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Nonparametric Estimation

of a Periodic Sequence in the Presence

of a Smooth Trend*

Michael Vogt1
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Oliver Linton2
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In this paper, we study a nonparametric regression model including a periodic
component, a smooth trend function, and a stochastic error term. We propose a
procedure to estimate the unknown period and the function values of the periodic
component as well as the nonparametric trend function. The theoretical part of
the paper establishes the asymptotic properties of our estimators. In particular,
we show that our estimator of the period is consistent. In addition, we derive
the convergence rates as well as the limiting distributions of our estimators of
the periodic component and the trend function. The asymptotic results are com-
plemented with a simulation study that investigates the small sample behaviour
of our procedure. Finally, we illustrate our method by applying it to a series of
global temperature anomalies.

Key words: Nonparametric estimation; penalized least squares; periodic sequence;

temperature anomaly data.
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1 Introduction

Many time series exhibit a periodic as well as a trending behaviour. Examples come

from fields as diverse as astronomy, climatology, population biology and economics.

A common way to model such time series is to write them as the sum of a periodic

component, a deterministic time trend and a stochastic noise process. Usually, there

is not much known about the structure of the periodic and the trend component. It is

thus important to have flexible semi- and nonparametric methods at hand to estimate

them.

*The authors would like to thank the ERC for financial support.
1Address: Faculty of Economics, Austin Robinson Building, Sidgwick Avenue, Cambridge, CB3 9DD.
Email: mv346@cam.ac.uk.

2Address: Faculty of Economics, Austin Robinson Building, Sidgwick Avenue, Cambridge, CB3 9DD.
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In this paper, we develop estimation theory for the periodic and the trend component in

the following framework: Let {Yt,T , t = 1, . . . , T} be the time series under investigation.

The observations are assumed to follow the model

Yt,T = g
( t
T

)
+m(t) + εt,T for t = 1, . . . , T (1)

with E[εt,T ] = 0, where g is a smooth deterministic trend and m is a periodic com-

ponent with unknown period θ0. We do not impose any parametric restrictions on

m and g. Moreover, we do not assume the noise process {εt,T} to be stationary but

merely put some short-range dependence conditions on it. As usual in nonparametric

regression, the time argument of the trend function g is rescaled to the unit interval.

We comment on this feature in more detail in Section 2 which discusses the various

model components.

The m-component in model (1) is assumed to be periodic in the following sense: The

values {m(t)}t∈Z form a periodic sequence with some unknown period θ0, i.e. m(t) =

m(t + θ0) for some integer θ0 ≥ 1 and all t ∈ Z. Here and in what follows, θ0 is

implicitly assumed to be the smallest period of the sequence. As can be seen from

this definition, we think of the periodic component in model (1) as a sequence rather

than a function defined on the real line. The reason for taking this point of view

is that there is an infinite number of functions on R which take the values m(t) at

the points t ∈ Z. The function which generates these values is thus not identified

in our framework. Moreover, if this function is periodic, θ0 need not be its smallest

period. It could also have θ0
n

for some n ∈ N as its period. Hence, in our design with

equidistant observation points, we are in general neither able to identify the function

which underlies the sequence values {m(t)}t∈Z nor its smallest period. The best we

can do is to work with the sequence {m(t)}t∈Z and extract its periodic behaviour from

the data.

The literature so far has restricted attention to a simplified version of model (1) without

a trend function. The latter is given by the equation Yt = m(t) + εt with error terms

εt that are assumed to be stationary. The traditional way to estimate the periodic

component m in this setup is a trigonometric regression approach. In this approach, the

periodic component gets parametrized by a finite number of sinusoids, i.e. the sequence

values {m(t)}t∈Z are given as the function values of a linear combination of parameter-

dependent sine waves. The underlying function which generates the sequence {m(t)}t∈Z
is thus known up to a finite number of coefficients which in particular include the period

of the function. The vector of parameters can be estimated by frequency domain

methods based on the periodogram. Classical articles proceeding along these lines

include Walker (1971), Rice & Rosenblatt (1988) and Quinn & Thomson (1991).

As already indicated, we refrain from adopting such a parametric approach as in many

cases we have no information whatsoever about the shape of the periodic model part.

The same point of view is taken in a recent paper by Sun, Hart & Genton (2012) who
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investigate estimating the period of the sequence {m(t)}t∈Z in the model Yt = m(t)+εt

with i.i.d. residuals εt. The authors view the issue of estimating the period as a model

selection problem and construct a cross-validation based procedure to solve it. Similar

to the Akaike information criterion, their method is not consistent. Nevertheless, it

enjoys a weakened version of consistency: Roughly speaking, its asymptotic probability

of selecting the true period is close to one given that the period is not too small. This

property is termed “virtual consistency”.

A related strand of the literature is concerned with estimating a periodic function when

the observation points are not equally spaced in time. In this case, the model is given

by Yt = m(Xt) + εt, where m now denotes a periodic function defined on the real

line, X1 < X2 < . . . < XT are the time points of observation and the residuals εt

are i.i.d. The design points Xt may for example form a jittered grid, i.e. Xt = t + Ut

with variables Ut that are independent and uniformly distributed on (−1
2
, 1

2
). Even

though an equidistant design is the most common situation, such a random design is for

example suitable for applications in astronomy as described in Hall (2008). Moreover,

it allows to identify the function m without imposing any parametric restrictions on

it. The reason is that the random design points get scattered all over the cycle of the

function m as the sample size increases. Estimating the periodic function m in such a

random design can be achieved by kernel-based least squares methods as shown in Hall

et al. (2000). Hall & Yin (2003) and Genton & Hall (2007) investigate some variants

and extensions of this method. A periodogram-based approach is presented in Hall

& Li (2006). Estimation theory for another possible sampling scheme is developed in

Gassiat & Lévy-Leduc (2006).

In the following sections, we develop theory for estimating the unknown period θ0,

the sequence values {m(t)}t∈Z and the trend function g in model (1). Our estimation

procedure is introduced in Section 3 and splits up into three steps. In the first step,

we estimate the period θ0 by a penalized least squares method. Given our estimator of

θ0, we then construct a least squares type estimator of the sequence values {m(t)}t∈Z
in the second step. The first two steps of our estimation procedure are complicated

by the fact that the model includes a trend component. Interestingly, our method is

completely robust to the presence of a trend. As explained in more detail later on, the

trend component g gets “smoothed out” in a certain way by our procedure. We thus

do not have to correct for the trend but can completely ignore it when estimating the

periodic model part. In the third step of our procedure, we finally set up a kernel-based

estimator of the nonparametric trend g.

The asymptotic properties of our estimators are described in Section 4. To start with,

our estimator of the period θ0 is shown to be consistent. Moreover, we derive the

convergence rates and asymptotic normality results for the estimators of the periodic

sequence values and the trend function. As will turn out, our estimator of the periodic

sequence values has the same limiting distribution as the estimator in the oracle case

3



where the true period θ0 is known. A similar oracle property is derived for the estimator

of the nonparametric trend function g.

To complement the asymptotic analysis of the paper, we investigate the small sample

behaviour of our estimators by a simulation study in Section 6. Moreover, we apply

our method to a sample of yearly global temperature anomalies from 1850 to 2011 in

Section 7. These data exhibit a strong warming trend. As suggested by various articles

in climatology, they also contain a cyclical component with a period in the region of

60–70 years. We use our procedure to investigate whether there is in fact evidence for

a cyclical component in the data. In addition, we provide estimates of the periodic

sequence values and the trend function.

2 Model

Before we turn to our estimation procedure, we have a closer look at model (1) and

comment on some of its features. As already seen in the introduction, the model

equation is given by

Yt,T = g
( t
T

)
+m(t) + εt,T for t = 1, . . . , T

with E[εt,T ] = 0, where g is a deterministic trend and {m(t)}t∈Z is a periodic sequence

with unknown integer-valued period θ0. In order to identify the function g and the

sequence {m(t)}t∈Z, we normalize g to satisfy
∫ 1

0
g(u)du = 0. As shown in Lemma A2

in the appendix, this uniquely pins down g and {m(t)}t∈Z.

The trend function g in model (1) depends on rescaled time t
T

rather than on real

time t. This rescaling device is quite common in the literature. It is for example used

in nonparametric regression and in the analysis of locally stationary processes (see

Robinson (1989), Dahlhaus (1997), Dahlhaus & Subba Rao (2006) and Zhou & Wu

(2009) among many others). The main reason for rescaling time to the unit interval is

to obtain a framework for a reasonable asymptotic theory. If we defined g in terms of

real time, we would not get additional information on the shape of g locally around a

fixed time point t as the sample size increases. Within the framework of rescaled time,

in contrast, the function g is observed on a finer and finer grid of rescaled time points

on the unit interval as T grows. Thus, we obtain more and more information on the

local structure of g around each point in rescaled time. This allows us to do reasonable

asymptotics in this framework.

In contrast to g, we let the periodic component m depend on real time t. This allows

us to exploit its periodic character when doing asymptotics: Let s be a time point in

{1, . . . , θ0}. As m is periodic, it has the same value at s, s + θ0, s + 2θ0, s + 3θ0, and

so on. Hence, the number of time points in our sample at which m has the value m(s)

increases as the sample size grows. This gives us more and more information about

the value m(s) and thus allows us to do asymptotics.
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Even though we do not impose any parametric restrictions on the sequence {m(t)}t∈Z, it

can be represented by a vector of θ0 parameters due to its periodic character. In partic-

ular, it is fully determined by the tuple of values β = (β1, . . . , βθ0) = (m(1), . . . ,m(θ0)).

As a consequence, we can rewrite model (1) as

Yt,T = g
( t
T

)
+

θ0∑
s=1

βs · Is(t) + εt,T , (2)

where Is(t) = I(t = kθ0 + s for some k) and I(·) is an indicator function. Model (1)

can thus be regarded as a semiparametric regression model with indicator functions as

regressors and the parameter vector β. In matrix notation, (2) becomes

Y = g +Xθ0β + ε, (3)

where slightly abusing notation, Y = (Y1,T , . . . , YT,T )
ᵀ

is the vector of observations,

g = (g(1/T ), . . . , g(T/T ))
ᵀ

is the trend component, Xθ0 = (Iθ0 , Iθ0 , . . .)
ᵀ

is the design

matrix with Iθ0 being the θ0×θ0 identity matrix, and ε = (ε1,T , . . . , εT,T )
ᵀ

is the vector

of residuals.

3 Estimation Procedure

Our estimation procedure splits up into three steps. In the first step, we estimate the

unknown period θ0. The estimation of the sequence values {m(t)}t∈Z is addressed in

the second step. In the final step, we provide an estimator of the nonparametric trend

component g.

3.1 Estimation of the Period θ0

Roughly speaking, the period θ0 is estimated as follows: To start with, we construct

an estimator of the periodic sequence {m(t)}t∈Z for each candidate period θ with 1 ≤
θ ≤ ΘT . Here, the upper bound ΘT is not fixed but is allowed to grow with the

sample size at a rate to be specified later on. Based on a penalized residual sum of

squares criterion, we then compare the resulting estimators in terms of how well they

fit the data. Finally, the true period θ0 is estimated by the period corresponding to

the estimator with the best fit.

More formally, for each candidate period θ, define the least squares estimate β̂θ as

β̂θ = (X
ᵀ

θXθ)
−1X

ᵀ

θY,

where the design matrix Xθ is given by Xθ = (Iθ, Iθ, . . .)
ᵀ

with Iθ being the θ × θ

identity matrix. In addition, let the residual sum of squares RSS(θ) for the model with

period θ be given by

RSS(θ) = ‖Y −Xθβ̂θ‖2,
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where ‖x‖ = (
∑T

t=1 x
2)1/2 denotes the usual l2-norm for vectors x ∈ RT .

At first glance, it may appear to be a good idea to take the minimizer of the residual

sum of squares RSS(θ) as an estimate of the period θ0. However, this approach is too

naive. In particular, it does not yield a consistent estimate of θ0. The main reason is

that each multiple of θ0 is a period of the sequence m as well. Thus, model (2) may

be represented by using a multiple of θ0 parameters and a corresponding number of

indicator functions. Intuitively, employing a larger number of regressors to explain the

data yields a better fit, thus resulting in a smaller residual sum of squares than that

obtained for the estimator based on the true period θ0. This indicates that minimizing

the residual sum of squares will usually overestimate the true period. In particular, it

will notoriously tend to select multiples of θ0 rather than θ0 itself.

One way to overcome this problem is to add a regularization term to the residual sum

of squares which penalizes choosing large periods. In particular, we base our estimation

procedure on the penalized residual sum of squares

Q(θ, λT ) = RSS(θ) + λT θ,

where the regularization parameter λT diverges to infinity at an appropriate rate to be

specified later on. Our estimator θ̂ of the true period θ0 is defined as the minimizer

θ̂ = arg min
1≤θ≤ΘT

Q(θ, λT ),

where the upper bound ΘT may tend to infinity as the sample size T increases. In

Section 4.2, we discuss the exact rates at which ΘT is allowed to diverge.

Note that the regularization term λT θ can be regarded as an l0-penalty: Recalling the

formulation (2) of our model, θ can be seen to equal the number of model parameters.

In the literature, methods based on l0-penalties have been employed to deal with model

selection problems such as lag selection, see e.g. Hannan & Quinn (1979). Indeed, the

issue of estimating the period θ0 can also be regarded as a model selection problem:

For each candidate period θ, we have a model of the form (2) with a different set of

regressors and model parameters. The aim is to pick the correct model amongst these.

Similar to Sun, Hart & Genton (2012), we thus look at estimating the period θ0 from

the perspective of model selection. Nevertheless, our selection method strongly differs

from their cross-validation approach.

Importantly, our l0-penalized method is computationally not very costly, as we only

have to calculate the criterion function Q(θ, λT ) for ΘT different choices of θ with ΘT

being of much smaller order than the sample size T . This contrasts with various prob-

lems in high-dimensional statistics, where an l0-penalty turns out to be computationally

too burdensome. To obtain computationally feasible methods, convex regularizations

have been employed in this context instead. In particular, the l1-regularization and the

corresponding LASSO approach have become very popular in recent years. See e.g.
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the original LASSO article by Tibshirani (1996) and the book by Bühlmann & van de

Geer (2011) for a comprehensive overview.

When applying our penalized least squares procedure to estimate the period θ0, we do

not correct for the presence of a trend but completely ignore the trend function g. As

will become clear from our technical arguments, this is possible because g is ”smoothed

out” in a certain way: At many points of the proofs, g shows up in sums of the form
1
T

∑T
t=1 g( t

T
) which approximate the integral

∫ 1

0
g(u)du. As this integral is equal to zero

by our normalization of g, these sums converge to zero and can be effectively neglected.

In this sense, the function g gets smoothed or integrated out.

3.2 Estimation of the Periodic Component m

Given the estimate θ̂ of the true period θ0, it is straightforward to come up with an

estimator of the periodic sequence {m(t)}t∈Z. We simply define the estimator of the

sequence values β as the least squares estimate β̂θ̂ that corresponds to the estimated

period θ̂, i.e.

β̂θ̂ = (X
ᵀ

θ̂
Xθ̂)

−1X
ᵀ

θ̂
Y.

The estimator m̂(t) of the sequence value m(t) at time point t is then defined by

writing β̂θ̂ = (m̂(1), . . . , m̂(θ̂)) and letting m̂(s+kθ̂) = m̂(s) for all s = 1, . . . , θ̂ and all

k. Hence, by construction, m̂ is a periodic sequence with period θ̂. Note that as in the

previous estimation step, we completely ignore the trend function g when estimating

the periodic sequence values. This is possible for exactly the same reasons as outlined

in the previous subsection.

3.3 Estimation of the Trend Component g

We finally tackle the problem of estimating the trend function g. Let us first consider

an infeasible estimator of g. If the periodic component m was known, we could observe

the variables Zt,T = Yt,T−m(t). In this case, the trend component g could be estimated

from the equation

Zt,T = g
( t
T

)
+ εt,T (4)

by standard procedures. One could for example use a local linear estimator defined by

the minimization problem[
g̃(u)

∂g̃(u)/∂u

]
= argmin

(g0,g1)∈R2

T∑
t=1

(
Zt,T − g0 − g1

( t
T
− u
))2

Kh

(
u− t

T

)
, (5)

where g̃(u) is the estimate of g at time point u and ∂g̃(u)/∂u is the estimate of the

first derivative of g at u. Here, h denotes the bandwidth and K is a kernel function

with Kh(x) = K(x/h)/h.
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Even though we do not observe the variables Zt,T , we can approximate them by Ẑt,T =

Yt,T − m̂(t). This allows us to come up with a feasible estimator of the trend function

g: Simply replacing the variables Zt,T in (5) by the approximations Ẑt,T yields an

estimator ĝ which can be computed from the data. Standard calculations show that

ĝ(u) has the closed form solution

ĝ(u) =

∑T
t=1 wt,T (u)Ẑt,T∑T
t=1wt,T (u)

with

wt,T (u) = Kh

(
u− t

T

)[
ST,2(u)−

( t
T
− u
)
ST,1(u)

]
and ST,j(u) =

∑T
t=1Kh(u− t

T
)( t
T
− u)j for j = 1, 2.

Note that alternatively to the above local linear estimator, we could have used a some-

what simpler Nadaraya-Watson smoother to estimate the function g. It is however

well-known that Nadaraya-Watson smoothing notoriously suffers from boundary prob-

lems. To circumvent these issues, we have decided to employ a local linear smoother.

4 Asymptotics

In this section, we describe the asymptotic properties of our estimators. The first

subsection lists the assumptions needed for our analysis. The following subsections

state the main asymptotic results, with each subsection dealing with a separate step

of our estimation procedure.

4.1 Assumptions

We impose the following regularity conditions.

(C1) The error process {εt,T} is strongly mixing with mixing coefficients α(k) satisfying

α(k) ≤ Cak for some positive constants C and a < 1.

(C2) It holds that E[|εt,T |4+δ] ≤ C for some small δ > 0 and a positive constant

C <∞.

(C3) The function g is twice continuously differentiable on [0, 1].

(C4) The kernel K is bounded, symmetric about zero and has compact support. More-

over, it fulfills the Lipschitz condition that there exists a positive constant L with

|K(u)−K(v)| ≤ L|u− v|.

We quickly give some remarks on the above conditions. Most importantly, we do not

assume the error process {εt,T} to be stationary. We merely put some restrictions

on its dependence structure. In particular, we assume the array {εt,T} to be strongly
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mixing. Note that we do not necessarily require exponentially decaying mixing rates as

assumed in (C1). These could alternatively be replaced by slower polynomial rates (at

the cost of having stronger restrictions on the penalty parameter λT later on). To keep

the notation and structure of the proofs as clear as possible, we stick to exponential

mixing rates throughout. Also note that the smoothness condition (C3) is only needed

for the third estimation step, i.e. for establishing the asymptotic properties of the

trend function g. If we restrict attention to the first two steps of our procedure, i.e. to

estimating the periodic model component, it suffices to assume that g is of bounded

variation.

4.2 Asymptotics for the Period Estimator θ̂

The next theorem characterizes the asymptotic behaviour of the estimator θ̂. To formu-

late the result in a neat way, we introduce the following notation: For any two sequences

{vT} and {wT} of positive numbers, we write vT � wT to mean that vT = o(wT ).

Theorem 1. Let (C1)–(C3) be fulfilled and assume that ΘT ≤ CT 2/5−δ for some small

δ > 0 and a finite constant C. Moreover, choose the regularization parameter λT to

satisfy (log T )Θ
3/2
T � λT � T . Then

θ̂
P−→ θ0,

i.e. θ̂ is a consistent estimator of θ0.

The theorem shows that we get consistency under rather general conditions on the

upper bound ΘT . In particular, ΘT is allowed to grow at a rate of almost T 2/5. Clearly,

the faster ΘT goes off to infinity, the stronger restrictions have to be imposed on the

regularization parameter λT . If ΘT is a fixed number, then it suffices to choose λT

of slightly larger order than log T . This contrasts to an order of almost T 3/5 if ΘT

diverges at the highest possible rate.

4.3 Asymptotics for the Estimator m̂

The next result provides the convergence rate and the limiting distribution of the

estimator m̂ of the periodic model component. To simplify notation, define

Vt0,T =
θ2

0

T

Kt0,T∑
k,k′=1

Cov(εt0+(k−1)θ0,T , εt0+(k′−1)θ0,T )

for each time point t with t0 = t− θ0bt/θ0c and Kt0,T = 1 + b(T − t0)/θc.

Theorem 2. Let the conditions of Theorem 1 be satisfied. Then it holds that

max
1≤t≤T

|m̂(t)−m(t)| = Op

( 1√
T

)
.
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In addition, assume that the limit Vt0 = limT→∞ Vt0,T exists. Then for each time point

t = 1, . . . , T , √
T (m̂(t)−m(t))

d−→ N(0, Vt0).

Note that the limit expression Vt0 exists in a wide range of cases, e.g. when imposing

some local stationarity assumptions on the error process {εt,T}. Moreover, if the error

process is stationary, then Vt0 simplifies to Vt0 = θ0

∑∞
k=−∞Cov(ε0,T , εkθ0,T ). In this

case, the long-run variance Vt0 can be estimated by classical methods as discussed in

Hannan (1957). Estimating the long-run variance in a more general setting which

allows for nonstationarities in the data is studied in Newey & West (1987) and de Jong

& Davidson (2000) among others. Inspecting the proof of Theorem 2, one can see that

the estimator m̂ has the same limiting distribution as the estimator in the oracle case

where the true period θ0 is known. In particular, it has the same asymptotic variance

Vt0 . Hence, the error of estimating the period θ0 does not become visible in the limiting

distribution of m̂.

4.4 Asymptotics for the Estimator ĝ

We finally derive the asymptotic properties of the local linear smoother ĝ. To do so,

define

Vu,T =
h

T

T∑
s,t=1

Kh

(
u− s

T

)
Kh

(
u− t

T

)
E[εs,T εt,T ].

The next theorem specifies the uniform convergence rate and the asymptotic distribu-

tion of the smoother ĝ.

Theorem 3. Suppose that the conditions of Theorem 1 are satisfied and that the kernel

K fulfills (C4).

(i) If the bandwidth h shrinks to zero and fulfills T 1/2−δh → ∞ for some small δ > 0,

then it holds that

sup
u∈[0,1]

∣∣ĝ(u)− g(u)
∣∣ = Op

(√ log T

Th
+ h2

)
.

(ii) Consider a fixed point u ∈ (0, 1) and assume that the limit Vu = limT→∞ Vu,T exists.

Moreover, let Th5 → ch for some constant ch ≥ 0. Then it holds that

√
Th(ĝ(u)− g(u)− h2Bu)

d−→ N(0, Vu)

with Bu = 1
2
(
∫
v2K(v)dv)g′′(u).

Similarly to Theorem 2, the limit Vu exists under rather general conditions, e.g. when

imposing some locally stationary structure on the process {εt,T}. If the error process is

stationary, then the asymptotic variance Vu simplifies to Vu = (
∫
K2(v)dv)

∑∞
l=−∞ γε(l)

with γε(l) = Cov(ε0,T , εl,T ). For methods to estimate Vu, we again refer to the papers

by Hannan (1957), Newey & West (1987) and de Jong & Davidson (2000).
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Inspecting the proof of Theorem 3, one can see that the smoother ĝ asymptotically

behaves in the same way as the oracle estimator g̃ which is constructed under the

assumption that the periodic component m is known. In particular, replacing ĝ by g̃

results in an error of the order Op(T
−1/2) uniformly over u and h. As a consequence,

ĝ has the same limiting distribution as g̃. Thus, the need to estimate the periodic

sequence m is not reflected in the limit law of ĝ.

As the difference between ĝ and the standard smoother g̃ is of the asymptotically

negligible order Op(T
−1/2), the bandwidth of ĝ can be selected by the same techniques

as used for the smoother g̃. In particular, standard methods like cross-validation or

plug-in rules can be employed. Note however that these techniques may perform very

poorly when the errors are correlated. To achieve reasonable results, they have to be

adjusted as shown for example in Altman (1990) and Hart (1991).

5 Selecting the Regularization Parameter λT

As shown in Theorem 1, our procedure to estimate the period θ0 is asymptotically

valid for all sequences of regularization parameters λT within a certain range of rates,

in particular (log T )Θ
3/2
T � λT � T . Thus from an asymptotic perspective, we have

a lot of freedom to choose the regularization parameter. In finite samples, a totally

different picture arises. There, different choices of λT may result in completely different

estimates of the period θ0. Selecting the regularization parameter λT in an appropriate

way is thus a crucial issue in small samples.

In what follows, we provide a heuristic argument how to choose λT in a suitable way.

To make the argument as clear as possible, we consider a simplified version of model

(1). In particular, we analyze the setting

Yt = m(t) + εt,

where the errors εt are assumed to be i.i.d. with E[ε2
t ] = σ2. We thus drop the trend

component from the model and assume that there is no serial dependence at all in the

error terms.

As can be seen from the proof of Theorem 1, the main role of the penalty term λT θ

is to avoid selecting multiples of the true period θ0 rather than θ0 itself. We thus

focus attention on periods θ which are multiples of θ0, i.e. θ = rθ0 for some r. Let

β̂θ = (β̂θ,1, . . . , β̂θ,θ) be the least squares estimator based on the period θ. For ease of

notation, we define the shorthand Is(t) = I(t = kθ+s for some k) and write (β1, . . . , βθ)

with βs = βs−θ0bs/θ0c. With this, it holds that

RSS(θ)

T
=

1

T

T∑
t=1

(
Yt − β̂θ,1I1(t)− . . .− β̂θ,θIθ(t)

)2
.

11



As Yt − β1I1(t)− . . .− βθIθ(t) = εt for θ = rθ0, we further obtain

RSS(θ)

T
=

1

T

T∑
t=1

ε2
t +

2

T

T∑
t=1

εt
[(
β1 − β̂θ,1)I1(t) + . . .+ (βθ − β̂θ,θ)Iθ(t)

]
+

1

T

T∑
t=1

[(
β1 − β̂θ,1)I1(t) + . . .+ (βθ − β̂θ,θ)Iθ(t)

]2
.

Inspecting the definition of the least squares estimator β̂θ, it can be seen that β̂θ,s =

(K
[θ]
s,T )−1

∑T
t=1 Is(t)Yt with K

[θ]
s,T = 1 + b(T − s)/θc. Thus

βs − β̂s,θ = − 1

K
[θ]
s,T

T∑
t=1

Is(t)εt.

Using this, some straightforward calculations yield that

RSS(θ)

T
=

1

T

T∑
t=1

ε2
t −

θ∑
s=1

1

T

( 1

K
[θ]
s,T

T∑
t,t′=1

Is(t)Is(t
′)εtεt′

)
and hence

E
[RSS(θ)

T

]
= σ2 − σ2θ

T
.

As a result,

E
[RSS(rθ0)

T

]
= σ2 − σ2(rθ0)

T
< σ2 − σ2θ0

T
= E

[RSS(θ0)

T

]
or put differently,

E
[
RSS(rθ0)

]
+ σ2rθ0 = E

[
RSS(θ0)

]
+ σ2θ0. (6)

Formula (6) suggests selecting the penalty parameter λT larger than σ2 in order to

avoid choosing multiples of the true period θ0 rather than θ0 itself. On the other hand,

λT should not be picked too large. Otherwise we add a strong penalty to the residual

sum of squares RSS(θ0) of the true period θ0, thus making the criterion function at

θ0 rather large, in particular larger than the criterion function at 1. As a result, our

procedure would yield the estimate θ̂ = 1, i.e. it would suggest a model without a

periodic component.

To sum up, the above heuristics suggest to select the penalty λT slightly larger than

σ2. In particular, we propose to choose it as

λT = σ2κT (7)

with some sequence {κT} that slowly diverges to infinity. More specifically, {κT} should

grow slightly faster than {log T} to meet the conditions of the asymptotic theory from

Theorem 1.
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Repeating our heuristic argument with serially correlated errors, the variance σ2 gets

replaced by some type of long-run variance which incorporates covariance terms of the

errors. Our selection rule of the penalty parameter λT does not take into account this

effect of the dependence structure at all. Nevertheless, this does not mean that it

becomes useless when the error terms are correlated. As long as the correlation is not

too strong, σ2 will be the dominant term in the long-run variance. Hence, our heuristic

rule should still yield an appropriate penalty parameter λT . This consideration is

confirmed by our simulations later on, where the error terms are assumed to follow an

AR(1) process.

As the error variance σ2 is unknown in general, we cannot take the formula (7) at face

value but have to replace σ2 with an estimator. This can be achieved as follows: To

start with, define

θ̌ = min
1≤θ≤ΘT

RSS(θ).

As already noted in Subsection 3.1, minimizing the residual sum of squares without a

penalty does not yield a consistent estimate of θ0. Inspecting the proof of Theorem 1,

it can however be seen that

P
(
θ̌ = kθ0 for some k ∈ N

)
→ 1

as T → ∞. Thus, with probability approaching one, θ̌ is equal to a multiple of the

period θ0. Since multiples of θ0 are periods of m, the least squares estimate β̂θ̌ can

be used as a preliminary estimator of the periodic sequence values. Let us denote

the resulting estimator of m(t) at time point t by m̌(t). Given this estimator, we can

repeat the third step of our procedure to obtain an estimator ǧ of the trend function

g. Finally, subtracting the estimates m̌(t) and ǧ( t
T

) from the observations Yt yields

approximations ε̌t of the residuals εt. These can be used to construct the standard-type

estimator σ̌2 = 1
T

∑T
t=1 ε̌

2
t of the error variance σ2.

6 Simulation

In this section, we examine the finite sample behaviour of our procedure in a Monte

Carlo experiment. To do so, we simulate the model (1) with a periodic sequence of the

form

m(t) = sin
(2π

θ0

t+
3π

2

)
and a period θ0 = 60. Moreover, the trend function g is given by

g(u) = 2u2.

The functions m and g are depicted in Figure 1. The error terms εt of the simulated

model are drawn from the AR(1) process εt = 0.45εt−1 +ηt, where ηt are i.i.d. variables

13



following a normal distribution with mean zero and variance σ2
η. We will choose dif-

ferent values for σ2
η later on, thus altering the signal-to-noise ratio in the model. The

simulation setup is chosen to mimic the situation in the real data example investigated

in the subsequent section.
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Figure 1: Plot of the functions m and g in our simulation setup.

We simulate the model N = 1000 times for three different sample sizes T = 160, 250,

500 and three different values of the residual variance σ2
η = 0.2, 0.4, 0.6. Note that

these values of σ2
η translate into an error variance σ2 = E[ε2

t ] of approximately 0.25,

0.5, and 0.75, respectively. To get a rough idea of the noise level in our setup, we

consider the ratio ε2/Y 2 := (
∑T

t=1 ε
2
t )/(

∑T
t=1 Y

2
t ), which gives the fraction of variation

in the data that is due to the variation in the error terms. More exactly, we report the

values of the ratio ε̂2/Y 2 with ε̂t being the estimated residuals. This makes it easier

to compare the noise level in the simulations to that in the real data example later on.

For σ2 = 0.25, 0.5, 0.75, we obtain ε̂2/Y 2 ≈ 0.12, 0.2, 0.26. Note that these numbers

are a bit higher than the value 0.07 obtained in the real data example, indicating that

the noise level is somewhat higher in the simulations.

The regularization parameter is chosen as λT = σ̌2κT with κT = log T . Here, σ̌2 is

an estimator of the error variance σ2 which is constructed as explained at the end of

Section 5. We thus pick λT according to the heuristic idea described there. Note that

from a theoretical perspective, we should have chosen κT to diverge slightly faster than

log T . However, as the rate of κT may become arbitrarily close to log T , we neglect

this technicality and simply choose κT to equal log T .

In our simulation exercise, we focus on the estimation of the period θ0. This is the

crucial step in our estimation scheme as the finite sample behaviour of the estimators

m̂ and ĝ strongly hinges on how well θ̂ approximates the true period θ0. If the period

θ0 is known, m̂ simplifies to a standard least squares estimator. Moreover, if the

periodic model component m as a whole is observed, then ĝ turns into an ordinary local

linear smoother. The finite sample properties of these estimators have been extensively

studied and are well-known. Given a good approximation of θ0, our estimators m̂ and

14



ĝ can be expected to perform similarly to these standard estimators. For this reason,

we concentrate on the properties of θ̂ in what follows.
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Figure 2: Simulation results for different choice of the sample size T and the error variance

σ2. The bars give the number of simulations (out of a total of 1000) in which a certain value

θ̂ is obtained.

The simulation results are presented in Figure 2. Each panel shows the distribution of

θ̂ for a specific choice of T and σ2. The bars give the number of simulations (out of a

total of 1000) in which a certain value θ̂ is obtained. For each sample size, we take into

account periods θ with 1 ≤ θ ≤ T/2. We now summarize the most important features

of the results:

(a) The estimates θ̂ cluster around the true period θ0. In addition, smaller clusters

can be found around multiples of the period θ0. As can be seen from the proof of

Theorem 1, this behaviour of θ̂ is suggested by the asymptotic theory.
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(b) For smaller sample sizes, in particular for T = 160, the clusters are not exactly

centered around the true period θ0 but are somewhat biased towards smaller values.

As turns out, this finite sample effect is due to the trend component in the model.

When repeating the simulations without a trend function, the bias can be seen to

vanish completely.

(c) The clusters become more dispersed when moving towards larger values of the error

variance σ2. This intuitively makes sense as the signal-to-noise ratio deteriorates

with increasing σ2, making it harder to estimate θ0.

(d) Inspecting the results for σ2 = 0.75, one can see that θ̂ is equal to 1 in a non-

negligible number of simulations. This is a finite sample effect which is strongest

for T = 160 and vanishes as the sample size increases. As will become clear in the

discussion at the end of this section, this effect has to do with the choice of the

penalty parameter λT . In particular, we could considerably lower the number of

simulations with θ̂ = 1 by making the penalty λT a bit smaller.

Overall, the simulations suggest that the estimator θ̂ performs well in small samples.

Even at a sample size of T = 160 where we only observe a bit less than three full

cycles of the periodic component, the estimates strongly cluster around the true period

θ0. Clearly, at this small sample size, the estimator θ̂ does not exactly hit the true

period in many cases. Nevertheless, it gives a reasonable approximation to it most of

the time. The performance of the estimator quickly improves as we observe more and

more cycles of the periodic component. Moving to a sample size of T = 500, it already

hits the true value θ0 in a high percentage of the simulations and misses the true value

only very slightly throughout.

Before we close this section, we have a closer look at what happens when the regular-

ization parameter λT is varied. Figure 3 presents the criterion function Q(θ, λT ) for a

typical simulation with T = 500, σ2 = 0.5 and three different choices of λT . In panel

(a), we have chosen the regularization parameter as above, i.e. λ
(a)
T = σ̌2 log T . In

panel (b), we pick it a bit larger, λ
(b)
T = 4λ

(a)
T , and in panel (c), we choose it somewhat

smaller, λ
(c)
T = λ

(a)
T /4.

As can be seen from the plots, the main feature of the criterion function are the

downward spikes around the true period θ0 and multiples thereof. The parameter λT

influences the overall upward or downward movement of the criterion function. This is

due to the fact that the penalty λT θ is a linear function in θ with the slope parameter

λT . If the slope λT is picked too large, then the criterion function moves up too quickly.

As a result, the global minimum does not lie at the first downward spike around θ0 but

at θ = 1. This situation is illustrated in panel (b). If λT is chosen too small on the

other hand, then the criterion function decreases, taking its global minimum not at the

first downward spike but at a subsequent one. This situation is depicted in panel (c).
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Figure 3: Plot of the criterion function for a typical simulation with T = 500, σ2 = 0.5 and

three different choices of λT . In particular, λT is given by λ
(a)
T = σ̌2 log T , λ

(b)
T = 4λ

(a)
T and

λ
(c)
T = λ

(a)
T /4 in the three different panels.

Our heuristic rule for selecting λT can be regarded as a guideline to choose the right

order of magnitude for the penalty term. Nevertheless, we may still pick λT a bit too

large or small, thus ending up in a similar situation as in panels (b) or (c). When

applying our method to real data, it is thus important to have a glance at the criterion

function. If it exhibits large downward spikes at a certain value and at multiples

thereof, this is strong evidence for there being a periodic component in the data. In

particular, the true period should lie in the region of the first downward spike. If our

procedure yields a completely different estimate of the period, one should treat this

result with caution and keep in mind that it may be due to an inappropriate choice of

the penalty parameter.

7 Application

Global mean temperature records over the last 150 years suggest that there has been

a significant upward trend in the temperatures (cp. Bloomfield (1992) or Hansen et

al. (2002) among others). This global warming trend is also visible in the time series

presented in Figure 4. The depicted data are yearly global temperature anomalies

from 1850 to 2011. By anomalies we mean the departure of the temperature from some

reference value or a long-term average. In particular, the data at hand are temperature

deviations from the average 1961–1990 (measured in Celsius degree).3

The issue of global warming has received considerable attention over the last decades.

From a statistical point of view, the challenge is to come up with methods to reliably es-

timate the warming trend. Providing such methods is complicated by the fact that the

global mean temperatures may not only contain a trend but also a long-run oscillatory

component. Various research articles in climatology suggest that the global temper-

ature system possesses an oscillation with a period in the region between 60 and 70

3The data set is called HadCRUT3 and can be downloaded from http://www.cru.uea.ac.uk/

cru/data/temperature. A detailed description of the data is given in Brohan et al. (2006).
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years (see Schlesinger & Ramankutty (1994), Delworth & Mann (2000) and Mazzarella

(2007) among others). The presence of such a periodic component obviously creates

problems when estimating the trend function. In particular, an estimation procedure

is required which is able to accurately separate the periodic and the trend component.

Otherwise, an inaccurate picture of the warming trend emerges. Moreover, a precise

estimate of both components is needed to reliably predict future temperature changes.

year

te
m

pe
ra

tu
re

 a
no

m
al

ie
s

1850 1900 1950 2000

−
0.

6
−

0.
2

0.
0

0.
2

0.
4

Figure 4: Yearly global temperature anomalies from 1850 to 2011 (measured in ◦C).

In what follows, we apply our three-step procedure to the temperature anomalies from

Figure 4. We thus fit the model

Yt,T = g
( t
T

)
+m(t) + εt,T

with E[εt,T ] = 0 to the sample of global anomaly data {Yt,T} and estimate the unknown

period θ0, the values of the periodic sequence {m(t)}t∈Z, and the nonparametric trend

function g.

To estimate the period θ0, we employ our penalized least squares method with the

penalty term λT = σ̌2 log T . As in the simulations, σ̌2 is an estimate of the error

variance which is constructed as described in Section 5. Selecting the penalty parameter

in this way, the criterion function Q(θ, λT ) is minimized at θ̂ = 60. We thus detect

an oscillation in the temperature data with a period in the same region as in the

climatological studies cited above. The criterion function Q(θ, λT ) is plotted in Figure

5. Its most dominant feature is the enormous downward spike with a minimum at

60 years. As discussed in the simulations, this kind of spike is characteristic for the

presence of a periodic component in the data. The spike being very pronounced, the

shape of the criterion function provides strong evidence for there being an oscillation

in the region of 60 years.
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Figure 5: Plot of the criterion function Q(θ, λT ).

We next turn to the estimation of the periodic component m. The estimator m̂ is

presented in the left-hand panel of Figure 6 over a full cycle of 60 years. A smoothed

version of m̂ is plotted as the solid black curve in the right-hand panel. The grey time

series in the background displays the detrended anomaly data, i.e. the values Yt,T−ĝ( t
T

)

with ĝ being the estimator of the trend g.
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Figure 6: Estimation results for the periodic component m. The left-hand panel presents

the estimator m̂, the right-hand panel a smoothed version of it. The grey time series in the

background are detrended temperature anomalies.

The estimation results concerning the trend function g are depicted in Figure 7. The

solid curve in the left-hand panel shows the local linear smoother ĝ, the dashed lines

are the corresponding 95% pointwise confidence bands. The right-hand panel once

again displays the estimator ĝ, but this time against the background of the anomaly

data from which the periodic component has been removed. For the estimation, we

have used an Epanechnikov kernel and have chosen the bandwidth to equal h = 0.15.

To check the robustness of our results, we have additionally repeated the analysis for

various choices of the bandwidth. As the results are fairly stable, we only report the

19



findings for the bandwidth h = 0.15.
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Figure 7: Estimation results for the trend function g. The solid line both in the left- and

right-hand panel is the smoother ĝ. The dashed lines are pointwise 95% confidence bands,

the grey time series in the background displays the data points Yt,T − m̂(t).

Figure 8 depicts the time series of the estimated residuals ε̂t,T = Yt,T − ĝ( t
T

) − m̂(t)

together with its sample autocorrelation function. The residuals do not exhibit a strong

periodic or trending behaviour. This suggests that our procedure has done a good job

in extracting the trend and periodic component from the data.
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Figure 8: Time series of the estimated residuals (left panel) and its sample autocorrelation

function (right panel). The dashed lines show the Bartlett bounds ±1.96T−1/2.

Moreover, inspecting the sample autocorrelations, the residuals do not appear to be

strongly dependent over time. Note that the sample autocorrelation at the first lag

has the value 0.45 and equals the parameter estimate obtained from fitting an AR(1)

process to the residuals. This value has been used as a guideline in the design of the

error terms in the simulations.
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8 Variants and Extensions

In this paper, we have studied an additive regression setup featuring a cyclical compo-

nent with an unknown period and a nonparametric trend function. We have provided

a procedure to estimate the unknown period and the values of the periodic sequence

as well as the trend function. Moreover, we have derived the asymptotic properties

of our estimators. In addition, we have examined the small sample behaviour of our

method by a simulation study and have illustrated it by an application to climate data.

Our estimation method may be extended in various directions. We close the paper by

outlining some of them.

8.1 Trend Estimation

When applying our procedure, we remove the estimated cyclical component from the

data before estimating the trend. It is however also possible to set up a direct estimation

method for the trend function. In particular, we may naively estimate g by a standard

local linear smoother of the form

ˆ̂g(u) =

∑T
t=1wt,T (u)Yt,T∑T
t=1wt,T (u)

,

the weights wt,T (u) being defined in Subsection 3.3. The periodic component m enters

the estimator ˆ̂g(u) via the term
∑T

t=1wt,T (u)m(t)/
∑T

t=1wt,T (u), which is a weighted

average of the values m(t). Renormalizing m and g to satisfy
∑θ0

s=1m(s) = 0 for

convenience, it is easily seen that |
∑T

t=1wt,T (u)m(t)/
∑T

t=1wt,T (u)| ≤ C/Th. Hence,

the periodic component gets smoothed out in a similar way as the trend function in

Subsections 3.1 and 3.2. As a consequence, ˆ̂g can be shown to have the same limiting

behaviour as the oracle estimator which is based on the deseasonalized observations

Zt,T = Yt,T −m(t).

From an asymptotic perspective, it is thus possible to estimate the trend function g

without taking into account the periodic model part at all. Nevertheless, this naive

way of estimating the trend function should be treated with caution. The reason is

that it may produce very poor estimates of g in small samples. In particular, when

the period θ0 is large relative to the sample size, then the estimator ˆ̂g will tend to pick

up the periodic component as part of the trend function. For example, if we estimate

the warming trend in our application by ˆ̂g, we will wrongly incorporate the 60-year

cyclical component into it. As a result, we obtain a totally distorted picture of the

global warming trend.4

4We do not report the exact results of applying the estimator ˆ̂g to our sample of temperature data.

The details are however available upon request.
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8.2 Reversing the Estimation Scheme

The previous subsection suggests that the steps of our estimation procedure may be

reversed. Indeed, it is possible to start off with estimating the trend function and then

proceed by estimating the periodic component. In what follows, we have a closer look at

this modified estimation scheme. For convenience, we again normalize the components

m and g to satisfy
∑θ0

s=1m(s) = 0.

Step 1: Estimation of the trend function g. The trend function g can be estimated

by the smoother ˆ̂g defined in the previous subsection. When applying the estimator ˆ̂g

one should however keep in mind its potential pitfalls. In particular, one should avoid

using it when the period of the cyclical part is expected to be large relative to the

sample size.

Step 2: Estimation of the period θ0. The period θ0 may be estimated by applying

our penalized least squares procedure to the approximately detrended data ˆ̂Wt,T =

Yt,T − ˆ̂g( t
T

), where we undersmooth ˆ̂g by picking the bandwidth h to be of the order

T−( 1
4

+δ) for some small δ > 0. Let us denote the resulting estimator by ˆ̂θ. Arguments

similar to those for the proof of Theorem 1 show that ˆ̂θ consistently estimates the

period θ0.

An obvious drawback of the estimator ˆ̂θ is that it depends on the bandwidth h. This

contrasts with the estimator θ̂ which is fully independent of h. Given a good choice of

the bandwidth, intuition however suggests that the estimator ˆ̂θ should be more precise

than θ̂. The reasoning is as follows: ˆ̂θ is based on preprocessed data from which the

trend has been approximately removed. Since the trend plays the role of an additional

noise component when it comes to estimating the periodic model part, ˆ̂θ should perform

better than θ̂.

Having a closer look at the proof of Theorem 1, this intuition turns out to be misguided.

As noted in Subsection 3.1, the trend function gets smoothed or integrated out in the

proof. In particular, it shows up in sums of the form ST = 1
T

∑T
t=1 g( t

T
) which are of

the order O( 1
T

). If we estimate the trend in a first step by ˆ̂g, then ST gets replaced

by ˆ̂ST = 1
T

∑T
t=1[g( t

T
) − ˆ̂g( t

T
)] in the proof. Since the error of estimating g by the

smoother ˆ̂g is of much larger order than O( 1
T

), the sum ˆ̂ST will in general be of larger

order than ST as well. Thus, approximately eliminating the trend in a first step tends

to introduce additional “noise” in the estimation of θ0 rather than to reduce it.

Step 3: Estimation of the periodic sequence values. The values {m(t)}t∈Z can be es-

timated by applying the least squares procedure from Subsection 3.2 to the approxi-

mately detrended data ˆ̂Wt,T = Yt,T − ˆ̂g( t
T

), where as in the previous step we choose the

bandwidth to be of the order T−( 1
4

+δ). Going along the lines of the proof for Theorem

2, the resulting estimator ˆ̂m(t) can be shown to be asymptotically normal for each fixed

time point t. However, the limiting distribution will in general differ from that of the
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oracle estimator which is based on the exactly detrended data Wt,T = Yt,T−g( t
T

). Thus,

the error of estimating the trend function gets reflected in the asymptotic distribution

of the periodic sequence values. This again indicates that approximately eliminating

the trend in a first step tends to increase the “noise” in the subsequent estimation steps

rather than to decrease it.

The above remarks show that our estimation scheme can in principle be reversed. One

should however keep in mind that setting up the procedure in this way comes along

with some disadvantages and potential pitfalls.

8.3 Iterating the Estimation Scheme

It is also possible to iterate our procedure. In particular, we can set up a backfitting

scheme of a similar type as described in Section 8.5 of Hastie & Tibshirani (1990):

(1) Perform the three steps of the estimation procedure described in Section 3. This

yields initial estimates θ̂(0) = θ̂, m̂(0) = m̂ and ĝ(0) = ĝ.

(2) Apply the first two estimation steps to the approximately detrended data Yt,T −
ĝ(0)( t

T
). This yields updated estimates θ̂(1) and m̂(1).

(3) Apply the third estimation step to the data Yt,T − m̂(1)(t). This yields an updated

estimator ĝ(1).

(4) Steps (2) and (3) may be repeated to get further updates of the estimators.

The motivation behind such a scheme is to improve the quality of the estimators. From

an asymptotic point of view, there is however no gain at all from performing one or

more backfitting steps. Moreover, backfitting comes along with the same disadvantages

as reversing the estimation scheme. It is thus questionable whether backfitting pays

off in any way when working with a specific sample of data.

8.4 Multiple Periods

In some applications, the periodic sequence m can be expected to be a superposition

of multiple periodic components. Neglecting the trend function for simplicity, we may

for example consider a model with two periods given by

Yt = m1(t) +m2(t) + εt, (8)

where mi is a periodic sequence with unknown (smallest) period θi for i = 1, 2. The

superposition m = m1 + m2 is periodic as well. As before, we denote its (smallest)

period by θ0. In many situations, θ0 equals the least common multiple of θ1 and θ2.

As shown in Restrepo & Chacón (1998), this is however not always the case. Applying
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our penalized least squares method to model (8) yields a consistent estimator of θ0.

Hence, if we ignore the multiperiodic structure of the model, our procedure results in

estimating the period θ0 of the superposition m.

Sometimes, however, we are not primarily interested in estimating the period of the

superposition but want to find out about the periods of the individual cyclical compo-

nents. Tackling this problem is complicated by the fact that the periods θ1 and θ2 are

not uniquely identified in general. Even though the superposition m and its period θ0

are identified by Lemma A2, the superposition may be generated by different pairs of

periodic sequences having different periods. More formally, let Θ be the set of pairs

(θ1, θ2) such that there exist periodic sequences m1 and m2 with m = m1 + m2. In

general, Θ contains more than one pair of periods.5

One possible way to estimate the elements of Θ is to construct a two-dimensional (or

more generally a multi-dimensional) version of our penalized least squares method.

Informally, the procedure looks as follows: For each pair of candidate periods, we fit

a model with two cyclical components to the data and calculate the corresponding

residual sum of squares. Our estimator is then defined by minimizing a penalized

version of the latter. Which elements of Θ are approximated by this procedure will

be determined by the structure of the penalty. For example, if we choose the penalty

to have the form λT (θ1 + θ2), then we will estimate the pair of periods in Θ with the

smallest sum. As far as we can see, it is however not trivial at all to extend our theory

to this multi-dimensional case. The main problem is that our proofs for the single-

period case heavily draw on the rather simple structure of the design matrix Xθ. In

the multiperiod case, this structure gets lost, making it hard to carry over some of the

arguments. For the time being, we are thus content with estimating the period θ0 of

the superposition m.

5As an example, consider the pair of periodic sequences {m1(1), . . . ,m1(5)} = {−1, 0, 0, 0, 0} and

{m2(1), . . . ,m2(6)} = {1, 0, 2,−1, 2, 0} having the periods 5 and 6. The sum of these two se-

quences generates a periodic sequence of period 30. The same sequence is generated by the se-

quences {m1(1), . . . ,m1(3)} = {−1, 0, 0} and {m2(1), . . . ,m2(10)} = {1, 0, 2, 0, 2,−1, 2, 0, 2, 0} with

the periods 3 and 10.
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Appendix

In this appendix, we prove Theorems 1–3. Throughout the appendix, the symbol C

is used to denote a universal real constant which may take a different value on each

occurrence.

Auxiliary Results

Before we come to the proofs of the main theorems, we state some auxiliary lemmas.

The following result is needed at various points in the proofs later on.

Lemma A1. Let θ be any natural number with 1 ≤ θ ≤ ΘT . Moreover, let s ∈
{1, . . . , θ} and define K

[θ]
s,T = 1 + b(T − s)/θc to be the number of time points t ∈

{1, . . . , T} which can be written as t = s+ (k − 1)θ for some k ∈ N. Then

∣∣∣ 1

K
[θ]
s,T

K
[θ]
s,T∑
k=1

g
(s+ (k − 1)θ

T

)
−
∫ 1

0

g(u)du
∣∣∣ ≤ C

K
[θ]
s,T

with some constant C that is independent of s, θ, and T .

The proof is straightforward and thus omitted. We next provide a result on the iden-

tification of the model components g and m.

Lemma A2. The sequence m and the function g in model (1) are uniquely identified

if g is normalized to satisfy
∫ 1

0
g(u)du = 0. More precisely, let ḡ be a smooth trend

function with
∫ 1

0
ḡ(u)du = 0 and m̄ a periodic sequence with (smallest) period θ̄0. If

ḡ
( t
T

)
+ m̄(t) = g

( t
T

)
+m(t)

for all t = 1, . . . , T and all T = 1, 2, . . ., then ḡ = g and m̄ = m with θ̄0 = θ0.

Proof. By assumption, for all t = 1, . . . , T and all T = 1, 2, . . .,

ḡ
( t
T

)
− g
( t
T

)
= m(t)− m̄(t).

Let θ× be the least common multiple of θ0 and θ̄0. As m and m̄ are periodic with

(smallest) period θ0 and θ̄0 respectively, they are both periodic with period θ×. We

thus obtain that

ḡ
(s+ (k − 1)θ×

T

)
− g
(s+ (k − 1)θ×

T

)
= m(s)− m̄(s)

for all s = 1, . . . , θ× and k = 1, . . . , K
[θ×]
s,T with K

[θ×]
s,T = 1 + b(T − s)/θ×c. If m̄ = m,

then clearly ḡ = g follows since the points (s+ (k − 1)θ×)/T become dense in [0, 1] as

T increases and the functions ḡ and g are smooth. We next assume that m̄(s) 6= m(s)
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for some s ∈ {1, . . . , θ×} and show that this leads to a contradiction: W.l.o.g. let

m(s)− m̄(s) = ds > 0 for some s ∈ {1, . . . , θ×}. Then

ḡ
(s+ (k − 1)θ×

T

)
− g
(s+ (k − 1)θ×

T

)
= ds > 0

as well as

1

K
[θ×]
s,T

K
[θ×]
s,T∑
k=1

[
ḡ
(s+ (k − 1)θ×

T

)
− g
(s+ (k − 1)θ×

T

)]
= ds > 0.

However, by Lemma A1,

lim
T→∞

1

K
[θ×]
s,T

K
[θ×]
s,T∑
k=1

[
ḡ
(s+ (k − 1)θ×

T

)
− g
(s+ (k − 1)θ×

T

)]
=

∫ 1

0

ḡ(u)du−
∫ 1

0

g(u)du = 0 6= ds,

which is a contradiction.

Proof of Theorem 1

We first introduce some notation. Let

Πθ = Xθ(X
ᵀ

θXθ)
−1X

ᵀ

θ

be the projection matrix onto the subspace {Xθb : b ∈ Rθ}. As the design matrix Xθ

is orthogonal, the projection Πθ has a rather simple structure. To see this, note that

X
ᵀ

θXθ = (Iθ, Iθ, . . .)

IθIθ
...

 =

K
[θ]
1,T 0

. . .

0 K
[θ]
θ,T


with K

[θ]
s,T = 1 + b(T − s)/θc for s = 1, . . . , θ. K

[θ]
s,T is the number of time points t in

the sample that satisfy t = s+ (k − 1)θ for some k ∈ N. It is either equal to bT/θc or

to bT/θc+ 1, in particular K
[θ]
s,T = O(T/θ). The projection matrix Πθ thus becomes

Πθ = XθDθX
ᵀ

θ =


Dθ Dθ . . .

Dθ
. . .

...


with

Dθ =

1/K
[θ]
1,T 0

. . .

0 1/K
[θ]
θ,T

 .
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Moreover, rewriting the residual sum of squares RSS(θ) in terms of Πθ yields

RSS(θ) = (Y −Xθβ̂θ)
ᵀ
(Y −Xθβ̂θ)

= ((I − Πθ)Y )
ᵀ
((I − Πθ)Y )

= Y
ᵀ
(I − Πθ)Y.

Finally, as already noted at the beginning of the appendix, the symbol C is used to

denote a generic constant which may take a different value on each occurrence. We

implicitly suppose that C does not depend on any model parameters, in particular it

is independent of the candidate period θ and the sample size T .

With this notation at hand, we now turn to the proof. Our arguments are based on

the inequality

P(θ̂ 6= θ0) ≤
∑

1≤θ≤ΘT
θ 6=θ0

P
(
Q(θ, λT ) ≤ Q(θ0, λT )

)
.

In the sequel, we will show the following: If the sample size T is sufficiently large, then

for all θ with 1 ≤ θ ≤ ΘT it holds that

P
(
Q(θ, λT ) ≤ Q(θ0, λT )

)
≤ C(κTΘT )−1, (9)

where {κT} is a sequence of positive numbers that slowly diverges to infinity (e.g.

κT = log log T ). From this it immediately follows that

P(θ̂ 6= θ0) = o(1),

which in turn yields that θ̂ = θ0 + op(1), thus completing the proof. To show (9) we

write for each fixed θ with θ 6= θ0 and 1 ≤ θ ≤ ΘT ,

P
(
Q(θ, λT ) ≤ Q(θ0, λT )

)
= P

(
Vθ ≤ −Bθ − 2Sεθ − 2Sgθ + 2W ε

θ +W g
θ + λT (θ0 − θ)

)
with

Vθ = ε
ᵀ
(Πθ0 − Πθ)ε

Bθ = (Xθ0β)
ᵀ
(I − Πθ)(Xθ0β)

Sεθ = ε
ᵀ
(I − Πθ)Xθ0β

Sgθ = g
ᵀ
(I − Πθ)Xθ0β

W ε
θ = ε

ᵀ
(Πθ − Πθ0)g

W g
θ = g

ᵀ
(Πθ − Πθ0)g.

In what follows, we proceed in two steps. In the first step, we analyze the terms

Vθ, Bθ, . . . one after the other. In the second step, we combine the results on the

various terms to derive the inequality (9).
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To examine the properties of the terms Bθ, S
ε
θ and Sgθ , we first have a closer look at the

expression (I − Πθ)(Xθ0β) which is the common component of these terms. It holds

that

(I − Πθ)Xθ0β = (I −XθDθX
ᵀ

θ )Xθ0β

=

I −

Dθ Dθ . . .

Dθ
. . .

...





m(1)
...

m(θ0)

m(1)
...


=: (γ1,T , . . . , γθ×,T , γ1,T , . . . , γθ×,T , . . .)

ᵀ

with

γs,T = m(s)− 1

K
[θ]
sθ,T

K
[θ]
sθ,T∑
k=1

m((k − 1)θ + sθ)

for s = 1, . . . , θ×, where sθ = s− θb s
θ
c and θ× is the least common multiple of θ0 and

θ. A representation of γs,T which will turn out to be useful in what follows is given by

γs,T = ζs +Rs,T (10)

with Rs,T = R1,s,T +R2,s,T and

ζs = m(s)− 1

θ0

θ0∑
k=1

m((k − 1)θ + sθ)

R1,s,T =
(

1− θ0

K
[θ]
sθ,T

⌊K [θ]
sθ,T

θ0

⌋) 1

θ0

θ0∑
k=1

m((k − 1)θ + sθ)

R2,s,T = − 1

K
[θ]
sθ,T

K
[θ]
sθ,T∑

k=θ0bK[θ]
sθ,T

/θ0c+1

m((k − 1)θ + sθ).

The components of the representation in (10) have the following properties: First of

all, the remainder satisfies

|Rs,T | ≤
Cθ0

K
[θ]
sθ,T

, (11)

since |1− θ0/K
[θ]
sθ,T
· bK [θ]

sθ,T
/θ0c| ≤ θ0/K

[θ]
sθ,T

and |R2,s,T | ≤ Cθ0/K
[θ]
sθ,T

. To describe the

properties of the expressions ζs, we distinguish between two cases:

Case A: θ 6= θ0 and θ is no multiple of θ0.

Case B: θ 6= θ0 and θ is a multiple of θ0.
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The next lemma summarizes the properties of ζs in the above two cases.

Lemma A3. (i) Assume that Case A holds. Then there exists an index s ∈ {1, . . . , θ×}
with ζs 6= 0. Moreover, there exists a small constant η > 0 such that |ζs| ≥ η whenever

ζs 6= 0. (ii) If Case B holds, then ζs = 0 for all s.

Note that the constant η does not depend on any model parameters, in particular

it is independent of θ and s. We postpone proving the above lemma as well as the

subsequent ones until the arguments for Theorem 1 are completed.

Using Lemma A3, we can characterize the behaviour of the terms Bθ, S
ε
θ and Sgθ . To

do so, define S to be the subset of indices s ∈ {1, . . . , θ×} for which ζs 6= 0 and let

#S = n. Moreover, write Sc = {1, . . . , θ×} \ S.

Lemma A4. There exists a natural number T0 such that for all T ≥ T0, we have the

following results:

Case A: Bθ ≥ c
(
nT
θ

)
P
(
|Sεθ | > νT

√
nT
θ

)
≤ Cν−2

T |Sgθ | ≤ Cn

Case B: Bθ = 0 Sεθ = 0 Sgθ = 0.

Here, c > 0 is a sufficiently small fixed constant and {νT} is an arbitrary sequence of

positive numbers which diverges to infinity.

Note that in the above lemma, the constants c, C, and T0 do neither depend on the

period θ nor on the sample size T . Additionally to Lemma A4, the terms W g
θ and W ε

θ

can be shown to have the following properties.

Lemma A5. For all T ≥ T0, it holds that |W g
θ | ≤ C and P(|W ε

θ | > νT ) ≤ Cν−2
T .

Finally, note that the term Vθ can be written as

Vθ = ε
ᵀ
(Πθ0 − Πθ)ε

= ε
ᵀ



Dθ0 Dθ0 . . .

Dθ0
. . .

...

−

Dθ Dθ . . .

Dθ
. . .

...


 ε

=
T∑
l=1

1

K
[θ0]
lθ0 ,T

K
[θ0]
lθ0

,T∑
k=1

ε(k−1)θ0+lθ0 ,T
εl,T −

T∑
l=1

1

K
[θ]
lθ,T

K
[θ]
lθ,T∑
k=1

ε(k−1)θ+lθ,T εl,T

=: Vθ,1 + Vθ,2

with lθ = l − θbl/θc.
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Using the results from Lemmas A4 and A5, we can now analyze the term P(Q(θ, λT ) ≤
Q(θ0, λT )). Set νT = (κTΘT )1/2. In Case A, we obtain

P
(
Q(θ, λT ) ≤ Q(θ0, λT )

)
= P

(
Vθ ≤ −Bθ − 2Sεθ − 2Sgθ + 2W ε

θ +W g
θ + λT (θ0 − θ)

)
≤ P

(
Vθ ≤ −Bθ − 2Sεθ − 2Sgθ + 2W ε

θ +W g
θ + λT (θ0 − θ),

|Sεθ | ≤ νT

√
nT
θ
, |W ε

θ | ≤ νT

)
+ P

(
|Sεθ | > νT

√
nT
θ

)
+ P

(
|W ε

θ | > νT
)

≤ P
(
Vθ ≤ −Bθ + CνT

√
nT
θ

+ λT (θ0 − θ)
)

+ Cν−2
T .

Choosing λT to satisfy λT/T → 0 and noting that the regularization term λT (θ0 − θ)
is negative for θ > θ0, it can be seen that CνT

√
nT
θ

+ λT (θ0 − θ) ≤ δ(nT
θ

) for some

arbitrarily small δ > 0 and all T ≥ T0 with T0 being sufficiently large. Hence,

−Bθ + CνT

√
nT

θ
+ λT (θ0 − θ) ≤ −(c− δ)nT

θ
≤ −C1

nT

θ

for some constant C1 > 0. From this, it follows that

P
(
Q(θ, λT ) ≤ Q(θ0, λT )

)
≤ P

(
Vθ ≤ −C1

nT

θ

)
+ Cν−2

T

≤ P
(
Vθ ≤ −C1

T

ΘT

)
+ Cν−2

T .

Moreover,

P
(
Vθ ≤ −C1

T

ΘT

)
= P

(
Vθ,1 + Vθ,2 ≤ −C1

T

ΘT

)
≤ P

(
|Vθ,1|+ |Vθ,2| ≥ C1

T

ΘT

)
≤ P

(
|Vθ,1| ≥

C1T

2ΘT

)
+ P

(
|Vθ,2| ≥

C1T

2ΘT

)
=: Pθ,1 + Pθ,2.

To deal with the probabilities Pθ,1 and Pθ,2, we introduce the following concept: We

say that an index i1 is separated from the indices i2, . . . , id if |i1 − ik| > C2 log T for a

sufficiently large constant C2 (to be specified later on) and all k = 2, . . . , d. With this

definition at hand, we can use Chebychev’s inequality to get

Pθ,2 = P
(∣∣∣ T∑

l=1

1

K
[θ]
lθ,T

K
[θ]
lθ,T∑
k=1

ε(k−1)θ+lθ,T εl,T

∣∣∣ ≥ C1T

2ΘT

)

≤ CΘ2
T

T 2

T∑
l,l′=1

( 1

K
[θ]
lθ,T

K
[θ]

l′θ,T

)K[θ]
lθ,T∑
k=1

K
[θ]

l′
θ
,T∑

k′=1

E
[
ε(k−1)θ+lθ,T εl,T ε(k′−1)θ+l′θ,T

εl′,T
]
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=
CΘ2

T

T 2

∑
(l,l′,k,k′)∈Γ

( 1

K
[θ]
lθ,T

K
[θ]

l′θ,T

)
E
[
ε(k−1)θ+lθ,T εl,T ε(k′−1)θ+l′θ,T

εl′,T
]

+
CΘ2

T

T 2

∑
(l,l′,k,k′)∈Γc

( 1

K
[θ]
lθ,T

K
[θ]

l′θ,T

)
E
[
ε(k−1)θ+lθ,T εl,T ε(k′−1)θ+l′θ,T

εl′,T
]

=: Pθ,2,a + Pθ,2,b,

where Γ is the set of tuples (l, l′, k, k′) such that none of the indices is separated from the

others and Γc is its complement. Since E[ε4
t,T ] ≤ C by assumption and the number of

elements contained in Γ is smaller than C(T log T )2 for some sufficiently large constant

C, it immediately follows that Pθ,2,a ≤ C(Θ2
T log T/T )2 ≤ C(κTΘT )−1, keeping in mind

that ΘT = o(T 2/5). To cope with the term Pθ,2,b, we exploit the mixing conditions

on the error variables: For any tuple of indices (l, l′, k, k′) ∈ Γc, there exists an index,

say l, which is separated from the others. We can thus apply Davydov’s inequality to

obtain∣∣E[ε(k−1)θ+lθ,T εl,T ε(k′−1)θ+l′θ,T
εl′,T

]∣∣ =
∣∣Cov

(
εl,T , ε(k−1)θ+lθ,T ε(k′−1)θ+l′θ,T

εl′,T
)∣∣

≤ Cα(C2 log T )1− 1
q
− 1
r ≤ CT−C3

with some C3 > 0, where q and r are chosen slightly larger than 4/3 and 4, respectively.

Note that C3 can be made arbitrarily large by choosing the constant C2 large enough.

Bounding the moments contained in the expression Pθ,2,b in this way, it is easily seen

that Pθ,2,b ≤ C(κTΘT )−1. An analogous result holds for the term Vθ,1. This shows that

P(Q(θ, λT ) < Q(θ0, λT )) ≤ C(κTΘT )−1 in Case A.

Let us now turn to Case B. The regularization term λT (θ0 − θ) plays a crucial role in

this case. In particular, it takes over the role of the term Bθ which is now equal to

zero. Since Sεθ and Sgθ are equal to zero as well, we have

P
(
Q(θ, λT ) ≤ Q(θ0, λT )

)
= P

(
Vθ ≤ 2W ε

θ +W g
θ + λT (θ0 − θ)

)
≤ P

(
Vθ ≤ 2W ε

θ +W g
θ + λT (θ0 − θ), |W ε

θ | ≤ νT

)
+ Cν−2

T

≤ P
(
Vθ ≤ CνT + λT (θ0 − θ)

)
+ Cν−2

T .

Choosing λT such that νT/λT → 0 and noting that θ0 − θ < 0 in Case B, we obtain

that CνT + λT (θ0 − θ) ≤ −C4λT for some positive constant C4 and T large enough.

Hence,

P
(
Q(θ, λT ) ≤ Q(θ0, λT )

)
≤ P

(
Vθ ≤ −C4λT

)
+ Cν−2

T

and by analogous arguments as for Case A,

P
(
Vθ ≤ −C4λT

)
≤ C

(ΘT log T

λT

)2

.
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Thus, choosing λT to satisfy λT ≥ τT (log T )Θ
3/2
T with some sequence {τT} that slowly

diverges to infinity (e.g. τT = log log T ), we get that P
(
Q(θ, λT ) < Q(θ0, λT )

)
≤

C(κTΘT )−1 in Case B as well.

Proof of Lemma A3. It is trivial to see that ζs = 0 for all s in Case B. We thus only

have to consider Case A.

We first show that there exists an index s ∈ {1, . . . , θ×} with ζs 6= 0. The proof

proceeds by contradiction: Suppose there exists some θ with ζs = 0 for all s ∈ N (or

equivalently for all s ∈ {1, . . . , θ×}). As sθ = (s + rθ)θ for all natural numbers s and

r, it holds that

1

θ0

θ0∑
k=1

m((k − 1)θ + sθ) =
1

θ0

θ0∑
k=1

m((k − 1)θ + (s+ rθ)θ).

Moreover, as ζs = ζs+rθ (= 0) by assumption, we obtain that m(s) = m(s+rθ) for all s

and r, which means that m has the period θ. If θ < θ0, this contradicts the assumption

that θ0 is the smallest period of m. If θ > θ0, we run into the following contradiction:

As θ is no multiple of θ0, it holds that

m(s) = m(s+ θ) = m
(
s+

⌊ θ
θ0

⌋
θ0 + k

)
= m(s+ k)

for some k with 1 ≤ k < θ0. However, m(s+ k) 6= m(s) for at least one s, as otherwise

k < θ0 would be a period of m.

It remains to show that |ζs| ≥ η for some small constant η > 0 whenever ζs 6= 0.

To see this, first note that 1
θ0

∑θ0
k=1 m((k − 1)θ + sθ) is the average of θ0 different

elements of the sequence {m(t)}t∈Z. The sequence being periodic, this average can

only take a finite number of different values. More precisely, there are at most
(

2θ0−1
θ0

)
different values (independently of s and θ). From this, it immediately follows that

ζs = m(s)− 1
θ0

∑θ0
k=1m((k − 1)θ + sθ) can only take a finite number of values as well.

In particular, there is only a finite number of possible non-zero values. We can thus

find a constant η > 0 with |ζs| ≥ η whenever ζs 6= 0.

Proof of Lemma A4. To start with, we shortly comment on the results for Case

B. Note that in this case, we do not only have that ζs = 0 but even γs,T = 0 for all

s. Hence, it holds that (I − Πθ)Xθ0β = 0, which immediately implies that the terms

Bθ, S
ε
θ and Sgθ are all equal to zero.

Let us now turn to Case A: Using Lemma A3 together with (10) and (11), it is easily

seen that γs,T → ζs 6= 0 with |γs,T − ζs| = |Rs,T | ≤ CΘT/T for all s ∈ S and |γs,T | =

|Rs,T | ≤ CΘT/T for all s ∈ Sc. From this, it immediately follows that

Bθ = (Xθ0β)
ᵀ
(I − Πθ)Xθ0β

= (Xθ0β)
ᵀ
(I − Πθ)

ᵀ
(I − Πθ)Xθ0β

= (γ1,T , . . . , γθ×,T , . . .)(γ1,T , . . . , γθ×,T , . . .)
ᵀ ≥ c

nT

θ
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for some fixed constant c > 0 and all T ≥ T0 with T0 being sufficiently large. Next

write

Sεθ =
T∑
t=1

γt,T εt,T =
∑
t∈IS

γt,T εt,T +
∑
t∈ISc

γt,T εt,T

with IS = {t : t− θ×bt/θ×c ∈ S} and ISc = {t : t− θ×bt/θ×c ∈ Sc}. Then

P
(
|Sεθ | > νT

√
nT

θ

)
≤ P

(∣∣∣∑
t∈IS

γt,T εt,T

∣∣∣ > νT
2

√
nT

θ

)
+ P

(∣∣∣ ∑
t∈ISc

γt,T εt,T

∣∣∣ > νT
2

√
nT

θ

)
=: Qθ,1 +Qθ,2.

As |γs,T | ≤ C for all s and T for some sufficiently large constant C (which is evident

from (10) and (11)), we can apply Chebychev’s inequality and then exploit the mixing

conditions on our model variables with the help of Davydov’s inequality to get that

Qθ,1 ≤ C/ν2
T . Using the same argument together with the fact that |γs,T | ≤ CΘT/T

for all s ∈ Sc, we further obtain that Qθ,2 ≤ CΘ3
T/(TνT )2 ≤ C/ν2

T . As a result,

P
(
|Sεθ | > νT

√
nT

θ

)
≤ C

ν2
T

.

Finally,

|Sgθ | = |g
ᵀ
(I − Πθ)Xθ0β| =

∣∣∣ T∑
t=1

γt,Tg
( t
T

)∣∣∣
=
∣∣∣ θ×∑
s=1

γs,TK
[θ×]
s,T

( 1

K
[θ×]
s,T

K
[θ×]
s,T∑
k=1

g
(s+ (k − 1)θ×

T

))
︸ ︷︷ ︸

|·|≤C/K[θ×]
s,T by Lemma A1

∣∣∣ ≤ Cn

for some sufficiently large constant C. This completes the proof.

Proof of Lemma A5. It holds that

(Πθ − Πθ0)g =



Dθ Dθ . . .

Dθ
. . .

...

−

Dθ0 Dθ0 . . .

Dθ0
. . .

...


 g
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=



1

K
[θ]
1,T

K
[θ]
1,T∑
k=1

g
(

(k−1)θ+1
T

)
...

1

K
[θ]
θ,T

K
[θ]
θ,T∑
k=1

g
(

(k−1)θ+θ
T

)
1

K
[θ]
1,T

K
[θ]
1,T∑
k=1

g
(

(k−1)θ+1
T

)
...


−



1

K
[θ0]
1,T

K
[θ0]
1,T∑
k=1

g
(

(k−1)θ0+1
T

)
...

1

K
[θ0]
θ0,T

K
[θ0]
θ0,T∑
k=1

g
(

(k−1)θ0+θ0
T

)
1

K
[θ0]
1,T

K
[θ0]
1,T∑
k=1

g
(

(k−1)θ0+1
T

)
...


.

Hence,

W g
θ = g

ᵀ
(Πθ − Πθ0)g

=
T∑
l=1

( 1

K
[θ]
lθ,T

K
[θ]
lθ,T∑
k=1

g
((k − 1)θ + lθ

T

))
g
( l
T

)

−
T∑
l=1

( 1

K
[θ0]
lθ0 ,T

K
[θ0]
lθ0

,T∑
k=1

g
((k − 1)θ0 + lθ0

T

))
g
( l
T

)
with lθ = l − θbl/θc. Moreover,

∣∣∣ T∑
l=1

( 1

K
[θ]
lθ,T

K
[θ]
lθ,T∑
k=1

g
((k − 1)θ + lθ

T

))
g
( l
T

)∣∣∣
=
∣∣∣ θ∑
s=1

1

K
[θ]
s,T

(K[θ]
s,T∑
k=1

g
((k − 1)θ + s

T

)
︸ ︷︷ ︸

≤C by Lemma A1

)2∣∣∣ ≤ Cθ

Kθ
s,T

≤ CΘ2
T

T

and thus |W g
θ | ≤ C. Similarly,

W ε
θ = ε

ᵀ
(Πθ − Πθ0)g =

T∑
l=1

( 1

K
[θ]
lθ,T

K
[θ]
lθ,T∑
k=1

g
((k − 1)θ + lθ

T

))
εl,T

−
T∑
l=1

( 1

K
[θ0]
lθ0 ,T

K
[θ0]
lθ0

,T∑
k=1

g
((k − 1)θ0 + lθ0

T

))
εl,T .

Rewriting W ε
θ in this way, we can apply Chebychev’s inequality and subsequently

exploit our mixing assumptions by Davydov’s inequality to obtain that

P
(
|W ε

θ | > CνT
)
≤ C

ν2
T

for any diverging sequence {νT}.
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Proof of Theorem 2

We first prove the result on asymptotic normality: Let m̃ be the estimator of m in

the oracle case where the true period θ0 is known, i.e. (m̃(1), . . . , m̃(θ0)) = β̂θ0 and

m̃(s+ kθ0) = m̃(s) for all s = 1, . . . , θ0 and all k ∈ N. Then we can write
√
T (m̂(t)−m(t)) =

√
T (m̂(t)− m̃(t)) +

√
T (m̃(t)−m(t)).

For any δ > 0, it holds that

P
(∣∣√T (m̂(t)− m̃(t))

∣∣ > δ
)

≤ P
(∣∣√T (m̂(t)− m̃(t))

∣∣ > δ, θ̂ = θ0

)
+ P

(
θ̂ 6= θ0

)
.

The right-hand side of the above inequality is o(1), as the first term is equal to zero

(note that m̂(t) = m̃(t) for θ̂ = θ0) and P(θ̂ 6= θ0) = o(1) by Theorem 1. Hence,
√
T (m̂(t)−m(t)) =

√
T (m̃(t)−m(t)) + op(1).

Next, note that we can write

m̃(t) =
1

Kt0,T

Kt0,T∑
k=1

Yt0+(k−1)θ0,T

with t0 = t − θ0bt/θ0c and Kt0,T = 1 + b(T − t0)/θc, i.e. the estimate m̃(t) can be

expressed as the empirical mean of observations that are separated by a multiple of θ0

periods. This can be seen by inspecting the formula for the least squares estimate β̂θ0 .

We thus obtain that

√
T (m̃(t)−m(t)) =

√
T
( 1

Kt0,T

Kt0,T∑
k=1

g
(t0 + (k − 1)θ0

T

)
+

1

Kt0,T

Kt0,T∑
k=1

εt0+(k−1)θ0,T

)
=: Q1 +Q2.

The term Q1 approximates the integral
∫ 1

0
g(u)du. Using Lemma A1, the convergence

rate is seen to be O( 1√
T

). As
∫ 1

0
g(u)du = 0 by our normalization, we obtain that Q1

is of the order O( 1√
T

) and can thus be asymptotically neglected. Noting that {εt,T}
is mixing by (C1) and has mean zero, we can now apply a central limit theorem for

mixing variables to Q2 to get the normality result of Theorem 2.

We next turn to the uniform convergence result. We have to show that for each δ > 0

there exists a constant C such that

P
(

max
1≤t≤T

∣∣m̂(t)−m(t)
∣∣ > C√

T

)
< δ (12)

for sufficiently large T . This can be seen as follows: For each fixed constant C > 0,

P
(

max
1≤t≤T

∣∣m̂(t)−m(t)
∣∣ > C√

T

)
≤ P

(
max

1≤t≤T

∣∣m̂(t)−m(t)
∣∣ > C√

T
, θ̂ = θ0

)
+ P

(
θ̂ 6= θ0

)
.
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Moreover, P(θ̂ 6= θ0) = o(1) by Theorem 1 and

P
(

max
1≤t≤T

∣∣m̂(t)−m(t)
∣∣ > C√

T
, θ̂ = θ0

)
= P

(
max

1≤t≤θ0

∣∣m̂(t)−m(t)
∣∣ > C√

T
, θ̂ = θ0

)
≤

θ0∑
t=1

P
(∣∣m̂(t)−m(t)

∣∣ > C√
T

)
.

By the above arguments for the asymptotic normality result, m̂(t)−m(t) = Op(
1√
T

) for

each fixed time point t. Hence, we can make the probabilities P(
∣∣m̂(t)−m(t)

∣∣ > C√
T

)

for t = 1, . . . , θ0 arbitrarily small by choosing the constant C large enough. From this,

(12) immediately follows.

Proof of Theorem 3

We start with the proof of the uniform convergence result. Letting g̃ be the infeasible

estimator defined in (5), we can write

sup
u∈[0,1]

∣∣ĝ(u)− g(u)
∣∣ ≤ sup

u∈[0,1]

∣∣ĝ(u)− g̃(u)
∣∣+ sup

u∈[0,1]

∣∣g̃(u)− g(u)
∣∣.

Since max1≤t≤T |m(t)− m̂(t)| = Op(1/
√
T ), it holds that

sup
u∈[0,1]

∣∣ĝ(u)− g̃(u)
∣∣ = sup

u∈[0,1]

∣∣∣∑T
t=1wt,T (u)(m(t)− m̂(t))∑T

t=1wt,T (u)

∣∣∣ = Op

( 1√
T

)
.

It thus remains to show that

sup
u∈[0,1]

∣∣g̃(u)− g(u)
∣∣ = Op

(√ log T

Th
+ h2

)
.

To do so, we decompose the local linear smoother g̃ into the variance component

g̃V (u) = g̃(u)− E[g̃(u)] and the bias component g̃B(u) = E[g̃(u)]− g(u). Using a sim-

plified version of the proof for Theorem 4.1 in Vogt (2012) or alternatively applying The-

orem 1 of Kristensen (2009), it can be shown that supu∈[0,1] |g̃V (u)| = Op(
√

log T/Th).

In addition, straightforward calculations yield that supu∈[0,1] |g̃B(u)| ≤ Ch2 for some

sufficiently large constant C. This completes the proof of the uniform convergence

result.

The result on asymptotic normality can be derived in an analogous way by first replac-

ing ĝ with the smoother g̃ and then using the decomposition g̃ = g̃V + g̃B. Standard

arguments show that the bias component g̃B(u) has the expansion g̃B(u) = h2Bu+o(h2)

for any fixed u ∈ (0, 1). Moreover, applying a central limit theorem for mixing arrays

yields that the term
√
Thg̃V (u) is asymptotically normal with mean zero and variance

Vu.
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