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ESTIMATION OF TREATMENT EFFECTS WITH HIGH-DIMENSIONAL

CONTROLS

A. BELLONI, V. CHERNOZHUKOV, AND C. HANSEN

Abstract. We propose methods for inference on the average effect of a treatment on a scalar

outcome in the presence of very many controls. Our setting is a partially linear regression

model containing the treatment/policy variable and a large number p of controls or series

terms, with p that is possibly much larger than the sample size n, but where only s ≪ n un-

known controls or series terms are needed to approximate the regression function accurately.

The latter sparsity condition makes it possible to estimate the entire regression function as

well as the average treatment effect by selecting an approximately the right set of controls

using Lasso and related methods. We develop estimation and inference methods for the av-

erage treatment effect in this setting, proposing a novel “post double selection” method that

provides attractive inferential and estimation properties. In our analysis, in order to cover

realistic applications, we expressly allow for imperfect selection of the controls and account

for the impact of selection errors on estimation and inference. In order to cover typical ap-

plications in economics, we employ the selection methods designed to deal with non-Gaussian

and heteroscedastic disturbances. We illustrate the use of new methods with numerical sim-

ulations and an application to the effect of abortion on crime rates.

Key Words: treatment effects, high-dimensional regression, inference under imperfect

model selection

1. Introduction

Many empirical analyses in economics focus on estimating the structural, causal, or treat-

ment effect of some variable on an outcome of interest. For example, we might be interested

in the estimating the causal effect of the minimum wage or some other government policy on

employment. Since economic policies and many other economic variables are not randomly

assigned, economists rely on a variety of quasi-experimental approaches based on observational

data when trying to estimate such effects. One popular method is based on the assumption

that the variable of interest can be taken as randomly assigned once a sufficient set of other

Date: First version: May 2010, This version of December 30, 2011.
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2 BELLONI CHERNOZHUKOV HANSEN

factors has been controlled for. Economists, for example, might argue that deviations in state-

level minimum wages can be taken as randomly assigned relative to unobservable factors that

could affect state-level employment once aggregate macroeconomic activity, state-level eco-

nomic activity, and state-level demographics have been controlled for; see Card and Krueger

(1997) among other references.

A problem empirical researchers face when relying on an identification strategy for estimating

a structural effect that relies on a conditional on observables argument is knowing which

variables to control for. Typically, economic intuition will suggest a set of variables that might

be important but will not identify exactly which variables are important or the functional form

with which variables should enter the model. This lack of clear guidance about what variables

to use leaves researchers with the problem of attempting to select a sensible set of controls from

a potentially vast set of control variables including raw regressors available in the data as well

as interactions and other transformations of these regressors. A typical economic study will

rely on a sensitivity analysis in which a researcher reports results for several different sets of

controls in an attempt to show that the parameter of interest that summarizes the causal effect

of the policy variable is insensitive to changes in the set of control variables. See Donohue III

and Levitt (2001), which we use as the basis for the empirical study in this paper, or examples

in Angrist and Pischke (2008) among many other references.

In this paper, we present an approach to estimating structural effects in an environment

where we believe that the treatment variable may be taken as exogenous conditional on ob-

servables that complements existing strategies. We pose the problem in the framework of a

partially linear model

y1i = diα0 + g(zi) + ζi

where di is the treatment variable of interest, zi is a set of control variables, and ζi is an

unobservable that satisfies E[ζi|di, zi] = 0. This model is general enough to accommodate

the usual models used in estimating treatment effects in applied economic research. Within

this model, the problem we examine is selecting a small set of variables from among zi and

potentially transformations of zi to adequately approximate g(zi) and make estimation and

inference about the parameter of interest α0 feasible. We allow for selection among a large set

of p observable variables consisting of zi and transformations where p ≫ n is allowed. This

framework allows for the realistic scenario in which the researcher is unsure about exactly

which variables or transformations are important for approximating g(zi) and so is left with

searching among a broad set of controls.
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Of course, without further structure on the data, useful inference about α0 is unavailable.

We impose such structure by assuming that among the very large set of potential conditioning

variables, there is a relatively small set consisting of s < n variables whose identities are a priori

unknown by the researcher that provide a good enough approximation that the exogeneity of di

may be taken as given once these variables have been controlled for. This assumption, which is

termed sparsity, allows us to approach the estimation problem as a variable selection problem

from among a large set of controls.

Sparsity corresponds quite well to usual approaches to conditional on observable analyses in

applied economics where the set of sensitivity analyses reported generally rely on estimating

the treatment effect considering different small sets of potential control variables, sets with

far fewer variables than there are observations in the sample. We consider a formal approach

to variable selection in this setting that complements the usual ad hoc approaches based on

variable selection using ℓ1-penalization methods, especially Lasso.

ℓ1-penalized methods have been proposed for model selection problems in high-dimensional

least squares problems (Tibshirani 1996) in part because they are computationally efficient

(avoiding a curse of dimensionality). Recently, many of these methods have been shown to

have good estimation properties even when perfect variable selection is not feasible (e.g. Candes

and Tao (2007), Meinshausen and Yu (2009), Bickel, Ritov, and Tsybakov (2009), Belloni and

Chernozhukov (2011c) and the references therein). Such methods were also shown to extend

suitably to nonparametric and non-Gaussian cases (e.g. Bickel, Ritov, and Tsybakov (2009),

Belloni, Chen, Chernozhukov, and Hansen (2010)). Also, these methods produce models with

a relatively small set of variables. The last property is important in that it leaves the researcher

with a set of variables that may be examined further in addition to corresponding to the usual

approach in economics that relies on considering a relatively small number of controls.

A main contribution of this paper is providing theory that gives conditions under which

ℓ1-penalized estimators may be successively used to estimate structural economic effects of

interest and in offering a simple and robust method to estimating these effects. The approach

we advocate differs from usual uses of Lasso-type methods by relying on two different variable

selection steps. In the first, we select a set of control variables that are useful for predicting

the treatment di. This step helps to insure robustness by finding control variables that are

strongly related to the treatment and thus potentially important compounds. We then select

additional variables by selecting control variables that predict y1i. This step helps to insure

that we have captured important elements in the equation of interest, ideally helping keep the

residual variance small as well as intuitively providing an additional chance to find important
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confounds. The treatment effect of interest is then estimated by the linear regression of y1i

on the treatment di and the union of the set of variables selected in the two previous steps.

We provide theoretical results on the properties of the resulting treatment effect estimator

and show that it may achieve the semi-parametric efficiency bound under some conditions.

Importantly, our theoretical results allow for imperfect variable selection in either of the two

variable selection steps as well as allowing for non-Gaussianity and heteroskedasticity of the

model’s errors. 1

We illustrate the theoretical results through an examination of the effect of abortion on crime

rates following Donohue III and Levitt (2001). In this example, we find that the formal variable

selection procedure produces a qualitatively different result than that obtained through the

ad hoc set of sensitivity results presented in the paper. By using formal variable selection,

we select a small set of between eight and fourteen variables depending on the outcome, as

opposed to the set of six variables considered by Donohue III and Levitt (2001). Once this

set of variables is linearly controlled for, the estimated abortion effect is rendered extremely

imprecise. It is interesting that the key variable selected by the variable selection procedure

is the initial condition for the abortion rate. This selection and the resulting imprecision

of the estimated treatment effect suggests that one cannot determine precisely whether the

effect attributed to abortion without including this initial condition is due to changes in the

abortion rate or some other persistent state-level factor that is related to relevant changes in

the abortion rate and current changes in the crime rate.2 Finding that a simple-to-implement,

formal approach to variable selection produces a qualitatively different result than a more ad

hoc approach suggests that there is room for such procedures in applied economics and that

these methods might be used to complement economic intuition in selecting control variables

for estimating treatment effects in settings where treatment is taken as exogenous conditional

on observables.

Notation. In what follows, we work with triangular array data {(ωi,n, i = 1, ..., n) , n =

1, 2, 3, ...} defined on some common probability space (Ω,A,P). Each ωi,n = (y′i,n, z′i,n, d′i,n)′

is a vector, with components defined below in what follows, and these vectors are i.n.i.d.

– independent across i, but not necessarily identically distributed. The law of {ωi,n, i =

1, ..., n} can change with n. Thus, all parameters that characterize the distribution of {ωi,n, i =

1, ..., n} are implicitly indexed by the sample size n, but we omit the explicit index n in

1In a companion work (Belloni, Chernozhukov, and Hansen 2011) we have obtained similar results in the

ideal Gaussian homoscedastic framework.
2Note that all models are estimated in first-differences to eliminate any state-specific factors that might be

related to both the relevant level of the abortion rate and the level of the crime rate.
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what follows to simplify notation. We use array asymptotics to better capture some finite-

sample phenomena and to retain the robustness of conclusions to perturbations of the data-

generating process. We also use the following empirical process notation, En[f ] := En[f(ωi)] :=
∑n

i=1 f(ωi)/n, and Gn(f) :=
∑n

i=1(f(ωi) − E[f(ωi)])/
√

n. Since we want to deal with i.n.i.d.

data, we also introduce the average expectation operator: Ē[f ] := EEn[f ] = EEn[f(ωi)] =
∑n

i=1 E[f(ωi)]/n, The l2-norm is denoted by ‖ · ‖, and the l0-norm, ‖ · ‖0, denotes the number

of non-zero components of a vector. We use ‖ · ‖∞ to denote the maximal element of a vector.

Given a vector δ ∈ R
p, and a set of indices T ⊂ {1, . . . , p}, we denote by δT ∈ R

p the vector

in which δTj = δj if j ∈ T , δTj = 0 if j /∈ T . We use the notation (a)+ = max{a, 0},
a ∨ b = max{a, b} and a ∧ b = min{a, b}. We also use the notation a . b to denote a 6 cb

for some constant c > 0 that does not depend on n; and a .P b to denote a = OP (b). For an

event E, we say that E wp → 1 when E occurs with probability approaching one as n grows.

Given a p-vector b, we denote support(b) = {j ∈ {1, ..., p} : bj 6= 0}.

2. Inference on Treatment and Structural Effects Conditional on

Observables

2.1. Framework. In this paper we consider the following partially linear model

y1i = diα0 + g(zi) + ζi, E[ζi | zi, di] = 0,(2.1)

di = m(zi) + vi, E[vi | zi] = 0,(2.2)

where y1i is the outcome variable, di is the policy/treatment variable whose impact α0 we would

like to infer, zi represents confounding factors on which we need to condition, and ζi and vi

are disturbances. Under appropriate conditions, the parameter α0 is the average treatment or

structural effect, Heckman, LaLonde, and Smith (1999) and Imbens (2004), and is of major

interest in many empirical studies.

The confounding factors zi affect the policy variable via the function m(zi) and the outcome

variable via function g(zi). Both of these functions are unknown and potentially complicated.

We use linear combinations of (possibly technical) control terms xi = P (zi) to approximate

g(zi) and m(zi), writing (2.1) and (2.2) as

y1i = diα0 + x′
iβg0 + rgi︸ ︷︷ ︸

g(zi)

+ζi,(2.3)

di = x′
iβm0 + rmi︸ ︷︷ ︸

m(zi)

+vi,(2.4)
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where x′
iβg0 and x′

iβm0 are some approximations to g(zi) and m(zi), and rgi and rmi are

the corresponding approximation errors. In order to allow for a flexible specification and

incorporation of all pertinent confounding factors, the vector of controls, xi = P (zi), can

have a dimension p = pn which can be high in relation to the sample size. In fact, p can be

possibly much larger than the sample size n though restricted via log p = o(n1/3) and via other

conditions stated below. For example, high-dimensional instruments xi = P (zi) could arise as

any combination of the following two cases:

• Many controls. The list of available controls is large, in which case we have xi = zi,

as in e.g. Koenker (1988).

• Many technical controls. The list xi = P (zi) consists of a large number of series

terms with respect to some elementary regressor vector zi, e.g., xi could be composed

of B-splines, dummies, polynomials, and various interactions as in e.g. (Newey 1997).

The high-dimensional p creates a challenge, which is particularly apparent when p > n.

However, a key condition that makes it possible to perform constructive estimation and infer-

ence in such cases is sparsity, namely that there exist sparse approximations x′
iβg0 and x′

iβm0

to g(zi) and m(zi) in (2.3)-(2.4) that render the approximation errors rgi and rmi sufficiently

small. Or, more formally, there exist βg0 and βm0 such that at most s = sn ≪ n elements of

βm0 and βg0 are non-zero, namely

‖βm0‖0 6 s and ‖βg0‖0 6 s,

where identities of these elements are unknown, and where the size of the resulting approxi-

mation errors is small compared to the conjectured size of the estimation error:

{En[r2
gi]}1/2 .P

√
s/n and {En[r2

mi]}1/2 .P

√
s/n.

In other words, out of potentially many controls xi only at most s = sn ≪ n unknown controls

are sufficient for approximating the functions m(zi) and g(zi) well enough. Note that the size

of the approximating model s = sn can grow with n, just as in the standard series estimation

or estimation with many regressors.

The frameworks above extends the standard framework in the treatment effect literature

which assumes both that the relevant controls are known and that the number of such controls

s is much smaller than the sample size. Here we instead assume that there are many, p,

potential controls of which at most s controls are important, and the identity of these controls

is unknown. Relying on such sparsity assumption, we shall employ model selection methods to
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select at least approximately the right set of controls and then estimate the treatment effect

α0.

2.2. The Method: Least Squares after Double Selection. We propose the following

method for estimation and inference on α. The most important and novel feature of this

method is that it does not rely on the highly unrealistic assumption of perfect model selection,

which is often invoked to justify inference after model selection. 3 Moreover, its (non-apparent)

construction reflects our effort to offer a method that has attractive robustness features, pro-

viding estimator that is
√

n consistent and asymptotically normal under mild conditions, and

providing confidence intervals that are robust to various perturbations of the data-generating

process that preserve approximate sparsity.

To define the method, we first write the reduced form corresponding to (2.1)-(2.2) as:

y1i = x′
iβ̄0 + r̄i + ζ̄i,(2.5)

di = x′
iβm0 + rmi + vi,(2.6)

where β̄0 := α0βm0 + βg0, r̄i := α0rmi + rgi, ζ̄i := α0vi + ζi.

Now we have two equations and hence can apply model selection methods to each equation

to select control terms. The chief method we will use will be the Lasso method described in

more detail below. Then we can run least squares of y1i on di and the union of the controls

selected in each equation to estimate and perform standard inference on α0. Intuitively, we

are more likely to recover key controls by considering selection of controls from both equations

instead of just considering selection of controls from a single equation such as (2.1), (2.3), or

(2.4). In the various finite-sample experiments, we show that none of such “single selection”

methods work as well as the double selection method. Theoretically this is also supported by

the fact that the double selection method requires much weaker regularity conditions for its

validity and for attaining the efficiency bound4 than single selection methods.

Now we formally define the post double selection estimator: Let Î1 = support(β̂1) denote

the control terms selected by a feasible Lasso estimator β̂1 computed using data (ỹi, x̃i) =

(di, xi), i = 1, ..., n. Let Î2 = support(β̂2) denote the control terms selected by a feasible Lasso

3To the best of our knowledge this result is a first result of this kind, as it pertains to our setting. This result

extends our previous results on inference under imperfect model selection in the instrumental regression model

(Belloni, Chernozhukov, and Hansen 2010, Belloni, Chen, Chernozhukov, and Hansen 2010) and in partially

linear Gaussian model (Belloni, Chernozhukov, and Hansen 2011). It should ne noted that the analysis here is

considerably more involved.
4Semi-parametric efficiency is attained in the homoscedastic cases.
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estimator β̂2 computed using data (ỹi, x̃i) = (y1i, xi), i = 1, ..., n. Finally, the post double

selection estimator α̌ of α0 is defined as the least squares estimator obtained by regressing y1i

on di and the selected control terms xij with j ∈ Î ⊇ Î1 ∪ Î2:

(α̌, β̌) = argmin
α∈R,β∈Rp

{En[(y1i − diα− x′
iβ)2] : βj = 0,∀j 6∈ Î}.

The set Î may in addition contain other variables with names Î3 that the analyst may think

are important for ensuring robustness. We call Î3 the amelioration set. Thus, Î = Î1 ∪ Î2 ∪ Î3;

let ŝ = |Î| and ŝj = |Îj | for j = 1, 2, 3.

We define feasible Lasso estimator below and note that other selection methods can be used

as well under conditions specified in Section 5. When the feasible Lasso is used we shall refer

to the post double selection estimator as the post double Lasso estimator.

The main theoretical result of the paper shows that the post-double-selection estimator α̌

obeys

([Ēv2
i ]

−1Ē[v2
i ζ

2
i ][Ēv2

i ]
−1)−1/2√n(α̌− α0)→d N(0, 1)

under approximate sparsity conditions, and uniformly in a rich set of data-generating processes.

Moreover, we provide the consistent standard errors based on the plug-in principle.

2.3. Selection of controls via feasible Lasso Methods. Here we describe feasible selection

via Lasso. Note that each of the regression equations above is of the form

ỹi = x̃′
iβ0 + ri︸ ︷︷ ︸

f(z̃i)

+ǫi,

where f(z̃i) is the regression function, x̃′
iβ0 is the approximation based on the dictionary

x̃i = P (z̃i), ri is the approximation error, and ǫi is the error. Tibshirani (1996) propose the

Lasso estimator/model selector defined as a solution to

(2.7) min
β∈Rp

En[(ỹi − x̃′
iβ)2] +

λ

n
‖β‖1,

where ‖β‖1 =
∑p

j=1 |βj |. The kinked nature of the penalty function forces the solution β̂

to have many zeroes, which has convenient model selection applications. The selected model

T̂ = support(β̂) is often used for further refitting by least squares, leading to the so called

post-Lasso or Gauss-Lasso estimator, see, e.g., Belloni and Chernozhukov (2011c). The Lasso

estimator/selector is computationally attractive because it minimizes a convex function. In the

homoskedastic case, a basic choice for penalty level suggested by Bickel, Ritov, and Tsybakov
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(2009) is

(2.8) λ = 2 · cσ
√

2n log(2p/γ),

where c > 1 and 1−γ is a confidence level that needs to be set close to 1. The formal motivation

for this penalty is that it leads to near-oracle rates of convergence of the estimator under

approximate sparsity. This in turn implies good approximation properties of the selected model

T̂ , as noted in Belloni and Chernozhukov (2011c). Unfortunately, even in the homoskedastic

case the penalty level specified above is not feasible since it depends on the unknown σ.

Belloni, Chen, Chernozhukov, and Hansen (2010) formulate a feasible Lasso estimator/selector

β̂ geared for heteroscedastic, non-Gaussian cases, which solves

(2.9) min
β∈Rp

En[(ỹi − x̃′
iβ)2] +

λ

n
‖Ψ̂β‖1,

where Ψ̂ = diag(l̂1, . . . , l̂p) is a diagonal matrix specifying penalty loadings. The penalty level

λ and loadings l̂j ’s are set

(2.10) λ = 2·cΦ−1(1−γ/2p) and l̂j = lj+oP (1), lj =
√

En[x̃2
ijǫ

2
i ], uniformly in j = 1, . . . , p,

where c > 1 and 1 − γ is a confidence level.5 Since “ideal” lj ’s are not observed, they are

estimated by l̂j via an iteration method defined in Appendix A. We refer to the resulting

feasible Lasso method as the Iterated Lasso. The estimator β̂ has statistical performance that

is similar to that of the (infeasible) Lasso described above in the Gaussian cases, but also

delivers Gaussian-like performance in the non-Gaussian, heteroscedastic case (Belloni, Chen,

Chernozhukov, and Hansen 2010). In our case, we only use β̂ for purposes of model selection,

namely we use

T̂ = suppport(β̂),

the labels of regressors for which estimated coefficients are zero. The selected model has good

approximation properties under approximate sparsity, as we formally state below in Section 3.

Belloni, Chernozhukov, and Wang (2011) propose another feasible variant of Lasso called

the Square-root Lasso estimator β̂ defined as a solution to

(2.11) min
β∈Rp

√
En[(ỹi − x̃′

iβ)2] +
λ

n
‖Ψ̂β‖1,

with the penalty level

(2.12) λ = c · Φ−1(1− γ/2p).

5Practical recommendations include the choice c = 1.1 and γ = .05.
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where c > 1 and γ ∈ (0, 1) is the confidence level, and Ψ̂ is a diagonal matrix containing

penalty loadings l̂1, ..., l̂p in the diagonal. The main attractive feature of (2.11) is that in the

homoscedastic case we can set l̂j = {En[x̃2
ij ]}1/2, and the penalty level λ is independent of the

value E[ǫ2
i ] = σ2, and so it is pivotal. In the heteroscedastic case, we would like to choose

(2.13) lj + oP (1) 6 l̂j .P lj, where lj = {En[x̃2
ijǫ

2
i ]]/En[ǫ2

i ]}1/2, uniformly in j = 1, ..., p.

For example, since {En[x̃2
ijǫ

2
i ]]/En[ǫ2

i ]}1/2 6 {En[x̃4
ij ]}1/4{En[ǫ4

i ]}1/4/{En[ǫ2
i ]}1/2, we can use

l̂j = {En[x̃4
ij]}1/42, which gives lj + oP (1) 6 l̂j if {En[ǫ4

i ]}1/4/{En[ǫ2
i ]}1/2 6 2 + oP (1), which

covers a wide class of marginal distributions for error ǫi, for example, all t-distributions with

degree of freedom greater than five. As in the previous case, we can iteratively re-estimate the

penalty loadings to obtain the refined penalty loadings:

(2.14) l̂j = lj + oP (1), uniformly in j = 1, ..., p.

The resulting Lasso and post-Lasso estimators based on this have attractive Gaussian-like

performance even in non-Gaussian, heteroscedastic cases. This implies good approximation

properties for the selected model T̂ .

In what follows, the name feasible Lasso will be formally used to name either the Iterated

Lasso estimator β̂ solving (2.9)-(2.10) or Square-root Lasso estimator β̂ solving (2.11)-(2.13),

with the confidence level 1− γ such that

(2.15) γ = o(1) and log(1/γ) . log(p ∨ n).

3. Theory of Estimation and Inference

3.1. Regularity Conditions. In this section we record regularity conditions that are suffi-

cient for validity of the main estimation and inference result. We begin by stating our main

condition, which contains the previously defined approximate sparsity as well as other more

technical assumptions.

Condition ASTE. (i) For each n, the data array Dn = {(y1i, di, zi), i = 1, ..., n} is a

sequence of i.n.i.d vectors that obey the model (2.1)-(2.2) for each n, and xi = P (zi) is a

dictionary of transformations of zi. We allow the law of data to change with n and so all

parameters can depend on n. (ii) The parameter value α0 is bounded uniformly in n. (iii)

Functions m and g admit an approximately sparse form, with sparsity index s, namely there
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exists s > 1 and βm0 and βg0 such that

m(zi) = x′
iβm0 + rmi, ‖βm0‖0 6 s, {En[r2

mi]}2 .P σ̄
√

s/n,(3.16)

g(zi) = x′
iβg0 + rgi, ‖βg0‖0 6 s, {En[r2

gi]}2 .P σ̄
√

s/n,(3.17)

where the parameter values are indexed by n. (iv) The sparsity index obeys s2 log2(p∨n) = o(n)

and the size of the amelioration set obeys ŝ3 . 1∨ŝ1∨ŝ2; and (v) maxi6n(d2
i /s

2+‖xi‖2∞)(|vi|2+

|ζi|2 + |rgi|2 + |rmi|2)s2 log(p ∨ n) = oP (n), and En[(vi + rmi)
2(ζi + rgi)

2]− Ē[v2
i ζ

2
i ]→P 0.

Comment 3.1. The condition (ASTE(i)) states formally the modeling assumption and im-

poses independent sampling on the data. For each n, the data vectors Dn are defined on some

common probability space (Ω,F , P ). Even though there is a common underlying probability

space for all n, we allow the law Pn of data array Dn to depend on n. In other words, we allow

for triangular array sequences, which allows us to insure robustness to perturbations of the

data generating process Pn. The approximate sparsity (ASTE(iii)) and the growth condition

(ASTE(iv)) are the main conditions for establishing our main inferential result. Condition

ASTE(iv) requires that the size ŝ3 of the amelioration set Î3 should be no larger than the size

selected by the Lasso method. Simply put, if we decide to include controls in addition to those

selected by Lasso, the total number of additions should not exceed (much more) than what

was selected by Lasso. This will ensure that the total number ŝ of controls selected will obey

ŝ .P s, and we require that s2 log2 p/n → 0. Condition ASTE(v) is simply a set of sufficient

conditions for the consistent estimation of the variance of the double selection estimator (for

instance, it is implied by the other conditions if regressors are uniformly bounded and the

approximation errors are going to zero a.s.). �

The next condition concerns the behavior of the Gram matrix En[xix
′
i]. Whenever p > n, the

empirical Gram matrix En[xix
′
i] does not have full rank and in principle is not well-behaved.

However, we only need good behavior of smaller submatrices. Define the minimal and maximal

m-sparse eigenvalue of a semi-definite matrix M as

(3.18) φmin(m)[M ] := min
16‖δ‖06m

δ′Mδ

‖δ‖2 and φmax(m)[M ] := max
16‖δ‖06m

δ′Mδ

‖δ‖2 .

To assume that φmin(m)[En[xix
′
i]] > 0 requires that all empirical Gram submatrices formed

by any m components of xi are positive definite. We shall employ the following condition as a

sufficient condition for our results.

Condition SE. There is ℓn → ∞ such that the maxiamal and minimal ℓns-sparse eigen-

values are bounded from below and away from zero, namely

κ′ 6 φmin(ℓns)[En[xix
′
i]] 6 φmax(ℓns)[En[xix

′
i]] 6 κ′′,
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where 0 < κ′ < κ′′ <∞ are constants that do not depend on n.

Comment 3.2. It is well-known that Condition SE is quite plausible for many designs of

interest. For instance, Condition SE holds with probability approaching one as n→∞ if xi is

a normalized form of x̃i, namely xij = x̃ij/
√

En[x̃2
ij], and

• x̃i, i = 1, . . . , n, are i.i.d. zero-mean Gaussian random vectors that have population

Gram matrix E[x̃ix̃
′
i] with ones on the diagonal and its minimal and maximal s log n-

sparse eigenvalues bounded away from zero and from above, where s log n = o(n/ log p);

• x̃i, i = 1, . . . , n, are i.i.d. bounded zero-mean random vectors with ‖x̃i‖∞ 6 Kn a.s.

that have population Gram matrix E[x̃ix̃
′
i] with ones on the diagonal and its minimal

and maximal s log n-sparse eigenvalues bounded from above and away from zero, where

K2
ns log5(p ∨ n) = o(n).

Recall that a standard assumption in econometric research is to assume that the population

Gram matrix E[xix
′
i] has eigenvalues bounded from above and below, see e.g. Newey (1997).

The conditions above allow for this and more general behavior, requiring only that the s log n

sparse eigenvalues of the population Gram matrix E[xix
′
i] are bounded from below and from

above. The latter is important for allowing functions xi to be formed as a combination of

elements from different bases, e.g. a combination of B-splines with polynomials. �

The next condition imposes moment conditions on the structural errors and regressors, which

lead to asymptotic normality and that allow us to invoke self-normalized moderate deviation

results in Jing, Shao, and Wang (2003) which were first used in the non-Gaussian analysis of

Lasso in Belloni, Chen, Chernozhukov, and Hansen (2010).

Condition SM. (i) The disturbances ζi and vi have conditional variance (E[ζ2
i |xi] and

E[v2
i |xi]) that are bounded uniformly from above and away from zero, uniformly in i and n.

(ii) Ē[|vi|q], Ē[|ζi|q] and Ē[|di|q] are bounded uniformly in n, for some constant q > 4. (iii)

The moments Ē[|xijζi|3] and Ē[|xijvi|3] are bounded uniformly in 1 6 j 6 p, uniformly in n.

The following growth conditions hold: log3 p = o(n) and n2/qs log(p ∨ n) = o(n).

3.2. The Main Result. The following is the main result of this paper. It shows that the

post-double selection estimator is root-n consistent and is asymptotically normal. Under

homoscedasticity this estimator achieves the semi-parametric efficiency bound. The plug-in

estimates of the standard errors are consistent. Before stating the results, we note that the
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theorem relies on the regularity conditions stated above as well as on a more technical Con-

dition RF, which we chose to state below in the next subsection, since it is only needed for

getting the standard rates for a feasible Lasso estimator under heteroskedasticity.

Theorem 1 (Estimation and Inference on Treatment Effects). Suppose conditions ASTE(i-iv),

SM and RF for (2.1) and (2.2) hold and that condition SE holds with probability approaching

1 as n grows. The post-double-Lasso estimator α̌ obeys

([Ēv2
i ]

−1Ē[v2
i ζ

2
i ][Ēv2

i ]
−1)−1/2√n(α̌− α0) = N(0, 1) + oP (1).

Moreover, if Condition ASTE(v) also holds, the result continues to apply if Ē[v2
i ] and Ē[v2

i ζ
2
i ]

are replaced by En[v̂2
i ] and En[v̂2

i ζ̂
2
i ] for ζ̂i := [yi−diα̌−x′

iβ̌]{n/(n−ŝ−1)}1/2 and v̂i := di−x′
iβ̂,

i = 1, . . . , n where β̂ ∈ arg minβ En[(di − x′
iβ)2] : βj = 0,∀j /∈ Î}.

Comment 3.3. By exploiting both equations (2.3) and (2.4) for the selection of the model,

the post double selection estimator generate additional robustness as compared to selection

procedures based on a single equations. The end result is that the regularity conditions appear

quite weak, in particular they essentially encompass the standard regularity conditions of the

kind given in Donald and Newey (2001). Robustness is also reflected in the fact that Theorem 1

permits the data-generating process (dgp) to change with n. Thus conclusions of the theorem

are valid for a wide variety of sequences of dgps, and this implicitly defines the regions of

uniform validity of the procedure. The regions of uniform validity appear to be substantial,

which translates into good finite-sample performance of the method, as we document in the

Monte-Carlo experiments reported in Section 5. �

3.3. Auxiliary Results on Model Selection via Lasso and Post-Lasso. The post double

selection estimator applies the least squares estimator to the union of models selected via

feasible Lasso. Therefore model selection properties of feasible Lasso as well properties of

least square estimates for m and g based on the selected model play an important role in the

derivation.

Note that either of the regression models (2.3)-(2.4) are of the following approximately sparse

form:

Condition ASM.We have data {(ỹi, z̃i, x̃i = P (z̃i)) : 1 6 i 6 n} consisting of i.n.i.d vectors

that obey the regression model for each n:

ỹi = f(z̃i) + ǫi = x̃′
iβ0 + ri + ǫi,

E[ǫi | xi] = 0, Ē[ǫ2
i ] = σ2,

‖β0‖0 6 s, En[r2
i ] .P σ2s/n.



14 BELLONI CHERNOZHUKOV HANSEN

In this section we discuss the model selection properties of feasible Lasso, and derive the

properties of the least squares fit to the function f(z̃i). Let T̂ denote the model selected by

the feasible Lasso estimator β̂. Formally, set

T̂ = support(β̂) = {j ∈ {1, . . . , p} : |β̂j | > 0},

and define the Post-Lasso estimator β̃ as

(3.19) β̃ ∈ arg min
β∈Rp

En[(ỹi − x̃′
iβ)2] : βj = 0 for each j /∈ T̂ ,

In words, the estimator is ordinary least squares applied to the data after removing the regres-

sors that were not selected by Lasso.

We shall impose the following technical regularity conditions to deal with possibly non-

Gaussian, heteroscedastic errors.

Condition RF. (i) The following growth conditions hold log1/3 p = o(n) and s log(p∨n) =

o(n). (ii) The moments Ē[ỹ8
i ] and Ē[ǫ8

i ] are bounded uniformly in n. (iii) The regressors xi obey:

max16j6p En[x̃8
ij ] .P 1 and max16i6n,16j6p |x̃2

ij |
s log(p∨n)

n →P 0. (iv) The moments Ē[x̃2
ijǫ

2
i ] are

bounded away from zero and from above uniformly in 1 6 j 6 p, uniformly in n, and the

moments Ē[x̃6
ij ỹ

6
i ] and Ē[x̃6

ijǫ
6
i ] are bounded, uniformly in 1 6 j 6 p, uniformly in n.

The main auxiliary result is as follows.

Lemma 1 (Model Selection Properties of Lasso and Properties of Post-Lasso). Suppose that

conditions ASM and RF hold, and that Condition SE holds for En[x̃ix̃
′
i] with probability going

to 1. Then the data-dependent model T̂ selected by Feasible Lasso estimator satisfies

ŝ = |T̂ | .P s,

and

min
β∈Rp:βj=0∀j 6∈T̂

√
En[f(z̃i)− x̃′

iβ]2 .P σ

√
s log(p ∨ n)

n
.

The Post-Lasso estimator obeys

√
En[f(z̃i)− x̃′

iβ̃]2 .P σ

√
s log(p ∨ n)

n
.

and

(3.20) ‖β̃ − β0‖ .P

√
En[{x̃′

iβ̃ − x̃′
iβ0}2] .P σ

√
s log(p ∨ n)

n
.
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Comment 3.4. Thus Lasso selects a model T̂ that provides high-quality, near-optimal approx-

imation to the regression function f(z̃i). The optimal approximation in our context means the

approximation error of size
√

s/n, and here we are getting the the additional factor
√

log(p ∨ n)

in the rate, which is the price of not knowing the “the best” approximating model

T = support(β0).

Note that Lasso generally does not recover T perfectly, that is T̂ 6= T in general. Moreover,

no estimator can recover T perfectly in general, unless the non-zero coefficients β0 are sepa-

rated away from zero very strongly (by some sort of miracle) which seems unlikely in many

econometric applications of interest. However, we do not require that; all it matters is that

the selected model T̂ can approximate the regression function well, and the size of the model

ŝ = |T̂ | is of the same stochastic order as s = |T |. These are the crucial properties that we

need. �

Comment 3.5. The theorem above shows that Feasible Post-Lasso achieves the same near-

oracle rate as Feasible Lasso. Notably, this occurs despite the fact that Feasible Lasso may in

general fail to correctly select the oracle model T as a subset, that is T 6⊆ T̂ . The intuition

for this result is that any components of T that Feasible Lasso misses are very unlikely to be

important or their contribution can be captured by the other selected components. Lemma

1 was derived in Belloni, Chen, Chernozhukov, and Hansen (2010) for Lasso and a simple

extension of Belloni, Chernozhukov, and Wang (2010) yields the result for Square-root Lasso

(which could also be iterative with loadings). Similar results have been shown before for ℓ1-

penalized quantile regression (Belloni and Chernozhukov 2011a), and can be derived for other

methods that yield sparse estimators. In the Gaussian context the result above was derived in

Belloni, Chernozhukov, and Hansen (2010). �

4. Generalizations and Extensions

4.1. Split Sample Double Selection Estimator. In this section we discuss a variant of

the double selection estimator based on split sample. The underlying motivation is to attempt

to reduce the possibly substantive requirement s2 log2(p ∨ n) = o(n) that is assumed in the

full-sample counterpart to the milder condition

s log(p ∨ n) = o(n).

To define the estimator divide the sample random into (approximately) equal parts a and b,

with sizes na = ⌈n/2⌉ and nb = n−na. (The superscripts a and b are used for variables in the
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first and second subsample respectively. We typically index the subsample by k = a, b and let

kc = {a, b} \ {k}.)

For each of the subsamples we apply the double selection method to select the set of controls

Îa := Îa
1 ∪ Îa

2 ∪ Îa
3 and Îb := Îb

2 ∪ Îb
2 ∪ Îb

3. Then we form the double selection estimates in the

two subsamples

(α̌a, β̌a) = argmin
α∈R,β∈Rp

{Ena [(y1i − diα− x′
iβ)2] : βj = 0,∀j 6∈ Îb}, and

(α̌b, β̌b) = argmin
α∈R,β∈Rp

{Enb
[(y1i − diα− x′

iβ)2] : βj = 0,∀j 6∈ Îa}.

For an index i in the subsample k, we define the residuals ζ̂i := [yi − diα̌k − x′
iβ̌k]{nk/(nk −

ŝk − 1)}1/2 and v̂i := di − x′
iβ̂k where β̂k ∈ arg minβ{Enk

[(di − x′
iβ)2] : βj = 0,∀j /∈ Îkc}.

Importantly, the model Îa selected based on the subsample a is the model used to fit the

subsample b (and vice-versa). Finally, we combine the estimates into the split-sample double

selection estimator

(4.21) α̌ab = {(na/n)Υa + (nb/n)Υb)−1((na/nb)Υ
aα̌a + (nb/n)Υbα̌b),

where Υk = Dk ′MÎkc Dk/nk, k = a, b.

We state below sufficient regularities conditions for the analysis of the split sample double

selection method.

Condition ASTESS. (i) For each n, the data array Dn = {(y1i, di, zi), i = 1, ..., n} is a

sequence of i.n.i.d vectors that obey the model (2.1)-(2.2) for each n, and xi = P (zi) is a

dictionary of transformations of zi. We allow the law of data to change with n and so all

parameters can depend on n. (ii) The parameter value α0 is bounded uniformly in n. (iii)

Functions m and g admit an approximately sparse form, with sparsity index s, namely there

exists s > 1 and βm0 and βg0 such that

m(zi) = x′
iβm0 + rmi, ‖βm0‖0 6 s, {En[r2

mi]}2 .P σ̄
√

s/n,(4.22)

g(zi) = x′
iβg0 + rgi, ‖βg0‖0 6 s, {En[r2

gi]}2 .P σ̄
√

s/n.(4.23)

(iv) The sparsity index obeys s log(p ∨ n) = o(n). (v) For subsamples k = a, b, the size of

the amelioration set obeys ŝk
3 .P 1 ∨ ŝk

1 ∨ ŝk
2, |mk ′M

Îkc gk| = oP (
√

nk) where M
Îkc is the

orthogonal projection operator associated with the covariates in Îkc

, kc = {a, b} \ {k}. (vi)

Enk[(vi + rmi)
2(ζi + rgi)

2] − Ēk[v
2
i ζ

2
i ] →P 0, maxi6n ‖(rgi, rmi, ζi, vi, ζ̂i, v̂i)

′‖2∞s log(p ∨ n) =

oP (n).
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The Conditions ASTESS(i)-(iv) agree with the corresponding conditions in ASTE. The

remaining conditions ASTESS(v)-(vi) are implied by Condition ASTE. We note that Condition

ASTESS(vi) is needed only for obtaining consistent estimates of the asymptotic variance. Such

conditions are mild since they do not require uniform estimation of the functions g and m.

The next result establishes that the split-sample double selection estimator α̂ab has the

similar large sample properties as the (full-sample) double selection estimator under under

weaker growth condition.

Theorem 2 (Inference on Treatment Effects, Split Sample). Suppose conditions ASTESS(i-v),

SM and RF for (2.1) and (2.2) hold and that condition SE holds with probability approaching

1 as n grows for each subsample. The split sample post-double-selection estimator α̌ab obeys,

([Ēv2
i ]

−1Ē[v2
i ζ

2
i ][Ēv2

i ]
−1)−1/2√n(α̌ab − α0) = N(0, 1) + oP (1).

Moreover, if Condition ASTESS(vi) also holds, the result continues to apply if Ē[v2
i ] and Ē[v2

i ζ
2
i ]

are replaced by En[v̂2
i ] and En[v̂2

i ζ̂
2
i ].

5. Monte-Carlo Example

In this section, we compare the estimation strategies proposed above in the following model:

(5.24) yi = d′iα0 + x′
iβ0 + ζi, ζi ∼ N(0, σ2

ζ )

where the covariates x ∼ N(0,Σ), Σkj = (0.5)|j−k|, and

(5.25) di = x̃′
iη0 + vi, vi ∼ N(0, σ2

v)

with σζ = σv = 1, and σζv = 0. The dimension p of the covariates x is 200, and the sample

size n is 100. We set α0 = 1 and

β0 =

(
1,

1

2
,
1

3
,
1

4
,
1

5
, 0, 0, 0, 0, 0, 1,

1

2
,
1

3
,
1

4
,
1

5
, 0, . . . , 0

)′

,

η0 =

(
1,

1

2
,
1

3
,
1

4
,
1

5
,
1

6
,
1

7
,
1

8
,
1

9
,

1

10
, 0, . . . . . . . . . . . . . . . , 0

)′

.

We set λ according with 1− γ = .95. For each repetition we draw new x’s, ζ’s and v’s.

We compare the proposed post double selection method with the following approaches:

Lasso, estimate α0 by applying a Feasible Lasso method to model (2.1) without penalizing α;

Post-single selection 1, estimate α0 by applying a Feasible Post-Lasso method to model (2.1)

without penalizing α; Post-single selection 2, estimate α0 by applying least squares regression

of y on d and control terms selected by a Feasible Lasso regression of di on xi in (2.2); Oracle,
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estimate α0 by applying least squares regression of y on d and control terms in the true support

of β0 (which is unavailable outside the experiment).

We summarize the inference performance of these methods in Table 1 which illustrates mean

bias, standard deviation, and rejection probabilities of 95% confidence intervals. As we had

expected, Lasso and Post-single selection 1 exhibit a large mean bias which dominates the

estimation error and results in poor performance of conventional inference methods. On the

other hand, the Post-single selection 2 has a small bias relative to estimation error but is

substantially more variable than Post-double selection and produces a conservative test, a test

with size much smaller than the nominal level. Notably, the Post-double selection provides

coverage that is close to the promised 5% level and has the smallest mean bias and standard

deviation.

Partial Linear Model Simulation Results

Estimator Mean Bias Std. Dev. rp(0.05)

Baseline

Lasso 0.644 0.093 1.000

Post-single selection 1 0.415 0.209 0.877

Post-single selection 2 0.0908 0.194 0.004

Oracle -0.0003 0.100 0.044

Our proposal

Post-double selection -0.0041 0.111 0.054

Table 1. Results are based on 1000 simulation replications of the partially linear model

(5.24) where p = 200 and n = 100. We report mean bias (Mean Bias), standard deviation (Std.

Dev.), and rejection frequency for 5% level tests (rp(.05)) for the four estimators described in

Section 7.1.

6. Empirical Example: Estimating the Effect of Abortion on Crime

In the preceding sections, we have provided results demonstrating how variable selection

methods, focusing on the case of Lasso-based methods, can be used to estimated treatment

effects in models in which we believe the variable of interest is exogenous conditional on ob-

servables. We further illustrate the use of these methods in this section by reexamining Levitt

and Donohue’s (2001) study of the impact of abortion on crime rates. In the following, we

briefly review Donohue III and Levitt (2001) and then present estimates obtained using the

methods developed in this paper.
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Donohue III and Levitt (2001) discuss two key arguments for a causal channel relating

abortion to crime. The first is simply that more abortion among a cohort results in an otherwise

smaller cohort and so crime 15 to 25 years later, when this cohort is in the period when its

members are most at risk for committing crimes, will be otherwise lower given the smaller

cohort size. The second argument is that abortion gives women more control over the timing

of their fertility allowing them to more easily assure that childbirth occurs at a time when a

more favorable environment is available during a child’s life. For example, access to abortion

may make it easier to ensure that a child is born at a time when the family environment is

stable, the mother is more well-educated, or household income is stable. This second channel

would mean that more access to abortion could lead to lower crime rates even if fertility rates

remained constant.

The basic problem in estimating the causal impact of abortion on crime is that state-level

abortion rates are not randomly assigned, and it seems likely that there will be factors that

are associated to both abortion rates and crime rates. It is cleat that any association between

the current abortion rate and the current crime rate is likely to be spurious. However, even

if one looks at say the relationship between the abortion rate 18 years in the past and the

crime rate among current 18 year olds, the lack of random assignment makes establishing a

causal link difficult without adequate controls. An obvious confounding factor is the existence

of persistent state-to-state differences in policies, attitudes, and demographics that are likely

related to the overall state level abortion and crime rates. It is also important to control

for flexibly for aggregate trends. For example, it could be the case that national crime rates

were falling over this period while national abortion rates were rising but that these trends

were driven by completely different factors. Without controlling for these trends, one would

mistakenly associate the reduction in crime to the increase in abortion. In addition to these

overall differences across states and times, there are other time varying characteristics such as

state-level income, policing, or drug-use to name a few that could be associated with current

crime and past abortion.

To address these confounds, Donohue III and Levitt (2001) estimate a model with annual

state-level data with crime rate data running from 1985 to 1997 in which they condition on a

number of these factors. Their basic specification is

ycit = αacit + w′
itβ + δi + γt + εit(6.26)

where i indexes states, t indexes times, c ∈ {violent, property, murder} indexes type of crime,

δi are state-specific effects that control for any time-invariant state-specific characteristics,

γt are time-specific effects that control flexibly for any aggregate trends, wit are a set of
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control variables to control for time-varying confounding state-level factors, acit is a measure

of the abortion rate relevant for type of crime c,6 and ycit is the crime-rate for crime type c.

Donohue III and Levitt (2001) use the log of lagged prisoners per capita, the log of lagged

police per capita, the poverty rate, AFDC generosity at time t − 15, a dummy for concealed

weapons law, and beer consumption per capita for wit, the set of time-varying state-specific

controls. Tables IV and V in Donohue III and Levitt (2001) present baseline estimation results

based on (6.26) as well as results from different models which vary the sample and set of

controls to show that the baseline estimates are robust to small deviations from (6.26). We

refer the reader to the original paper for additional details, data definitions, and institutional

background.

For our analysis, we take the argument that the abortion rates defined above may be taken as

exogenous relative to crime rates once observables have been conditioned on from Donohue III

and Levitt (2001) as given. Given the seemingly obvious importance of controlling for state

and time effects, we account for these in all models we estimate. We choose to eliminate the

state effects via differencing rather than including a full set of state dummies but include a full

set of time dummies in every model. Thus, we will estimate models of the form

ycit − ycit−1 = α(acit − acit−1) + z′itκ + γt + ηit.(6.27)

We use the same state-level data as Donohue III and Levitt (2001) but delete Alaska, Hawaii,

and Washington, D.C. which gives a sample with 48 cross-sectional observations and 12 time

series observations for a total of 576 observations. With these deletions, our baseline estimates

using the same controls as in (6.26) are quite similar to those reported in Donohue III and

Levitt (2001). Baseline estimates from Table IV of Donohue III and Levitt (2001) and our

baseline estimates based on the differenced version of (6.26) are given in the first and second

row of Table 2 respectively.

Our main point of departure from Donohue III and Levitt (2001) is that we allow for a much

richer set zit than allowed for in xit in model (6.26). Our zit includes higher-order terms and

interactions of the control variables defined above. In addition, we put initial conditions and

initial differences of xit and ait into our vector of controls zit. This addition allows for the

6This variable is constructed as weighted average of abortion rates where weights are determined by the

fraction of the type of crime committed by various age groups. For example, if 60% of violent crime were

committed by 18 year olds and 40% were committed by 19 year olds in state i, the abortion rate for violent

crime at time t in state i would be constructed as .6 times the abortion rate in state i at time t − 18 plus .4

times the abortion rate in state i at time t− 19. See Donohue III and Levitt (2001) for further detail and exact

construction methods.
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possibility that there may be some feature of a state that is associated both with its growth

rate in abortion and its growth rate in crime. For example, having an initially high-levels of

abortion could be associated with having high-growth rates in abortion and low growth rates

in crime. Failure to control for this factor could then lead to misattributing the effect of this

initial factor, perhaps driven by policy or state-level demographics, to the effect of abortion.

Finally, we allow for more general trends by allowing for an aggregate quadratic trend in zit

as well as interactions of this quadratic trend with control variables. This gives us a set of 251

control variables to select among in addition to the 12 time effects that we include in every

model.7

Note that interpreting estimates of the effect of abortion from model (6.26) as causal relies

on the belief that there are no higher-order terms of the control variables, no interaction terms,

and no additional excluded variables that are associated both to crime rates and the associated

abortion rate. Thus, controlling for a large set of variables as described above is desirable from

the standpoint of making this belief more plausible. At the same time, naively controlling

lessens our ability to identify the effect of interest and thus tends to make estimates far less

precise. The effect of estimating the abortion effect conditioning on the full set of 251 potential

controls described above is given in the third row of Table 2. As expected, all coefficients are

estimated very imprecisely. Of course, very few researchers would consider using 251 controls

with only 576 observations due to exactly this issue.

We are faced with a tradeoff between controlling for very few variables which may leave

us wondering whether we have included sufficient controls for the exogeneity of the treatment

and controlling for so many variables that we are essentially mechanically unable to learn

about the effect of the treatment. The variable selection methods developed in this paper

offer one resolution to this tension. The assumed sparse structure maintains that there is a

small enough set of variables that one could potentially learn about the treatment but adds

substantial flexibility to the usual case where a researcher considers only a few control variables

by allowing this set to be found by the data from among a large set of controls. Thus, the

approach should complement the usual careful specification analysis by providing a researcher

an efficient, data-driven way to search for a small set of influential confounds from among a

sensibly chosen broad set of potential confounding variables.

7The exact identities of the 251 potential controls is available upon request. It consists of linear and quadratic

terms of each continuous variable in wit, interactions of every variable in wit, initial levels and initial differences

of wit and ait, and interactions of these variables with a quadratic trend.
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In the abortion example, we use the post-double-selection estimator defined in Section 2.2

for each of our dependent variables. For violent crime, ten variables are selected in the abortion

equation,8 and one is selected in the crime equation.9 For property crime, eight variables are

selected in the abortion equation,10 and six are selected in the crime equation.11 For murder,

eight variables are selected in the abortion equation,12 and none were selected in the crime

equation.

Estimates of the causal effect of abortion on crime obtained by searching for confounding

factors among our set of 251 potential controls are given in the fourth row of Table 2. Each of

these estimates is obtained from the least squares regression of the crime rate on the abortion

rate and the 11, 14, and eight controls selected by the double-Lasso procedure for violent crime,

property crime, and murder respectively. The estimates for the effect of abortion on violent

crime and the effect of abortion on murder are quite imprecise, producing 95% confidence

intervals that encompass large positive and negative values. The estimated effect for property

crime is roughly in line with the previous estimates though it is no longer significant at the 5%

level but is significant at the 10% level. Note that the double-Lasso produces models that are

not of vastly different size than the “intuitive” model (6.26), though it does produce a larger

model in each case.

It is very interesting that one would draw qualitatively different conclusions from the esti-

mates obtained using formal variable selection than from the estimates obtained using a small

set of intuitively selected controls. Looking at the set of selected control variables, we see that

initial conditions and interactions with trends are selected across all dependent variables. The

selection of this set of variables suggests that there are initial factors which are associated with

8The selected variables are AFDC generosity squared, beer consumption squared, the initial poverty change,

initial income, initial income squared, the initial change in prisoners per capita squared interacted with the

trend, initial income interacted with the trend, the initial change in the abortion rate, the initial change in the

abortion rate interacted with the trend, and the initial level of the abortion rate.
9The initial level of the abortion rate interacted with time is selected.
10The selected variables are income, the initial poverty change, the initial change in prisoners per capita

squared, the initial level of prisoners per capita, initial income, the initial change in the abortion rate, the initial

change in the abortion rate interacted with the trend, and the initial level of the abortion rate.
11The six variables are the initial level of AFDF generosity, the initial level of income interacted with the

trend and the trend squared, the initial level of income squared interacted with the trend and the trend squared,

and the initial level of the abortion rate interacted with the trend.
12The selected variables are AFDC generosity, beer consumption squared, the change in beer consumption

squared, the change in beer consumption squared times the trend and the trend squared, initial income times

the trend, the initial change in the abortion rate interacted with the trend, and the initial level of the abortion

rate.
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the change in the abortion rate. We also see that we cannot precisely determine the effect of

the abortion rate on crime rates once one accounts for initial conditions. Of course, this does

not mean that the effects of the abortion rate provided in the first two rows of Table 2 are

not representative of the true causal effects. It does, however, imply that this conclusion is

strongly predicated on the belief that there are not other unobserved state-level factors that

are correlated to both initial values of the controls and abortion rates, abortion rate changes,

and crime rate changes.

Violent Crime Property Crime Murder

α̂ Std. Err. α̂ Std. Err. α̂ Std. Err.

Donohue III and Levitt (2001) Table IV -0.129 0.024 -0.091 0.018 -0.121 0.047

First-Difference -0.152 0.034 -0.108 0.022 -0.204 0.068

All Controls 0.294 0.472 -0.068 0.157 0.321 1.109

Post-Double-Selection -0.087 0.181 -0.094 0.051 0.006 0.280

Table 2. The table displays the estimated coefficient on the abortion rate, α̂ and its esti-

mated standard error. Numbers in the first row are taken from Donohue and Levitt (2001)

Table IV, columns (2), (4), and (6). The remaining rows are estimated by first differences,

include a full set of time dummies, and use standard errors clustered at the state-level. Es-

timates in the row labeled “First-Difference” are obtained using the same controls as in the

first row. Estimates in the row labeled “All Controls” use 251 control variables as discussed

in the text. Estimates in the row “Post-Double-Selection” use the variable selection technique

developed in this paper to search among the set of 251 potential controls.

We believe that the example in this section illustrates how one may use modern variable

selection techniques to complement causal analysis in economics. In the abortion example,

we are able to search among a large set of controls and transformations of variables when

trying to estimate the effect of abortion on crime. Considering a large set of controls makes

the underlying assumption of exogeneity of the abortion rate conditional on observables more

plausible, while the methods we develop allow us to produce an end-model which is of manage-

able dimension. Interestingly, we see that one would draw quite different conclusions from the

estimates obtained using formal variable selection. Looking at the variables selected, we can

also see that this change in interpretation is being driven by the variable selection method’s

selecting different variables, specifically initial values of the abortion rate and controls, than

are usually considered. Thus, it appears that the usual interpretation hinges on the prior belief

that initial values should be excluded from the structural equation.
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Appendix A. Iterated Estimation of Penalty Loadings

In the case of Lasso under heteroskedasticity, the penalty loadings (2.10) require the practi-

tioner to fill in a their values. Theoretically, any upper bound on lj ’s but in various examples

we found that this approach leads to overpenalization. Here we briefly discuss iterative proce-

dures to estimate lj ’s similar to the ones described in Belloni and Chernozhukov (2011b). Let

I0 be a set of regressors that is included in the model. Note that I0 is always non-empty since

it will always include the intercept. Let β̄(I0) be the least squares estimator of the coefficients

on the covariates associated with I0, and define l̂jI0 :=
√

En[x2
ij(yi − x′

iβ̄(I0))2].

An algorithm for estimating the loadings using Lasso is as follows:

Algorithm 1 (Estimation of Lasso loadings using Lasso iterations). Set l̂j,0 := l̂jI0, j =

1, . . . , p. Set k = 0, and specify a small constant ν > 0 as a tolerance level and a constant

K > 1 as an upper bound on the number of iterations. (1) Compute the Lasso estimator β̂ based

on the loadings l̂j,k. (2) Set l̂j,k+1 :=
√

En[x2
ij(yi − x′

iβ̂)2]. (3) If max16j6p |l̂j,k− l̂j,k+1| 6 ν or

k > K, report l̂j,k+1, j = 1, . . . , p; otherwise set k ← k + 1 and go to (1).

Similarly, an algorithm for estimating σ using Post-Lasso is as follows:

Algorithm 2 (Estimation of Lasso loadings using Post-Lasso iterations). Set l̂j,0 := l̂jI0,

j = 1, . . . , p. Set k = 0, and specify a small constant ν > 0 as a tolerance level and a constant

K > 1 as an upper bound on the number of iterations. (1) Compute the Post-Lasso estimator β̃

based on the loadings l̂j,k. (2) For ŝ = ‖β̃‖0 = |T̂ | set lj,k+1 :=
√

En[x2
ij(yi − x′

iβ̂)2]
√

n/(n− ŝ).

(3) If max16j6p |l̂j,k− l̂j,k+1| 6 ν or k > K, report l̂j,k+1, j = 1, . . . , p; otherwise, set k ← k+1

and go to (1).

To estimate the loadings in the case of Square-root Lasso one can proceed similarly by set-

ting l̂j,0 :=
√

En[x2
ij(yi − x′

iβ̄(I0))2]/
√

En[(yi − x′
iβ̄(I0))2]. Nonetheless, the self normalization

allows for the alternative initial proposal l̂j,0 := 2{En[x4
ij ]}1/4, j = 1, . . . , p. Such choice is

valid, lj,0 + oP (1) 6 l̂j,0 uniformly in j = 1, . . . , p), for a broad class of marginal distributions

for ǫi that include all t-distributions with degree of freedom greater than five. The algorithm

below can be applied with either of these choices.

Algorithm 3 (Estimation of Square-root Lasso loadings using Square-root Lasso iterations).

Set k = 0, and specify a small constant ν > 0 as a tolerance level and a constant K > 1 as

an upper bound on the number of iterations. (1) Compute the Square-root Lasso estimator

β̂ based on the loadings l̂j,k. (2) Set l̂j,k+1 :=
√

En[x2
ij(yi − x′

iβ̂)2]/
√

En[(yi − x′
iβ̂)2]. (3) If
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max16j6p |l̂j,k − l̂j,k+1| 6 ν or k > K, report l̂j,k+1, j = 1, . . . , p; otherwise set k ← k + 1 and

go to (1).

Algorithm 4 (Estimation of Square-root Lasso loadings using Post-Square-root Lasso itera-

tions). Set k = 0, and specify a small constant ν > 0 as a tolerance level and a constant K > 1

as an upper bound on the number of iterations. (1) Compute the Post-Square-root Lasso es-

timator β̃ based on the loadings l̂j,k. (2) Set l̂j,k+1 :=
√

En[x2
ij(yi − x′

iβ̃)2]/
√

En[(yi − x′
iβ̃)2].

(3) If max16j6p |l̂j,k− l̂j,k+1| 6 ν or k > K, report l̂j,k+1, j = 1, . . . , p; otherwise set k ← k +1

and go to (1).

Appendix B. Proof of Theorem 1

We use the standard matrix notation, namely Y1 = [y11, ..., y1n]′, X = [x1, ..., xn]′, D =

[d1, ..., dn]′, V = [v1, ..., vn]′, ζ = [ζ1, ..., ζn]′, m = [m1, ...,mn]′, Rm = [rm1, ..., rmn]′, g =

[g1, ..., gn]′, Rg = [rg1, ..., rgn]′, and so on. For A ⊂ {1, ..., p}, let X[A] = {Xj , j ∈ A}, where

{Xj , j = 1, ..., p} are the columns of X. Let

PA = X[A](X[A]′X[A])−X[A]′

be the projection operator sending vectors in R
n onto span[X[A]], and let MA = In − PA be

the projection onto the subspace that is orthogonal to span[X[A]]. For a vector Z ∈ R
n, let

β̃Z(A) := arg min
b∈Rp
‖Z −X ′b‖2 : bj = 0, ∀j 6∈ A,

be the coefficient of linear projection of Z onto span[X[A]]. If A = ∅, interpret PA = 0n, and

β̃Z = 0p.

Finally, denote φmin(m) = φmin(m)[En[xix
′
i]] and φmax(m) = φmax(m)[En[xix

′
i]].

Step 1.(Main) Write α̌ =
[
D′MÎD/n

]−1
[D′MÎY1/n] so that

√
n(α̌ − α0) =

[
D′M

Î
D/n

]−1
[D′M

Î
(g + ζ)/

√
n] =: ii−1 · i.

By Steps 2 and 3, ii = V ′V/n + oP (1) and i = V ′ζ/
√

n + oP (1). Next note that V ′V/n =

E[V ′V/n] + oP (1) by Chebyshev, and because E[V ′V/n] are bounded from above and away

from zero by assumption, we have ii−1 = E[V ′V/n]−1 + oP (1).

Letting Γ = diag(ζ2
1 , . . . , ζ2

n), define

Zn = (E[V ′V/n]−1E[V ′ΓV/n]E[V ′V/n]−1)−1/2√n(α̌− α0) = Gn[zi,n] + oP (1),
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where zi,n = (E[V ′V/n]−1E[V ′ΓV/n]E[V ′V/n]−1)−1/2viζi/
√

n are i.n.i.d. with mean zero. We

have that for some small enough δ > 0

Ē|zi,n|2+δ . Ē
[
|vi|2+δ |ζi|2+δ

]
.

√
Ē|vi|4+2δ

√
Ē|ζi|4+2δ . 1,

by Condition SM.

This condition verifies the Lyapunov condition and thus implies that Zn →d N(0, 1).

Step 2. (Behavior of i.) Decompose

i = V ′ζ/
√

n + m′M
Î
g/
√

n
=:ia

+ m′M
Î
ζ/
√

n
=:ib

+ V ′M
Î
g/
√

n
=:ic

− V ′P
Î
ζ/
√

n
=:id

.

First, by Step 4 and 5 below we have

|ia| = |m′M
Î
g/
√

n| =
√

n‖M
Î
g/
√

n‖‖M
Î
m/
√

n‖ .P

√
[s log(p ∨ n)]2/n = o(1)

where the last bound follows from the growth condition s2 log2(p ∨ n) = o(n).

Second, using decomposition m = Xβm0 + Rm, we have

|ib| 6 |R′
mζ/
√

n|+ |(β̃m(Î)− βm0)
′X ′ζ/

√
n| .P

√
[s log(p ∨ n)]2/n = oP (1),

where |R′
mζ/
√

n| .P

√
R′

mRm/n .P

√
s/n by Chebyshev inequality and by assumption

ASTE(iii), and

|(β̃m(Î)− βm0)
′X ′ζ/

√
n| 6 ‖β̃m(Î)− βm0‖1‖X ′ζ/

√
n‖∞ .P

√
[s2 log(p ∨ n)]/n

√
log(p ∨ n),

‖β̃m(Î) − βm0‖1 6
√

ŝ‖β̃m(Î) − βm0‖ .P

√
[s2 log(p ∨ n)]/n by Step 4, using that ŝ .P s by

Lemma 1, ‖X ′ζ/
√

n‖∞ .P

√
log(p ∨ n) by Lemma 7 in Belloni, Chen, Chernozhukov, and

Hansen (2010) under SM. Third, using similar reasoning, decomposition g = Xβg0 + Rg, and

Step 5, conclude

|ic| 6 |R′
gζ|+ |(β̃g(Î)− βg0)

′X ′V/
√

n| .P

√
[s log(p ∨ n)]2/n = oP (1).

Fourth, using that ŝ .P s by Lemma 1 so that φ−1
min(ŝ) .P 1 by condition SE, conclude,

|id| 6 |β̃V (Î)′X ′ζ/
√

n| 6 ‖β̃V (Î)‖1‖X ′ζ/
√

n‖∞ .P

√
n
√

(s log p)2/n2 = oP (1),

since ‖β̃V (Î)‖1 6
√

ŝ‖β̃V (Î)‖ 6
√

ŝ‖(X[Î ]′X[Î ])−1X[Î ]′V/n‖6
√

ŝφ
−1/2
min (ŝ)

√
ŝ‖X ′V/

√
n‖∞/

√
n

.P s
√

[log(p ∨ n)]/n.

Step 3. (Behavior of ii.) Decompose

ii = (m + V )′M
Î
(m + V )/n = V ′V/n + m′M

Î
m/n

=:iia

+ 2m′M
Î
V/n

=:iib

− V ′P
Î
V/n

=:iic

.
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Then |iia| .P [s log(p∨n)]/n = oP (1) by Step 4, |iib| .P [s log(p∨n)]/n = oP (1) by reasoning

similar to deriving the bound for |ib|, and |iic| .P [s log(p∨n)]/n = oP (1) by reasoning similar

to deriving the bound for |id|.

Step 4. (Auxiliary: Bound on ‖M
Î
m‖ and related quantities.) Note that

‖M
Î
m‖ 6 ‖M

Î1
m‖

6 ‖Xβ̃D(Î1)−m‖
6 ‖X(β̃D(Î1)− βm0)‖+ ‖Rm‖

since Î1 ⊆ Î. By Condition ASTE(iii), we have ‖Rm/
√

n‖ .P

√
s/n and, also using Lemma 1

so that ŝ .P s, we have

‖β̃D(Î1)− βm0‖ 6
√

1/φmin(ŝ)‖X(β̃D(Î1)− βm0)/
√

n‖
.P

√
[s log(p ∨ n)]/n

since 1/φmin(ŝ) .P 1 by condition SE. Thus we also have established

‖β̃m(Î)− βm0‖ .P

√
[s log(p ∨ n)]/n.

Step 5. (Auxiliary: Bound on ‖M
Î
g‖ and related quantities.) Note that

‖MÎg‖ 6 ‖MÎ2
g‖

6 ‖Xβ̃Y1
(Î2)− g‖

6 ‖X(β̃Y1
(Î2)− βg0)‖+ ‖Rg‖

.P

√
s log(p ∨ n)

since Î2 ⊆ Î, the triangle inequality, ‖Rg/
√

n‖ .P

√
s/n, and by Lemma 1, similarly to Step

4 using SE, it follows that ‖X(β̃Y1
(Î2)−βg0)/

√
n‖ .P

√
[s log(p ∨ n)]/n and ‖β̃g(Î)−βg0‖ .P√

[s log(p ∨ n)]/n.

Step 6. (Variance Estimation.) Since ŝ .P s = o(n), (n − ŝ− 1)/n = oP (1), so we can use

n as the denominator. Hence consider

En[v̂2
i ] = D′M

Î
D/n = V ′V/n + oP (1) = Ē[v2

i ] + oP (1)

by Step 3 and Ē[|vi|q] . 1 for some q > 4 by condition SM.

Let ṽi = vi + rmi and ζ̃i = ζi + rgi. Recall that by Condition ASTE(v) we have En[ṽ2
i ζ̃

2
i ]−

Ē[v2
i ζ

2
i ]→P 0. To show that En[v̂2

i ζ̂
2
i ]−En[ṽ2

i ζ̃
2
i ]→P 0 we start applying a triangular inequality

|En[v̂2
i ζ̂

2
i − ṽ2

i ζ̃
2
i ]| 6 |En[(v̂2

i − ṽ2
i )ζ̃

2
i ]|+ |En[v̂2

i (ζ̂
2
i − ζ̃2

i )]|.



28 BELLONI CHERNOZHUKOV HANSEN

Then,

|En[v̂2
i (ζ̂

2
i − ζ̃2

i )]| 6 2En[{di(α0 − α̌)}2v̂2
i ] + 2En[{x′

i(β̌ − βg0)}2v̂2
i ]

+|2En[(ζi + rgi)di(α0 − α̌)v̂2
i ]|+ |2En[(ζi + rgi)x

′
i(β̌ − βg0)v̂

2
i ]|

.P oP (1)

by the relations below.

As a consequence of Condition SM we have E[maxi6n d2
i ] . n2/q, E[maxi6n ζ2

i ] . n2/q,

E[maxi6n v2
i ] . n2/q, thus by Markov inequality we have ‖D‖∞ + ‖ζ‖∞ + ‖V ‖∞ .P n1/q. Let-

ting T̂g = support(βg0)∪Î, we also have maxi6n ‖xiT̂g
‖2 6 |T̂g|maxi6n ‖xi‖2∞ .P s maxi6n ‖xi‖2∞

by the sparsity assumption in ASTE and the sparsity bound in Lemma 1. Also by Con-

dition ASTE(v) (‖Rg‖∞ + ‖ζ‖∞)maxi6n ‖xi‖∞
√

[s2 log(p ∨ n)]/n = oP (1) and (‖Rg‖∞ +

‖ζ‖∞)maxi6n |di|/
√

n = oP (1). Therefore, we have the following relations:

En[{di(α0 − α̌)}2v̂2
i ] 6 ‖D‖2∞|α0 − α̌|2En[v̂2

i ] .P n−1+[2/q] = o(1)

En[{x′
i(β̌ − βg0)}2v̂2

i ] 6 (max
i6n
{x′

i(β̌ − βg0)}2)En[v̂2
i ] .P max

i6n
‖xiT̂g

‖2 s log(p ∨ n)

n
.P o(1)

|En[(ζi + rgi)di(α0 − α̌)v̂2
i ]| 6 (‖ζ‖∞ + ‖Rg‖∞)‖D‖∞En[v̂2

i ]|α0 − α̌k| = oP (1)

|En[(ζi + rgi)x
′
i(β̌ − βg0)v̂

2
i ]| .P (‖ζ‖∞ + ‖Rg‖∞)maxi6n ‖xi‖∞

√
s‖β̌ − βg0‖En[v̂2

i ] = oP (1)

since En[v̂2
i ] .P 1, ‖β̌ − βg0‖2 .P [s log(p ∨ n)]/n by Lemma 1, and |α̌− α0|2 .P 1/n by Step

1.

Similarly, En[(v̂2
i − v2

i )ζ̃
2
i ] = oP (1) and the result follows.

�

Appendix C. Proof of Theorem 2

We use the same notation as in the proof of Theorem 1 with the addition of sub/superscripts

indicating the appropriate subsample k = a, b, where kc = {a, b} \ {k}.
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Step 0.(Combining) In this step we combine both subsample estimators. Letting Υk =

Dk′M
Îkc Dk/nk, for k = a, b, so that we have

√
n(α̌ab − α0) = ((na/n)Υa + (nb/n)Υb)−1 ×

× ((na/n)Υa√n(α̌a − α0) + (nb/n)Υb√n(α̌b − α0))

= (V ′V/n + oP (1))−1 ×

× ((na/n)Υa√n(α̌a − α0) + (nb/n)Υb√n(α̌b − α0)) + oP (1)

= {V ′V/n}−1 × {(1/
√

2)×Gna[viζi] + (1/
√

2)Gnb[viζi]}+ oP (1)

= {V ′V/n}−1 ×Gn[viζi] + oP (1)

where we are also using the fact that

Enk
[v̂2

i ]− Enk
[v2

i ] = oP (1), k = a, b

which follows similarly to the proofs given in Step 6.

Letting Γ = diag(ζ2
1 , . . . , ζ2

n), define

Zn = (E[V ′V/n]−1E[V ′ΓV/n]E[V ′V/n]−1)−1/2√n(α̌ab − α0) = Gn[zi,n] + oP(1),

where zi,n = (E[V ′V/n]−1E[V ′ΓV/n]E[V ′V/n]−1)−1/2viζi/
√

n are i.n.i.d. with mean zero. We

have that for some small enough δ > 0

Ē|zi,n|2+δ . Ē
[
|vi|2+δ |ζi|2+δ

]
.

√
Ē|vi|4+2δ

√
Ē|ζi|4+2δ . 1,

by Condition SM.

This condition verifies the Lyapunov condition and thus implies that Zn →d N(0, 1).

Step 1.(Main) For the subsample k = a, b write α̌k =
[
Dk′MÎkc Dk/nk

]−1
[Dk ′MÎkc Y k

1 /nk]

so that

√
nk(α̌k − α0) =

[
Dk ′MÎkc Dk/nk

]−1
[Dk′MÎkc (gk + ζk)/

√
nk] =: ii−1

k · ik.

By Steps 2 and 3, iik = V k′V k/nk + oP (1) and ik = V k ′ζk/
√

nk + oP (1). Next note that

V k ′V k/nk = E[V k ′V k/nk]+ oP (1) by Chebyshev, and we have that Ēk[v
2
i ζ

2
i ] and E[V k ′V k/nk]

are bounded from above and away from zero by assumption.

Step 2. (Behavior of ik.) Decompose

ik = V k ′ζk/
√

nk + mk ′M
Îkc gk/

√
nk

=:ika

+ mk′M
Îkc ζk/

√
nk

=:ikb

+ V k ′M
Îkc gk/

√
nk

=:ikc

− V k ′P
Îkc ζk/

√
nk

=:ikd

.



30 BELLONI CHERNOZHUKOV HANSEN

First, note that by Condition ASTESS(v) we have

|ika| = |mk ′MÎkc gk/
√

nk| = oP (1).

Second, by the split sample construction, we have that Îkc

is independent from ζk, and by

assumption of the model mk is also independent of ζk. Thus by Chebyshev inequality

|ikb| .P ‖MÎkc mk/
√

nk‖ .P

√
s log p/n = oP (1),

where the last relation follows by Step 4.

Third, using similar independence arguments, by Chebyshev and Step 5, conclude

|ikc| .P ‖MÎkc gk/
√

nk‖ .P

√
s log p/n = oP (1).

Fourth, using that ŝ .P s by Lemma 1 so that φ−1
min(ŝ) .P 1 by condition SE, we have that

|ikd| 6 |β̃V k(Îkc

)′Xk ′ζk/
√

nk| .P

√
s/n = oP (1),

by Chebyshev since ‖Xkβ̃V k(Îkc

)/
√

nk‖ .P

√
s/nk because of the independence of the two

subsamples k and kc.

Step 3. (Behavior of iik.) Since iik = (mk + V k)′M
Îkc (mk + V k)/nk, decompose

iik = V k ′V k/nk + mk′MÎkc mk/nk
=:iika

+ 2mk ′MÎkc V k/nk
=:iikb

− V k ′PÎkc V k/nk
=:iikc

.

Then |iika| .P [s log(p ∨ n)]/nk = oP (1) by Step 4, |iikb| .P [s log(p ∨ n)]/nk = oP (1) by

reasoning similar to deriving the bound for |ikb|, and |iikc| .P [s log(p ∨ n)]/nk = oP (1) by

reasoning similar to deriving the bound for |ikd|.

Step 4. (Auxiliary: Bound on ‖M
Îkc mk‖ and related quantities.) For k = a, b note that

‖MÎkc mk‖ 6 ‖MÎkc

1

mk‖
6 ‖Xkβ̃Dkc (Îkc

1 )−mk‖
6 ‖Xk(β̃Dkc (Îkc

1 )− βm0)‖+ ‖Rk
m‖.

since Îkc

1 ⊆ Îkc

. By Condition ASTESS(iii), we have ‖Rk
m/
√

nk‖ .
√

s/n and, also using

Lemma 1 so that ŝk .P s, we have

‖Xk(β̃Dkc (Îkc

1 )− βm0)/
√

nk‖ 6
√

φmax(ŝa)k/φmin(ŝa)kc‖Xkc

(β̃Dkc (Îkc

1 )− βm0)/
√

nk‖
.P

√
[s log(p ∨ n)]/nk

since
√

φmax(ŝa)k/φmin(ŝa)kc .P 1 by condition SE. Thus we also have established

‖β̃mkc (Îkc

)− βm0‖ .P

√
[s log(p ∨ n)]/nk.
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Step 5. (Auxiliary: Bound on ‖M
Îkc gk‖ and related quantities.) For k = a, b note that

‖MÎkc gk‖ 6 ‖MÎkc

2

gk‖
6 ‖Xkβ̃Y kc

1

(Îkc

2 )− gk‖
6 ‖Xk(β̃Y kc

1

(Îkc

2 )− βg0)‖+ ‖Rk
g‖

.P

√
s log(p ∨ n)

since Îkc

2 ⊆ Îkc

, the triangle inequality, ‖Rk
g/
√

nk‖ .
√

s/nk, and by Lemma 1, similarly to

Step 4 using SE, it follows that ‖Xk(β̃Y kc

1

(Îkc

2 )− βg0)/
√

nk‖ .P

√
[s log(p ∨ n)]/nk.

Step 6. (Variance Estimation.) Since ŝk .P s = o(n), (nk − ŝk − 1)/nk = oP (1), so we can

use n as the denominator. Hence consider

En[v̂2
i ] = (na/n)Da′M

ÎbD
a/na + (nb/n)Db′M

ÎaDb/nb

= (na/n)iia + (nb/n)iib = V ′V/n + oP (1) = Ē[v2
i ] + oP (1)

by Step 3 and Ē[|vi|q] . 1 for some q > 4 by condition SM.

Let ṽi = vi+rmi and ζ̃i = ζi+rgi. Recall that by Condition ASTESS(vi) we have Enk
[ṽ2

i ζ̃
2
i ]−

Ēk[v
2
i ζ

2
i ] →P 0 for subsample k = a, b. To show that Enk

[v̂2
i ζ̂

2
i ] − Enk

[ṽ2
i ζ̃

2
i ] →P 0 we start

applying a triangular inequality for each k = a, b

|Enk
[v̂2

i ζ̂
2
i − ṽ2

i ζ̃
2
i ]| 6 |Enk

[(v̂2
i − ṽ2

i )ζ̃
2
i ]|+ |Enk

[ṽ2
i (ζ̂

2
i − ζ̃2

i )]|+ |Enk
[(v̂2

i − ṽ2
i )(ζ̂

2
i − ζ̃2

i )]|.

Then,

|Enk
[ṽ2

i (ζ̂
2
i − ζ̃2

i )]| 6 2Enk
[{di(α0 − α̌k)}2ṽ2

i ] + 2Enk
[{x′

i(β̌k − βg0)}2ṽ2
i ]

+|2Enk
[ζ̃idi(α0 − α̌k)ṽ

2
i ]|+ |2Enk

[ζ̃ix
′
i(β̌k − βg0)ṽ

2
i ]|.

As a consequence of Condition SM we have E[maxi6n d2
i ] . n2/q, E[maxi6n ζ2

i ] . n2/q,

E[maxi6n v2
i ] . n2/q, thus by Markov inequality we have ‖D‖∞ + ‖ζ‖∞ + ‖V ‖∞ .P n1/q.

Therefor, by condition SM and ASTESS(vi) we have (‖V ‖2∞ + ‖Rm‖2∞)s log(p ∨ n) = oP (n).

Thus we have the following relations:

Enk
[{di(α0 − α̌k)}2ṽ2

i ] 6 |α0 − α̌k|2Enk
[d2

i ]maxi6n ṽ2
i .P n−1(‖V ‖2∞ + ‖Rm‖2∞) = oP (1),

Enk
[{x′

i(β̌k − βg0)}2ṽ2
i ] 6 maxi6n ṽ2

i Enk
[{x′

i(β̌k − βg0)}2]
.P (‖V ‖2∞ + ‖Rm‖2∞)[s log(p ∨ n)]/n = oP (1),

|Enk
[ζ̃idi(α0 − α̌k)ṽ

2
i ]| 6 maxi6n |ṽi|{Enk

[{di(α0 − α̌k)}2]Enk
[ζ̃2

i ṽ2
i ]}1/2

.P (‖V ‖∞ + ‖Rm‖)
√

1/n = oP (1),

|Enk
[ζ̃ix

′
i(β̌k − βg0)ṽ

2
i ]| 6 maxi6n |ṽi|{Enk

[{x′
i(β̌k − βg0)}2]Enk

[ζ̃2
i ṽ2

i ]}1/2

.P (‖V ‖∞ + ‖Rm‖∞)
√

[s log(p ∨ n)]/n = oP (1),

since Enk
[ζ̃2

i ṽ2
i ] .P 1, ‖β̌k − βg0‖2 .P [s log(p ∨ n))/n by Lemma 1, and |α̌k − α0|2 .P 1/n by

Step 1.
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Similarly, Enk
[(v̂2

i − v2
i )ζ̃

2
i ] = oP (1).

Finally, under condition ASTESS(vi) maxi6n ‖(v̂i, ζ̂i, ζ̃i, ṽi)
′‖∞s log(p ∨ n) = oP (n)

|Enk
[(v̂2

i − ṽ2
i )(ζ̂

2
i − ζ̃2

i )]| 6 {Enk
[(v̂2

i − ṽ2
i )

2]Enk
[(ζ̂2

i − ζ̃2
i )2]}1/2

6 {Enk
[2(v̂2

i + ṽ2
i )(v̂i − ṽi)

2]Enk
[2(ζ̂2

i + ζ̃2
i )(ζ̂i − ζ̃i)

2]}1/2

6 4maxi6n ‖(v̂i, ζ̂i, ζ̃i, ṽi)
′‖2∞{Enk

[(v̂i − ṽi)
2]Enk

[(ζ̂i − ζ̃i)
2]}1/2

.P maxi6n ‖(v̂i, ζ̂i, ζ̃i, ṽi)
′‖2∞[s log(n ∨ p)]/n = oP (1).

�
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