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Abstract

We analyze fast procedures for conducting Monte Carlo experiments involving bootstrap

estimators, providing formal results establishing the properties of these methods under general

conditions.

1 Introduction

In spite of ever-increasing computational power, Monte Carlo (MC)-based performance evaluation

of bootstrap methods often quickly becomes infeasible due to the multiplicative contribution of

every added Monte Carlo iteration to the overall computational cost. In the words of bootstrap

pioneer Bradley Efron (2000), "There is some sort of law working here, whereby statistical method-

ology always expands to strain the current limits of computation." Examples of computationally

costly Monte Carlo simulations are, e.g., the comparison of the coverage of alternative con�dence

intervals, calibration methods for the re�nement of bootstrap con�dence intervals (see, e.g., Loh,
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1988, 1991), selection of optimal block size b for block bootstrap methods (e.g. Politis, Romano,

and Wolf, 1999, ch.9.3.1), or, in general, any application where the bootstrap is estimating the dis-

tribution of a complex statistic. Here we analyze a fast way to perform Monte Carlo experiments

whose goal is to assess the performance of bootstrap estimators, test statistics, and con�dence

intervals. This method was �rst considered in White (1998), where it was used to investigate the

performance of his data snooping reality check. Independently, Davidson and MacKinnon (2000,

2002, 2007) developed the same key idea to propose a method for dramatically speeding up the

double bootstrap (the Fast Double Bootstrap (FDB)).

The goal of a Monte Carlo experiment is typically to assess the performance of a given bootstrap

procedure, as summarized by a measure T (�), which could be the accuracy of a bootstrap estimate,

the coverage of a bootstrap con�dence interval, or the size of a bootstrap hypothesis test. If B is

the number of bootstrap resamples and K the number of Monte Carlo replications, the Monte Carlo

simulation will involve computing a statistic a total of K �B times. The theoretical justi�cation of

the MC approach rests on asymptotic results valid for B;K ! 1, which means that both B and

K should be large for the MC experiment to give an accurate estimate of T (�).

When the bootstrap involves computation of complex statistics, as in many important applica-

tions, the computational cost can be very high. Examples of studies where the authors admitted

having reached the computational boundary and settled for more tractable experiments, are, e.g.,

Kilian and Chang (2000), Whang (2000), Kim (2001), and Chen and Conley (2001). More recent

studies with Monte Carlo simulations that feature small B and K are, e.g., Li and Tkacz (2006)

(B = 100, K = 500); Escanciano and Velasco (2006) (B = 300, K = 1000); and Canepa (2006)

(B = 400, K = 1000). The key idea underlying the proposals of White (1998) and Davidson and

MacKinnon (2000, 2002, 2007) is that taking just one bootstrap draw for each simulated sample

can su¢ ce to provide a useful approximation to the statistic of interest. Applying this insight

to Monte Carlo evaluation of bootstrap-based con�dence intervals yields evaluation methods that

work with B = 1, taking K and n (the underlying estimation sample size) to be large. Because of

the resulting dramatic computational savings, we call our method a "Warp-Speed" Monte Carlo

method.

Neither White (1998) nor Davidson and MacKinnon (2000, 2002, 2007) provide formal results

for their procedures. Thus, a main goal of this paper is to provide explicit formal results for Warp-

Speed methods, rigorously establishing their key properties under explicit regularity conditions.
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Although our Warp-Speed procedure for assessing the coverage of a bootstrap con�dence interval

is related to Davidson and MacKinnon�s (2007) dRPA procedure, our regularity conditions di¤er
from those informally relied on in that paper. For example, we do not require our statistics to be

asymptotically pivotal, nor do we require di¤erentiability of the root. Davidson and MacKinnon

(2007) note that their results hold true "under much less restrictive conditions which are, however,

harder to specify precisely." In contrast, our results justify use of our procedures under precise and

general conditions.

As should be expected, formal results a¤ord insight into the strengths and weaknesses of the

procedure analyzed. In particular, we �nd that there is a cost to be paid for the signi�cant

computational savings of Warp-Speed methods: compared to standard Monte Carlo-bootstrap

methods, Warp-Speed methods are not necessarily able to diagnose situations in which the variance

of the bootstrap distribution is performing poorly. Nevertheless, Warp-Speed methods are able to

identify situations in which coverage problems result from non-vanishing bias in the bootstrap

distribution, an important aspect of bootstrap behavior.

An appealing feature of our results is that they apply not just to independent identically dis-

tributed (IID) data samples, but to dependent, possibly heterogeneous data. Further, they apply

to bootstrap procedures generally, whether or not the bootstrap works; and they apply to general

estimation methods, whether parametric or non-parametric.

The plan of the paper is as follows. In Section 2, we provide a heuristic discussion of standard

Monte Carlo-bootstrap methods for evaluating coverage of bootstrap-based con�dence intervals,

and we introduce the Warp-Speed method. In Section 3, we provide theory for the scalar case

with non-IID data. Section 4 extends the results of Section 3 to the case of roots taking values in

general spaces. Section 5 provides an illustrative example contrasting the performance of standard

methods with our Warp-Speed methods. Section 6 concludes with an application to choosing the

block size for the block bootstrap. A mathematical appendix contains proofs of all our results.

2 Heuristics

For concreteness, we consider the case in which the bootstrap is used to construct con�dence

intervals for a scalar parameter of interest. Given the duality between con�dence intervals and

hypothesis tests, the results also apply to hypothesis testing, as long as the hypothesis of interest

can be expressed as a hypothesis about a parameter.
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For clarity in describing the key ideas, for now we consider the IID case originally considered

by Efron (1979). Nevertheless, as we establish in the next two sections, our results hold in general

contexts, e.g., with stationary data, as in Künsch (1989) and Politis and Romano (1994).

Thus, let Xn � (X1; :::; Xn) be a sample of IID random variables with unknown probabil-

ity distribution F and let �F � �(F ) be a scalar parameter of interest. The construction of

a con�dence interval for �F proceeds by �rst �nding a function of both the sample and the

parameter, a root Rn(Xn; �F ); whose distribution is either known or can be consistently esti-

mated. If �̂n(Xn) is an estimator of �F based on the sample Xn; familiar choices for the root are

Rn(X
n; �F ) =

p
n(�̂n(X

n)� �F ) or Rn(Xn; �F ) =
p
n
�
�̂n(X

n)� �F
�
=sn; where sn is an estimate

of the (asymptotic) standard deviation of �̂n: A con�dence interval for �F can then be derived by

estimating the appropriate quantiles by inverting Jn(�; F ); the cumulative distribution function of

Rn(X
n; �F ):

An approximation to the sampling distribution Jn(�; F ) can be obtained using the bootstrap in

the following way. Draw B IID bootstrap resamples of size n; X�n
1 ; :::; X

�n
B by sampling with replace-

ment from the set fX1; :::; Xng; and for each bootstrap sample compute the root Rn(X�n
i ; �̂n(X

n)):

The empirical distribution J�n;B(�) of the B values Rn(X�n
i ; �̂n(X

n)) gives the bootstrap approx-

imation to Jn(�; F ): De�ning the ��quantile of the bootstrap distribution as q�n;B (�) � inffx :

J�n;B(x) � �g; we obtain a con�dence interval for �F of nominal level 1� � as

CI�n;B(1� �) = f� : q�n;B (�=2) � Rn(Xn; �) � q�n;B (1� �=2)g: (1)

Suppose one is interested in analyzing the coverage of the bootstrap con�dence interval (1) in

samples of size n. Typically, a Monte Carlo experiment is designed to answer this question in the

following manner.

� Standard Monte Carlo experiment Draw a set of K IID Monte Carlo samples of size n

from the given distribution F ; Denote each Monte Carlo sample as Xn
k � (X1;k; :::; Xn;k);

k = 1; :::;K: For each one of these samples, construct a bootstrap con�dence interval (1) in

the manner described above, which results in a sequence of K con�dence intervals

CI�n;B;k(1� �) = f� : q�n;B;k (�=2) � Rn(Xn
k ; �) � q�n;B;k (1� �=2)g; k = 1; :::;K: (2)

The bootstrap quantile q�n;B;k (�) is obtained from Monte Carlo sample Xn
k by computing

the estimator �̂n;k � �̂n(X
n
k ), drawing B bootstrap resamples X�n

k;1; :::; X
�n
k;B, computing for
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each the root Rn(X�n
k;i; �̂n;k); and inverting the empirical distribution J

�
n;B;k of the B values

Rn(X
�n
k;i; �̂n;k): To calculate the empirical coverage of the bootstrap con�dence interval, de�ne

an indicator variable An;B;k that equals 1 if �F lies inside the kth con�dence interval and equals

0 otherwise, and compute the Monte Carlo coverage as 1� �n;K;B = K�1PK
k=1An;B;k.

The theoretical justi�cation for the Monte Carlo procedure rests on the law of large numbers:

the estimated Monte Carlo coverage 1��n;K;B will converge to the true �nite sample coverage 1��n
of the bootstrap con�dence interval for a given sample size n as min(K;B) ! 1: To guarantee

accuracy of the estimated coverage, the number of Monte Carlo replications should therefore be

large (typically one sets K = 1000 or 5000). The Monte Carlo procedure described above involves

B �K computations of the root Rn(X�n
k;i; �̂n;k), which can become computationally quite costly for

large B and K, particularly when the root involves complex statistics.

An alternative way to estimate the �nite sample coverage of the bootstrap con�dence interval

(1) is to draw just one bootstrap resample, as recommended by White (1998) and Davidson and

MacKinnon (2000, 2002, 2007). For assessing con�dence interval coverage, the method is as follows:

� Warp-Speed Monte Carlo experiment Draw a set of K IID Monte Carlo samples Xn
k ; k =

1; :::;K; each of size n; from the given F . For each of these samples, draw B = 1 bootstrap

resample X�n
k and compute the root Rn(X�n

k ; �̂n;k); k = 1; :::;K: Let 1f�g denote the indicator

function, and de�ne Ĵn;k(x) � 1fRn(X�n
k ; �̂n(X

n
k )) � xg (i.e., the cdf of a distribution with

a point mass at Rn(X�n
k ; �̂n(X

n
k ))), and let

�Jn;K(x) � K�1
KX
k=1

Ĵn;k(x):

The empirical distribution �Jn;K can be inverted to calculate the bootstrap quantile q̂n;K(�):

A sequence of K con�dence intervals is then obtained as

cCIn;K;k(1� �) = f� : bqn;K(�=2) � Rn(Xn
k ; �) � bqn;K(1� �=2)g; k = 1; :::;K: (3)

De�ning an indicator variable AWS
n;K;k such that A

WS
n;K;k equals 1 if �F lies inside the kth

con�dence interval and equals 0 otherwise, we compute the Monte Carlo coverage as 1��WS
n;K =

K�1PK
k=1A

WS
n;K;k.

In this method, the root Rn(�) is only computedK times. WhenK � B�K, this method is much

faster than the standard Monte Carlo bootstrap. Accordingly, we call our method a "Warp-Speed"

method. Its properties are the subject of the next two sections.
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3 Scalar roots with non-IID data

In this section, we provide formal results establishing the properties of the Warp-Speed bootstrap

for scalar roots without imposing the IID assumption. We let a given probability measure P

govern the sequence of random variables fXig: Thus, P also governs each sample of size n; Xn �

(X1; : : : ; Xn). The sample may be IID; it may also be dependent, heterogeneous, or both. Next, let

�P � �(P ) denote the parameter of interest and de�ne the associated real-valued root, Rn(Xn; �P ).

An example is Rn(Xn; �P ) = �n(�̂n(X
n)��P ); where �̂n(Xn) is a consistent estimator of �P , and �n

is the rate of convergence of �̂n(Xn) to �P ; another example is Rn(Xn; �P ) = (�̂n(X
n)��P )=ŝn(Xn);

where ŝn(Xn) embodies a consistent estimator of the asymptotic standard deviation of �̂n(Xn).

We impose formal assumptions as follows.

ASSUMPTION 3.1 (Data Generation): Let (
;F ; P ) be a complete probability space on

which is de�ned the (in�nite) sequence of random variables X1 = (X1; X2; :::); where each Xi

takes values in some space X.

The expectation corresponding to probability measure P is denoted E.

ASSUMPTION 3.2 (Parameter of Interest): Let P ! �(P ) be a scalar-valued functional.

ASSUMPTION 3.3 (Estimator): For n = 1; 2; :::, �̂n : Xn ! R is a measurable mapping,

where Xn � �ni=1X.

ASSUMPTION 3.4 (Root): For n = 1; 2; :::, Rn : Xn � R! R is a measurable function.

Suppose a resampling method Bn generates bootstrap pseudo-samples X�n � (X�
1 ; : : : ; X

�
n)

from the sample Xn with joint distribution P �n , the bootstrap distribution conditional on X
n, and

let

Ĵn(x; P
�
n) � P �nfRn(X�n; �̂n(X

n)) � xg:

If Ĵn(x; P �n) provides a useful approximation to J(x; P ), the limiting distribution of Rn(X
n; �P ),

e.g., Ĵn(x; P �n)
P�! J(x; P ) as n ! 1 for all continuity points x of J(�; P ), then the bootstrap

"works" and can be used to construct con�dence intervals, etc.

A standard method of approximating Ĵn(x; P �n) is to use P
�
n to generate a large number B of

IID bootstrap resamples X�n
i ; i = 1; :::; B; and compute

J�n;B(x) � B�1
BX
i=1

1fR�n;i � xg;
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where R�n;i � Rn(X�n
i ; �̂n(X

n)). The law of large numbers then ensures that J�n;B(x) ! Ĵn(x; P
�
n)

a:s:�P�n as B !1; where P�n � �1i=1P �n is the probability measure governing the sequence fR�n;ig:

To assess the performance of the bootstrap for a given sample size n, it is common to apply

Monte Carlo methods as described in the previous section. Formally, we require

ASSUMPTION 3.5 (Monte Carlo): LetX1
1 ; X

1
2 ; ::: be a sequence of IID Monte Carlo random

elements, where each of these random elements is an IID version of X1 de�ned in Assumption 3.1.

The countable sequence fX1
k ; k = 1; 2; : : :g is thus governed by P � �1k=1P , with associated

expectation E.

The �rst n entries of the sequence X1
k are those of practical use in our experiments. We let

Xn
k denote the array consisting of these n entries; thus, X

n
k ; k = 1; 2; :::; are independent copies of

Xn de�ned above. We generate bootstrap resamples from each Monte Carlo sample Xn
k as follows:

ASSUMPTION 3.6 (Bootstrap): For any natural numbers n and k, apply Bn toXn
k to generate

independent bootstrap resamples X�n
k;i, i = 1; :::; B; each with corresponding bootstrap distribution

P �n;k conditional on X
n
k .

We let E�n;k and V ar
�
n;k denote the mean and variance associated with the bootstrap probability

measure P �n;k. For each n and k, the countable resample sequence fX�n
k;ig is governed by the

probability measure P�n;k � �1i=1P �n;k:

We formalize our proposed method as follows

DEFINITION 3.1 (Warp): Let n be given, and let K be a �nite integer. For each Monte

Carlo sample Xn
k , k = 1; : : : ;K, draw B = 1 bootstrap resample X�n

k and compute the root

Rn(X
�n
k ; �̂n(X

n
k )): Let Ĵn;k(x) � 1fRn(X�n

k ; �̂n(X
n
k )) � xg, and let

�Jn;K(x) � K�1
KX
k=1

Ĵn;k(x):

Our �rst result describes the behavior of �Jn;K(x): For this, we make use of the Monte Carlo-

bootstrap probability distribution P�n � �1k=1P �n;k, and we let E�n and Var�n denote the correspond-

ing expectations and variances. We also de�ne the "global probability" Pn � �1k=1(PP �n;k) = PP�n,

with associated "global expectation" En = EE�n and "global variance" denoted by Varn. The fact

that the global probability is the product of P and P�n, and the global expectation is the iterated

expectation En = EE�n arises because P
�
n and E

�
n represent conditional probability and expectation

respectively.

7



Theorem 1. Suppose Assumptions 3.1-3.6 hold. Then for each n and x ;

En([ �Jn;K(x)� EĴn(x; P �n)]2)! 0 as K !1: (4)

Next, we impose a condition describing the behavior of the bootstrap distribution Ĵn(x; P �n) as

n grows.

ASSUMPTION 3.7 (Bootstrap Mean Convergence): There exists a cumulative distribution

function �J(�; P ) such that for all continuity points x of �J(�; P )

EĴn(x; P
�
n)�! �J(x; P ) as n!1: (5)

Corollary 1. Suppose Assumptions 3.1-3.7 hold. Then for each continuity point x of �J(�; P );

En([ �Jn;K(x)� �J(x; P )]2)! 0 as min(n;K)!1: (6)

Let Jn(x; P ) � PfRn(Xn; �P ) � xg denote the distribution of the root Rn(Xn; �P ): The next

assumption formally describes the limiting behavior of this distribution.

ASSUMPTION 3.8 (Root Weak Convergence): There exists J(�; P ) such that for all conti-

nuity points x of J(�; P )

Jn(x; P )! J(x; P ) as n!1: (7)

Let q(�; P ) � inffx : J(x; P ) � �g, �q(�; P ) � inffx : �J(x; P ) � �g, and q̂n;K(�) � inffx :
�Jn;K(x) � �g. Also, for k 2 f1; : : : ;Kg, de�ne the one-sided con�dence intervals1

cCIn;K;k(�) � f� : Rn(Xn
k ; �) � q̂n;K(�)g

This interval has nominal coverage �. Part (ii) of our next result describes the limiting behavior of

its actual coverage. Part (iii) provides the probability limit of the Warp-Speed Bootstrap coverage

estimator,

�WS
n;K � K�1

KX
k=1

1fRn(Xn
k ; �P ) � q̂n;K(�)g:

1Equal-tailed two-sided con�dence intervals can be constructed by intersections of one-sided intervals likecCIn;K;k(�). Analyzing the one-sided interval is thus more general. Symmetric two-sided con�dence intervals are
addressed speci�cally below.
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Corollary 2. Suppose Assumptions 3.1-3.7 hold and that �J(x; P ) is continuous and strictly in-

creasing at x = �q(�; P ). (i) Then for any � > 0,

Pnfjq̂n;K(�)� �q(�; P )j > �g ! 0 as min(n;K)!1: (8)

(ii) If Assumption 3.8 also holds and J(x; P ) is continuous at x = �q(�; P ), then uniformly in k,

for k = 1; :::;K;

PnfRn(Xn
k ; �P ) � q̂n;K(�)g �! J (�q(�; P ); P ) as min(n;K)!1 (9)

and thus also

K�1
KX
k=1

PnfRn(Xn
k ; �P ) � q̂n;K(�)g �! J (�q(�; P ); P ) as min(n;K)!1: (10)

(iii) Under the assumptions of part (i) and (ii) above, for any � > 0; we further have

Pnfj�WS
n;K � J (�q(�; P ); P ) j > �g ! 0 as min(n;K)!1: (11)

So far, we have not assumed that the bootstrap works. Indeed, Corollary 2 justi�es use of

the Warp-Speed method for assessing bootstrap performance based, for example, on the achieved

coverage of con�dence intervals.

For the bootstrap to actually work, we need Assumption 3.8, coupled with the following addi-

tional assumption.

ASSUMPTION 3.9 (Bootstrap Consistency): For all continuity points x of J(�; P ) we have:

Ĵn(x; P
�
n)

P�! J(x; P ) as n!1: (12)

Assumption 3.9 is much stronger than Assumption 3.7. To see this, note that since Ĵn(x; P �n) is a

bounded sequence of random variables, then it is a uniformly integrable sequence, even when raised

to any power. Therefore, Assumption 3.9 implies Assumption 3.7, as well as

�J(x; P ) = J(x; P ) (13)

for all x-points of continuity of J(x; P ). Assumption 3.9 also implies

V ar(Ĵn(x; P
�
n))! 0 as n!1: (14)
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Of course, eq. (13) implies �q(�; P ) = q(�; P ). We thus have the following immediate corollary.

Corollary 3. Suppose Assumptions 3.1-3.6, 3.8, and 3.9 hold. If J(x; P ) is continuous and strictly

increasing at x = q(�; P ), then for each k = 1; :::;K;

PnfRn(Xn
k ; �P ) � q̂n;K(�)g ! � as min(n;K)!1: (15)

Furthermore, for any � > 0;

Pnfj�WS
n;K � �j > �g ! 0 as min(n;K)!1: (16)

Hence, for any k, the coverage of interval cCIn;K;k(�) and the Warp-Speed Bootstrap coverage
estimator �WS

n;K tend to the nominal value � as min(n;K) ! 1 when the bootstrap works, but

not necessarily otherwise. In fact, if the bootstrap does not work, the coverage of cCIn;K;k(�) and
the estimator �WS

n;K tend to J (�q(�; P ); P ) ; where �q(�; P ) is the large-sample ��quantile of the

expectation of the bootstrap distribution.

Thus the Warp-Speed method is capable of calibrating the �nite-sample coverage of bootstrap

con�dence intervals when the bootstrap is known to work. In addition, the Warp-Speed method is

capable of diagnosing bootstrap failure when this is due to a problem in the expected value of the

bootstrap distribution; see eq. (5).

In contrast, a full-blown Monte Carlo experiment� in which a large number B of bootstrap

resamples are drawn for each of the K samples� could also detect bootstrap failure due to "excess

variance" of the bootstrap limit distribution, i.e., a situation where eq. (14) is violated. One famous

such example is the sample mean of heavy-tailed data where the limit of the bootstrap distribution

is a random variable (with nonzero variance). These results thus provide direct insight into both

the strengths and limitations of the Warp-Speed method.

4 General roots with non-IID data

Now suppose that the parameter of interest �P � �(P ) takes values in a general space � and that

the root of interest, which we now denote ~Rn(Xn; �P ); takes values in a general space � with norm

jj � jj, speci�cally, a normed linear space. (The spaces � and � may be the same, but this is not

necessary.) For example, let ~Rn(Xn; �P ) = Ĉn(X
n)�1=2�n(�̂n(Xn)� �P ), where � = � is a �nitely
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dimensioned vector space, �̂n(Xn) is a parametric estimator of �P , Ĉn(Xn) is a consistent estimator

of the asymptotic covariance matrix of �n(�̂n(Xn)� �P ), and jj r jj = (r0r)1=2. Alternatively, with
~Rn(X

n; �P ) = �n(�̂n(X
n)��P ), � = � could be a space of continuous functions on the unit interval,

with �̂n(Xn) a non-parametric estimator of �P ; and jj r jj = [
R 1
0 r

2(z)dz]1=2.

To handle this situation, we modify Assumptions 3.2 - 3.4 as follows:

ASSUMPTION 3.2� (Parameter of Interest): Let � be a linear space and let P ! �(P ) be

a �-valued function.

ASSUMPTION 3.3� (Estimator): For n = 1; 2; :::, �̂n : Xn ! � is a measurable mapping,

where Xn � �ni=1X.

We apply the theory of the previous section to scalar-valued roots Rn(Xn;�(P )) constructed ac-

cording to

ASSUMPTION 3.4� (Root): Let (�; jj � jj) be a normed linear space. For n = 1; 2; :::, let

~Rn : X
n ��! � be a measurable function, and de�ne

Rn(X
n; �P ) � g( ~Rn(Xn; �P ));

where g : �! R is a non-negative function, continuous with respect to jj � jj, such that g(r) = 0 if

and only if jjrjj = 0.

Let all notation and de�nitions be as in the previous section with this choice of Rn(Xn; �P ).

Results analogous to those above now hold immediately:

Theorem 2. Suppose Assumptions 3.1, 3.2 �, 3.3 �, 3.4 �, 3.5, and 3.6 hold. Then for each n and

x ;

En([ �Jn;K(x)� EĴn(x; P �n)]2)! 0 as K !1:

We also immediately obtain

Corollary 4. Suppose Assumptions 3.1, 3.2 �, 3.3 �, 3.4 �, 3.5, 3.6, and 3.7 hold. Then for each

continuity point x of �J(�; P );

En([ �Jn;K(x)� �J(x; P )]2)! 0 as min(n;K)!1:
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Corollary 5. Suppose Assumptions 3.1, 3.2 �, 3.3 �, 3.4 �, 3.5, 3.6, and 3.7 hold and that �J(x; P )

is continuous and strictly increasing at x = �q(�; P ). (i) Then for any � > 0,

Pnfjq̂n;K(�)� �q(�; P )j > �g ! 0 as min(n;K)!1:

(ii) If Assumption 3.8 also holds and J(x; P ) is continuous at x = �q(�; P ), then uniformly in k for

k = 1; :::;K;

PnfRn(Xn
k ; �P ) � q̂n;K(�)g �! J (�q(�; P ); P ) as min(n;K)!1:

and thus also

K�1
KX
k=1

PnfRn(Xn
k ; �P ) � q̂n;K(�)g �! J (�q(�; P ); P ) as min(n;K)!1:

(iii) Under the assumptions of part (i) and (ii) above, for any � > 0; we further have

Pnfj�WS
n;K � J (�q(�; P ); P ) j > �g ! 0 as min(n;K)!1:

Corollary 6. Suppose Assumptions 3.1, 3.2 �, 3.3 �, 3.4 �, 3.5, 3.6, 3.8, and 3.9 hold. If J(x; P ) is

continuous and strictly increasing at x = q(�; P ), then for each k = 1; :::;K;

PnfRn(Xn
k ; �P ) � q̂n;K(�)g ! � as min(n;K)!1:

Furthermore, for any � > 0;

Pnfj�WS
n;K � �j > �g ! 0 as min(n;K)!1:

When ~Rn(X
n; �P ) is real-valued such that ~Rn(Xn; �P ) = �n(�̂n(X

n) � �P ) or ~Rn(Xn; �P ) =

(�̂n(X
n) � �P )=ŝn(Xn) and g(r) = jj r jj = j r j, then cCIn;K;k(�) is a symmetric con�dence in-

terval for �P , that is, an interval of the type �̂n(Xn) � An for some An. When ~Rn(X
n; �P ) =

Ĉn(X
n)�1=2�n(�̂n(Xn) � �P ) and g(r) = r0r, where Ĉn(Xn) is a consistent estimator of the as-

ymptotic covariance matrix of �n(�̂n(Xn)� �P ), then cCIn;K;k(�) is a familiar elliptical con�dence
interval for �P .

5 Application: Choosing the Block Length for the Block Boot-

strap

A useful application of the Warp-Speed method is that of block-length selection for the block

bootstrap and for subsampling; see the useful summary in Politis, Romano and Wolf (1999, ch.
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9) as well as Politis and White (2004). In particular, Politis, Romano and Wolf (1999, ch. 9.3.1)

discuss a calibration method for determining the optimal block length when the object of interest

is the construction of bootstrap or subsampling con�dence intervals. The basic idea is to select a

block size b such that the corresponding con�dence interval has actual coverage equal to the nominal

coverage 1� � in a sample of a given size. This is achieved by estimating the calibration function


 such that 
(b) � 1 � � through a nested bootstrap procedure similar to the calculation of the

empirical coverage considered in this paper, the only di¤erence being that a bootstrap distribution

is now used as the pseudo-DGP.

Politis, Romano and Wolf suggest an algorithm (Algorithm 9.3.2) to estimate the calibration

function, where the empirical calibration is estimated for a number M of block sizes and the block

size yielding the desired coverage is selected. In terms of computational costs and using the notation

introduced above, this algorithm involves on the order of B �K �M computations. The algorithm

is stated below for easy reference.

Algorithm 1 (Block-length selection via Algorithm 9.3.2 of Politis, et. al. (1999)) 1.

Given a sample Xn of size n; calculate an estimate �̂n of the parameter of interest.

2. Select an initial estimate of the block length b0, as well as a sequence (b1; :::; bM ) of candidate

block lengths.

3. Generate K pseudo-samples of size n; Xn
1 ; :::; X

n
K , using a block bootstrap resampling scheme

2

with (average) block length b0 based on the initial sample Xn; and compute �̂n;k (the analog

of �̂n) for each pseudo-sample X
n
k ; k = 1; :::;K.

4. For m = 1; :::;M , do the following two steps:

� Apply the block bootstrap with block size bm to pseudo-sample Xn
k to generate B pseudo-

samples, resulting in a (1� �)100% bootstrap con�dence interval CI�n;B;k(1� �; bm) for

�̂n, k = 1; :::;K:

� Compute the (pseudo-)empirical coverage corresponding to block size bm as: 
�n;B;K(bm) =

#f�̂n 2 CI�n;B;k(1� �; bm)g=K:

5. Pick the block length b� such that b� = argminbi j
�n;B;K(bi)� (1� �)j.
2At this stage, it is advisable to use the stationary bootstrap with expected block length b0; as this is less sensitive

to block size misspeci�cation; see Politis and Romano (1994), and Politis and White (2004).
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As previously mentioned, the above algorithm involves about B � K � M computations. We

propose below a faster version of the calibration algorithm which uses the Warp-Speed approach,

thus reducing the number of computations to the order of K �M .

Algorithm 2 (Block-length selection via Warp-Speed calibration) 1. Perform steps 1-

3 of the above Algorithm 9.3.2 of Politis, et al. (1999).

2. For m = 1; :::;M and k = 1; :::;K: apply the block bootstrap with block size bm to pseudo-

sample Xn
k to create a single bootstrap resample X

�n
k (bm), and calculate the root Rn(X

�n
k (bm); �̂n;k):

3. Invert the empirical distribution Ĵn;K(bm) of the K values Rn(X�n
k (bm); �̂n;k); k = 1; :::;K; to

calculate the bootstrap quantile q̂n;K(�; bm):

4. For a con�dence level 1� �; generate the sequence of K bootstrap con�dence intervals

cCIn;K;k(1��; bm) = f� : q̂n;K(�=2; bm) � Rn(Xn
k ; �) � q̂n;K(1��=2; bm)g; k = 1; :::;K: (17)

5. Compute 
̂n;K(bm) = #f�̂n 2 cCIn;K;k(1� �; bm)g=K:
6. Pick the block length b̂ such that b̂ = argminbi j
̂n;K(bi)� (1� �)j:

Remark 1. The choice of the initial block length b0 has only a second order e¤ect and can

thus be considered relatively unimportant (especially if the stationary bootstrap is employed at

that stage).

Remark 2. The con�dence interval (17) could be alternatively obtained by intersection of

two separately calibrated one-sided intervals. Politis, Romano, and Wolf (1999) suggest always

adopting the separate calibration approach, to allow for possibly di¤erent amounts of calibration

needed in the upper and lower tail when the distribution of �̂n is asymmetric.

6 Simulation study

6.1 Warp-speed vs standard method

We consider a simple illustrative example where a Monte Carlo experiment is performed to ex-

amine the coverage properties of bootstrap con�dence intervals for the population mean �o of

a N(0; 1) random variable. Let Xn � (X1; :::; Xn) be an IID sample of N(0; 1) variables and

14



X�n
i � (X�

1;i; :::; X
�
n;i); i = 1; :::; B; denote IID bootstrap resamples, drawn with replacement from

the sample population consisting of the observations fX1; :::; Xng: An equal-tailed 95% bootstrap

con�dence interval for �o is constructed as

CI�n;B(:95) = [�̂n � q�n;B(:975); �̂n � q�n;B(:025)]; (18)

where q�n;B(�) is the ��quantile of the empirical distribution of the root �̂
�
n;i� �̂n; i = 1; :::; B; and

�̂n; �̂
�
n;i respectively indicate the means of samples X

n and X�n
i .

We compare and contrast the two alternative methods to perform Monte Carlo experiments

described in Section 2 in the context of this simple example. In order to assess the empirical

coverage of the bootstrap con�dence interval (18), we can proceed in two alternative ways:

1. (Standard MC method) DrawK random samples of size n from N(0; 1): For each Monte Carlo

sample, construct the following sequence of equal-tailed 95% bootstrap con�dence intervals

CI�n;B;k(:95) = [�̂n;k � q�n;B;k(:975); �̂n;k � q�n;B;k(:025)]; k = 1; :::;K;

where q�n;B;k(�) is the ��quantile of the empirical distribution of the root �̂
�
n;k;i � �̂n;k; i =

1; :::; B; with �̂n;k and �̂
�
n;k;i respectively indicating the means of the kth sample and of its

ith resample. Let the indicator variable An;B;k equal 1 if the kth con�dence interval contains

the true mean �o = 0 and equal 0 otherwise. Then the empirical coverage is given by

1� �n;K;B = K�1PK
k=1An;B;k.

2. (Warp-Speed MC method) Draw a random sample of size n from N(0; 1); and from this,

draw a single bootstrap resample. Repeat the procedure K times, with a di¤erent resample

for each draw. Compute �̂n;k and �̂
�
n;k as the means of the kth Monte Carlo sample and of

its bootstrap resample, respectively. Construct a sequence of equal-tailed 95% con�dence

intervals as

cCIn;K;k(:95) = [�̂n;k � bqn;K(:975); �̂n;k � bqn;K(:025)]; k = 1; :::;K;
where bqn;K(�) is the ��quantile of the empirical distribution of the roots �̂�n;k � �̂n;k; k =
1; :::;K: De�ning an indicator variable AWS

n;K;k equal to 1 if the kth con�dence interval contains

the true mean �o = 0 and equal to 0 otherwise, we compute the empirical coverage as

1� �WS
n;K = K

�1PK
k=1A

WS
n;K;k.
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Our goal is to compare the two approaches in assessing the empirical coverage properties of

the con�dence interval (18). To do so, we replicate the two above Monte Carlo experiments 1000

times, for sample sizes n = 200 (Figure 1) and n = 1000 (Figure 2) for several combinations of K

and B: For each method, we calculate the average coverage over the 1000 replications. Figures 1

and 2 show the average empirical coverage over the 1000 replications for B = K ranging from 150

to 1000, for the Standard Monte Carlo-bootstrap and B = 1 for the Warp-Speed designs of the

Monte Carlo experiment, respectively. As expected, in both cases the empirical coverage converges

to the nominal coverage for increasing K.

The coverages for the Standard and the Warp-Speed methods are of comparable sizes, only

di¤ering in the third decimal place. It appears that the Warp-Speed MC method yields estimates

of the empirical coverage that converge to the nominal coverage slightly faster than the estimates

of the coverage obtained from the Standard MC method with B = K.

This example gives an idea of the computational savings that one can expect when using the

Warp-Speed MC method. For example, Figure 1 shows that the estimate of the empirical coverage

obtained by the Warp-Speed MC with K = 300 replications is roughly equivalent to the estimate

of the coverage yielded by the Standard MC method with B = K = 300. This means that the

Warp-Speed method gives comparable results to the standard method, while computing the test

statistics only 300, rather than 90; 000 times. Thus, an experiment that might take �ve hours of

computing time for the standard MC approach takes one minute with the Warp-Speed approach.

Intuitively, the faster convergence of the Warp-Speed MC to the nominal coverage could be

due to the fact that in the Standard MC method the bootstrap con�dence intervals are based on

a bootstrap distribution which is conditional on the particular Monte Carlo draw from the DGP,

whereas in the Warp-Speed MC method each bootstrap resample is drawn from a di¤erent empirical

distribution. The accuracy of the con�dence interval in the Standard MC method is thus a¤ected

by how well the empirical distribution of the MC sample approximates the true distribution, while

such reliance on the particular MC draw is dampened in the Warp-Speed MC method. In any

case, the di¤erence between the estimated coverage using the two methods should disappear as the

sample size n increases, as the comparison of Figure 1 and Figure 2 seems to suggest.
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6.2 Performance of Warp-Speed calibration for block-length selection

We conduct another Monte Carlo experiment to examine the performance of the Warp-Speed cali-

bration algorithm. We construct block-bootstrap con�dence intervals for the �rst autocorrelation of

a time series choosing the block length by the Warp-Speed calibration algorithm. We also compare

our results to those of Politis, Romano, and Wolf�s (2004) calibration algorithm and its application

to the block length selection for subsampling con�dence intervals.

Let (� � � ; X1; X0; X1; � � � ) be a sequence of zero-mean random variables, where either the series

(Xt) itself or the �rst di¤erence series (Xt � Xt�1) is assumed to be strictly stationary3. Let

� � limt!1EXtXt+1=EX2
t be the �rst autocorrelation of (Xt), and let X

n � (X1; � � � ; Xn) be

a time series. Given the OLS estimator �̂n �
Pn�1
t=1 XtXt+1=

Pn�1
t=1 X

2
t and its standard error

�̂n � [(n� 2)�1
Pn�1
t=1 (Xt+1 � �̂nXt)2=

Pn�1
t=1 X

2
t ]
1=2, a symmetric 1� � con�dence interval for � is

constructed as

CI�n = [�̂n � �̂nq̂n(1� �); �̂n + �̂nq̂n(1� �)]; (19)

where q̂n(1 � �) is an estimator of the 1 � �-quantile of the root j�̂n � �j=�̂n. Politis, Romano,

and Wolf (2004) use subsampling to estimate this quantile and construct a con�dence interval.

Alternatively, we consider a block-bootstrap method based on the following algorithm.

Algorithm 3 (Residual Block-Bootstrap) 1. For each sample Xn, �t an AR(p) model and

obtain the estimates (�̂1; � � � ; �̂p) of AR coe¢ cients and residuals (�̂p+1; � � � ; �̂n), where the

order p of lags is selected by the BIC criterion.

2. Block-bootstrap (or stationary bootstrap) the residuals to obtain (��p+1; � � � ; ��n).

3. Obtain a bootstrap resample X�n � (X�
1 ; � � � ; X�

n) by setting X
�
t = Xt for t = 1; � � � ; p and

X�
t = �̂1X

�
t�1 + � � �+ �̂pX�

t�p + �
�
t for t = p+ 1; � � � ; n.

Let X�n
i � (X�

1;i; � � � ; X�
n;i); i = 1; � � � ; B; denote bootstrap resamples generated by the algo-

rithm above. For each resample X�n
i , let �

�
n;i and �

�
n;i be similarly de�ned. A block-bootstrap

con�dence interval for � can be constructed by substituting the empirical 1 � �-quantile of the

root j��n;i � �̂nj=��n;i into (19). For both subsampling and block-bootstrap con�dence intervals, the

block length can be selected by calibration algorithms. Below, we summarize Politis, Romano, and

3 In this section, we use the subscript t instead of i to index observations.

17



Wolf�s (2004) calibration algorithm and a version of the Warp-Speed calibration algorithm for this

example.

1. (Politis, Romano, and Wolf�s 2004 Subsampling CI with Standard Calibration Algorithm)

For each sample Xn, calculate �̂n. Set the initial block length b0 and candidate block lengths

(b1; � � � ; bM ). Generate K pseudo-samples of size n; Xn
1 ; :::; X

n
K , applying the stationary

bootstrap (Algorithm 3) with average block length b0: For each Xn
k , let �̂n;k and �̂n;k be the

OLS estimator and its standard error. For each subsample (Xk;l; Xk;l+1; � � � ; Xk;l+bm�1) of

Xn
k , let �̂bm;l and �̂bm;l be de�ned similarly. For k = 1; � � � ;K and m = 1; � � � ;M , apply

subsampling to pseudo-sample Xn
k , resulting in a subsampling con�dence interval

ĈIn;B;k(bm) = [�̂n;k � �̂n;kq̂n;B;k(1� �; bm); �̂n;k + �̂n;kq̂n;B;k(1� �; bm)];

for �̂n, k = 1; :::;K, where q̂n;B;k(1� �; bm) � inffx : Ln;B;k(x; bm) � 1� �g, Ln;B;k(x; bm) �

B�1
P
l 1fj�̂bm;l � �̂nj=�̂bm;l � xg; and B � n � bm + 1. Compute the (pseudo-)empirical

coverage corresponding to block size bm as: 
̂n;B;K(bm) = #f�̂n 2 ĈIn;B;k(bm)g=K: Pick the

block length b̂ such that b̂ = argminbm j
̂n;B;K(bm)�(1��)j. Use b̂ to construct a subsampling

con�dence interval for �.

2. (Block-bootstrap CI with Warp-Speed Calibration Algorithm) For each sample Xn, calculate

�̂n. Set the initial block length b0 and candidate block lengths (b1; � � � ; bM ). Generate K

pseudo-samples of size n; Xn
1 ; :::; X

n
K , applying the stationary bootstrap (Algorithm 3) with

average block length b0: For m = 1; :::;M and k = 1; :::;K, apply Algorithm 3 with block size

bm to pseudo-sample Xn
k to create a single bootstrap resample X

�n
k (bm), and calculate the

root Rn(X�n
k (bm); �̂n;k) = j��n;k � �̂n;kj=��n;k: Invert the empirical distribution J�n;K(bm) of the

K values Rn(X�n
k (bm); �̂n;k); k = 1; :::;K; to calculate the bootstrap quantile q

�
n;K(1��; bm):

Generate the sequence of K bootstrap con�dence intervals

CI�n;k(bm) = [�̂n;k � �̂n;kq�n;K(1� �; bm); �̂n;k + �̂n;kq�n;K(1� �; bm)]:

Compute 
�n;K(bm) = #f�̂n 2 CI�n;k(bm)g=K: Pick the block length b� such that b� =

argminbm j
�n;K(bm) � (1 � �)j: Use b� to construct a block bootstrap con�dence interval

for �.

Our goal here is to compare the two approaches in assessing the empirical coverage properties of

the con�dence interval in (19). To do so, we follow Politis, Romano, and Wolf (2004) and generate

18



samples 1,000 times from the following ARMA(1,1) model and compute the empirical coverage

probabilities of the two con�dence intervals:

Xt = �Xt�1 + �t + ��t�1; t = 1; � � � ; n; (20)

where �t = ZtZt�1, and (Z1; � � � ; Zn) is an IID sample of N(0; 1) variables. The sample size is

n = 128. The parameter values used in this experiment are � = 1; 0:95; and 0.8, and � = 0:8; 0, and

-0.8 respectively. For both subsampling and block-bootstrap, we use the initial block length b0 = 10.

Politis, Romano, and Wolf (2004) use the candidate block lengths (b1; � � � ; bM ) � (5; 15; 25; 35). For

the block-bootstrap, computational savings from the Warp-Speed calibration algorithm allow us

to work with a �ner grid for the candidate block lengths. Speci�cally, we use (b1; � � � ; bM ) �

(3; 4; � � � ; 49; 50).

Table 1 and 2 report the coverage probabilities of the subsampling and the block-bootstrap

con�dence intervals respectively4. In each table, the estimated coverage probabilities of nominal

90% and 95% con�dence intervals are reported for several �xed block lengths and for the data-

dependent block length. As the tables show, the best block length depends on the true parameter

value (�; �). Both of the calibration methods seem to give valid con�dence intervals in many cases.

Exceptions are the following. For both methods, coverage probabilities are below the nominal level

when � = �0:8, which is a well-known problematic case in the literature5. Especially when (�; �) =

(1;�0:8), the subsampling con�dence intervals perform very poorly even with the data dependent

block length selection. The block-bootstrap outperforms subsampling in this case, although the

coverage probabilities are still below the nominal level. On the other hand, the subsampling

con�dence intervals with the data dependent block lengths have better coverage properties than

their block-bootstrap counterparts when (�; �) = (0:8; 0:8) and (0.8,0).

Overall, the coverage probabilities of block-bootstrap con�dence intervals are more stable across

di¤erent values of block length than those of subsampling con�dence intervals. This might have

limited the ability of the calibration algorithm to improve the coverage probability. In sum, the

Warp-Speed calibration algorithm seems to perform as well as the standard algorithm. As it

provides a way to optimize the block length over a �ne grid, it would be especially useful when the

coverage probability of con�dence intervals may vary considerably across the block lengths.
4 In Table 1, we report the coverage probabilities of subsampling con�dence intervals replicating Politis, Romano,

and Wolf�s 2004 table II. The replicated coverage probabilities are very close to theirs, except for the case (�; �) =

(1;�0:8):
5See Politis, Romano, and Wolf (2004) Section 5 for details.
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A Mathematical Appendix

Proof of Theorem 1. Fix an n and x throughout the proof. Then pick a k, and note that Ĵn;k(x)

is a bounded random variable whose randomness (conditional on the sample Xn
k ) is a result of the

"bootstrap randomness" ofX�n
k appearing in the root Rn(X�n

k ; �̂n(X
n
k )). Thus, we can determine its

conditional expectation, E�n;kĴn;k(x); via the SLLN, i.e., by considering the hypothetical experiment

of drawing a large number of such roots, say R�n;k;1; : : : ; R
�
n;k;B, based on X

n
k .

These B roots are IID, with the same distribution as Rn(X�n
k ; �̂n(X

n
k )). So, by the SLLN,

lim
B!1

B�1
BX
j=1

1fR�n;k;j � xg = E�n;kĴn;k(x); (21)

almost surely (� P�n;k). But the LHS of eq.(21) is precisely the bootstrap distribution Ĵn(x; P �n;k):

Consequently,

E�n( �Jn;K(x)) = K�1
KX
k=1

E�n(Ĵn;k(x)) = K
�1

KX
k=1

E�n;kĴn;k(x) (22)

= K�1
KX
k=1

Ĵn(x; P
�
n;k)

for any �nite K.

But the variables Ĵn(x; P �n;k) for k = 1; 2; : : : (whose randomness is governed by P) are also IID

under Assumption 3.5, with �nite expectation given by

E(Ĵn(x; P
�
n;k)) = E(Ĵn(x; P

�
n)): (23)

By construction, the global expectation En is the iterated expectation EE�n, so that

En( �Jn;K(x)) = EE
�
n( �Jn;K(x)) = E(Ĵn(x; P

�
n)): (24)

Now Ĵn;k(x) is a Bernoulli random variable; hence it has Varn(Ĵn;k(x)) � 1=4. Also note that

Ĵn;k(x) is a function of (Xn
k ; X

�n
k ); since (X

n
k ; X

�n
k ) for k = 1; 2; : : : are IID, the same is true for

Ĵn;k(x). Thus,

Varn( �Jn;K(x)) = K
�2 Varn

 
KX
k=1

Ĵn;k(x)

!

= K�2
KX
k=1

Varn

�
Ĵn;k(x)

�
� 1=(4K): (25)

20



But eqs. (24) and (25) imply that

En([ �Jn;K(x)� EĴn(x; P �n)]2) � 1=(4K); (26)

and the result follows. �

Proof of Corollary 1. Fix a continuity point x of �J(�; P ). From eq. (26), we have:

1=(4K) � En([ �Jn;K(x)� EĴn(x; P �n)]2)

= En

�
[ �Jn;K(x)� �J(x; P ) + �J(x; P )� EĴn(x; P �n)]2

�
= En([ �Jn;K(x)� �J(x; P )]2) + 2[ �J(x; P )� EĴn(x; P �n)]En[ �Jn;K(x)� �J(x; P )]

+[ �J(x; P )� EĴn(x; P �n)]2;

using the fact that both �J(x; P ) and E(Ĵn(x; P �n)) are nonrandom.

Because of the boundedness of �Jn;K(x) and Assumption 3.7 we have

En([ �Jn;K(x)� �J(x; P )]2) � 1=(4K) + Cn;

where Cn ! 0 as n!1, and the result is proven. �

Proof of Corollary 2. (i) First note that Corollary 1 implies that, for any � > 0,

Pnfj �Jn;K(x)� �J(x; P )j > �g ! 0 as min(n;K)!1:

Since �Jn;K(x) tends to �J(x; P ) in probability�Pn, eq. (8) now follows from arguments similar to

Lemma 1.2.1 of Politis, Romano and Wolf (1999).

(ii) Note that, for any k, Assumption 3.8 implies

PnfRn(Xn
k ; �P ) � �q(�; P )g �! J (�q(�; P ); P ) as n!1;

where the above convergence is uniform in k. Hence, eq. (9) follows from eq. (8) and Corollary

11.2.3 of Lehmann and Romano (2005). Eq. (10) then follows directly.

(iii) Pick � > 0: By the triangle inequality

jK�1
KX
k=1

1fRn(Xn
k ; �P ) � q̂n;K(�)g � J (�q(�; P ); P ) j � A1 +A2;

where

A1 = jK�1
KX
k=1

1fRn(Xn
k ; �P ) � q̂n;K(�)g �En1fRn(Xn

k ; �P ) � q̂n;K(�)gj
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and

A2 = jK�1
KX
k=1

En1fRn(Xn
k ; �P ) � q̂n;K(�)g � J (�q(�; P ); P ) j:

Now A2 is deterministic, and A2 ! 0 by eq. (10). Therefore, to show eq. (11), it will be su¢ cient

to show that

PnfA1 > �g ! 0 as min(n;K)!1: (27)

Now take � > 0 small enough that J(x; P ) is continuous for all x 2 Q�(�) where Q�(�) �

[�q(�; P ) � �; �q(�; P ) + �]. Let Dn;K;�(�) denote the event fq̂n;K(�) 2 Q�(�)g; by eq. (8), we have

that

PnfDn;K;�(�)g ! 1 as min(n;K)!1:

De�ne the conditional probability ~Pnf�g = Pnf � jDn;K;�(�)g. In view of the above convergence,

to show eq. (11), it will be su¢ cient to show that

~PnfA1 > �g ! 0 as min(n;K)!1: (28)

Now, given the event Dn;K;�(�), we have that A1 � supq2Q�(�) jBn;K;qj, where

Bn;K;q = K�1
KX
k=1

1fRn(Xn
k ; �P ) � qg �En1fRn(Xn

k ; �P ) � qg:

But, as above, the variance of Bn;K;q is bounded above by 1=(4K); hence, by Chebychev�s inequality,

we have that for any �� > 0,

~PnfjBn;K;qj > �g < ��;

providedmin(n;K) is large enough. Since this �� does not depend on q, it follows that formin(n;K)

su¢ ciently large

sup
q2Q�(�)

~PnfjBn;K;qj > �g < ��: (29)

Note, however, that

sup
q2Q�(�)

~PnfjBn;K;qj > �g = ~Pnf sup
q2Q�(�)

jBn;K;qj > �g: (30)

From eq. (29) and (30) it follows that

~Pnf sup
q2Q�(�)

jBn;K;qj > �g < ��:

Since A1 � supq2Q�(�) jBn;K;qj, eq. (28) follows, and part (iii) is proven. �
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Proof of Corollary 3. Just note that since �q(�; P ) = q(�; P ), we have J (�q(�; P ); P ) =

J (q(�; P ); P ) = �, and the result follows from Corollary 2. �

Proof of Theorem 2. Identical to that of Theorem 1, mutatis mutandis. �
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Figure 1. Empirical coverage of bootstrap con�dence intervals. Sample size 200
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Figure 2. Empirical coverage of bootstrap con�dence intervals. Sample size 1000
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Table 1: Estimated Coverage Probabilities of Subsampling Con�dence Intervals

Target b = 5 b = 15 b = 25 b = 35 b̂

� = 1, � = 0:8
0.90 0.99 0.94 0.90 0.86 0.96
0.95 1.00 0.98 0.93 0.91 0.98
� = 1, � = 0
0.90 0.99 0.89 0.84 0.80 0.93
0.95 1.00 0.95 0.90 0.86 0.96
� = 1, � = �0:8
0.90 0.19 0.09 0.11 0.11 0.20
0.95 0.48 0.19 0.17 0.15 0.45
� = 0:95, � = 0:8
0.90 1.00 0.96 0.93 0.89 0.95
0.95 1.00 0.98 0.96 0.94 0.97
� = 0:95, � = 0
0.90 0.98 0.89 0.85 0.81 0.90
0.95 1.00 0.95 0.90 0.87 0.96
� = 0:95, � = �0:8
0.90 0.82 0.74 0.72 0.70 0.78
0.95 0.92 0.81 0.78 0.76 0.87
� = 0:8, � = 0:8
0.90 0.99 0.93 0.89 0.84 0.90
0.95 1.00 0.97 0.94 0.91 0.94
� = 0:8, � = 0
0.90 0.96 0.85 0.81 0.77 0.88
0.95 0.99 0.92 0.86 0.82 0.93
� = 0:8, � = �0:8
0.90 0.87 0.80 0.77 0.73 0.82
0.95 0.96 0.87 0.83 0.79 0.90
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Table 2: Estimated Coverage Probabilities of Block Bootstrap Con�dence Intervals

Target b = 5 b = 15 b = 25 b = 35 b�

� = 1, � = 0:8
0.90 0.96 0.95 0.94 0.94 0.93
0.95 0.98 0.97 0.97 0.96 0.95
� = 1, � = 0
0.90 0.94 0.92 0.91 0.90 0.90
0.95 0.97 0.96 0.95 0.93 0.92
� = 1, � = �0:8
0.90 0.54 0.53 0.54 0.54 0.55
0.95 0.57 0.58 0.56 0.56 0.55
� = 0:95, � = 0:8
0.90 0.94 0.92 0.90 0.89 0.89
0.95 0.97 0.96 0.95 0.93 0.92
� = 0:95, � = 0
0.90 0.93 0.91 0.89 0.86 0.86
0.95 0.96 0.96 0.94 0.92 0.92
� = 0:95, � = �0:8
0.90 0.78 0.77 0.75 0.75 0.76
0.95 0.85 0.84 0.83 0.81 0.83
� = 0:8, � = 0:8
0.90 0.90 0.89 0.85 0.83 0.83
0.95 0.96 0.93 0.92 0.89 0.90
� = 0:8, � = 0
0.90 0.86 0.85 0.82 0.81 0.78
0.95 0.92 0.91 0.88 0.86 0.88
� = 0:8, � = �0:8
0.90 0.82 0.79 0.79 0.77 0.76
0.95 0.89 0.87 0.85 0.83 0.84
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