
Hoderlein, Stefan; Vanhems, Anne

Working Paper

Welfare analysis using nonseparable models

cemmap working paper, No. CWP01/11

Provided in Cooperation with:
Institute for Fiscal Studies (IFS), London

Suggested Citation: Hoderlein, Stefan; Vanhems, Anne (2010) : Welfare analysis using nonseparable
models, cemmap working paper, No. CWP01/11, Centre for Microdata Methods and Practice
(cemmap), London,
https://doi.org/10.1920/wp.cem.2011.0111

This Version is available at:
https://hdl.handle.net/10419/64738

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1920/wp.cem.2011.0111%0A
https://hdl.handle.net/10419/64738
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


  

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Welfare analysis using 
nonseparable models 
 
Stefan Hoderlain 
Anne Vanhems  
 
 
 
 
 

 
 

The Institute for Fiscal Studies 
Department of Economics, UCL 
 
cemmap working paper CWP01/11 



Welfare Analysis using Nonseparable Models∗

Stefan Hoderlein† Anne Vanhems¶

First Version: July, 1 2008

This Version: December 15, 2010

Abstract

This paper proposes a framework to model empirically welfare effects that are associ-

ated with a price change in a population of heterogeneous consumers. Individual demands

are characterized by a nonseparable model which is nonparametric in the regressors, as

well as monotonic in unobserved heterogeneity. In this setup, we first provide and discuss

conditions under which the heterogeneous welfare effects are identified, and establish con-

structive identification. We then propose a sample counterpart estimator, and analyze its

large sample properties. For both identification and estimation, we distinguish between

the cases when regressors are exogenous and when they are endogenous. Finally, we apply

all concepts to measuring the heterogeneous effect of a chance of gasoline price using US

consumer data and find very substantial differences in individual effects.
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1 Introduction

Motivation. Quantifying the welfare effects of a price change is one of the fundamental topics

both in economic theory as well as in applied policy analysis. While measures of this welfare

change like compensating variation or equivalent variation are theoretically well understood,

the empirical side of welfare analysis in a heterogeneous population is less well developed.

The challenge comes from the fact that in the common cross section data sets we observe

every single individual only once, and, in particular, we do not observe the same individual

under both the old and new price regime. Hence, we have to infer the effect by looking at

comparable individuals. However, any analysis is then faced with the problem of unobserved

(preference) heterogeneity, i.e., the fact that even after accounting for all observable variables,

individuals remain profoundly different. Thus, adequate means and methods for controlling

this complication are called for when evaluating welfare effects.

Moreover, in a heterogeneous population the effects of price change may differ substantially

across the population. Any method we advocate thus also has to be able to capture this

variations. To allow for unobserved heterogeneity and model it, nonseparable models have

become increasingly popular in the recent econometrics literature, see Altonji and Matzkin

(2005), Chesher (2003), Imbens and Newey (2009), Matzkin (2003), or Hoderlein and Mammen

(2007). This paper aims at applying some of the concepts of this literature to welfare analysis.

The setup is as follows: Following economic theory, we assume that there exists a relationship

Y = φ(X,A), (1.1)

where Y is the quantity of gasoline consumed by a household, a real valued continuously

distributed random scalar, X is a real valued vector of continuously distributed observable

regressors, and A denotes unobservables, in particular heterogeneous preference parameters.

While this allows for individuals to have arbitrarily different utility functions, we will invoke

the common assumption that the utility of gasoline is separable from all other goods, implying

that demand for gasoline is only a function of own price and a price (index) of all other goods.

Moreover, we impose homogeneity of degree zero by normalizing the price for all other goods to

be unity. Therefore the vector X contains (P, S, Z̃ ′)′ where P is the relative price of gasoline,

S is real income, Z̃ denotes all observable characteristics of an individual, and φ(·, a) is hence
the Marshallian demand function for an individual with preferences A = a

To determine the welfare effect, we use the measure of exact consumer surplus known as

compensated variation (CV), i.e., the income amount necessary to compensate the utility loss

associated with a gasoline price change from p0 to p, see Willig (1976), Hausman (1981), Vartia
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(1983). This functional parameter of interest is denoted by λ(p) = λ(p, s, z̃, a) (to simplify the

notations we suppress all variables other than p). The link between this welfare effect and the

heterogeneous Marshallian demand function φ is given by the following differential equation:{
λ′(p) = φ(p, s+ λ(p), z̃, a)

λ(p0) = 0,
(1.2)

where p0 is a reference price and s, z̃, a represent fixed characteristics of the consumer. This

system of equations defines the problem; the solution λ determines the welfare (relative to the

reference price) of a single individual whose preferences are defined through (z̃, a). Ideally,

we would like to assume that A is infinite dimensional, however, in this case λ is not point

identified. In the case of exogeneity of the unobservables A, we therefore assume that A is a

scalar and that φ is strictly monotonic in A. As an extension, we consider endogeneity of P ,

too, in which case we assume that A = (A1, A2) ∈ R2. We use this specification of equation

(1.1) to study the solution to the system (1.2).

In this paper, we moreover establish the asymptotic distribution of the estimated solution to

this system of equations when a nonparametric estimator for φ(x, a) is plugged in. For instance,

in the exogenous case, under the additional assumption that A is uniformly distributed on [0, 1],

we use the fact that φ(x, a) is identified by the a-quantile of Y givenX = x. A natural estimator

for φ(x, a) is hence a nonparametric kernel quantile estimator, and we derive the properties of

an estimator λ̂(p) which uses such an estimator as building block. Moreover, we extend this

type of analysis to allow for endogeneities in price.

Related Literature. This paper extends traditional welfare analysis to evaluating the

distributions of welfare effects in a heterogeneous population by use of quantile regression

methods. The economic foundations are based on Willig (1976), Hausman (1981) and Vartia

(1983). Slesnick (1996) provides a lucid discussion.of the literature on estimating welfare effects,

with particular emphasis on the issue of aggregation. Recent contributions that are closely

related to ours are Hausman and Newey (1995), who considers nonparametric mean regressions

which allow for great flexibility in the way regressors enter but are more restrictive in the

way unobserved heterogeneity enters, Vanhems (2006), who revisits the approach of Hausman

and Newey (1995) using tools from functional analysis, and Vanhems (2010) who extends the

previous analysis considering price endogeneity. Blundell, Horowitz and Parey (2010a, BHP),

propose a nonparametric estimator similar to Hausman and Newey’s (1995), but additionally

imposing Slutsky negativity conditions coming from economic theory while retaining the mean

regression framework. In related work, Blundell, Horowitz and Parey (2010b) use quantile

methods to estimate heterogeneous demand functions subject to Slutsky negativity restrictions,
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but do not focus on welfare effects, or derive the asymptotic distribution of an estimator for

the CV measure.

Related are also the papers by Foster and Hahn (2000), and Christopeit, Hackmann and

Hoderlein (2010, henceforth CHH), who analyze welfare effects using a linear specification sim-

ilar to Hausman (1981), but model heterogeneity through random coefficients. While the first

paper is mainly empirical, the second explicitly derives an equation for the density of wel-

fare effects, and discuss the asymptotic behavior of such an estimator. As such, the CHH

approach offers a competing, nonnested model for unobserved heterogeneity in welfare effects.

The overlap with the recent econometric literature about nonseparable models is already dis-

cussed above, but see Matzkin (2005) for an overview. In particular, we would like to refer to

the applications of nonseparable models and mean regressions in Lewbel (2001), and Hoderlein

(2010).

Finally, demand for gasoline has been extensively studied in the literature. It is analyzed in

the paper by Hausman and Newey (1995), more recent references are Schmalensee and Stoker

(1999) and Yatchew and No (2001), and BHP (2010a,b). See the paper of Hausman and

Newey (1995) for more information about the economic framework, as well as additional older

references to the literature.

Structure of the Paper. We start by discussing identification of λ(p) in the second

section. In the third section, we analyze the behavior of a sample counterpart estimator. We

apply our estimation procedure to US gasoline consumption data in the fourth section, and

find results that are roughly in line with the literature, but show a large variety of interesting

distributional effects that justify the focus on heterogeneity advocated in this paper. Finally,

we conclude with an outlook.

2 Identification

In this section, we discuss the identification of λ(p), and what the required assumptions mean

in economic terms. We first start by stating the conditions under which the function φ is

identified if the regressors are exogenous. Then we proceed to discuss how this model can be

used as building block to identify the distribution of welfare effects. Finally, we extend our

approach to the case of endogenous regressors.
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2.1 Individual Demand

In the case of purely exogenous regressors, we consider is the following setup:

Y = φ(X,A)

where Y ∈ R denotes the observed demand for gasoline, X = (P,Z) is a vector of observed

variables and A is a scalar disturbance. More precisely, the first component P represents the

price of gasoline. Moreover, the vector Z includes income, denoted S along with other exogenous

characteristics, Z̃ ∈ RL. In this setup A ∈ R represents unobserved heterogeneity. We assume

that A is uniformly distributed on [0, 1]. At last, we consider the function φ : X × [0, 1] → R,

continuous in both arguments where X ∈ RL+2 is the support of X. We denote by F the

cumulative distribution function (hereafter cdf) of the vector (Y,X). In addition, we make the

following assumptions:

[A1] A independent from X

[A2] for all x ∈ X , φ(x, .) is strictly increasing in a

The following result is standard, see Matzkin (2003).

Proposition 1. Under Assumptions [A1]− [A2], the function φ is identified by

φ(x, a) = F−1
Y |X (a; x)

where F−1
Y |X (a; x) is the conditional a-quantile of Y given X = x .

This result allows us to characterize the demand behavior of the entire population by identi-

fying the a-quantile of Y given X = x with an individual: We associate the demand behavior of

individual i with his quantile position at X = xi, he becomes “type a” if he is at the a quantile

of the distribution of Y given his observed vector xi. One implication of this model is that

the individuals never change their relative position; if an individual is “type a” for X = xi he

would also be “type a” for X = xj ̸= xi. The fact that we identify every individuals’ demand

function enables us to determine the welfare effect for the entire population, even though we

only observe every individual once. However, we can infer his demand behavior by looking at

comparable individuals that share the same a. The philosophy is very much in the spirit of the

matching approach to treatment effects; see Hoderlein and Mammen (2007) for more details

of the (restrictive) implications of the monotonicity assumption. A more general analysis with

unrestricted and high dimensional unobservables remains desirable; in the absence of functional

form restrictions we conjecture that this leads at best to partial identification of features of the

distribution of (welfare) effects of interest. Hence we leave such an analysis for future research.
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2.2 Exact Consumer Surplus

To identify the distribution of welfare effects, consider the inverse problem defined by equation

(1.2). To state the conditions under which an unique solution in a neighborhood of the initial

condition p0 exists, we need the following notation: First, fix an income level s as well as specific

values for the exogenous variables z̃ and a. Next, let I = [p0 − ϵ1, p
0 + ϵ1], for ϵ1 > 0 denote a

closed neighborhood of p0, let J = [s− ϵ2, s+ ϵ2] with ϵ2 > 0, and define D = I × J .

With this notation, the regularity conditions required are as follows: For fixed values (z̃, a)

in the support,

• [i] max(p,s̃)∈D|φ(p, s̃, z̃, a)| < ϵ2/ϵ1

• [ii] |φ(p, s2, z̃, a)− φ(p, s1, z̃, a) ≤ k|s2 − s1|, ∀(p, si) ∈ D such that c = kϵ1 < 1

Note that the more substantial condition is the second, a Lipschitz continuity condition

which rules out certain rather pathological demand patterns. A sufficient condition on φ to

satisfy this assumption is that φ be one time continuously differentiable in s on D. Assumption

[i] is a pure regularity condition. In particular, if the function φ is assumed to be continuous,

this assumption is easily shown to hold. Under these conditions, the Cauchy-Lipschitz theorem

proves existence and uniqueness of a solution defined on I; the proof in Vanhems (2006) extends

to this case with additional arguments. In summary, given identification of φ, the identification

of λ follows under these regularity conditions on φ. From now on, we assume tacitly that these

conditions hold, and hence obtain:

Proposition 2. For fixed values s, z̃, a, under assumptions [i] and [ii], there exists a unique

solution to (1.2) defined on I.

2.3 Extensions to Endogenous Regressors

To deal with this situation, we follow Chesher (2003) and Imbens and Newey (2009), and

employ a two step control function approach. The first step involves the construction of the

control variable; in a second step we obtain the conditional quantile of the demand given the

endogenous variable and the control variable (plus some additional exogenous factors). The

control function can be thought of as capturing the correlated part of the error; once it is

accounted for prices are no longer endogenous.

We give now an economic discussion about the type of endogeneity we can handle. To this

end, we first introduce our model formally. It is exactly as in the previous section, i.e.

Y = φ(X,A)
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where Y and X are as before, but A is now a two dimensional disturbance vector, i.e., A =

(A1, A2) ∈ R2 represent now the more complex unobserved heterogeneity, we maintain the

assumption that one of the unobservables A2 enters monotonically conditional on all other

variables. We assume that P is endogenous and correlated with A1, however, we will assume

that there is a triangular structure involving an exogenous factor/instrument W ∈ R that

allows us to deal with this problem. In particular, we assume that W enters through a second

equation that relates it to the endogenous regressor, i.e.,

P = h(Z,W,A1)

We normalize the model by assuming that A1 and A2 be uniformly distributed on [0, 1], and

we impose the following additional assumptions:

[A’1] A1 ⊥ (Z,W ),

[A’2] For all (z, w), h(z, w, .) is strictly increasing,

which imply identification of h, see again Matzkin (2003). More precisely,

Proposition 3. Under Assumptions [A′1] and [A′2], the function h is identified by h(z, w, a1) =

F−1
P |Z,W (a1; z, w) where F

−1
P |Z,W (a1; z, w) is the conditional a1 quantile of P given (Z,W ) = (z, w).

Moreover, we can also identify the unobserved heterogeneity variable A1 = FP |Z,W (P,Z,W ).

In order to identify the function φ, we impose the additional assumptions:

[A’3] A2 ⊥ (X,W )|A1,

[A’4] For all (x, a1), φ(x, a1, .) is strictly increasing

[A’5] For all X ∈ X , the support of A1 conditional on X equals the support of A1

These assumptions are standard, as is the following result that we restate in our notation

for completeness purposes, see, in particular, Chesher (2003), and Imbens and Newey

(2009)1. We remark that [A′1], [A′3] are implied by Z ⊥ A in this system.

Proposition 4. Under Assumptions [A′1]− [A′5], the function φ is identified by:

φ(x, a1, α) = F−1
Y |X,A1

(a2;x, a1)

where F−1
Y |X,A1

(a2;x, a1) is the conditional a2 quantile of Y given X = x,A1 = a1 .

1As recalled in Imbens and Newey 2009, assumption [A′5] is stronger than the usual rank condition on the

function FP |Z,W and ensures there is a one-to-one mapping between the two variables for any values x, that is

required to characterize the change of variable between W and A1 for any values x.
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Given identification of φ, identificaton of λ goes through with the augmented set of regressors

(X,A1), and an obvious adaptation in the regularity conditions. There are three main scenarios

in which this structure can arise, and we believe our application to contain elements of all three

of them. Because they are prototypical, we list them in the following:

The first is simultaneity, i.e., we assume that prices and incomes are determined by a two

equation demand and supply system, where quantities Y are a function of prices P, other

determinants Z, and unobservables A2, while prices would be determined by a quantities, an

exogenous cost shifter W , in our case the distance from the (refineries at the) Gulf of Mexico

also used in BHP (2010a) which determines transportation costs, as well as other unobservables.

We would like to rearrange this system of equation to a triangular above, which is monotonic in

A1, given Z,W . This is not possible in general, however, Blundell and Matzkin (2010) provide

conditions under which this holds, in particular, a full rank and a control function separability

condition. While the former is less controversial, the latter places nontrivial structure on the

unobserved structural equations.

The second one is that the true structural model is triangular from the outset: In this

interpretation, to fix ideas, think of A1 as a part of preferences that reflects an attitude towards

public goods, in particular, the higher A1 the more individuals care about the environment.

Prices are ceteris paribus higher in areas where the taxes are high, which reflects a population

with a higher willingness to sacrifice money for a clean environment. This causes correlation as

the driving behavior and the price may have joint determinants. To complete the description

of variables, A2 may reflect a desire for driving, in parts determined by factors like distance to

school and workplace that we only partially control for. We assume that these are independent

of A1 and X, and enter monotonically.

Controlling for the distance to the Gulf as well as compositional effects of the population

(e.g., how many people live in rural areas), the differences in prices may well be attributed

to different attitudes towards public goods like the environment and towards taxes: Ceteris

paribus prices are high were individuals are less concerned by paying a higher tax to support

public (environmental) issues. Therefore we can use this second equation to isolate the control

functions A1, which captures the feature in the individuals’ preference ordering - in our appli-

cation the willingness to accept higher taxes - that is correlated with price. Once we control

for this factor, the remaining unobserved heterogeneity (in our application, the desire to drive)

is orthogonal to prices and can be dealt with in the same fashion as before.

Finally, there may be measurement error. Prices in our application are averages across

counties; individual specific prices may differ from that and the deviation is hence contained in

the error. Observe that the averages of these differences may vary from county to county. If we
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think of Z in the h relationship to be independent of the measurement error on individual level,

then the same is also true for the county level. Moreover, for any given Z = z, the average price

in a county varies with the average measurement error in the county, the larger and positive

the error, the larger P , and the larger and negative the average error is, the smaller P . Hence

both monotonicity and independence in this equation may be warranted.

To argue the conditional monotonicity in the demand equation is harder: First, for the true

price P ∗, we invoke the standard assumption that P = P ∗ + η, with η ⊥ P ∗, Z, as argued

above. Finally, we assume that A2 = η+ Ã2 has the same interpretation as in the first example.

We strengthen the marginal independence assumptions to
(
A1, Ã2, η

)
⊥ Z, which implies our

independence assumptions. What is more debatable in this scenario is the monotonicity of the

index η+ Ã2; at this stage we simply remark that this strictly generalizes the classical approach

to measurement errors in the linear regression model.

3 Estimation and Asymptotic Properties

The data consists of i.i.d. observations {(Yi, Xi,Wi) : i = 1, ..., n} where Xi = (Pi, Si, Z̃i). In

what follows, we use nonparametric kernel method to estimate the demand function as well as

the consumer surplus.

3.1 Exogenous Regressors

Estimation. In the case of exogenous regressors, the nonparametric counterpart of the demand

function φ is derived from Matzkin (2003) as φ̂(x, a) = F̂−1
Y |X(a; x) where F̂−1

Y |X(a;x) represents

the kernel estimator of the a quantile of Y given X = x.

The function λ̂(p) is then defined as solution of the estimated differential equation system:

λ̂′(p) = φ̂(p, s+ λ̂(p), z̃, a) (3.1)

λ̂(p0) = 0,

The solution can be approximated using numerical methods. Various classical algorithms

can be used to calculate a solution, like the Euler-Cauchy algorithm, Heun’s method, the Runge

Kutta method, or the Buerlisch-Stoer algorithm (as in Hausman and Newey (1995)). Let us

briefly outline the general methodology. Consider a grid of equidistant points p1, ..., pn where

pi+1 = pi + h and p0 = p0. The differential equation is transformed into a discretized version
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where φ̂h̃ is an approximation of φ̂.:λ̂(i+1) = λ̂i + h̃φ̂h̃(pi, s+ λ̂i, z̃, a)

λ̂0 = 0.
(3.2)

In the particular case of the Euler algorithm, φ̂h̃ = φ̂. By similar arguments as discussed in

Vanhems (2006) for the mean regression case, the numerical approximation of λ̂ does not impact

the theoretical properties of the estimator since the steps involving numerical approximation

can be chosen to have a faster rate of convergence than the nonparametric estimation methods

employed.

Asymptotic properties. Consistency and asymptotic normality of the estimator φ̂mainly

follows from Matzkin (2003). We present the distribution theory in two theorems, depending

on whether the regressors are exogenous or not.

In order to derive rates of convergence for λ̂ (p), we need to make the link between the

solution λ and the function φ explicit. The main issue of this differential inverse problem

is its nonlinearity. The methodology used to transform the nonlinear equation into a linear

problem is closely related to the functional delta method. Under the assumptions of existence,

uniqueness and stability of λ̂ and λ, it can be established that:

∀p ∈ I, λ̂ (p)− λ (p) = I(p) +R(p) (3.3)

where the first term I(p) is linear in F̂ − F and Rn = oP

(∥∥∥F̂ − F
∥∥∥) where F is the cdf of

(Y,X). 2

Introducing this expansion enables us to transform the nonlinear problem into a linear one,

up to a residual term that converges faster. Obviously, under the condition that both terms

converge, our estimator is consistent. More precisely, we can analyze the behavior of each term:

• the linear part I(p). The rate of convergence of the estimated solution of the differential

equation is expected to be faster than the rate of convergence of the estimator of the

function φ since there is a gain in regularity obtained by integration.

• the residual term R(p), which is the counterpart of the remainder in the Taylor expansion.

In the exogenous regressors case, we need the following assumptions (to simplify the no-

tations, we consider a one dimension kernel function K with a generic bandwidth parameter

h):

2Note that all the asymptotic results will be given using the L2 norm which will be written ∥.∥.
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[B1] The random tuples (Yi, Pi, Zi), i = 1, ..., n, are i.i.d.

[B2] The density f(y, p, z) of (Y, P, Z) has compact support Θ ⊂ R3+L and is continuously

differentiable up to the order s′ ≥ 2.

[B3] The kernel function K vanishes outside a compact set, integrates to 1, is continuously

differentiable of order s′ with Lipschitz derivatives up to s′, and is of order s′.

[B4] As n− > ∞, h− > 0, ln(n)
nhL+4− > 0, hs′

√
nh2(L+2)− > 0,

√
nhL+1− > ∞ where h is the

bandwidth parameter associated with kernel estimation

[B5] 0 < f(p, z) < ∞

Then, following Matzkin (2003), for s′ = 2, it can be shown that the nonparametric quantile

estimator is consistent and converges asymptotically pointwise to a normal distribution at rate√
nhL+2.

The next theorem proves consistency and asymptotic normality for the estimated surplus.

Theorem 1. Suppose that assumptions [A1] − [A2], [B1] − [B5] are satisfied with s′ = 2 and

consider fixed values s, z̃, a. Moreover, assume that the assumptions required for identification

hold. Then, the estimated solution λ̂ is unique in a neighborhood I of p0. Moreover, we get, for

all p ∈ I: √
nhL+1(λ̂(p)− λ(p))

d→
n→∞

N (0, V ) in distribution

where

V =
1

nhL+1
∥K∥22

∫ p

p0
γ2(p, t, s, z̃, a)var

[
1(Y ≤ φ(t, s+ λ(t), z̃, a)|P = t, S = s+ λ(t), Z̃ = z̃

]
dt

and γ(p, t, s, z̃, a) =
exp

[∫ p
t

∂φ
∂e2

(u,s+λ(u),z̃,a)du
]

fY |X(φ(t,s+λ(t),z̃,a),t,s+λ(t),z̃)

Corollary 5. Under the assumptions of the previous theorem, with the assumption that s′ = 2,

we derive the asymptotic mean square error for the linear term ∀p ∈ I, E[I(p)2] = (V +B2) .(1+

o(1)) where V is the asymptotic variance and the asymptotic squared bias B2 is equal to:

B2 =
h4

4

(∫
u2K(u)du

)2

× [

∫ p

p0

γ(p, t, z̃, a)

f(t, s+ λ(t), z̃)

∫
(a− 1(y ≤ φ(t, s+ λ(t), z̃, a)))

×

(∑
ek

∂2f

∂e2k
(y, t, s+ λ(t), z̃)

)
dydt]2
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where ∂2f
∂e2k

denotes the second order derivative of f with respect to the argument ek. Under the

additional assumption that the kernel function K is of order 3 and the density function f is

continuously differentiable of order 3 with respect to z, we obtain that B2 = O(h6).

Note that the rate of convergence obtained for the estimated surplus is faster than for the

estimated demand function. This gain is due to the smoothing effect involved by solving the

differential equation. Moreover, the kernel of order 3 assumption allows to reduce the bias term

further. In either case, we have to undersmooth our surplus estimator compared to the optimal

choice of bandwidth parameter for the estimation of the demand function.

3.2 Endogenous regressors

In the case of endogenous regressors, we first need to estimate the regressor A1. We define the

observed heterogeneity A1i = FP |Z,W (Pi, Zi,Wi) : i = 1, ..., n where FP |Z,W (p, z, w) represents

the conditional cdf of (P,Z,W ) and denote by Â1i = F̂P |Z,W (Pi, Zi,Wi) the associated kernel

estimator. To simplify the formula, we consider two kernel functions K1 : R− > R and

K2 : R2+L− > R and we denote by h the generic bandwidth parameter. The estimated

heterogeneity variable Â1 is defined as follows:

Â1i =

∑n
j=1,j ̸=i K̃1(

Pi−Pj

h
)K2(

Zi−Zj

h
,
Wi−Wj

h
)∑n

j=1,j ̸=iK2(
Zi−Zj

h
,
Wi−Wj

h
)

where K̃1(u) =
∫ u

−∞ K1(s)ds. A nonparametric estimator for φ is then given by

φ̂(x, a) = F̂−1

Y |X,Â1
(a2; x, a1) (3.4)

The numerical computation of the associated estimated surplus follows the same steps as

in the exogenous case (i.e., using the numerical algorithm presented in (3.2)).

In order to derive asymptotic properties for λ̂, we follow the same methodology as in the

exogenous case and make use of the following assumptions:

[B’1] The random tuples (Yi, Pi, Zi,Wi), i = 1, ..., n, are i.i.d.

[B’2] the density f(y, p, z, w) has compact support Θ ⊂ R4+L and is continuously differentiable

up to the order s′ ≥ 2.

[B’3] The kernel function K vanishes outside a compact set, integrates to 1, is continuously

differentiable of order s′ with Lipschitz derivatives up to s′, and is of order s′.
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[B’4] As n− > ∞, h− > 0, ln(n)
nhL+5− > 0 and hs′

√
nh2(L+3)− > 0,

√
nhL+2− > ∞ where h is the

bandwidth parameter associated with kernel estimation

[B’5] 0 < f(p, z, w) < ∞

Under these assumptions, the following theorem establishes consistency and asymptotic

normality for the associated estimated heterogeneous surplus:

Theorem 2. Suppose that assumptions [A′1]− [A′5], [B′1]− [B′5] with s′ = 2 are satisfied and

consider fixed values s, z̃, a. Then, there exists a unique consistent estimated solution λ̂ which

is defined on a common neighborhood I of p0 with the true solution λ. Moreover, we get, for

all p ∈ I: √
nhL+2(λ̂(p)− λ(p)) → N (0, V ) in distribution

where

V =
1

nhL+1
∥K∥22

∫ p

p0
γ2(p, t, s, z̃, a)var

[
1(Y ≤ φ(t, s+ λ(t), z̃, a)|P = t, S = s+ λ(t), Z̃ = z̃, A1 = a1

]
dt

and γ(p, t, s, z̃, a) =
exp

[∫ p
t

∂φ
∂e2

(u,s+λ(u),z̃,a)du
]

fY |X,A1
(φ(t,s+λ(t),z̃,a),t,s+λ(t),z̃,a1)

Corollary 6. Under the assumptions of the previous theorem, with the assumption that s′ = 2,

we derive the asymptotic mean square error for the linear term ∀p ∈ I, E[I(p)2] = (V +B2) (1+

o(1)) where V is the asymptotic variance and the asymptotic squared bias B2 is equal to:

B2 =
h4

4

(∫
u2K(u)du

)2

× [

∫ p

p0

γ(p, t, z̃, a)

f(t, s+ λ(t), z̃, a1)

∫
(a2 − 1(y ≤ φ(t, s+ λ(t), z̃, a)))

×

(∑
ek

∂2f

∂e2k
(y, t, s+ λ(t), z̃, a1)

)
dydt]2

Under the additional assumption that the kernel function K is of order 3 and under the

assumption that the density function f is continuously differentiable of order 3 with respect to

z and a1, we obtain that B2 = O(h6).

4 Application

This section discusses the details of the empirical implementation. We start our discussion by

presenting the data employed, which are similar to the data used by Blundell, Horowitz and

Parey (2010a). Then we present the details of the kernel based estimation procedure. Finally,

we show the results of our (first) experiment, where we consider an increase in the price from

p0 to p, for various choices of p, and a (arbitrary) fixed value p0.
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4.1 Data Description

The data we use come from the 2001 National Household Travel Survey (NHTS), which was

conducted between March 19th, 2001 and May 9th, 2002 under the sponsorship of the Bureau

of Transportation Statistics (BTS), the Federal Highway Administration (FHWA) and also the

National Highway Traffic Safety Administration (NHTSA). The data are essentially identical

to the ones used by Blundell, Horowitz and Parey (2010a, henceforth BHP).

The NHTS is a survey of the civilian, non-institutionalized population of the U.S. that col-

lects a) information on household characteristics such as income, education, size and further

demographics b) data on each household vehicle, including year, model, make and estimates of

annual miles traveled and c) precise information on trips made in designated periods of time,

which is of minor importance for our purposes. Household and most vehicle information were

gathered via telephone interviews and complemented by written travel diaries and odometer

readings. The households are sampled from a random-dialing list of telephone numbers3 that

covers all geographic areas of the U.S. Eventually, interviews were conducted in all 50 states

and the District of Columbia.

The key variables used in our analysis are gasoline consumption, price per gallon of gasoline

and household income. Gasoline consumption is derived from odometer readings and estimates

of the vehicle fuel economy (miles per gallon), and is aggregated over different vehicles owned

by the household 4.

Gasoline prices represent a weighted average of monthly prices, including taxes, provided by

the U.S. Energy Information Administration (EIA) at the state level. The NHTS made use of

monthly fuel economy estimates per vehicle (these take individual driving circumstances such

as temperature, wind and traffic into account) and the distribution of traveled miles over the

course of the year to estimate the level of fuel consumption by month. Gasoline prices are then

derived by dividing the households fuel expenditures by the level of his fuel consumption.

Households report their annual income, before taxes, in 18 different ranges5. We set the house-

holds income equal to the midpoint of the respective interval and assigned an income of $120,000

if households reported to earn more than $100,000 annually6.

3This excludes telephones in motels, hotels, group quarters, such as nursing homes, prisons, barracks, con-

vents and monasteries and any living quarters with 10 or more unrelated roommates.
4See Appendix J and K of ORNL for a detailed description, http://nhts.ornl.gov/2001/usersguide/UsersGuide.pdf.
5See Appendix E for the various sources of income.
6This benchmark is taken from Blundell, Horowitz and Parey (2009), who estimate the first two moments

of a log-normal income distribution. Dropping very high incomes, above $150,000, suggests an average income

of $120,000 in this upper income bracket.
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We devote our attention to households in the national sample that provide information on

all of the three key variables. We exclude those households that are located in Hawaii and those

who do not report any drivers. Finally, we drop vehicles that use diesel, electricity or natural

gas as fuel and end up with a sample size of 22,204 observations. Table 1 gives an overview on

both key variables and further household plus regional characteristics.

Table 1: Summary Table

Mean 10% Median 90% Stdv

Gasoline Demand in 100 Gallons 12.03 2.63 9.75 23.66 10.12

Gasoline Price in $ per Gallon 1.33 1.24 1.34 1.44 0.08

Annual HH Income in 1000 $ 53.77 17.50 47.50 120.00 33.85

Distance of State From Gulf in 1000 km 1.73 0.88 1.59 2.86 0.72

# of Drivers per HH 1.92 1.00 2.00 3.00 0.74

HH Size 2.64 1.00 2.00 4.00 1.36

Mean Age of Drivers 48.15 29.50 45.33 72.00 15.91

Some College Education (Highest HH) 0.67 0.00 1.00 1.00 0.47

Rail in Metropolitan Statistical Area 0.23 0.00 0.00 1.00 0.42

Pop. Dens. [100 Pers./Block] 38.61 0.50 15.00 70.00 53.85

Rural Area 0.23 0.00 0.00 1.00 0.42

Small Town 0.24 0.00 0.00 1.00 0.43

Suburban Area 0.24 0.00 0.00 1.00 0.43

Second City 0.18 0.00 0.00 1.00 0.38

Urban Area 0.10 0.00 0.00 1.00 0.31

In the appendix we also display tables that report the results of standard demand analysis.

Specifically, in table A.1 we report the results of a log log regression of log gasoline demand

on log own price, log income, and several dummies that indicate geographical regions, varying

degrees of urbanity, varying population density, the availability of public transportation, and

the mean age of the driver. The result display very much the expected signs and magnitudes.

The own price elasticities is with -0.45 somewhat at the lower end of the usually reported

results, which range between -0.6 and -0.9, see Hausman and Newey (1995), Yatchew and No

(2001) and Schmalensee and Stoker (1999), but fits exactly with the results in BHP, which may

in parts be due that more (low elasticity) medium grade gasoline is consumed in our data. The
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income elasticity is 0.31, which is in line with the entire literature. Finally, the more urban the

areas, the less gasoline individuals consume, on average 20-30%, depending on the specification,

which is in line with the literature. Population density has an effect in excess of urbanity, which

again matches BHP. The age of the driver has only a limited effect, and the same is true of the

availability of public transport. The significance of both variables depends on the specification.

Other than this, changes in the specification, e.g., removing the marginally significant variables,

do not have a fundamental effect on the results. In particular, the elasticity of own price is

marginally higher in absolute value, but remains around - 0.5, see also BHP for various similar

specifications. Like Yatchew and No (2001) we find that correcting for household demographics

reduces the price elasticity somewhat, compared to results by Hausman and Newey (1995).

The result of correcting for endogeneity using the control function version of 2SLS are

displayed in table 2. The relevant own price elasticity is with -0.77, while the coefficients on

the other variables remain materially unchanged. Changes in the specification as above yield

generally to own price coefficients that are, if anything, marginally higher, so that the effect is

around -0.65. The coefficient on the control functions is significant, indicating that correcting

for endogeneity is important, and results in a more price elastic demand, with coefficients that

are about 20-40% larger in absolute value. With this in the back of our mind, one would

expect the welfare effects to be larger. While all of the three above reasons for the validity of

the distance from the Gulf of Mexico as an instrument, we personally view the measurement

error component as the largest contributor to the difference in results, because the fact that

the exogenous parametric coefficient is much smaller (see also BHR, (2010a)) compared to the

literature (see Yatchew and No (2001) for an overview), seems to be indicative of attenuation

associated with measurement error. As in any given application, the reality is probably more

complex and has not only features of exactly one explanation. The overriding issue for our

analysis, however, is that the levels are almost not affected by the correction for endogeneity,

as we shall see below.

Since the focus of this paper is on heterogeneity using quantiles, we have also implemented

linear quantile regression models. The price coefficient does not change materially when we

perform median regression. In the comparable specification to table A.1, the price elasticity is

- 0.43, and the income elasticity is 0.28. Materially, the same other variables remain significant.

The price elasticities seem to decrease in absolute values for lower deciles (to -0.28 for the tenth,

to be specific), and stay approximately constant for higher quantiles. The overriding feature

is the change in intercept across quantiles; in every other respect they look like parallel lines.

If we add control function residuals, the price elasticities increase again in absolute value to

about -0.75, depending on the specification, confirming that correcting for endogeneity has a

16



material impact on the outcomes.

4.2 Details of the Econometric Implementation

When using the above data, we are mainly concerned with the relationship between demand,

income and prices. Consequently, Z are not of primary importance and act only as controls,

and we thus reduce them to two approximately continuously distributed principal components,

which capture the bulk of the variation. While this is arguably ad hoc, we have experimented

with varying the number of principal components, as well as selecting different ones, without

materially affecting the results. Hence, we feel that our approach is justified as it allows the

use of nonparametric quantile methods.

We implement two different estimators for the quantile regressions: first, we implement our

estimator as described in the text, where all estimates of conditional distributions are obtained

by nonparametric kernel estimators. The inversion we have to perform is computationally quite

expensive, in particular since we also obtain the standard errors via bootstrap. Hence we also

apply a quantile estimator as the optimizer of a local linear quantile regression problem, which

is asymptotically equivalent to the estimator we have analyzed in the theoretical part. In either

case, we make use of a standard second order Epanechnikov kernel.

Also in either case, our large sample theory suggests that the integration step involved

in computing the welfare effect acts reversely to estimating derivatives - it increases the rate

of convergence. Hence we chose the bandwidth by first performing cross validation for the

conditional mean, and then choosing a smaller bandwidth. There is no theoretical guidance on

how much smaller the bandwidth should be chosen; however, our results were not sensitive to

changes in the bandwidth. The integration was performed by ordering the prices from p0 to p

as p0,p1, ..., pT−1, pT , pT = p, and computing λ̂(p) recursively through

λ̂(pi) = λ̂(pi−1) + (pi − pi−1) k̂
α
Y |X(pi−1, q + λ̂(pi−1), z), i = 1, ..., T. (4.1)

for a consumer with S = q, Z = z, and A = a. In the endogenous case, we first estimate A1 by

Â1 = F̂P |S,Z,W (P ;S, Z,W ), where F̂P |S,Z,W (p; q, z, w) is a local linear mean regression estimator

of the conditional cdf, using 1 {P ≤ p} as dependent variable, and S,Z,W as regressors. The

bandwidth in this regression in chosen by cross validation to focus on eliminating the bias,

since the variance of this estimation error averages out. Then, in (4.1), we simply replace

k̂α
Y |X(pi−1, q − λ̂(pi−1), z) by k̂α

Y |XA1
(pi−1, q + λ̂(pi−1), â1, z).

Standard errors are obtained using the bootstrap, with an undersmoothed bandwidth, as

is common in the nonparametric literature to account for potential biases. In particular, we
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draw from the data with replacement a similar sized sample, and apply the same procedure as

above.

4.3 Results

The policy experiment that we are conducting is increasing the price of gasoline from the

(median) level of USD 1.31 to USD 1.40, equaling a 7% increase in gas price. We already

start with the most general setup where the price is assumed to be endogenous. We focus on

compensating variation, as computed in equation (4.1) using the same mechanism as outlined

in the previous subsection, for a continuous increase from 1.31 to 1.40 for different quantiles.

The results at mean characteristics and income is shown in Fig. 1 and Fig.2. Specifically, we

look at the 10, 30, and 50th percentile (i.e., the median) of the conditional distribution of the

demand for gasoline in Fig.1, and at the 50, 70 and 90th of the conditional distribution of the

demand for gasoline in Fig.2.

—— Fig. 1 approx here —-

The median effect of the price change on welfare is slightly below 123 USD (the point

estimate is 122.81), which is plausible given the summary statistic. Indeed, back of the envelope

calculations reveal that this is approximately the order of magnitude we expect7. The standard

errors around this quantity are rather tight, indication of the fact that the integration really

stabilizes estimation. Since demand only shrinks by about 4% across the price range of our

experiment, the income effect is rather small, and the income elasticity of demand is not very

large, the linearity of effects is to be expected - the quantiles of demand simply do not vary a

lot, so the essential part of the welfare effect is that of the price change. As is shown below,

welfare also does not vary too much according to demographics. We conclude that the median

welfare effect is largely as we would have expected.

What is not revealed, however, when looking at the median is an astonishing variation by

quantiles. While the effects are less than half as large as the median for the first decile (55.26),

they are almost twice as large for the 9th decile (239.01). Put another way, the effect is close

to five fold as strong on the 9th decile than on the first, compare Fig.1 and Fig.2:

—— Fig. 2 approx here —-

7Given parametric elasticities of demand of around -0.5 and a price change of 7%, we expect to see a reduction

in gas demand of 3-4%, i.e., demand does not vary too much. If it were constant, at conditional median gasoline

demand of 1450 gallons, and increase of 9 cents per gallon means a value of 130 USD. The difference is readily

explained by our detailed analysis that takes substitution effects into account, as well as the sampling error.
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These results do not change significantly, if we do not control for endogeneity. The order

of magnitude of the decrease in CV is around 1% for the median, see fig. 3. It is somewhat

higher at the upper end of the distribution.

—— Fig. 3 approx here —-

While we consider the specification with control function residuals to produce the more

plausible results in general, the welfare effects do not differ significantly. This is in line with the

nonparametric mean regression results in BHP (2010a), who have performed a nonparametric

test for endogeneity in the (nonparametric) mean regression case, and concluded that the

regressors are not endogenous. The results are even smaller than in the parametric specification

employed above. One reason why the difference in welfare effects are smaller may be due to the

fact that the linear model is misspecified, and thus overemphasizes the effect of endogeneity.

As was to be expected given the asymptotic results and the tight standard errors, the

difference in estimation methods is neglectable. At the median, the estimator which is based

on the inversion of the cdf produces within 1% of the same result, and the difference is not

statistically significant, see Fig.4. The same is true at other quantiles.

—— Fig. 4 approx here —-

In the following we slice the population by demographics, however, we do retain the correc-

tion for endogeneity. In particular, from the log-log specification we conclude that the question

of residence in an urban environment plays are large role. Therefore we compare urban versus

rural households by stratifying the population, and performing all of our analysis on two sepa-

rate samples, including the conditioning on covariates. We find, as was to be expected, larger

welfare effects for the rural households which have to commute more, see Fig. 5:

—— Fig. 5 approx here —-

As in the parametric regression example, rural households have a 30% higher welfare effect.

In other analysis we found that the spread in results is approximately comparable between

both urban and rural households. Similar results where obtain when the population is sliced

according to population density. This is compatible with a theory where driving is determined

by your needs (i.e., go to work, dive kids to school, go shopping etc.), and the larger distances

in rural areas account for larger welfare effects. However, both in rural and in urban areas,

there are enormous differences between households within each subpopulation that are larger

in magnitude than the differences between populations.
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In summary, we find pronounced variations in welfare effects between households, using

our method that dwarf effects of household covariates. This seems to underscore the need for

accounting for unobserved heterogeneity.

5 Summary and Outlook

This paper proposes a framework to model empirically direct welfare effects in a population of

heterogeneous consumers, as are associated with, e.g., the introduction of a tax on gasoline.

We aim in particular at modeling the heterogeneity in effects. Using nonseparable models

combined with monotonicity assumptions, we identify the variation in consumer data with

preference heterogeneity, which may be restrictive. Under this assumption, however, we can

precisely characterize the distribution of welfare effects. For every consumer (characterized

by an either one or two dimensional unobserved parameter) it is given by the solution to a

partial differential equation. The parameters vary from individual to individual, but are point

identified from the distribution of the data. Given estimators of the cumulative distribution

function (cdf), we then propose an estimator for the distribution of welfare effects. Moreover,

using nonparametric estimators of the cdf as building blocks, we can characterize the large

sample behavior of our estimator.

When implementing our estimator with US data from the early 2000s, we find a large spread

of welfare effects across the population. Indeed, a gasoline price change of nine cents, from USD

1.31 per gallon to USD 1.40 per gallon has a welfare effect on the median person of 123 USD;

however, the effect at the 90% is more than 110 USD higher, while the 10 th percentile is, with

around USD 55, hardly affected (and this does not even include the subpopulation who does

not drive at all). While these estimates may be slightly inflated due to the fact that we identify

all the observed variation with preference heterogeneity, the fact that we observe few outliers

as well as implausible values lead us to believe that the order of magnitude of the variation

is essentially correct. However, a more detailed analysis using repeated measurements and a

corresponding econometric framework is definitely required to underscore these findings.

Finally, we also believe that different specifications for the unobserved heterogeneity should

be analyzed. If one insists on point identification of individual effects, a natural alternative are

random coefficient models which allow for several sources of unobserved heterogeneity at the

expense of constraining the functional form of individual demands. Indeed, in a companion

paper (Christopeit, Hackmann, and Hoderlein (2010)), we analyze the same question - het-

erogeneity in welfare effects - in such a framework, and we plan a comparison of the findings
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between the two approaches. Given the findings of this paper, we believe the issue of modeling

heterogeneity to be of great importance for the evaluation of welfare effects of economic policies

in the future.
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6 Appendix I - Proofs

Proof of Theorem 1 This proof uses arguments from both Matzkin (2003) and Vanhems

(2006). For any fixed values (s, z̃, a), existence and uniqueness of the estimated surplus λ̂ in

I follows from the Cauchy-Lipschitz theorem. In order to establish consistency of the esti-

mated solution λ̂, in addition to the regularity conditions discussed in section 2.2 we need

an additional assumption about the convergence of the Lipschitz factor kn. This assump-

tion will guarantee the stability of the estimated solution λ̂ and its consistency and can be

expressed using the derivatives of the function φ as follows (see Vanhems (2006) for more de-

tails): supx,a | ∂
∂e2

φ̂(x, a)− ∂
∂e2

φ(x, a)| converges to 0 a.s. where ∂
∂e2

denotes the derivative with

respect to the second argument. This stability condition is fulfilled thanks to Assumption [B4]

and conditions on the rate of decay of the bandwidth parameter (see Vanhems (2006), Hoderlein

and Mammen (2009)).

Under this last condition, both solutions λ̂ and λ can be defined on a common subset I,

and the inverse problem defined by the differential equation is stable and well-posed. Both

solutions λ̂ and λ can be characterized with the same operator Φ:

λ(p) = Φ(F )(p)

λ̂(p) = Φ(F̂ )(p)

In order to derive the asymptotic normality result, we need to linearize the differential equation

defined in (1.2). Let us first introduce some notation (cf. Matzkin (2003)). In what follows, F

denotes the joint cdf of (Y,X), f denotes its probability density function (pdf) and FY |X denotes

the conditional cdf of Y given X. The function F−1
Y |X(a;x) applied to (x, a) denotes the inverse

(in y) of the conditional cdf, i.e., the quantile function due to continuity of Y, evaluated at (x, a).

To simplify the notations, f(x) denotes the marginal pdf of X in x. For any continuously

differentiable function G : RL+3 → R we define the function g(y, x) = ∂L+3G(y, x)/∂y∂x,

g(x) =
∫
g(y, x)dy and GY |X(y, x) =

∫ y

−∞ g(u, x)du/g(x). Let C denote a compact set in

RL+3 that strictly includes Θ. Let E denote the set of all continuously differentiable functions

G : RL+3 → R such that g(y, x) vanishes outside C.

Consider first the following operator Ψ defined by:

Ψ : E → C1(ΘX × [0, 1])

G 7→ G−1
Y |X

The space C1(ΘX × [0, 1]) is the space of continuously differentiable functions defined on ΘX ×
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[0, 1] and ΘX is the compact support of X. So, for all (x, a) ∈ ΘX × [0, 1],

Ψ(F )(x, a) = F−1
Y |X(a; x)

= φ(x, a)

We also introduce the operator A defined by:

A : E × C1
ϵ1,ϵ2

(I) → C(I)

(G, λ) 7→ λ′(.)−Ψ(G)(., s+ λ(.), z̃, a)

where C(I) is the space of continuous functions defined on I and C1
ϵ1,ϵ2

(I) is the space of

continuously differentiable functions on I, satisfying both assumptions (i) and (ii) in section

2.2. Note that both spaces endowed with the L2 norm ∥.∥ are Banach spaces. Consider now

the following norm on C1
ϵ1,ϵ2

(I): ∀v ∈ C1
ϵ1,ϵ2

(I), ∥v∥′ = max(∥v∥, ∥v′∥). Then
(
C1

ϵ1,ϵ2
(I), ∥.∥′

)
is

a Banach space. Following Matzkin (2003) and Vanhems (2006, 2010), it can be shown that

both operators are continuous and continuously differentiable on the Banach spaces previously

defined.

In the same vein as in Vanhems (2006), we apply the implicit function theorem to the

operator A and define F ⊂ E to be an open subset around the true cdf F, and L to be an

open subset around λ such that: ∀G ∈ F , A(G, u) = 0 has a unique solution in V . We

denote by u = Φ(G) this unique solution, and by construction, Φ is continuously differentiable

on F . We can now differentiate the relation A(G, u) = 0 and apply it to (F, λ). For all

H = (H1, H2) ∈ F × L and ∀p ∈ I, we obtain:

dA(F, λ)(H)(p) = d1A(F, λ)dF (H)(p) + d2A(F, λ)dλ(H)(p)

= d1A(F, λ)H1(p, s+ λ(p), z̃, a) + d2A(F, λ)H2(p)

= −dΨ(F )H1(p, s+ λ(p), z̃, a) +H ′
2(p)−

∂

∂e2
Ψ(F )(p, s+ λ(p), z̃, a)H2(p)

= 0

So, the differential of A leads to a linear differential equation in H2 that can be solved for H2:

H2(p) =

∫ p

p0
dΨ(F )H1(t, s+ λ(t), z̃, a)exp

(∫ p

t

∂Ψ(F )

∂e2
(u, s+ λ(u), z̃, a)du

)
dt (6.1)

Next, compute the differential function dΨ(F )H1(t, s+λ(t), z̃, a). Define first the two following

operators: for any G ∈ F , let

Ψ1 : G 7→ GY |X

Ψ2 : GY |X 7→ G−1
Y |X
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such that Ψ(G) = Ψ2 ◦Ψ1(G). For all H1 ∈ F we have:

Ψ(F +H1)−Ψ(F ) = (F +H1)
−1
Y |X − F−1

Y |X

= dΨ(F )(H1) + o(∥H1∥)

Then, following Matzkin (2003), for all p ∈ I, we obtain:

(F +H1)Y |X

(
(F +H1)

−1
Y |X(a;x), x

)
− (F +H1)Y |X

(
F−1
Y |X(a;x), x

)
= a− (F +H1)Y |X

(
F−1
Y |X(a;x), x

)
=

∂(F +H1)Y |X

∂e1

(
F−1
Y |X(a; x), x

)
.
(
(F +H1)

−1
Y |X(a; x)− F−1

Y |X(a;x)
)
+ o(∥H1∥)

Therefore, we get:

(F +H1)
−1
Y |X(a;x)− F−1

Y |X(a;x) =
a− (F +H1)Y |X

(
F−1
Y |X(a; x), x

)
∂(F+H1)Y |X

∂e1

(
F−1
Y |X(a; x), x

) + o(∥H1∥)

=
−dΨ1(F )(H1)(

(
F−1
Y |X(a; x), x

)
∂(F+H1)Y |X

∂e1

(
F−1
Y |X(a; x), x

) + o(∥H1∥)

=
−dΨ1(F )(H1)(

(
F−1
Y |X(a; x), x

)
fY |X

(
F−1
Y |X(a;x), x

) + o(∥H1∥)

Again, following Theorem 1 of Matzkin (2003), we obtain:

dΨ1(F )(H1)(
(
F−1
Y |X(a;x), x

)
=

ah(x)−
∫ φ(x,a)

−∞ h(y, x)dy

f(x)
+ o(∥H1∥)

Plugging these results into equation (6.1) for x = (t, s+ λ(t), z̃) leads to:

H2(p) =

∫ p

p0

ah1(t, s+ λ(t), z̃)−
∫ φ(t,s+λ(t),z̃,a)

−∞ h(y, t, s+ λ(t), z̃)dy

f(t, s+ λ(t), z̃)
.γ(p, t, z̃, a)dt (6.2)

where

γ(p, t, z̃, a) =
exp

(∫ p

t
∂φ
∂e2

(u, s+ λ(u), z̃, a)du
)

fY |X

(
F−1
Y |X(a; t, s+ λ(t), z̃), t, s+ λ(t), z̃

)
Finally, note that both solutions λ̂ and λ can be characterized with the same operator Φ:

λ(p) = Φ(F )(p)

λ̂(p) = Φ(F̂ )(p)
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The definition of differentiability of the operator Φ gives:

(λ̂− λ)(p) = (Φ(F̂ )− Φ(F̂ ))(p)

= dΦ(F )(F̂ − F )(p) + oP (∥F̂ − F∥)

Apply then equation (6.2) in H1 = F̂ − F and H2 = dΦ(F )(F̂ − F ) in order to get:

(λ̂− λ)(p) = I(p) +R(p)

where

I(p) =

∫ p

p0

a(f̂ − f)(t, s+ λ(t), z̃)−
∫ φ(t,s+λ(t),z̃,a)

−∞ (f̂ − f)(y, t, s+ λ(t), z̃)dy

f(t, s+ λ(t), z̃)
.γ(p, t, z̃, a)dt

=

∫ ∫
(f̂ − f)(y, t, s+ λ(t), z̃) (a− 1(y ≤ φ(t, s+ λ(t), z̃, a))) .1(p0 ≤ t ≤ p).

γ(p, t, z̃, a)

f(t, s+ λ(t), z̃)
dydt

and

R(p) = oP (∥F̂ − F∥)

The asymptotic normality result follows from Theorem 3.9.4 in Van der Vaart and Wellner

(1996) and Assumption [B4]. The computation of the asymptotic variance is derived as follows

(for simplicity, we consider two kernel functions K1 : R− > R and K2 : RL− > R and we

denote by h the generic bandwidth parameter):

var (I(p)) =
1

nh2(L+3)
var[

∫ ∫
K1(

y − Y

h
)K1(

t− P

h
)K1(

λ(t)− S

h
)K2(

z̃ − Z̃

h
)

. (a− 1(y ≤ φ(t, s+ λ(t), z̃, a))) .1(p0 ≤ t ≤ p).
γ(p, t, z̃, a)

f(t, s+ λ(t), z̃)
dydt]

After changes of variables, we obtain:

var (I(p)) =
1

nh2(L+1)
var[ K1(

λ(P )− S

h
)K2(

z̃ − Z̃

h
) (a− 1(Y ≤ φ(t, s+ λ(t), z̃, a)))

. 1(p0 ≤ P ≤ p).
γ(p, P, z̃, a)

f(P, s+ λ(P ), z̃)
] (1 + o(1))

It then follows, by standard calculations, that:

var (I(p)) =
1

nhL+1
∥K∥22

∫ p

p0
γ2(p, t, s, z̃, a)

. var
[
1(Y ≤ φ(t, s+ λ(t), z̃, a)|P = t, S = s+ λ(t), Z̃ = z̃

]
dt (1 + o(1))

where K is a generic notation including K1 and K2. That concludes for the formula of the

asymptotic variance.
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Proof of Corollary 5 The result follows from standard calculus on the bias of I(p):

E (I(p)) =

∫ p

p0
E
[∫

(f̂ − f)(y, t, s+ λ(t), z̃) (a− 1(y ≤ φ(t, s+ λ(t), z̃, a))) dy

]
.

γ(p, t, z̃, a)

f(t, s+ λ(t), z̃)
dt

Therefore, we get:

E (I(p))2 =
h4

4

(∫
u2K(u)du

)2

× [

∫ p

p0

γ(p, t, z̃, a)

f(t, s+ λ(t), z̃)

∫
(a− 1(y ≤ φ(t, s+ λ(t), z̃, a)))

×

(∑
ek

∂2f

∂e2k
(y, t, s+ λ(t), z̃)

)
dydt]2(1 + o(1))

The faster rate of convergence for the bias term follows from Vanhems (2006), Theorem 4.2. It

comes from the assumption of third order of the kernel function and the fact that the surplus

is obtained by integrating the demand function over price. This means that we can go further

in the Taylor expansion with respect to the price argument to derive a bias term with a faster

rate.

Proof of Theorem 2 The way to proceed is very similar to the previous proof except that F

represents now the cdf of (Y,X,W ). Again, for any fixed values (s, z̃, a), existence, uniqueness

and consistency of the estimated surplus λ̂ in I follows from Cauchy-Lipschitz theorem and the

assumption of stability: supx,a | ∂
∂e2

φ̂(x, a)− ∂
∂e2

φ(x, a)| fulfilled thanks to Assumption [B′4].

In order to prove the asymptotic normality result, we also need to linearize the differential

equation defined in (1.2). The notations used are similar to the previous proof except that we

consider now any continuously differentiable function G : RL+4 → R and define the function

g(y, x, w) = ∂L+4G(y, x, w)/∂y∂x∂w. Let C denote a compact set in RL+4 that strictly includes

Θ. Let E denote the set of all continuously differentiable functions G : RL+4 → R such that

g(y, x, w) vanishes outside C.

We consider the following operator Ψ defined by:

Ψ : E → C1(ΘX × [0, 1]2)

G 7→ G−1
Y |X,A1

The space C1(ΘX × [0, 1]2) is the space of continuously differentiable functions defined on

ΘX × [0, 1]2. Compared to the decomposition given in the proof of Theorem 1, the operator Ψ

is now defined using three functionals Ψ = Ψ2 ◦Ψ1 ◦Ψ0 and each functional is defined by:

Ψ0 : G 7→ GY,X,A1

Ψ1 : GY,X,A1 7→ GY |X,A1

Ψ2 : GY |X,A1 7→ G−1
Y |X,A1
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where A1 = GP |Z,W (P ;Z,W ) = g1(G)(P,Z,W ). So, for all (x, a) ∈ ΘX × [0, 1]2,

Ψ(F )(x, a) = F−1
Y |X,A1

(a2;x, a1)

= φ(x, a)

More precisely, we get:

fY XA1(y, x, a1) =
fY XW (y, x, g1(FY XW )−1(a1;x))
∂g1(FY XW )

∂eL+2
(x, g1(FY XW )−1(a1;x))

FY XA1(y, x, a1) = FY XW (y, x, g1(FY XW )−1(a1;x))

Ψ(FY XW )(x, a) = F−1
Y |XW (a2; x, g1(FY XW )−1(a1; x))

Using the previous definition for the operator A, we can derive the same equation as in (6.1)

from the differential of A in the two arguments (H1, H2) ∈ F × L and p ∈ I:

H2(p) =

∫ p

p0
dΨ(F )H1(t, s+ λ(t), z̃, a)exp

(∫ p

t

∂Ψ(F )

∂e2
(u, s+ λ(u), z̃, a)du

)
dt (6.3)

The difference then lies in the computation of dΨ(F )H1(t, s+ λ(t), z̃, a). Indeed,∀H1 ∈ F and

∀(x, a) ∈ ΘX × [0, 1]2, we have:

Ψ(F +H1)(x, a)−Ψ(F )(x, a) = (F +H1)
−1
Y |XW (a2; p, z, g1(F +H1)

−1(a1; p, z))

− (F )−1
Y |PZW (a2; p, z, g1(F )−1(a1; p, z))

= (I) + (II) (6.4)

where

(I) = (F +H1)
−1
Y |XW (a2;x, g1(F +H1)

−1(a1;x))

− (F +H1)
−1
Y |XW (a2;x, g1(F )−1(a1; x))

(II) = (F +H1)
−1
Y |XW (a2;x, g1(F )−1(a1; x))

− (F )−1
Y |XW (a2;x, g1(F )−1(a1; x))

We analyze each term separately. The analysis of the second term is equivalent to the exogenous

case with one supplementary regressor. Indeed, we have:

(II) = (F +H1)
−1
Y |XA1

(a2;x, a1)− (F )−1
Y |XA1

(a2; x, a1)

=
a2h1(x, a1)−

∫ φ(x,a)

−∞ h1(y, x, a1)dy

f(x, a1)fY |XA1(φ(x, a), x, a1)
+ o(∥H1∥)
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Then, the first term can be developed the following way:

(I) =
∂(F +H1)

−1
Y |XW

∂eL+4

(a2;x, g1(F )−1(a1;x))
[
g1(F +H1)

−1(a1;x)− g1(F )−1(a1; x)
]
+ o(∥H1∥)

=
∂F−1

Y |XW

∂eL+4

(a2;x, g1(F )−1(a1;x))
[
g1(F +H1)

−1(a1;x)− g1(F )−1(a1; x)
]
+ o(∥H1∥)

=
∂F−1

Y |XA1

∂eL+4

(a2; x, a1)

 a1h1(z, a1)−
∫ p

−∞ h1(u, z, F
−1
P |ZW (a1; x)dy

f(z, F−1
P |ZW (a1;x))

∂FP |ZW

∂eL+3
(p, z, F−1

P |ZW (a1; x))

+ o(∥H1∥)

=
∂F−1

Y |XA1

∂eL+4

(a2; x, a1)

a1h1(z, a1)−
∫ p

−∞ h1(u, z, a1)dy

f(z, a1)
∂FP |ZA1

∂eL+3
(p, z, a1)

+ o(∥H1∥)

At last, we use the definition of both solutions λ and hatλ by the same operator Φ to obtain

the following characterization: (λ̂ − λ)(p) = dΦ(F )(F̂ − F )(p) + oP (∥F̂ − F∥). Apply then

equation (6.4) in H1 = F̂ − F and H2 = dΦ(F )(F̂ − F ) in order to get:

(λ̂− λ)(p) = I(p) +R(p)

where I(p) = (I ′) + (II ′) and R(p) = oP (∥F̂ − F∥). The linear term is then decomposed into

two parts:

(I ′) =

∫ p

p0

a1

(
f̂ − f

)
(s+ λ(t), z̃, a1)−

∫ t

−∞

(
f̂ − f

)
(u, s+ λ(t), z̃, a1)dy

f(s+ λ(t), z̃, a1)
.δ(p, t, z̃, a)dt

(II ′) =

∫ p

p0

a2

(
f̂ − f

)
(t, s+ λ(t), z̃, a1)−

∫ φ(t,s+λ(t),z̃,a)

−∞

(
f̂ − f

)
(y, t, s+ λ(t), z̃, a1)dy

f(t, s+ λ(t), z̃, a1)
γ(p, t, z̃, a)dt

where

δ(p, t, z̃, a) = exp

(∫ p

t

∂φ

∂e2
(u, s+ λ(u), z̃, a)du

)
.

∂φ
∂eL+4

(t, s+ λ(t), z̃, a)

∂FP |ZA1

∂eL+3
(t, s+ λ(t), z̃, a1)

γ(p, t, z̃, a) =
exp

(∫ p

t
∂φ
∂e2

(u, s+ λ(u), z̃, a)du
)

fY |X,A1 (φ(t, s+ λ(t), z̃, a), t, s+ λ(t), z̃, a1)

The asymptotic normality follows again, as in Matzkin (2003), from Theorem 3.9.4 in van

der Vaart and Wellner (1996). Since the first term (I ′) converges faster than the second one

(II ′), the asymptotic variance computation is driven by the second term and the calculus is

similar to the exogenous case with one supplementary regressor.
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Proof of Corollary 6 The proof follows the same argument as in Corollary 5. Now we

compute the bias term for:

(II ′) =

∫ p

p0

[∫
(f̂ − f)(y, t, s+ λ(t), z̃, a1) (a2 − 1(y ≤ φ(t, s+ λ(t), z̃, a))) dy

]
γ(p, t, z̃, a)

f(t, s+ λ(t), z̃, a1)
dt

The result follows from classical calculus on the bias decomposition and from Theorem 4.2 in

Vanhems 2006.
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7 Appendix II - Tables and Figures

Table A.1: Standard log-log Regression, OLS estimates

Coefficient Standard Error t-Value p-Value

intercept 2.965784 0.203957 14.541 2e-16

log own price -0.449457 0.159608 -2.816 0.004882

log income 0.310499 0.015488 20.048 2e-16

log drvrcnt 0.672372 0.037596 17.884 2e-16

region 0.006715 0.003796 1.769 0.076965

cl5 smtown d -0.046965 0.031962 -1.469 0.141791

cl5 suburban d -0.155659 0.039523 -3.938 8.32e-05

cl5 secondcity d -0.165686 0.041350 -4.007 6.25e-05

cl5 urban d -0.155687 0.055374 -2.812 0.004950

popdensity d1 0.673887 0.121166 5.562 2.82e-08

popdensity d2 0.602190 0.118517 5.081 3.90e-07

popdensity d3 0.517959 0.119333 4.340 1.45e-05

popdensity d4 0.519924 0.117398 4.429 9 69e-06

popdensity d5 0.494301 0.116170 4.255 2.13e-05

popdensity d6 0.432112 0.114282 3.781 0.000158

popdensity d7 0.339010 0.119141 2.845 0.004454

public transport -0.042310 0.023339 -1.813 0.069919

mean age driver -0.001697 0.001195 -1.420 0.155761

R2 0.1922

adjusted R2 0.1893

d.o.f. 4796
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Table A.2: log-log Regression, IV estimates

Coefficient Standard Error t-Value p-Value

intercept 3.054597 0.207398 14.728 2e-16

log own price -0.771068 0.210990 -3.655 0.000260

log income 0.310156 0.015482 20.034 2e-16

log drvrcnt 0.671981 0.037579 17.882 2e-16

region 0.008345 0.003858 2.163 0.030609

cl5 smtown d -0.044035 0.031972 -1.377 0.168484

cl5 suburban d -0.152186 0.039533 -3.850 0.000120

cl5 secondcity d -0.162746 0.041350 -3.963 8.41e-05

cl5 urban d -0.154281 0.055352 -2.787 0.005336

popdensity d1 0.664454 0.121178 5.483 4.39e-08

popdensity d2 0.593308 0.118523 5.006 5.76e-07

popdensity d3 0.507848 0.11935 4.255 2.13e-05

popdensity d4 0.510722 0.117411 4.350 1.39e-05

popdensity d5 0.485296 0.116181 4.177 3.01e-05

popdensity d6 0.423496 0.114289 3.705 0.000213

popdensity d7 0.330401 0.119144 2.773 0.005573

public transport -0.030002 0.023919 -1.254 0.209795

mean age driver -0.001632 0.001195 -1.366 0.171927

V 0.767499 0.329511 2.329 0.019889

R2 0.1922

adjusted R2 0.1893

d.o.f. 4793
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