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Abstract

This paper illustrates how the use of random set theory can benefit partial identification
analysis. We revisit the origins of Manski’s work in partial identification (e.g., Manski (1989,
1990)), focusing our discussion on identification of probability distributions and conditional
expectations in the presence of selectively observed data, statistical independence and mean
independence assumptions, and shape restrictions. We show that the use of the Choquet capacity
functional and of the Aumann expectation of a properly defined random set can simplify and
extend previous results in the literature. We pay special attention to explaining how the relevant
random set needs to be constructed, depending on the econometric framework at hand. We
also discuss limitations in the applicability of specific tools of random set theory to partial
identification analysis.
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1 Introduction

Overview. Partial identification predicates that econometric analysis should include the study of

the set of values for a parameter vector (or statistical functional) of interest which are observa-

tionally equivalent, given the available data and credible maintained assumptions. We refer to this

set as the parameter vector’s sharp identification region.1 This principle is perhaps best summa-

rized in Manski’s (2003) monograph on Partial Identification of Probability Distributions, where

he states: “It has been commonplace to think of identification as a binary event — a parameter

is either identified or it is not —and to view point identification as a precondition for meaningful

inference. Yet there is enormous scope for fruitful inference using data and assumptions that par-

tially identify population parameters”(p. 3). Following this basic principle, partial identification

analysis, whether applied for prediction or for decision making, aims at: (1) obtaining a tractable

characterization of the parameters’sharp identification region; (2) providing methods to estimate

it; (3) conducting test of hypotheses and making confidence statements about it.

While conceptually these aims imply a fundamental shift of focus from single valued to set

valued objects, in practice they have been implemented using “standard”mathematical tools, such

as probability distributions, conditional and unconditional expectations, laws of large numbers and

central limit theorems for (single valued) random vectors. This approach has been very productive

in many contexts; see, for example, Manski (1995), Haile and Tamer (2003) and Manski (2007) for

results on identification, and Imbens and Manski (2004, see also Stoye (2009)), Chernozhukov, Hong,

and Tamer (2007) and Andrews and Soares (2010) for results on statistical inference. However,

certain aspects of the study of identification and statistical inference in partially identified models

can substantially benefit from, and be simplified by, the use of mathematical tools borrowed from the

theory of random sets (Molchanov (2005)). This literature originated in the seminal contributions

of Choquet (1953/54), Aumann (1965) and Debreu (1967), and its first self contained treatment was

given by Matheron (1975). It has been an area intensely researched in mathematics and probability

ever since.

The applicability of random set theory to partial identification is due to the fact that partially

identified models are often characterized by a collection of random outcomes (or covariates) which

1This region contains all the parameters’values that could generate the same distribution of observables as the one
in the data, for some data generating process consistent with all the maintained assumptions, and no other values.
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are consistent with the data and the maintained assumptions. To fix ideas, suppose that one

wants to learn a feature of the distribution of an outcome variable y conditional on covariates

w. Let w be perfectly observed and y be interval measured, with P (y ∈ [yL, yU ]) = 1. In the

absence of assumptions on how y is selected from [yL, yU ] , the distribution P (y|w) is partially

identified. The collection of random variables ỹ such that P (ỹ ∈ [yL, yU ]) = 1, paired with w,

gives all the random elements that are consistent with the data and the maintained assumptions;

hence, the collection of random elements which are observationally equivalent. In the language of

random set theory, these random elements constitute the family of selections of a properly specified

random closed set; in this example, [yL, yU ] × w.2 Depending on the specific econometric model

at hand, different features of the observationally equivalent random elements might be of interest;

for example, their distributions or their expectations. Random set theory provides probability

“distributions”(capacity functionals) and conditional and unconditional (Aumann) “expectations”

for random sets, which can be employed to learn the corresponding features of interest for the

family of their selections, and hence for the observationally equivalent random elements of interest.

The main task left to the researcher is to judiciously construct the relevant random set to which

these tools need to be applied. In turn, this leads to characterizing the sharp identification region

of a model’s parameters in the space of sets, in a manner which is the exact analog of how point-

identification arguments are constructed for point identified parameters in the space of vectors.

Laws of large numbers and central limit theorems for random sets can then be used to conduct

statistical inference, again in a manner which is the exact analog in the space of sets of how

statistical inference is conducted for point identified parameters in the space of vectors.

The fundamental goal of this paper is to explain when and how the theory of random sets can be

useful for partial identification analysis. In order to make our discussion as accessible as possible,

and relate it to the origins of Manski’s work on the topic (e.g., Manski (1989, 1990)), we focus our

analysis on identification in the presence of interval outcome data, paying special attention to the

selection problem. Statistical considerations can be addressed using the methodologies provided

by Beresteanu and Molinari (2008), Galichon and Henry (2009b), Chernozhukov, Lee, and Rosen

(2009), Chernozhukov, Hong, and Tamer (2007), Andrews and Shi (2009) and Andrews and Soares

2We formally define the family of selections of a random closed set in Appendix A. For ease of exposition, we
work with random sets that are topologically closed. However, many of the results discussed in this paper still hold
without assuming closedness. See Molchanov (2005).
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(2010), among others, as we discuss in Section 4 below. Some of the results that we report have

already been derived by other researchers (specifically, the results in Propositions 2.2, part of 2.4,

3.2, C.2, and C.3). We rederive these basic results, as this helps make plain the connection between

random set theory and standard approaches to partial identification. We then provide a number

of novel results which are simple extensions of these basic findings, if derived using random set

theory, but would not be as easy to obtain if using standard techniques, thereby showcasing the

usefulness of our approach (specifically, the results novel to this paper appear in Propositions 2.3,

part of 2.4, 2.5, 2.6, 3.3, C.1, and C.4). We also pay special attention to explaining how the relevant

random closed set needs to be defined, depending on the econometric framework at hand. As it

turns out, this boils down to the same careful exercise in deductive logic, based on the maintained

assumptions and the available data, which characterizes all partial identification analysis. Finally,

we discuss limitations in the applicability of random set theory to partial identification.

Related Literature Applying Random Sets Theory in Econometrics. While sometimes

applied in microeconomics, the theory of random sets has not been introduced in econometrics

until recently. The first systematic use of tools from this literature in partial identification analysis

appears in Beresteanu and Molinari (2006, 2008). They study a class of partially identified models

in which the sharp identification region of the parameter vector of interest can be written as a

transformation of the Aumann expectation of a properly defined random set. For this class of

models, they propose to use the sample analog estimator given by a transformation of a Minkowski

average of properly defined random sets. They use limit theorems for independent and identically

distributed sequences of random sets, to establish consistency of this estimator with respect to the

Hausdorff metric. They propose two Wald-type test statistics, based on the Hausdorff metric and

on the lower Hausdorff hemimetric, to test hypothesis and make confidence statements about the

entire sharp identification region and its subsets. And they introduce the notion of “confidence

collection”for partially identified parameters as a counterpart to the notion of confidence interval

for point identified parameters.

General results for identification analysis are given by Beresteanu, Molchanov, and Molinari

(2008, 2009, 2010), who provide a tractable characterization of the sharp identification region

of the parameters characterizing incomplete econometric models with convex moment predictions.

Examples of such models include static, simultaneous move finite games of complete and incomplete
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information in the presence of multiple equilibria; random utility models of multinomial choice in the

presence of interval regressors data; and best linear predictors with interval outcome and covariate

data. They show that algorithms in convex programming can be exploited to effi ciently verify

whether a candidate parameter value is in the sharp identification region. Their results are based

on an array of tools from random set theory, ranging from conditional Aumann expectations, to

capacity functionals, to laws of large numbers and central limit theorems for random closed sets.

Galichon and Henry (2006, 2009b) provide a specification test for partially identified structural

models. In particular, they use a result due to Artstein (1983), discussed in Section 2 below,

to conclude that the model is correctly specified if the distribution of the observed outcome is

dominated by the Choquet capacity functional of the random correspondence between the latent

variables and the outcome variables characterizing the model. This allows them to extend the

Kolmogorov-Smirnov test of correct model specification to partially identified models. They then

define the notion of “core determining”classes of sets, to find a manageable class of sets for which to

check that the dominance condition is satisfied. They also introduce an equivalent formulation of the

notion of a correctly specified partially identified structural model, based on optimal transportation

theory, which provides computational advantages for certain classes of models.3

Structure of the Paper. In Section 2 we address the problem of characterizing the sharp iden-

tification region of probability distributions from selectively observed data, when the potential

outcome of interest is statistically independent from an instrument, and when it satisfies certain

shape restrictions. In doing so, we extend the existing literature by allowing the instrument to have

a continuous distribution, by allowing for more than two treatments, and by deriving sharp iden-

tification regions for the entire response function both under independence assumptions and shape

restrictions. The fundamental tool from random set theory used for this analysis is the capacity

functional (probability distribution) of a properly specified random set. In Section 3 we address the

problem of characterizing the sharp identification region of conditional expectations from selectively

observed data, in the presence of mean independence assumptions and shape restrictions. We also

discuss best linear prediction, and provide a number of novel results of practical use, concerning

the implications of affi ne transformations of covariate data (e.g., demeaning and rescaling) for the

characterization of the sharp identification region of parameters of interest. The fundamental tools

3For example, this occurs in finite static games of complete information where players use only pure strategies
and certain monotonicity conditions are satisfied.
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from random set theory used for this analysis is the Aumann expectation of a properly defined

random set and its support function.

In Section 4 we outline how to estimate the sharp identification regions and conduct statistical

inference. In Section 5 we discuss the issue of how one should choose whether to use the capacity

functional or the Aumann expectation as the main tool to address a specific partial identification

problem. Section 6 concludes. Appendix A provides basic definitions. Appendix B provides a few

auxiliary Lemmas. Appendix C provides sharp identification regions for the distribution and the

expectation of the response function under independence and shape restrictions.

Notation. Throughout the paper, we use capital Latin letters to denote sets and random sets.4

We use lower case Latin letters for random vectors. We denote parameter vectors and sets of

parameter vectors, respectively by θ and Θ. We let (Ω,F,P) denote a nonatomic probability space

on which all random variables and random sets are defined.5 We denote the Euclidean space by <d,

and equip it with the Euclidean norm (which is denoted by ‖·‖). The theory of random closed sets

generally applies to the space of closed subsets of a locally compact Hausdorff second countable

topological space F, see Molchanov (2005). For the purposes of this paper it suffi ces to consider

F = <d, which simplifies the exposition. Denote by F and K, respectively, the collection of closed

subsets and compact subsets of <d. Given a set A ⊂ <d, let co(A) denote its convex hull.

2 Usefulness of the Capacity Functional

2.1 Capacity Functional and Artstein’s Inequality

Consider cases in which all the information provided by the empirical evidence and the maintained

assumptions can be expressed by saying that a random vector x belongs to a properly specified

random set X (see Definition A.1 in Appendix A) in the sense that P (x ∈ X) = 1. This happens,

for example, when we observe interval data. In this case the researcher is interested in a variable

x which is only known to lie in an interval X = [xL, xU ] , with P (x ∈ X) = 1. In other words, the

unobserved variable of interest is a selection of the observed random set X (see Definition A.2 in

Appendix A). In order to utilize the information embodied in the statement that P (x ∈ X) = 1,

4The notations P and E are reserved to the probability measure on the sample space and the expectation operator
taken with respect to this probability measure.

5Similar results to those reported here apply for the case of atomic probability spaces, see Molchanov (2005). We
restrict attention to the nonatomic case to simplify the exposition, and because when one considers a sequence of
i.i.d. random elements, the appropriate (product) probability space is always nonatomic.
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one needs to be able to relate features of the random set to corresponding features of its selections.6

A fundamental result in random set theory, due to Artstein (1983) and Norberg (1992), provides

a necessary and suffi cient condition for P (x ∈ X) = 1, which relates the distribution of the random

vector x to the capacity functional of the random set X.7 The capacity functional is a subadditive

measure which uniquely determines the distribution of a random closed set by giving the probability

that the random set hits a given compact set, see Definition A.3 in Appendix A. In what follows,

let “x d∼ x′”(“X d∼ X ′”) denote that two random vectors (sets) are equivalent in distribution.

Theorem 2.1 (Artstein’s inequality) A random vector x and a random set X can be realized

on the same probability space as random elements x′ and X ′, with x′ d∼ x and X ′ d∼ X, so that

P (x′ ∈ X ′) = 1, if and only if

(2.1) P (x ∈ K) ≤ P (X ∩K 6= ∅) ≡ TX (K) ∀K ∈ K.

Equivalently, if and only if

(2.2) P(x ∈ K) ≥ P (X ⊂ K) ≡ CX(K) ∀K ∈ K.

When condition (2.1) is satisfied, we say that x is stochastically smaller than X.8

Proof. The proof of this result for the capacity functional, i.e., for condition (2.1), can be found

in Molchanov (2005, Corollary 1.4.44). Here we provide an argument for the equivalence between

condition (2.1) and condition (2.2). Consider K ∈ K. Its complement Kc can be approximated

from below by a sequence of compact sets {Kn}, i.e. Kn ↑ Kc. By condition (2.1),

P(x ∈ Kn) ≤ P(X ∩Kn 6= ∅) , n ≥ 1 .

By passing to the limit as n→∞ and using the continuity of probability from below, we arrive at

P(x ∈ Kc) ≤ P(X ∩Kc 6= ∅).
6 In other partial identification problems, such as for example static discrete games of complete information in the

presence of multiple pure strategy Nash equilibria, the model predicts a random closed set of equilibrium outcomes Y.
The econometrician observes an equilibrium outcome y which, if the model is correctly specified, satisfies P (y ∈ Y ) =
1, see Beresteanu, Molchanov, and Molinari (2008).

7Beresteanu and Molinari (2006, 2008, Proposition 4.1) use this result to establish sharpness of the identification
region of the parameters of a best linear predictor with interval outcome data. Galichon and Henry (2006) use it to
define a correctly specified partially identified structural model, and derive a Kolmogorov-Smirnov test for Choquet
capacities.

8 In the statement of Artstein’s inequality, compact sets K ∈ K can be replaced by closed sets F ∈ F .
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By the relationship between capacity functional and containment functional (see equation (A.1) in

Appendix A), the above can be rephrased as

1−P(x ∈ K) ≤ 1−P(X ⊂ K)

yielding exactly the dominance condition for the containment functional in (2.2). The reversed

implication is similar.

Intuition for the Capacity Functional Dominance Condition. The nature of the domination

condition in inequality (2.1) can be traced to the ordering—or first order stochastic dominance—

concept for random variables. Namely, a random variable x is said to be stochastically smaller

than a random variable y if P(x ≤ t) ≥ P(y ≤ t) for all t ∈ <; in other words, if the cumulative

distribution function of x dominates that of y. When this is the case, x and y can be realized on

the same probability space as random variables x′ d∼ x and y′ d∼ y, such that x′ ≤ y′ almost surely.

This is referred to as the ordered coupling for random variables x and y. The stochastic dominance

condition can be written also as P(x ∈ A) ≤ P(y ∈ A) for A = [t,∞) and all t ∈ <. Such a set A

is increasing (or upper), i.e. x ∈ A and x ≤ y implies y ∈ A. Using the probabilities of upper sets,

this domination condition can be extended to any partially ordered space. In particular, this leads

to the condition for the ordered coupling for random closed sets Z and X obtained by Norberg

(1992); see also Molchanov (2005, Section 1.4.8). Two random closed sets Z and X can be realized

on the same probability space as random sets Z ′ d∼ Z and X ′ d∼ X and so that Z ′ ⊂ X ′ almost

surely, if and only if the probabilities that Z has nonempty intersection with any finite family of

compact sets K1, . . . ,Kn, n ≥ 1, are dominated by those of X. If Z is a singleton, say Z = {x} ,

this condition can be substantially simplified and reduces to the one in inequality (2.1). �

In all that follows, to simplify the exposition, we refer to Artstein’s inequality as a necessary

and suffi cient condition for P (x ∈ X) = 1, with the understanding that such statement is meant up

to an ordered coupling. We denote by Sel (X) the set of random elements x such that x(ω) ∈ X (ω)

P − a.s., see Definition A.2 in Appendix A. Let PX denote the family of all probability measures

µx that are dominated by TX , or equivalently that dominate CX :

(2.3) PX = {µx : µx (K) ≤ TX (K) ∀ K ∈ K} = {µx : µx (K) ≥ CX (K) ∀ K ∈ K} .

Then the capacity functional equals the upper envelope of all probability measures that it domi-

nates, and the containment functional equals the lower envelope of all probability measures that

7



dominate it, see Molchanov (2005, Theorem 1.5.13):

TX (K) = sup {µx (K) : µx ∈ PX} , K ∈ K,

CX (K) = inf {µx (K) : µx ∈ PX} , K ∈ K.

2.2 Conditional Distributions and the Selection Problem

In this Section we illustrate how the use of the capacity functional, and in particular the application

of Theorem 2.1, can simplify the task of finding the sharp identification region for probability distrib-

utions of interest, in the presence of selectively observed data, statistical independence assumptions,

and shape restrictions. This problem is discussed, for example, in Manski (2003, Chapters 7 and 8),

where several findings are reported. It is especially suited to explain the usefulness of the capacity

functional in partial identification, because: (1) the relevant random sets to which Artstein’s in-

equality needs to be applied have been derived by Manski, see for example Manski (1989, equation

3) and Manski (2003, Proposition 8.1), and are of familiar use in partial identification;9 and (2)

statistical independence assumptions directly constrain the probability distributions of selections

of these random sets, and are therefore easy to couple with Artstein’s inequality.10

2.2.1 Basic Set-up and Worst-Case Analysis

Using standard notation (e.g., Neyman (1923)), let T = {0, ..., T} denote a set of mutually exclusive

and exhaustive treatments, let w ∈ W denote some covariates, and let y (·) : T → Y denote a

response function mapping treatments t ∈ T into outcomes y (t) ∈ Y, with Y a compact set in

<. Without loss of generality assume minY = 0, and maxY = 1. Let z ∈ T denote the received

treatment. The object of interest is to learn the probability distribution of the potential outcomes

given covariates w, P(y(t)|w), t ∈ T , and the probability distribution of the response function given

covariates w, P(y(·)|w). The identification problem arises because while for t = z the outcome

y (t) ≡ y (z) ≡ y is realized and observable, for t 6= z the outcome y (t) is counterfactual and

unobservable. Let the tuple (y (·) , z, w) be defined on (Ω,F,P), and let the researcher observe

(y, z, w). To simplify the exposition, we henceforth leave implicit the conditioning on w.

9Manski did not use the language of random sets. However, his analysis in Manski (1989) and Manski (1997) effec-
tively gives the random sets which collect all the information provided by the data and the maintained assumptions,
as we show below.
10Our formal results are written using the containment functional, as this allows us to easily characterize the class

of sets for which Artstein’s inequality has to be satisfied. In view of equation (A.1), this is equivalent to using the
capacity functional.
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Manski (2003, equation 7.2) characterizes the sharp identification region for P(y(t)) as follows:

(2.4) H [P(y(t))] = {P (y|z = t)P (z = t) + γP (z 6= t) , γ ∈ ΓY} ,

with ΓY denoting the collection of all probability measures on Y. Here we provide an equivalent

characterization, using Artstein’s inequality.

Construction of the Relevant Random Set for y (t)

The data alone reveal that y (t) = y if t = z and y (t) ∈ Y for t 6= z, t ∈ T . Hence, for each

t ∈ T , all the information embodied in the data can be expressed by stating that y (t) ∈ Sel (Y (t)),

with

(2.5) Y (t) =

{
{y} if z = t,
Y if z 6= t.

This is the simplest example of how a random closed set can be constructed, which collects all the

information given by the data and the maintained assumptions.

Characterization of the Sharp Identification Region of P(y(t))

Let K (Y) denote the family of compact subsets of Y. The sharp identification region of P(y(t))

can be obtained applying Artstein’s inequality:

Proposition 2.2 The sharp identification region for P(y(t)) is given by

(2.6) H [P(y(t))] = {µ ∈ ΓY : µ (K) ≥ P (y ∈ K|z = t)P (z = t) ∀K ∈ K (Y)} .

If Y is finite,

H [P(y(t))] = {µ ∈ ΓY : µ (k) ≥ P (y = k|z = t)P (z = t) ∀k ∈ Y} .

If Y = [0, 1] ,

H [P(y(t))] = {µ ∈ ΓY : µ ([k1, k2]) ≥ P (y ∈ [k1, k2] |z = t)P (z = t) ∀k1, k2 ∈ Y : k1 ≤ k2} .

Proof. By Theorem 2.1, y (t) ∈ Sel (Y (t)) if and only if P (y (t) ∈ K) ≥ CY (t) (K) ∀K ∈ K (Y) .

Simple algebra gives CY (t) (Y) = 1 and

CY (t) (K) = P (y ∈ K|z = t)P (z = t) ∀K ∈ K (Y) such that K 6= Y.

9



If Y is a finite set, then Lemma B.1 guarantees that it suffi ces to check the containment functional

dominance condition for all singleton sets K = {k} ⊂ Y. If Y = [0, 1] , Y (t) is a random closed

convex set, and Lemma B.2 in the Appendix guarantees that it suffi ces to check the containment

functional dominance condition for sets K ∈ K (Y) which are intervals.

To see that this characterization is equivalent to the one in equation (2.4), let

PY (t) = {µ ∈ ΓY : µ (K) ≥ P (y ∈ K|z = t)P (z = t) ∀K ∈ K (Y)} .

Take a probability measure µ ∈ H [P(y(t))] as defined in equation (2.4). Then µ = P (y|z = t)P (z = t)+

γP (z 6= t) , for some γ ∈ ΓY . Hence, for any K ∈ K (Y), K 6= Y (the inequality is trivially satisfied

for K = Y),

µ (K) = P (y ∈ K|z = t)P (z = t) + γ (K)P (z 6= t)

≥ P (y ∈ K|z = t)P (z = t) = CY (t) (K) ,

and therefore µ ∈ PY (t). Conversely, take a probability measure µ ∈ PY (t). Let

γ (K) =
µ (K)−P (y ∈ K|z = t)P (z = t)

P (z 6= t)
.

Then γ is a probability measure on Y and therefore µ ∈ H [P(y(t))] .

Remark 1 When Y is a finite set, Proposition 2.2 shows that it suffi ces to check the containment

functional dominance condition only for singletons k ∈ Y. This is because the realizations of Y (t)

are either singletons, or the entire space Y. Beresteanu, Molchanov, and Molinari (2009, Appendix

B) discuss general cases where a random set X defined on a finite space X takes on realizations

which are proper subsets of X but not singletons. In these cases, one needs to check the containment

functional dominance condition also for subsets of X which are not singletons.

Construction of the Relevant Random Set for y (·)

The data alone reveals that the vector [y(0), y(1), ..., y(T )] (i.e., the response function y (·)) has

its t-th component, t ∈ T , equal to y if z = t, and a member of Y otherwise. Hence, all the

information embodied in the data can be expressed by stating that y (·) ∈ Sel
(
Y T
)
, with

(2.7) Y T = ×Tt=0Y (t) .

10



Characterization of the Sharp Identification Region of P(y(·))

Let YT denote the Cartesian product Y×Y× . . .×Y. Let K
(
YT
)
denote the family of compact

subsets of YT . Let ΓYT denote the space of all probability measures on YT . Then we have the

following result:

Proposition 2.3 The sharp identification region for P(y(·)) is given by

H [P(y(·))] =
{
µ ∈ ΓYT : µ (K) ≥ CY T (K) ∀K ∈ K

(
YT
)}
.

If Y = [0, 1], it suffi ces to check the above condition for sets K̃ = co(K̃(0) ∪ K̃(1) ∪ · · · ∪ K̃(T )),

where for t ∈ T either K̃(t) = ∅ or K̃ (t) = Y × . . .×Y ×
[
kt1, k

t
2

]
×Y . . .×Y, kt1 ≤ kt2, kt1, kt2 ∈ Y,

t ∈ T . For these sets, CY T

(
K̃
)

=
∑

t∈T :K̃(t) 6=∅P
(
y ∈

[
kt1, k

t
2

]
|z = t

)
P (z = t) .

Proof. By Theorem 2.1, y (·) ∈ Sel
(
Y T
)
if and only if

(2.8) P (y (·) ∈ K) ≥ P
(
Y T ⊂ K

)
∀K ∈ K

(
YT
)
.

If Y = [0, 1] , by Lemma B.2 it suffi ces to check the above inequality for convex sets K ⊂ YT .

Observe that if more than one of the projections of K on the axes is a proper subset of Y, then

P
(
Y T ⊂ K

)
= 0 and inequality (2.8) is trivially satisfied. For sets K ⊂ YT such that their

projection on all but at most one of the axis is equal to Y, the convexity of K implies that the

set of all k such that Y × · · · Y × {k} × Y × · · · Y ⊂ K (with {k} occupying the t-th place) is an

interval denoted by [kt1, k
t
2] as per the definition of K̃(t). The convexity of K also implies that the

corresponding set K̃ introduced in the statement of the theorem is such that K̃ ⊂ K. Finally note

that Y T ⊂ K if and only if Y T is a subset of K̃(t) for some t ∈ T . This is because the realizations

of Y T are the Cartesian product of copies of Y and a point in one specific position. Moreover,

P (y (·) ∈ K) ≥ P
(
y (·) ∈ K̃

)
, hence if inequality (2.8) is satisfied for K̃, it is satisfied also for K.

For such sets K̃,

P(Y T ⊂ K̃) =
∑

t∈T :K̃(t)6=∅
P
(
y ∈

[
kt1, k

t
2

]
|z = t

)
P (z = t) .

Remark 2 (Binary outcomes and Fréchet Bounds) Consider the special case in which Y =

{0, 1} . In this case the compact subsets of Y are ∅, {0} , {1} and {0, 1} . Hence we can use directly
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Artstein’s inequality applied to the capacity functional, obtaining:

(2.9) µ ({j, k}) ≤ P (y = j|z = 0)P (z = 0) +P (y = k|z = 1)P (z = 1) , for j, k = 0, 1.

Notice that this upper bound on µ ({j, k}) coincides with the familiar Fréchet bound on the joint

probability that (y (0) = j, y (1) = k) . This can be shown by observing that

P (y (0) = j, y (1) = k) =
1∑
t=0
P (y (0) = j, y (1) = k|z = t)P (z = t)

and applying the Fréchet upper bound on each of P (y (0) = j, y (1) = k|z = t) , t = 0, 1. Similarly,

one can show that the lower bound on µ ({j, k}) also coincides with the Fréchet bound.

2.2.2 Adding Statistical Independence Assumptions

Suppose now that the researcher also observes a variable v defined on (Ω,F,P) and taking values

in V ⊂ <. We consider the following assumptions, which use the nomenclature in Manski (2003,

Section 7.4).

Assumption SI (Statistical Independence of Outcomes and Instruments):

P(y(t)|v) = P(y(t)), t ∈ T .

Assumption SI-RF (Statistical Independence of Response Functions and Instruments):

P (y (·)) |v) = P(y (·)).

Whereas Assumption SI is treatment-specific, Assumption SI-RF posits that the entire response

function is statistically independent from v, and therefore constrains its joint distribution rather

than each of its marginals. Clearly, Assumption SI-RF implies Assumption SI. It is especially

credible when the data come from a randomized experiment, where treatment is randomly assigned

and the instrument v corresponds to the designated treatment. In this case, the identification

problem persists as described in this Section when there is non-compliance with the randomly

assigned treatment, and z is the treatment actually received and may or may not coincide with v.

Manski (2003, Proposition 7.3) derives the sharp identification region for P(y(t)) under As-

sumption SI. The result in Manski (2003, Corollary 2.2.1) can easily be applied to obtain a useful

alternative characterization when V is a finite set. Balke and Pearl (1997) derive the sharp identifi-

cation region for P(y(t)) under Assumption SI-RF when treatments, outcomes and instruments are
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all binary. Kitagawa (2009) significantly extends their findings, by allowing the outcome variable

to have a continuous distribution. Here we extend the treatment of Manski (2003, Corollary 2.2.1),

Balke and Pearl (1997) and Kitagawa (2009) by allowing for continuous outcomes, more than two

treatments, and continuous instruments. Our use of random set theory allows us to establish the

sharpness result through proofs which are relatively simple extensions of the proofs of Propositions

2.2-2.3. Most importantly, the results easily extend to the case that one additionally imposes shape

restrictions on the response functions, in the spirit of Manski (1997), as we show in Section 2.2.3.

Characterization of the Sharp Identification Regions under Assumption SI

Let Y (t) be defined as in equation (2.5). Consider first the case that Assumption SI is main-

tained. When Y and V are finite sets, the following Proposition repeats the result previously given

by Manski (2003, Corollary 2.2.1, applied to the distribution of the potential outcome y (t)). When

V = T = {0, 1} but Y is not necessarily finite, it repeats the result previously given by Kitagawa

(2009, Proposition 3.1). In all other cases, it extends their results.

Proposition 2.4 Let Assumption SI hold. Then the sharp identification region for P(y(t)) is

(2.10) H [P(y(t))] =

{
µ ∈ ΓY : µ (K) ≥ ess sup

v∈V
P (y ∈ K|z = t, v)P (z = t|v) ∀K ∈ K (Y)

}
.

If Y is finite,

H [P(y(t))] =

{
µ ∈ ΓY : µ (k) ≥ ess sup

v∈V
P (y = k|, z = t, v)P (z = t|v) ∀k ∈ Y

}
.

If Y = [0, 1] ,

H [P(y(t))] =

{
µ ∈ ΓY : µ ([k1, k2]) ≥ ess sup

v∈V
P (y ∈ [k1, k2] |z = t, v)P (z = t|v) ,

∀k1, k2 ∈ Y : k1 ≤ k2

}
.

Proof. Using random sets, all the information in the available data and maintained assumptions

can be expressed as (y (t) , v) ∈ Sel ((Y (t) , v)) ∩ I, where I is the set of random elements (ξ, v) ∈

Y × V such that ξ is statistically independent of v. Notice that if the SI Assumption is correct, this

intersection is non-empty. By Theorem 2.1, (y (t) , v) ∈ Sel ((Y (t) , v)) if and only if

P ((y(t), v) ∈M) =

∫
V
P(y(t) ∈Mv|v)Pv(dv)

≥
∫
V
P(Y (t) ⊂Mv|v)Pv(dv) =

∫
V
P((Y (t), v) ⊂Mv × {v})Pv(dv)
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for all M ∈ K (Y × V) , where Mv = {k : (k, v) ∈ M} is the section of M at level v. Since v is

a singleton, the events under the integral are disjoint and the integral equals P((Y (t), v) ⊂ M).

Hence, this inequality can be written as

P (y (t) ∈ K|v) ≥ P (Y (t) ⊂ K| v) ∀K ∈ K (Y) v − a.s.

By Assumption SI, (y (t) , v) belongs to I. Hence we obtain

(2.11) P (y (t) ∈ K) ≥ ess sup
v∈V

P (Y (t) ⊂ K| v) ∀K ∈ K (Y) .

Observe that for a given v ∈ V, and for any K ∈ K (Y) , K 6= Y

P (Y (t) ⊂ K| v) = P (Y (t) ⊂ K|z = t, v)P (z = t|v) +P (Y (t) ⊂ K|z 6= t, v)P (z 6= t|v)

= P (y ∈ K|z = t, v)P (z = t|v) .

If Y is a finite set, Lemma B.1 guarantees that for each v ∈ V it suffi ces to check the containment

functional dominance condition for all singleton sets K = {k} ∈ Y, and therefore it also suffi ces

for the essential supremum of the containment functional. If Y = [0, 1] , Y (t) is a random closed

convex set, and Lemma B.2 in the Appendix guarantees that for each v ∈ V it suffi ces to check the

containment functional dominance condition for sets K ∈ K (Y) which are intervals. Again, this

assures that it suffi ces also for the essential supremum of the containment functional.

In summary, any µ satisfying the condition in equation (2.10) is the probability distribution of a

random variable y (t) such that (y (t) , v) ∈ Sel ((Y (t) , v)) and y (t) is statistically independent of v.

Conversely, any random variable y (t) such that (y (t) , v) ∈ Sel ((Y (t) , v)) and y (t) is statistically

independent of v has a probability distribution satisfying the condition in equation (2.10).

Characterization of the Sharp Identification Regions under Assumption SI-RF

Consider now the case that the stronger Assumption SI-RF is maintained. Let Y T de defined

as in equation (2.7). Then we have the following result:

Proposition 2.5 Let Assumption SI-RF hold. Then the sharp identification region for P (y (·)) is

H [P(y(·))] =

{
µ ∈ ΓYT : µ (K) ≥ ess sup

v∈V
CY T |v (K) ∀K ∈ K

(
YT
)}

,

where CY T |v is the conditional containment functional of Y
T given v. If Y = [0, 1], it suffi ces to

check the above condition for sets K̃ = co(K̃(0) ∪ K̃(1) ∪ · · · ∪ K̃(T )), where for t ∈ T either
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K̃(t) = ∅ or K̃ (t) = Y × . . .× Y ×
[
kt1, k

t
2

]
× Y . . .× Y, kt1 ≤ kt2, k

t
1, k

t
2 ∈ Y, t ∈ T . For these sets,

CY T |v

(
K̃
)

=
∑

t∈T :K̃(t)6=∅P
(
y ∈

[
kt1, k

t
2

]
|z = t, v

)
P (z = t|v) .

Proof. By the same argument as in the proof of Proposition 2.4, ([y(0), ..., y(T )] , v) ∈
(
Y T , v

)
if and only if

P ([y(0), ..., y(T )] ∈ K|v) ≥ P
(
Y T ⊂ K|v

)
∀K ∈ K

(
YT
)
v − a.s.

By the SI-RF assumption, (y(0), ..., y(T )) is statistically independent of v. Hence, the above con-

dition reduces to

P ([y(0), ..., y(T )] ∈ K|v) ≥ ess sup
v∈V

P
(
Y T ⊂ K|v

)
∀K ∈ K

(
YT
)

The specific result for Y = [0, 1] follows by the same argument as in the proof of Proposition 2.3. Its

proof shows that for each v ∈ V it suffi ces to check the containment functional dominance condition

for the sets in the statement of the proposition. This assures that it suffi ces also for the essential

supremum of the containment functional.

Remark 3 (Binary outcomes and Balke-Pearl Bounds) When Y = T = V = {0, 1} , the

compact subsets of Y are ∅, {0} , {1} and {0, 1} and we can use directly Artstein’s inequality

applied to the capacity functional to replicate the result in Balke and Pearl (1997) concerning

sharp bounds on P (y (t) = 1) , t = 0, 1. To see why this is the case, observe that the inequalities

µ (K) ≥ ess supv∈V CY T |v (K) are equivalent to µ (K) ≤ ess infv∈V TY T |v (K) and reduce to:

P (y(1) = j, y(0) = j) ≤ min
v∈{0,1}

{P (y = j|v)} , for j = 0, 1.

P (y(1) = j, y(0) = 1− j) ≤ min
v∈{0,1}

{P (y = j, z = 1|v) +P (y = 1− j, z = 0|v)} , for j = 0, 1.

P (y(i) = j) ≤ min
v∈{0,1}

{P (y = j, z = i|v) +P (z = 1− i|v)} , for i, j = 0, 1.

Hence, the upper bound for P (y(1) = 1) , for example, is given by

P (y(1) = 1) ≤ min

{
min

v∈{0,1}
{P (y = 1, z = 1|v) +P (z = 0|v)} ,

min
v∈{0,1}

{P (y = 1, z = 1|v) +P (y = 0, z = 0|v) +P (y = 1|1− v)}
}
.

One can similarly obtain other bounds. Notice that these bounds can also be derived using the

Artstein’s inequality/Fréchet bounds in equation (2.9) conditional on v, along with the bounds on
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each marginal distribution conditional on v, and then taking the minimum over v. The connection

between the bounds of Balke and Pearl (1997) and the Fréchet bounds in equation (2.9) was first

pointed out by Pepper (2002).

2.2.3 Adding Statistical Independence and Monotone Treatment Response Assump-
tions

Consider now the case that one adds to the analysis the assumption that treatment response is

monotone, as in Manski (1997). Formally,

Assumption MTR (Monotone Treatment Response): Let the set T be ordered in terms of degree

of intensity. Assume that for all treatment pairs s, t ∈ T

t ≥ s⇒ P (y (t) ≥ y (s)) = 1.

Construction of the Relevant Random Set for y (t) Under Assumption MTR

The analysis in Manski (1997) shows that all the information embodied in the available data

and Assumption MTR translates into the fact that, for each t ∈ T , y (t) ∈ Sel
(−→
Y (t)

)
, where

(2.12)
−→
Y (t) =


[0, y] ∩ Y if t < z,
{y} if z = t,

[y, 1] ∩ Y if t > z.

Here we provide novel results, characterizing the sharp identification region for P(y(t)) under the

joint assumption of statistical independence and of monotone treatment response.

Characterization of the Sharp Identification Region under Assumptions SI and MTR

If we jointly impose Assumptions SI and MTR, we have the following result:

Proposition 2.6 Let Assumptions SI and MTR hold. Then the sharp identification region for

P(y(t)) is

H [P(y(t))] =

{
µ ∈ ΓY : µ (K) ≥ ess sup

v∈V

[
P (y < supK, z > t|v)

+P (y ∈ K, z = t|v) +P (y > inf K, z < t|v)
]
∀K ∈ K (Y)

}
.

If Y = [0, 1],

H [P(y(t))] =

{
µ ∈ ΓY : µ ([k1, k2]) ≥ ess sup

v∈V
[P (y < k2, z > t|v) +P (y ∈ [k1, k2] , z = t|v)]

+P (y > k1, z < t|v)] ∀k1, k2 ∈ Y : k1 ≤ k2

}
.
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Proof. The assumptions are summarized by requiring that (y (t) , v) ∈ Sel
((−→
Y (t) , v

))
∩ I,

where I is the set of random elements (ξ, v) ∈ Y × V such that ξ is statistically independent of v.

If Assumptions SI and MTR are correct, this intersection is nonempty. By the same argument as

in the proof of Proposition 2.4, (y (t) , v) ∈ Sel
((−→
Y (t) , v

))
if and only if

P (y (t) ∈ K|v) ≥ P
(−→
Y (t) ⊂ K

∣∣∣ v) ∀K ∈ K (Y) v − a.s.

By Assumption SI, (y (t) , v) belongs to I. Hence we obtain

P (y (t) ∈ K) ≥ ess sup
v∈V

P
(−→
Y (t) ⊂ K

∣∣∣ v) ∀K ∈ K (Y) .

Observe that for a given v ∈ V,

P
(−→
Y (t) ⊂ K

∣∣∣ v) = P
(−→
Y (t) ⊂ K

∣∣∣ z > t, v
)
P (z > t|v)

+P
(−→
Y (t) ⊂ K

∣∣∣ z = t, v
)
P (z = t|v)

+P
(−→
Y (t) ⊂ K

∣∣∣ z < t, v
)
P (z < t|v)

= P (y < supK|z > t, v)P (z > t|v)

+P (y ∈ K|z = t, v)P (z = t|v)

+P (y > inf K|z < t, v)P (z < t|v) .

If Y = [0, 1] , Y (t) is a random closed convex set, and Lemma B.2 in the Appendix guarantees

that for each v ∈ V it suffi ces to check the containment functional dominance condition for sets

K ∈ K (Y) which are intervals. This assures that it suffi ces also for the essential supremum of the

containment functional.

Remark 4 Using the same approach as in this Section and in Section 2.2.2 one can extend these

results to obtain sharp identification regions for the probability distribution of the response function

under statistical independence and shape restrictions. While conceptually straightforward if using

Artstein’s inequality, this extension is notationally cumbersome. We provide it in Appendix C.

3 Usefulness of the Aumann Expectation

3.1 Aumann Expectation Represented Through its Support Function

In many partial identification problems the object of interest is a conditional expectation, or tak-

ing expectations is a crucial step towards characterizing a sharp identification region (see, e.g.,
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Beresteanu, Molchanov, and Molinari (2010)). In these cases, the information provided by the

empirical evidence and the maintained assumptions can often be expressed by saying that the

conditional expectation of a random vector x belongs to the conditional Aumann expectation of

a properly defined random set X, in the sense that P (E (x|F0) ∈ E (X|F0)) = 1, where F0 ⊂ F

denotes a sub-σ-algebra, see Definitions A.4 and A.5 in Appendix A.

If X is an integrably bounded random compact set, i.e., sup {‖x‖ : x ∈ X} has a finite expecta-

tion, on a nonatomic probability space, then E [X] is a convex set and coincides with E [co (X)] , see

Molchanov (2005, Theorem 2.1.15).11 Moreover, because X takes its realizations in a subset of the

finite dimensional space <d, E [X] is closed, see Molchanov (2005, Theorem 2.1.24). By the same

argument, provided that the probability space contains no F0−atoms (i.e., ∀ A ∈ F having positive

measure, there is a B ⊆ A such that 0 < P (B|F0) < P (A|F0) with positive probability), E [X|F0]

is a closed convex set almost surely, and E [X|F0] = E [ co (X)|F0].12 This result is especially use-

ful, because it implies that E [X|F0] is equal to the intersection of its supporting halfspaces (see

Rockafellar (1970, Theorem 13.1) and Molchanov (2005, Theorem 2.1.49-(iii))), which in turn are

determined by its support function h (E [X|F0] , u), see Definition A.6 in Appendix A. In particular,

E [X|F0] =
⋂

u∈<d
{η : 〈η, u〉 ≤ h (E [X|F0] , u)} =

⋂
u:‖u‖=1

{η : 〈η, u〉 ≤ h (E [X|F0] , u)} ,

where the last equality follows from the sublinearity of the support function, see Molchanov (2005,

Appendix F).

The above considerations imply that a candidate η belongs to E [X|F0] if and only if 〈η, u〉 ≤

h (E [X|F0] , u) ∀ u : ‖u‖ = 1. This gives a necessary and suffi cient condition forP (E (x|F0) ∈ E (X|F0)) =

1, which relates the conditional expectation of the random vector x to the conditional Aumann ex-

pectation of the random set X. Yet, the family of all selections is very rich even for simple random

sets. But a fundamental simplification is possible, by relating the support function of E [X|F0] to

E (h (X,u)|F0) . This is a fundamental result in random set theory, first given by Artstein (1974)

for the case of unconditional Aumann expectations.13

11Of course the same conclusion holds if X is an integrably bounded random compact set with almost surely convex
realizations.
12We continue the discussion focusing on E [X|F0] and assuming that the probability space contains no F0−atoms,

but of course all the results apply, with obvious modifications, to E [X].
13The result of the following Theorem also holds if X is a random closed set with almost surely convex realizations.

It is easy to see that supu:‖u‖=1 |h (X,u)| = sup {‖x‖ : x ∈ X} = ‖X‖H . Hence, if X is integrably bounded, then
E [|h (X,u)| |F0] is finite for all u ∈ <d.
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Theorem 3.1 (Aumann expectation and support function) Let X ∈ F be an integrably

bounded random set defined on a probability space (Ω,F,P) . Let F0 ⊂ F be a sub-σ-algebra, and as-

sume that the probability space contains no F0−atoms.14 Then the conditional Aumann expectation

of X is the unique convex closed set E [X|F0] satisfying

E (h (X,u)|F0) = h (E [X|F0] , u) for all u ∈ <d.

Proof. See Dynkin and Evstigneev (1976, Theorem 1.2) and Molchanov (2005, Theorems 2.1.22

and 2.1.47-iv)

Hence, one can conclude that a random vector η belongs to E [X|F0] if and only if 〈η, u〉 ≤

E (h (X,u)|F0) ∀ u : ‖u‖ = 1. The latter conditional expectation is usually simple to compute.

Remark 5 A simple application of Theorem 3.1 yields immediately the sharp identification region

for E(y(t)) and E(y(·)), hence replicating results in Manski (2003, equations 7.10 and 7.11). Using

the support function/Aumann expectation approach, the analysis easily extends to cases where mean

independence assumptions and shape restrictions are imposed. See Propositions C.2, C.3 and C.4

in Appendix C. A characterization of the sharp identification region for E(y(·)) under these various

sets of assumptions is especially important if the ultimate goal of the researcher is treatment choice,

see e.g. Manski (2003, Chapter 7).15

3.2 Best Linear Prediction and the Selection Problem

We now consider the case that one is interested in best linear prediction of y (t) given covariates w

(including a constant). Let θ denote the parameters of such linear prediction, let w be of dimension

d × 1, and let L
(
y (t)|w0

)
= w0′θ denote the linear prediction of y (t) given a specific value of

w = w0. Notice that here we are not assuming a linear model in any substantive sense, nor are

we assuming availability of instruments.16 Our analysis revisits results in Beresteanu and Molinari

(2008, Section 4), specializing them for specific questions of interest in empirical applications.17

14Formally, assume that ∀ A ∈ F having positive measure, there is a B ⊆ A such that 0 < P (B|F0) < P (A|F0)
with positive probability.
15For example, a planner who wants to maximize population mean welfare needs to work with the elements of

H [E(y(·))] rather than with the elements of {H [E(y(t))] , t ∈ T }.
16Bontemps, Magnac, and Maurin (2008) study the related problem of best linear prediction with interval outcome

data, assuming a linear model and the availability of instruments. They allow for the presence of more instruments
than parameters, and extend the familiar Sargan test for overidentifying restrictions to partially identified models.
17Beresteanu, Molchanov, and Molinari (2009, Section 5) provide a tractable characterization of the sharp identi-

fication region of θ for the more general problem of best linear prediction with interval data both on outcomes and
covariates.
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Stoye (2007) provides related findings; in particular, he derives sharp identification regions for

linear combinations of coeffi cients of best linear predictors which coincide with those given below

for a single component of the vector θ and for L
(
y (t)|w0

)
.

Let Y (t) be defined as in equation (2.5), and let Σ ≡E(ww′) . Assume that Σ is finite and of

full rank. Let G (t) = {g : g = wψ, ψ ∈ Sel (Y (t))}. Beresteanu and Molinari (2008) show that

G (t) is a random closed set and the sharp identification region for θ is given by

H (θ) =
{
θ : θ = Σ−1E (wψ) , ψ ∈ Sel (Y (t))

}
=

{
θ : θ = Σ−1E (g) , g ∈ Sel (G (t))

}
= Σ−1E [G (t)] .(3.1)

They also show that the sharp identification region for each component θk of θ is given by

H (θk) = {θk : ∃θ−k such that [θk, θ−k] ∈ H (θ)}

=

[
E [min {w̃ky1 (z = t) , w̃k [y1 (z = t) + 1 (z 6= t)]}]

E
(
w̃2
k

) ,

E [max {w̃ky1 (z = t) , w̃k [y1 (z = t) + 1 (z 6= t)]}]
E
(
w̃2
k

) ]
,

where, with some abuse of notation, [θk, θ−k] denotes a candidate value for θ, w̃k is the residual

obtained after projecting wk on the other covariates w−k, and 1 (·) is the indicator function of the

event in parenthesis.

Remark 6 Ponomareva and Tamer (2009) study the problem of misspecification in moment in-

equality models. One of the examples they use is the linear model for conditional expectations in the

presence of interval outcome data. They propose a misspecification robust Least Squares Set. This

set collects all parameter values giving a best linear approximation to some conditional expecta-

tion function that lies between the upper and lower conditional expectation functions corresponding

to the upper and lower points in the interval data. Their Least Squares Set is equal to H (θ) in

equation (3.1). To see this, it suffi ces to take Example A.1—Selections from Appendix A, and see

that Sel (Y (t)) coincides with the set of variables for which Ponomareva and Tamer run linear

projections.

Suppose that one is interested in predicting y (t) for a specific value of w, denoted w0. This

amounts to obtaining

H
[
L
(
y (t)|w0

)]
=
{
r : r = w0′θ, θ ∈ H (θ)

}
.
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Alternatively, one might be interested in contrasts among predictions obtained for different values

of w, denoted w0 and w1. This amounts to obtaining

H
[
L
(
y (t)|w = w1

)
− L

(
y (t)|w = w0

)]
=
{
r : r =

(
w1 − w0

)′
θ, θ ∈ H (θ)

}
.

These sets are intervals in <, hence fully described by their support functions for u = ±1. This

observation leads to an extremely simple characterization:

Proposition 3.2 The sharp identification region for L
(
y (t)|w0

)
is given by

H
[
L
(
y (t)|w0

)]
=

[
E
[
min

{
w0′Σ−1wy1 (z = t) , w0′Σ−1w(y1 (z = t) + 1 (z 6= t))

}]
,

E
[
max

{
w0′Σ−1wy1 (z = t) , w0′Σ−1w(y1 (z = t) + 1 (z 6= t))

}]]
The sharp identification region for L

(
y (t)|w = w1

)
− L

(
y (t)|w = w0

)
is given by

H
[
L
(
y (t)|w = w1

)
− L

(
y (t)|w = w0

)]
=[

E
[
min

{(
w1 − w0

)′
Σ−1wy1 (z = t) ,

(
w1 − w0

)′
Σ−1w(y1 (z = t) + 1 (z 6= t))

}]
,

E
[
max

{(
w1 − w0

)′
Σ−1wy1 (z = t) ,

(
w1 − w0

)′
Σ−1w(y1 (z = t) + 1 (z 6= t))

}]]
.

If w1 =
[
w0
k + 1, w0

−k
]
, then

H
[
L
(
y (t)|w = w1

)
− L

(
y (t)|w = w0

)]
= H (θk) .

Proof. To obtain the sharp identification region, recall that r = w0′θ ∈ H
[
L
(
y (t)|w0

)]
if

and only if ur ≤ h
(
H
[
L
(
y (t)|w0

)]
, u
)
for u = ±1, so that it suffi ces to characterize the support

function of H
[
L
(
y (t)|w0

)]
. This function is equal to:

h
(
H
[
L
(
y (t)|w0

)]
, u
)

= h
(
w0′Σ−1E (G (t)) , u

)
= max

g∈G(t)
uw0′Σ−1E (g) = max

ψ∈Y (t)
uw0′Σ−1E (wψ) = max

ψ∈Y (t)
E
(
uw0′Σ−1wψ

)
.

Simple algebra gives the final result, observing that Y (t) can be written as

Y (t) = [y1 (z = t) , y1 (z = t) + 1 (z 6= t)] .

The same reasoning and algebra gives the sharp identification region for contrasts. The last result

follows from observing that when w1 =
[
w0
k + 1, w0

−k
]
,

H
[
L
(
y (t)|w = w1

)
− L

(
y (t)|w = w0

)]
=

{
r ∈ < : r = (

(
w0
k + 1

)
θk + w0′

−kθ−k)− w0′
k θ, θ ∈ H [θ]

}
= {θk : ∃θ−k such that [θk, θ−k] ∈ H (θ)} = H [θk] .
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A nice consequence of this result is that the identification regions for the best linear predictor,

for its contrasts, and for each component of θ can be easily calculated by running simple linear

projections on a standard statistical package such as, for example, Stata.18

It is also common, in empirical applications, to work with affi ne transformations of the covariates

w. Demeaning or standardization are typical affi ne transformations used in practice. Here we

apply them to the non-constant components of w. Let Π be a (d− 1) × (d− 1) matrix of full

rank and let λ be a (d− 1) × 1 vector. Let w̆−1 = Πw−1 + λ. If for example one is interested in

demeaning w, then Π is the identity matrix and λ = −E (w−1) . The following proposition shows

how the sharp identification regions of parameters of interest change, in conjunction with these

affi ne transformations.

Proposition 3.3 The sharp identification region for the coeffi cients θ̆ of the best linear predictor

of y (t) given w̆ = [1 w̆−1] is

H
(
θ̆
)

=

[
1 −λ′Π−1′

0 Π−1′

]
H (θ) .

The sharp identification region for L
(
y (t)| w̆0

)
is

H
[
L
(
y (t)| w̆0

)]
= H

[
L
(
y (t)|w0

)]
.

Proof. Consider first the parameters of the best linear predictor. Observe that with the

non-transformed covariates, θ ∈ H (θ) if and only if there exists a ψ ∈ Sel (Y (t)) such that

E (w (ψ − w′θ)) = 0. Similarly, with the transformed covariate, θ̆ ∈ H
(
θ̆
)
if and only if there exists

a ψ̆ ∈ Sel (Y (t)) such that E
(
w̆
(
ψ̆ − w̆′θ̆

))
= 0. Take θ ∈ H (θ) such that for a ψ ∈ Sel (Y (t)),

E (w (ψ − w′θ)) = 0. Let

θ̆ =

[
1 −λ′Π−1′

0 Π−1′

] [
θ1

θ−1

]
.

Then

E (w̆ (ψ − w̆′θ)) = E
(
(Πw−1 + λ)

(
ψ − (Πw−1 + λ)′Π−1′θ−1 + λ′Π−1′θ−1 − θ1

))
= E

(
(Πw−1 + λ)

(
ψ −

(
w′−1Π′ + λ′

)
Π−1′θ−1 + λ′Π−1′θ−1 − θ1

))
= E

(
(Πw−1 + λ)

(
ψ − w′−1θ−1 − θ1

))
= 0

18Stata code implementing sample analog estimators of these identification regions, along with confidence sets,
confidence collections, and test of hypothesis as in Beresteanu and Molinari (2008), is freely downloadable at
http://www.arts.cornell.edu/econ/fmolinari/#Stata_SetBLP. This code also allows for estimation, confidence state-
ments, and test of hypothesis concerning the identification regions of any two components of θ.
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Hence θ̆ ∈ H
(
θ̆
)
. The reverse argument follows by the same logic. Consider now the best linear

predictor itself:

H
[
L
(
y (t)| w̆0

)]
=

{
w̆0′θ̆ : θ̆ ∈ H

(
θ̆
)}

=

{
w̆0′θ̆ : θ̆ =

[
1 −λ′Π−1′

0 Π−1′

] [
θ1

θ−1

]
, θ ∈ H (θ)

}
=

{
r : r = w̆0′

−1Π−1′θ−1 − λ′Π−1′θ−1 + θ1, θ ∈ H (θ)
}

=
{
r : r =

(
w0′
−1Π + λ′

)
Π−1′θ−1 − λ′Π−1′θ−1 + θ1, θ ∈ H (θ)

}
=

{
r : r = w0′

−1θ−1 + θ1, θ ∈ H (θ)
}

= H
[
L
(
y (t)|w0

)]
.

This result implies, for example, that demeaning the data will have, in the partially identified

case, the same effect that it has in the point identified case. The sharp identification region of

the best linear predictor itself is not affected, and neither is the sharp identification region of each

slope parameter. On the other hand, the sharp identification region of the intercept parameter may

change substantially. Similarly, rescaling the data leaves the sharp identification region of the best

linear predictor itself and of the intercept unaffected. On the other hand, the sharp identification

region of the slope parameter may change substantially. Figure ?? illustrates graphically these

changes.19 Clearly, these changes in the size and shape of the identification region are purely the

result of standardizing, so caution should be taken in interpreting the results of the analysis.

4 A Note on Estimation and Statistical Inference

The sharp identification regions derived in Sections 2-3 can be categorized as follows: (a) transfor-

mations of conditional or unconditional Aumann expectations; (b) sets of multinomial distributions

defined by a finite number of unconditional (conditional in the presence of instruments v and/or

covariates w) moment inequalities; (c) sets of continuous distributions defined by a continuum of un-

conditional (conditional in the presence of instruments v and/or covariates w) moment inequalities

indexed by k1, k2 ∈ Y. Category (a) applies to Propositions 3.2, 3.3, C.2, C.3 and C.4. Categories
19These figures are for illustration only. They where created using data taken from the Health and Retirement

Study on individuals’expectations of surviving to age 75, mapped into intervals as in Manski and Molinari (2008).
The interval expectation data were projected on a constant and individuals’age.
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(b) and (c) apply to Propositions 2.2, 2.3, 2.4, 2.5, 2.6, and C.1, respectively for the case of Y being

discrete and Y = [0, 1]. Here we assume that one observes a random sample (yi, zi, wi)
n
i=1 drawn

from the same population as (y, z, w) . This in turn assures that the random sets Yi(t), Y Ti ,
−→
Y i (t),

and
−→
Y Ti defined as in equations (2.5), (2.7), (2.12) and (C.1) with (y, z, w) replaced by (yi, zi, wi)

are independently and identically distributed, see Beresteanu and Molinari (2008, Lemma A.3 and

Lemma A.5).

Estimation of sharp identification regions of type (a) for unconditional Aumann expectations

can be carried out by sample analog methods, replacing the Aumann expectation by a Minkowski

average of random sets as explained in Beresteanu and Molinari (2008, Sections 3 and 4). Confi-

dence sets and confidence collections can be constructed to cover or have as a member the sharp

identification region and its subsets with a prespecified asymptotic probability using the method

proposed by Beresteanu and Molinari.20 When the relevant unconditional Aumann expectation is

a subset of <, the methods of Imbens and Manski (2004) and Stoye (2009) can be employed to

obtain confidence sets that cover each point in the sharp identification region with a prespecified

asymptotic probability. For the case of conditional Aumann expectations as in Propositions C.3

and C.4, estimation and statistical inference can be carried out using the methods proposed by

Andrews and Shi (2009), Chernozhukov, Lee, and Rosen (2009) and Ponomareva (2010).

Estimation of sharp identification regions of types (b) and (c) with conditional or unconditional

moment inequalities can be carried out by replacing probability distribution functions by empirical

distribution functions. By Theorem 1.2.22 in Molchanov (2005) the resulting estimators of the

sharp identification regions, obtained by replacing the population versions of the capacity and con-

tainment functionals with their empirical counterparts, are consistent in the Hausdorff-Prokhorov

metric. In the case of sharp identification regions of type (b) with unconditional moment inequali-

ties, test of hypothesis and confidence statements can be carried out using the methods proposed

by Chernozhukov, Hong, and Tamer (2007), Andrews and Soares (2010), Bugni (2010) and Canay

(2010), among others. When sharp identification regions of type (b) are defined via conditional mo-

ment inequalities but w is discrete, estimation and statistical inference can be carried out using the

methods proposed by Andrews and Shi (2009) and Ponomareva (2010), even if v has a continuous

distribution.
20Stata code implementing these procedures is freely downloadable at http://www.arts.cornell.edu/econ/fmolinari/#Stata_SetBLP.
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In the case of sharp identification regions of types (b) and (c) with conditional moment inequal-

ities indexed by a continuously distributed w, existing methods for construction of confidence sets

do not readily apply, because the object of interest is not a finite dimensional parameter vector.

Development of a procedure to conduct statistical inference in this case is left for future research.

5 Aumann Expectation or Capacity Functional?

It is often the case that theoretically one can use either the “capacity functional approach” or

the “Aumann expectation approach”to address a specific partial identification problem. However,

there might be computational advantages to using one of these approaches rather than the other.

Here we give a few examples of how to choose between them.

5.1 Limitations of the Aumann Expectation Approach

Consider first the case where the object of ultimate interest is the partially identified probability

distribution P(x) of an unobservable random variable x ∈ X ⊂ <d. The researcher knows that

x ∈ Sel (X) for a random set X revealed by the data and taking its realizations in X .21 In this

case, the capacity functional and Artstein’s inequality allow for a simple characterization of the

sharp identification region, see equation (2.3). On the other hand, the Aumann expectation can be

used to conclude that x ∈ Sel (X) if and only if

(5.1) E (x1 (A)) ∈ E (X1 (A)) ∀A ∈ F,

where 1 (·) is the indicator function of the event in parenthesis (see Molchanov (2005, Theorem

2.1.18)). Hence, one could characterize H [P (x)] as the set of µ ∈ ΓX such that µ is the proba-

bility distribution of a random element ξ satisfying equation (5.1). However, this characterization

is much less tractable computationally than the characterization obtained through Artstein’s in-

equality. Moreover, it is not simple, computationally, to incorporate into the Aumann expectation

approach assumptions which restrict P (x) directly, such as for example the statistical independence

conditions considered in Section 2.2.2.

Notice that there are cases in which the two approaches are equivalent, both conceptually and

21 In Section 2.2, we consider two examples: (1) X = Y and x = y (t) with X = Y (t) ; and (2) X = YT and x = y (·)
with X = Y T .
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computationally. To clarify this claim, consider the following simple example.22 Let Xθ be a

random closed set with realizations in {0, 1} , and suppose that the specific realizations that this

set takes are a known function of a parameter θ and some unobservable random variable ε. Let the

distribution function of ε be known up to a parameter vector which is included in θ. Let θ be the

object of ultimate interest. Assume that the researcher observes a binary random variable x and

can learn its distribution, P (x = 1) . Assume further that the informational content of the economic

model is equivalent to the statement that x ∈ Sel (Xθ).23 Then using Artstein’s inequality one can

easily characterize the sharp identification region of θ as24

H (θ) = {θ : P (x = k) ≤ TXθ ({k}) , k ∈ {0, 1}} .

On the other hand, one can construct a random closed setQθ taking its realizations in {[1 0] , [0 1]} ⊂

<2 as follows

Qθ =


{[1 0]} if Xθ = {0} ,
{[0 1]} if Xθ = {1} ,
{[1 0] , [0 1]} if Xθ = {0, 1} .

Let P (x) = [P (x = 0) P (x = 1)]. Then

H (θ) = {θ : P (x) ∈ E (Qθ)} = {θ : 〈P (x) , u〉 ≤ E (h (Qθ, u)) , u ∈ {[1 0] , [0 1]}} .

To see this, observe that for u = [1 0] ,

E (h (Qθ, [1 0])) = 〈[1 0] , [1 0]〉P (Xθ = {0}) + 〈[0 1] , [1 0]〉P (Xθ = {1})

+ max {〈[1 0] , [1 0]〉 , 〈[0 1] , [1 0]〉}P (Xθ = {0, 1})

= P (Xθ = {0}) +P (Xθ = {0, 1}) = TXθ ({0}) .

Similar algebra gives that E (h (Qθ, [0 1])) = TXθ ({1}), hence establishing equivalence of the two

approaches. Notice that in this example a crucial role is played by the fact that the random variable

x and the random set Xθ are defined on a finite space, hence replicating the familiar result that the

distribution of a discrete random variable can be equivalently represented by taking the expectation

of a vector of indicator functions.
22More general and complex instances of the same basic idea are studied in Beresteanu, Molchanov, and Molinari

(2008) and Galichon and Henry (2009a).
23See Beresteanu, Molchanov, and Molinari (2009, Appendix B) for examples.
24Here it suffi ces to look at singletons k because the realizations of Xθ are either singletons, or the entire space
{0, 1}, see Lemma B.1.
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5.2 Limitations of the Capacity Functional Approach

The capacity functional approach resulting from a judicious application of Artstein’s inequality

may not be computationally practical for obtaining sharp identification regions of expectations,

unless the problem at hand is particularly simple. To illustrate this claim, suppose first that

one is interested in the expectation E(x) of an unobservable random variable x ∈ X ⊂ <d, and

that the researcher knows that x ∈ Sel (X) for a random set X revealed by the data and taking

its realizations in X . In this case, the Aumann expectation and Theorem 3.1 allow for a simple

characterization of the sharp identification region as

H [E (x)] =
{
η ∈ <d : 〈η, u〉 ≤ E (h (X,u)) ∀u ∈ <d : ‖u‖ = 1

}
.

If d = 1 and X ∈ <+ a.s., it turns out that H [E(x)] can be equivalently characterized using the

Choquet integral with respect to the containment and capacity functionals, as

H [E (x)] =
[∫
xdCX ,

∫
xdTX

]
,

where
∫
xdTX =

∫∞
0 TX ({x : x ≥ t}) dt, and similarly for

∫
xdCX , see Molchanov (2005, Theorem

1.5.1). When X can take on negative values, the above definition can be extended, see Molchanov

(2005, p. 72). This result is the analog for random sets, of the familiar result that a nonnegative

random variable x has E (x) =
∫

Ω x (ω) dP (ω) =
∫ +∞

0 P (x > t) dt.

If d > 1, it is still possible to characterize the expectation of the support function of X through

the capacity functional, applying a formula similar to the one above to the function 〈x, u〉 . This

function takes on negative values, and therefore one needs to use the expression in Molchanov (2005,

p. 72). However, this result is a mere repetition of the Aumann expectation approach. Moreover,

it requires one to calculate the capacity functional of X, and then take integrals with respect to it.

This task can be computationally intense. On the other hand, calculating directly the expectation

of the support function of X is usually straightforward and computationally very simple.

There are additional cases in which taking expectations is a crucial step towards characterizing

a sharp identification region of interest, and the Aumann expectation approach is preferable to the

capacity functional approach, because it is computationally much faster as well as more intuitive.

To clarify this claim, consider the following simple example.25 Let Qθ be a random closed set with
25More general and complex instances of the same basic idea are studied in Beresteanu, Molchanov, and Molinari

(2010).
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realizations in [0, 1] , and suppose that the specific realizations that this set takes are a known

function of a parameter vector θ and some unobservable random variable ε. Let the distribution

function of ε be known up to a parameter vector which is included in θ. Let θ be the object of

ultimate interest. Interpret the selections q ∈ Sel (Qθ) as parameters of a Bernoulli law. Assume

that the researcher observes a binary random variable x and can learn its distribution, P (x = 1) .

Assume further that the informational content of the economic model is equivalent to the state-

ment that P (x = 1) = E (q?) , with q? ∈ Sel (Qθ) and the expectation taken with respect to the

distribution of ε. One can easily characterize the sharp identification region of θ as

H (θ) = {θ : P (x = 1) ∈ E (Qθ)} = {θ : uP (x = 1) ≤ E (h (Qθ, u)) , u = ±1} ,

where the expectation of the support function of Qθ is taken with respect to ε. For given θ, the

support function of Qθ is straightforward to calculate, and therefore the same is true for H (θ).

Even in this stylized example, however, it is not immediate how one can use the capacity

functional approach to characterize H (θ). This is because in order to construct a random set

to which x belongs with probability one, we would need to add an auxiliary random variable z,

uniformly distributed on [0, 1] and independent of ε, and define

Xθ = {ξ : ξ = 1 (z < q) , q ∈ Sel (Qθ)} .

Such construction does not lead to a computationally feasible application of Artstein’s inequality.

6 Conclusions

This paper has illustrated how the use of random set theory can benefit, and simplify, partial iden-

tification analysis. We have revisited results previously available in the literature, and established

new results concerning identification of the distributions of potential outcomes and response func-

tions and their expectation, in the presence of selectively observed data, statistical independence

and mean independence assumptions, and shape restrictions. We have also derived new results

concerning best linear prediction with interval outcome data.

The broad picture emerging from our analysis is the following. When a feature of a probability

distribution of interest is partially identified, it is often possible to trace back the lack of point

identification to the fact that either the data or the maintained assumptions yield a collection of
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random variables which are observationally equivalent. This collection is equal to the family of

selections of a properly specified random closed set, and random set theory can be applied.

The first task that the researcher needs to carry out is to specify the relevant random closed

set. In the case of incomplete data, such as the selection problem studied here, the relevant random

closed set is the collection of values that the potential outcome can take —the observed (singleton)

outcome when the treatment of interest is realized, and the entire outcome space otherwise.

The next task is to carefully determine how the observable variables relate to this random set.

In certain partial identification problems, such as the selection problem studied here, the observable

variables determine a random closed set to which the (unobservable) variable of interest belongs

with probability one. In other partial identification problems, the observable variable belongs to a

random closed set which is determined by the model. In other partial identification problems, the

distribution of the observable variable belongs to the Aumann expectation of a random closed set

which is determined by the model. See Section 5 above and Beresteanu, Molchanov, and Molinari

(2009) for examples.

The final task is to determine which tool of random set theory is best suited (either because

computationally preferable, or more intuitive) to characterize the sharp identification region of the

parameter of interest. In certain cases, working directly with probability distributions is a crucial

step in describing the set of observationally equivalent parameters of interest, and the informational

content of the data and the model is equivalent to saying that a random variable belongs to a

properly specified random set with probability one. Hence, here the capacity functional approach

based on Artstein’s inequality is ideal to characterize the sharp identification region.

In other cases, taking expectations is a crucial step in describing the set of observationally

equivalent parameters of interest, and the informational content of the data and the model is

equivalent to saying that the expectation of a random variable, or the distribution of a random

variable in the discrete case, belongs to the Aumann expectation of a properly specified random

set. Hence, here the Aumann expectation approach is ideal to characterize the sharp identification

region.
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A Basic Definitions

Random Sets and Selections

As the name suggests, a random set X is a measurable mapping from a probability space (Ω,F,P) to F
that associates a set to each point in the sample space.

Definition A.1 A map X : Ω→ F is called a random closed set (or a set valued random variable) if for

every compact set K in <d, X−1 (K) = {ω ∈ Ω : X (ω) ∩K 6= ∅} ∈ F.

The measurability concept used above is different from the more familiar one for vector valued random

variables because it must be restrictive enough to ensure that all functionals of interest of the random set

become random variables. An example of a relevant functional of a random set which, given Definition

A.1, is a random variable, is its support function, see Definition A.6 below. Definition A.1 means that a

random closed set is a random element taking values in the family of closed sets equipped with the σ-algebra

generated by the families of closed sets {F : F ∩K 6= ∅} for all compact sets K. Two simple examples can
help clarify the concept of a random set:

Example A.1 (Random Closed Set) a) (Trivial) If x is a random vector in <d, then X = {x} is a
random closed set.

b) Let x1, x2 be random variables in < such that P (x1 ≤ x2) = 1. The interval X = [x1, x2] is a random

closed set.

Aumann’s (1965) work on correspondences suggests to think of random sets as bundles of random

variables —the selections of the random sets. The formal definition follows:

Definition A.2 For any random set X, a (measurable) selection of X is a random vector x with values

in <d such that x(ω) ∈ X (ω) P− a.s. We denote by Sel (X) the set of all selections from X.

If X is a measurable closed-valued almost surely non-empty random set in F , Sel (X) is non-empty (Aumann

(1965); see also Li, Ogura, and Kreinovich (2002, Theorem 1.2.6)).

In practice, it has been common in certain partial identification analyses to work with selections of

random closed sets, although the connection with random set theory was not made. For example, when first

proposing partial identification of conditional expectations from selectively observed data, Manski (1989,

equation 3) assumed that a partially unobservable outcome variable y belongs to a (non-stochastic) interval

with probability one. This is exactly the definition of a selection of a random set.26 The following examples

further clarify this connection.

Example A.1 (Selections) Consider the random sets in Example A.1. Then we have:

a) (Trivial) Sel ({x}) = {x} .
b) Sel ([x1, x2]) = {x : x is F-measurable and x (ω) ∈ [x1 (ω) , x2 (ω)] P− a.s.} . Note that each selection of
26 In this example, the random set is especially simple because it takes on a specific realization with probability 1.
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[x1, x2] can be represented as follows. Take a random variable r such that P (0 ≤ r ≤ 1) = 1 and whose

distribution is left unspecified and can be any probability distribution on [0, 1]. Let

xr = rx1 + (1− r)x2.

Then xr ∈ Sel ([x1, x2]) . This representation has been used, for example, by Ponomareva and Tamer (2009)

and Tamer (2009).

Capacity Functional and Containment Functional

The probability distribution of a random closed set X is uniquely determined by its capacity functional,

see Molchanov (2005, Chapter 1, Sections 1.1-1.2). Here we formally define this functional, along with the

containment functional.

Definition A.3 The functionals TX : K → [0, 1] and CX : K → [0, 1] given by

TX (K) = P{X ∩K 6= ∅}, CX (K) = P{X ⊂ K}, K ∈ K,

are said to be, respectively, the capacity functional and the containment functional of X.

The following relationship holds:

(A.1) CX (K) = 1−TX (Kc) ,

where Kc denotes the complement of the set K in <d. While TX is defined on compact sets and Kc is open

and not compact, the notation TX(Kc) stands for the probability of the (measurable) event {X ∩Kc 6= ∅},
and the functional TX is extended onto the family of all sets as described in Molchanov (2005, page 9,

equations 1.19-1.20; see also Theorem 1.1.12).

Example A.1 (Capacity and Containment Functional) Consider the random sets in Example A.1.

Then we have:

a) TX (K) = P {{x} ∩K 6= ∅} = P {x ∈ K} = P{{x} ⊂ K} for all K ∈ K. In the singleton case, the
capacity functional and the containment functional coincide, and are equal to the probability distribution of

x.

b) In this case X is a random convex compact set taking its realizations in <. By Theorem 1.7.8 in Molchanov
(2005), its distribution is determined uniquely by the values of CX (K) for all K convex compact sets, i.e.

for all intervals [k1, k2] with k1, k2 ∈ < : k1 ≤ k2. In this case, CX ([k1, k2]) = P {[x1, x2] ⊂ [k1, k2]} =

P {x1 ≥ k1, x2 ≤ k2} .

Aumann Expectation and Support Function

Let L1 = L1
(
Ω,<d

)
denote the space of F-measurable random variables with values in <d such that

their L1-norm ‖ξ‖1 = E (‖ξ‖) is finite, and let the family of all integrable selections of X be given by

Sel1 (X) = Sel (X) ∩ L1. Then the Aumann expectation of X is defined as follows.
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Definition A.4 Let X be a random closed set with Sel1 (X) 6= ∅. The Aumann expectation of X is

E [X] =

{∫
Ω

xdP : x ∈ Sel1 (X)

}
where

∫
Ω
xdP is taken coordinate wise. If X is integrably bounded, i.e., if sup {‖x‖ : x ∈ X} has a finite

expectation, then27

E [X] =

{∫
Ω

xdP : x ∈ Sel (X)

}
.

Clearly, since Sel (X) is non-empty, the Aumann expectation of an integrably bounded random set is non-

empty.

Example A.1 (Aumann Expectation) Consider the random sets in Example A.1. Then we have:

a) E [X] = E [{x}] = E (x), so that the Aumann expectation of a singleton coincides with the expectation

taken with respect to P.

b) E [X] = E [[x1, x2]] = [E (x1) ,E (x2)], see Beresteanu and Molinari (2008, Theorem 3.2-(i))

The definition of Aumann expectation can be extended to the case where one wants to condition on a

σ-algebra as follows, see Molchanov (2005, Theorem 2.1.46):

Definition A.5 Let X be an integrably bounded random closed set. For each σ-algebra F0 ⊂ F there exists a
unique integrable F0-measurable random closed set X0, denoted by X0 = E [X|F0] and called the conditional

Aumann expectation of X, such that

SelF0 (X0) = cl {E (x|F0) : x ∈ Sel (X0)} ,

where the closure is taken with respect to the norm in L1
F0
. Since X is integrably bounded, so is X0.

We conclude this section by introducing the notion of support function of a random compact convex set

X.

Definition A.6 Let X be a nonempty compact random set with almost surely convex realizations. Then the

support function of X at u ∈ <d, denoted h (X,u) , is the random variable

h (X,u) = sup
x∈X
〈x, u〉 .

In Definition A.6, 〈·, ·〉 denotes the inner product in <d. To gain insight on the support function, see Figure
2. It is well known (e.g., Rockafellar (1970, Chapter 13), Schneider (1993, Section 1.7)) that the support

function of a non-empty compact convex set is a continuous sublinear (hence convex) function. In particular,

h (X,u+ v) ≤ h (X,u) + h (X, v) for all u, v ∈ <d and h (X, cu) = ch (X,u) for all c > 0 and for all u ∈ <d.
Additionally, one can show that the support function of a bounded set X ∈ <d is Lipschitz with Lipschitz
constant sup {‖x‖ : x ∈ X} , see Molchanov (2005, Theorem F.1).

Example A.1 (Support Function) Consider the random sets in Example A.1. Then we have:

a) h (X,u) = h ({x} , u) = 〈x, u〉 , u ∈ <d.
b) h (X,u) = h ([x1, x2] , u) = max {ux1, ux2} , u ∈ <.
27Observe that for any x ∈ Sel (X) , ‖x‖ ≤ sup {‖x‖ : x ∈ X} . Hence, all selections of an integrably bounded

random set are integrable and Sel1 (X) = Sel (X).
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B Auxiliary Results

Lemma B.1 Let X be a random compact set taking its realization in a finite space X ⊂ <d. Assume that
the probability space can be partitioned as Ω = Ω1 ∪ Ω2. Let X (ω) = {χ (ω)} for ω ∈ Ω1 and X (ω) = X
for ω ∈ Ω2, with χ a random vector taking its realization in X . Then a random vector x is stochastically

smaller than X if and only if

P(x = k) ≥ P{χ = k|Ω1}P (Ω1) = CX(k)

for all k ∈ X .

Proof. Given that X is either a singleton or the entire space, for each K ∈ K (X ) , K 6= X ,

P (X ⊂ K) = P{X ⊂ K|Ω1}P (Ω1) +P{X ⊂ K|Ω2}P (Ω2)

= P{X ⊂ K|Ω1}P (Ω1) = P{χ ∈ K|Ω1}P (Ω1) .

Because X is finite, P{χ ∈ K|Ω1} =
∑

k∈K P{χ = k|Ω1}. Hence, if the dominance condition holds for
singleton sets K = {k} for all k ∈ X , it also holds for any K ⊂ K (X ) .

Lemma B.2 Let X be a random compact convex set. Then a random vector x is stochastically smaller than

X if and only if

P(x ∈ K) ≥ P{X ⊂ K} = CX(K)

for all compact convex sets K. Moreover, it suffi ces to consider all K being convex polytopes.

Proof. If a random closed set X is compact convex almost surely, its distribution is uniquely determined

by the values of the containment functional CX(K) = P(X ⊂ K) on all compact convex polytopes K, see

Molchanov (1993) and Molchanov (2005, Theorem 1.7.8). We now show that the dominance condition

verified on such polytopes suffi ces to guarantee the condition in Theorem 2.1. Realize x and X on the

same probability space; then by standard results in convex analysis (e.g., Rockafellar (1970, Theorem 13.1)),

x ∈ X if and only if the support function of x is dominated by the support function of X. By a result on

ordering of stochastic processes (Kamae, Krengel, and O’Brien (1977)) this is the case if and only if

(B.1) P(〈x, u1〉 ≤ s1, . . . , 〈x, uk〉 ≤ sk) ≥ P(h(X,u1) ≤ s1, . . . , h(X,uk) ≤ sk)

for all unit vectors u1, . . . , uk, real numbers s1, . . . , sk, and k ≥ 1. By letting K be a convex polytope

bounded by hyperplanes with normals u1, . . . , uk located at distances s1, . . . , sk from the origin, we see that

the left-hand-side in equation (B.1) becomes P(x ∈ K), while the right hand side becomes P(X ⊂ K). If

such a polytope is not bounded, one can pass to the limit in the condition written for all bounded polytopes.
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C Partial Identification of Probability Distributions and Expec-
tations of Response Functions with Independence Assumptions
and Shape Restrictions

Construction of the Relevant Random Set for y (·) Under Assumption MTR

In this case, we need to assume that the outcomes in Y can be ordered, and we need to define a

proper random set that contains the response function y (·) , i.e. the vector [y (0) , . . . , y (T )], and is such

that this function is monotone in t. Observe that if z = t, the data and the MTR Assumption reveal

that y (t) = y, y (s) ∈ Sel ([0, y]) for each s ∈ T : s < t, y (s) ∈ Sel ([y, 1]) for each s ∈ T : s > t,

and P (0 ≤ y (0) ≤ y (1) ≤ ... ≤ y (T ) ≤ 1) = 1. Hence we construct a random set
−→
Y T whose vertices are as

follows

(C.1)

vert
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Y T

)
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1
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1

1



, . . . ,



0

y
...

y

y

1
...

1

1
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y

y
...

y

y

1
...

1

1





for z = t,

with vert (·) the vertices of the set in parenthesis. If Y = [0, 1] , then
−→
Y T = co

(
vert

(−→
Y T

))
is a simplex. If

Y is finite, then −→Y T is the collection of points in YT contained in co
(

vert
(−→
Y T

))
.

This characterization, while exact, is somewhat abstract. Hence, to illustrate, we specialize it to the case

that Y = [0, 1] and T = {0, 1, 2}. In this case,

−→
Y T = co


 y

y

y

 ,
 y

y

1

 ,
 y

1

1


 for z = 0.

−→
Y T = co


 0

y

y

 ,
 0

y

1

 ,
 y

y

y

 ,
 y

y

1


 for z = 1.

−→
Y T = co


 0

0

y

 ,
 0

y

y

 ,
 y

y

y


 for z = 2.

Characterization of the Sharp Identification Regions for P (y (·)) under Assumptions SI-RF and
MTR
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Proposition C.1 Let Assumptions SI-RF and MTR hold. Then the sharp identification region for P(y(·))
is

H [P (y (·))] =

{
µ : µ (K) ≥ ess sup

v∈V
P
(−→
Y T ⊂ K|v

)
∀K ∈ K

(
YT
)}

.

If Y = [0, 1] , it suffi ces to check the above condition for all K being convex polytopes in <T+1.

Proof. The assumptions are summarized by requiring that (y (t) , v) ∈ Sel
((−→
Y T , v

))
∩ I, where I is

the set of random elements (ξ, v) ∈ YT ×V such that ξ is statistically independent of v. If Assumptions SI-RF
and MTR are correct, this intersection is nonempty. By the same argument as in the proof of Proposition

2.4, ([y(0), ..., y(T )] , v) ∈
(−→
Y T , v

)
if and only if

P ([y(0), ..., y(T )] ∈ K|v) ≥ P
(−→
Y T ⊂ K|v

)
∀K ∈ K

(
YT
)
v − a.s.

By the SI-RF assumption, (y(0), ..., y(T )) is statistically independent of v. Hence, the above condition reduces

to

P ([y(0), ..., y(T )] ∈ K|v) ≥ ess sup
v∈V

P
(−→
Y T ⊂ K|v

)
∀K ∈ K

(
YT
)
.

The last claim follows directly from Lemma B.2.

Formal Derivation of the Worst-Case Sharp Identification Regions for E(y(t)) and E(y(·))

Proposition C.2 The sharp identification region for E(y(t)) is given by

H [E(y(t))] = {η ∈ < : 〈η, u〉 ≤ E (h (Y (t) , u)) , u = ±1}

= {η ∈ [E (y| z = t)P (z = t) ,E (y| z = t)P (z = t) +P (z 6= t)]} .

The sharp identification region for E(y(·)) is given by

H [E(y(·))] =
{
η ∈ <T+1 : 〈η, u〉 ≤ E

(
h
(
Y T , u

))
∀u ∈ <T+1

}
= {η ∈ ×t∈T [E (y| z = t)P (z = t) ,E (y| z = t)P (z = t) +P (z 6= t)]} .

Proof. The random set Y (t) collects all the information given by the data concerning y (t), and therefore

y (t) ∈ Sel (Y (t)) . This implies that E(y(t)) ∈ E [Y (t)] . Conversely, if η ∈ E [Y (t)] , then there exists a

selection ỹ (t) ∈ Sel (Y (t)) such that E(ỹ(t)) = η, and therefore η is an admissible value for the conditional

expectation of a selection of Y (t) . The final result follows from Theorem 3.1, observing that

E (h (Y (t) , u)) = E (h (Y (t) , u)| z = t)P (z = t) +E (h (Y (t) , u)| z 6= t)P (z 6= t)

= uE (y| z = t)P (z = t) + h (Y, u)P (z 6= t)

=

{
−E (y| z = t)P (z = t) if u = −1,

E (y| z = t)P (z = t) +P (z 6= t) if u = 1.

A similar reasoning gives that E(y(·)) ∈ E
[
Y T
]
. The final result follows from Theorem 3.1, observing

that Y T is a hyper-rectangle taking its realizations in <T+1, fully defined by its support function in directions
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u ∈ U =
{
u = [u0 ... uT ]

′
: ui ∈ {−1, 1} and uk = 0 for k 6= i, i = 0, ..., T

}
, and that

E
(
h
(
Y T , u

))
=

T∑
t=0
E
(
h
(
Y T , u

)∣∣ z = t
)
P (z = t)

=
T∑
t=0
E (max {〈α, u〉 : αs ∈ {0, 1} for s 6= t, αt = y}| z = t)P (z = t) .

Adding Mean Independence and Monotone Treatment Response Assumptions

Suppose now that the researcher also observes a variable v defined on (Ω,F,P) and taking values in

V ⊂ < We consider the following assumption, which uses the nomenclature in Manski (2003, Section 2).
Assumption MI (Mean Independence of Outcomes and Instruments):

E(y(t)|v) = E(y(t)), t ∈ T .

Notice that Assumption MI is equivalent to an assumption stating that the entire response function is

mean independent of v. Manski (2003, Proposition 2.4) derives the sharp identification region for E(y(t))

under Assumption MI. His result can be extended to obtain the sharp identification region for E(y(·)) under
Assumption MI. They can further be extended by additionally imposing shape restrictions in the form of

the MTS assumption. We provide these results here.

Proposition C.3 Let Assumption MI hold. Then the sharp identification region for E(y(t)) is

H [E(y(t))] = {η ∈ < : 〈η, u〉 ≤ E (h (Y (t) , u)| v) , u = ±1, v − a.s.}

=

{
η ∈

[
ess sup

v∈V
E (y| z = t, v)P (z = t|v) ,

ess inf
v∈V

[E (y| z = t, v)P (z = t|v) +P (z 6= t|v)]

]}
.

The sharp identification region for E(y(·)) is given by

H [E(y(·))] =
{
η ∈ <T+1 : 〈η, u〉 ≤ E

(
h
(
Y T , u

)∣∣ v) ∀u ∈ <T+1, v − a.s.
}

=

{
η ∈ ×t∈T

[
ess sup

v∈V
E (y| z = t, v)P (z = t|v) ,

ess inf
v∈V

[E (y| z = t, v)P (z = t|v) +P (z 6= t|v)]

]}
.

Proof. For each v ∈ V, the data reveals that E(y(t)|v) ∈ E [Y (t)| v], which holds if and only if

E (h (y(t), u)| v) = E ( 〈y(t), u〉| v) ≤ E (h (Y (t) , u)| v) , u = ±1.

Assumption MI states that E(y(t)|v) = E(y(t)), which is equivalent to E ( 〈y(t), u〉| v) = E (〈y(t), u〉) for each
u = −1, 1. Hence we obtain

E (〈y(t), u〉) ≤ E (h (Y (t) , u)| v) , u = ±1, v − a.s.

The final expression for the bounds follows from Proposition C.2. The same reasoning gives the result for

H [E(y(·))] .
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Proposition C.4 Let Assumptions MI and MTR hold. Let
−→
Y (t) and

−→
Y T be defined as in equations (2.12)

and (C.1), respectively. Then the sharp identification region for E(y(t)) is

H [E(y(t))] =
{
η ∈ < : 〈η, u〉 ≤ E

(
h
(−→
Y (t) , u

)∣∣∣ v) , u = ±1, v − a.s.
}

=

{
η ∈

[
ess sup

v∈V
E (y| z ≤ t, v)P (z ≤ t|v) ,

ess inf
v∈V

[E (y| z ≥ t, v)P (z ≥ t|v) +P (z < t|v)]

]}
.

The sharp identification region for E(y(·)) is given by

H [E(y(·))] =
{
η ∈ <T+1 : 〈η, u〉 ≤ E

(
h
(−→
Y T , u

)∣∣∣ v) ∀u ∈ <T+1, v − a.s.
}

Proof. The same argument as in the proof of Proposition C.3 gives that

H [E(y(t))] =
{
η ∈ < : 〈η, u〉 ≤ E

(
h
(−→
Y (t) , u

)∣∣∣ v) , u = ±1, v − a.s.
}
,

H [E(y(·))] =
{
η ∈ <T+1 : 〈η, u〉 ≤ E

(
h
(−→
Y T , u

)∣∣∣ v) ∀u ∈ <T+1, v − a.s.
}
.

To get the final expressions, observe that

E
(
h
(−→
Y (t) , u

)∣∣∣ v) = E (h ([0, y] , u)| z > t, v)P (z > t|v) +E ( 〈y, u〉| z = t, v)P (z = t|v)

+E (h ([y, 1] , u)| z < t, v)P (z < t|v)

=

{
E ( 〈y, u〉| z ≤ t, v)P (z ≤ t|v) if u = −1

E ( 〈y, u〉| z ≥ t, v)P (z ≥ t|v) +P (z < t|v) if u = 1

While E
(
h
(−→
Y T , u

)∣∣∣ v) does not have a simple closed form expression for arbitrary T , it is extremely simple
to compute in practice. To illustrate this claim, we specialize the above result to the case that Y = [0, 1]

and T = {0, 1, 2}. Let u = [u0 u1 u2] and let usum = (u0 + u1 + u2). Then

E
(
h
(−→
Y T , u

)∣∣∣ v) =
2∑
t=0
E
(
h
(−→
Y T , u

)∣∣∣ z = t, v
)
P (z = t|v)

= E (max {yusum, y (u0 + u1) + u2, yu0 + (u1 + u2)}| z = 0, v)P (z = 0|v)

+E (max {y (u1 + u2) , yu1 + u2, yusum, y (u0 + u1) + u2}| z = 1, v)P (z = 1|v)

+E (max {yu2, y (u1 + u2) , yusum}| z = 2, v)P (z = 2|v) .
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Figure 1: H (θ) and H
(
θ̆
)
obtained, respectively, using x−1 and

x−1−E(x−1)√
Var(x−1)

.
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h(X,u)

X

u

Figure 2: Support function of X at u.
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