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This paper considers efficient estimation of copula-based semiparametric strictly stationary
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1 Introduction

A copula function is a multivariate probability distribution function with uniform marginals.

Copula-based method has become one popular tool in modeling nonlinear, asymmetric and tail

dependence in financial and insurance risk managements. See Embrechts, et al. (2002), Embrechts

(2008), Genest et al. (2008), Patton (2002, 2006, 2008) and the references therein for reviews of

various theoretical properties and financial applications of the copula approach.

While the majority of the previous work using copulas have focused on modeling the contempo-

raneous dependence between multiple univariate series, there are also a growing number of papers

using copulas to model the temporal dependence of a univariate nonlinear time series. Granger

(2003) suggests to define persistence (such as ‘long memory’ or ‘short memory’) for general nonlin-

ear time series models via copulas. Darsow, et al. (1992), de la Pena et al. (2006) and Ibragimov

(2009) provide characterizations of a copula-based time series to be a Markov process. Joe (1997)

proposes a class of parametric (strictly) stationary Markov models based on parametric copulas

and parametric invariant (or marginal) distributions. Chen and Fan (2006) study a class of semi-

parametric stationary Markov models based on parametric copulas and nonparametric invariant

distributions.

Let {Yt} be a stationary Markov process of order one with a continuous invariant distribution

G. Then its probabilistic properties are completely determined by the bivariate joint distribution

function of Yt−1 and Yt, H(y1, y2) (say). By Sklar’s theorem, one can uniquely express H(·, ·) in

terms of the invariant distribution G and the copula function C(·, ·) of Yt−1 and Yt:

H(y1, y2) ≡ C(G(y1), G(y2)).

Thus one can always specify a stationary first order Markov model with continuous state space

by directly specifying the marginal distribution of Yt and the copula function of Yt−1 and Yt. The

advantage of the copula approach is that one can freely choose the marginal distribution and the

copula function separately; the former characterizes the marginal behavior such as the fat-tails of

the time series {Yt}n
t=1, while the latter characterizes all the scale-free temporal dependence and

tail dependence properties of the time series. Although being strictly stationary first-order Markov,

a model generated via a copula (especially a tail dependent copula) is very flexible. This model can

generate a rich array of nonlinear time series patterns, including persistent clustering of extreme val-

ues via tail dependent copulas evaluated at fat-tailed marginals, asymmetric dependence, and other

“look alike” behaviors present in many popular nonlinear models such as Arch, Garch, stochastic

volatility, near-unit root, long-memory, structural break, Markov switching, etc. From the point

of view of financial applications, one attractive property of the copula-based Markov model is that
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the implied (nonlinear) conditional quantiles (value-at-risks) are automatically monotonic across

quantiles. This nice feature has been exploited by Chen et al. (2008) and Bouye and Salmon (2008)

in their study of copula-based nonlinear quantile autoregression and Value at risk.

In this paper, we shall focus on the class of copula-based, strictly stationary, semiparametric first

order Markov models, in which the true copula density function has a parametric form (c(·, ·;α0)),

and the true invariant distribution is of an unknown form (G0(·)) but is absolutely continuous

with respect to the Lebesgue measure on the real line. Any model of this class is completely

characterized by two unknown parameters: the copula dependence parameter α0 and the invariant

distribution G0(·). To establish the asymptotic properties of any semiparametric estimators of

(α0, G0), one needs to know temporal dependence properties of the copula-based Markov models.

For this class of models, Chen and Fan (2006) show that the beta-mixing temporal dependence

measure is purely determined by the properties of copulas (and does not depend on the invariant

distributions); and Beare (2008) provides sufficient conditions for geometric beta-mixing in terms of

copulas without any tail dependence (such as Gaussian and Frank copulas). Neither paper is able

to verify whether or not a Markov process generated via a tail dependent copula (such as Clayton,

survival Clayton, Gumbel, survival Gumbel, Student’s t) is geometric beta-mixing. Ibragimov and

Lentzas (2008) demonstrate via simulation that Clayton copula-based first order strictly stationary

Markov models could behave as ‘long memory’ in copula levels. In this paper, we show that

Clayton, survival Clayton, Gumbel, survival Gumbel, Student’s t copula based Markov models

are actually geometric ergodic (hence geometric beta-mixing). Therefore, according to our this

theorem, although a time series plot of a Clayton copula (or survival Clayton, Gumbel, survival

Gumbel, other tail dependent copula) generated Markov model may look highly persistent and

‘long memory alike’, it is in fact weakly dependent and ‘short memory’.

In this paper, we propose a sieve maximum likelihood estimation (MLE) procedure for the

copula parameter α0, the invariant distribution G0 and the conditional quantiles of a copula-based

semiparametric Markov model. We show that the sieve MLEs of any smooth functionals are root-n

consistent, asymptotically normal and efficient; and that the sieve likelihood ratio statistics is chi-

square distributed. It is interesting to note that although the conditional distribution of a copula-

based semiparametric stationary Markov model depends on the unknown invariant distribution, the

plug-in sieve MLE estimators of the nonlinear conditional quantiles (VaR) are still
√

n-consistent,

asymptotically normal and efficient.

To the best of our knowledge, Atlason (2008) is the only other paper that also consider the

semiparametric efficient estimation of a copula parameter α0 for a copula-based first-order strictly

stationary Markov model. His work and our work have been carried through independently but
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are around the same time. While we propose sieve likelihood joint estimation of G0 and α0,

Atlason (2008) proposes rank likelihood estimation of the copula parameter α0, and relies on

simulation method to evaluate his rank likelihood. However, Atlason (2008) does not investigate

semiparametric efficient estimation of the invariant distribution G0 nor the conditional quantiles.

Previously, Chen and Fan (2006) propose a simple two-step estimation procedure, in which

one first estimates the invariant cdf G0(·) by a re-scaled empirical cdf Gn of the data {Yt}n
t=1,

and then estimate the copula parameter α0 by maximizing the pseudo log-likelihood corresponding

to copula density evaluated at pseudo observations {Gn(Yt)}n
t=1. Their procedure can be viewed

as an extension of the one proposed by Genest et al. (1995) for a bivariate copula-based joint

distribution model of a random sample {(Xi, Yi)}n
i=1 to a univariate first-order Markov model of a

time series data {Yi}n
i=1 (with Xi = Yi−1). Just as the two-step estimator of Genest et al. (1995)

is generally inefficient for a bivariate random sample (see, e.g., Genest and Werker (2001)), the

two-step estimator of Chen and Fan (2006) is inefficient for a univariate Markov model.

We present Monte Carlo studies to compare the finite sample performance of our sieve MLE, the

two-step estimator of Chen and Fan (2006), the correctly specified parametric MLE and the incor-

rectly specified parametric MLE for Clayton and Gumbel copula-based Markov models. Numerous

simulation studies demonstrate that the two-step estimator of Chen and Fan (2006) is not only in-

efficient but also severely biased (in finite sample) when the time series has strong tail dependence,

and it leads to a biased and inefficient plug-in estimator of conditional quantiles (or VaR). The

simulation results indicate that our sieve MLEs perform very well; when the copula-based Markov

process has strong tail dependence, the sieve MLEs have much smaller biases and smaller variances

than the two-step estimators.

The rest of this paper is organized as follows. In Section 2, we present the class of copula-

based semiparametric strictly stationary Markov models, and show that several widely used tailed

dependent copula (Clayton, Gumbel, Student’s t) based Markov models are geometric beta-mixing.

In Section 3, we introduce the sieve MLE, and obtain its consistency and rate of convergence.

Section 4 establishes the asymptotic normality and semiparametric efficiency of the sieve MLE.

Section 5 shows that the sieve maximum likelihood ratio statistics is asymptotically chi-square

distributed, which suggests a simple way to construct confidence region for copula parameter and

other smooth functionals. In Section 6, we first review some popular existing estimators (the

two-step estimator, the correctly specified parametric MLE, the misspecified parametric MLE, the

infeasible MLE). We then conduct some simulation studies to compare the finite sample performance

of our sieve MLE vs these alternative estimators. Section 7 briefly concludes. All the proofs are

relegated to the Appendix.
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2 Copula-Based Markov Models

In this section we first present the model, and then some implied temporal dependence properties.

2.1 The model

Throughout this paper, we assume the true data generating process (DGP) satisfies the following

assumption:

Assumption M (DGP): (1) {Yt : t = 1, · · · , n} is a sample of a strictly stationary first order

Markov process generated from (G0(·), C(·, ·;α0)), where G0(·) is the true invariant distribution

which is absolutely continuous with respect to Lebesgue measure on the real line (with its support

Y a nonempty interval of R); C(·, ·;α0) is the true parametric copula for (Yt−1, Yt) up to unknown

value α0, is absolutely continuous with respect to Lebesgue measure on [0, 1]2, and is neither the

Fréchet-Hoeffding upper (C(u1, u2) = min(u1, u2)) nor the lower (C(u1, u2) = max(u1 + u2 − 1, 0))

bound. (2) the true marginal density g0(·) of G0(·) is positive on the interior of its support Y; and

the true copula density c(·, ·;α0) of C(·, ·;α0) is positive on (0, 1)2.

Under Assumption M (1), the true conditional probability density function, p0(Yt|Y t−1) of Yt

given Y t−1 ≡ (Yt−1, ..., Y1) is given by:

p0(Yt|Y t−1) = h0(Yt|Yt−1) ≡ g0(Yt)c(G0(Yt−1), G0(Yt);α0),

where h0(·|Yt−1) denotes the true conditional density of Yt given Yt−1. We note that the conditional

density is a function of both copula and marginal; hence the q−th conditional quantile of Yt given

Y t−1 is also a function of both copula and marginal:

QY
q (y) = G−1

0

(
C−1

2|1 [q|G0(y);α0]
)

where C2|1[·|u;α0] ≡ ∂
∂u1

C(u, ·;α0) ≡ C1(u, ·;α0) is the conditional distribution of Ut ≡ G0(Yt)

given Ut−1 = u; and C−1
2|1 [q|u;α0] is the q−th conditional quantile of Ut given Ut−1 = u.

Under assumption M (1), we have that the transformed process {Ut : Ut ≡ G0(Yt)} is also

a strictly stationary first order Markov process with uniform marginals and C(·, ·;α0) the joint

distribution of Ut−1 and Ut. Chen and Fan (2006) express any copula-based first-order strictly

stationary Markov model for {Yt} in terms of the following semiparametric transformation autore-

gression model for the transformed process {Ut}:

Λ1(Ut) = Λ2(Ut−1) + εt, E{εt|Ut−1, ..., U1} = 0,

where Λ1(·) is an increasing function, Λ2(Ut−1) ≡ E{Λ1(Ut)|Ut−1, ..., U1}, and the conditional

density of εt given U t−1 ≡ (Ut−1, ..., U1) satisfies:

fεt|U t−1(ε) = c(Ut−1,Λ
−1
1 (ε + Λ2(Ut−1));α0) ÷

dΛ1(ε + Λ2(Ut−1))

dε
.

4



2.2 Temporal dependence properties

All the scale-free dependence measures can be expressed in terms of copulas (see Nelson (2006),

Joe (1997)). For example, Kendall’s tau is τ ≡ 4
∫ ∫

[0,1]2 C(u1, u2)dC(u1, u2) − 1. The lower tail

(λL) and upper tail (λU ) dependence in terms of copulas are respectively

λL ≡ lim
u→0+

Pr (U2 ≤ u|U1 ≤ u) = lim
u→0+

C(u, u)

u
, and

λU ≡ lim
u→1−

Pr (U2 ≥ u|U1 ≥ u) = lim
u→1−

1 − 2u + C(u, u)

1 − u

provided the limits exist.

For analyzing asymptotic properties of any semiparametric estimators of (α0, G0), it is conve-

nient to apply empirical processes results for strictly stationary geometric ergodic (or geometric

beta mixing) Markov processes. In the following we recall the equivalent definitions of beta-mixing

and ergodicity for strictly stationary Markov process:

Definition 2.1. (1) (Davydov, 1973) For a strictly stationary Markov process {Yt}∞t=1, the β −
mixing coefficients are given by:

βt =

∫
sup

0≤φ≤1
|E[φ(Yt+1)|Y1 = y] − E[φ(Yt+1)]| dG0(y).

The process {Yt} is β−mixing if limt→∞ βt = 0; is β −mixing with exponential decay rate if βt ≤
γ exp(−δt) for some δ, γ > 0; and is β−mixing with sub-exponential decay rate if limt→∞ ξtβt = 0

for some positive non-decreasing rate function ξ satisfying ξt → ∞, t−1 ln ξt → 0 as t → ∞.

(2) (Chan and Tong, 2001) A strictly stationary Markov process {Yt} is (Harris) ergodic if

lim
t→∞

sup
0≤φ≤1

|E[φ(Yt+1)|Y1 = y] − E[φ(Yt+1)]| = 0 for almost all y;

is geometrically ergodic if there exist a measurable function W with
∫

W (y)dG0(y) < ∞ and a

constant κ ∈ [0, 1) such that for all t ≥ 1,

sup
0≤φ≤1

|E[φ(Yt+1)|Y1 = y] − E[φ(Yt+1)]| ≤ κtW (y)

Remark 2.1: (1) Under assumption M, the time series {Yt}n
t=1 is strictly stationary ergodic and

is also beta-mixing. See, e.g., Bradley (2005, corollary 3.6) and Chen and Fan (2006).

(2) Proposition 2.1 of Chen and Fan (2006) presents some high-level sufficient conditions in

terms of a copula to ensure beta-mixing decaying either exponentially fast or polynomially fast.

(3) Beare (2008, theorems 3.1 and 4.2) shows that all symmetric copulas whose copula densities

are bounded away from zero and square integrable are geometric beta-mixing. However, Beare
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(2008, theorem 3.2) also shows that all copulas with square integrable densities do not have any

tail dependence.

Both Chen and Fan (2006) and Beare (2008) point out that Gaussian copula (which has no

tail dependence) generated Markov model is geometric beta mixing, but neither is able to verify

whether any tail dependent copulas (such as Clayton copula) generated Markov models are still

geometric beta-mixing.

For financial risk management, the Markov models generated via tail-dependent copulas are

much more relevant than models without tail dependence. In particular, the following three exam-

ples have been widely used in financial applications:

Example 2.1 (Clayton copula-based Markov model): The bivariate Clayton copula is

C(u1, u2, α) =
[
u−α

1 + u−α
2 − 1

]−1/α
, 0 ≤ α < ∞.

Clayton copula has Kendall’s tau τ = α
2+α , and lower tail dependence λL = 2−1/α that is increasing

in α, but no upper tail dependence. Clayton copula becomes the independence copula CI(u1, u2) =

u1u2 when α = 0.

Example 2.2 (Gumbel copula-based Markov model): The bivariate Gumbel copula is

C(u1, u2;α) = exp(−[(− ln u1)
α + (− ln u2)

α]1/α), 1 ≤ α < ∞.

Gumbel copula has Kendall’s tau τ = 1 − 1
α , and upper tail dependence λU = 2 − 21/α that is

increasing in α, but no lower tail dependence. Gumbel copula becomes the independence copula

CI(u1, u2) = u1u2 when α = 1.

Example 2.3 (Student t copula-based Markov model): The bivariate Student t− copula is

C(u1, u2;α) = tν,ρ(t
−1
ν (u1), t

−1
ν (u2)), α = (ν, ρ), |ρ| < 1, ν ∈ (1,∞],

where tν,ρ(·, ·) is the bivariate Student-t distribution with mean zeros, correlation matrix having

off-diagonal element ρ, and degrees of freedom ν, and tν(·) is the cdf of a univariate Student-

t distribution with mean zero, and degrees of freedom ν. Student t copula has Kendall’s tau

τ = 2
π arcsin ρ, and symmetric tail dependence: λL = λU = 2tν+1(−

√
(ν + 1)(1 − ρ)/(1 + ρ)) that

is decreasing in ν. Student t copula becomes Gaussian copula when ν = ∞.

Ibragimov and Lentzas (2008) demonstrate via simulation that Clayton copula generated first

order strictly stationary Markov models behave as ‘long memory’ in copula levels when Clayton

copula parameter α is big. The time series plots (see Figure 1) of such Markov processes do look

‘long memory alike’. Nevertheless, our next theorem shows that they are in fact geometric ergodic

hence ‘short memory’ processes.
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Figure 1: Markov time series: tail dependence index = 0.9548, student t3 marginal distribution

Theorem 2.1 (geometric ergodicity): Under Assumption M, the Markov time series {Yt}n
t=1 gen-

erated via Clayton copula with 0 ≤ α < ∞, Gumbel copula with 1 ≤ α < ∞, Student’s t copula

with |ρ| < 1 and ν ∈ [2,∞], are all geometric ergodic (hence geometric beta-mixing).

Remark 2.2: If {Ut}n
t=1 is a CU (·, ·) copula generated strictly stationary first order Markov model

with uniform marginals, then {Vt ≡ 1−Ut}n
t=1 is also a copula based strictly stationary first order

Markov model with uniform marginals and copula function:

CV (v1, v2) ≡ Pr (Vt−1 ≤ v1, Vt ≤ v2) = Pr (Ut−1 ≥ 1 − v1, Ut ≥ 1 − v2)

= v1 + v2 − 1 + CU (1 − v1, 1 − v2) ≡ Cs
U (v1, v2)

which is the survival copula of Cs
U (u1, u2) (see Nelson, 2006). Therefore, a copula CU (·, ·) generated

strictly stationary first order Markov process is (geometric ergodic) or beta-mixing with certain

decay speed β(j) = o(1) if and only if its survival copula Cs
U (·, ·) generated Markov process is

(geometric ergodic) or beta-mixing with the same decay speed β(j) = o(1).

By Theorem 2.1 and Remark 2.2, we immediately have that survival Clayton and survival

Gumbel generated first order stationary Markov processes are also geometric ergodic.
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3 Sieve MLE, Consistency with Rate

Under assumption M, we have that the true conditional density of Yt given Y t−1 ≡ (Yt−1, ..., Y1) is

given by: p0(·|Y t−1) = h0(·|Yt−1) ≡ g0(·)c(G0(Yt−1), G0(·);α0). Let

p(·|Y t−1) = h(·|Yt−1;α, g) ≡ g(·)c(G(Yt−1), G(·);α)

denote any candidate conditional density of Yt given Y t−1. Let Zt = (Yt−1, Yt), and denote

ℓ(α, g, Zt) ≡ log p(Yt|Y t−1) = log {h(Yt|Yt−1;α, g)} ≡ log g(Yt) + log c (G(Yt−1), G(Yt);α)

≡ log g(Yt) + log c

(∫
1(y ≤ Yt−1)g(y)dy,

∫
1(y ≤ Yt)g(y)dy;α

)

as the log-likelihood associated with the conditional density p(Yt|Y t−1). Then the joint log-

likelihood function of the data {Yt}n
t=1 is given by

Ln(α, g) ≡ 1

n

n∑

t=2

ℓ(α, g, Zt) +
1

n
log g(Y1).

The approximate sieve MLE γ̂n ≡ (α̂n, ĝn) is defined as

Ln(α̂n, ĝn) ≥ max
α∈A,g∈Gn

Ln(α, g) − Op

(
δ2
n

)
, (3.1)

where δn = o(1), and Gn denotes the sieve space (i.e., a sequence of finite dimensional parameter

spaces that becomes dense (as n → ∞) in the entire parameter space G for g0).

There exist many sieves for approximating a univariate probability density function. In this

paper, we will focus on using linear sieves to directly approximate either a square root density:

Gn =

{
gKn ∈ G : gKn(y) = [

Kn∑

k=1

akAk(y)]2,

∫
gKn(y)dy = 1

}
, Kn → ∞,

Kn

n
→ 0, (3.2)

or a log density:

Gn =

{
gKn ∈ G : gKn(y) = exp{

Kn∑

k=1

akAk(y)},
∫

gKn(y)dy = 1

}
, Kn → ∞,

Kn

n
→ 0, (3.3)

where {Ak(·) : k ≥ 1} consists of known basis functions, and {ak : k ≥ 1} is the collection of

unknown sieve coefficients.

Suppose the support Y (of the true g0) is either a compact interval (say [0, 1]) or the whole

real line R. A real-valued function g on Y is said to be r-smooth if it is J times continuously

differentiable on Y and its J-th derivative satisfies a Hölder condition with exponent r − J ∈ (0, 1]

(i.e., there is a positive number K such that |DJg(y) − DJg(y′)| ≤ K|y − y′|r−J for all y, y′ ∈ Y).
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We denote Λr(Y) as the class of all real-valued functions on Y which are r-smooth; it is called a

Hölder space.

Let the true marginal density function g0 satisfy either
√

g0 ∈ Λr(Y) or log g0 ∈ Λr(Y). Then

any function in Λr(Y) can be approximated by some appropriate sieve spaces. For example, if Y
is a bounded interval and r > 1/2, it can be approximated by the spline sieve Spl(s,Kn) with

s > [r], the polynomial sieve, the trigonometric sieve, the cosine series and etc. When the support

or Y is unbounded, thin-tailed density can be approximated by Hermite polynomial sieve, while

polynomial fat-tailed density can be approximated by spline wavelet sieve. See Chen (2007) for

detailed descriptions of various sieve spaces Gn. In our simulation study, we chose the sieve number

of terms using modified AIC and BIC, although one could also use cross-validation (see, e.g., Fan

and Yao (2003), Gao (2007), Li and Racine (2007)) and other computationally more intensive model

selection methods (see, e.g., Shen et al. (2004)) to choose the sieve number of terms Kn. See Chen

et al. (2006) for further discussions.

3.1 Consistency

In the following we denote Qn(α, g) ≡ n−1
n E0[ℓ(α, g, Z2)]+

1
nE0[log g(Y1)], where E0 is the expecta-

tion under the true DGP (i.e., Assumption M). Denote γ ≡ (α, g) and γ0 ≡ (α0, g0) ∈ Γ ≡ A× G.

Assumption 3.1: (1) α0 ∈ A, where A is a compact set of Rd with nonempty interior; (2)

g0 ∈G, let r > 1/2, either G = {g = f2 : f ∈ Λr,
∫

g(y)dy = 1} and Gn is given in (3.2), or

G = {g = exp(f) : f ∈ Λr,
∫

g(y)dy = 1} and Gn is given in (3.3) ; (3) Qn(α0, g0) > −∞, there are

a metric ||γ||c ≡
√

α′α + ||g||c on Γ ≡ A × G and a positive measurable function η() such that for

all ε > 0 and for all k ≥ 1,

Qn(α0, g0) − sup
α∈A,g∈Gk:||γ0−γ||c≥ε

Qn(α, g) ≥ η(ε) > 0.

(4) the sieve spaces Gn are compact under the metric ||g||c; (5) there is Πnγ0 ∈ Γn ≡ A× Gn such

that ||Πnγ0 − γ0||c = o(1); and |Qn(Πnγ0) − Qn(γ0)| = o(1).

For the norm ||γ||c ≡
√

α′α + ||g||c on Γ ≡ A × G, one can use either sup norm ||g||∞ (or a

weighted sup norm) or even lower order Hölder norm ||g||Λr′ for r′ ∈ [0, r) (or its weighted version).

Assumption 3.2: (1) E0

[
supγ∈Γn

|ℓ(γ, Zt)|
]

is bounded; (2) there are a finite constant κ > 0 and

a measurable function M(·) with E0[M(Zt)] ≤ const. < ∞, such that for all δ > 0,

sup
{γ,γ1∈Γn:||γ−γ1||c≤δ}

|ℓ(γ, Zt) − ℓ(γ1, Zt)| ≤ δκM(Zt) a.s. − Zt

We note that under assumption 3.1(1)(4), assumption 3.2(1) is implied by assumption 3.2(2).
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Proposition 3.1: Under Assumptions M, 3.1 - 3.2, δn = o(1) and Kn
n → 0, we have:

||γ̂n − γ0||c = op (1) .

3.2 Convergence rate

Denote N = {γ ∈ Γ : ||γ0 − γ||c = o(1)} and Nn = {γ ∈ Γn : ||γ0 − γ||c = o(1)}. Denote V ar0 as

the variance under the true DGP (i.e., Assumption M).

Assumption 3.3: (1) there are a metric ||γ||s ≡
√

α′α + ||g||s on N such that ||γ||s ≤||γ||c, and

a constant J0 > 0 such that for all ε > 0 and for all n ≥ 1,

Qn(α0, g0) − sup
γ∈Nn:||γ0−γ||s≥ε

Qn(α, g) ≥ J0ε
2 > 0.

(2) sup{γ∈Nn:||γ0−γ||s≤ǫ} V ar0(ℓ(γ, Zt) − ℓ(γ0, Zt)) ≤ const. × ǫ2 for all small ǫ > 0.

Assumption 3.3 suggests that a natural choice of ||γ||s could be
√

Qn(γ0) − Qn(γ).

Assumption 3.4: (1) {Yt}n
t=1 is geometric ergodic (hence geometric beta mixing); (2) there are a

constant κ ∈ (0, 2) and a measurable function M(·) with E0[M(Zt)
2 log(1+M(Zt))] ≤ const. < ∞,

such that for any δ > 0,

sup
{γ∈Nn:||γ0−γ||s≤δ}

|ℓ(γ, Zt) − ℓ(γ0, Zt)| ≤ δκM(Zt) a.s. − Zt.

Although we do not need any beta-mixing decay rate to establish consistency in Proposition 3.1,

we need some beta-mixing decay rate for rate of convergence.3 Given the results in subsection 2.2,

Assumption 3.4(1) is typically satisfied by copula-based Markov models. Note that in assumption

3.4(2), the moment restriction on the envelop function M(Zt) is weaker than the one (E0[M(Zt)
ς ] ≤

const. < ∞ for some ζ > 2) imposed in Chen and Shen (1998). This is because Chen and Shen

(1998) only assumed beta mixing with polynomial decay speed while our assumption 3.4(1) assumes

geometric beta mixing. It is well known that there are trade-off between speed of mixing decay

rate and finiteness of moments. See Doukhan, et al (1995).

The next proposition is a direct application of theorem 1 of Chen and Shen (1998) hence we

omit its proof.

Proposition 3.2: Under Assumptions M, 3.1 - 3.4, we have

||γ̂n − γ0||s = Op (δn) , δn = max

{√
Kn

n
, ||γ0 − Πnγ0||s

}
= o(1).

3It is common to assume some beta mixing or strong mixing decay rates in semi/nonparametric estimation and
testing; see, e.g., Robinson (1983), Fan and Yao (2003), Gao (2007), Li and Racine (2007), Kosorok (2008).

10



4 Normality and Efficiency of Sieve MLE of Smooth Functionals

Let ρ : A × G → R be a smooth functional and ρ(γ̂n) be the plug-in sieve MLE of ρ(γ0). In this

section, we extend the results of Chen et al (2006) on root-n normality and efficiency of their sieve

MLE for copula based multivariate joint distribution model using i.i.d. data to our scalar strictly

stationary first order Markov setting.

4.1 Asymptotic Normality and Efficiency of ρ(γ̂n)

In the following we denote (U1, U2) = (G0(Y1), G0(Y2)), u = (u1, u2) ∈ [0, 1]2 and c(G0(Yt−1), G0(Yt);α0) =

c(U ;α0) = c(γ0, Zt) (with the danger of slightly abusing notations). We also denote N0 = {γ ∈ N :

||γ0 − γ||s = O (δn)} and N0n = {γ ∈ Nn : ||γ0 − γ||s = O (δn)}.
Assumption 4.1: α0 ∈ int(A).

Assumption 4.2: the second order partial derivatives ∂2 log c(u;α)
∂αα′ , ∂2 log c(u;α)

∂uj∂α , ∂2 log c(u;α)
∂uj∂uk

for k, j =

1, 2, are all well-defined and continuous in γ ∈ N0.

Denote V as the linear span of Γ − γ0. Under Assumption 4.2, for any v = (vα, vg)
′ ∈ V, we

have that ℓ(γ0 + sv, Z) is continuously differentiable in small s ∈ [0, 1]. For any γ ∈ N0, define the

first order directional derivative of ℓ(γ, Zt) at the direction v ∈ V as:

dℓ(γ + sv, Zt)

ds
|s=0 ≡ ∂ℓ(γ, Zt)

∂γ′ [v]

=
∂ log c(γ, Zt)

∂α′ [vα] +
vg(Yt)

g(Yt)
+

2∑

j=1

∂ log c(γ, Zt)

∂uj

∫
1{y ≤ Yt−2+j}vg(y)dy,

and the second order directional derivative as:

d2ℓ(γ + sv + s̃ṽ, Zt)

ds̃ds
|s=0|es=0 =

d

ds̃

{
∂ℓ(γ + s̃ṽ, Zt)

∂γ′ [v]

}
|es=0 ≡ ∂2ℓ(γ, Zt)

∂γ∂γ′ [v, ṽ].

Assumption 4.3: (1) 0 < E0

[(
∂ℓ(γ0,Zt)

∂γ′ [v]
)2
]

< ∞ for v 6= 0, v ∈ V;

(2) h(Yt|Yt−1;α, g) ≡ g(Yt)c(G(Yt−1), G(Yt);α) > 0 in the neighborhood N0 of γ0;

(3) Let Sv = {s ∈ [0, 1] : γ0+sv ∈ N0}.
∫

sups∈Sv
|dh(y|Yt−1;γ0+sv)

ds |dy < ∞ and
∫

sups∈Sv
|d2h(y|Yt−1;γ0+sv)

ds2 |dy <

∞ almost surely, for v 6= 0, v ∈V.

Lemma 4.1: Under assumptions M, 4.1, 4.2 and 4.3, we have: (1) E0

((
∂ℓ(γ0,Zt)

∂γ′ [v]
)(

∂ℓ(γ0,Zs)
∂γ′ [ṽ]

))
=

0 for v, ṽ ∈ V and all s < t. (2) {∂ℓ(γ0,Zt)
∂γ′ [v] : v ∈ V}n

t=1 is a martingale difference sequence. (3)

E0

((
∂ℓ(γ0,Zt)

∂γ′ [v]
)2
)

= −E0

(
∂2ℓ(γ0,Zt)

∂γ∂γ′ [v, v]
)

.

Lemma 4.1 suggests that we can define the Fisher inner product on the space V as

〈v, ṽ〉 ≡ E0

[(
∂ℓ(γ0, Zt)

∂γ′ [v]

)(
∂ℓ(γ0, Zt)

∂γ′ [ṽ]

)]
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and the Fisher norm for v ∈ V as ‖v‖2 ≡ 〈v, v〉. Let V be the closed linear span of V under the

Fisher norm. Then (V, ‖ · ‖) is a Hilbert space.

The asymptotic properties of ρ(γ̂n) depend on the smoothness of the functional ρ and the rate

of convergence of γ̂n. For any v ∈ V, we denote

dρ(γ0 + sv)

ds
|s=0 ≡ ∂ρ(γ0)

∂γ′ [v],

whenever the limit is well defined.

Assumption 4.4: (1) for any v ∈ V, ρ(γ0 + sv) is continuously differentiable in s ∈ [0, 1] near

s = 0, and

‖∂ρ(γ0)

∂γ′ ‖ ≡ sup
v∈V:‖v‖>0

|∂ρ(γ0)
∂γ′ [v]|
‖v‖ < ∞;

(2) there exist constants c > 0, ω > 0, and a small ǫ > 0 such that for any v ∈ V with ‖v‖ < ǫ, we

have

|ρ(γ0 + v) − ρ(γ0) −
∂ρ(γ0)

∂γ′ [v]| ≤ c‖v‖ω

Under this assumption, by the Riesz representation theorem, there exists a v∗ ∈ V such that

∂ρ(γ0)

∂γ′ [v] ≡ 〈v∗, v〉, for all v ∈ V (4.1)

and

‖v∗‖2 = ‖∂ρ(γ0)

∂γ′ ‖2 = sup
v∈V:‖v‖>0

|∂ρ(γ0)
∂γ′ [v]|2
‖v‖2

< ∞

Assumption 4.5: (1) ‖γ̂n−γ0‖ = Op(δn) for a decreasing sequence δn satisfying (δn)ω = o(n−1/2);

(2) there exists Πnv∗ ∈ Γn − {γ0} such that δn × ‖Πnv∗ − v∗‖ = o(n−1/2).

Assumption 4.6: for all γ̃ ∈ N0n with ‖γ̃ − γ0‖ ≤ δn and all v = (vα, vg)
′ ∈ V with ‖v‖ ≤ δn we

have:

E0

(
∂2ℓ(γ̃, Zt)

∂γ∂γ′ [v, v] − ∂2ℓ(γ0, Zt)

∂γ∂γ′ [v, v]

)
= o(n−1).

Assumption 4.7:
{

∂ℓ(γ,Zt)
∂γ′ [Πnv∗] : γ ∈ N0, ‖γ − γ0‖ = O(δn)

}
is a Donsker class.

Under assumption 3.4(1), Assumption 4.7 is satisfied by applying the results of Doukhan, et al

(1995) on Donsker theorems for strictly stationary beta mixing processes.

Theorem 4.1 (Normality): Suppose that Assumptions M, 3.1-3.4 and 4.1-4.7 hold. Then:
√

n(ρ(γ̂n) − ρ(γ0)) ⇒ N(0, ‖∂ρ(γ0)
∂γ′ ‖2).

We follow the approach of Wong (1992) to establish semiparametric efficiency. Related work can

be found in Shen (1997), Bickel et al. (1993), Bickel and Kwon (2001) and the references therein.

Recall that a probability family {Pγ : γ ∈ Γ} for the sample {Yt}n
t=1 is locally asymptotically normal
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(LAN) at γ0, if (1) for any v in the linear span of Γ− γ0, γ0 + sn−1/2v ∈ Γ for all small s ≥ 0, and

(2)

dPγ0+n−1/2v

dPγ0

(Y1, · · · , Yn) = exp

{
n[Ln(γ0 +

1√
n

v) − Ln(γ0)]

}
= exp

{
Σn(v) − 1

2
‖v‖2 + Rn(γ0, v)

}
,

where Σn(v) is linear in v, Σn(v)
d−→ N (0, ‖v‖2) and plimn→∞Rn(γ0, v) = 0 (both limits are

under the true probability measure Pγ0
). To avoid the “super-efficiency” phenomenon, certain

regularity conditions on the estimates are required. In estimating a smooth functional in the

infinite-dimensional case, Wong (1992, p.58) defines the class of pathwise regular estimates. An

estimate Tn(Y1, · · · , Yn) of ρ(γ0) is pathwise regular if for any real number s > 0 and any v in the

linear span of Γ − γ0, we have

lim sup
n→∞

Pγn,s(Tn < ρ(γn,s)) ≤ lim inf
n→∞

Pγn,−s(Tn < ρ(γn,−s)),

where γn,s = γ0 + sn−1/2v. See Wong (1992) and Shen (1997) for details.

Theorem 4.2 (Efficiency): Under conditions in Theorem 4.1, if LAN holds, then the plug in

sieve MLE ρ(γ̂n) achieves the efficiency lower bound for pathwise regular estimates.

4.2
√

n Normality and Efficiency of α̂n

We take ρ(γ) = λ′α for any arbitrarily fixed λ ∈ Rd with 0 < |λ| < ∞. It satisfies Assumption

4.4(2) with ∂ρ(γ0)
∂γ′ [v] = λ′vα and ω = ∞. Assumption 4.4(1) is equivalent to finding a Riesz

representer v∗ ∈ V satisfying (4.2) and (4.3):

λ′(α − α0) = 〈γ − γ0, v
∗〉 for any γ − γ∗ ∈ V (4.2)

and

‖∂ρ(γ0)

∂γ′ ‖2 = ||v∗||2 = 〈v∗, v∗〉 = sup
v 6=0,v∈V

|λ′vα|2
||v||2 < ∞. (4.3)

Let us change the variables before making statements on (4.3). Denote:

L0
2([0, 1]) ≡

{
e : [0, 1] → R :

∫ 1

0
e(v)dv = 0,

∫ 1

0
[e(v)]2dv < ∞

}

By change of variables, for any vg ∈ Vg, there is a unique function bg ∈ L0
2([0, 1]) with bg(u) =

vg(G−1

0
(u))

g0(G
−1

0
(u))

, and vice versa. So we can express ∂ℓ(γ0,Zt)
∂γ′ [v] as:

∂ℓ(γ0, Zt)

∂γ′ [v] =
∂ℓ(γ0, Ut, Ut−1)

∂γ′ [(v′α, bg)
′]

=
∂ log c(Ut−1, Ut;α0)

∂α′ [vα] + bg(Ut) +

2∑

j=1

∂ log c(Ut−1, Ut;α0)

∂uj

∫ Ut−2+j

0
bg(u)du

13



and

‖v‖2 = E0

[(
∂ℓ(γ0, Ut, Ut−1)

∂γ′ [(v′α, bg)
′]
)2
]

= E0




∂ log c(Ut−1, Ut;α0)

∂α′ [vα] + bg(Ut) +
2∑

j=1

∂ log c(Ut−1, Ut;α0)

∂uj

∫ Ut−2+j

0
bg(u)du




2
 .

Define:

B =

{
b = (v′α, bg)

′ ∈ (A− α0) × L0
2([0, 1]) : ||b||2 ≡ E0

[(
∂ℓ(γ0, Ut, Ut−1)

∂γ′ [b]

)2
]

< ∞
}

.

Then there is a one-to-one onto mapping between the two Hilbert spaces (B, || · ||) and (V, || · ||).
So the Riesz representer v∗ = (v∗′α , v∗g)

′ ∈ V is uniquely determined by b∗ = (v∗′α , b∗g)
′ ∈ B (and vice

versa) via the relation: v∗g(y) = b∗g(G0(y))g0(y) for all y ∈ Y. Notice that

sup
v 6=0,v∈V

|λ′vα|2
||v||2

= sup
b6=0,b∈B

|λ′vα|2

E0

[(
∂ log c(Ut−1,Ut;α0)

∂α′ [vα] + bg(Ut) +
∑2

j=1
∂ log c(Ut−1,Ut;α0)

∂uj

∫ Ut−2+j

0 bg(u)du
)2
]

= λ′I∗(α0)
−1λ = λ′ (E0[Sα0

S ′
α0

]
)−1

λ,

where Sα0
is the efficient score function for α0,

S ′
α0

=
∂ log c(α0, Ut, Ut−1)

∂α′ − e∗(Ut) −
2∑

j=1

∂ log c(α0, Ut, Ut−1)

∂uj

∫ Ut−2+j

0
e∗(u)du (4.4)

and e∗ = (e∗1, · · · , e∗d) ∈ (L0
2([0, 1]))

d solves the following infinite-dimensional optimization problems

for k = 1, · · · , d,

inf
ek∈L0

2
([0,1])

E0






∂ log c(Ut−1, Ut;α0)

∂αk
− ek(Ut) −

2∑

j=1

∂ log c(Ut−1, Ut;α0)

∂uj

∫ Ut−2+j

0
ek(u)du




2
 .

Therefore b∗ = (v∗′α , b∗g)
′ with v∗α = I∗(α0)

−1λ and b∗g(u) = −e∗(u)×v∗α, and v∗ = [Id,−e∗(G0(·))g0(·)]×
I∗(α0)

−1λ. Hence (4.3) is satisfied if and only if I∗(α0) = E0[Sα0
S ′

α0
] is non-singular, which in

turn is satisfied under the following Assumption:

Assumption 4.4’: (1)
∫ ∂c(u;α0)

∂uj
du−j = ∂

∂uj

∫
c(u;α0)du−j = 0 for (j,−j) = (1, 2) with j 6= −j; (2)

Σideal ≡ E0

(
∂ log c(Ut−1,Ut;α0)

∂α {∂ log c(Ut−1,Ut;α0)
∂α }′

)
is finite and positive definite; (3)

∫ ∂2c(u;α0)
∂uj∂α du−j =

∂2

∂uj∂α

∫
c(u;α0)du−j = 0 for (j,−j) = (1, 2) with j 6= −j; (4) there exists a constant K such that

maxj=1,2 sup0<uj<1 E

[(
uj(1 − uj)

∂ log c(U1,U2;α0)
∂uj

)2
|Uj = uj

]
≤ K.
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We can now apply Theorems 4.1 and 4.2 to obtain the following result:

Proposition 4.1: Suppose that assumptions M, 3.1-3.4 and 4.1-4.3, 4.4’, 4.5-4.7 hold. Then:
√

n(α̂n − α0) ⇒ N
(
0,I∗(α0)

−1
)
, and α̂n is semiparametrically efficient.

In general, there is no closed-form solution of I∗(α0). Nevertheless it can be consistently es-

timated by a sieve least square method using its characterization in (4.4). Let Ût = Ĝn(Yt) for

t = 1, · · · , n. Let Bn be some sieve space such as:

Bn = {e(u) =

Knα∑

k=1

ak

√
2 cos(kπu), u ∈ [0, 1],

Knα∑

k=1

a2
k < ∞}, (4.5)

where Knα → ∞, (Knα)d/n → 0. For k = 1, · · · , d, we compute êk as the solution to

min
ek∈Bn

1

n − 1

n∑

t=2


∂ log c(Ût−1, Ût; α̂)

∂αk
− ek(Ût) −

2∑

j=1

∂ log c(Ût−1, Ût; α̂)

∂uj

∫ bUt−2+j

0
ek(u)du




2

.

Denote ê = (ê1, · · · , êd) and

Î∗ =
1

n − 1

n∑

t=2





(
∂ log c(bUt−1,bUt;bα)

∂α′ − ê(Ût) −
∑2

j=1
∂ log c(bUt−1,bUt;bα)

∂uj

∫ bUt−2+j

0 ê(u)du
)′

×
(

∂ log c(bUt−1,bUt;bα)
∂α′ − ê(Ût) −

∑2
j=1

∂ log c(bUt−1,bUt;bα)
∂uj

∫ bUt−2+j

0 ê(u)du
)



 .

Following the proof of theorem 5.1 in Ai and Chen (2003) we immediately obtain:

Proposition 4.2: Under all the assumptions of Proposition 4.1, Î∗ = I∗(α0) + op(1).

4.3 Sieve MLE of the marginal distribution

Let us consider the estimation of ρ(γ0) = G0(y) for some fixed y ∈ Y by the plug-in sieve MLE:

ρ(γ̂n) = Ĝn(y) =
∫

1(x ≤ y)ĝn(x)dx, where ĝn is the sieve MLE for g0.

Clearly ∂ρ(γ0)
∂γ′ [v] =

∫
Y 1(x ≤ y)vg(x)dx for any v = (v′α, vg)

′ ∈ V. It is easy to see that ω = ∞
in Assumption 4.4, and

‖∂ρ(γ0)

∂γ′ ‖2 = sup
v∈V:||v||>0

∣∣∣
∫
Y 1(x ≤ y)vg(x)dx

∣∣∣
2

||v||2 < ∞.

Hence the representer v∗ ∈ V should satisfy (4.6) and (4.7):

〈v∗, v〉 =
∂ρ(γ0)

∂γ′ [v] = E0

(
1(Yt ≤ y)

vg(Yt)

g0(Yt)

)
for all v ∈ V (4.6)

‖∂ρ(γ0)

∂γ′ ‖2 = ||v∗||2 = ||b∗||2 = sup
b∈B:||b||>0

|E0 [1(Ut ≤ G0(y))bg(Ut)]|2
||b||2 . (4.7)
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Proposition 4.3: Let v∗ ∈ V solve (4.6) and (4.7). Suppose that assumptions M, 3.1-3.4 and

4.1-4.3, 4.5-4.7 hold. Then for any fixed y ∈ Y,
√

n(Ĝn(y)−G0(y)) ⇒ N
(
0, ||v∗||2

)
. Moreover, Ĝn

is semiparametrically efficient.

Again, there are currently no closed-form expressions for the asymptotic variance ||v∗||2. Nev-

ertheless, it can also be consistently estimated by the sieve method. Let σ̂2
G ≡

max
vα 6=0,bg∈Bn

∣∣∣ 1n
∑n

t=1 1{Ût ≤ Ĝn(y)}bg(Ût)
∣∣∣
2

1
n−1

∑n
t=2

[
∂ log c(bUt−1,bUt;bα)

∂α′ vα + bg(Ût) +
∑2

j=1
∂ log c(bUt−1,bUt;bα)

∂uj

∫ bUt−2+j

0 bg(u)du
]2

where Ût = Ĝn(Yt), and Bn is given in (4.5).

Proposition 4.4: Under all the assumptions of Proposition 4.3, we have: for any fixed y ∈ Y,

σ̂2
G = ||v∗||2 + op(1).

4.4 Plug-in estimates of conditional quantiles

Under assumption M, the q−th conditional quantile of Yt given Yt−1 = y is given by QY
q (y) =

G−1
0

(
C−1

2|1 [q|G0(y);α0]
)
. Its plug-in sieve MLE estimate is given by:

Q̂Y
q (y) = Ĝ−1

n

(
C−1

2|1

[
q|Ĝn(y); α̂n

])

Let ρ(γ0) = QY
q (y), then by some calculation,

∂ρ(γ0)

∂γ′ [v] =

−C11

R
1(x≤y)vg(x)dx−C1αvα

c(Ut−1,C−1

1
(Ut−1,q;α0),α0)

−
∫

1(x ≤ QY
q (y))vg(x)dx

g0(QY
q (y))

for any v = (vα, vg)
′ ∈ V, C11 =

∂2C(Ut−1,C−1

1
(Ut−1,q;α0),α0)

∂u2
1

, C1α =
∂2C(Ut−1,C−1

1
(Ut−1,q;α0),α0)

∂u1∂α .

We can see ω = 2 in Assumption 4.4, as long as g0(Q
Y
q (y)) 6= 0 and c(Ut−1, C

−1
1 (Ut−1, q;α0), α0) 6=

0, which are satisfied under assumption M (2). Thus we have:

‖∂ρ(γ0)

∂γ′ ‖2 = sup
v∈V:||v||>0

∣∣∣{g0(Q
Y
q (y))}−1

[
−C11

R
1(x≤y)vg(x)dx−C1αvα

c(Ut−1,C−1

1
(Ut−1,q;α0),α0)

−
∫

1(x ≤ QY
q (y))vg(x)dx

]∣∣∣
2

||v||2 < ∞.

Hence the Riesz representer v∗ ∈ V should satisfy: 〈v∗, v〉 = ∂ρ(γ0)
∂γ′ [v] for all v ∈ V, and ||v∗||2 =

‖∂ρ(γ0)
∂γ′ ‖2. Applying Theorems 4.1 and 4.2 we immediately obtain:

Proposition 4.5: Let v∗ ∈ V be the Riesz representer for QY
q (y). Suppose that assumptions

M, 3.1-3.4, 4.1-4.3, 4.5-4.7 hold. Then: for a fixed y ∈ Y,
√

n(Q̂Y
q (y) − QY

q (y)) ⇒ N
(
0, ||v∗||2

)
.

Moreover, Q̂Y
q (y) is semiparametrically efficient.
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5 Sieve Likelihood Ratio Inference for Smooth Functionals

In this section, we are interested in sieve likelihood ratio inference for smooth functional ρ(γ) =

(ρ1(γ), · · · , ρk(γ))′ : Γ → Rk:

H0 : ρ(γ0) = 0,

where ρ is a vector of known functionals. For instance, ρ(γ) = α−α0 ∈ Rd or ρ(γ) = G(y)−G0(y) ∈
R for fixed y.

Shen and Shi (2005) provide a theory on sieve likelihood ratio inference for i.i.d. data. We now

extend their result to strictly stationary Markov time series data,4 and derive the following

2n

(
max

α∈A,g∈Gn

Ln(α, g) − max
α∈A,g∈Gn:ρ(γ)=0

Ln(α, g)

)
→d X 2

(m), (5.1)

where m is the maximum number of linearly independent ∂ρ1(γ0)
∂γ′ , · · · , ∂ρk(γ0)

∂γ′ . Without loss of

generality, we assume k = m, (i.e., ∂ρ1(γ0)
∂γ′ , · · · , ∂ρk(γ0)

∂γ′ are linearly independent), otherwise a linear

transformation can be conducted for the hypothesis.

Suppose that ρi satisfies Assumption 4.4 for i = 1, · · · , k. Then by the Riesz representation

theorem, there exists a v∗i ∈ V such that

∂ρi(γ0)

∂γ′ [v] ≡ 〈v∗i , v〉, for all v ∈ V.

Denote v∗ = (v∗1 , · · · , v∗k)
′. By the Gram-Schmidt orthogonalization, without loss of generality, we

assume 〈v∗i , v∗j 〉 = 0 for any i 6= j. In addition, assume that v∗i satisfies Assumption 4.5(2) for

i = 1, · · · , k.

Assumption 5.1: For some positive sequence {δn, n ≥ 1}, δn → 0, lim infn→∞ n1/2δn > 0,

lim sup
K→∞

lim sup
n→∞

Pr

(
sup

{γ∈Γn,||γ−Πnγ0||≥Kδn}
|Ln(γ) − Ln(Πnγ0)| ≥ 0

)
= 0

In addition, ||γ0 − Πnγ0|| = O(δn).

This assumption is the same as that in Shen and Shi (2005). In this section, we require δn in

Assumption 5.1 is the same as those in Assumptions 4.5, 4.6, and 4.7.

Denote

γ̂n = arg max
α∈A,g∈Gn

Ln(α, g); γn = arg max
α∈A,g∈Gn,ρ(γ)=0

Ln(α, g).

Theorem 5.1: Suppose that assumptions M, 3.1-3.4, 4.1-4.3, 4.5-4.7 and 5.1 hold, also that

assumption 4.4 holds with ρi for i = 1, · · · , k and v∗i satisfies assumption 4.5(2) for i = 1, · · · , k.

Then:

2n(Ln(γ̂n) − Ln(γn)) →d X 2
(k),

4If we only care about estimation of copula dependence parameter, we could extends the results of Murphy and
van der Vaart (2000) on profile likelihood to our copula based semiparametric Markov models.
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where ∂ρ1(γ0)
∂γ′ , · · · , ∂ρk(γ0)

∂γ′ are assumed to be linearly independent.

We can apply Theorem 5.1 to construct confidence regions of any smooth functionals. For

example, we can compute confidence region for sieve MLE of copula parameter α. Define the

following profiled sieve likelihood:

L̃n(α) ≡ Ln(α, g̃n(α)), with g̃n(α) = arg max
g∈Gn

Ln(α, g).

By Theorem 5.1, 2n(Ln(α̂n, g̃n(α̂n)) − Ln(α0, g̃n(α0))) →d X 2
(d), where (α̂n, g̃n(α̂n)) = γ̂n is the

original sieve MLE.

6 Monte Carlo Comparison of Several Estimators

In this section we address the finite sample performance of sieve MLE by comparing it to several

existing popular estimators: the two-step semiparametric estimator proposed in Chen and Fan

(2006), the ideal (or infeasible) MLE, the correctly specified parametric MLE and the misspecified

parametric MLE.

6.1 Existing Estimators

For comparison, we review several existing estimators that have been used in applied work.

6.1.1 Two-step semiparametric estimator

Chen and Fan (2006) propose the following two-step semiparametric procedure:

Step 1, estimate the unknown true marginal distribution G0(y) by the empirical distribution

function: n+1
n Gn(y), where Gn(y) ≡ 1

n+1

∑n
t=1 1{Yt ≤ y}.

Step 2, estimate the copula dependence parameter α0 by:

α̂2sp
n ≡ arg max

α∈A
1

n

n∑

t=2

log c(Gn(Yt−1), Gn(Yt);α).

Assuming that the process {Yt}n
t=1 is beta-mixing with certain decay rate, under Assumption

M and some other mild regularity conditions, Chen and Fan (2006) show that

√
n(α̂2sp

n − α0) →d N
(
0, σ2

2sp

)
, with σ2

2sp ≡ B−1
0 Σ2spB

−1
0

where B0 ≡ −E0

(
∂2 log c(Ut−1,Ut;α0)

∂α∂α′

)
= Σideal (under assumption 4.4’), and

Σ2sp ≡ lim
n→∞

V ar0

{
1√
n

n∑

t=2

[
∂ log c(Ut−1, Ut;α0)

∂α
+ W1(Ut−1) + W2(Ut)

]}
< ∞,

W1(Ut−1) ≡
∫ 1

0

∫ 1

0
[1{Ut−1 ≤ v1} − v1]

∂2 log c(v1, v2;α0)

∂α∂u1
c(v1, v2;α0)dv1dv2,

W2(Ut) ≡
∫ 1

0

∫ 1

0
[1{Ut ≤ v2} − v2]

∂2 log c(v1, v2;α0)

∂α∂u2
c(v1, v2;α0)dv1dv2.
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Example 6.1 (Two-step semiparametric estimator of Gaussian copula parameter): The bivariate

Gaussian copula is

C(u1, u2;α) = Φα(Φ−1(u1),Φ
−1(u2)), |α| < 1,

where Φα is the bivariate standard normal distribution with correlation α, and Φ is the scalar

standard normal distribution. Chen and Fan (2006) show that:

√
n(α̂2sp

n − α0) →d N
(
0, 1 − α2

0

)
.

Klaassen and Wellner (1997) establish that the semiparametric efficient variance bound for esti-

mating a Gaussian copula parameter α is 1 − α2
0; hence α̂2sp

n is semiparametrically efficient for

Gaussian copula. However, as pointed out by Genest and Werker (2002), Gaussian copula and

the independence copula are the only two copulas for which the two-step semiparametric estimator

is efficient for α0. Moreover, the empirical cdf estimator is still inefficient for G0() even in this

Gaussian copula-based Markov model.

6.1.2 Possibly misspecified parametric MLE

Parametric MLE is the estimator that assuming a parametric functional form for the marginal

probability density. Denote G(y, θ) (g(y, θ)) as the marginal distribution (marginal density) whose

functional form is known up to the unknown finite dimensional parameter θ. Then the observed

joint parametric log-likelihood is:

Ln(α, θ) =
1

n

n∑

t=1

log g(Yt, θ) +
1

n

n∑

t=2

log c (G(Yt−1, θ), G(Yt, θ);α) ,

and the parametric MLE is: (α̂p
n, θ̂p

n) = arg max(α,θ)∈A×Θ Ln(α, θ), where A × Θ is the parameter

space.

Denote ℓ(α, θ, Zt) ≡ log g(Yt, θ) + log c (G(Yt−1, θ), G(Yt, θ);α) as the parametric log-likelihood

for one data point Zt ≡ (Yt−1, Yt).

Assumption 6.1 (1) A×Θ is a compact set of Rp with nonempty interior. (α∗, θ∗) ∈ A×Θ is the

unique maximizer of E0(ℓ(α, θ, Zt)) over A× Θ; (2) ℓ(α, θ, Zt) is continuous in (α, θ) for any data

Zt, and is a measurable function of Zt for all (α, θ) ∈ A×Θ; (3) E0[sup(α,θ)∈A×Θ |ℓ(α, θ, Zt)|] < ∞.

Assumption 6.2 (1) (α∗, θ∗) ∈ int(A × Θ); (2) the second order partial derivatives ∂2 log g(y,θ)
∂θθ′ ,

∂2 log c(u1,u2,α)
∂αα′ , ∂2 log c(u1,u2,α)

∂uj∂α , ∂2 log c(u1,u2,α)
∂uj∂uk

for k, j = 1, 2 are all well-defined and continuous in a

neighborhood N of (α∗, θ∗), and for all y ∈ Y, (u1, u2) ∈ (0, 1)2; (3) E0

(
sup(α,θ)∈N || ∂2ℓ(α,θ,Zt)

∂(α,θ)∂(α,θ)′ ||
)

<

∞; (4) B∗p ≡ −E0

(
∂2ℓ(α∗,θ∗,Zt)
∂(α,θ)∂(α,θ)′

)
is nonsingular.

Assumption 6.3 1√
n

∑n
t=2

∂ℓ(α∗,θ∗,Zt)
∂(α,θ) →d N(0,Σ∗p) with Σ∗p ≡ limn→∞ V ar{ 1√

n

∑n
t=2

∂ℓ(α∗,θ∗,Zt)
∂(α,θ) } <

∞.
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Assumption 6.3 is satisfied by many well-known CLTs, such as Gordin’s CLT for zero-mean er-

godic stationary processes, which holds under assumptions M, 3.4(1) and E0

(
∂ℓ(α∗,θ∗,Zt)

∂(α,θ)

[
∂ℓ(α∗,θ∗,Zt)

∂(α,θ)

]′)
<

∞. The next Proposition 6.1 follows trivially from propositions 7.3 and 7.8 of Hayashi (2000); hence

we omit its proof.

Proposition 6.1 (possibly misspecified case): Let (α̂p
n, θ̂p

n) = arg max(α,θ)∈A×Θ Ln(α, θ). Under

Assumptions M and 6.1 - 6.3, we have:

√
n
(
(α̂p

n, θ̂p
n) − (α∗, θ∗)

)
→d N

(
0, B−1

∗p Σ∗pB−1
∗p
)
.

6.1.3 Efficiency of correctly specified parametric MLE

Under assumption M and the correct specification of marginal G(Yt, θ
∗) = G0(Yt), we have: α∗ =

α0.

Assumption 6.3’ (1) the range of Yt given Yt−1 does not depend of (α, θ); the 1st and 2nd order

differentiations of ℓ(α, θ, Zt) wrt (α, θ) ∈ N may be carried out under the integral sign, integration

being wrt Yt; (2) Σ0p ≡ E0

(
∂ℓ(α0,θ∗,Zt)

∂(α,θ) {∂ℓ(α0,θ∗,Zt)
∂(α,θ) }′

)
< ∞.

Under assumptions M and 6.3’(1), we have: E0

[
∂ℓ(α0,θ∗,Zt)

∂(α,θ) |Yt−1, ..., Y1

]
= 0 (see Lemma 4.1).

Proposition 6.1 and Billingsley’s (1961) ergodic stationary martingale difference CLT together imply

the following result:

Proposition 6.2 (correctly specified case): Let (α̂p
n, θ̂p

n) = arg max(α,θ)∈A×Θ Ln(α, θ). Under As-

sumptions M with G(Yt, θ
∗) = G0(Yt), 6.1, 6.2 and 6.3’, we have: α∗ = α0, B∗p = Σ∗p = Σ0p, and

(α̂p
n, θ̂p

n) is efficient for (α0, θ
∗):

√
n
(
(α̂p

n, θ̂p
n) − (α0, θ

∗)
)
→d N

(
0,Σ−1

0p

)
.

Moreover
√

n (α̂p
n − α0) →d N

(
0,I∗p(α0)

−1
)

with

I∗p(α0) ≡ min
b

E0




(
∂ log c(Ut−1,Ut;α0)

∂α − ∂ℓ(α0,θ∗,Zt)
∂θ b

)
×

(
∂ log c(Ut−1,Ut;α0)

∂α − ∂ℓ(α0,θ∗,Zt)
∂θ b

)′


 .

6.1.4 Ideal (or infeasible) MLE

We denote α̂Ideal
n as the ideal (or infeasible) MLE of the copula parameter α0 when the marginal

G0(·) is assumed to be completely known. Proposition 6.2 implies the following result:

Proposition 6.3 (ideal MLE): Let α̂Ideal
n = arg maxα∈A 1

n

∑n
t=2 log c (Ut−1, Ut;α). Suppose that

Assumption M holds with a completely known G(·, θ) = G0(·). Let assumptions 4.1, 4.2 and 4.4’

hold. Then: B0 ≡ −E0

(
∂2 log c(Ut−1,Ut;α0)

∂α∂α′

)
= Σideal is finite and nonsingular, and α̂Ideal

n is efficient:

√
n
(
α̂Ideal

n − α0

)
→d N

(
0,Σ−1

ideal

)
.
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Remark 6.1: Since I∗(α0) ≤ I∗p(α0) ≤ Σideal, we have: I∗(α0)
−1 ≥ I∗p(α0)

−1 ≥ Σ−1
ideal. Also

Proposition 4.1 immediately implies that σ2
2sp ≥ I∗(α0)

−1.

Example 6.1’ (the ideal MLE of Gaussian copula parameter): For the Gaussian copula Example

6.1, the Gaussian copula density function is

c(u1, u2;α) =
φα(Φ−1(u1),Φ

−1(u2))

φ(Φ−1(u1))φ(Φ−1(u2))
, |α| < 1.

where φα is the bivariate standard normal density with correlation α, and φ is the scalar standard

normal density. Thus one can easily verify that

Σideal = B0 = −E0

(
∂2 log c(Ut−1, Ut;α0)

∂α∂α

)
=

1 + α2
0

(1 − α2
0)

2
< ∞ if α2

0 6= 1

Consequently,
√

n
(
α̂Ideal

n − α0

)
→d N

(
0,Σ−1

ideal

)
with Σ−1

ideal = (1 − α2
0) ×

1−α2
0

1+α2
0

.

We note that Avar(α̂Ideal
n ) = Σ−1

ideal < (1 − α2
0) = Avar(α̂2sp

n ), and Avar(α̂Ideal
n ) = Avar(α̂2sp

n )

if and only if α0 = 0 (i.e., independence). Also Avar(α̂Ideal
n ) is decreasing in |α0|.

Example 2.1’ (the ideal MLE of Clayton copula parameter): For the Clayton copula Example

2.1, the Clayton copula density function is given by

c(u1, u2, α) = (1 + α)u
−(1+α)
1 u

−(1+α)
2 (u−α

1 + u−α
2 − 1)−(1/α+2), α > 0.

By some tedious calculation,

Σideal = B0 = −E0

(
∂2 log c(Ut−1, Ut;α0)

∂α∂α

)

=
1

α(1 + α)
+

1

α(1 + α)2(1 + 2α)
+

(1 + α)(1 + 2α)

α5
× Int(α)

where Int(α) =
∫∞
1

∫∞
1

xy(log x−log y)2−x(log x)2−y(log y)2

(x+y−1)4+1/α dxdy, which is a small number bounded in

[−1, 1]. Therefore, Σideal ∈ (0,∞) provided that α0 > 0. Hence
√

n
(
α̂Ideal

n − α0

)
→d N

(
0,Σ−1

ideal

)
,

where the asymptotic variance Σ−1
ideal is increasing in α0 and is O(α2

0).

6.2 Simulations

We consider two Markov models generated by different copulas (Clayton copula and Gumbel copula)

but with same marginal distribution (the Student’s t distribution with 5 degree of freedom, t[5]).

We simulate a strictly stationary first-order Markov process {Yt} from a specified bivariate copula

C(u1, u2;α0) with given invariant cdf G0 as follows:

Step 1: Generate an IID sequence of uniform random variables {Vt}n
t=1

Step 2: Set U1 = V1 and Ut = C−1
2|1 [Vt|Ut−1, α0].

Step 3: Set Yt = G−1
0 (Ut)
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Figure 2: Clayton copula (α = 2 and 12) and Student’s t(5) distribution

In our simulation, the true marginal distribution is t[5], with density g0(y) = Γ(3)√
5πΓ(5/2)

(1+ y2

5 )−3.

For each specified copula C(u1, u2;α0), we generate a long time series but delete the first 2000, and

keep the last 1000 observation as our simulated data sample data {Yt} (i.e., simulated sample size

n = 1000). Figure 2 reports typical simulated Clayton-copula Markov time series with parameter

values α = 2, 12 (the corresponding Kendall’s tau values are τ = 0.5, 0.857) respectively. Figure 3

reports typical simulated Gumbel-copula Markov time series with parameter values α = 2, 7 (the

corresponding Kendall’s tau values are τ = 0.5, 0.857) respectively.

For both copula-based Markov models and for each simulated sample, we compute five estima-

tors of α0: sieve MLE, ideal (or infeasible) MLE, two-step estimator, correctly specified parametric

MLE (functional form of g is correctly specified) and misspecified parametric MLE (functional form

of g is misspecified). Sieve MLEs are computed by maximizing the joint log-likelihood Ln(α, g) in

(3.1) using either polynomial sieve or polynomial spline sieve to approximate the log-marginal den-

sity (log g). The selection of number of sieve terms K̂ is based on the so-called small sample AIC

of Burnham and Anderson (2002): K̂ = arg maxK {Ln(γ̂n(K)) − K/(n − K − 1)}, where γ̂n(K) is

the sieve MLE of γ0 = (α0, g0) using K as the sieve number of terms.

We compare the estimates of copula dependence parameter, and the estimates of 1/3 and 2/3

marginal quantiles in terms of monte Carlo mean, bias, variance, mean squared errors and confidence
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Figure 3: Gumbel copula (α = 2 and 7) and Student’s t(5) distribution

region. We also illustrate the performance of sieve MLE of the marginal density function. We run

Monte Carlo simulation MC times (MC = 1000 in most of the reported results) and summarize

the results in tables and figures listed in Appendix B.

For Clayton copula generated Markov model, we also construct χ2 inverted confidence interval

(based on 500 Monte Carlo simulations) and report the estimates of 0.01 conditional quantile

function.

Since the two step estimator of Chen and Fan (2006) performs terribly for the Clayton copula

generated Markov model when α is big, we also compute and compare several other 2step estimators

that differ from each other by different ways of estimating marginal cdf in the first step. 2step-sieve

estimator estimate marginal density via sieve marginal maximum likelihood in the first step; 2step-

para estimator computes the marginal density via parametric marginal maximum likelihood with

a correctly specified marginal; 2step-mis estimator computes the marginal density via parametric

marginal maximum likelihood with a misspecified marginal. Our simulation results show that all

these 2step procedures perform worse than the correctly one step procedures (such as parametric

MLE and sieve MLE).

Brief summary of MC results: In Appendix B we present many tables and figures to
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report the Monte Carlo findings in details. Here we give a brief summary of the overall patterns:

(1) sieve MLE always perform better than two step estimator in terms of bias and MSE; (2) for

strong tail dependence case, the two step based estimators of copula dependence parameter perform

poorly, having big bias and big MSE; (3) for strong tail dependence case, empirical cdf estimator of

marginals perform poorly in terms of bias and variance; (4) extreme conditional quantiles estimated

via sieve MLE is much more precise than those estimated via two-step estimators; (5) parametric

MLE with correctly specified marginals is the most efficient one and also has the smallest bias, but

misspecified parametric MLE could lead to inconsistent estimation of copula dependence parameter

(in addition to inconsistent estimation of marginal parameter). In summary we recommend sieve

MLE to estimate copula-based Markov models and its implied conditional quantiles (VaRs).

7 Conclusions

In this paper, we first show that several widely used tail dependent copula generated Markov

models are in fact geometric ergodic (and geometric beta mixing), albeit their time series plots

may look highly persistent and ‘long memory alike’. We then propose a sieve MLE for the class of

first order strictly stationary copula-based semiparametric Markov models that are characterized

by the parametric copula dependence parameter α0 and the unknown invariant density g0(). We

show that the sieve MLE of any smooth functionals of (α0, g0) are root-n consistent, asymptotically

normal and efficient; and that the sieve likelihood ratio statistics is chi-square distributed. Monte

Carlo studies indicate that, even for tail dependent copula based semiparametric Markov models,

the sieve MLEs of the copula dependence parameter, the marginal cdf and the conditional quantiles

all perform very well in finite samples.

In this paper we propose either consistent plug-in estimation of asymptotic variance or by

inverting profiled likelihood criterion function to construct confidence region for the sieve MLE α̂

of α0. In another paper, we extend the result of Andrews (2001) on parametric bootstraps for

parametric Markov models to a semiparametric bootstrap for our copula-based semiparametric

Markov models.

In this paper we assume that the parametric copula function is correctly specified. We could

test this assumption by performing a sieve likelihood ratio test; see e.g., Fan and Jiang (2007) for

a recent review about generalized likelihood ratio tests. Alternatively, we could also consider a

joint sieve ML estimation of nonparametric copula and nonparametric marginal. Recently Chen

et al (2009) provide an empirical likelihood estimation of nonparametric copula using a bivariate

random sample; their method could be extended to out time series setting.
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A Mathematical Proofs

We first recall some definitions and results for Markov processes.from Chen and Tong (2001).

Definition A.1. Let {Yt} be an irreducible Markov Chain on with transition measure Pn(y;A) =

P (Yt+n ∈ A|Yt = y), n ≥ 1. A non-null set C is called small if there exists a positive integer n, a

constant b > 0, and a probability measure ν(·) such that Pn(y;A) ≥ bν(A) for all x ∈ C and all

measurable set A.

Theorem A.1. (Theorem B.1.4 in Chan and Tong, 2001) Let {Yt} be an irreducible and aperiodic

Markov Chain. Suppose there exists a small set C, a nonnegative measurable function g which is

bounded away from 0 and ∞ on C, and constants r > 1, γ,K > 0 such that

rE[L(Yt+1)|Yt = y] ≤ L(y) − γ, for all y 6∈ C,

and, let C ′ be the complement of C,
∫

C′

L(w)P (y, dw) < K, for all y ∈ C.

Then {Yt} is geometric ergodic. Here L is called the Lyapunov function.

Proof. of Theorem 2.1: We establish the results by applying Theorem B.1.4 of Chan and Tong

(2001, the famous Tweedie’s drift criterion) or applying Proposition 2.1(i) of Chen and Fan (2006).

(1) For Clayton copula, let {Yt} be a stationary Markov process of order 1 generated from a

bivariate Clayton copula and a marginal cdf G0(·). Then the transformed process {Ut ≡ G0(Yt)}
has uniform marginals and Clayton copula joint distribution of (Ut−1, Ut). When α = 0 Clayton

copula becomes the independence copula; hence the process {Ut ≡ G0(Yt)} is i.i.d. and trivially

geometric ergodic.

Let α > 0, and let {Vt} be a sequence of i.i.d. uniform(0,1) random variables. Then the

following nonlinear AR(1) model is generated by the Clayton copula:

Xt = (V
−α/(1+α)
t − 1)Xt−1 + 1 with X

−1/α
t ≡ Ut.

Thus Xt has stationary distribution and X
−1/α
t = Ut ∼ uniform(0,1). Note that the state space of

{Xt} is (1,∞). Since

E0[(V
−α/(1+α)
t − 1)1/α] = 1,

we can let p ∈ (0, 1/α), and L(x) = xp > 1 be the Lyapunov function. Then ρ ≡ E0[L(V
−α/(1+α)
t −

1)] < 1. Let r = ρ−1/2 > 1 and

x0 = max{x ≥ 1 : rE0[|x(V
−α/(1+α)
t − 1) + 1|p] ≥ xp − 1}.
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Such x0 always exists since

lim
x→∞

rE0[|x(V
−α/(1+α)
t − 1) + 1|p]

xp − 1
= rρ = ρ1/2 < 1.

Choose the small set S = [1, x0]. Clearly g is bounded away from 0 and ∞ on S. We now show

that S is a small set. Let f(·|x) be the conditional density function of X1 given X0 = x. Then

f(y|x) =
1 + α

α(y − 1 + x)2+1/α
≥ 1 + α

α(y − 1 + x0)2+1/α

if x ≤ x0. Choose the probability measure ν on (1,∞) as ν(dy) = f(y|x0)dy. Then

Pr(X1 ∈ A|X0 = x) ≥ ν(A), for all x ∈ S and A ∈ B.

Hence S is indeed a small set (cf page 255 in Chan and Tong (2001)). Notice that

rE0[L(X1)|X0 = x] ≤ L(x) − 1, for all x > x0,

E0[L(X1)|X0 = x] < ∞, for all x ∈ S = [1, x0],

thus all conditions in Theorem B.1.4 of Chan and Tong (2001) are satisfied; hence {Xt} is geometric

ergodic, and geometric beta mixing (or absolutely regular with geometrically decaying coefficients).

(2) For Gumbel copula, let {Yt} be a stationary Markov process of order 1 generated from a

bivariate Gumbel copula and a marginal cdf G0(·). Then the transformed process {Ut ≡ G0(Yt)}
has uniform marginals and (Ut−1, Ut) has the following Gumbel copula joint distribution:

C(u1, u2;α) = exp{−[(− log u1)
α + (− log u2)

α]1/α}, 0 < u1, u2 < 1, α ≥ 1.

When α = 1 Gumbel copula becomes the independence copula; hence the process {Ut ≡ G0(Yt)}
is i.i.d. and trivially geometric ergodic.

Let α > 1. Let Xt = (− log Ut)
α. Then Ut = F (Xt), with F (x) = exp{−x1/α}. Let f(x) =

−F ′−1x1/α−1 exp{−x1/α}. Then for Xt we have

Pr (Xt+1 ≥ x2|Xt = x1) =
f(x1 + x2)

f(x1)
, x1, x2 > 0.

Hence

E0 (Xt+1|Xt = x1) =

∫ ∞

0
Pr (Xt+1 ≥ x2|Xt = x1) dx2 =

∫ ∞

0

f(x1 + x2)

f(x1)
dx2

=
F (x1)

f(x1)
= αx

1−(1/α)
1 .
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Note that as x1 → 0,

E0

(
X

−1/(2α)
t+1 |Xt = x1

)
=

∫ ∞

0
x
−1/(2α)
2

−f ′(x1 + x2)

f(x1)
dx2

= x
1−1/(2α)
1

∫ ∞

0
u−1/(2α)−f ′(x1 + x1u)

f(x1)
du

∼ x
−1/(2α)
1 (1 − 1/α)

∫ 1

0
t−1/(2α)(1 − t)−1/(2α)dt

where the last relation is due to

lim
x1→0

−f ′(x1 + x1u)

f(x1)
× x1 = (1 − 1/α)(1 + u)1/α−2.

Observe that, as α > 1,

κα ≡ (1 − 1/α)

∫ 1

0
t−1/(2α)(1 − t)−1/(2α)dt = (1 − 1/α) × B (1 − 1/(2α), 1 − 1/(2α)) < 1

where B() is the beta function.

Let L(x) = x−1/(2α) + x be the Lyapunov function. Let r = infx>0 L(x)/2. Then:

lim
x→∞

E0(L(Xt+1)|Xt = x)

L(x) − r
= 0,

and

lim
x→0

E0(L(Xt+1)|Xt = x)

L(x) − r
= κα < 1.

Let S = [1/λ, λ] with sufficient large λ > 0. Then S is a small set. So all conditions in Theorem

B.1.4 of Chan and Tong (2001) are satisfied; hence {Xt} is geometric ergodic and geometric beta

mixing.

(3) For Student’s t copula, let {Yt} be a stationary Markov process of order 1 generated from a

bivariate t-copula and a marginal cdf G0(·). Then the transformed process {Ut ≡ G0(Yt)} satisfies

the following:

t−1
ν (Ut) = ρt−1

ν (Ut−1) + σ(Ut−1)et, σ(Ut−1) =

√
ν + (t−1

ν (Ut−1))2

ν + 1
(1 − ρ2),

where et ∼ tν+1, and is independent of U t−1 ≡ (Ut−1, ..., U1) (see, e.g., Chen et al. 2008). Let

Xt ≡ t−1
ν (Ut). Then

Xt = ρXt−1 + σ(Xt−1)et, σ(Xt−1) =

√
ν + (Xt−1)2

ν + 1
(1 − ρ2),

where et ∼ tν+1, and is independent of Xt−1 ≡ (Xt−1, ...,X1). Let L(x) = |x| + 1 ≥ 1 be the

Lyapunov function. Then E0{L(Xt)} =
√

ν
Γ( ν−1

2
)√

πΓ(ν/2)
+ 1 < ∞ provided that ν > 1. Then:

E0 (L(Xt)|Xt−1 = x) = E0 (|ρXt−1 + σ(Xt−1)et| |Xt−1 = x) + 1 = E0 (|ρx + σ(x)et|) + 1

<
√

E0 (|ρx + σ(x)et|2) + 1 =
√(

ρ2x2 + σ2(x)E0[e2
t ]
)

+ 1,
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where the strict inequality is due to et ∼ tν+1 and for fixed x,

0 < V ar
(
|ρx + σ(x)et|2

)
= E

(
|ρx + σ(x)et|2

)
− [E0 (|ρx + σ(x)et|)]2 .

Since

σ2(x) =
1 − ρ2

ν + 1
(ν + x2),

we have

lim
|x|→∞

E0 (L(Xt)|Xt−1 = x)

L(x)
= lim

|x|→∞
E0 (|ρx + σ(x)et|) + 1

|x| + 1

< lim
|x|→∞

√(
ρ2x2 + σ2(x)E0[e

2
t ]
)

+ 1

|x| + 1

=

√
ρ2 +

1 − ρ2

ν + 1
E0[e

2
t ]

≤
√

ρ2 +
1 − ρ2

2 + 1
E0[t

2
3] = 1,

where the last inequality is due to E0[e
2
t ]/(ν + 1) decreasing in ν ∈ [2,∞], and the last equality is

due to E0[t
2
3] = 3. Then we can choose a small set S = [−x0, x0] with sufficiently large x0 > 0.

Clearly the density of et is bounded from above and below on a compact set. Hence, all conditions

in Theorem B.1.4 of Chan and Tong (2001) or in Proposition 2.1(i) of Chen and Fan (2006) are

satisfied, and {Xt} is geometric ergodic (hence geometric beta-mixing). ⊓⊔

Proof. of Proposition 3.1: Since most of the conditions of consistency theorem 3.1 of Chen (2007)

are already assumed in our assumptions M, 3.1 and 3.2, it suffices to verify condition 3.5 (uniform

convergence over sieves) of Chen (2007). Assumptions M implies that {Yt}n
t=1 is stationary ergodic.

This and assumption 3.2 imply that Glivenko-Cantelli theorem for stationary ergodic processes is

applicable, and hence:

sup
γ∈Γn

|Ln(γ) − E{Ln(γ)}| = op(1).

The result now follows from theorem 3.1 of Chen (2007). ⊓⊔

Proof. of Lemma 4.1: For (1), recall that Zt = (Yt−1, Yt), under assumption M, for all s < t,

E0

((
∂ℓ(γ0, Zt)

∂γ′ [v]

)(
∂ℓ(γ0, Zs)

∂γ′ [ṽ]

))

= E0

(
E0

((
∂ℓ(γ0, Zt)

∂γ′ [v]

)(
∂ℓ(γ0, Zs)

∂γ′ [ṽ]

)
| Y1, · · · , Yt−1

))

= E0

((
∂ℓ(γ0, Zs)

∂γ′ [ṽ]

)
E0

(
∂ℓ(γ0, Zt)

∂γ′ [v] | Yt−1

))
.
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Recall that the true conditional density function is: p0(Yt|Y t−1) = g0(Yt)×c (G0(Yt−1), G0(Yt);α0) =

h(Yt|Yt−1; γ0). We have:

E0

(
∂ℓ(γ0, Zt)

∂γ′ [v] | Yt−1

)
=

∫ ∂h(yt|Yt−1;γ0)
∂γ′

h(yt|Yt−1; γ0)
[v]h(yt|Yt−1; γ0)dyt

=

∫
∂h(yt|Yt−1; γ0)

∂γ′ [v]dyt

=
d
(∫

h(yt|Yt−1; γ0 + sv)dyt

)

ds
|s=0 =

d(1)

ds
|s=0 = 0,

where the order of differentiation and integration can be reversed due to Assumption 4.3.

For (2), the above equality also implies the sequence is a martingale difference process.

For (3), Since
∫

h(y|Yt−1; γ0 +sv)dy ≡ 1, by differentiating this equation with respect to s twice

and evaluating it at s = 0, we get E0

((
∂ℓ(γ0,Zt)

∂γ′ [v]
)2

|Yt−1

)
= −E0

(
∂2ℓ(γ0,Zt)

∂γ∂γ′ [v, v]|Yt−1

)
, where

the interchange of differentiation and integration is guaranteed by Assumption 4.3. This we obtain

(3). ⊓⊔

Proof. of Theorem 4.1: Let ǫn be any positive sequence satisfying ǫn = o(n−1/2). Denote r[γ, γ0, Zt] ≡
ℓ(γ, Zt)−ℓ(γ0, Zt)− ∂ℓ(γ0,Zt)

∂γ′ [γ−γ0]. Then by the definition of sieve MLE γ̂n (with abuse of notation,

we denote it as γ̂ in the following),

0 ≤ 1

n

n∑

t=2

[ℓ(γ̂, Zt) − ℓ(γ̂ ± ǫnΠnv∗, Zt)]

= µn (ℓ(γ̂, Zt) − ℓ(γ̂ ± ǫnΠnv∗, Zt)) + E0 (ℓ(γ̂, Zt) − ℓ(γ̂ ± ǫnΠnv∗, Zt)) + op(n
−1)

= ∓ǫn
1

n

n∑

t=2

∂ℓ(γ0, Zt)

∂γ′ [Πnv∗] + µn (r[γ̂, γ0, Zt] − r[γ̂ ± ǫnΠnv∗, γ0, Zt])

+E0 (r[γ̂, γ0, Zt] − r[γ̂ ± ǫnΠnv∗, γ0, Zt]) + o(n−1).

Claim 1: 1
n

∑n
t=2

∂ℓ(γ0,Zt)
∂γ′ [Πnv∗− v∗] = op(n

−1/2). This claim is true due to Chebyshev inequality,

serially uncorrelated (Lemma 4.1) and identically distributed data, and ‖Πnv∗ − v∗‖ = o(1).

Claim 2: µn (r[γ̂, γ0, Zt] − r[γ̂ ± ǫnΠnv∗, γ0, Zt]) = ǫn × op(n
−1/2). This claim holds since

µn (r[γ̂, γ0, Zt] − r[γ̂ ± ǫnΠnv∗, γ0, Zt])

= µn

(
ℓ(γ̂, Zt) − ℓ(γ̂ ± ǫnΠnv∗, Zt) ± ǫn

∂ℓ(γ0, Zt)

∂γ′ [Πnv∗]
)

= ∓ǫnµn

(
∂ℓ(γ̃, Zt)

∂γ′ [Πnv∗] − ∂ℓ(γ0, Zt)

∂γ′ [Πnv∗]
)

= ǫn × op(n
−1/2)

where γ̃ ∈ Γn lies between γ̂ and γ̂ ± ǫnΠnv∗, and the last equality is implied by assumption 4.7.
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Claim 3: E0 (r[γ̂, γ0, Zt] − r[γ̂ ± ǫnΠnv∗, γ0, Zt]) = ±ǫn 〈γ̂ − γ0, v
∗〉 + ǫnop(n

−1/2) + op(n
−1).

Note that

E0(r[γ, γ0, Zt]) = E0

(
ℓ(γ, Zt) − ℓ(γ0, Zt) −

∂ℓ(γ0, Zt)

∂γ′ [γ − γ0]

)

=
1

2
E0

(
∂2ℓ(γ̃, Zt)

∂γ∂γ′ [γ − γ0, γ − γ0] −
∂2ℓ(γ0, Zt)

∂γ∂γ′ [γ − γ0, γ − γ0]

)

+
1

2
E0

(
∂2ℓ(γ0, Zt)

∂γ∂γ′ [γ − γ0, γ − γ0]

)
+ ǫn × op(n

−1/2)

=
1

2
E0

(
∂2ℓ(γ0, Zt)

∂γ∂γ′ [γ − γ0, γ − γ0]

)
+ ǫn × op(n

−1/2) + op(n
−1)

where γ̃ ∈ Γn is located between γ and γ0, and the last equality is due to assumption 4.6. By

Lemma 4.1 (3), we have:

‖γ − γ0‖2 ≡ E0

[(
∂ℓ(γ0, Zt)

∂γ′ [γ − γ0]

)2
]

= −E0

(
∂2ℓ(γ0, Zt)

∂γ∂γ′ [γ − γ0, γ − γ0]

)
.

Therefore,

E0 (r[γ̂, γ0, Zt] − r[γ̂ ± ǫnΠnv∗, γ0, Zt])

= −‖γ̂ − γ0‖2 − ‖γ̂ ± ǫnΠnv∗ − γ0‖2

2
+ op(ǫnn−1/2) + op(n

−1)

= ±ǫn〈γ̂ − γ0,Πnv∗〉 +
1

2
‖ǫnΠnv∗‖2 + op(ǫnn−1/2) + op(n

−1)

= ±ǫn × 〈γ̂ − γ0, v
∗〉 + ǫn × op(n

−1/2) + op(n
−1).

In summary, Claims 1, 2 and 3 imply that

0 ≤ 1

n

n∑

t=2

[ℓ(γ̂, Zt) − ℓ(γ̂ ± ǫnΠnv∗, Zt)]

= ∓ǫn
1

n

n∑

t=2

∂ℓ(γ0, Zt)

∂γ′ [v∗] ± ǫn × 〈γ̂ − γ0, v
∗〉 + ǫn × op(n

−1/2) + op(n
−1)

= ∓ǫnµn

(
∂ℓ(γ0, Zt)

∂γ′ [v∗]
)
± ǫn × 〈γ̂ − γ0, v

∗〉 + ǫn × op(n
−1/2) + op(n

−1)

Thus we obtain:

√
n〈γ̂ − γ0, v

∗〉 =
√

nµn

(
∂ℓ(γ0, Zt)

∂γ′ [v∗]
)

+ op(1) ⇒ N(0, ‖v∗‖2),

where the asymptotic normality is guaranteed by Billingsley’s (1961) ergodic stationary martingale

difference CLT, and the asymptotic variance being equal to ‖v∗‖2 ≡ ‖∂ρ(γ0)
∂γ′ ‖2 is implied by Lemma

4.1 (1) and the definition of the Fisher norm ‖ · ‖. ⊓⊔
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Proof. of Theorem 4.2: Given our normality results in Theorem 4.1, for our model we can take

Σn(v) = 1√
n

∑n
t=2

∂l(γ0,Zt)
∂γ′ [v], which is linear in v and converges in distribution to N(0, ||v||2), and

1
2n

∑n
t=2

(
∂l(γ0,Zt)

∂γ′ [v]
)2

= 1
2 ||v||2 + op(1) hence LAN holds. Notice that the proof in Wong (1992)

allows for time series data, following his proof, under LAN, we obtain that ρ(γ̂n) achieves the lower

efficiency bound.

Actually, from the last equation in our proof of Theorem 4.1, we have:

ρ(γ̂n) − ρ(γ0) = 〈γ̂n − γ0, v
∗〉 + op(n

−1/2) = µn

(
∂ℓ(γ0, Zt)

∂γ′ [v∗]
)

+ op(n
−1/2),

which means ρ(γ̂n) is a regular asymptotically linear estimate and its influence function equals to
∂ℓ(γ0,·)

∂γ′ [v∗] that belongs to the tangent space of the model. So we can also conclude that ρ(γ̂n)

is semiparametrically efficient by applying the result of Bickel and Kwon (2001), which allows for

strictly stationary semiparametric Markov models. ⊓⊔

Proof. of Proposition 4.1: Thanks to Lemma 4.1, the score space in this time-series setup acts in

much the same way as the score space when data are i.i.d. So the semiparametric efficiency bound

for α0 is I∗(α0) = E0

{
Sα0

S ′
α0

}
, where Sα0

is the efficient score function for α0, which is defined

as the ordinary score function for α0 minus its population least squares orthogonal projection onto

the closed linear span (clsp) of the score functions for the nuisance parameters g0. And α0 is
√

n-efficiently estimable if and only if E0

{
Sα0

S ′
α0

}
is non-singular ; see e.g. Bickel et al. (1993)

(we can directly extend the result for i.i.d. case to this Markov time-series setting). Hence (4.3)

is clearly a necessary condition for
√

n-normality and efficiency of α̂n for α0. Under Assumptions

4.2, 4.3 and 4.4’, Propositions 4.7.4 and 4.7.6 of Bickel, et al. (1993, pages 165 - 168) for bivariate

copula models apply. Therefore with Sα0
defined in (4.4), we have that I∗(α0) = E0

{
Sα0

S ′
α0

}
is

finite, positive-definite. This implies that Assumption 4.4 is satisfied with ρ(γ) = λ′α and ω = ∞
and ||v∗||2 = ‖∂ρ(γ0)

∂γ′ ‖2 = λ′I∗(α0)
−1λ < ∞. Hence Theorem 4.1 implies, for any λ ∈ Rd, λ 6= 0, we

have
√

n(λ′α̂n − λ′α0) ⇒ N
(
0, λ′I∗(α0)

−1λ
)
. This implies Proposition 4.1. ⊓⊔

Proof. of Theorem 5.1: The proof basically follows from that of Shen and Shi (2005), except using

our definition of joint log-likelihood, our definition of Fisher norm || · ||, and applying Billingsley’s

CLT for ergodic stationary martingale difference processes. These modifications are the same as

the ones in our proof of Theorem 4.1. Detailed proof is omitted due to the length of the paper, but

is available upon request. ⊓⊔
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Table 1: Clayton copula–unknown true α = 12, unknown true marginal=t[5]: 2-step estimates of
copula parameter

2step-sieve 2step-empirical 2step-para 2step-misN 2step-misEV

Mean 11.370 7.896 12.098 10.709 13.185
Bias -0.631 -4.104 0.098 -1.291 1.185
Var 3.584 5.656 6.801 14.469 23.827
MSE 3.982 22.5 6.811 16.135 25.231
αMC

(2.5,97.5) (8.91,16.52) (4.35,13.6) (10.18, 18.42) (5.65, 20.33) ( 7.19, 26.81)

Results are based on 1000 MC replications of estimates using n = 1000 time series simulation.
2step-sieve=2step procedure while estimating marginal by sieves in 1st step; 2step-empirical=
Chen-Fan; 2step-para=2step procedure while estimating marginal by student t distribution in 1st
step; 2step-misN=2step procedure while estimating marginal assuming Normal distribution in 1st
step; 2step-misEV=2step procedure while estimating marginal assuming extreme value distribution
in 1st step.

Table 2: Clayton copula–unknown true α = 12, unknown true marginal=t[5]:2-step estimates of
marginal quantities

2step-sieve 2step-empirical 2step-para 2step-misN 2step-misEV
Q1/3 Q2/3 Q1/3 Q2/3 Q1/3 Q2/3 Q1/3 Q2/3 Q1/3 Q2/3

Mean 0.326 0.664 0.331 0.665 0.332 0.668 0.329 0.642 0.340 0.607
Bias2

103 0.014 0.039 0.001 0.023 0.003 0.003 0.000 0.786 0.104 4.012
V ar103 2.151 1.196 28.83 12.08 0.039 0.039 25.763 15.154 16.729 15.208
MSE103 2.165 1.235 28.83 12.10 0.041 0.041 25.764 15.941 16.833 19.220

Results are based on 1000 MC replications of estimates using n = 1000 time series simulation.
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Table 3: Clayton copula–unknown true marginal=t[5]: Estimation of copula parameter

Sieve Ideal 2step Para Mis-N Mis-EV

α = 2 Mean 2.001 2.005 1.920 2.001 2.111 2.907
τ Bias 0.001 0.005 -0.080 0.001 0.111 0.907
(0.500) Var 0.020 0.008 0.102 0.012 0.015 0.019
λ MSE 0.020 0.008 0.109 0.012 0.027 0.841
(0.707) αMC

(2.5,97.5) (1.74,2.28) (1.84,2.18) (1.40, 2.63) (1.78, 2.23) (1.92,2.37) (2.67,3.16)

α = 5 Mean 4.970 5.006 4.400 5.002 5.379 6.026
Bias -0.030 0.006 -0.600 0.002 0.379 1.026

τ Var 0.139 0.027 1.257 0.044 0.054 0.186
(0.714) MSE 0.140 0.027 1.617 0.044 0.198 1.239
λ αMC

(2.5,97.5) ( 4.40, 5.77 ) (4.69, 5.33) (2.71,6.93) (4.60 , 5.43) ( 4.96,5.83) (5.47,6.50)

(0.871) αX 2

(0,95) (4.41, 5.45)

α = 10 Mean 9.889 10.01 7.169 10.01 10.77 11.75
Bias -0.111 0.01 -2.831 0.01 0.77 1.75

τ Var 0.483 0.086 4.620 0.143 0.247 0.568
(0.833) MSE 0.495 0.086 12.63 0.143 0.841 3.637
λ αMC

(2.5,97.5) (8.83 ,11.25) (9.44,10.6) (4.02,12.5) (9.29,10.8) (9.78,11.7) (10.4,12.8)

(0.933) αX 2

(0,95) (8.96, 10.8)

α = 12 Mean 11.85 12.01 7.896 12.00 12.94 14.04
Bias -0.149 0.01 -4.104 0.00 0.94 2.04

τ Var 1.623 0.119 5.656 0.206 0.405 0.960
(0.857) MSE 1.646 0.120 22.5 0.207 1.285 5.112
λ αMC

(2.5,97.5) (10.6,13.6) (11.3, 12.7) (4.35,13.6) (11.2 , 13.0) (11.7 , 14.2) (12.4, 15.3)

(0.944) αX 2

(0,95) (10.8, 12.9)

Results are based on 1000 MC replications of estimates using n = 1000 time series simulation,
except that X 2 inverted confidence intervals are based on 500 MC replications. τ = Kendall’s
τ , λ = lower tail dependence index. Sieve=Sieve MLE; Ideal=Ideal MLE; 2step=Chen-Fan;
Para=correctly specified parametric MLE; Mis-N=parametric MLE using mis-specified normal;
Mis-EV=parametric MLE using misspecified extreme value distribution.
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Table 4: Gumbel copula–unknown marginal=t[5]: Estimation of copula parameter

Sieve Ideal 2step Para Mis-N Mis-EV

α = 2 Mean 2.003 1.999 1.982 1.996 2.110 1.991
Bias 0.003 -0.001 -0.018 -0.004 0.110 -0.009

τ Var 0.007 0.002 0.013 0.004 0.020 0.030
(0.5) MSE 0.007 0.002 0.014 0.004 0.032 0.030

αMC
(2.5,97.5) (1.85, 2.17) (1.91,2.10) (1.78, 2.23) (1.87, 2.13) (1.94, 2.55) (1.69,2.35)

α = 3.5 Mean 3.477 3.498 3.352 3.491 3.672 4.028
Bias -0.023 -0.002 -0.148 -0.009 0.172 0.528

τ Var 0.066 0.008 0.130 0.018 0.050 0.245
(0.714) MSE 0.066 0.008 0.152 0.018 0.0794 0.524

αMC
(2.5,97.5) (3.03, 4.06) (3.34, 3.68) (2.76, 4.20) (3.25, 3.77) (3.35, 4.26) ( 3.06, 4.91)

α = 6 Mean 5.778 5.998 5.253 5.994 6.220 7.439
Bias -0.222 -0.002 -0.747 -0.006 0.220 1.439

τ Var 0.315 0.023 0.676 0.062 0.107 1.230
(0.833) MSE 0.365 0.023 1.235 0.062 0.155 3.302

αMC
(2.5,97.5) (4.72, 6.96) (5.72, 6.31) (3.92,7.17) (5.54, 6.51) (5.55,6.79) (5.03, 9.46)

α = 7 Mean 6.622 6.997 5.873 6.993 7.250 8.775
Bias -0.378 -0.003 -1.127 -0.007 0.250 1.775

τ Var 0.457 0.032 0.968 0.086 0.142 1.833
(0.857) MSE 0.600 0.032 2.238 0.086 0.204 4.983

αMC
(2.5,97.5) (5.31, 8.04) (6.67,7.37) (4.23, 8.20) (6.47, 7.59) (6.50, 7.94) (5.75, 11.3)

Results are based on 1000 MC replications of estimates using n = 1000 time series simulation. τ =
Kendall’s τ .
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Table 5: Clayton copula–unknown marginal=t[5]: Estimation of marginal quantities

Sieve 2step Para Mis-N Mis-EV
Q1/3 Q2/3 Q1/3 Q2/3 Q1/3 Q2/3 Q1/3 Q2/3 Q1/3 Q2/3

α = 2 Mean 0.327 0.671 0.334 0.667 0.333 0.667 0.349 0.619 0.346 0.595
Bias2

103 0.007 0.002 0.015 0.008 0.011 0.011 0.357 2.558 0.258 5.703
τ(0.500) V ar103 0.061 0.059 1.282 0.719 0.002 0.002 0.678 1.865 0.503 0.824
λ(0.707) MSE103 0.067 0.061 1.297 0.727 0.012 0.012 1.035 4.423 0.761 6.527

α = 5 Mean 0.326 0.670 0.333 0.667 0.333 0.667 0.337 0.600 0.334 0.590
Bias2

103 0.017 0.000 0.012 0.009 0.011 0.011 0.046 4.874 0.019 6.421
τ(0.714) V ar103 0.101 0.105 6.018 2.686 0.002 0.002 1.093 3.734 1.293 3.134
λ(0.871) MSE103 0.117 0.105 6.030 2.695 0.013 0.013 1.139 8.608 1.312 9.554

α = 10 Mean 0.323 0.663 0.331 0.666 0.333 0.667 0.356 0.627 0.362 0.633
Bias2

103 0.046 0.054 0.002 0.014 0.011 0.011 0.657 1.857 1.014 1.404
τ(0.833) V ar103 0.142 0.123 20.93 8.944 0.002 0.002 0.690 2.364 1.345 1.810
λ(0.933) MSE103 0.188 0.177 20.93 8.958 0.013 0.013 1.347 4.221 2.359 3.214

α = 12 Mean 0.322 0.660 0.331 0.665 0.333 0.667 0.363 0.638 0.367 0.642
Bias2

103 0.069 0.102 0.001 0.023 0.011 0.011 1.116 1.038 1.389 0.810
τ(0.857) V ar103 0.243 0.140 28.83 12.08 0.002 0.002 1.158 2.149 1.632 2.473
λ(0.944) MSE103 0.312 0.243 28.83 12.10 0.013 0.013 2.274 3.188 3.022 3.283

Results are based on 1000 MC replications of estimates using n = 1000 time series simulation. The
values of Bias2, variance and MSE have been multiplied by 1000.
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Table 6: Gumbel copula–unknown marginal=t[5]: Estimation of marginal quantities

Sieve 2step Para Mis-N Mis-EV
Q1/3 Q2/3 Q1/3 Q2/3 Q1/3 Q2/3 Q1/3 Q2/3 Q1/3 Q2/3

α = 2 Mean 0.329 0.672 0.333 0.666 0.333 0.667 0.363 0.633 0.402 0.650
Bias2

103 0.002 0.005 0.007 0.018 0.010 0.010 1.055 1.376 5.236 0.384
τ(0.500) V ar103 0.053 0.057 0.755 1.025 0.002 0.002 1.059 1.414 3.459 4.357

MSE103 0.055 0.062 0.762 1.043 0.012 0.012 2.114 2.790 8.694 4.742

α = 3.5 Mean 0.328 0.674 0.332 0.665 0.333 0.667 0.407 0.670 0.429 0.648
Bias2

103 0.005 0.017 0.005 0.030 0.010 0.010 5.964 0.000 9.694 0.487
τ(0.714) V ar103 0.134 0.140 2.353 3.482 0.003 0.003 8.112 4.451 14.32 11.69

MSE103 0.139 0.158 2.358 3.511 0.013 0.013 14.08 4.451 24.01 12.18

α = 6 Mean 0.324 0.680 0.330 0.664 0.333 0.667 0.391 0.651 0.394 0.606
Bias2

103 0.034 0.100 0.000 0.036 0.011 0.011 3.761 0.375 4.042 4.139
τ(0.833) V ar103 0.241 0.239 6.840 10.37 0.003 0.003 24.82 13.31 22.64 18.28

MSE103 0.275 0.339 6.840 10.41 0.014 0.014 28.58 13.69 26.68 22.42

α = 7 Mean 0.322 0.683 0.329 0.665 0.333 0.667 0.370 0.630 0.378 0.591
Bias2

103 0.066 0.177 0.000 0.029 0.011 0.011 1.593 1.576 2.341 6.219
τ(0.857) V ar103 0.285 0.272 9.362 13.79 0.004 0.004 28.87 16.86 24.44 20.39

MSE103 0.352 0.449 9.362 13.82 0.014 0.014 30.46 18.43 26.78 26.61

Results are based on 1000 MC replications of estimates using n = 1000 time series simulation. The
values of Bias2, variance and MSE have been multiplied by 1000 .

Table 7: Clayton copula–unknown marginal=t[5]: Estimation of unknown marginal density

α = 2 (τ = 0.50) α = 5 (τ = 0.714) α = 10(τ = 0.833) α = 12(τ = 0.857)

IntBias2
103 0.4691 0.4733 0.3650 0.3136

IntV ar103 0.4000 0.6562 0.6212 0.6341

IntMSE103 0.8692 1.1295 0.9862 0.9477

Results are based on 1000 MC replications of estimates using n = 1000 time series simulation.
Evaluation is based on the common support of 1000 MC simulated data. IntBias2

103 = integrated
Bias2 multiplied by 1000; IntV ar103 = integrated variance multiplied by 1000; IntMSE103 =
integrated MSE multiplied by 1000.
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Table 8: Gumbel copula–unknown marginal=t[5]: Estimation of unknown marginal density

α = 2 (τ = 0.50) α = 3.5 (τ = 0.714) α = 6(τ = 0.833) α = 7(τ = 0.857)

IntBias2
103 0.4214 0.4529 0.7851 1.1303

IntV ar103 0.4047 0.9513 1.5620 1.7284

IntMSE103 0.8261 1.4042 2.3471 2.8587

Results are based on 1000 MC replications of estimates using n = 1000 time series simulation.
Evaluation is based on the common support of 1000 MC simulated data.

Table 9: Clayton copula–unknown marginal=t[5]: Estimation of 0.01 conditional quantile function

Sieve Ideal 2step Para Mis-N Mis-EV

α = 5 IntBias2
103 5.409 0.001 80.71 0.004 102.5 482.2

τ(0.714) IntV ar103 14.03 3.362 336.1 5.751 85.38 127.3
λ(0.871) IntMSE103 19.44 3.363 416.8 5.755 187.8 609.5

α = 10 IntBias2
103 0.951 0.000 288.9 0.000 81.28 201.0

τ(0.833) IntV ar103 10.35 1.463 353.2 2.113 41.15 40.26
λ(0.933) IntMSE103 11.31 1.464 642.1 2.114 122.4 241.3

α = 12 IntBias2
103 0.689 0.000 227.0 0.000 17.35 80.14

τ(0.857) IntV ar103 4.459 0.650 329.6 0.890 13.55 14.89
λ(0.944) IntMSE103 5.148 0.650 556.6 0.890 30.90 95.03

Results are based on 1000 MC replications of estimates using n = 1000 time series simulation.
Evaluation is based on the common support of 1000 MC simulated data.
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Figure 4: Clayton copula (true α = 12, marginal=t(5)): Histograms of α estimates, 2-step v.s.
full-Likelihood estimators
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Figure 5: Clayton copula: Histograms of α estimates (a)true α=2,(b)true α=5, (c)true α=10,
(d)true α=12
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Figure 6: Gumbel copula : Histograms of α estimates (a) true α=2,(b) true α=3.5, (c) true α=6,(d)
true α=7
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Figure 7: Sieve MLE of marginal density function for (a) Clayton copula, (b) Gumbel copula.
True=solid, Sieve MLE=dashed. Evaluation is based on the common support of 1000 MC simulated
data.
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Figure 8: Clayton copula (true α = 10,marginal=t(5)): estimation of 0.01 conditional quantile
function. Evaluation is based on the common support of 1000 MC simulated data.
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Figure 9: Clayton copula (true α = 12,marginal=t(5)) : estimation of 0.01 conditional quantile
function. Evaluation is based on the common support of 1000 MC simulated data.
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