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Abstract

This paper formulates and estimates multistage production functions for children’s cog-

nitive and noncognitive skills. Skills are determined by parental environments and invest-

ments at different stages of childhood. We estimate the elasticity of substitution between

investments in one period and stocks of skills in that period to assess the benefits of early

investment in children compared to later remediation. We establish nonparametric identifi-

cation of a general class of production technologies based on nonlinear factor models with

endogenous inputs. A by-product of our approach is a framework for evaluating childhood

and schooling interventions that does not rely on arbitrarily scaled test scores as outputs

and recognizes the differential effects of the same bundle of skills in different tasks. Using

the estimated technology, we determine optimal targeting of interventions to children with

different parental and personal birth endowments. Substitutability decreases in later stages

of the life cycle in the production of cognitive skills. It is roughly constant across stages

of the life cycle in the production of noncognitive skills. This finding has important impli-

cations for the design of policies that target the disadvantaged. For most configurations of

disadvantage, it is optimal to invest relatively more in the early stages of childhood than in

later stages.

Keywords: cognitive skills; noncognitive skills; dynamic factor analysis; endogeneity of in-

puts; anchoring test scores; parental influence
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1 Introduction

A large body of research documents the importance of cognitive skills in producing social

and economic success.1 An emerging body of research establishes the parallel importance of

noncognitive skills, i.e., personality, social and emotional traits.2 Understanding the factors

affecting the evolution of cognitive and noncognitive skills is important for understanding

how to promote successful lives.3

This paper estimates the technology governing the formation of cognitive and noncogni-

tive skills in childhood. We establish identification of general nonlinear factor models that

enable us to determine the technology of skill formation. Our multistage technology cap-

tures different developmental phases in the life cycle of a child. We identify and estimate

substitution parameters that determine the importance of early parental investment for sub-

sequent lifetime achievement, and the costliness of later remediation if early investment is

not undertaken.

Cunha and Heckman (2007) present a theoretical framework that organizes and inter-

prets a large body of empirical evidence on child and animal development.4 Cunha and

Heckman (2008) estimate a linear dynamic factor model that exploits cross equation restric-

tions (covariance restrictions) to secure identification of a multistage technology for child

investment.5 With enough measurements relative to the number of latent skills and types of

investment, it is possible to identify the latent state space dynamics generating the evolution

of skills.

The linear technology used by Cunha and Heckman (2008) imposes the assumption that

early and late investments are perfect substitutes over the feasible set of inputs. This paper

identifies a more general nonlinear technology by extending linear state space and factor

analysis to a nonlinear setting. This extension allows us to identify crucial elasticity of sub-

stitution parameters governing the trade-off between early and late investments in producing

adult skills.

Drawing on the analyses of Schennach (2004a) and Hu and Schennach (2008), we es-

1See Herrnstein and Murray (1994), Murnane, Willett, and Levy (1995), and Cawley, Heckman, and
Vytlacil (2001).

2See Heckman, Stixrud, and Urzua (2006), Borghans, Duckworth, Heckman, and ter Weel (2008) and
the references they cite. See also the special issue of the Journal of Human Resources 43 (4), Fall 2008 on
noncognitive skills.

3See Cunha, Heckman, Lochner, and Masterov (2006) and Cunha and Heckman (2007, 2009).
4This evidence is summarized in Knudsen, Heckman, Cameron, and Shonkoff (2006) and Heckman (2008).
5See Shumway and Stoffer (1982) and Watson and Engle (1983) for early discussions of such models.

Amemiya and Yalcin (2001) survey the literature on nonlinear factor analysis in statistics. Our identification
analysis is new. For a recent treatment of dynamic factor and related state space models see Durbin, Harvey,
Koopman, and Shephard (2004) and the voluminous literature they cite.
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tablish identification of the technology of skill formation. We relax the strong independence

assumptions for error terms in the measurement equations that are maintained in Cunha and

Heckman (2008) and Carneiro, Hansen, and Heckman (2003). The assumption of linearity of

the technology in inputs that is used by Cunha and Heckman (2008) and Todd and Wolpin

(2003, 2005) is not required because we allow inputs to interact in producing outputs. We

generalize the factor-analytic index function models used by Carneiro, Hansen, and Heckman

(2003) to allow for more general functional forms for measurement equations. We solve the

problem of defining a scale for the output of childhood investments by anchoring test scores

using adult outcomes of the child, which have a well-defined cardinal scale. We determine

the latent variables that generate test scores by estimating how these latent variables pre-

dict adult outcomes.6 Our approach sets the scale of test scores and latent variables in an

interpretable metric. Using this metric, analysts can meaningfully interpret changes in out-

put and conduct interpretable value-added analyses.7 We also solve the problem of missing

inputs in estimating technologies in a way that is much more general than the widely used

framework of Olley and Pakes (1996) that assumes perfect proxies for latent factors. We

allow for imperfect proxies and establish that measurement error is substantial in the data

analyzed in this paper.

The plan of this paper is as follows. Section 2 briefly summarizes the previous literature

to motivate our contribution to it. Section 3 presents our identification analysis. Section 4

discusses the data used to estimate the model, our estimation strategy, and the model esti-

mates. Section 5 concludes.

2 A Model of Cognitive and Noncognitive Skill For-

mation

We analyze a model with multiple periods of childhood, t ∈ {1, 2, . . . , T}, T ≥ 2, followed

by A periods of adult working life, t ∈ {T + 1, T + 2, . . . , T + A}. The T childhood periods

are divided into S stages of development, s ∈ {1, . . . , S}, with S ≤ T. Adult outcomes are

produced by cognitive skills, θC,T+1, and noncognitive skills, θN,T+1 at the beginning of the

adult years.8 Denote parental investments at age t in child skill k by Ik,t, k ∈ {C,N}.
6Cawley, Heckman, and Vytlacil (1999) anchor test scores in earnings outcomes.
7Cunha and Heckman (2008) develop a class of anchoring functions invariant to affine transformations.

This paper develops a more general class of monotonic transformations and presents a new analysis of joint
identification of the anchoring equations and the technology of skill formation.

8This model generalizes the model of Becker and Tomes (1986), who assume only one period of childhood
(T = 1) and consider one output associated with “human capital” that can be interpreted as a composite of
cognitive (C) and noncognitive (N) skills. We do not model post-childhood investment.
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Skills evolve in the following way. Each agent is born with initial conditions θ1 =

(θC,1, θN,1). Family environments and genetic factors may influence these initial conditions

(see Olds, 2002, and Levitt, 2003). We denote by θP = (θC,P , θN,P ) parental cognitive and

noncognitive skills, respectively. θt = (θC,t, θN,t) denotes the vector of skill stocks in period

t. Let ηt = (ηC,t, ηN,t) denote shocks and/or unobserved inputs that affect the accumulation

of cognitive and noncognitive skills, respectively. The technology of production of skill k in

period t and developmental stage s depends on the stock of skills in period t, investment at

t, Ik,t, parental skills, θP , shocks in period t, ηk,t, and the production function at stage s :

θk,t+1 = fk,s (θt, Ik,t, θP , ηk,t) , (2.1)

for k ∈ {C,N}, t ∈ {1, 2, . . . , T}, and s ∈ {1, . . . , S}. We assume that fk,s is monotone

increasing in its arguments, twice continuously differentiable, and concave in Ik,t. In this

model, stocks of current period skills produce next period skills and affect the current pe-

riod productivity of investments. Stocks of cognitive skills can promote the formation of

noncognitive skills and vice versa because θt is an argument of (2.1).

Direct complementarity between the stock of skill l and the productivity of investment

Ik,t in producing skill k in period t arises if

∂2fk,s(·)
∂Ik,t∂θl,t

> 0, t ∈ {1, . . . , T}, l, k ∈ {C,N}.

Period t stocks of abilities and skills promote the acquisition of skills by making investment

more productive. Students with greater early cognitive and noncognitive abilities are more

efficient in later learning of both cognitive and noncognitive skills. The evidence from the

early intervention literature suggests that the enriched early environments of the Abecedar-

ian, Perry and Chicago Child-Parent Center (CPC) programs promoted greater efficiency in

learning in high schools and reduced problem behaviors.9

Adult outcome j, Qj, is produced by a combination of different skills at the beginning of

period T + 1:

Qj = gj (θC,T+1, θN,T+1) , j ∈ {1, . . . , J}.10 (2.2)

These outcome equations capture the twin concepts that both cognitive and noncognitive

9See, e.g., Cunha, Heckman, Lochner, and Masterov (2006), Heckman, Malofeeva, Pinto, and Savelyev
(2010), Heckman, Moon, Pinto, Savelyev, and Yavitz (2010b), Heckman, Moon, Pinto, Savelyev, and Yavitz
(2010a), and Reynolds and Temple (2009).

10To focus on the main contribution of this paper, we focus on investment in children. Thus we assume that
θT+1 is the adult stock of skills for the rest of life contrary to the evidence reported in Borghans, Duckworth,
Heckman, and ter Weel (2008). The technology could be extended to accommodate adult investment as in
Ben-Porath (1967) or its generalization Heckman, Lochner, and Taber (1998)
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skills matter for performance in most tasks in life and have different effects in different tasks

in the labor market and in other areas of social performance. Outcomes include test scores,

schooling, wages, occupational attainment, hours worked, criminal activity, and teenage

pregnancy.

In this paper, we identify and estimate a CES version of technology (2.1) where we assume

that θC,t, θN,t, IC,t, IN,t, θC,P , θN,P are scalars. Outputs of skills at stage s are governed by

θC,t+1 =
[
γs,C,1θ

φs,C
C,t + γs,C,2θ

φs,C
N,t + γs,C,3I

φs,C
C,t + γs,C,4θ

φs,C
C,P + γs,C,5θ

φs,C
N,P

] 1
φs,C (2.3)

and

θN,t+1 =
[
γs,N,1θ

φs,N
C,t + γs,N,2θ

φs,N
N,t + γs,N,3I

φs,N
N,t + γs,N,4θ

φs,N
C,P + γs,N,5θ

φs,N
N,P

] 1
φs,N , (2.4)

where γs,k,l ∈ [0, 1],
∑

l γs,k,l = 1 for k ∈ {C,N}, l ∈ {1, . . . , 5}, t ∈ {1, . . . , T} and s ∈
{1, . . . , S}. 1

1−φs,k
is the elasticity of substitution in the inputs producing θk,t+1, where

φs,k ∈ (−∞, 1] for k ∈ {C,N}. It is a measure of how easy it is to compensate for low levels

of stocks θC,t and θN,t inherited from the previous period with current levels of investment

IC,t and IN,t. For the moment, we ignore the shocks ηk,t in (2.1), although they play an

important role in our empirical analysis.

A CES specification of adult outcomes is:

Qj =
{
ρj (θC,T+1)

φQ,j + (1− ρj) (θN,T+1)
φQ,j
} 1
φQ,j , (2.5)

where ρj ∈ [0, 1], and φQ,j ∈ (−∞, 1] for j = 1, . . . , J . 1
1−φQ,j

is the elasticity of substitution

between different skills in the production of outcome j. The ability of noncognitive skills

to compensate for cognitive deficits in producing adult outcomes is governed by φQ,j. The

importance of cognition in producing output in task j is governed by the share parameter

ρj.

To gain some insight into this model, consider a special case investigated in Cunha and

Heckman (2007) where childhood lasts two periods (T = 2), there is one adult outcome (“hu-

man capital”) so J = 1, and the elasticities of substitution are the same across technologies

(2.3) and (2.4) and in the outcome (2.5), so φs,C = φs,N = φQ = φ for all s ∈ {1, . . . , S}.
Assume that there is one investment good in each period that increases both cognitive and

noncognitive skills, though not necessarily by the same amount, (Ik,t ≡ It, k ∈ {C,N}). In

this case, the adult outcome is a function of investments, initial endowments, and parental
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characteristics and can be written as

Q =
[
τ1I

φ
1 + τ2I

φ
2 + τ3θ

φ
C,1 + τ4θ

φ
N,1 + τ5θ

φ
C,P + τ6θ

φ
N,P

] 1
φ

, (2.6)

where τi for i = 1, . . . , 6 depend on the parameters of equations (2.3)–(2.5).11 Cunha and

Heckman (2007) analyze the optimal timing of investment using a special version of the

technology embodied in (2.6).

Let R (Q) =
∑A+2

t=2

(
1

1+r

)t
wQ denote the net present value of the child’s future income

computed with respect to the date of birth, and w is the return per unit Q. Parents have

resources M that they use to invest in period “1”, I1, and period “2”, I2. The objective of

the parent is to maximize the net present value of the child’s future income given parental

resource constraints. Assuming an interior solution, that the price of investment in period

“1” is one, the relative price of investment in period “2” is 1/(1 + r), the optimal ratio of

period “1” investment to period “2” investment is

log

(
I1
I2

)
=

(
1

1− φ

)[
log

(
τ1
τ2

)
− log (1 + r)

]
. (2.7)

Figure 1 plots the ratio of early to late investment as a function of τ1/τ2 for different values

of φ assuming r = 0. Ceteris paribus, the higher τ1 relative to τ2, the higher first period

investment should be relative to second period investment. The parameters τ1 and τ2 are

determined in part by the productivity of investments in producing skills, which are generated

by the technology parameters γs,k,3, for s ∈ {1, 2} and k ∈ {C,N}. They also depend on the

relative importance of cognitive skills, ρ, versus noncognitive skills, 1− ρ, in producing the

adult outcome Q. Ceteris paribus, if τ1
τ2
> (1 + r), the higher the CES complementarity, (i.e.,

the lower φ), the greater is the ratio of optimal early to late investment. The greater r, the

smaller should be the optimal ratio of early to late investment. In the limit, if investments

complement each other strongly, optimality implies that they should be equal in both periods.

This example builds intuition about the importance of the elasticity of substitution in

determining the optimal timing of lifecycle investments. However, it oversimplifies the anal-

ysis of skill formation. It is implausible that the elasticity of substitution between skills in

producing adult outcomes ( 1
1−φQ

) is the same as the elasticity of substitution between inputs

in producing skills, and that a common elasticity of substitution governs the productivity of

inputs in producing both cognitive and noncognitive skills.

Our analysis allows for multiple adult outcomes and multiple skills. We allow the elastici-

ties of substitution governing the technologies for producing cognitive and noncognitive skills

11See Web Appendix 1 for the derivation of this expression in terms of the parameters of equations (2.3)–
(2.5).
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to differ at different stages of the life cycle and for both to be different from the elasticities

of substitution for cognitive and noncognitive skills in producing adult outcomes. We test

and reject the assumption that φs,C = φs,N for s ∈ {1, . . . , S}.

3 Identifying the Technology using Dynamic Factor

Models

Identifying and estimating technology (2.1) is challenging. Both inputs and outputs can

only be proxied. Measurement error in general nonlinear specifications of technology (2.1)

raises serious econometric challenges. Inputs may be endogenous and the unobservables in

the input equations may be correlated with unobservables in the technology equations.

This paper addresses these challenges. Specifically, we execute the following tasks: (1) De-

termine how stocks of cognitive and noncognitive skills at date t affect the stocks of skills at

date t+ 1, identifying both self productivity (the effects of θN,t on θN,t+1, and θC,t on θC,t+1)

and cross productivity (the effects of θC,t on θN,t+1 and the effects of θN,t on θC,t+1) at each

stage of the life cycle. (2) Develop a non-linear dynamic factor model where (θt, It, θP ) is

proxied by vectors of measurements which include test scores and input measures as well as

outcome measures. In our analysis, test scores and personality evaluations are indicators of

latent skills. Parental inputs are indicators of latent investment. We account for measure-

ment error in these proxies. (3) Estimate the elasticities of substitution for the technologies

governing the production of cognitive and noncognitive skills. (4) Anchor the scale of test

scores using adult outcome measures instead of relying on test scores as measures of output.

This allows us to avoid relying on arbitrary test scores as measurements of output. Any

monotonic function of a test score is a valid test score. (5) Account for the endogeneity

of parental investments when parents make child investment decisions in response to the

characteristics of the child that may change over time as the child develops and as new

information about the child is revealed.

Our analysis of identification proceeds in the following way. We start with a model where

measurements are linear and separable in the latent variables, as in Cunha and Heckman

(2008). We establish identification of the joint distribution of the latent variables without

imposing conventional independence assumptions about measurement errors. With the joint

distribution of latent variables in hand, we nonparametrically identify technology (2.1) given

alternative assumptions about ηk,t. We then extend this analysis to identify nonparametric

measurement and production models. We anchor the latent variables in adult outcomes

to make their scales interpretable. Finally, we account for endogeneity of inputs in the

8



technology equations and model investment behavior.

3.1 Identifying the Distribution of the Latent Variables

We use a general notation for all measurements to simplify the econometric analysis. Let

Za,k,t,j be the jth measurement at time t on measure of type a for factor k. We have

measurements on test scores and parental and teacher assessments of skills (a = 1), on

investment (a = 2) and on parental endowments (a = 3). Each measurement has a cognitive

and noncognitive component so k ∈ {C,N}. We initially assume that measurements are

additively separable functions of the latent factors θk,t and Ik,t:

Z1,k,t,j = µ1,k,t,j + α1,k,t,jθk,t + ε1,k,t,j (3.1)

Z2,k,t,j = µ2,k,t,j + α2,k,t,jIk,t + ε2,k,t,j, (3.2)

where E(εa,k,t,j) = 0, j ∈ {1, . . . ,Ma,k,t}, t ∈ {1, . . . , T}, k ∈ {C,N}, a ∈ {1, 2}

and where εa,k,t,j are uncorrelated across the j.12 Assuming that parental endowments are

measured only once in period t = 1, we write

Z3,k,1,j = µ3,k,1,j + α3,k,1,jθk,P + ε3,k,1,j,
13,14 (3.3)

E (ε3,k,1,j) = 0, j ∈ {1, . . . ,M3,k,1}, and k ∈ {C,N}.

The αa,k,t,j are factor loadings. The parameters and variables are defined conditional on

X. To reduce the notational burden we keep X implicit. Following standard conventions

in factor analysis, we set the scale of the factors by assuming αa,k,t,1 = 1 and normalize

E(θk,t) = 0 and E (Ik,t) = 0 for all k ∈ {C,N}, t = 1, . . . , T . Separability makes the

identification analysis transparent. We consider a more general nonseparable model below.

Given measurements Za,k,t,j, we can identify the mean functions µa,k,t,j, a ∈ {1, 2, 3}, t ∈
12An economic model that rationalizes the investment measurement equations in terms of family inputs is

presented in Web Appendix 2. See also Cunha and Heckman (2008).
13This formulation assumes that measurements a ∈ {1, 2, 3} proxy only one factor. This is not strictly

required for identification. One can identify the correlated factor model if there is one measurement for
each factor that depends solely on the one factor and standard normalizations and rank conditions are
imposed. The other measurements can be generated by multiple factors. This follows from the analysis
of Anderson and Rubin (1956) who give precise conditions for identification in factor models. Carneiro,
Hansen, and Heckman (2003) consider alternative specifications. The key idea in classical factor approaches
is one normalization of the factor loading for each factor in one measurement equation to set the scale of the
factor and at least one measurement dedicated to each factor.

14In our framework, parental skills are assumed to be constant over time as a practical matter because we
only observe parental skills once.
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{1, . . . , T}, k ∈ {C,N}, which may depend on the X.

3.2 Identification of the Factor Loadings and of the Joint Distri-

butions of the Latent Variables

We first establish identification of the factor loadings under the assumption that the εa,k,t,j

are uncorrelated across t and that the analyst has at least two measures of each type of child

skills and investments in each period t, where T ≥ 2. Without loss of generality, we focus on

α1,C,t,j and note that similar expressions can be derived for the loadings of the other latent

factors.

Since Z1,C,t,1 and Z1,C,t+1,1 are observed, we can compute Cov (Z1,C,t,1, Z1,C,t+1,1) from the

data. Because of the normalization α1,C,t,1 = 1 for all t, we obtain:

Cov (Z1,C,t,1, Z1,C,t+1,1) = Cov (θC,t, θC,t+1) . (3.4)

In addition, we can compute the covariance of the second measurement on cognitive skills

at period t with the first measurement on cognitive skills at period t+ 1:

Cov (Z1,C,t,2, Z1,C,t+1,1) = α1,C,t,2Cov (θC,t, θC,t+1) . (3.5)

If Cov (θC,t, θC,t+1) 6= 0, one can identify the loading α1,C,t,2 from the following ratio of

covariances:
Cov (Z1,C,t,2, Z1,C,t+1,1)

Cov (Z1,C,t,1, Z1,C,t+1,1)
= α1,C,t,2.

If there are more than two measures of cognitive skill in each period t, we can identify α1,C,t,j

for j ∈ {2, 3, . . . ,M1,C,t}, t ∈ {1, . . . , T} up to the normalization α1,C,t,1 = 1. The assumption

that the εa,k,t,j are uncorrelated across t is then no longer necessary. Replacing Z1,C,t+1,1 by

Za′,k′,t′,3 for some (a′, k′, t′) which may or may not be equal to (1, C, t), we may proceed in

the same fashion.15 Note that the same third measurement Za′,k′,t′,3 can be reused for all a, t

and k implying that in the presence of serial correlation, the total number of measurements

needed for identification of the factor loadings is 2L+ 1 if there are L factors.

15The idea is to write

Cov (Z1,C,t,2, Za′,k′,t′,3)
Cov (Z1,C,t,1, Za′,k′,t′,3)

=
α1,C,t,2αa′,k′,t′,3Cov (θC,t, θk′,t′)
α1,C,t,1αa′,k′,t′,3Cov (θC,t, θk′,t′)

=
α1,C,t,2

α1,C,t,1
= α1,C,t,2

This only requires uncorrelatedness across different j but not across t.
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Once the parameters α1,C,t,j are identified, we can rewrite (3.1), assuming α1,C,t,j 6= 0, as:

Z1,C,t,j

α1,C,t,j

=
µ1,C,t,j

α1,C,t,j

+ θC,t +
ε1,C,t,j

α1,C,t,j

, j ∈ {1, 2, . . . ,M1,C,t}. (3.6)

In this form, it is clear that the known quantities
Z1,C,t,j

α1,C,t,j
play the role of repeated error-

contaminated measurements of θC,t. Collecting results for all t = 1, . . . , T , we can identify the

joint distribution of {θC,t}Tt=1. Proceeding in a similar fashion for all types of measurements,

a ∈ {1, 2, 3}, on abilities k ∈ {C,N}, using the analysis in Schennach (2004a,b), we can

identify the joint distribution of all the latent variables. Define the matrix of latent variables

by θ, where

θ =
(
{θC,t}Tt=1 , {θN,t}

T
t=1 , {IC,t}

T
t=1 , {IN,t}

T
t=1 , θC,P , θN,P

)
.

Thus, we can identify the joint distribution of θ, p(θ).

Although the availability of numerous indicators for each latent factor is helpful in im-

proving the efficiency of the estimation procedure, the identification of the model can be

secured (after the factor loadings are determined) if only two measurements of each latent

factor are available. Since in our empirical analysis we have at least two different measure-

ments for each latent factor, we can define, without loss of generality, the following two

vectors

Wi =

({
Z1,C,t,i

α1,C,t,i

}T
t=1

,

{
Z1,N,t,i

α1,N,t,i

}T
t=1

,

{
Z2,C,t,i

α2,C,t,i

}T
t=1

,

{
Z2,N,t,i

α2,N,t,i

}T
t=1

,
Z3,C,1,i

α3,C,1,i

,
Z3,N,1,i

α3,N,1,i

)′
i ∈ {1, 2}.

These vectors consist of the first and the second measurements for each factor, respectively.

The corresponding measurement errors are

ωi =

({
ε1,C,t,i

α1,C,t,i

}T
t=1

,

{
ε1,N,t,i

α1,N,t,i

}T
t=1

,

{
ε2,C,t,i

α2,C,t,i

}T
t=1

,

{
ε2,N,t,i

α2,N,t,i

}T
t=1

,
ε3,C,1,i

α3,C,1,i

,
ε3,N,1,i

α3,N,1,i

)′
.

i ∈ {1, 2}.

Identification of the distribution of θ is obtained from the following theorem. Let L

denote the total number of latent factors, which in our case is 4T + 2.

Theorem 1 Let W1, W2, θ, ω1, ω2 be random vectors taking values in RL and related through

W1 = θ + ω1

W2 = θ + ω2.

11



If (i) E [ω1|θ, ω2] = 0 and (ii) ω2 is independent from θ, then the density of θ can be expressed

in terms of observable quantities as:

pθ (θ) = (2π)−L
∫
e−iχ·θ exp

(∫ χ

0

E
[
iW1e

iζ·W2
]

E [eiζ·W2 ]
· dζ

)
dχ,

where in this expression i =
√
−1, provided that all the requisite expectations exist and

E
[
eiζ·W2

]
is nonvanishing. Note that the innermost integral is the integral of a vector-valued

field along a continuous path joining the origin and the point χ ∈ RL, while the outermost

integral is over the whole RL space. If θ does not admit a density with respect to the Lebesgue

measure, pθ (θ) can be interpreted within the context of the theory of distributions. If some

elements of θ are perfectly measured, one may simply set the corresponding elements of W1

and W2 to be equal. In this way, the joint distribution of mismeasured and perfectly measured

variables is identified.

Proof. See Web Appendix, Part 3.1.16

The striking improvement in this analysis over the analysis of Cunha and Heckman (2008)

is that identification can be achieved under much weaker conditions regarding measurement

errors— far fewer independence assumptions are needed. The asymmetry in the analysis of

ω1 and ω2 generalizes previous analysis which treats these terms symmetrically. It gives the

analyst a more flexible toolkit for the analysis of factor models. For example, our analysis

allows analysts to accommodate heteroscedasticity in the distribution of ω1 that may depend

on ω2 and θ. It also allows for potential correlation of components within the vectors ω1 and

ω2, thus permitting serial correlation within a given set of measurements.

The intuition for identification in this paper, as in all factor analyses, is that the signal is

common to multiple measurements but the noise is not. In order to extract the noise from the

signal, the disturbances have to satisfy some form of orthogonality with respect to the signal

and with respect to each other. These conditions are various uncorrelatedness assumptions,

conditional mean assumptions, or conditional independence assumptions. They are used in

various combinations in Theorem 1, in Theorem 2 below and in other results in this paper.

3.3 The Identification of a General Measurement Error Model

In this section, we extend the previous analysis for linear factor models to consider a mea-

surement model of the general form

Zj = aj (θ, εj) for j ∈ {1, . . . ,M}, (3.7)

16The results of Theorem 1 are sketched informally in Schennach (2004a, footnote 11).
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where M ≥ 3 and where the indicator Zj is observed while the latent factor θ and the distur-

bance εj are not. The variables Zj, θ, and εj are assumed to be vectors of the same dimension.

In our application, the vector of observed indicators and corresponding disturbances is

Zj =
(
{Z1,C,t,j}Tt=1 , {Z1,N,t,j}Tt=1 , {Z2,C,t,j}Tt=1 , {Z2,N,t,j}Tt=1 , Z3,C,1,j, Z3,N,1,j

)′
εj =

(
{ε1,C,t,j}Tt=1 , {ε1,N,t,j}Tt=1 , {ε2,C,t,j}Tt=1 , {ε2,N,t,j}Tt=1 , ε3,C,1,j, ε3,C,N,1,j

)′
while the vector of unobserved latent factors is:

θ=
(
{θC,t}Tt=1 , {θN,t}

T
t=1 , {IC,t}

T
t=1 , {IN,t}

T
t=1 , θC,P , θN,P

)′
.

The functions aj (·, ·) for j ∈ {1, . . . ,M} in Equations (3.7) are unknown. It is necessary to

normalize one of them (e.g., a1 (·, ·)) in some way to achieve identification, as established in

the following theorem.

Theorem 2 The distribution of θ in Equations (3.7) is identified under the following con-

ditions:

1. The joint density of θ, Z1, Z2, Z3 is bounded and so are all their marginal and condi-

tional densities.17

2. Z1, Z2, Z3 are mutually independent conditional on θ.

3. pZ1|Z2 (Z1 | Z2) and pθ|Z1 (θ | Z1) form a bounded complete family of distributions in-

dexed by Z2 and Z1, respectively.

4. Whenever θ 6= θ̃, pZ3|θ (Z3 | θ) and pZ3|θ

(
Z3 | θ̃

)
differ over a set of strictly positive

probability.

5. There exists a known functional Ψ, mapping a density to a vector, that has the property

that Ψ
[
pZ1|θ (· | θ)

]
= θ.

Proof. See Web Appendix, Part 3.2.18

The proof of Theorem 2 proceeds by casting the analysis of identification as a linear

algebra problem analogous to matrix diagonalization. In contrast to the standard matrix

17This is a density with respect to the product measure of the Lebesgue measure on RL × RL × RL and
some dominating measure µ. Hence θ, Z1, Z2 must be continuously distributed while Z3 may be continuous
or discrete.

18A vector of correctly measured variables C can trivially be added to the model by including C in the
list of conditioning variables for all densities in the statement of the theorem. Theorem 2 then implies that
pθ|C(θ|C) is identified. Since pC(C) is identified it follows that pθ,C(θ, C) = pθ|C(θ|C)pC(C) is also identified.
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diagonalization used in linear factor analyses, we do not work with random vectors. Instead,

we work with their densities. This approach offers the advantage that the problem remains

linear even when the random vectors are related nonlinearly.

The conditional independence requirement of Assumption 2 is weaker than the full in-

dependence assumption traditionally made in standard linear factor models as it allows for

heteroscedasticity. Assumption 3 requires θ, Z1, Z2 to be vectors of the same dimensions,

while Assumption 4 can be satisfied even if Z3 is a scalar. The minimum number of mea-

surements needed for identification is therefore 2L+ 1, which is exactly the same number of

measurements as in the linear, classical measurement error case.

Versions of Assumption 3 appear in the nonparametric instrumental variable literature

(e.g., Newey and Powell, 2003; Darolles et al., 2002). Intuitively, the requirement that

pZ1|Z2 (Z1|Z2) forms a bounded complete family requires that the density of Z1 vary suffi-

ciently as Z2 varies (and similarly for pθ|Z1 (θ|Z1)).
19

Assumption 4 is automatically satisfied, for instance, if θ is univariate and a3 (θ, ε3) is

strictly increasing in θ. However, it holds much more generally. Since a3 (θ, ε3) is nonsepa-

rable, the distribution of Z3 conditional on θ can change with θ, thus making it possible for

Assumption 4 to be satisfied even if a3 (θ, ε3) is not strictly increasing in θ.

Assumption 5 specifies how the observed Z1 is used to determine the scale of the un-

observed θ. The most common choices of the functional Ψ would be the mean, the mode,

the median, or any other well-defined measure of location. This specification allows for non-

classical measurement error. One way to satisfy this assumption is to normalize a1 (θ, ε1) to

be equal to θ + ε1, where ε1 has zero mean, median or mode. The zero mode assumption

is particularly plausible for surveys where respondents face many possible wrong answers

but only one correct answer. Moving the mode of the answers away from zero would there-

fore require a majority of respondents to misreport in exactly the same way— an unlikely

scenario. Many other nonseparable functions can also satisfy this assumption. With the

distribution of pθ (θ) in hand, we can identify the technology using the analysis presented

below in Section 3.4.

Note that Theorem 2 does not claim that the distributions of the errors εj or that the

functions aj (·, ·) are identified. In fact, it is always possible to alter the distribution of εj and

the dependence of the function aj (·, ·) on its second argument in ways that cancel each other

out, as noted in the literature on nonseparable models.20 However, lack of identifiability of

19In the case of classical measurement error, bounded completeness assumptions can be phrased in terms of
primitive conditions requiring nonvanishing characteristic functions of the distributions of the measurement
errors as in Mattner (1993). However, apart from this special case, very little is known about primitive
conditions for bounded completeness, and research is still ongoing on this topic. See d’Haultfoeuille (2006).

20See Matzkin (2003, 2007).
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these features of the model does not prevent identification of the distribution of θ.

Nevertheless, various normalizations ensuring that the functions aj(θ, εj) are fully iden-

tified are available. For example, if each element of εj is normalized to be uniform (or any

other known distribution), the aj(θ, εj) are fully identified. Other normalizations discussed

in Matzkin (2003, 2007) are also possible. Alternatively, one may assume that the aj(θ, εj)

are separable in εj with zero conditional mean of εj given θ.21 We invoke these assumptions

when we identify the policy function for investments in Section 3.6.2 below.

The conditions justifying Theorems 1 and 2 are not nested within each other. Their dif-

ferent assumptions represent different trade-offs best suited for different applications. While

Theorem 1 would suffice for the empirical analysis of this paper, the general result established

in Theorem 2 will likely be quite useful as larger sample sizes become available.

Carneiro, Hansen, and Heckman (2003) present an analysis for nonseparable measurement

equations based on a separable latent index structure, but invoke strong independence and

“identification-at-infinity” assumptions. Our approach for identifying the distribution of θ

from general nonseparable measurement equations does not require these strong assumptions.

Note that it also allows the θ to determine all measurements and for the θ to be freely

correlated.

3.4 Nonparametric Identification of the Technology Function

Suppose that the shocks ηk,t are independent over time. Below, we analyze a more general

case that allows for serial dependence. Once the density of θ is known, one can identify

nonseparable technology function (2.1) for t ∈ {1, . . . , T}; k ∈ {C,N}; and s ∈ {1, . . . ., S}.
Even if (θt, It, θP ) were perfectly observed, one could not separately identify the distribution

of ηk,t and the function fk,s because, without further normalizations, a change in the density

of ηk,t can be undone by a change in the function fk,s.
22

One solution to this problem is to assume that (2.1) is additively separable in ηk,t. An-

other way to avoid this ambiguity is to normalize ηk,t to have a uniform density on [0, 1].

Any of the normalizations suggested by Matzkin (2003, 2007) could be used. Assuming ηk,t

is uniform [0, 1] , we establish that fk,s is nonparametrically identified, by noting that, from

the knowledge of pθ we can calculate, for any θ̄ ∈ R,

Pr
[
θk,t+1 ≤ θ̄|θt, Ik,t, θP

]
≡ G

(
θ̄|θt, Ik,t, θP

)
.

21Observe that Theorem 2 covers the identifiability of the outcome (Qj) functions (2.2) even if we supple-
ment the model with errors εj , j ∈ {1, . . . , J} that satisfy the conditions of the theorem.

22See, e.g, Matzkin (2003, 2007).
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We identify technology (2.1) using the relationship

fk,s (θt, Ik,t, θP , ηk,t) = G−1 (ηk,t | θt, Ik,t, θP ) ,

where G−1 (ηk,t | θt, Ik,t, θP ) denotes the inverse of G
(
θ̄ | θt, Ik,t, θP

)
with respect to its first

argument (assuming it exists), i.e., the value θ̄ such that ηk,t = G
(
θ̄ | θt, Ik,t, θP

)
. By con-

struction, this operation produces a function fk,s that generates outcomes θk,t+1 with the

appropriate distribution, because a continuously distributed random variable is mapped into

a uniformly distributed variable under the mapping defined by its own cdf.

The more traditional separable technology with zero mean disturbance, θk,t+1

= fk,s (θt, Ik,t, θP ) + ηk,t, is covered by our analysis if we define

fk,s (θt, Ik,t, θP ) ≡ E [θk,t+1 | θt, Ik,t, θP ] ,

where the expectation is taken under the density pθk,t+1|θt,Ik,t,θP , which can be calculated from

pθ. The density of ηk,t conditional on all variables is identified from

pηk,t|θt,Ik,t,θP (ηk,t | θt, Ik,t, θP ) = pθk,t+1|θt,Ik,t,θP (ηk,t + E [θk,t+1 | θt, Ik,t, θP ] | θt, Ik,t, θP ) ,

since pθk,t+1|θt,Ik,t,θP is known once pθ is known. We now show how to anchor the scales of

θC,t+1 and θN,t+1 using measures of adult outcomes.

3.5 Anchoring Skills in an Interpretable Metric

It is common in the empirical literature on child schooling and investment to measure out-

comes by test scores. However, test scores are arbitrarily scaled. To gain a better under-

standing of the relative importance of cognitive and noncognitive skills and their interactions

and the relative importance of investments at different stages of the life cycle, it is desirable

to anchor skills in a common scale. In what follows, we continue to keep the conditioning on

the regressors implicit.

We model the effect of period T + 1 cognitive and noncognitive skills on adult outcomes

Z4,j, for j ∈ {1, . . . , J}.23 Suppose that there are J1 observed outcomes that are linear

functions of cognitive and noncognitive skills at the end of childhood, i.e., in period T :

Z4,j = µ4,j + α4,C,jθC,T+1 + α4,N,jθN,T+1 + ε4,j, for j ∈ {1, . . . , J1}.

When adult outcomes are linear and separable functions of skills, we define the anchoring

23The Z4,j correspond to the Qj of Section 2.
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functions to be:

gC,j (θC,T+1) = µ4,j + α4,C,jθC,T+1 (3.8)

gN,j (θN,T+1) = µ4,j + α4,N,jθN,T+1.

We can also anchor using nonlinear functions. One example would be an outcome pro-

duced by a latent variable Z∗4,j, for j ∈ {J1 + 1, . . . , J}:

Z∗4,j = g̃j (θC,T+1, θN,T+1)− ε4,j.

Note that we do not observe Z∗4,j, but we observe the variable Z4,j which is defined as:

Z4,j =

{
1, if g̃j (θC,T+1, θN,T+1)− ε4,j ≥ 0

0, otherwise.

In this notation

Pr (Z4,j = 1| θC,T+1, θN,T+1) = Pr [ε4,j ≤ g̃j (θC,T+1, θN,T+1)| θC,T+1, θN,T+1]

= Fε4,j [ g̃j (θC,T+1, θN,T+1)| θC,T+1, θN,T+1]

= gj (θC,T+1, θN,T+1) .

Adult outcomes such as high school graduation, criminal activity, drug use, and teenage

pregnancy may be represented in this fashion.

To establish identification of gj (θC,T+1, θN,T+1) for j ∈ {J1 + 1, . . . , J}, we include the

dummy Z4,j in the vector θ. Assuming that the dummy Z4,j is measured without error, the

corresponding element of the two repeated measurement vectors W1 and W2 are identical

and equal to Z4,j. Theorem 1 implies that the joint density of Z4,j, θC,t and θN,t is identified.

Thus, it is possible to identify Pr [Z4,j = 1 | θC,T+1, θN,T+1].

We can extract two separate “anchors” gC,j (θC,T+1) and gN,j (θN,T+1) from the function

gj (θC,T+1, θN,T+1), by integrating out the other variable, e.g.,

gC,j (θC,T+1) ≡
∫
gj (θC,T+1, θN,T+1) pθN,T+1

(θN,T+1) dθN,T+1, (3.9)

gN,j (θN,T+1) ≡
∫
gj (θC,T+1, θN,T+1) pθC,T+1

(θC,T+1) dθC,T+1,

where the marginal densities, pθj,T (θN,T+1), j ∈ {C,N} are identified by applying the pre-

ceding analysis. Both gC,j(θC,T+1) and gN,j (θN,T+1) are assumed to be strictly monotonic in
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their arguments.

The “anchored” skills, denoted by θ̃j,k,t, are defined as

θ̃j,k,t = gk,j (θk,t) , k ∈ {C,N}, t ∈ {1, . . . , T}.

The anchored skills inherit the subscript j because different anchors generally scale the same

latent variables differently.

We combine the identification of the anchoring functions with the identification of the

technology function fk,s (θt, Ik,t, θP , ηk,t) established in the previous section to prove that the

technology function expressed in terms of the anchored skills — denoted by f̃k,s,j

(
θ̃j,t, Ik,t, θP , ηk,t

)
— is also identified. To do so, redefine the technology function to be

f̃k,s,j

(
θ̃j,C,t, θ̃j,N,t, Ik,t, θC,P , θN,P , ηk,t

)
≡ gk,j

(
fk,s

(
g−1
C,j

(
θ̃j,C,t

)
, g−1
N,j

(
θ̃j,N,t

)
, Ik,t, θC,P , θN,P , ηk,t

))
, k ∈ {C,N}

where g−1
k,j (·) denotes the inverse of the function gk,j (·). Invertibility follows from the assumed

monotonicity. It is straightforward to show that

f̃k,s,j

(
θ̃j,C,t, θ̃j,N,t, Ik,t, θC,P , θN,P , ηk,t

)
= f̃k,s,j (gC,j (θC,t) , gN,j (θN,t) , Ik,t, θC,P , θN,P , ηk,t)

= gk,j
(
fk,s

(
g−1
C,j (gC,j (θC,t)) , g

−1
N,j (gN,j (θN,t)) , Ik,t, θC,P , θN,P , ηk,t

))
= gk,j (fk,s (θC,t, θN,t, Ik,t, θC,P , θN,P , ηk,t))

= gk,j (θk,t+1) = θ̃k,j,t+1,

as desired. Hence, f̃k,s,j is the equation of motion for the anchored skills θ̃k,j,t+1 that is

consistent with the equation of motion fk,s for the original skills θk,t.

3.6 Accounting for Endogeneity of Parental Investment

3.6.1 Allowing for Unobserved Time-Invariant Heterogeneity

Thus far, we have maintained the assumption that the error term ηk,t in the technology (2.1)

is independent of all the other inputs (θt, Ik,t, θP ) as well as η`,t, k 6= `. This implies that

variables not observed by the econometrician are not used by parents to make their decisions

regarding investments Ik,t. This is a very strong assumption. The availability of data on

adult outcomes can be exploited to relax this assumption and allow for endogeneity of the

inputs. This subsection develops an approach for a nonlinear model based on time-invariant
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heterogeneity.

To see how this can be done, suppose that we observe at least three adult outcomes, so

that J ≥ 3. We can then write outcomes as functions of T + 1 skills as well as unobserved

(by the economist) time-invariant heterogeneity component, π, on which parents make their

investment decisions:

Z4,j = α4,C,jθC,T+1 + α4,N,jθN,T+1 + α4,π,jπ + ε4,j, for j ∈ {1, 2, . . . , J}.

We can use the analysis of section 3.2, suitably extended to allow for measurements Z4,j,

to secure identification of the factor loadings α4,C,j, α4,N,j, and α4,π,j. We can apply the

argument of section 3.4 to secure identification of the joint distribution of (θt, It, θP , π).24

Write ηk,t = (π, νk,t). Extending the preceding analysis, we can identify a more general

version of the technology:

θk,t+1 = fk,s (θt, Ik,t, θP , π, νk,t) .

π is permitted to be correlated with the inputs (θt, It, θP ) and νk,t is assumed to be indepen-

dent from the vector (θt, It, θP , π) as well as νl,t for l 6= k. The next subsection develops a

more general approach that allows π to vary over time.

3.6.2 More General Forms of Endogeneity

This subsection relaxes the invariant heterogeneity assumption by using exclusion restrictions

based on economic theory to identify the technology under more general conditions. πt

evolves over time and agents make investment decisions based on it. Define yt as family

resources in period t (e.g., income, assets, constraints). As in Sections 3.2 and 3.3, we

assume that suitable multiple measurements of
(
θP , {θt, IC,t, IN,t, yt}Tt=1

)
are available to

identify their (joint) distribution. In our application, we assume that yt is measured without

error25 We further assume that the error term ηk,t can be decomposed into two components:

(πt, νk,t) so that we may write the technology as

θk,t+1 = fk,s (θt, Ik,t, θP , πt, νk,t) . (3.10)

πt is assumed to be a scalar shock independent over people but not over time. It is a

common shock that affects all technologies, but its effect may differ across technologies.

The component νk,t is independent of θt, Ik,t, θP , yt and independent of νk,t′ for t′ 6= t. Its

realization takes place at the end of period t, after investment choices have already been

24We discuss the identification of the factor loadings in this case in Web Appendix 4.
25Thus the “multiple measurements”on yt are all equal to each other in each period t.
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made and implemented. The shock πt is realized before parents make investment choices, so

we expect Ik,t to respond to it.

We analyze a model of investment of the form

Ik,t = qk,t (θt, θP , yt, πt) , k ∈ {C,N}, t ∈ {1, . . . , T}. (3.11)

Equation (3.11) is the investment policy function that maps state variables for the parents,

(θt, θP , yt, πt), to the control variables Ik,t for k ∈ {C,N}.26

Our analysis relies on the assumption that the disturbances πt and νk,t in Equation (3.10)

are both scalar, although all other variables may be vector-valued. If the disturbances πt are

i.i.d., identification is straightforward. To see this, impose an innocuous normalization (e.g.,

assume a specific marginal distribution for πt). Then, the relationship Ik,t = qk,t (θt, θP , yt, πt)

can be identified along the lines of the argument of Section 3.2 or 3.3, provided, for instance,

that πt is independent from (θt, θP , yt).

If πt is serially correlated, it is not plausible to assume independence between πt and θt,

because past values of πt will have an impact on both current πt and on current θt (via the

effect of past πt on past Ik,t). To address this problem, lagged values of income yt can be used

as instruments for θt (θP and yt could serve as their own instruments). This approach works

if πt is independent of θP as well as past and present values of yt. After normalization of

the distribution of the disturbance πt, the general nonseparable function qt can be identified

using quantile instrumental variable techniques (Chernozhukov et al., 2007), under standard

assumptions in that literature, including monotonicity and completeness.27

Once the functions qk,t have been identified, one can obtain q−1
k,t (θt, θP , yt, Ik,t), the inverse

of qk,t (θt, θP , yt, πt) with respect to its last argument, provided qk,t (θt, θP , yt, πt) is strictly

monotone in πt at all values of the arguments. We can then rewrite the technology function

(3.11) as:

θk,t+1 = fk,s
(
θt, Ik,t, θP , q

−1
k,t (θt, θP , yt, Ik,t) , νk,t

)
≡ f rf

k,s (θt, Ik,t, θP , yt, νk,t) .

Again using standard nonseparable identification techniques and normalizations, one can

show that the reduced form f rf is identified. Instruments are unnecessary here, because

the disturbance νk,t is assumed independent of all other variables. However, to identify

the technology fk,s, we need to disentangle the direct effect of θt, Ik,t, θP on θt+1 from their

26The assumption of a common shock across technologies produces singularity across the investment
equations (3.11). This is not a serious problem because, as noted below in Section 4.2.5, we cannot distinguish
cognitive investment from noncognitive investment in our data. We assume a single common investment so
qk,t(·) = qt(·) for k ∈ {C,N}.

27Complete regularity conditions along with a proof are presented in Web Appendix 3.3.
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indirect effect through πt = q−1
k,t (θt, θP , yt, Ik,t). To accomplish this, we exploit our knowledge

of q−1
k,t (θt, θP , yt, Ik,t) to write:

fk,s (θt, Ik,t, θP , πt, νk,t) = f rf
k,s (θt, Ik,t, θP , yt, νk,t)|yt:q−1

k,t(θt,θP ,yt,Ik,t)=πt

where, on the right-hand side, we set yt such that the corresponding implied value of πt

matches its value on the left-hand side. This does not necessarily require q−1
k,t (θt, θP , yt, Ik,t)

to be invertible with respect to yt, since we only need one suitable value of yt for each given

(θt, θP , Ik,t, πt) and do not necessarily require a one-to-one mapping. By construction, the

support of the distribution of yt conditional on θt, θP , Ik,t, is sufficiently large to guarantee

the existence of at least one solution because, for a fixed θt, Ik,t, θP , variations in πt are

entirely due to yt. We present a more formal discussion of our identification strategy in

Section 3.3 of the Web appendix.

In our empirical analysis, we make further parametric assumptions regarding fk,s and qk,t,

which open the way to a more convenient estimation strategy to account for endogeneity.

The idea is to assume that the function qk,t (θt, θP , yt, πt) is parametrically specified and

additively separable in πt, so that its identification follows under standard instrumental

variables conditions. Next, we replace Ik,t by its value given by the policy function in the

technology

θk,t+1 = fk,s (θt, qk,t (θt, θP , yt, πt) , θP , πt, νk,t) .

Eliminating Ik,t solves the endogeneity problem because the two disturbances πt and νk,t are

now independent of all explanatory variables, by assumption if the πt are serially indepen-

dent. Identification is secured by assuming that fk,s is parametric and additively separable

in νk,t (whose conditional mean is zero) and by assuming a parametric form for fπt (πt), the

density of πt. We can then write:

E [θk,t+1|θt, θP , yt] =

∫
fk,s (θt, qk,t (θt, θP , yt, πt) , θP , πt, 0) fπt (πt) dπt ≡ f̃k,s (θt, θP , yt, β) .

The right-hand is now known up to a vector of parameters β which will be (at least) locally

identified if it happens that ∂f̃k,s (θt, θP , yt, β) /∂β evaluated at the true value of β is a

vector function of θt, θP , yt that is linearly independent. Section 4.2.5 below describes the

specific functional forms used in our empirical analysis, and relaxes the assumption of serial

independence of the πt.
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4 Estimating the Technology of Skill Formation

Technology (2.1) and the associated measurement systems are nonparametrically identified.

However, we use parametric maximum likelihood to estimate the model and do not estimate

it under the most general conditions. We do this for two reasons. First, a fully nonparametric

approach is too data hungry to apply to samples of the size that we have at our disposal,

because the convergence rates of nonparametric estimators are quite slow. Second, solving a

high-dimensional dynamic factor model is a computationally demanding task that can only

be made manageable by invoking parametric assumptions. Nonetheless, the analysis of this

paper shows that in principle the parametric structure used to secure the estimates reported

below is not strictly required to identify the technology. The likelihood function for the

model is presented in Web Appendix 5. Web Appendix 6 describes the nonlinear filtering

algorithm we use to estimate the technology. Web Appendix 7 discusses how we implement

anchoring. Section 8 of the Web Appendix reports a limited Monte Carlo study of a version

of the general estimation strategy discussed in Section 4.2.5 below.

We estimate the technology on a sample of 2207 firstborn white children from the Children

of the NLSY/79 (CNLSY/79) sample (see Center for Human Resource Research, 2004).

Starting in 1986, the children of the NLSY/1979 female respondents, ages 0-14, have been

assessed every two years. The assessments measure cognitive ability, temperament, motor

and social development, behavior problems, and self-competence of the children as well as

their home environments. Data are collected via direct assessment and maternal report

during home visits at every biannual wave. Section 9 of the Web Appendix discusses the

measurements used to proxy investment and output. Web Appendix Tables 9-1–9-3 present

summary statistics on the sample we use.28 We estimate a model for a single child and ignore

interactions among children and the allocation decisions of multiple child families.

To match the biennial data collection plan, in our empirical analysis, a period is equivalent

to two years. We have eight periods distributed over two stages of development.29 We report

estimates for a variety of specifications.

Dynamic factor models allow us to exploit the wealth of measures on investment and

28While we have rich data on home inputs, the information on schooling inputs is not so rich. Consistent
with results reported in Todd and Wolpin (2005), we find that the poorly measured schooling inputs in the
CNLSY are estimated to have only weak and statistically insignificant effects on outputs. Even correcting
for measurement error, we find no evidence for important effects of schooling inputs on child outcomes. This
finding is consistent with the Coleman Report (1966) that finds weak effects of schooling inputs on child
outcomes once family characteristics are entered into an analysis. We do not report estimates of the model
which include schooling inputs.

29The first period is age 0, the second period is ages 1-2, the third period covers ages 3-4, and so on until
the eighth period in which children are 13-14 years-old. The first stage of development starts at age 0 and
finishes at ages 5-6, while the second stage of development starts at ages 5-6 and finishes at ages 13-14.
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outcomes available in the CNLSY data. They solve several problems in estimating skill

formation technologies. First, there are many proxies for parental investments in children’s

cognitive and noncognitive development. Using a dynamic factor model, we let the data

pick the best combinations of family input measures that predict levels and growth in test

scores. Measured inputs that are not very informative on family investment decisions will

have negligible estimated factor loadings. Second, our models help us solve the problem of

missing data. Assuming that the data are missing at random, we integrate out the missing

items from the sample likelihood.

In practice, we cannot empirically distinguish investments in cognitive skills from invest-

ments in noncognitive skills. Accordingly, we assume investment in period t is the same for

both skills although it may have different effects on those skills. Thus we assume IC,t = IN,t

and define it as It.

4.1 Empirical Specification

We use the separable measurement system (3.1). We estimate versions of the technology

(2.3)-(2.4) augmented to include shocks:

θk,t+1 =
[
γs,k,1θ

φs,k
C,t + γs,k,2θ

φs,k
N,t + γs,k,3I

φs,k
t + γs,k,4θ

φs,k
C,P + γs,k,5θ

φs,k
N,P

] 1
φs,k eηk,t+1 , (4.1)

where γs,k,l ≥ 0 and
∑5

l=1 γs,k,l = 1, k ∈ {C,N}, t ∈ {1, 2}, s ∈ {1, 2}. We assume that

the innovations are normally distributed: ηk,t ∼ N
(
0, δ2

η,s

)
. We further assume that the ηk,t

are serially independent over all t and are independent of η`,t for k 6= `. We assume that

measurements Za,k,t,j proxy the natural logarithms of the factors. In the text, we report only

anchored results.30 For example, for a = 1,

Z1,k,t,j = µ1,k,t,j + α1,k,t,j ln θk,t + ε1,k,t,j

j ∈ {1, . . . ,Ma,k,t}, t ∈ {1, . . . , T}, k ∈ {C,N}.

We use the factors (and not their logarithms) as arguments of the technology.31 This keeps

the latent factors non-negative, as is required for the definition of technology (4.1). Collect

the ε terms for period t into a vector εt. We assume that εt ∼ N (0,Λt), where Λt is a

diagonal matrix. We impose the condition that εt is independent from εt′ for t 6= t′ and all

30Web Appendix 11.1 compares anchored and unanchored results.
31We use five regressors (X) for every measurement equation: a constant, the age of the child at the

assessment date, the child’s gender, a dummy variable if the mother was less than 20 years-old at the time
of the first birth, and a cohort dummy (one if the child was born after 1987 and zero otherwise).
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ηk,t+1. Define the tth row of θ as θrt where r stands for row. Thus

ln θrt = (ln θC,t, ln θN,t, ln It, ln θC,P , ln θN,P , lnπ) .

Identification of this model follows as a consequence of Theorems 1 and 2 and results in

Matzkin (2003, 2007). We estimate the model under different assumptions about the distri-

bution of the factors. Under the first specification, ln θrt is normally distributed with mean

zero and variance-covariance matrix Σt. Under the second specification, ln θrt is distributed

as a mixture of T normals. Let φ (x;µt,τ ,Σt,τ ) denote the density of a normal random vari-

able with mean µt,τ and variance-covariance matrix Σt,τ . The mixture of normals writes the

density of ln θrt as

p (ln θrt ) =
T∑
τ=1

ωτφ (ln θrt ;µt,τ ,Σt,τ )

subject to:
∑T

τ=1 ωτ = 1 and
∑T

τ=1 ωτµt,τ = 0.

Our anchored results allow us to compare the productivity of investments and stocks of

different skills at different stages of the life cycle on the anchored outcome. In this paper,

we mainly use completed years of education by age 19, a continuous variable, as an anchor.

4.2 Empirical Estimates

This section presents results from an extensive empirical analysis that estimates the multi-

stage technology of skill formation accounting for measurement error, non-normality of the

factors, endogeneity of inputs and family investment decisions. The plan of this section is as

follows. We first present baseline two stage models that anchor outcomes in terms of their

effects on schooling attainment, that correct for measurement errors, and that assume that

the factors are normally distributed. These models do not account for endogeneity of inputs

through unobserved heterogeneity components or family investment decisions. The baseline

model is far more general than what is presented in previous research on the formation of

child skills that uses unanchored test scores as outcome measures and does not account for

measurement error.32

We present evidence on the first order empirical importance of measurement error. When

we do not correct for it, the estimated technology suggests that there is no effect of early

investment on outcomes. Controlling for endogeneity of family inputs by accounting for

unobserved heterogeneity (π), and accounting explicitly for family investment decisions has

substantial effects on estimated parameters.

32An example is the analysis of Fryer and Levitt (2004).
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The following empirical regularities emerge across all models that account for measure-

ment error.33 Self productivity of skills is greater in the second stage than in the first stage.

Noncognitive skills are cross productive for cognitive skills in the first stage of production.

The cross productivity effect is weaker and less precisely determined in the second stage.

There is no evidence for a cross productivity effect of cognitive skills on noncognitive skills at

either stage. The estimated elasticity of substitution for inputs in cognitive skill is substan-

tially lower in the second stage of a child’s life cycle than in the first stage. For noncognitive

skills, the elasticity in the second period is slightly higher for models that control for un-

observed heterogeneity (π). These estimates suggest that it is easier to redress endowment

deficits that determine cognition in the first stage of a child’s life cycle than in the second

stage. For socioemotional (noncognitive) skills, the opposite is true. For cognitive skills,

the productivity parameter associated with parental investment (γ1,C,3) is greater in the first

stage than in the second stage (γ2,C,3). For noncognitive skills, the pattern of estimates

for the productivity parameter across models is less clear cut, but there are not dramatic

differences across the stages. For both outputs, the parameter associated with the effect of

parental noncognitive skills on output is smaller at the second stage than the first stage.

Web Appendix 11 discusses the sensitivity of estimates of a one-stage two-skill model

to alternative anchors and to allowing for nonnormality of the factors. For these and other

estimated models which are not reported, allowing for nonnormality has only minor effects

on the estimates. However, anchoring affects the estimates.34 To facilitate computation, we

use years of schooling attained as the anchor in all of the models reported in this section of

the paper.35

4.2.1 The Baseline Specification

Table 1 presents evidence on our baseline two stage model of skill formation. Outcomes are

anchored in years of schooling attained. Factors are assumed to be normally distributed

and we ignore heterogeneity (π). The estimates show that for both skills, self productivity

increases in the second stage. Noncognitive skills foster cognitive skills in the first stage but

not in the second stage. Cognitive skills have no cross-productivity effect on noncognitive

skills at either stage.36 The productivity parameter for investment is greater in the first

period than the second period for either skill. The difference across stages in the estimated

33Estimated parameters are reported in Web Appendix 10.
34Cunha and Heckman (2008) show the sensitivity of the estimates to alternative anchors for a linear

model specification.
35The normalizations for the factors are presented in Web Appendix 10.
36Zero values of coefficients in this and other tables arise from the optimizer attaining a boundary of zero

in the parameter space.
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parameters is dramatic for cognitive skills. The variability in the shocks is greater in the

second period than in the first period. The elasticity of substitution for cognitive skills is

much greater in the first period than in the second period. However, the estimated elasticity

of substitution is about the same in both stages of production.

For cognitive skill production, the parental cognitive skill parameter is about the same in

both stages. The opposite is true for parental noncognitive skills. In producing noncognitive

skills, parental cognitive skills play no role in the second stage. Parental noncognitive skills

play a strong role in stage 1 and a weaker role in stage 2.

4.2.2 The Empirical Importance of Measurement Error

Using our estimated factor model, we can investigate the extent of measurement error on

each measure of skill and investment in our data. To simplify the notation, we keep the

conditioning on the regressors implicit and, without loss of generality, consider the measure-

ments on cognitive skills in period t. For linear measurement systems, the variance can be

decomposed as follows:

V ar (Z1,C,t,j) = α2
1,C,t,jV ar (ln θC,t) + V ar (ε1,C,t,j) .

The fractions of the variance of Z1,C,t,j due to measurement error, sε1,C,t,j, and true signal,

sθ1,C,t,j are, respectively,

sε1,C,t,j =
V ar (ε1,C,t,j)

α2
1,C,t,jV ar (ln θC,t) + V ar (ε1,C,t,j)

(noise)

and

sθ1,C,t,j =
α2

1,C,t,jV ar (ln θC,t)

α2
1,C,t,jV ar (ln θC,t) + V ar (ε1,C,t,j)

(signal).

For each measure of skill and investment used in the estimation, we construct sε1,C,t,j and

sθ1,C,t,j which are reported in Table 2A. Note that the early proxies tend to have a higher

fraction of observed variance due to measurement error. For example, the measure that

contains the lowest true signal ratio is the MSD (Motor and Social Developments Score) at

year of birth, in which less than 5% of the observed variance is signal. The proxy with the

highest signal ratio is the PIAT Reading Recognition Scores at ages 5-6, for which almost

96% of the observed variance is due to the variance of the true signal. Overall, about 54%

of the observed variance is associated with the cognitive skill factors θC,t.

Table 2A also shows the same ratios for measures of childhood noncognitive skills. The
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measures of noncognitive skills tend to be lower in informational content than their cognitive

counterparts. Overall, less than 40% of the observed variance is due to the variance associated

with the factors for noncognitive skills. The poorest measure for noncognitive skills is the

“Sociability” measure at ages 3-4, in which less than 1% of the observed variance is signal.

The richest is the “BPI Headstrong” score, in which almost 62% of the observed variance is

due to the variance of the signal.

Table 2A also presents the signal-noise ratio of measures of parental cognitive and noncog-

nitive skills. Overall, measures of maternal cognitive skills tend to have a higher information

content than measures of noncognitive skills. While the poorest measurement on cognitive

skills has a signal ratio of almost 35%, the richest measurements on noncognitive skills are

slightly above 40%.

Analogous estimates of signal and noise for our investment measures are reported in

Table 2B. Investment measures are much noisier than either measure of skill. The measures

for investments at earlier stages tend to be noisier than the measures at later stages. It is

interesting to note that the measure “Number of Books” has a high signal-noise ratio at

early years, but not in later years. At earlier years, the measure “How Often Mom Reads to

the Child” has about the same informational content as “Number of Books.” In later years,

measures such as “How Often Child Goes to the Museum” and “How Often Child Goes to

Musical Shows” have higher signal-noise ratios.

These estimates suggest that it is likely to be empirically important to control for mea-

surement error in estimating technologies of skill formation. A general pattern is that at early

ages compared to later ages, measures of skill tend to be riddled with measurement error,

while the reverse pattern is true for the measurement errors for the proxies for investment.

4.2.3 The Effect of Ignoring Measurement Error on the Estimated Technology

We now demonstrate the impact of neglecting measurement error on estimates of the tech-

nology. To make the most convincing case for the importance of measurement error, we use

the least error prone proxies as determined in our estimates of Table 2.37 We continue to

assume no heterogeneity.

Not accounting for measurement error has substantial effects on the estimated technology.

37At birth we use Cognitive Skill: weight at birth, Noncognitive Skill: Temperament/Difficulty Scale,
Parental Investment: Number of books. At ages 1–2 we use Cognitive Skill: Body Parts, Noncognitive Skill:
Temperament/Difficulty Scale, Parental Investment: Number of books. At ages 3–4 we use Cognitive Skill:
PPVT, Noncognitive Skill: BPI Headstrong, Parental Investment: How often mother reads to the child. At
ages 5–6 to ages 13–14 we use Cognitive Skill: Reading Recognition, Noncognitive Skill: BPI Headstrong,
Parental Investment: How often child is taken to musical performances. Maternal Skills are time invariant:
For Maternal Cognitive Skill: ASVAB Arithmetic Reasoning, For Maternal Noncognitive Skill: Self-Esteem
Item: I am a failure.
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Comparing the estimates in Table 3 with those in Table 1, the estimated first stage investment

effects are much less precisely estimated in a model that ignores measurement errors than

in a model that corrects for them. In the second stage, the estimated investment effects are

generally stronger. Unlike all of the specifications that control for measurement error, we

estimate strong cross productivity effects of cognitive skills on noncognitive skill production.

As in Table 1, there are cross productivity effects of noncognitive skills on cognitive skills

at both stages although the estimated productivity parameters are somewhat smaller. The

estimated elasticities of substitution for cognitive skills at both stages are comparable across

the two specifications. The elasticities of substitution for noncognitive skills are substantially

lower at both stages in the specification that does not control for measurement error. The

error variances of the shocks are substantially larger. Parental cognitive skills are estimated

to have substantial effects on childhood cognitive skills but not their noncognitive skills.

This contrasts with the estimates reported in Table 1 that show strong effects of parental

noncognitive skills on childhood cognitive skills in both stages, and on noncognitive skills in

the first stage.

4.2.4 Controlling for Time-Invariant Unobserved Heterogeneity in the Esti-

mated Technology

We next consider the effect of controlling for unobserved heterogeneity in the model, with

estimates reported in Table 1. We follow the method discussed in Section 3.6.1. Doing so

allows for endogeneity of the inputs. We break the error term for the technology into two

parts: a time-invariant unobserved heterogeneity factor π that is correlated with the vector

(θt, It, θP ) and an i.i.d. error term νk,t that is assumed to be uncorrelated with all other

variables.

Table 4 shows that correcting for heterogeneity, the estimated coefficients for parental

investments have a greater impact on cognitive skills at the first stage. The coefficient on

parental investment in the first stage is γ1,C,3
∼= 0.16, while in the second stage γ2,C,3

∼= 0.04.

The elasticity of substitution in the first stage is well above one, σ1,C = 1
1−0.31

∼= 1.45,

and in the second stage it is well below one, σ2,C
∼= 1

1+1.24
∼= 0.44. These estimates are

statistically significantly different from each other and from the estimates of the elasticities

of substitution σ1,N and σ2,N .38 These results suggest that early investments are important

in producing cognitive skills. Consistent with the estimates reported in Table 1, noncognitive

skills increase cognitive skills in the first stage, but not in the second stage. Parental cognitive

and noncognitive skills affect the accumulation of childhood cognitive skills.

38See Table 10-5 in Web Appendix 10.
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Panel B of Table 4 presents estimates of the technology of noncognitive skills. Note that,

contrary to the estimates reported for the technology for cognitive skills, the elasticity of

substitution increases slightly from the first stage to the second stage. For the early stage,

σ1,N
∼= 0.62 while for the late stage, σ2,N

∼= 0.65. The elasticity is about 50% higher for

investments in noncognitive skills for the late stage in comparison to the elasticity for invest-

ments in cognitive skills. The estimates of σ1,N and σ2,N are not statistically significantly

different from each other, however.39 The impact of parental investments is about the same

at early and late stages (γ1,N,3
∼= 0.06 vs. γ2,N,3

∼= 0.05). Parental noncognitive skills affect

the accumulation of a child’s noncognitive skills both in early and late periods, but parental

cognitive skills have no effect on noncognitive skills at either stage. The estimates in Ta-

ble 4 show a strong effect of parental cognitive skills at both stages of the production of

noncognitive skills.

4.2.5 A More General Approach to Solving the Problem of the Endogeneity of

Inputs

This section relaxes the invariant heterogeneity assumption and reports empirical results

from a more general model of time-varying heterogeneity. Our approach to estimation is

motivated by the general analysis of Section 3.6.2, but, in the interest of computational

tractability, we make parametric and distributional assumptions.

We augment the measurement system (3.1)–(3.3) by investment equation (3.11), which

is motivated by economic theory. Our investment equation is

It = kCθC,t + kNθN,t + kC,P θC,P + kN,P θN,P + kyyt + πt.
40 (4.2)

We substitute (4.2) into equations (3.2) and (3.10). We specify the income process as

ln yt = ρy ln yt−1 + νy,t, (4.3)

and the equation of motion for πt as

πt = ρππt−1 + νπ,t. (4.4)

We assume that νy,t ⊥⊥ (θt′ , νy,t′) for all t′ 6= t and νy,t ⊥⊥ (yt′ , νk,t, θP ), t > t′, k ∈ {C,N},
where “⊥⊥” means independence. We further assume that νπ,t ⊥⊥ (θt′ , θp, νk,t′) and that

39See Table 10-5 in Web Appendix 10.
40The intercept of the equation is absorbed into the intercept of the measurement equation.
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(θ1, y1) ⊥⊥ π.41 In addition, νy,t ∼ N
(
0, σ2

y

)
and νπ,t ∼ N (0, σ2

π). In Web Appendix 8, we

report favorable results from a Monte Carlo study of the estimator based on these assump-

tions.

Table 5 reports estimates of this model.42 Allowing for time-varying heterogeneity does

not greatly affect the estimates from the model that assumes fixed heterogeneity reported

in Table 4. In the results that we describe below, we allow the innovation πt to follow

an AR(1) process and estimate the investment equation qk,t along with all of the other

parameters estimated in the model reported in Table 4.43 Estimates of the parameters of

equation (4.2) are presented in Web Appendix 10. We also report estimates of the anchoring

equation and other outcome equations in that appendix.44 When we introduce an equation

for investment, the impact of early investments on the production of cognitive skill increases

from γ1,C,3
∼= 0.17 (see Table 4, Panel A) to γ1,C,3

∼= 0.26 (see Table 5, Panel A). At the

same time, the estimated first stage elasticity of substitution for cognitive skills increases

from σ1,C = 1
1−φ1,C

∼= 1.5 to σ1,C = 1
1−φ1,C

∼= 2.4. Note that for this specification the

impact of late investments in producing cognitive skills remains largely unchanged at γ2,C,3

∼= 0.045 (compare Table 4, Panel A with Table 5, Panel A). The estimate of the elasticity of

substitution for cognitive skill technology is about the same as σ2,C = 1
1−φ2,C

∼= 0.44 (Table

4, Panel A) and σ2,C = 1
1−φ2,C

∼= 0.45 (see Table 5, Panel A).

We obtain comparable changes in our estimates of the technology for producing noncog-

nitive skills. The estimated impact of early investments increases from γ1,N,3
∼= 0.065 (see

Table 4, Panel B) to γ1,N,3
∼= 0.209 (in Table 5, Panel B). The elasticity of substitution

for noncognitive skills in the early period rises, changing from σ1,N = 1
1−φ1,N

∼= 0.62 to

σ1,N = 1
1−φ1,N

∼= 0.68 (in Table 5, Panel B). The estimated share parameter for late invest-

ments in producing noncognitive skills increases from γ2,N,3
∼= 0.05 to γ2,N,3

∼= 0.10. Compare

Table 4, Panel B with Table 5, Panel B. When we include an equation for investments, the

estimated elasticity of substitution for noncognitive skills slightly increases at the later stage,

from σ2,N = 1
1−φ2,N

∼= 0.645 (in Table 4, Panel B) to σ2,N = 1
1−φ2,N

∼= 0.66 (in Table 5, Panel

B), but this difference is not statistically significant. Thus, the estimated elasticities of sub-

stitution from the more general procedure show roughly the same pattern as those obtained

from the procedure that assumes time-invariant heterogeneity.45

41This assumption enables us to identify the parameters of equation (4.2).
42Table 10-6 in Web Appendix 10 reports estimates of the parameters of the investment equation (4.2).
43We model q as time invariant, linear and separable in its arguments, although this is not a necessary

assumption in our identification, but certainly helps to save on computation time and to obtain tighter
standard errors for the policy function and the production function parameters. Notice that under our
assumption IC,t = IN,t = It, and time invariance of the investment function, it follows that qk,t = qt = q for
all t.

44We also report the covariance matrix for the initial conditions of the model in the appendix.
45We cannot reject the null hypothesis that σ1,N = σ2,N but we reject the null hypothesis that σ1,C = σ2,C

30



The general pattern of decreasing substitution possibilities across stages for cognitive

skills and roughly constant or slightly increasing substitution possibilities for noncognitive

skills is consistent with the literature on the evolution of cognitive and personality traits

(see Borghans et al., 2008; Shiner, 1998; Shiner and Caspi, 2003). Cognitive skills stabilize

early in the life cycle and are difficult to change later on. Noncognitive traits flourish, i.e.,

more traits are exhibited at later ages of childhood, and there are more possibilities (more

margins to invest in) for compensation of disadvantage. For a more extensive discussion, see

Web Appendix 1.2.

4.2.6 A Model Based Only on Cognitive Skills

Most of the empirical literature on skill production focuses on cognitive skills as the output

of family investment (see, e.g., Todd and Wolpin, 2005, 2007, and the references they cite).

It is of interest to estimate a more traditional model that ignores noncognitive skills and the

synergism between cognitive and noncognitive skills and between investment and noncog-

nitive skills in production. Web Appendix Table 14.1 reports estimates of a version of the

model in Table 4, based on a model with time-invariant heterogeneity, where noncognitive

skills are excluded from the analysis.

The estimated self-productivity effect increases from the first stage to the second stage, as

occurs with the estimates found for all other specifications estimated in this paper. However,

the estimated first period elasticity of substitution is much smaller than the corresponding

parameter in Table 4. The estimated second period elasticity is slightly higher. The es-

timated productivity parameters for investment are substantially higher in both stages of

the model reported in Web Appendix Table 14.1, as are the productivity parameters for

parental cognitive skills. We note in the next section that the policy implications from a

cognitive-skill-only model are very different from the policy implications for a model with

cognitive and noncognitive skills.

4.3 Interpreting the Estimates

The major findings from our analysis of models with two skills that control for measure-

ment error and endogeneity of inputs are: (a) Self-productivity becomes stronger as children

become older, for both cognitive and noncognitive skill formation. (b) Complementarity

between cognitive skills and investment becomes stronger as children become older. The

elasticity of substitution for cognition is smaller in second stage production. It is more diffi-

cult to compensate for the effects of adverse environments on cognitive endowments at later

and that the elasticities of different skills are equal. See Table 10-7 in Web Appendix 10.
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ages than it is at earlier ages.46 This pattern of the estimates helps to explain the evidence on

ineffective cognitive remediation strategies for disadvantaged adolescents reported in Cunha,

Heckman, Lochner, and Masterov (2006). (c) Complementarity between noncognitive skills

and investments becomes slightly weaker as children become older, but the estimated effects

are not that different across stages of the life cycle. The elasticity of substitution between

investment and current endowments increases slightly between the first stage and the sec-

ond stage in the production of noncognitive skills. It is somewhat easier at later stages of

childhood to remediate early disadvantage using investments in noncognitive skills.

Using the estimates present in Table 4, we find that 34% of the variation in educational

attainment in the sample is explained by the measures of cognitive and noncognitive capa-

bilities that we use. 16% is due to adolescent cognitive capabilities. 12% is due to adolescent

noncognitive capabilities.47 Measured parental investments account for 15% of the varia-

tion in educational attainment. These estimates suggest that the measures of cognitive and

noncognitive capabilities that we use are powerful, but not exclusive, determinants of edu-

cational attainment and that other factors, besides the measures of family investment that

we use, are at work in explaining variation in educational attainment.

To examine the implications of these estimates, we analyze a standard social planning

problem that can be solved solely from knowledge of the technology of skill formation and

without knowledge of parental preferences and parental access to lending markets. We

determine optimal allocations of investments from a fixed budget to maximize aggregate

schooling for a cohort of children. We also consider a second social planning problem that

minimizes aggregate crime. Our analysis assumes that the state has full control over family

investment decisions. We do not model parental investment responses to the policy. These

simulations produce a measure of the investment that is needed from whatever source to

achieve the specified target.

Suppose that there are H children indexed by h ∈ {1, . . . , H}. Let (θC,1,h, θN,1,h) de-

note the initial cognitive and noncognitive skills of child h. She has parents with cognitive

and noncognitive skills denoted by θC,P,h and θN,P,h, respectively. Let πh denote additional

unobserved determinants of outcomes. Denote θ1,h = (θC,1,h, θN,1,h, θC,P,h, θN,P,h, πh) and let

F (θ1,h) denote its distribution. We draw H people from the estimated initial distribution

F (θ1,h). We use the estimates reported in Table 4 in this simulation. The key substitution

parameters are basically the same in this model and the more general model with estimates

reported in Table 5.48 The price of investment is assumed to be the same in each period.

46This is true even in a model that omits noncognitive skills.
47The skills are correlated so the marginal contributions of each skill do not add up to 34%. The decom-

position used to produce these estimates is discussed in Web Appendix 12.
48Simulation from the model of Section 3.6.2 (with estimates reported in Section 4.2.5) that has time-

32



The social planner maximizes aggregate human capital subject to a budget constraint

B = 2H, so that the per capita budget is 2 units of investment. We draw H children from

the initial distribution F (θ1,h), and solve the problem of how to allocate finite resources 2H

to maximize the average education of the cohort. Formally, the social planner maximizes

aggregate schooling

max S̄ =
1

H

H∑
h=1

S (θC,3,h, θN,3,h, πh) ,

subject to the aggregate budget constraint,

H∑
h=1

(I1,h + I2,h) = 2H, (4.5)

the technology constraint,

θk,t+1,h = fk,t (θC,t,h, θN,t,h, θC,P,h, θN,P,h, πh) for k ∈ {C,N} and t ∈ {1, 2},

and the initial endowments of the child and her family. We assume no discounting. Solving

this problem, we obtain optimal early and late investments, I1,h and I2,h, respectively, for

each child h. An analogous social planning problem is used to minimize crime.

Figures 2 (for the child’s personal endowments) and 3 (for maternal endowments) show

the profiles of early (left-hand side graph) and late (right-hand side graph) investment as

a function of child and maternal endowments (lighter shading corresponds to higher values

of investment). Endowments are measured in units of standard deviations from the means.

In each figure, the endowments not plotted are fixed at sample mean values. The optimal

policy is to invest relatively more in the disadvantaged compared to the advantaged in the

early years. Moon (2010) shows that, in actuality, society and family together invest much

more in the early years of the advantaged compared to the disadvantaged. The decline in

investment by level of advantage is dramatic for early investment. Second period investment

profiles are much flatter and slightly favor relatively more investment in more advantaged

children. A similar profile emerges for investments to reduce aggregate crime, which for the

sake of brevity, we do not display.

Figures 4 and 5 reveal that the ratio of optimal early-to-late investment as a function of

the child’s personal endowments declines with advantage whether the social planner seeks to

maximize educational attainment (left hand side) or to minimize aggregate crime (right hand

side). A somewhat similar pattern emerges for the optimal ratio of early-to-late investment

varying child quality is considerably more complicated because of the high dimensionality of the state space.
We leave this for another occasion.

33



as a function of maternal endowments with one interesting twist. The optimal investment

ratio is non-monotonic in the mother’s cognitive skill for each level of her noncognitive skills.

At very low or very high levels of maternal cognitive skills, it is better to invest relatively

more in the second period than if the mother’s cognitive endowment is at the mean.

The optimal ratio of early-to-late investment depends on the desired outcome, the en-

dowments of children and the budget. Figure 6 plots the density of the optimal ratio of

early-to-late investment for education and crime.49 For both outcomes and for most initial

endowments, it is optimal to invest relatively more in the first stage. Crime is more inten-

sive in noncognitive skill than educational attainment, which depends much more strongly on

cognitive skills. Because compensation for adversity in cognitive skills is much more costly

in the second stage than in the first stage, it is efficient to invest relatively more in cognitive

traits in the first stage relative to the second stage to promote education. Crime is more

intensive in noncognitive skills. For such skills, the rise in second stage compensation costs

is less steep. Thus the optimal policy for preventing crime is relatively less intensive in first

stage investment.

These simulations suggest that the timing and level of optimal interventions for dis-

advantaged children depend on the conditions of disadvantage and the nature of desired

outcomes. Targeted strategies are likely to be effective especially for different targets that

weight cognitive and noncognitive traits differently.50

4.3.1 Some Economic Intuition that Explains the Simulation Results

This subsection provides an intuition for the simulation results just discussed. Given the

(weak) complementarity implicit in technology (2.3) and (2.4), how is it possible to obtain our

result that it is optimal to invest relatively more in the early years of the most disadvantaged?

The answer hinges on the interaction between different measures of disadvantage.

Consider the following example where individuals have a single capability, θ. Suppose

that there are two children, A and B, born with initial skills θA1 and θB1 , respectively. Let θAP
and θBP denote the skills of the parents A and B, respectively. Suppose that there are two

periods for investment, which we denote by periods 1 (early) and 2 (late). For each period,

there is a different technology that produces skills. Assume that the technology for period

49The optimal policy is not identical for each h and depends on θ1,h, which varies in the population. The
education outcome is the number of years of schooling attainment. The crime outcome is whether or not the
individual has been on probation. Estimates of the coefficients of the outcome equations including those for
crime are reported in Web Appendix 10.

50Web Appendix 13 presents additional simulations of the model for an extreme egalitarian criterion that
equalizes educational attainment across all children. We reach the same qualitative conclusions about the
optimality of differentially greater investment in the early years for disadvantaged children.
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one is:

θ2 = γ1θ1 + γ2I1 + (1− γ1 − γ2) θP .

For period two it is:

θ3 = min {θ2, I2, θP} .

These patterns of complementarity are polar cases that represent, in extreme form, the

empirical pattern found for cognitive skill accumulation: that substitution possibilities are

greater early in life compared to later in life.

The problem of society is to choose how much to invest in child A and child B in periods

1 and 2 to maximize total aggregate skills, θA3 + θB3 , subject to the resource constraint

IA1 + IA2 + IB1 + IB2 ≤M , where M is total resources available for investment. Formally, the

problem is

max

[
min

{
γ1θ

A
1 + γ2I

A
1 + (1− γ1 − γ2) θ

A
P , I

A
2 , θ

A
P

}
+

min
{
γ1θ

B
1 + γ2I

B
1 + (1− γ1 − γ2) θ

B
P , I

B
2 , θ

B
P

} ]
subject to: IA1 + IA2 + IB1 + IB2 ≤M (4.6)

When the resource constraint (4.6) does not bind, which it does not if M is above a

certain threshold (determined by θP ), optimal investments are

IA1 =
(γ1 + γ2) θ

A
P − γ1θ

A
1

γ2

IB1 =
(γ1 + γ2) θ

B
P − γ1θ

B
1

γ2

IA2 = θAP IB2 = θBP

Notice that if child A is disadvantaged compared to B on both measures of disadvantage,

(θA1 < θB1 and θAP < θBP ), it can happen that

IA1 > IB1 , but IA2 < IB2

if

θAP − θBP >
γ1

γ1 + γ2

(
θA1 − θB1

)
.

Thus, if parental endowment differences are less negative than the child endowment dif-

ferences (scaled by γ1
γ1+γ2

), it is optimal to invest more in the early years for the disad-

vantaged and less in the later years. Notice that since (1 − γ1 − γ2) = γP is the pro-

ductivity parameter on θP in the first period technology, we can rewrite this condition as

(θAP −θBP ) > γ1
1−γP

(θA1 −θB1 ). The higher the self-productivity (γ1) and the higher the parental

environment productivity, γP , the more likely will this inequality be satisfied for any fixed
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level of disparity.

4.4 Implications of a One Cognitive Skill Model

Web Appendix 14.1 considers the policy implications of the social planner’s problem from

our estimates of a model formulated solely in terms of cognitive skills. This is the traditional

focus in the analysis of educational production functions. (See, e.g., Todd and Wolpin, 2003,

2007 and Hanushek and Woessmann, 2008.) The optimal policy is to invest relatively more

in the early years of the initially advantaged. Our estimates of two-stage and one-stage

models based solely on cognitive skills would indicate that it is optimal to perpetuate initial

inequality, and not to invest relatively more in disadvantaged young children.

5 Conclusion

This paper formulates and estimates a multistage model of the evolution of children’s cog-

nitive and noncognitive skills as determined by parental investments at different stages of

the life cycle of children. We estimate the elasticity of substitution between contempora-

neous investment and stocks of skills inherited from previous periods and determine the

substitutability between early and late investments. We also determine the quantitative im-

portance of early endowments and later investments in determining schooling attainment.

We account for the proxy nature of the measures of parental inputs and of outputs and

find evidence for substantial measurement error which, if not accounted for, leads to badly

distorted characterizations of the technology of skill formation. We establish nonparametric

identification of a wide class of nonlinear factor models which enables us to determine the

technology of skill formation. We present an analysis of the identification of production tech-

nologies with endogenous missing inputs that is more general than the replacement function

analysis of Olley and Pakes (1996) and allows for measurement error in the proxy variables.51

A by-product of our approach is a framework for the evaluation of childhood interventions

that avoids reliance on arbitrarily scaled test scores. We develop a nonparametric approach

to this problem by anchoring test scores in adult outcomes with interpretable scales.

Using measures of parental investment and children’s outcomes from the Children of the

National Longitudinal Survey of Youth, we estimate the parameters governing the substi-

tutability between early and late investments in cognitive and noncognitive skills. In our

preferred empirical specification, we find much less evidence of malleability and substitutabil-

51See Heckman and Robb (1985), Heckman and Vytlacil (2007) and Matzkin (2007) for a discussion of
replacement functions.
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ity for cognitive skills in later stages of a child’s life cycle, while malleability for noncognitive

skills is about the same at both stages. These estimates are consistent with the evidence

reported in Cunha, Heckman, Lochner, and Masterov (2006).

These estimates imply that successful adolescent remediation strategies for disadvantaged

children should focus on fostering noncognitive skills. Investments in the early years are

important for the formation of adult cognitive skills. Furthermore, policy simulations from

the model suggest that there is no tradeoff between equity and efficiency. The optimal

investment strategy to maximize aggregate schooling attainment or to minimize aggregate

crime is to target the most disadvantaged at younger ages.

Accounting for both cognitive and noncognitive skills makes a difference. An empirical

model that ignores the impact of noncognitive skills on productivity and outcomes yields the

opposite conclusion that an economically efficient policy that maximizes aggregate schooling

would perpetuate initial advantages.
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First Stage 
Parameters

Second Stage 
Parameters

Current Period Cognitive Skills (Self-Productivity) γ1,C,1 0.487 γ2,C,1 0.902

(0.030) (0.014)

Current Period Noncognitive Skills (Cross-Productivity) γ1,C,2 0.083 γ2,C,2 0.011

(0.026) (0.005)

Current Period Investments γ1,C,3 0.231 γ2,C,3 0.020

(0.024) (0.006)

Parental Cognitive Skills γ1,C,4 0.050 γ2,C,4 0.047

(0.013) (0.008)

Parental Noncognitive Skills γ1,C,5 0.148 γ2,C,5 0.020

(0.030) (0.010)

Complementarity Parameter φ1,C 0.611 φ2,C -1.373

(0.240) (0.168)

Implied Elasticity of Substitution 1/(1−φ1,C) 2.569 1/(1−φ2,C) 0.421

Variance of Shocks ηc,t δ21,C 0.165 δ22,C 0.097

(0.007) (0.003)

First Stage 
Parameters

Second Stage 
Parameters

Current Period Cognitive Skills (Cross-Productivity) γ1,N,1 0.000 γ2,N,1 0.008

(0.025) 0.010

Current Period Noncognitive Skills (Self-Productivity) γ1,N,2 0.649 γ2,N,2 0.868

(0.034) 0.011

Current Period Investments γ1,N,3 0.146 γ2,N,3 0.055

(0.027) 0.013

Parental Cognitive Skills γ1,N,4 0.022 γ2,N,4 0.000

(0.011) 0.007

Parental Noncognitive Skills γ1,N,5 0.183 γ2,N,5 0.069

(0.031) 0.017

Complementarity Parameter φ1,N -0.674 φ2,N -0.695

(0.324) 0.274

Implied Elasticity of Substitution 1/(1−φ1,N) 0.597 1/(1−φ2,N) 0.590

Variance of Shocks ηn,t δ21,N 0.189 δ22,N 0.103

(0.012) 0.004

Note: Standard errors in parenthesis

The Technology of Noncognitive Skill Formation

Table 1

The Technology of Cognitive Skill Formation

Using the Factor Model to Correct for Measurement Error
Linear Anchoring on Educational Attainment (Years of Schooling)
No Unobserved Heterogeneity (π), Factors Normally Distributed



Measurement of Child's Cognitive Skills %Signal %Noise Measurement of Child's Noncognitive Skills %Signal %Noise

Gestation Length 0.501 0.499 Difficulty at Birth 0.151 0.849

Weight at Birth 0.557 0.443 Friendliness at Birth 0.165 0.835

Motor-Social Development at Birth 0.045 0.955 Compliance at Ages 1-2 0.232 0.768

Motor-Social Development at Ages 1-2 0.275 0.725 Insecure at Ages 1-2 0.080 0.920

Body Parts at Ages 1-2 0.308 0.692 Sociability at Ages 1-2 0.075 0.925

Memory for Locations at Ages 1-2 0.160 0.840 Difficulty at Ages 1-2 0.382 0.618

Motor-Social Development at Ages 3-4 0.410 0.590 Friendliness at Ages 1-2 0.189 0.811

Picture Vocabulary at Ages 3-4 0.431 0.569 Compliance at Ages 3-4 0.133 0.867

Picture Vocabulary at Ages 5-6 0.225 0.775 Insecure at Ages 3-4 0.122 0.878

PIAT-Mathematics at Ages 5-6 0.314 0.686 Sociability at Ages 3-4 0.008 0.992

PIAT-Reading Recognition at Ages 5-6 0.958 0.042 Behavior Problem Index Antisocial at Ages 3-4 0.405 0.595

PIAT-Reading Comprehension at Ages 5-6 0.938 0.062 Behavior Problem Index Anxiety at Ages 3-4 0.427 0.573

PIAT-Mathematics at Ages 7-8 0.465 0.535 Behavior Problem Index Headstrong at Ages 3-4 0.518 0.482

PIAT-Reading Recognition at Ages 7-8 0.869 0.131 Behavior Problem Index Hyperactive at Ages 3-4 0.358 0.642

PIAT-Reading Comprehension at Ages 7-8 0.797 0.203 Behavior Problem Index Conflict at Ages 3-4 0.336 0.664

PIAT-Mathematics at Ages 9-10 0.492 0.508 Behavior Problem Index Antisocial at Ages 5-6 0.435 0.565

PIAT-Reading Recognition at Ages 9-10 0.817 0.183 Behavior Problem Index Anxiety at Ages 5-6 0.409 0.591

PIAT-Reading Comprehension at Ages 9-10 0.666 0.334 Behavior Problem Index Headstrong at Ages 5-6 0.611 0.389

PIAT-Mathematics at Ages 11-12 0.516 0.484 Behavior Problem Index Hyperactive at Ages 5-6 0.481 0.519

PIAT-Reading Recognition at Ages 11-12 0.781 0.219 Behavior Problem Index Conflict at Ages 5-6 0.290 0.710

PIAT-Reading Comprehension at Ages 11-12 0.614 0.386 Behavior Problem Index Antisocial Ages 7-8 0.446 0.554

PIAT-Mathematics at Ages 13-14 0.537 0.463 Behavior Problem Index Anxiety Ages 7-8 0.475 0.525

PIAT-Reading Recognition at Ages 13-14 0.735 0.265 Behavior Problem Index Headstrong Ages 7-8 0.605 0.395

PIAT-Reading Comprehension at Ages 13-14 0.549 0.451 Behavior Problem Index Hyperactive Ages 7-8 0.497 0.503

Measurement of Maternal Cognitive Skills Behavior Problem Index Conflict Ages 7-8 0.327 0.673

ASVAB Arithmetic Reasoning 0.728 0.272 Behavior Problem Index Antisocial Ages 9-10 0.503 0.497

ASVAB Word Knowledge 0.625 0.375 Behavior Problem Index Anxiety Ages 9-10 0.472 0.528

ASVAB Paragraph Composition 0.576 0.424 Behavior Problem Index Headstrong Ages 9-10 0.577 0.423

ASVAB Numerical Operations 0.461 0.539 Behavior Problem Index Hyperactive Ages 9-10 0.463 0.537

ASVAB Coding Speed 0.353 0.647 Behavior Problem Index Conflict Ages 9-10 0.369 0.631

ASVAB Mathematical Knowledge 0.662 0.338 Behavior Problem Index Antisocial Ages 11-12 0.514 0.486

Measurement of Maternal Noncognitive Skills Behavior Problem Index Anxiety Ages 11-12 0.500 0.500

Self-Esteem "I am a person of worth" 0.277 0.723 Behavior Problem Index Headstrong Ages 11-12 0.603 0.397

Self-Esteem " I have good qualities" 0.349 0.651 Behavior Problem Index Hyperactive Ages 11-12 0.505 0.495

Self-Esteem "I am a failure" 0.444 0.556 Behavior Problem Index Conflict Ages 11-12 0.370 0.630

Self-Esteem "I have nothing to be proud of" 0.375 0.625 Behavior Problem Index Antisocial Ages 13-14 0.494 0.506

Self-Esteem "I have a positive attitude" 0.406 0.594 Behavior Problem Index Anxiety Ages 13-14 0.546 0.454

Self-Esteem "I wish I had more self-respect" 0.341 0.659 Behavior Problem Index Headstrong Ages 13-14 0.595 0.405

Self-Esteem "I feel useless at times" 0.293 0.707 Behavior Problem Index Hyperactive Ages 13-14 0.525 0.475

Self-Esteem "I sometimes think I am no good" 0.375 0.625 Behavior Problem Index Conflict Ages 13-14 0.414 0.586

Locus of Control "I have no control" 0.047 0.953

Locus of Control "I make no plans for the future" 0.064 0.936

Locus of Control "Luck is big factor in life" 0.041 0.959

Locus of Control "Luck plays big role in my life" 0.020 0.980

Table 2A
Percentage of Total Variance in Measurements due to Signal and Noise



Measurements of Parental Investments %Signal %Noise Measurements of Parental Investments %Signal %Noise
How Often Child Goes on Outings during Year of Birth 0.329 0.671 Child Has Musical Instruments Ages 7-8 0.022 0.978
Number of Books Child Has during Year of Birth 0.209 0.791 Family Subscribes to Daily Newspapers Ages 7-8 0.023 0.977
How Often Mom Reads to Child during Year of Birth 0.484 0.516 Child Has Special Lessons Ages 7-8 0.018 0.982
Number of Soft Toys Child Has during Year of Birth 0.126 0.874 How Often Child Goes to Musical Shows Ages 7-8 0.266 0.734
Number of Push/Pull Toys Child Has during Year of Birth 0.019 0.981 How Often Child Attends Family Gatherings Ages 7-8 0.125 0.875
How Often Child Eats with Mom/Dad during Year of Birth 0.511 0.489 How Often Child is Praised Ages 7-8 0.046 0.954
How Often Mom Calls from Work during Year of Birth 0.119 0.881 How Often Child Gets Positive Encouragement Ages 7-8 0.053 0.947
How Often Child Goes on Outings at Ages 1-2 0.148 0.852 Number of Books Child Has Ages 9-10 0.013 0.987
Number of Books Child Has Ages 1-2 0.055 0.945 Mom Reads to Child Ages 9-10 0.137 0.863
How Often Mom Reads to Child Ages 1-2 0.186 0.814 Eats with Mom/Dad Ages 9-10 0.162 0.838
Number of Soft Toys Child Has Ages 1-2 0.240 0.760 How Often Child Goes to Museum Ages 9-10 0.219 0.781
Number of Push/Pull Toys Child Has Ages 1-2 0.046 0.954 Child Has Musical Instruments Ages 9-10 0.019 0.981
How Often Child Eats with Mom/Dad Ages 1-2 0.194 0.806 Family Subscribes to Daily Newspapers Ages 9-10 0.019 0.981
Mom Calls from Work Ages 1-2 0.070 0.930 Child Has Special Lessons Ages 9-10 0.015 0.985
How Often Child Goes on Outings Ages 3-4 0.123 0.877 How Often Child Goes to Musical Shows Ages 9-10 0.242 0.758
Number of Books Child Has Ages 3-4 0.012 0.988 How Often Child Attends Family Gatherings Ages 9-10 0.115 0.885
How Often Mom Reads to Child Ages 3-4 0.088 0.912 How Often Child is Praised Ages 9-10 0.036 0.964
How Often Child Eats with Mom/Dad Ages 3-4 0.170 0.830 How Often Child Gets Positive Encouragement Ages 9-10 0.041 0.959
Number of Magazines at Home Ages 3-4 0.193 0.807 Number of Books Child Has Ages 11-12 0.016 0.984
Child Has a CD player Ages 3-4 0.021 0.979 Eats with Mom/Dad Ages 11-12 0.153 0.847
How Often Child Goes on Outings Ages 5-6 0.100 0.900 How Often Child Goes to Museum Ages 11-12 0.217 0.783
Number of Books Child Has Ages 5-6 0.009 0.991 Child Has Musical Instruments Ages 11-12 0.016 0.984
How Often Mom Reads to Child Ages 5-6 0.086 0.914 Family Subscribes to Daily Newspapers Ages 11-12 0.018 0.982
How Often Child Eats with Mom/Dad Ages 5-6 0.173 0.827 Child Has Special Lessons Ages 11-12 0.013 0.987
Number of Magazines at Home Ages 5-6 0.164 0.836 How Often Child Goes to Musical Shows Ages 11-12 0.225 0.775
Child Has CD player Ages 5-6 0.015 0.985 How Often Child Attends Family Gatherings Ages 11-12 0.103 0.897
How Often Child Goes to Museum  Ages 5-6 0.296 0.704 How Often Child is Praised Ages 11-12 0.026 0.974
Child Has Musical Instruments Ages 5-6 0.026 0.974 How Often Child Gets Positive Encouragement Ages 11-12 0.037 0.963
Family Subscribes to Daily Newspapers Ages 5-6 0.025 0.975 Number of Books Child Has Ages 13-14 0.023 0.977
Child Has Special Lessons Ages 5-6 0.020 0.980 Eats with Mom/Dad Ages 13-14 0.152 0.848
How Often Child Goes to Musical Shows Ages 5-6 0.304 0.696 How Often Child Goes to Museum Ages 13-14 0.201 0.799
How Often Child Attends Family Gatherings Ages 5-6 0.141 0.859 Child Has Musical Instruments Ages 13-14 0.015 0.985
How Often Child is Praised Ages 5-6 0.056 0.944 Family Subscribes to Daily Newspapers Ages 13-14 0.017 0.983
How Often Child Gets Positive Encouragement Ages 5-6 0.081 0.919 Child Has Special Lessons Ages 13-14 0.012 0.988
Number of Books Child Has Ages 7-8 0.007 0.993 How Often Child Goes to Musical Shows Ages 13-14 0.224 0.776
How Often Mom Reads to Child Ages 7-8 0.113 0.887 How Often Child Attends Family Gatherings Ages 13-14 0.099 0.901
How Often Child Eats with Mom/Dad Ages 7-8 0.166 0.834 How Often Child is Praised Ages 13-14 0.031 0.969
How Often Child Goes to Museum Ages 7-8 0.240 0.760 How Often Child Gets Positive Encouragement Ages 13-14 0.032 0.968

Percentage of Total Variance in Measurements due to Signal and Noise
Table 2B



First Stage 
Parameters

Second Stage 
Parameters

Current Period Cognitive Skills (Self-Productivity) γ1,C,1 0.403 γ2,C,1 0.657

(0.058) (0.013)

Current Period Noncognitive Skills (Cross-Productivity) γ1,C,2 0.218 γ2,C,2 0.009

(0.105) (0.005)

Current Period Investments γ1,C,3 0.067 γ2,C,3 0.167

(0.090) (0.018)

Parental Cognitive Skills γ1,C,4 0.268 γ2,C,4 0.047

(0.078) (0.009)

Parental Noncognitive Skills γ1,C,5 0.044 γ2,C,5 0.119

(0.050) (0.150)

Complementarity Parameter φ1,C 0.375 φ2,C -0.827

(0.294) (0.093)

Implied Elasticity of Substitution 1/(1−φ1,C) 1.601 1/(1−φ2,C) 0.547

Variance of Shocks ηC,t δ21,C 0.941 δ22,C 0.358

(0.048) (0.006)

First Stage 
Parameters

Second Stage 
Parameters

Current Period Cognitive Skills (Cross-Productivity) γ1,N,1 0.193 γ2,N,1 0.058

(0.095) (0.014)

Current Period Noncognitive Skills (Self-Productivity) γ1,N,2 0.594 γ2,N,2 0.638

(0.090) (0.020)

Current Period Investments γ1,N,3 0.099 γ2,N,3 0.239

(0.296) (0.031)

Parental Cognitive Skills γ1,N,4 0.114 γ2,N,4 0.065

(0.055) (0.015)

Parental Noncognitive Skills γ1,N,5 0.000 γ2,N,5 0.000

(0.821) (0.203)

Complementarity Parameter φ1,N -0.723 φ2,N -0.716

(0.441) (0.127)

Implied Elasticity of Substitution 1/(1−φ1,N) 0.580 1/(1−φ2,N) 0.583

Variance of Shocks ηN,t δ21,N 0.767 δ22,N 0.597

(0.076) (0.017)

Note: Standard errors in parenthesis

Table 3

Panel A: Technology of Cognitive Skill Formation (Next Period Cognitive Skills)

Panel B: Technology of Noncognitive Skill Formation (Next Period Noncognitive Skills)

Not Correcting for Measurement Error
Linear Anchoring on Educational Attainment (Years of Schooling)

The Technology for Cognitive and Noncognitive Skill Formation

No Unobserved Heterogeneity (π), Factors Normally Distributed



First Stage 
Parameters

Second Stage 
Parameters

Current Period Cognitive Skills (Self-Productivity) γ1,C,1 0.479 γ2,C,1 0.831
(0.026) (0.011)

Current Period Noncognitive Skills (Cross-Productivity) γ1,C,2 0.070 γ2,C,2 0.001
(0.024) (0.005)

Current Period Investments γ1,C,3 0.161 γ2,C,3 0.044
(0.015) (0.006)

Parental Cognitive Skills γ1,C,4 0.031 γ2,C,4 0.073
(0.013) (0.008)

Parental Noncognitive Skills γ1,C,5 0.258 γ2,C,5 0.051
(0.029) (0.014)

Complementarity Parameter φ1,C 0.313 φ2,C -1.243
(0.134) (0.125)

Implied Elasticity of Substitution 1/(1−φ1,C) 1.457 1/(1−φ2,C) 0.446

Variance of Shocks ηC,t δ21,C 0.176 δ22,C 0.087
(0.007) (0.003)

First Stage 
Parameters

Second Stage 
Parameters

Current Period Cognitive Skills (Cross-Productivity) γ1,N,1 0.000 γ2,N,1 0.000
(0.026) (0.010)

Current Period Noncognitive Skills (Self-Productivity) γ1,N,2 0.585 γ2,N,2 0.816
(0.032) (0.013)

Current Period Investments γ1,N,3 0.065 γ2,N,3 0.051
(0.021) (0.006)

Parental Cognitive Skills γ1,N,4 0.017 γ2,N,4 0.000
(0.013) (0.008)

Parental Noncognitive Skills γ1,N,5 0.333 γ2,N,5 0.133
(0.034) (0.017)

Complementarity Parameter φ1,N -0.610 φ2,N -0.551
(0.215) (0.169)

Implied Elasticity of Substitution 1/(1−φ1,N) 0.621 1/(1−φ2,N) 0.645

Variance of Shocks ηN,t δ21,N 0.222 δ22,N 0.101
(0.013) (0.004)

Note: Standard errors in parenthesis

Panel B: Technology of Noncognitive Skill Formation (Next Period Noncognitive Skills)

Table 4

Linear Anchoring on Educational Attainment (Years of Schooling)

Panel A: Technology of Cognitive Skill Formation (Next Period Cognitive Skills)

The Technology for Cognitive and Noncognitive Skill Formation

Allowing for Unobserved Heterogeneity (π), Factors Normally Distributed



First Stage 
Parameters

Second Stage 
Parameters

Current Period Cognitive Skills (Self-Productivity) γ1,C,1 0.485 γ2,C,1 0.884
(0.031) (0.013)

Current Period Noncognitive Skills (Cross-Productivity) γ1,C,2 0.062 γ2,C,2 0.011
(0.026) (0.005)

Current Period Investments γ1,C,3 0.261 γ2,C,3 0.044
(0.026) (0.011)

Parental Cognitive Skills γ1,C,4 0.035 γ2,C,4 0.051
(0.015) (0.008)

Parental Noncognitive Skills γ1,C,5 0.157 γ2,C,5 0.011
(0.033) (0.012)

Complementarity Parameter φ1,C 0.585 φ2,C -1.220
(0.225) (0.149)

Implied Elasticity of Substitution 1/(1−φ1,C) 2.410 1/(1−φ2,C) 0.450

Variance of Shocks ηC,t δ21,C 0.165 δ22,C 0.098
(0.007) (0.003)

First Stage 
Parameters

Second Stage 
Parameters

Current Period Cognitive Skills (Cross-Productivity) γ1,N,1 0.000 γ2,N,1 0.002
(0.028) (0.011)

Current Period Noncognitive Skills (Self-Productivity) γ1,N,2 0.602 γ2,N,2 0.857
(0.034) (0.011)

Current Period Investments γ1,N,3 0.209 γ2,N,3 0.104
(0.031) (0.022)

Parental Cognitive Skills γ1,N,4 0.014 γ2,N,4 0.000
(0.013) (0.008)

Parental Noncognitive Skills γ1,N,5 0.175 γ2,N,5 0.037
(0.033) (0.021)

Complementarity Parameter φ1,N -0.464 φ2,N -0.522
(0.263) (0.214)

Implied Elasticity of Substitution 1/(1−φ1,N) 0.683 1/(1−φ2,N) 0.657

Variance of Shocks ηN,t δ21,N 0.203 δ22,N 0.102
(0.012) (0.003)

Note: Standard errors in parenthesis

Panel B: Technology of Noncognitive Skill Formation (Next Period Noncognitive Skills)

Table 5
The Technology for Cognitive and Noncognitive Skill Formation

Estimated Along with Investment Equation with 

Panel A: Technology of Cognitive Skill Formation (Next Period Cognitive Skills)
Linear Anchoring on Educational Attainment (Years of Schooling), Factors Normally Distributed
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Figure 1: Ratio of early to late investment in human capital 
as a function of the ratio of first period to second period investment productivity 
for different values of the complementarity parameter

Note: Assumes r = 0.
Source: Cunha and Heckman (2007).



-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

1.05

1.1

1.15

1.2

1.25

1.3

Child Initial 
Noncognitive Skill

Figure 2
Optimal Early (Left) and Late (Right) Investments by 

Child Initial Conditions of Cognitive and Noncognitive Skills
Maximizing Aggregate Education

              (Other Endowments Held At Mean Levels) 
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Figure 3
Optimal Early (Left) and Late (Right) Investments by

Maternal Cognitive and Noncognitive Skills
Maximizing Aggregate Education

        (Other Endowments Held At Mean Levels) 
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Figure 4
Ratio of Early to Late Investments by 

Child Initial Condtions of Cognitive and Noncognitive Skills
Maximizing Aggregate Education (Left) and Minimizing Aggregate Crime (Right)
                               (Other Endowments Held At Mean Levels) 
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Figure 5
Ratio of Early to Late Investments by Maternal Cognitive and Noncognitive Skills 
Maximizing Aggregate Education (Left) and Minimizing Aggregate Crime (Right)
                                 (Other Endowments Held At Mean Levels) 
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Densities of Ratio of Early to Late Investments 

Maximizing Aggregate Education Versus Minimizing Aggregate Crime
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