restrictions used differ between the two approaches to estimation.

Both approaches require a model capable of predicting what expected profits would be

were the agent to deviate from its observed choice. This is the sense in which both require a

“structural” model. To predict what expected profits would be from a counterfactual choice

we need to model what the agent thinks that yi and d−i would be were it to change its own

decision. For example consider a two period model to determine the number of outlets (di)

a retailer builds. Returns from the choice of di will be a function of post entry prices (which

are in yi) and the number of competing outlets (d−i). If either of these are likely to change

when di is changed to d′ we need a model of that change in order to construct the firm’s

profits from its counterfactual choice. C2 formalizes this requirement.

We say yi and/or d−i are endogenous if they change in response to a change in di. zi

will represent a set of exogenous variables, i.e. variables whose distributions do not change

in response to changes in di. Then our second condition is

C2 : yi = y(zi, d,d−i, θ), and d−i = d−i(d, zi, θ), and the distribution of zi conditional

on (Ji, di = d) does not depend on d.

In words C2 states that if either yi or d−i is endogenous we need a model for its response

to changes in di, and the model must produce a value for the endogenous variable which

depends only on decisions and exogenous variables. The condition that the distribution of

zi does not depend on the agent’s choice is what we mean when we say that zi is exogenous.

The restrictiveness of C2 will vary with the problem. In single agent problems profits do

not depend on d−i and the agent’s decision is typically not thought to effect environmental

conditions so yi is exogenous. Then C2 is unobjectionable. In multiple agent simultaneous

move games d−i(d 6= di, zi, θ) = d−i, so there is no need for an explicit model of reactions by

competitors, but yi often contains price and/or quantity variables which are endogenous. If,

in a sequential move game, we want to consider counterfactuals for agents who move early,

we need a model for the responses of the agents that move later (for d−i)
4.

4Often it is natural to write that model recursively, so that each agent’s decision depends on the decisions
of the agents who move prior to it. The fact that we allow for sequential games explains the difference
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Implications of C1 and C2. Let d′ ∈ Di and define

∆π(di, d
′, d−i, zi, θ0) ≡ π(di, d−i, yi, θ0)− π(d′, d−i(d′, z), y(zi, d

′, d−i), θ0).

Then together C1 and C2 imply the inequality

E [∆π(di, d
′,d−i, zi, θ0)|Ji] ≥ 0, ∀ d′ ∈ Di. (5)

To move from (5) to a moment inequality we can use in estimation we need to specify

• a measurement model which determines the relationship between the π(·, θ) and (zi, di, d−i)

that appear in the theory and the measures of them we use in estimation, and

• the relationship between the expectation operator underlying the agents decisions (our

E(·)) and the sample moments that the data generating process provides.

These are the two aspects of the problem which differ across the two approaches. We

begin with a measurement model which nests both their assumptions.

2.2 Measurement Model.

Let r(d, d−i, z
o, θ) be the profit function specified by the econometrician up to an additively

separable disturbance (so the zo are observed), and define ν(·) to be the difference between

the profit function the agent responds to and this specification, so that

r(d, d−i, z
o
i , θ) ≡ π(d, d−i, zi, θ) + ν(d, d−i, z

o
i , zi, θ). (6)

The agent’s decision is based on E [π(·)|Ji]. We observe r(·) and have constructed ν so

that E [r(·)|Ji] = E [π(·)|Ji] + E [ν(·)|Ji]. It follows that

r(d, d−i, z
o
i , θ) ≡ E [π(d,d−i, zi, θ)|Ji] + ν2,i,d + ν1,i,d, (7)

where

ν2,i,d ≡ E [ν(d,d−i, z
o
i , zi, θ)|Ji],

between our C2 and Assumption 2 in Pakes et. al., 2006. The buyer-seller network example in the next
section is sequential and illustrates the types of assumptions needed to model d−i.
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and

ν1,i,d ≡
(
π(d, ·)− E [π(d, ·)|Ji]

)
+
(
ν(d, ·)− E [ν(d, ·)|Ji]

)
.

Equation (7) expresses the difference between the researcher’s specification of profits

(i.e. r(·)) and the function the agent bases its decision on (i.e. E [π(·)|Ji]) as a sum of

three components; two of which I have grouped together into ν1. The grouping was done

because, when evaluated at θ = θ0, they both are “mean independent” of Ji under the

agent’s expectation operator (under E) by construction. ν2 does not share this property and

it is this distinction which forces us to keep track of two separate disturbances below. The

relative importance of the two disturbances will differ with the application.

Sources of ν1. ν1 is a sum of two terms. π(d, ·) − E [π(d, ·)|Ji] provides the difference

between the agent’s expectation of profits at the time the agent makes its decision and the

realization of profits. In single agent problems it is solely a result of uncertainty in the

exogenous variables whose realizations help determine returns (in the supermarket example,

the uncertainty in the prices). In multiple agent problems their may also be uncertainty

in d−i. In either case to compute the distribution of π(d, ·) − E [π(d, ·)|Ji] we would have

to specify the probabilities each agent assigns to different outcomes conditional on their

information sets (objects we often know little about). In order to compute the distribution

of ν1 in the multiple agent case we would also have to solve for an equilibrium conditional

on all possible realizations of d−i. This would both be computationally burdensome and

require an assumption that selects among possible equilibria. The second component of

ν1, ν(d, ·) − E [ν(d, ·)|Ji] results from either measurement error in observables or from a

specification error in r(·) that is mean independent of Ji. Note that such a “specification”

error occurs when r(·) is formed by regressing the true profit function onto variables of

interest to obtain a “reduced form” whose coefficients become the focus of investigation.

Sources of ν2. ν2 is defined to equal that part of profits that the agent can condition on

when it makes its decisions but the econometrician does not include in the specification. So

though it is not known to the econometrician, ν2,i ∈ Ji, and since di = d(Ji), di will generally

be a function of ν2,i. In the supermarket example ν2,i has two components; the utility from
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the goods bought (the U(bi, zi) in equation 1) and, in case 2, the differences between the

individual’s and the average drive time coefficients (θi − θ0). In multiple agent problems di

might also be a function of ν2,−i.

Selection. We can now explain the selection problem in behavioral models. Assume that

x is an“instrument” in the sense that E [ν2|x] = 0, and, in addition, that x ∈ J . Then

E [ν1|x] = E [ν2|x] = 0.

These expectations do not, however, condition on the decision actually made (our di), and

any moment which depends on the selected choice requires properties of the disturbance

conditional on the di the agent selected. Since di is measurable σ(Ji), and ν1 is mean

independent of any function of J

E [ν1,i,d|x, d] = 0, however E [ν2,i,d|x, d] 6= 0.

As a result the sample average of x and the residuals will typically not be zero when θ = θ0,

the condition we generally require of an “instrument”.

To see why E [ν2,i|x, d] 6= 0 consider a single agent binary choice problem ( di ∈ {0, 1}).
Then di = 1 implies

E [∆π(di = 1, d′ = 0, ·)|Ji] = E [∆r(di = 1, d′ = 0, ·)|Ji] + ∆ν2,i ≥ 0,

where ∆ν2,i = ν2,i,d=1 − ν2,i,d=0. So for every agent with di = 1

∆ν2,i > −E [∆r(di = 1, d′ = 0, ·)|Ji].

If xi is correlated with E [∆r(di = 1, d′ = 0, ·)|Ji], and if x is used as an instrument it is

likely to be correlated ∆π(·), then the expectation of ∆ν2,i given xi and di = 1 will be not be

zero, regardless of whether E [ν2,i,d=1|xi] = E [ν2,i,d=0|xi] = 0. In words if di was selected then

the difference in the unobservable part of the incremental expected returns to di must have

been greater than the (negative of the) difference in the observable part of the incremental

returns, and the latter will typically be correlated with our instruments.
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2.3 The Generalized Discrete Choice Approach.

The measurement model in equation (7) provides the notation needed to clarify the con-

ditions needed to move from the profit inequalities in equation (5) to sample moments for

our two approaches. Recall that we also need to clarify the relationship between the agent’s

perceptions of expected returns and the returns emanating from the data generation process

embedded in those approaches. We begin with the generalized discrete choice approach (the

approach originally developed to handle entry games in the papers by Tamer,2003, Ciliberto

and Tamer, 2007, and Andrews Berry and Jia , 2007).

The multiple agent versions of the generalized discrete choice approach assume

DC3: ∀d ∈ Di, π(d, d−i, zi, θ0) = E [π(d,d−i, zi, θ0)|Ji],

or that there is no uncertainty in either the exogenous variables (in zi) or in the actions of

the firm’s competitors (in d−i). Together C1 and DC3 imply that agents never err5.

It is important to note that there are parts of the single agent discrete choice literature

that do allow for uncertainty. These include both the dynamic single agent discrete choice

models that explicitly account for randomness in exogenous variables, and the literature

which uses survey data on expectations in conjunction with choice models to allow for un-

certainty (see Keane and Wolpin, 2009, and Manski, 2004, respectively, and the literature

they cite). However computational difficulties and a lack of information on agents’ per-

ceptions on the likely behavior of their competitors have made it difficult to use analogous

techniques in multiple agent problems.

DC4 provides the restrictions the generalized discrete choice model places on the mea-

surement model in equation (7).

DC4. ∀d ∈ Di, r(d, d−i, z
o
i , θ) = π(d, d−i, zi, θ) + ν1,i, for a known π(·, θ), and

zi = ({ν2,i,d}d, zo
i ) , with {(ν2,i,d, ν2,−i,d)}d| zo,zo

−i
∼ F (·; θ), for a known F (·, θ).

5As stated DC3 also rules out the analysis of sequential games in which an agent who moves initially
believes that the decisions of an agent who moves thereafter depends on its initial decision. However with
only notational costs we could allow for a deterministic relationship between a component of d−i and (d, z).
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The first line in DC4 states that there are no decision specific errors in our profit measure

(ν1,i does not have a d subscript). So if we knew (di, d−i, zi, z−i) we could construct an exact

measure of profit differences for each θ. The second line states that zi has both observed (the

zo
i ) and unobserved (the ν2,i,d) components and provides their properties. The distribution

of the unobserved conditional on the observed components are known up to a parameter

vector6, and there is no measurement error in the observed components. Since DC3 assumes

full information all the ν2,i,d are known to all agents when decisions are made, just not

to the econometrician. Note that given DC3 the distribution F (·|·) appearing in DC4 is

a distribution of realized values, and hence must be consistent with the data generating

process (more on this below).

Though the assumptions used in DC3 and DC4 may seem restrictive, they clearly ad-

vanced the study of discrete choice models in multiple agent settings. Recall that single agent

discrete choice models can always be given an intuitive reduced form interpretation. Simply

regress expected returns from alternate decisions onto observed variables and the decision

itself, then solve for the optimal d conditional on the observables and the disturbances from

the regressions, and finally make an assumption on the joint distribution of those distur-

bances that enables identification. The analogous reduced form for multiple agent problems

proved not to be useful. In multiple agent contexts researchers were interested in the re-

lationship between profits and (d−i, z) conditional on unobservable determinants of profits,

particularly those that were correlated with d−i. For example in the entry models that stim-

ulated this literature there was a focus on the relationship of profitability to the number of

entrants. Models which did not allow for unobserved market characteristics that affected the

profitability of all potential entrants in a market often estimated coefficients that implied

that a firm’s profits increased in the number of competitors (since more profitable markets

attracted more entrants). So to provide a “reduced form” of interest for the relationship

between profits and (zi, di, d−i) we needed to allow for a disturbance that was correlated

with d−i. This is the problem the generalized discrete choice approach sought to solve.

6There are papers in the single agent discrete choice literature which have allowed for classification errors
in d; see for example Hausman and Scott Morton, 1998. At least in principal such errors could be added to
any of the models considered here.
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Substituting DC3 and DC4 into the model generated by C1 and C2 (equation 5) and

letting ν2,i ≡ {ν2,i,d}d, with analogous notation for ν2,−i, we obtain

Model D : ∀d′ ∈ Di, ∆π(di, d
′, d−i, z

o
i , ν2,i; θ0) ≥ 0; (ν2,i, ν2,−i)|zo

i ,zo
−i
∼ F (·; θ0). (8)

To insure that there exists a θ for which the event ∆π(di, d
′, d−i, z

o
i , ν2,i; θ) ≥ 0, has positive

probability ∀d ∈ Di and all agents in each market, we need further conditions on F (·) and/or

π(·). The additional restriction typically imposed is that the profit function is additively

separable in the unobserved determinants of profits, that is

RDas : ∀d ∈ Di, π(d, d−i, z
o
i , ν2,i) = πas(d, d−i, z

o
i , θ0) + ν2,i,d, (9)

and the distribution ν2,i,d conditional on ν2,−i has full support [∀(i, d)]7.

Keep in mind that the additive separability in equation (9) can not be obtained defini-

tionally. If we did observe realized profits and regressed it on (di, d−i, z
o
i ) we would get a

residual, but that residual is not the ν2,i in equation (9). The regression residuals are mean

independent of (di, d−i), while ν2,i is not. So for the specification in equation (9) to be correct

πas(·) and ν2,i have to be derived from the primitives of the problem.

Inequalities for Inference. Index markets by j = 1, . . . , J . For inference I need the

distribution of {(ν2,i,j, z
o
i,j, di,j)}

nj

i=1 ≡ (ν2,j, z
o
j , dj) across the population of markets, which

we denote by P (·). The data consist of random draws on (ν2,j, z
o
j , dj) from P (·). The

expectations of any function g(·) of a draw conditional on x will be given by E[g(·)|x] =∫
g(·)dP (·|x), so E(·) is defined by the data generating process (the DGP). The distribution

of ν2,j conditional on zo
j in DC4, or F (·; θ), is assumed to be consistent with this DGP.

The model’s conditions can be satisfied by multiple vectors of dj for any value of θ

(i.e., there can be multiple equilibria). As a result there is not a one to one map between

observables unobservables and parameters on the one hand, and outcomes for the decision

variables on the other; so the model is not detailed enough to deliver a likelihood. However

Cliberto and Tamer (2006) and Andrews Berry and Jia (2004) note that we can check

7Allowing for additional unobservables, for example unobservables random coefficients on the zo
i , would

increase the notational burden but would not change our ability to obtain any of the results below.
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whether the model’s conditions are satisfied at the observed dj for any νj and θ, and this,

together with F (·; θ), enable us to calculate conditional probabilities of satisfying those

conditions. Since these are necessary conditions for observing the choices made when θ = θ0

the probability of satisfying them must be greater then the probability of actually observing

dj. In addition if we checked whether the dj are the only values of the decision variables

to satisfy the necessary conditions for each ν2,j at that θ we could construct the probability

that dj is the unique equilibrium. That probability must be lower than the true probability

of observing dj at θ = θ0. These are inequalities that not all values of θ will satisfy, and as

a result they can be used as a basis for inference.

More formally define the probability that the model in equation (8) (with a restriction

like that in equation 9) is satisfied at a particular dj given zo
j for a given θ to be

Pr{dj | zo
j , θ} ≡ Pr{ν2,j : dj satisfy equation (8)| zo

j , θ},

and the analogous lower bound to be

Pr{dj | zo
j , θ} ≡ Pr{ν2,j : only dj satisfy equation (8)| zo

j , θ}.

Letting I{·} be the indicator function which takes the value one if the condition inside the

brackets is satisfied and zero elsewhere, the true probability (determined in part by the

equilibrium selection mechanism) is

Pr{dj | zo
j , θ0} ≡ E[I{d = dj} | zo

j ].

Since do not know the selection mechanism we do not know Pr{dj | zo
j , θ0}, but we do know

that when θ = θ0

Pr{dj | zo
j , θ0} ≥ Pr{dj | zo

j , θ0} ≥ Pr{dj | zo
j , θ0}.

Let h(·) be a function which only takes on positive values and →P denote convergence

in probability. Since E(·) provides cross markets averages we have

E
[
J−1

∑
j

(
Pr{dj|zo

j , θ}−I{d = dj}
)
h(zo

j )
]
→P J−1

∑
j

[(
Pr{dj|zo

j , θ}−Pr{dj|zo
j , θ0}

)
h(zo

j )
]

(10)
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which is non-negative at θ = θ0. An analogous moment condition can be constructed

from Pr{dj|zo
j , θ0} − Pr{dj |zo

j , θ}. The estimation routine constructs unbiased estimates of

(Pr(·|θ), P r(·|θ)), substitutes them for the true values of the probability bounds into these

moments, and then accepts values of θ for which the moment inequalities are satisfied8.

Since typically neither the upper nor the lower bound are analytic function of θ simulation

is used to obtain unbiased estimates of them. The simulation procedure is straightforward,

though often computationally burdensome. Take pseudo random draws from a standardized

version of F (·) as defined in DC4, and for each random draw check the necessary conditions

for an equilibrium, i.e. the conditions in equation (8), at the observed (di, d−i). Estimate

Pr(di, d−i|θ) by the fraction of random draws that satisfy those conditions at that θ. Next

check if there is another value of (d, d−i) ∈ Di ×D−i that satisfy the equilibrium conditions

at that θ and estimate Pr(di, d−i|θ) by the fraction of the draws for which (di, d−i) is the only

such value. If we were analyzing markets with N interactive agents each of which had #D

possible choices and used ns simulation draws on {ν2,i}Ni=1, then for each market and each θ

evaluated in the estimation routine we need to evaluate up to ns×#D ×N inequalities to

obtain estimates of Pr{· |θ}, and we need to evaluate up to ns × (#D)N inequalities if we

also estimated Pr(·|θ). This can be computationally expensive, particularly in multistage

games solved by backward recursions as then to solve for each π(di, d−i, ·) we need to compute

equilibria to later stages of the game.

2.4 Profit Inequalities.

An earlier version of this approach appears in Pakes, Porter, Ho, and Ishii (2006). Recall

that what we need is an assumption on the relationship between; (i) the agents’ perceptions

of expected returns and the returns emanating from the data generating process and (ii) the

profit measure the agent uses and the one the econometrician specifies.

8As noted by a referee this routine ignores information. If we can enumerate all possible equilibria, as is
assumed if we use the lower bound, we could use the fact that the equilibrium selection probabilities must
sum to one (for more detail see Beresteanu and Molinari, 2008). Also, I have implicitly assumed that there
is an equilibrium in pure strategies for each point evaluated. This need not be the case; for a discussion of
the implications of existence problems for econometric work on discrete games see Bajari,et.al.,(2006).
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From equation (5), E [∆π(·, θ0)|Ji] ≥ 0 which implies E [∆π(·, θ0)|xi] ≥ 0 if xi ∈ Ji. PC3

relates these expectations to averages from the data generating process (our E(·) operator).

PC3 : There is a positive valued h(·) and an xi ∈ Ji for which

1

N

∑
i

E
(

∆π(di, d
′,d−i, zi, θ0)|xi

)
≥ 0 ⇒ E

( 1

N

∑
i

∆π(di, d
′,d−i, zi, θ0)h(xi)

)
≥ 0 .

PC3 nests DC3 as it allows for uncertainty, and it does so without requiring us to fully

specify how the agent forms its expectations. If agents know (i) the other agents’ strate-

gies, i.e. d−i(J−i), and (ii) the joint distribution of other agents’ information sets and the

primitives sources of uncertainty (i.e. of (J−i, zi) conditional on Ji), then, provided all

expectations exist, our optimality condition (C1) insures that PC3 is satisfied. These as-

sumptions are, however, stronger than are needed for PC3. Several authors have noted that

agents’ expectations can satisfy C1 without them having such detailed information (see for

e.g. Dekel, Fudenberg, and Levine,1999). Further, though correct expectations about profit

differences are sufficient for PC3, they are not necessary. A weaker sufficient condition is

1

N

∑
i

E∆π(di, d
′,d−i, zi, θ0)h(xi)− E

( 1

N

∑
i

∆π(di, d
′,d−i, zi, θ0)h(xi)

)
≥ 0, (11)

where again E(·) is defined by the DGP. If agents have incorrect expectations on ∆π(·, θ0)

but their expectational error is not systematically related to xi (i.e. are mean independent of

xi), then (11) is satisfied with equality. Indeed PC3 is satisfied even if agents are incorrect on

average, provided they are overly optimistic about the relative profitability of their choices.

The final condition used in this estimation strategy is designed to deal with the selection

problem caused by the {ν2,i,j,d} for the i = 1, . . . , Nj agents in market j. C1, C2, and the

definitions in equation (7) imply that our model generates the restriction that

E [∆π(·; θ0)|J ] = E [∆r(·; θ0)|J ]−∆ν2 ≥ 0.

PC3 insures that this implies that if x ∈ J sample averages of ∆π(·; θ0)h(x) = ∆r(·; θ0)h(x)−
∆ν2h(x) have positive expectation. For consistency we require that the sample average of
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the observable ∆r(·; θ)h(x) have positive expectation at θ = θ0. This will be the case if the

expectation of the average of ν2h(x) is non-negative. Above we stressed that even if x is an

instrument in the sense that {ν2,d} is mean independent of x in the population at large, the

mean of ν2,d conditional on x for those who made particular decisions will typically depend

on x. Pakes et al (2006) present a general condition which insures that the selection resulting

from conditioning on agents choices does not impact the consistency of our estimators. Here

I consider three ways of forming moments that satisfy that condition that I have seen used,

often in combination, in applied work. They are based on the researcher finding weighted

averages of differences between actual and counterfactual choices that either; (i) difference

out the effect of the ν2, (ii) insure that we average over the ν2 of every agent (so that there

is no selection), or (iii) sum to an observable which controls for a weighted average of the ν2.

PC4a: Differencing. Let there be G groups of observations indexed by g, counterfactuals

d′i,g ∈ Di,g, and positive weights wi,g ∈ Ji,g, such that
∑

i∈g wi,g∆ν2,i,g,di,g ,d′i,g
= 0; i.e. a

within-group weighted average of profit differences eliminates the ν2 errors. Then

G−1
∑

g

∑
i∈g

wi,g

(
∆r(di,g, d

′
i,g, ·; θ0)− E [∆π(di,g, d

′
i,g, ·; θ0)|Ji,g]

)
→P 0,

provided G−1
∑

g

∑
iwi,g∆r(di,g, d

′
i,g, ·; θ0) obeys a law of large numbers.

Our case 1 supermarket example is a special case of PC4a with ng = wi,g = 1. There

di = (bi, si), π(·) = U(bi, zi) − e(bi, si) − θ0dt(si, zi) and ν2,i,d ≡ U(bi, zi). If we measure

expenditures up to a ν1,i,d error, r(·) = −e(bi, si) − θ0dt(si, zi) + ν2,i,d + ν1,i,d. We chose a

counterfactual with b′i = bi, so ∆r(·) = ∆π(·) + ∆ν1,·, and the utility from the bundle of

good bought is differenced out. “Matching estimators”, i.e. estimators based on differences

in outcomes of matched observations, implicitly assume PC4a (no differences in unobservable

determinants of the choices made by matched observations). For other single agent examples

see Pakes et. al.(2006).

For a multiple agent example consider two period entry games with common unobservable

determinants of market profitability; the problem that stimulated the literature on using

inequality estimators in multiple agent settings. For specificity consider two retailers, say

i = {W,T}, deciding whether to enter different markets, so di
j = {1, 0} and di

j = 1 indicates
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the firm i enters market j = [1, . . . , J ]. If there are market specific unobservables known to

the agents but not to the econometrician then rj(di,j, d−i,j, zi, θ) = E [πj(di,j,d−i,j, zi, θ)|Ji] +

ν2,j + ν1,i,j. The zi include sources of cost differences (like warehouse and central office

locations). Let wi,j = wj ∈ {0, J−1} with wj = J−1 ⇔ dT
j = [1− dW

j ]; i.e.
∑

j

∑
iwi,j∆πi,j(·)

only puts weight on markets where the two agents make opposite decisions.

The only possible counterfactual is di,′
j = [1 − di

j]. So if wj = 1 and dW
j = 1; dT

j = 0,

∆rW
j (·) = E [∆πW

j (·)|JW ] + ν2,j + ν1,W,j, and ∆rT
j (·) = E [∆πT

j (·)|JT ]− ν2,j + ν1,T,j. Since ν2.j

enters the two inequalities with opposite signs, it cancels when we sum over i = {W,T} and∑
j

wj

∑
i=W,T

∆ri
j(d

i, di,′,d−i, zi, θ) =
∑

j

wj

∑
i=W,T

(
E [∆πi

j(d
i, di,′,d−i, zi, θ)|Ji] + ν1,i,j

)
which will be non-negative at θ = θ0.

Notice that since we assume wi,j ∈ Ji,j, these weights imply d−i,j ∈ Ji,j, as in the

generalized discrete choice model, but we do not require assumptions on the distribution of

zi or of νi,·. Also more moment inequalities can be generated from appropriate instruments

and the model can be enriched to explicitly allow for differences in the firm’s responses to

the market specific shock (replace ν2,j by θzi
jν2,j, where zi

j ≥ 0 and zi
j ∈ Ji, and then divide

each difference by zi
j). Similar structures appear in a number of other familiar problems (e.g.

social interaction models where the interaction effects are additive and group specific).

In simultaneous move games where the market allocation mechanism is known one can

often construct counterfactuals which difference out individual specific (rather than group

specific) ν2 effects. For e.g. in electricity auctions with known allocation mechanisms we

can compute the difference between the revenues and quantities actually allocated to the

agent and those the agent would have obtained had the agent submitted a different bid

(holding the realizations of environmental variables and competitors’ bids constant). Profits

are revenues minus fixed and variable costs. The fact that the expectation of the difference

in profits from the two bids should be positive allows us to bound the variable cost function

without restricting agent-specific fixed costs in any way (as they are differenced out).
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PC4b: Unconditional Averages and Instrumental Variables. Assume that ∀d ∈
Di, there is a d′ ∈ Di and a wi ∈ Ji such that

wi∆r(di, d
′
i, ·; θ) = wiE [∆π(di, d

′
i, ·; θ)|Ji] + ν2,i + ∆ν1,i,·,

Then if xi ∈ Ji, E[ν2,i|xi] = 0, and h(·) > 0

N−1
∑

i

wi∆r(di, d
′
i, ·; θ0)h(xi) →P N−1

∑
i

wiE [∆π(di, d
′
i, ·; θ0)|Ji]h(xi) ≥ 0,

provided N−1
∑
ν1,i,·h(xi) and N−1

∑
ν2,ih(xi) obey laws of large numbers. PC4b assumes

there is a counterfactual which gives us an inequality that is additive in ν2 no matter the

decision the agent made. Then we can form averages which do not condition on d, and hence

do not have a selection problems. This form of PC4b suffices for the examples in this section

but the next section requires a more general form given in the footnote below.9

Case 2 of our supermarket example had two ν2 components; a decision specific utility

from the goods bought, ν2,i,d = U(bi, zi) (like in case 1), and an agent specific aversion to

drive time, θi = θ0 + ν2,i. As in case 1, taking d′ = (bi, s
′
i) differenced out the U(bi, zi). Then

∆r(·) = −∆e(·, si, s
′
i) − (θ0 + ν2,i)∆dt(si, s

′
i, zi) + ∆ν1,·. Divide by ∆dt(si, s

′
i, zi) ≤ 0. Then

C1 and C2 imply that E [∆e(si, s
′
i, bi)/∆dt(si, s

′
i, zi)|Ji] − (θ0 + ν2,i) ≤ 0. This inequality

is; (i) linear in ν2,i, and (ii) is available for every agent. So if E[ν2] = 0, PC3 and a law

of large numbers insures N−1
∑

i ν2,i →P 0, and
∑

i ∆e(si, s
′
i, bi)/∆dt(si, s

′
i, zi) →P θ0 ≤ θ0;

while if E[ν2|x] = 0 we can use x to form instruments. Notice that ν2,i can be correlated

with dt(zi, si) so this procedure enables us to analyze discrete choice models when a random

coefficient affecting tastes for a characteristic is correlated with the characteristics chosen.

For a multiple agent example of PC4b we look at within market expansion decisions.

Agents chose a number of outlets, a di ∈ Z+ (the integers) to maximize expected profits.

Formally the model is a multiple agent two period ordered choice model; a model with many

9The more general version is as follows. Assume G groups of observations with ng members in
group g, and that for each {di,g ∈ Di,g}i there is a counterfactual {d′i,g ∈ Di,g}i and positive weights

wi,g ∈ Ji,g such that
∑

i∈g wi,g∆r(di,g, d
′
i,g, ·, θ0) =

∑
i∈g wi,g

(
E [∆π(di,g, d

′
i,g, ·, θ0)|Ji,g] + ν2,g + ν1,i,g

)
,

Then if xi,g ∈ Ji,g, E[ν2,g|xi,g] = 0 and h(·) > 0, G−1
∑

g

∑
i∈g h(xi,g)(wi,g∆r(di,g, d

′
i,g, ·; θ0) →P

G−1
∑

g

∑
i∈g h(xi,g)(wi,gE

[
∆π(di,g, d

′
i,g, ·; θ0)|Ji,g

]
≥ 0, provided laws of large numbers hold.
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IO applications (e.g. Ishii, forthcoming). In the first period the agents chose a number of

outlets and in the second they obtain the variable profits from sales at those outlets. So

πi(·) = vp(di, d−i, ·) − (c0 + ν2,i)di where vp(·) are variable profits and (c0 + ν2,i) represent

the costs of building and maintaining the outlets. These costs differ across firms in ways

known to the firms but not to the econometrician, and c0 is defined to be their average

(so
∑
ν2,i ≡ 0). We measure variable profits up to a ν1(·) measurement error, so define

ri(·) = πi(·) + ν1,di
= vpi(·)− codi + ν2,idi + ν1,di

, where vpi(·) and di are observed.

C1 and C2 imply that the incremental profits from choosing one more machine than was

actually chosen (a d′i = di+1) are expected to be less than its cost, or E [∆π(di, di+1, ·)|Ji] ≤
0. But ∆r(di, di + 1, ·) = E [∆π(di, di + 1, ·)|Ji] + ν2,i + ∆ν1,i,·. So since

∑
ν2,i ≡ 0

N−1
∑

i

∆r(di, di + 1, ·)→P N−1
∑

i

∆π(di, di + 1, ·) = N−1
∑

i

[∆vp(di, di + 1, ·)− c0] ≤ 0,

where we have assumed PC3 and a law of large numbers. I.e. N−1
∑

i[∆r(di, di + 1, ·) →P

c0 ≤ c0. An upper bound for c0 can be obtained by choosing d′i ≤ di (see Pakes et.al, 2006,

for the case where some observations are at di = 0, in which case the counterfactual d′i < di is

infeasible). Additional moments can be obtained by forming covariances with h(xi) that are

(unconditionally) uncorrelated with ν2,i . Notice that E[v2h(x)] = 0 is our only assumption;

in particular we do not require d−i ∈ Ji as in our previous multiple agent example.

PC4c: Control Functions. Often variables that are not available at a disaggregated level

are available as aggregates, and this can be used to develop a control function for ν2. Two

familiar examples are; (i) firm level exports to different countries are typically unavailable but

aggregate trade flows by product and country of destination are recorded, and (ii) product

level input, cost, and sales data of multiproduct firms are not typically available, but both

firm level aggregates over products, and product level aggregates over firms, often are. We

illustrate with a firm location application adapted from de Loecker et. al (in process) that

uses the trade data. An alternative illustration would have been to use the available data on

multiproduct firms in conjunction with the product level aggregates over firms, to analyze

multiproduct cost functions.

The output of each firm at each location is known, but where that output is sold is not.
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The fixed costs of firm i in location d are, f(zi, d, θ), while its marginal costs m(zi, d; θ) (both

vary with location of production and firm characteristics). Let qi,d be the quantity firm i

produces, and qi,e = qe + νe
2,i be the quantity it exports to market e. Here qe is average

exports to e so
∑

i ν
e
2,i ≡ 0 (∀e). c(d, e) is the transportation costs (which vary with the

location of production, d, and consumption,e). We observe qi,d and zi and measure the firm’s

total cost up to a ν1 error, or r(·) where

r(zi, d; θ) = f(zi, d; θ) +m(zi, d; θ)qi,d +
∑

e

c(d, e, θ)qe +
∑

e

c(d, e, θ)νe
2,i + ν1,i,d.

Each firm producing in d chose its location to minimize expected costs and each could have

produced in counterfactual location d′ without changing the countries it sold to. Summing

the expected cost difference in moving all firms from d to d′, letting Qe be (the observed)

total exports to e, and using
∑

i

∑
e c(d, e)ν

e
2,i = 0 we have

N−1
∑

i

∆r(d, d′, ·, θ)→P N−1
∑

i

(
∆f(d, d′, ·, θ)+∆m(d, d′, ·, θ)qi,d

)
+
∑

e

∆c(d, d′, e, θ)Qe ≤ 0

at θ = θ0, which allows us to combine the micro data on firms costs and aggregate data on

exports to bound the parameters of interest. Notice that we do so without having to either

estimate demand functions or make a pricing assumption in each country.

2.5 Comparing the Two Approaches.

The two approaches differ in their informational (DC3 vs PC3), and their measurement,

(DC4 vs PC4) assumptions. They also differ in their computational properties but these

are discussed in the context of the Monte Carlo example in section 4.

PC3 nests DC3. PC3 allows for uncertainty and does so without having to specify either

the agents’ information sets or their subjective probability distributions conditional on those

information sets; objects we typically know little about. It also allows for expectational

errors provided they are mean independent of the instruments. DC3 assumes agents know

the returns from every choice and correctly optimize. Partly as a result DC3’s primary use

in multiple agent settings has been as a characterization of “rest points” of environments

which are “stable” over time; a setting often invoked to justify the use of two period games
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to structure cross sectional empirical work. Notice that even in this setting the the combi-

nation of DC3 with DC4 only leads to consistent bounds if the profit (or value) function

is constructed from correctly specified primitives. If instead a reduced form from regressing

profits on variables of interest is used, the model contain a regression error. This violates the

assumptions of the generalized discrete choice model and will lead to inconsistent estimates

of the bounds on the reduced form parameters. We show how to adapt the discrete choice

model to accommodate reduced forms below.

The two measurement assumptions (PC4 and DC4) are not nested. Indeed the sim-

plest of the measurement assumptions used to justify the two models are distinctly different.

Sufficient conditions for PC4 are that the {ν2,i,d} do not vary over d and that there are

instruments which are uncorrelated with the {ν1,i,d}. DC4 requires that the {ν1,i,d} do not

vary over d and that there be a known joint distribution for the {ν2,i,d}. When {ν2,i,d} does

vary over d then to use the profit inequalities approach we need to control for a selection

problem. Our ability to do so typically depends on the richness of the set of feasible counter-

factual choices, and the appropriate form(s) for the heterogeneity. When {ν1,i,d} does vary

over d then the generalized discrete choice model will not deliver consistent bounds. {ν1,i,d}
will vary over d if there is uncertainty about outcomes, measurement error, or specification

error. For some of these cases we can modify the generalized discrete choice model and its

estimation algorithm to deliver consistent bounds.

For a familiar example consider the case where we are analyzing the profits from entering

markets in which the true profit from entering is additively separable in ν2, or π(di,j =

1, d−i,j, z
o
i,j, ν2,i,j) = πas(di,j = 1, d−i,j, z

o
i,j, θ0) + ν2,i,j, as in equation (9), and the profits

from not entering are normalized to zero. As in most entry models, we are interested in

the reduced form obtained by regressing πas(·) onto zo
i,j and the number of competitors, say∑

i{di,j = 1}. So

r(di,j = 1, d−i,j, z
o
i,j, θ) = zo

i,jθz +
∑

i

{di,j = 1}θd + ν2,i,j + ν1,i,j.

where ν1,i,j is the regression error, so E[ν1,i,j|zo
i,j,
∑

i{di = 1}, ν2,i,j] = 0 by construction.

Recall that to obtain the inequalities used in estimation in this model we have to check

whether the Nash conditions are satisfied at a given θ; i.e. to check whether di,j maximizes
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zo
i,jθz +

∑
{di,j = 1}θd + ν2,i,j + ν1,i,j conditional on d−i,j for each i. To do this we will need

an assumption on the joint distribution of the ν1,i,j, as well as for the {ν2,i,j}; and the ν1,i,j

must be mean independent of the {ν2,i,j}, di,j and zi,j, while the {ν2,i,j} are determinants of

di,j. Given the additional distributional assumption the estimation algorithm is analogous

to that in section 2.3, though a more complex simulator must be used.

It is not as easy to accommodate measurement error in the generalized discrete choice

framework. If zo
i,j = z∗i,j + ν1,i,j and the agent responds to z∗ (not zo), estimation requires

checking whether z∗i,jθz +
∑

i{di,j = 1}θd + ν2,i,j,d satisfies the Nash conditions. To obtain

a simulator that would allow us to do so we would need to draw from the distribution of z∗

conditional on z0. This is typically not known nor is it easy to estimate. In contrast classical

measurement error does not affect the consistency of the profit inequality estimator.

Finally DC4 requires explicit distributional assumptions on the {ν2,i,j}, while the profit

inequality model relies only on mean independence assumptions. The need for an explicit

distributional assumption is a concern, as the generalized discrete choice corrects for selection

by finding the probability of ν2-values which induce the agent to make particular choices.

Those probabilities depend on the properties of the tail of the ν2 distributions; properties we

often know little about. The Monte Carlo example in section 4 is designed to investigate the

robustness of the two models to violations of their assumptions and indicates that it is the

distributional assumption of the generalized discrete choice model that is most problematic.

3 A Multiple Agent Example (Buyer-Seller Networks).

Vertical markets typically contain a small number of both sellers and buyers (who resell the

products they buy to consumers). Most buyers buy from more than one seller while most

sellers sell to more than one buyer. The terms of the payments the buyer makes to the

seller are negotiated and vary with underlying market conditions. These terms determine

both the costs buyers factor into the prices they set when they re-market the goods they

sell to consumers, and the split of the profits between the sellers and the buyers and hence

the sellers’ incentives to invest in cost reductions (or product improvements). Unfortunately

those terms are often proprietary; a seller bargaining with many buyers may not want one
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buyer to know the terms of its other contracts.

Costs are also often proprietary in consumer goods markets. However since these are

markets with many purchasers we typically assume sellers have the power to set prices (or

quantities) in them. Then the first order conditions from a Nash equilibrium can be used to

back out costs; i.e. we can find the marginal costs that insure that no firm has an incentive to

deviate from the observed prices. This section uses moment inequalities to unravel features

of the payment structure in vertical markets in an analogous way. We observe which sellers

establish contracts with which buyers and, were we to know the buyer’s cost function, could

compute approximations to both the buyers and the sellers profits from; (i) the existing

arrangement, and from (ii) a counterfactual in which one of the observed relationships is

changed. So we proceed by parameterizing the buyer’s cost function and look for values of

the parameter vector that, on average, make the profits from the observed contracts larger

than those from possible counterfactuals; i.e. values of θ that make the observed relationship

in the interests of both agents.

We analyze an HMO/hospital example. To see how market characteristics effect payments

in this example consider two different situations. In one a hospital with excess capacity in

a neighborhood with several other similar non-capacity constrained hospitals is bargaining

with an HMO. The HMO has already contracted with other neighborhood hospitals. Since

there are similar options for consumers who require a hospital, the HMO’s attractiveness

to consumers is relatively insensitive to the inclusion of the given hospital in its network.

As a result were the HMO to include that hospital it would not, in equilibrium, increase

the premium it charges to consumers. So for the hospital’s contract offer to be accepted by

the HMO the contract would have to set hospital prices low enough for the HMO to prefer

sending patients to that particular hospital rather than to its neighbors. On the other hand

if the hospital was the only hospital in the neighborhood the HMO would be unlikely to

attract any customers from that neighborhood without having the hospital in its network.

Then, provided it is in the HMO’s interest to operate in the neighborhood, the hospital

should be able to extract nearly all the (hospital related) premiums that would be generated

in that neighborhood.

To use this logic in estimation we will have to specify what the buyer (seller) would have
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expected to happen if it had made a counterfactual choice. This requires assumptions, though

the assumptions need not specify the form of the contracts. We suffice with a reduced form

for the payments generated by the contracts obtained by regressing the HMO’s per patient

payments on hospital characteristics. In these respects this paper follows the assumptions

used in Ho’s (2009) work on HMO/hospital markets. Ho’s analysis assumes that there are

no structural disturbances in her data (in our notation, ν2,i,d = ν2,i, ∀d). I begin by showing

that, by changing the moment inequalities taken to data, we can develop an estimation

algorithm for her model that allows for both ν2 and ν1 errors. I then compare the results

from estimators that do, and those that do not, allow for ν2 errors. Next full information

equilibria are computed from a structural buyer-seller network game with primitives similar

to those in the empirical example. The reduced form implied by the computed equilibria is

calculated, compared to the estimates obtained from the inequality estimators, and explored

for possible additional correlates of contract characteristics.

3.1 Empirical Analysis.

Ho (2009) uses a two period game to structure the analysis; in the first period contracts

between HMOs and hospitals are established and in the second period the HMOs engage

in a premium setting game which conditions on those contracts (and is assumed to have a

unique Nash equilibria). Once the premiums are set consumers chose HMO’s and, if the

need arises, chose a hospital in their HMO’s network.

The premium setting game generates revenues for each HMO conditional on any con-

figuration of hospital networks. Let Hm be a vector of dimension equal to the number of

hospitals whose components are either zero or one, a one indicating the hospital is in HMO

m’s network and a zero indicating it is not. H−m specifies the networks of the competing

HMOs. The revenues the HMO receives from the premium setting game, say Rm(Hm, H−m, z),

and the number of patients HMO m sends to hospital h, say qm,h(Hm, H−m, z), depend on these

networks and exogenous variables (our z).

The profits of the HMO are the revenues from the second period game minus the transfers
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the HMO makes to the hospitals in its network in payment for their services, say Tm,h or

πM
m (Hm, H−m, z) = Rm(Hm, H−m, z)−

∑
h∈Hm

Tm,h(Hm, H−m, z).

Analogously if ch is the per patient costs of hospital h and Mh is the hospital’s network of

HMOs, the hospital’s profits are

πH
h (Mh,M−h, z) =

∑
m∈Mh

Tm,h(Hm, H−m, z)− ch
∑
m∈Mh

qm,h(Hm, H−m, z).

We project Tm,h onto a set of interactions of qm,h(·) with a vector of hospital characteristics,

say zh, and look for bounds on the resulting reduced form parameters; i.e. if xm,h(·) = qm,h(·)×
zh are the interactions, we estimate the θ in Tm,h(Hm, H−m, z) = xm,h(Hm, H−m, z) θ + νm,h,

where νm,h are uncorrelated with xm,h by construction. Note that if agents know more about

the details of the contracts they sign than is captured by xm,h(·), νm,h has a component which

is known to both agents when they make their decisions (a “ν2” component). Substituting

this form of Tm,h(·) into the two profit functions we obtain

πM
m (·, θ) ≡ RM

m (Hm, H−m, z)−
∑

h∈Hm

xm,h(Hm, H−m, z)θ −
∑

h∈Hm

νm,h, and (12)

πH
h (·, θ) ≡

∑
m∈Mh

xm,h(Hm, H−m, z)θ − ch
∑

m∈Mh

qm,h(Hm, H−m, z) +
∑

m∈Mh

νm,h.

These equations determine actual (in contrast to measured) realized profits. Our mea-

sured variables, (Ro
m(·), xo

m,h(·), qo
m,h(·), coh) are either obtained directly from data or from a

careful study of hospital demand and the formation of HMO premiums described in Ho

(2009). We assume that they are correct up to a mean zero measurement error. That is our

measure of profits for HMO m and hospital h given a value for θ are

rM
m (·, θ) ≡ Ro

m(·)−
∑

h∈Hm

xo
m,h(·) θ, and rH

h (·, θ) ≡
∑

m∈Mh

xo
m,hθ − coh

∑
m∈Mh

qo
m,h(·), (13)

and our assumptions imply

rM
m (·, θ) ≡ E [πM

m (·, θ)|Jm] + E [
∑

h∈Hm

νm,h|Jm] + ν1,m,Mh,M−h
, and

rH
h (·, θ) ≡ E [πH

h (·, θ)|Jh] − E [
∑

m∈Mh

νm,h|Jh] + ν1,h,Hm,H−m .
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Counterfactuals. Equation (12) provides the profits agents obtain from the observed

network. To obtain our moment inequalities we have to consider the profits, and hence the

network, the agents thought would have obtained from counterfactual behavior, and this

requires assumptions on the contracting game. Ho’s assumption are both familiar and com-

putationally convenient (we consider a less convenient alternative below). She assumes that

sellers simultaneously make take it or leave it offers to buyers, who then simultaneously ac-

cept or reject. As in Hart and Tirole (1991) the contract offers are assumed to be proprietary:

each HMO knows the offers made to it but not to its competitors, and each hospital knows

the offers it makes but not those of its competitors. We observe which HMOs contracted

with which hospitals and can compute our measures of returns from any network. To form

our moment inequalities we need to know the network that would be established were either

an HMO or a hospital to change its behavior10.

The HMO’s act last. So our assumptions imply that the HMO could reverse any of its

decision without changing the behavior of any other agent. Accordingly our HMO counter-

factuals are obtained by reversing the HMO’s acceptance/rejection decision with each of the

hospitals in the market, leaving all other contracts unchanged, and computing the difference

in the HMO’s profits between the actual and the counterfactual networks.

To obtain a profit inequality for the hospital we have to; (i) specify an alternative offer

the hospital could make, and (ii) either specify what the hospital thinks the particular HMO

would do were it offered the alternative contract, or compute a lower bound to the profits

the hospital could make as a result of the actions the HMO might take in response to

the alternative contract. We assume that the hospital could always offer a null contract (a

contract which is never accepted). What the hospital thinks the HMO would do if offered this

contract depends on how the hospital thinks receiving the alternative contract would affect

the HMO’s beliefs about the contracts offered to other hospitals, and given those beliefs,

whether the hospital thinks the HMO would change its replies to the contracts offered by

10Since we assume that the premium setting game is a full information game, our assumptions are what
McAfee and Schwartz (1994) refer to as “ex poste observability”; the HMO’s do not know each other’s offer
in the first period, but the costs in each accepted contract are revealed before the second stage of the game.
This assumption could be relaxed at a cost of increasing the computational burden of estimation.
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other hospitals. We assume “passive beliefs”, i.e. the hospital believes that the HMO will

not change its beliefs about the offers the hospital makes to other HMOs were it to receive

the counterfactual offer, and present results which assume that the hospital thinks the HMO

would not change its behavior with other hospitals were it to receive the null contract.

However we have also done the analysis assuming the hospital thinks the HMO might add a

different hospital with little difference in empirical findings.

Inequalities Used. We began with Ho’s assumption that E [νm,h|Ji] = 0 for i = (m,h).

Then the only disturbances in equations (13) are ν1 disturbances, so we can form our in-

equalities by interacting positive functions of variables that were known to the decision maker

when the decision was made with the difference between our models’ estimates of the profits

actually earned and those that would have been generated by our counterfactuals. Recall

that these are the HMO’s profits from reversing its decision with each hospital, and hospital’s

profits from offering a null contract to an HMO which had accepted its offer.

Next we considered alternative ways of allowing νm,h to have a ν2 component, i.e. we

allowed E [νm,h|Ji] ≡ ν2,m,h 6= 0 and the same value for i = m,h. We first tried ν2,m,h =

ν2,m, ∀(m,h); i.e. that the ν2 are HMO specific fixed effects. As shown in Appendix 1, we

can then use PC4a to generate a quite detailed set of inequalities. There is no a priori reason

to assume a fixed effects structure here and when we did it accentuated the problems with

the ν1-only model11. So we used the generalized version of PC4b in footnote 9 to develop an

estimator for the buyer-seller network problem that allows for a ν2,m,h of a general form.

Recall that the νm,h are a component of transfers, so the same νm,h value that goes into

a hospital’s revenues is a component of an HMO’s costs. Let χm,h be the indicator function

for whether a contract is established between m and h with χm,h = 1 if it is established

11In the ν1 only model about 12% of the inequalities were negative but under 2% were individually
significant at the 5% level. In the model with fixed effects, about a third of the inequalities were negative
and 10% were significant at the 5% level. A more complete analysis of effects models in buyer-seller networks
would allow for both buyer and seller effects. This is a straightforward, though somewhat tedious, extension
of the results in Appendix 1. We examine the HMO effects case in detail because all the contract correlates we
use in our analysis are hospital specific, and we wanted to make sure that the absence of HMO characteristics
did not bias the analysis of the impacts of these hospital specific variables.
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and zero if not. These are the only two outcomes possible. So to satisfy PC4b we need an

inequality which is additively separable in νm,h regardless of whether χm,h = 0 or 1.

Let ∆πH
h (Mh,Mh/m,M−h, z) be the difference between the hospital’s profit when the

network of the hospital includes HMO m and when it does not. If χm,h = 1 this contains

νm,h. Let ∆πM
m (Hm, Hm ∪ h,H−m, z) be the difference between the HMO’s profit were it to

reject hospital h’s contract and were it to accept it. If χm,h = 0 this includes the savings in

νm,h from rejecting the contract. Note that if χm,h = 1, E [∆πH
h (Mh,Mh/m,M−h, z)|Jh] ≥ 0,

while if χm,h = 0, E [∆πM
m (Hm, Hm∪h,H−m, z)|Jm] ≥ 0. Using analogous notation for ∆r(·),

equation (13) implies

χm,h∆rH
h (Mh,Mh/m,M−h, z; θ) + (1− χm,h)∆rM

m (Hm, Hm ∪ h,H−m, z; θ) =

χm,h

(
E [∆πH

h (Mh,Mh/m, ·)|Jh]+ν2,m,h+∆ν1,m,·

)
+(1−χm,h)

(
E [∆πM

m (Hm, Hm∪h, ·)|Jm]+ν2,m,h+∆ν1,h,·

)
= χm,h

(
E [∆πH

h (Mh,Mh/m, ·)|Jh]+∆ν1,m,·

)
+(1−χm,h)

(
E [∆πM

m (Hm, Hm∪h, ·)|Jm]+∆ν1,h,·

)
+ν2,m,h,

which is additive in ν2,m,h regardless of whether χm,h is one or zero. So there is no selection

and provided x ∈ Jm ∩ Jh, E[ν2,m,h|x] = 0, and h(·) ≥ 0, PC3 insures that at θ = θ0

E
(
χm,h∆rH

h (Mh,Mh/m,M−h, z; θ) + (1− χm,h)∆rM
m (Hm, Hm ∪ h,H−m, z; θ)

)
h(x) ≥ 0.

(14)

The model also delivers an inequality that does not depend on the νm,h (as in PC4a). The

sum of the increments in profits to the HMO and the hospital when a contract is established

does not contain the transfers between them (and hence νm,h), does contain information on

θ (since if the contract is not established there is a change in transfers to other agents), and

must have positive expectation (at least if contract offers are proprietary). So if Hm/h is the

observed network of hospital m minus hospital h, our conditions on x also insure

E
[
χm,h

(
∆rM

m (Hm, Hm/h, ·; θ0) + rH
h (Mh,Mh/m, ·; θ0)

)
h(x)

]
≥ 0. (15)

Estimates. Neither the ν1-only nor the model which allowed for ν2 could be rejected by

our formal tests. This is not surprising given the sample size12. However the results did

12There were 40 markets containing about 450 plans and 630 hospitals. The market characteristics used as
instruments were indicators for; the quartile of the market’s population size, high (greater than mean) share
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seem to favor the model that allows for ν2 as only six of the inequalities were negative

at its estimated parameter value (the ν1-only model had eleven), and none of them were

individually significant at the 5% level (in contrast to one for the ν1 only model).

The first four columns of Table 1 present the empirical results. We subtracted our

estimate of hospital costs from the revenues in all specifications, so the coefficients appearing

in the table are the coefficients of the markup implicit in the per patient payment. Despite

the fact that none of the test statistics we computed were significant at the 5% level, there

was no value of θ which satisfied all the inequality constraints in any specification, a finding

that is not unusual when there are many inequalities (all our specifications had eighty-eight

or more of them). The algorithm then generates a point estimate equal to the θ value that

minimizes a squared metric in the negative part of the sample moments.

Sample size limited the right hand side variables we could use in the investigation. Still

the estimates we do get, though reduced form, are eye-opening. They imply an equilibrium

configuration in which; the majority of cost savings from low cost hospitals are captured by

the HMOs, and markups increase sharply when a hospital is capacity constrained (CapCon

measures whether the hospital would be capacity constrained if all hospitals contracted with

all HMOs). Though these are not structural estimates they do lead us to worry about the

possibility of significantly lower incentives for hospitals to invest in either cost savings or in

capacity expansion than would occur in a price-taking equilibrium. The difference between

the ν1− only estimates and those that allow for ν2 is that the former imply that almost all

the cost savings from low cost hospitals go to the HMOs, while the latter imply that just

of population aged 55-64, and hospitals integrated into systems. The plan characteristics were indicators for;
whether the plan was local, its quartile of the breast screening distribution, the quality of its mental health
services, and an interaction between the last two variables. The hospital cost measure was not used as an
instrument because we were worried about measurement error in that variable. The results reported here
weighted the market averages of the moment inequalities by the square root of the number of plans in the
market, as this produced slightly smaller confidence intervals (interestingly weighting by the variance of the
moment inequalities did not improve those intervals). Confidence intervals for each dimension are computing
using the techniques in Pakes et. al (2010; a Monte Carlo study of their properties is available from the
author). Finally Ho (2009) reports a series of robustness checks on the ν1−only estimates of a model which
is similar to the model presented here. Though specifications which add right hand side variables sometimes
increase the confidence intervals quite a bit, the qualitative results in our column (1) are never reversed.
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over 50% do and a larger fraction of profits go to capacity constrained hospitals. Low cost

hospitals tend to be more capacity constrained so the two variables are negatively correlated.

3.2 Numerical Analysis.

Might we expect contracts with these characteristics to emanate from a contracting equilib-

rium and should we interpret those coefficients to mean that an increase in the right-hand

side variable would, ceteris paribus, generate the markup response we estimate? To shed

some light on these issues we computed equilibria to a structural contracting model in mar-

kets with characteristics similar to those in Ho’s data, but with population scaled down to a

size where we would expect to have two hospitals and two HMOs in each market (this made

it possible to compute equilibria for many markets in a reasonable amount of time).13

We compute a full information Nash equilibrium to a game in which hospitals make take

it or leave it offers to HMOs. The algorithm assumes that both hospitals chose among a

finite set of couples of markups, one for each HMO, and that these markups are offered

simultaneously to the HMOs. The offers are public information, as are the HMO premiums

that would result from any set of contracts (these are obtained as the Nash equilibrium to a

premium setting game among the HMOs). The HMOs then simultaneously accept or reject

the offers. At equilibrium each hospital is making the best offers it can given the offers of

the other hospital and the responses of the HMOs, and each HMO is doing the best it can

do given the actions of its competitor and the offers made by the hospitals14.

13We used a discrete choice model of demand and market characteristics determined by random draws
from demand and cost characteristic distributions that mimicked those in Ho’s data. The closest exercise
I know of is in a paper by Gal-Or (1997). By judicious choice of primitives she is able to provide analytic
results from a full information Nash bargaining game between two HMO’s and two hospitals. She focuses
on when her assumptions would generate exclusive dealing and its effects on consumers.

14An iterative process with an initial condition in which both hospitals contract with both HMOs chooses
among the equilibria when there are multiple equilibria. The choice set included fifty possible markups for
each of the two hospitals. The algorithm starts with the lowest ones. It then determines whether HMO1
wants to reject one (or both) of the contracts conditional on HMO2 being contracted to both hospitals.
This requires solving for equilibrium premiums and profits for HMO1 given each possible choice it can make
and the fact that HMO2 is contracted to both hospitals. HMO2 then computes its optimal responses to
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Note that these assumptions differ from those used in the empirical analysis. In this full

information game the necessary conditions for an equilibrium guarantee an outcome which

is renegotiation proof while the necessary conditions for the asymmetric information game

we took to data do not. The related questions of; (i) when the different equilibrium notions

are appropriate, and (ii) whether the estimation results are sensitive to this choice, are

questions that research on buyer-seller networks will have to sort out. Though the contents

of contracts are often proprietary, typically who contracts with whom is not. So if we were

trying to model a set of relationships which have been stable over some time we might only

consider equilibria in which no two agents would find it profitable to recontract given the

information on who is contracting with whom. Of course the market we are studying may

be constantly changing and negotiations might be costly. Then we might not expect the

data to abide by a renegotiation proof criteria, at least not one with costless renegotiation.

Since all we need for estimation is a way of obtaining a lower bound to the expected profits

from a counterfactual choice, we could, at least in principal, obtain our inequalities from

the difference between the actual profits and the minimum of the profits from a group of

counterfactuals chosen to reflect different possible game forms (though the larger the group,

the less tight our bounds and the larger the computational burden).

Numerical Results. Column (5) through (8) of Table 1 present OLS estimates from

regressing the computed markups onto variables of interest. The first two columns show

that the three variables that the empirical study focused on have the appropriate signs, are

significant, and account for a large fraction, about 70%, of the variation in markups (or about

HMO1’s decisions in the same way. This process is repeated until we find a Nash equilibrium for the HMOs’
responses. No matter the offers, we always found an equilibrium to this subgame. We then optimize over
the first hospital’s (say H1) offers, holding H2’s offers fixed. For each offer we repeat the process above until
we find a Nash equilibrium for the HMOs’ responses. This gives us H1’s optimal offers given the initial offers
by H2. Next H1’s offers are held fixed and H2 optimize against that. We repeat this process until we find a
Nash equilibrium in offers. For 3% of the random draws of characteristics we could not find an equilibria,
and those markets were dropped from the analysis. Note that when a hospital contracts with an HMO in
equilibrium it does not necessarily contract at the lowest offer that is consistent with the HMO accepting.
Different offers change the HMO costs per patient. This changes the outcome of the premium setting game
that the HMOs engage in and feeds back into hospital profits.
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85% of the variance in transfers). Columns 7 and 8 add variables. The original three variables

maintain their signs and remain significant but have noticeably different magnitudes; i.e.

though the empirical results do pick up important correlates of the equilibrium payments,

the reduced form parameter estimates should not be thought of as causal responses.

This coefficients of the additional variables in column (7) are instructive. They imply that

when the average hospital cost in the market goes up by 1% the markups of the hospitals in

the market go down by .23%, but if the difference between a hospital’s cost and the average

hospital cost goes up by 1%, the hospitals markup goes down by .56%. So a hospital’s markup

over costs depends on the costs of the other hospitals it is competing with. Hospitals earn

higher markups in “tighter” markets (markets with lower ratios of population to the number

of hospital beds) and once we account for this the effect of capacity constraints is greatly

reduced (though not eliminated). HMOs seem to get a small quantity discount (the markups

they pay are lower when they send more patients to the hospital), and hospitals earn higher

markups when the HMOs they are dealing with charge their members higher markups.

Finally note that 20% of the variance in markups, or 8% of the variance in transfers,

is not accounted for by our observables. Given the full information assumptions, this is

ν2 variance. Even in a world where our equilibrium and functional form assumptions are

correct, measurement error in hospital costs would cause ν1 error. So in this, and we suspect

in most, empirical examples both types of errors are likely to be present.

4 Specification Errors and Alternative Estimators.

The generalized discrete choice model ignores ν1 errors and requires an a priori specification

of the ν2 distribution; both assumptions which, if incorrect, can generate an inconsistency

in its estimators. The profit inequality model which pays inadequate attention to possible

sources of ν2 error will generate selection biases. This section asks what the impacts of these

specification errors are likely to be in the context of our buyer-seller network example. It

presents Monte Carlo results from using each of the two model’s estimators both; (i) when

that models’ assumptions are the assumptions generating the data, and (ii) when they are

not. Where possible we will also present results from Ho’s data.
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Details of the Monte Carlo Analysis. The Monte Carlo results are based on a popu-

lation of 100,000 markets whose equilibria were computed using the algorithm described in

the last section. We estimate one parameter; the average per patient markup. To obtain

the true value of that parameter we took the transfers implicit in the equilibrium offers and

projected them onto the number of patients and the variables we used as instruments.15 The

function obtained from this projection is treated as the parametric transfer function. The

coefficients of the instruments are treated as known and the coefficient of the patient variable

is the coefficient to be estimated. The residual from this projection is the ν2 error. This

insures that ν2 has zero covariance with our instruments before we condition on the outcome.

When all we require is a ν1 error we treat these ν2 as known and add pseudo random draws

on a normal measurement error to hospital costs and/or population size.

The Monte Carlo results are based on four hundred data sets each obtained as indepen-

dent draws from our “population” of markets. The sample size was set so that the number

of contracts in each sample‘ matched the number of contracts in Ho’s (2009) data set. Since

each of the computed equilibria had only two hospitals and two HMO’s this gave us a larger

number of markets (1,385 markets per sample), but many fewer contracts per market, than

in Ho (2009). The ν1 and ν2 draws are taken independently across samples.16

The inequalities used to estimate the profit inequality model are the same as those used in

the empirical work; each HMO reverses its equilibrium decision with each hospital, and each

hospital replaces its equilibrium contract offer to each HMO with a null contract. However

since the Monte Carlo data is generated from a full information Nash equilibrium, when

the hospital offers a null contract to an HMO that hospital considers the profits that would

accrue to it were both HMOs to reoptimize17. For the generalized discrete choice approach

15For accepted offers these were the actual transfers, for the offers that were rejected these are the transfers
that would have resulted if the last offer had been accepted.

16Actually we did the analysis in two ways. In the second we drew a Monte Carlo data set, took two
hundred draws on vectors of ν1 errors for that data set, tabulated the results for each data set, and then
averaged over data sets. This provides confidence intervals that condition on the observables, while the
results reported in the text do not. The results from the two procedures were virtually identical.

17To obtain the π(·) resulting from the null contract offer, let om,h be the contract offered by hospital h to
HMO m in equilibrium, and φ be the null contract. If h = 1 contracted with m = 1, its profits from offering
φ are obtained from the HMO equilibrium responses to the tuple (φ, o1,2, o2,1, o2,2).
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we used the inequalities generated by the necessary conditions for equilibrium.18

Results. Table 2, which presents the results, is split into panels. Panel A provides esti-

mates obtained using the ν1-only inequalities, Panel B from using the ν2-only inequalities

(the inequalities from the generalized discrete choice model), and Panel C uses the inequal-

ities that allow for both ν1 and ν2 disturbances. The “true” value of θ0 from the simulated

data was 16.76. The “identified set”, that is the θ interval that satisfies the population

moment conditions, differs across panels.

Since the instruments are orthogonal to the disturbance by construction, the identified set

for Panel A is the θ interval which generates positive population profit inequalities when we

set all disturbances to zero; [13.47, 18.59]. The true identified set for the generalized discrete

choice model depends on the true joint distribution of the ν2’s conditional on the market’s

instruments. This is not known and is too complex to estimate non-parameterically; a prob-

lem which is likely to recur in empirical work. To get a sense of the identified set generated

by this approach we set all the disturbances to zero and for each possible network struc-

tures found the set of θ which lead to positive values for; (i) the averages of the differences

between the indicator functions for satisfying the Nash conditions and the “observed” equi-

librium outcome, and (ii) did the same after interacting the difference in indicator functions

for each network structure with the variables used as instruments. The interval for (i) was

[16.7, 16.95], while for (ii) it was [16.7, 16.85]; both rather amazingly short.

The first two rows of Panel A provide results from the ν1-only profit inequality model

when there are only ν1 errors (so its estimators are consistent). Row 1 adds measurement

error in costs equal to 25% of the true cost variance. The average of the estimated lower

bounds is 8% lower than the true lower bound (θ0), while that of the upper bound is 2.5%

higher than θ0 . Moreover the bounds are precisely estimated, less than 2.5% of the lower

18Note that the estimating equations used do not exhaust the information in the data in either approach.
At the cost of increasing the computational burden we could have; (i) used the inequalities obtained from
simultaneously switching each HMO’s behavior with respect to both hospitals in the profit inequality ap-
proach (and if more details on the contracts were available yet other inequalities would become available), and
(ii) for the generalized discrete choice approach we could have computed the probability that the observed
equilibrium was unique.
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(upper) bounds were more than 10% different from their true values. When we add an

expectational error to the population, and hence to the patient flows from the HMOs to the

hospitals, the estimated interval gets substantially larger. This is unfair to the model since,

though there may be uncertainty in the relevant population size and patient flows variables

when contracts are signed, we should be able to construct good instruments for them from

current population size and flows, and we did not do that here. We keep this case because

it allows us to examine the impact of specification errors in one setting where the bounds

define a short interval and one where they do not.

Rows 3 and 4 use a simulated data set that contains both ν1 and ν2 errors but the

inequalities from the ν1-only model. The ratio of the variance in ν2 to the variance in the

dependent variable is 12.7%. Now the estimated bounds are inconsistent; the lower bound

will, in the limit, be too large, while the upper bound will be too low. This makes the

bounds move towards θ0, but they may overshoot, leaving us with an estimator which does

not cover the true θ0. Adding ν2 also adds variance to the estimators, so in any finite sample

the estimated bounds may be smaller or larger with ν2 errors than without them. In the case

with only measurement error in costs, the case in which the interval was tightly estimated,

adding specification error in the form of the ν2 has little effect on any of the estimates.

When there is also measurement error in population and the estimated intervals are larger,

the effect of the specification error is to lessen the loosely estimated upper bound, but only

by 5%. At least in this example estimates from the ν1−only inequalities do not change much

when we allowed for ν2 error. Apparently when we add ν2 variance its biasing effects on the

estimates are largely offset by the effect of increased data variance on those estimates.

The last row of panel A provides the estimates when we use Ho’s (2009) data with this

specification. This generates a point estimate about a third lower than the lower bound

estimate from the simulated data and a confidence interval of length between that of the

model with errors in the population and that without those errors.

Panel B provides the results when we use the ν2-only inequalities. To use the ν2-only

algorithm we need an assumption on the joint distribution of the ν2. We tried two assump-

tions; (i) random draws from the empirical distribution of the actual ν2, and (ii) a normal

distribution. The first option would not be available to empirical researchers but might be
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closer to the true population distribution (it would be if the ν2 were truly independent, not

just mean independent, of the instruments and had no within market correlation).

Regardless of whether we use just the constant term (rows 6 & 7) or all of our instruments

(rows 8 & 9) and regardless of the choice of ν2−distribution, the ν2-only model generates

point estimates whose values are larger than the true θ0. The distribution of estimates had

little variance, so the interval formed from 95% of the point estimates does not cover the true

θ0 either. Apparently the lack of information on the ν2-distribution leads to an inconsistency.

Though this is disturbing the asymptotic bias is not large; the lower bound of the (normal)

confidence interval is about 2.6% larger, and the point estimate 6.9% larger, than θ0.

Just as we added ν2 variance to the algorithm which uses the ν1-only inequalities, rows 10

and 11 add ν1 variance to the algorithm which uses the ν2-only inequalities. The estimates

presented in these rows use the normal distribution of the ν2 (an empirical researcher would

not have access to the bootstrap distribution). Adding ν1 errors does tend to increase the

parameter estimates further, but by a surprisingly small amount. We could not use the ν2-

only algorithms on Ho’s actual data. To do so we would have had to compute about 100,000

premium setting equilibria and their implied profits for each ν2 draw and each θ evaluated

in estimation; a task that will be beyond our computational abilities for some time.

Panel C provides the estimates obtained when we used the inequalities that allow for

both ν1 and ν2 disturbances; the “robust” inequalities in equations (14) and (15). The

fact that there are only two agents on each side of the simulated markets implies that the

robust inequalities do not deliver an upper bound. The lower bound is lower than the bound

obtained when we used the ν1 only inequalities on this data, but not by much. When we

move to Ho’s (2009) data and use the robust inequalities we get an estimate which is larger

than the estimate which allows for only ν1 errors but a confidence interval of similar length,

and both confidence intervals cover both estimates. Interestingly once we allow for ν2 errors

the estimates from Ho’s data is closer to, and the confidence interval covers, the value of the

parameter obtained from the numerical analysis.

The results from the Monte Carlo are quite encouraging. It seems that the most salient

problem is the requirement of an assumption on the distribution of ν2 in the generalized

discrete choice model. In multistage games that estimator also carries a large computational
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burden. However the worry that a moderate amount of ν1 variance in the generalized discrete

choice model, or a moderate amount of ν2 variance in the profit inequality model, would

severely bias the estimates is, at least in this example, not warranted. The addition of the

unaccounted for error adds variance, as well as bias, to the estimates. This variance tends

to move the bounds in the opposite direction as does the bias and in our example the net

effect was small. The estimator which uses the robust inequalities is least subject to bias

but does generate larger identified sets.

5 Summary.

This paper formulates two set of assumptions that enable one to bring behavioral models,

both their structural and their reduced forms, to data and applies them to two empirical

problems. Our first example illustrates that the assumptions underlying traditional discrete

choice estimators are not always the most sensible choice for discrete choice problems. This

motivates an enumeration of assumptions that justify alternative estimators in both mul-

tiple, and single, agent settings. An empirical example illustrated how the multiple agent

estimator can be used to analyze a problem which is central to the determinants of prices and

investment incentives in vertical markets; the correlates of the profit split between buyers

and sellers in those markets. Though the results were reduced form and had to make do with

both limited data and the auxiliary assumptions required to obtain counterfactual profits,

they were broadly consistent with results obtained from a numerical analysis of equilibrium

contracts in markets which were similar to those used in the empirical analysis. A Monte

Carlo analysis indicated that the estimators from both models were surprisingly robust to

all likely sources of problems but one; the need to assume a distribution for the generalized

discrete choice model. It seems that moment inequalities open up possibilities for empirically

analyzing market interactions in relatively unexplored, yet important, settings.
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Appendix: Inequalities for Buyer Seller Network With Fixed Effects.

We use the notation introduced for the hospital HMO problem in subsection 4.1.1, and consider the
case in which the {ν2,m,h} are HMO fixed effects; i.e. that ∀(h,m), ν2,m,h = ν2,m. These restrictions
generate two sets of inequalities.

The first is a difference in difference inequality. If an HMO accepts at least one hospital’s
contract and rejects the contract of another, then the sum of the increment in profits from accepting
the contract accepted and rejecting the contract rejected; (i) differences out the HMO effect and
(ii) has a positive expectation. More formally for every h̃ /∈ Hm and h ∈ Hm we have

∆πM
m (Hm, Hm ∪ h̃, ·) + ∆πM

m (Hm, Hm\h, ·) = ∆rM
m (Hm, Hm ∪ h̃, ·) + ∆rM

m (Hm, Hm\h, ·),

which implies that provided x ∈ Jm ∩ Jh and h(·) is a positive valued function

E
[
∆rM

m (Hm, Hm ∪ h̃, ·; θ0) + ∆rM
m (Hm, Hm\h, ·; θ0)

]
h(x) ≥ 0.

For the second inequality note that if ν2,m,h = ν2,m we can use the logic leading to equation
(14) in the text to show that for any positive valued function, h(·)

0 ≤ E

[
1

#H

∑
h

(
χm,h∆πH

h (Mh,Mh/h, ·) + (1− χm,h)∆πM
m (Hm, Hm ∪ h, ·)

)]
h(x) =

E

[
1

#H

∑
h

(
χm,h∆rH

h (Mh,Mh/h, ·; θ) + (1− χm,h)∆rM
m (Hm, Hm ∪ h, ·; θ)

)
+ ν2,m

]
h(x)

≡ E
[
S

r(m, ·; θ) + ν2,m

]
h(x).

This implies that ESr(m, ·; θ0)h(x) ≥ −Eν2,mh(x), and consequently that for any x ∈ Jm ∩ Jh

E
[
∆rM

m (Hm, Hm\h, ·; θ0) + S
r(m, ·; θ0)

]
h(x) ≥ 0.
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Table 1: Determinants of Hospital/HMO Contracts.

Data Real Data Simulated Data
Estimator Inequality Estimators OLS Regression

ν1 only ν1 & ν2 Actual Markups
column (1) (2) (3) (4) (5) (6) (7) (8)

θ 95% CI θ 95% CI θ s.e. θ s.e.
Variable UB/LB UB/LB

Per Patient Markup (Units = $ thousand/patient)

Const. 9.5 15.4/4.8 8.2 15.2/3.3 8.9 .09 3.7 .24
CapCon. 3.5 8.6/1.4 13.5 16.1/2.3 1.2 .10 .48 .11
Cost/Adm. -.95 -1.5/-.57 -.58 -.2/-1.1 -.39 .01 – –
Av.Cost – – – – – – -.23 .01
Cost-AC – – – – – – -.56 .01
Pop/bed – – – – – – .11 .01
# patient – – – – – – -.09 .01
HMOmarg – – – – – – 1.4 .10
R2 – – – – .71 .80

Notes: Real Data. There are 40 markets. CapCon measures whether the hospital would be capacity
constrained if all hospitals contracted with all HMOs, Cost/Adm = hospital cost per admission.
Costs and admissions /∈ IV.
Simulated Data. These are least squares regressions coefficients from projecting computed markups
onto the included variables. See below for the calculation of equilibrium markups. There are 1385
markets with 2 HMOs and 2 Hospitals in each. This generates approximately the same number
of buyer-seller pairings as in the data set used in the empirical analysis. Additional variables are
defined as follows; “Cost-AC” is the cost per admission of the hospital minus the average of that
over the hospitals in the market, Pop/bed is population over total number of hospital beds in the
market, # patients is number of patients the HMO sends to the hospital, and HMO margin is the
HMO’s average premium minus its average cost.
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Table 2: Inequality Estimators: Simulated and Actual Data.

Disturbances Not In Average 95% of θ in
IV LB UB LB UB

A: Using ν1 inequalities.

Simulated data: θ0=16.76, [θ0, θ0]=[13.47,18.59].
Only ν1 disturbances

1. 25% Cost Cost 12.39 18.72 12.12 19.05
2. 25% Cost,5% pop Cost, Nj,k,Pop 11.43 37.34 11.30 45.88

ν1 & ν2 disturbances.
3. ν2, costs Cost 12.25 18.42 12.01 18.86
4. ν2, costs, pop Cost, Nj,k,Pop 11.69 35.91 11.55 43.97

Ho’s (2009) data with ν1 inequalities.

5. actual disturbances Cost 8.2 8.2 2.3 16.4

B: Using ν2 inequalities.

Simulated data, Only Constant as IV: θ0=16.76, ′′[θ0, θ0]
′′=[16.7,16.95].

6. ν2 (bootstrap dist) 17.75 17.75 17.25 18.1
7. ν2 (normal dist) 17.92 17.92 17.2 18.45

Simulated data, All IV: θ0=16.76, ′′[θ0, θ0]
′′=[16.7,16.85].

8. ν2 (bootstrap dist) 17.84 17.84 17.40 18.25
9. ν2 (normal dist) 18.02 18.02 17.65 18.5

Simulated data, ν1 (in costs) & ν2 disturbances.
10. ν2 ∼ N , IV=Only Constant 18.02 18.02 17.35 18.5
11. ν2 ∼ N , All IV Costs 18.11 18.11 17.64 18.65

Ho’s (2009) data with ν2 inequalities.
12. Assume ν2 normal Could Not Compute.

C: Using Robust inequalities.
Simulated data.

13. ν2, costs Cost 11.86 n.b. 11.72 n.b.
14. ν2, costs, pop Cost,Nj,k,Pop 11.69 n.b. 11.55 n.b.

Ho’s (2009) data.
15. Actual Disturbances Cost 11.7 11.7 3.6 17.9

Notes. Instruments for panels A & C (unless omitted); constant, Nj,k, hospital cost and capacity
measures, market cost capacity and population measures, HMO characteristics, and interactions
among above. Instruments for ν2 inequalities are market averages of above variables. The model
for line 15 allowed also for a cost coefficient; without it the average markup was negative.
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