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Abstract 
 

 This paper is concerned with inference about an unidentified linear functional, ( )L g , where the 
function g  satisfies the relation ( ) ; ( | ) 0Y g X U E U W= + = .  In this relation, Y  is the dependent 
variable, X  is a possibly endogenous explanatory variable, W  is an instrument for X , and U  is an 
unobserved random variable.  The data are an independent random sample of ( , , )Y X W .  In much 
applied research, X  and W  are discrete, and W  has fewer points of support than X .  Consequently, 
neither g  nor ( )L g  is nonparametrically identified.  Indeed, ( )L g  can have any value in ( , )−∞ ∞ .  In 
applied research, this problem is typically overcome and point identification is achieved by assuming that 
g  is a linear function of X .  However, the assumption of linearity is arbitrary.  It is untestable if W  is 
binary, as is the case in many applications.  This paper explores the use of shape restrictions, such as 
monotonicity or convexity, for achieving interval identification of ( )L g .  Economic theory often 
provides such shape restrictions.  This paper shows that they restrict ( )L g  to an interval whose upper and 
lower bounds can be obtained by solving linear programming problems.  Inference about the identified 
interval and the functional ( )L g  can be carried out by using by using the bootstrap.  An empirical 
application illustrates the usefulness of shape restrictions for carrying out nonparametric inference about 

( )L g . 
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IDENTIFICATION AND SHAPE RESTRICTIONS IN NONPARAMETRIC INSTRUMENTAL 
VARIABLES ESTIMATION 

 
1.  INTRODUCTION 

This paper is about estimation of the linear functional ( )L g , where the unknown function g  obeys 

the relation 

(1a) ( )Y g X U= + , 

and 

(1b) ( | ) 0E U W w= =  

for almost every w .  Equivalently, 

(2) [ ( ) | ] 0E Y g X W w− = = . 

In (1a), (1b), and (2), Y  is the dependent variable, X  is a possibly endogenous explanatory variable, W  

is an instrument for X , and U  is an unobserved random variable.  The data consist of an independent 

random sample { , , : 1,..., }i i iY X W i n=  from the distribution of ( , , )Y X W .  In this paper, it is assumed that 

X  and W  are discretely distributed random variables with finitely many mass points.   Discretely 

distributed explanatory variables and instruments occur frequently in applied research, as is discussed in 

the next paragraph.  When X  is discrete, g  can be identified only at mass points of X .  Linear 

functionals that may be of interest in this case are the value of g  at a single mass point and the difference 

between the values of g  at two different mass points.  

 In much applied research, W  has fewer mass points than X  does.  For example, in a study of 

returns to schooling, Card (1995) used a binary instrument for the endogenous variable years of 

schooling.  Moran and Simon (2006) used a binary instrument for income in a study of the effects of the 

Social Security “notch” on the usage of prescription drugs by the elderly.  Other studies in which an 

instrument has fewer mass points than the endogenous explanatory variable are Angrist and Krueger 

(1991), Bronars and Grogger (1994), and Lochner and Moretti (2004). 

 The function g  is not identified nonparametrically when W  has fewer mass points than X  does.  

The linear functional ( )L g  is unidentified except in special cases.  Indeed, as will be shown in Section 2 

of this paper, except in special cases, ( )L g  can have any value in ( , )−∞ ∞  when W  has fewer points of 

support than X  does.  Thus, except in special cases, the data are uninformative about ( )L g  in the 

absence of further information.  In the applied research cited in the previous paragraph, this problem is 

dealt with by assuming that g  is a linear function.  The assumption of linearity enables g  and ( )L g  to 

be identified, but it is problematic in other respects.  In particular, the assumption of linearity is not 

testable if W  is binary.  Moreover, any other two-parameter specification is observationally equivalent to 
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linearity and untestable, though it might yield substantive conclusions that are very different from those 

obtained under the assumption of linearity.  For example, the assumptions that 2
0 1( )g x xβ β= +  or 

0 1( ) sing x xβ β= +  for some constants 0β  and 1β  are observationally equivalent to 0 1( )g x xβ β= +  and 

untestable if W  is binary.   

 This paper explores the use of restrictions on the shape of g , such as monotonicity, convexity, or 

concavity, to achieve interval identification of ( )L g  when X  and W  are discretely distributed and W  

has fewer mass points than X  has.  Specifically, the paper uses shape restrictions on g  to establish an 

identified interval that contains ( )L g .  Shape restrictions are less restrictive than a parametric 

specification such as linearity.  They are often plausible in applications and may be prescribed by 

economic theory.  For example, demand and cost functions are monotonic, and cost functions are convex.  

It is shown in this paper that under shape restrictions, such as monotonicity, convexity, or concavity, that 

impose linear inequality restrictions on the values of ( )g x  at points of support of X , ( )L g  is restricted 

to an interval whose upper and lower bounds can be obtained by solving linear programming problems.  

The bounds can be estimated by solving sample-analog versions of the linear programming problems.  

The estimated bounds are asymptotically distributed as the maxima of multivariate normal random 

variables.  Under certain conditions, the bounds are asymptotically normally distributed, but calculation 

of the analytic asymptotic distribution is difficult in general.  We present a bootstrap procedure that can 

be used to estimate the asymptotic distribution of the estimated bounds in applications.  The asymptotic 

distribution can be used to carry out inference about the identified interval that contains ( )L g  and, using 

methods like those of Imbens and Manski (2004) and Stoye (2009), inference about the parameter ( )L g .   

 Interval identification of g  in (1a) has been investigated previously by Chesher (2004) and 

Manski and Pepper (2000, 2009).  Chesher (2004) considered partial identification of g  in (1a) but 

replaced (1b) with assumptions like those used in the control-function approach to estimating models with 

an endogenous explanatory variable.  He gave conditions under which the difference between the values 

of g  at two different mass points of X  is contained in an identified interval.  Manski and Pepper (2000, 

2009) replaced (1b) with monotonicity restrictions on what they called “treatment selection” and 

“treatment response.”  They derived an identified interval that contains the difference between the values 

of g  at two different mass points of X  under their assumptions.  Neither Chesher (2004) nor Manski and 

Pepper (2000, 2009) treated restrictions on the shape of g  under (1a) and (1b).  The approach described 

in this paper is non-nested with those of Chesher (2004) and Manski and Pepper (2000, 2009).  The 

approach described here is also distinct from that of Chernozhukov, Lee, and Rosen (2009), who treated 
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estimation of the interval [sup ( ),inf ( )]l u
v vv vθ θ∈ ∈  , where lθ  and uθ  are unknown functions and   is 

a possibly infinite set. 

 The remainder of this paper is organized as follows.  In Section 2, it is shown that except in 

special cases, ( )L g  can have any value in ( , )−∞ ∞  if the only information about g  is that it satisfies (1a) 

and (1b).  It is also shown that under shape restrictions on g  that take the form of linear inequalities, 

( )L g  is contained in an identified interval whose upper and lower bounds can be obtained by solving 

linear programming problems.  The bounds obtained by solving these problems are sharp.  Section 3 

shows that the identified bounds can be estimated consistently by replacing unknown population 

quantities in the linear programs with sample analogs.  The asymptotic distributions of the identified 

bounds are obtained.  Methods for obtaining confidence intervals and for testing certain hypotheses about 

the bounds are presented.  Section 4 presents a bootstrap procedure for estimating the asymptotic 

distributions of the estimators of the bounds.  Section 4 also presents the results of a Monte Carlo 

investigation of the performance of the bootstrap in finite samples.  Section 5 presents an empirical 

example that illustrates the usefulness of shape restrictions for achieving interval identification of ( )L g .  

Section 6 presents concluding comments.  

2.  INTERVAL IDENTIFICATION OF ( )L g  

This section begins by defining notation that will be used in the rest of the paper.  Then it is shown 

that, except in special cases, the data are uninformative about ( )L g  if the only restrictions on g  are those 

of (1a) and (1b).  It is also shown that when linear shape restrictions are imposed on g , ( )L g  is 

contained in an identified interval whose upper and lower bounds are obtained by solving linear 

programming problems.  Finally, some properties of the identified interval are obtained. 

Denote the supports of X  and W , respectively, by { : 1,..., }jx j J=  and { : 1,..., }kw k K= .  In this 

paper, it is assumed that K J< .  Order the support points so that 1 2 ... Jx x x< < <  and 1 2 ... Kw w w< < .  

Define ( )j jg g x= , ( , )jk j kP X x W wπ = = = , and ( | ) ( )k k km E Y W w P W w= = = .  Then (1b) is 

equivalent to 

(3) 
1

; 1,...,
J

k j jk
j

m g k Kπ
=

= =∑ . 

Let 1( ,..., )Km m ′=m  and 1( ,..., )Jg g ′=g .  Define Π  as the J K×  matrix whose ( , )j k  element is jkπ .  

Then (3) is equivalent to 

(4) ′= Πm g . 
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Note that ( )rank JΠ < , because K J< .  Therefore, (4) does not point identify g .  Write the linear 

functional ( )L g  as ( )L g ′= c g , where 1( ,..., )Jc c ′=c  is a vector of known constants.   

 The following proposition shows that except in special cases, the data are uninformative about 

( )L g  when K J< . 

 Proposition 1:  Assume that K J<  and that c  is not orthogonal to the space spanned by the rows 

of ′Π .  Then any value of ( )L g  in ( , )−∞ ∞  is consistent with (1a) and (1b).    

 Proof:  Let 1g  be a vector in the space spanned by the rows of ′Π  that satisfies 1′Π =g m .  Let 

2g  be a vector in the orthogonal complement of the row space of ′Π  such that 2 0′ ≠c g .  For any real γ , 

1 2( )γ′Π + =g g m  and 1 2 1 2( )L γ γ′ ′+ = +g g c g c g .  Then 1 2( )L γ+g g  is consistent with (1a)-(1b), and by 

choosing γ  appropriately, 1 2( )L γ+g g  can be made to have any value in ( , )−∞ ∞ .    

 We  now impose the linear shape restriction 

(5) 0S ≤g , 

where S  is an M J×  matrix of known constants for some integer 0M > .  For example, if g  is 

monotone non-increasing, then S  is the ( 1)J J− ×  matrix 

 

1 1 0 0 ... 0 0
0 1 1 0 ... 0 0

...
0 0 0 0 ... 1 1

S

− 
 − =
 
 

− 

. 

We assume that g  satisfies the shape restriction. 

Assumption 1:  The unknown function g  satisfies (1a)-(1b) with 0S ≤g .   

Sharp bounds on ( )L g  are the solutions to the linear programming problems 

(6) maximize (minimize) : ′
h h

c h  

 subject to:  ′Π =h m  

       0S ≤h . 

Let minL  and maxL , respectively, denote the optimal values of the objective functions of the minimization 

and maximization versions of (6).  It is clear that under (1a) and (1b), ( )L g  cannot be less than minL  or 

greater than maxL .  The following proposition shows that ( )L g  can also have any value between minL  

and maxL .  Therefore, the interval min max[ , ]L L  is the sharp identification set for ( )L g . 

 Proposition 2:  The identification set of ( )L g  is convex.  In particular, it contains 

min max(1 )L Lλ λ+ −  for any [0,1]λ ∈ .    
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 Proof:  Let max min(1 )d L Lλ λ= + − , where 0 1λ< < .  Let maxg  and ming  be feasible solutions of 

(6) such that max maxL′ =c g  and min minL′ =c g .  Then max min[(1 ) ]d λ λ′= − +c g g .  The feasible region of 

a linear programming problem is convex, so max min(1 )λ λ− +g g  is a feasible solution of (6).  Therefore, 

d  is a possible value of ( )L g  and is in the identified set of ( )L g .    

 The values of minL  and maxL  need not be finite.  Moreover, there are no simple, intuitively 

straightforward conditions under which minL  and maxL  are finite.1  Accordingly, we assume that: 

Assumption 2:  minL > −∞  and maxL < ∞ .   

Assumption 2 can be tested empirically.  A method for doing this is outlined in Section 3.3.  

However, a test of assumption 2 is unlikely to be useful in applied research.  To see one reason for this, 

let maxL̂  and minL̂ , respectively, denote the estimates of maxL  and minL  that are described in Section 3.1.  

The hypothesis that assumption 2 holds can be rejected only if maxL̂ = ∞  or minL̂ = −∞ .  These estimates 

cannot be improved under the assumptions made in this paper, even if it is known that minL  and maxL  are 

finite.  If maxL̂ = ∞  or minL̂ = −∞ , then a finite estimate of maxL  or minL  can be obtained only by 

imposing stronger restrictions on g  than are imposed in this paper.  A further problem is that a test of 

boundedness of maxL  or minL  has unavoidably low power because, as is explained in Section 3.3, it 

amounts to a test of multiple one-sided hypotheses about a population mean vector.  Low power makes it 

unlikely that a false hypothesis of boundedness of maxL  or minL  can be rejected if maxL̂  and minL̂  are 

finite. 2 

We also assume: 

Assumption 3:  There is a vector h  satisfying 0′Π − =h m  and 0S <h  (strict inequality).  

This assumption ensures that problem (6) has a feasible solution with probability approaching 1 

as n → ∞  when Π  and m  are replaced by consistent estimators. 3  It also implies that min maxL L≠ , so 

( )L g  is not point identified.  The methods and results of this paper do not apply to settings in which 

( )L g  is point identified.   

Assumption 3 is not testable.  To see why; let ( )kSh  denote the k ’th component of Sh .  

Regardless of the sample size, no test can discriminate with high probability between ( ) 0kS =h  and 

( )kS ε= −h  for a sufficiently small 0ε > .  However, the hypothesis that there is a vector h  satisfying 

0′Π − =h m  and S ≤ −h ε  for some 1M ×  vector 0>ε  is testable.  A method for carrying out the test is 

outlined in Section 3.3.  
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2.1  Further Properties of Problem (6) 

 This section presents properties of problem (6) that will be used later in this paper.  These are 

well-known properties of linear programs.  Their proofs are available in many references on linear 

programming, such as Hadley (1962). 

 We begin by putting problem (6) into standard LP form.  In standard form, the objective function 

is maximized, all constraints are equalities, and all variables of optimization are non-negative.  Problem 

(6) can be put into standard form by adding slack variables to the inequality constraints and writing each 

component of h  as the difference between its positive and negative parts.  Denote the resulting vector of 

variables of optimization by z .  The dimension of z  is 2J M+ .  There are J  variables for the positive 

parts of the components of h , J  variables for the negative parts of the components of h , and M  slack 

variables for the inequality constraints.  The (2 ) 1J M+ ×  vector of objective function coefficients is 

1( , ,0 )M×′ ′ ′= −c c c , where 10 L×  is a 1 M×  vector of zeros.  The corresponding constraint matrix has 

dimension ( ) (2 )K M J M+ × +  and is 

 
0K M

M M
A

S S I
×

×

′ ′Π −Π 
=  − 

, 

where M MI ×  is the M M×  identity matrix.  The vector of right-hand sides of the constraints is the 

( ) 1K M+ ×  vector 

 
10M ×

 
=  

 

m
m . 

With this notation, the standard form of (6) is 

(7) maximize : or   ′ ′−
z

c z c z  

 subject to: A =z m  

   0≥z . 

Maximizing ′−c z  is equivalent to minimizing ′c z . 

 Make the following assumption. 

 Assumption 4:  Every set of K M+  columns of the augmented matrix ( , )A m  are linearly 

independent. 

 Assumption 4 ensures that the basic optimal solution(s) to (6) and (7) are nondegenerate.  Under 

assumption 4, the linear independence condition holds with probability approaching 1 as n → ∞  for the 

estimate of ( , )A m  described in Section 3.  Therefore, asymptotically a test of assumption 4 is not needed. 
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 Let optz  be an optimal solution to either version of (7).  Let ,B optz  denote the ( ) 1K M+ ×  vector 

of basic variables in the optimal solution.  Let BA  denote the ( ) ( )K M K M+ × +  matrix formed by the 

columns of A  corresponding to basic variables.  Then 

 1
,B opt BA−=z m  

and, under assumption 4, , 0B opt >z .  Now let Bc  be the ( ) 1K M+ ×  vector of components of c  

corresponding to the components of ,B optz .  The optimal value of the objective function corresponding to 

basic solution ,B optz  is  

(8a) 1
B B BZ A−′= c m  

for the maximization version of (6) and 

(8b) 1
B B BZ A−′= − c m  

for the minimization version. 

 In standard form, the dual of problem (6) is 

(9) maximize :  or ′ ′−
q

m q m q     

subject to  

 A′ =

q c  

0≥q , 

where q  is a (2 ) 1K M+ ×  vector,  

 1(0 , , )M×′ ′ ′= −m m m   

and A′  is the (2 )J K M× +  matrix 

 ( ), ,A S′ ′= Π −Π . 

Under Assumptions 1-3, (6) and (9) both have feasible solutions.  The optimal solutions of (6) and (9) are 

bounded, and the optimal values of the objective functions of (6) and (9) are the same.  The dual problem 

is used in Section 3.3 to form a test of assumption 2.   

3.  ESTIMATION OF maxL  AND minL  

 This section presents consistent estimators of maxL  and minL .  The asymptotic distributions of 

these estimators are presented, and methods obtaining confidence intervals are described.  Tests of 

Assumptions 2 and 3 are outlined.   
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3.1  Consistent Estimators of maxL  and minL  

 maxL  and minL  can be estimated consistently by replacing Π  and m  in (6) with consistent 

estimators.  To this end, define  

 1

1

ˆ ( ); 1,..,
n

k i i k
i

m n Y I W w k K−

=

= = =∑  

and 

 1

1 1

ˆ ( ) ( ); 1,..., ; 1,...,
J K

jk i j i k
j k

n I X x I W w j J k Kπ −

= =

= = = = =∑∑ . 

Then ˆ km  and ˆ jkπ , respectively, are strongly consistent estimators of km  and jkπ .  Define 

1ˆ ˆ ˆ( ,..., )Km m ′=m .  Define Π̂  as the J K×  matrix whose ( , )j k  element is ˆ jkπ .  Define maxL̂  and minL̂  

as the optimal values of the objective functions of the linear programs  

(10) maximize (minimize) : ′
h h

c h  

subject to:  ˆ ˆ′Π h = m  

      0S ≤h . 

Assumptions 2 and 3 ensure that (10) has a feasible solution and a bounded optimal solution with 

probability approaching 1 as n → ∞ .  The standard form of (10) is  

(11) maximize : or   ′ ′−
z

c z c z  

 subject to: ˆ ˆA =z m  

   0≥z , 

where 

ˆ ˆ 0ˆ K M

M M
A

S S I
×

×

 ′ ′Π −Π
=   −   

and 

1

ˆˆ .
0M ×

 
=  

 

m
m  

 As a consequence of 8(a)-8(b) and the strong consistency of Π̂  and m̂  for Π  and m , 

respectively, we have 

 Theorem 1:  Let assumptions 1-3 hold.  As n → ∞ , max maxL̂ L→  almost surely and min minL̂ L→  

almost surely.   
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3.2  The Asymptotic Distributions of maxL̂  and minL̂  

 This section obtains the asymptotic distributions of maxL̂  and minL̂  and shows how to use these 

to obtain confidence regions for the identification interval min max[ , ]L L  and the linear functional ( )L g .  

We assume that 

 Assumption 5:  2( | )kE Y W w= < ∞  for each 1,...,k K= . 

 We begin by deriving the asymptotic distribution of maxL̂ .  The derivation of the asymptotic 

distribution of minL̂  is similar.  Let max  denote the set of optimal basic solutions to the maximization 

version of (6).  Let max  denote the number of basic solutions in max .  The basic solutions are at 

vertices of the feasible region.  Because there are only finitely many vertices, the difference between the 

optimal value of the objective function of (6) and the value of the objective function at any non-optimal 

feasible vertex is bounded away from zero.  Moreover, the law of the iterated logarithm ensures that Π̂  

and m̂ , respectively, are in arbitrarily small neighborhoods of Π  and m  with probability 1 for all 

sufficiently large n .  Therefore, for all sufficiently large n , the probability is zero that a basic solution is 

optimal in (10) but not (6).   

 Let 1,2,...k =  index the basic solutions to (10).  Let the random variable ˆ
kZ  denote the value of 

the objective function corresponding to basic solution k .  Let ˆ
kA  and kc , respectively, be the versions of 

ˆ
BA  and Bc  associated with the k ’th basic solution of (6) or (10).  Then, 

(12) 1ˆˆ ˆ
k k kZ c A−′= m . 

Moreover, with probability 1 for all sufficiently large n , 

 max
ˆ ˆmax k

k
L Z= , 

and 

 ( )1/2 1/2
max max max

ˆ ˆ( ) max k
k

n L L n Z L− = − .   

Let kZ  denote the value of the objective function of (6) at the k ’th basic solution.  Then maxkZ L=  if 

basic solution k  is optimal.  Because max  contains the optimal basic solution to (6) or (10) with 

probability 1 for all sufficiently large n ,  
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max

max

1/2 1/2
max max max

1/2

ˆ ˆ( ) max ( ) (1)

ˆmax ( ) (1).

k p
k

k k p
k

n L L n Z L o

n Z Z o

∈

∈

− = − +

= − +





 

An application of the delta method yields 

 

1/2 1/2 1 1

1 1/2 1/2 1

ˆˆ ˆ( ) ( )

ˆˆ[ ( ) ( ) ] (1)

k k k k k

k k k k k p

n Z Z n A A

A n n A A A o

− −

− −

′− = −

′= − − − +

c m m

c m m m  

for maxk ∈ , where kA  is the version of BA  that is associated with basic solution k .  The elements of 

ˆ
kA  and m̂  are sample moments or constants, depending on the basic solution, and not all are constants.  

In addition ˆ( )k kE A A=  and ˆ( )E m m= .  Therefore, it follows from the Lindeberg-Levy and Cramér-Wold 

theorems that the random components of 1/2 ˆ( )k kn Z Z−  ( maxk ∈ ) are asymptotically multivariate 

normally distributed with mean 0.  There may be some values of maxk ∈  for which 1/2 ˆ( )k kn Z Z−  is 

deterministically 0.  This can happen, for example, if the objective function of (6) is proportional to the 

left-hand side of one of the shape constraints.  In such cases, the entire vector 1/2 ˆ( )k kn Z Z−  ( optk ∈ ) 

has asymptotically a degenerate multivariate normal distribution.  Thus, 1/2
max max

ˆ( )n L L−  is 

asymptotically distributed as the maximum of a random vector with a possibly degenerate multivariate 

normal distribution whose mean is zero.  Denote the random vector by maxZ  and its covariance matrix by 

maxΣ .  In general, maxΣ  is a large matrix whose elements are algebraically complex and tedious to 

enumerate.  Section 4 presents bootstrap methods for estimating the asymptotic distribution of 
1/2

max max
ˆ( )n L L−  that do not require knowledge of maxΣ  or max .    

Now consider minL̂ .  Let min  denote the set of optimal basic solutions to the minimization 

version of (6), and let min  denote the number of basic solutions in min .  Define 1
k k kZ c A−′= − m  and 

1ˆ ˆ ˆ
k k kZ c A−′= − m .  Then arguments like those made for maxL  show that 

min

min

1/2 1/2
min min min

1/2

ˆˆ( ) max ( ) (1)

ˆmax ( ) (1).

k p
k

k k p
k

n L L n Z L o

n Z Z o

∈

∈

− = − +

= − +
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The asymptotic distributional arguments made for 1/2
max max

ˆ( )n L L−  also apply to 1/2
min min

ˆ( )n L L− .  

Therefore, 1/2
min min

ˆ( )n L L−  is asymptotically distributed as the maximum of a random vector with a 

possibly degenerate multivariate normal distribution whose mean is zero.  Denote this vector by minZ  and 

its covariance matrix by minΣ .  Like maxΣ , minΣ  is a large matrix whose elements are algebraically 

complex.  Section 4 presents bootstrap methods for estimating the asymptotic distribution of 
1/2

min min
ˆ( )n L L−  that do not require knowledge of minΣ  or min .  

 It follows from the foregoing discussion that 1/2 1/2
max max min min

ˆ ˆ[ ( ), ( )]n L L n L L− −  is 

asymptotically distributed as max min(max , max )Z Z .  maxZ  and minZ  are not independent of one another.  

The bootstrap procedure described in Section 4 consistently estimates the asymptotic distribution of 
1/2 1/2

max max min min
ˆ ˆ[ ( ), ( )]n L L n L L− − . 

 The foregoing results are summarized in the following theorem. 

 Theorem 2:  Let assumptions 1-5 hold.  As n → ∞ , (i) 1/2
max max

ˆ( )n L L−  converges in 

distribution to the maximum of a max 1×  random vector maxZ  with a possibly degenerate multivariate 

normal distribution, mean zero, and covariance matrix maxΣ ;  (ii) 1/2
min min

ˆ( )n L L−  converges in 

distribution to the maximum of a min 1×  random vector minZ  with a possibly degenerate multivariate 

normal distribution, mean zero, and covariance matrix minΣ ;  (iii) 1/2 1/2
max max min min

ˆ ˆ[ ( ), ( )]n L L n L L− −  

converges in distribution to max min(max ,max )Z Z .    

 The asymptotic distributions of 1/2
min min

ˆ( )n L L− , 1/2
max max

ˆ( )n L L− , and 

1/2 1/2
max max min min

ˆ ˆ[ ( ), ( )]n L L n L L− −  are simpler if the maximization and minimization versions of (6) 

have unique optimal solutions.  Specifically, 1/2
min min

ˆ( )n L L− , 1/2
max max

ˆ( )n L L−  are asymptotically 

univariate normally distributed, and 1/2 1/2
max max min min

ˆ ˆ[ ( ), ( )]n L L n L L− −  is asymptotically bivariate 

normally distributed.  Let 2
maxσ  and 2

minσ , respectively, denote the variances of the asymptotic 

distributions of 1/2
max max

ˆ( )n L L−  and 1/2
min min

ˆ( )n L L− .  Let ρ  denote the correlation coefficient of 

the asymptotic bivariate normal distribution of 1/2
max max min min

ˆ ˆ[ ( ), ( )]n L L L L− − .  Let 2 (0, )N ρ  denote 

the bivariate normal distribution with variances of 1 and correlation coefficient ρ .  Then the following 

corollary to Theorem 1 holds. 
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 Corollary 1:  Let assumptions 1-5 hold.  If the optimal solution to the maximization version of (6) 

is unique, then 1/2
max max max

ˆ( ) / (0,1)dn L L Nσ− → .  If the optimal solution to the minimization version 

of (6) is unique, then 1/2
max max min

ˆ( ) / (0,1)dn L L Nσ− → .  If the optimal solutions to both versions of (6) 

are unique, then 1/2 1/2
max max max min min min 2

ˆ ˆ[ ( ) / , ( ) / ] (0, )dn L L n L L Nσ σ ρ− − → .    

Theorem 2 and Corollary 1 can be used to obtain asymptotic confidence intervals for min max[ , ]L L  

and ( )L g .  A symmetrical asymptotic 1 α−  confidence interval for min max[ , ]L L  is 

1/2 1/2
min max

ˆ ˆ[ , ]L n c L n cα α
− −− + , where cα  satisfies 

1/2 1/2
min min max max

ˆ ˆlim ( , ) 1
n

P L n c L L n c Lα α α− −

→∞
− ≤ + > = − . 

Equal-tailed and minimum length asymptotic confidence interval can be obtained in a similar way.   

A confidence interval for ( )L g  can be obtained by using ideas described by Imbens and Manski 

(2004) and Stoye (2009).  In particular, as is discussed by Imbens and Manski (2004), an asymptotically 

valid pointwise 1 α−  confidence interval for ( )L g  can be obtained as the intersection of one-sided 

confidence intervals for minL̂  and maxL̂ .4  Thus 1/2 1/2
min ,min max ,max

ˆ ˆ[ , ]L n c L n cα α
− −− +  is an asymptotic 

1 α−  confidence interval for ( )L g , where ,mincα  and ,maxcα , respectively, satisfy 

1/2
min min ,min

ˆlim [ ( ) ] 1
n

P n L L cα α
→∞

− ≤ = −  

and 

 1/2
max max ,max

ˆlim [ ( ) ] 1
n

P n L L cα α
→∞

− ≥ − = − . 

Estimating the critical values ,mincα  and ,maxcα , like estimating the asymptotic distributions of 

1/2
max max

ˆ( )n L L− , 1/2
min min

ˆ( )n L L− , and 1/2 1/2
max max min min

ˆ ˆ[ ( ), ( )]n L L n L L− − , is difficult because 

maxΣ  and minΣ  are complicated unknown matrices, and max  and min  are unknown sets.  Section 4 

presents bootstrap methods for estimating ,mincα  and ,maxcα  without knowledge of maxΣ , minΣ , max , 

and min  

3.3  Testing Assumptions 2 and 3 

We begin this section by outlining a test of assumption 2.  A linear program has a bounded 

solution if and only if its dual has a feasible solution.  A linear program has a basic feasible solution if it 

has a feasible solution.  Therefore, assumption 2 can be tested by testing the hypothesis that the dual 
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problem (9) has a basic feasible solution.  Let max
2

1,...,
K M

k k
J
+ 

= ≡  
 

 index basic solutions to (9).5  A 

basic solution is 1( )kA −′= −q c

  for the dual of the maximization version of (6) or 1( )kA −′=q c

  for the 

dual of the minimization version, where kA ′  is the J J×  matrix consisting of the columns of A′  

corresponding to the k ’th basic solution of (9).  The dual problem has a basic feasible solution if 

1( ) 0kA −′− ≥c  for some k  for the maximization version of (6) and 1( ) 0kA −′ ≥c  for some k  for the 

minimization version.  Therefore, testing boundedness of maxL  ( minL ) is equivalent to testing the 

hypothesis 1
0 : ( ) 0kH A −′− ≥c  ( 1( ) 0kA −′ ≥c ) for some k .   

To test either hypothesis, define ˆ
kA ′  as the matrix that is obtained by replacing the components of 

Π  with the corresponding components of Π̂  in kA .  Then an application of the delta method yields 

(13) 1 1 1 1 1/2ˆ ˆ( ) ( ) ( ) ( )( ) ( )k k k k k k pA A A A A A o n− − − − −′ ′ ′ ′ ′= − − +c c c      . 

Equation (13) shows that the hypothesis 1
0 : ( ) 0kH A −′− ≥c  ( 1( ) 0kA −′ ≥c ) is asymptotically equivalent 

to a one-sided hypothesis about a vector of population means.  Testing 1
0 : ( ) 0kH A −′− ≥c  ( 1( ) 0kA −′ ≥c ) 

for some k  is asymptotically equivalent to testing a one-sided hypothesis about a vector of maxJk  non-

independent population means.  Methods for carrying out such tests and issues associated with tests of 

multiple hypotheses are discussed by Lehmann and Romano (2005) and Romano, Shaikh, and Wolf 

(2010), among others.  The hypothesis of boundedness of maxL  is rejected if 1
0 : ( ) 0kH A −′− ≥c  is 

rejected for at least one component of 1( )kA −′ c  for each max1,...,k k= .  The hypothesis of boundedness of 

minL  is rejected if 1
0 : ( ) 0kH A −′ ≥c  is rejected for at least one component of 1( )kA −′ c  for each 

max1,...,k k= .   

 We now consider assumption 3.  As was discussed in Section 2, assumption 3 cannot be tested, 

but the hypothesis, 0H , that there is a vector h  satisfying 0′Π − =h m  and S ≤ −h ε  for some 1M ×  

vector 0>ε  can be tested.  A test can be carried out by solving the quadratic programming problem 

(14) 
2ˆ ˆ ˆminimize : ( )Q ′≡ Π

h
h h - m  

subject to 

 S ≤ −h ε , 
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where ⋅  denotes the Euclidean norm in K
 .  Let ˆ

optQ  denote the optimal value of the objective 

function in (14).  Under 0H , ˆlim ( 0) 1n optP Q→∞ = = .  Therefore, the result ˆ 0optQ =  is consistent with 

0H .   

A large value of ˆ
optQ  is inconsistent with 0H .  To obtain an asymptotic critical value for ˆ

optQ , 

observe that as a consequence of the envelope theorem, ˆ
optQ  is a differentiable function of the 

components of Π̂  and m̂ .  Therefore, an application of the delta method shows that under 0H , ˆ
optQ  is 

asymptotically normally distributed with a mean of 0.  The analytic expression for the variance of the 

asymptotic distribution is lengthy and tedious to evaluate because it involves a large number of 

derivatives of ˆ
optQ  with respect to components of Π̂  and m̂ .  An asymptotically valid critical value can 

be obtained more easily by using the bootstrap.  The bootstrap procedure is; 

 (i)  Generate a bootstrap sample * * *{ , , : 1,..., }i i iY X W i n=  by sampling the estimation data 

{ , , : 1,..., }i i iY X W i n=  randomly with replacement.  Compute the bootstrap versions of ˆ km  and ˆ jkπ .  

These are 

(15) * 1 * *

1
( )

n

k i i k
i

m n Y I W w−

=

= =∑  

and 

(16) * 1 * *

1
( ) ( )

n

jk i j i k
i

n I X x I W wπ −

=

= = =∑ . 

Define *Π  and *m , respectively, as the matrix and vector that are obtained by replacing the estimation 

sample with the bootstrap sample in Π̂  and m̂ .   

 (ii)  Solve problem (14) with *Π  and *m  in place of Π̂  and m̂ .  Denote the resulting optimal 

value of the objective function by *
optQ .   

 (iii)  Estimate the asymptotic distribution of ˆ
optQ  by the empirical distribution of * ˆ

opt optQ Q−  that 

is obtained by repeating steps (i) and (ii) many times (the bootstrap distribution).  Estimate the asymptotic 

α level critical value of ˆ
optQ  by the 1 α−  quantile of the bootstrap distribution of * ˆ

opt optQ Q− . 

 The bootstrap consistently estimates the critical value of ˆ
optQ  because asymptotically, ˆ

optQ  is a 

smooth function of sample moments whose asymptotic distributions are estimated consistently by the 

bootstrap. 
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4.  BOOTSTRAP ESTIMATION OF THE ASYMPTOTIC DISTRIBUTIONS OF maxL̂  and minL̂  

 This section present two bootstrap procedures that estimate the asymptotic distributions of 
1/2

max max
ˆ( )n L L− , 1/2

min min
ˆ( )n L L− , and 1/2 1/2

max max min min
ˆ ˆ[ ( ), ( )]n L L n L L− −  without requiring 

knowledge of maxΣ , minΣ , max , or min .  The procedures also estimate the critical values ,mincα  and 

,maxcα .  The first procedure yields confidence regions for min max[ , ]L L  and ( )L g  with asymptotically 

correct coverage probabilities.  That is, the asymptotic coverage probabilities of these regions equal the 

nominal coverage probabilities.  However, this procedure has the disadvantage of requiring a user-

selected tuning parameter.  The procedure’s finite-sample performance can be sensitive to the choice of 

the tuning parameter, and a poor choice can cause the true coverage probabilities to be considerably lower 

than the nominal ones.  The second procedure does not require a user-selected tuning parameter.  It yields 

confidence regions with asymptotically correct coverage probabilities if the optimal solutions to the 

maximization and minimization versions of problem (6) are unique (that is, if max , and min  each 

contain only one basic solution).  Otherwise, the asymptotic coverage probabilities are equal to or greater 

than the nominal coverage probabilities.  The procedures are described in Section 4.1.  Section 4.2 

presents the results of a Monte Carlo investigation of the numerical performance of the procedures.  

4.1  The Bootstrap Procedures 

 This section describes the two bootstrap procedures.  Both assume that the optimal solutions to 

the maximization and minimization versions of problem (10) are random.  The procedures are not needed 

for deterministic optimal solutions.  Let { : 1,2,...}nc n =  be a sequence of positive constants such that 

0nc →  and 1/2[ / (log log )]nc n n → ∞  as n → ∞ .  Let *P  denote the probability measure induced by 

bootstrap sampling.   

The first bootstrap procedure is as follows.   

 (i)  Generate a bootstrap sample * * *{ , , : 1,..., }i i iY X W i n=  by sampling the estimation data 

{ , , : 1,..., }i i iY X W i n=  randomly with replacement.  Use (15) and (16) to compute the bootstrap versions 

of ˆ km  and ˆ jkπ , which are *
km  and *

jkπ .  Define *Π  and *m , respectively, as the matrix and vector that 

are obtained by replacing the estimation sample with the bootstrap sample in Π̂  and m̂ .  For any basic 

solution k  to problem (6), define *
kA  and *m  by replacing the estimation sample with the bootstrap 

sample in ˆ
kA  and m̂ . 
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 (ii)  Define problem (B10) as problem (10) with *Π  and *m  in place of Π̂  and m̂ .  Solve 

(B10).  Let k  denote the resulting optimal basic solution.  Let ,max
ˆ
kL  and min

ˆ
kL , respectively, denote the 

values of the objective function of the maximization and minimization versions of (10) at basic solution 

k .  For basic solution k , define 

* 1/2 *-1 * -1
1

ˆˆ ˆ( )k k k k kn A A′ ′∆ = −c m c m  

and 

* 1/2 * 1 * 1
2

ˆˆ ˆ( )k k k k kn c A A− −′ ′∆ = − −m c m . 

 

 (iii)  Repeat steps (i) and (ii) many times.  Define max ,max max
ˆ ˆ ˆ{ : | | }k nk L L c= − ≤  and 

min ,min min
ˆ ˆ ˆ{ : | | }k nk L L c= − ≤ .   

 (iv)  Estimate the distributions of 1/2
max max

ˆ( )n L L− , 1/2
min min

ˆ( )n L L− , and 

1/2 1/2
max max min min

ˆ ˆ[ ( ), ( )]n L L n L L ′− − , respectively, by the empirical distributions of 
max

*
ˆ 1max kk∈ ∆ , 

min

*
ˆ 2max kk∈ ∆ , and 

max min

* *
ˆ ˆ1 2(max ,max )k kk k∈ ∈∆ ∆  .  Estimate ,mincα  and ,maxcα , respectively, by *

,mincα  

and *
,maxcα , which solve 

 
min

* * *
ˆ ,min(min ) 1kkP cα α∈ ∆ ≤ = −  

max

* * *
ˆ ,max(max ) 1kkP cα α∈ ∆ ≥ − = − . 

 Asymptotically, 1/2 -1 -1ˆ ˆ( )k k k kn A A′ ′−c m c m  ( max mink ∈ ∪  ) is a linear function of sample 

moments.  Therefore, the bootstrap distributions of *
1k∆  and *

2k∆  uniformly consistently estimate the 

asymptotic distributions of 1/2 -1 -1ˆ ˆ( )k k k kn A A′ ′± −c m c m  for maxk ∈  and mink ∈  (Mammen 1992).  In 

addition, the foregoing procedure consistently estimates max  and min .  Asymptotically, every basic 

solution that is feasible in problem (6) has a non-zero probability of being optimal in (B10).  Therefore, 

with probability approaching 1 as n → ∞ , every feasible basic solution will be realized in sufficiently 

many bootstrap repetitions.  Moreover, it follows from the law of the iterated logarithm that with 

probability 1 for all sufficiently large n , only basic solutions k  in max  satisfy ,max max
ˆ ˆ| |k nL L c− ≤  and 

only basic solutions mink ∈  satisfy ,min min
ˆ ˆ| |k nL L c− ≤ .  Therefore, max max

ˆ =   and min min
ˆ =   with 

probability 1 for all sufficiently large n .   It follows that the bootstrap distributions of 
max

*
ˆ 1max kk∈ ∆ , 
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min

*
ˆ 2max kk∈ ∆ , and (

max min

* *
ˆ ˆ1 2max ,maxk kk k∈ ∈∆ ∆  ,) uniformly consistently estimate the asymptotic 

distributions of 1/2
max max

ˆ( )n L L− , 1/2
min min

ˆ( )n L L−  and 1/2 1/2
max max min min

ˆ ˆ[ ( ), ( )]n L L n L L ′− − , 

respectively.6  It further follows that *cα  is a consistent estimator of cα . 

These results are summarized in the following theorem.  Let *P  denote the probability measure 

induced by bootstrap sampling.   

 Theorem 3:  Let assumptions 1-5 hold.  Let n → ∞ .  Under the first bootstrap procedure,  

 (i)  
max

* * 1/2
ˆ 1 max max

ˆsup | (max ) [ ( ) ] | 0p
kk

z
P z P n L L z∈

−∞< <∞
∆ ≤ − − ≤ →  

 (ii)  
min

* * 1/2
ˆ 2 min min

ˆsup | (max ) [ ( ) ] | 0p
kk

z
P z P n L L z∈

−∞< <∞
∆ ≤ − − ≤ →  

 (iii)  max

1 2
min

* 1/2ˆ 1 1 max max 1*
1/2*, 2 2ˆ min min2

max ˆ( )
sup 0

ˆ( )max

kk p

z z kk

z n L L z
P P

z zn L L

∈

−∞< <∞
∈

  ∆   −        ≤ − ≤ →          −∆         





 

(iv)  *| | 0pc cα α− → .    

 The theory of the bootstrap assumes that there are infinitely many bootstrap repetitions, but only 

finitely many are possible in practice.  With finitely many repetitions, it is possible that the first bootstrap 

procedure does not find all basic solutions k  for which ,max max
ˆ ˆ| |k nL L c− ≤  or ,min min

ˆ ˆ| |k nL L c− ≤ .  

However, when n  is large, basic solutions for which ,max max
ˆ ˆ| |k nL L c− ≤  or ,min min

ˆ ˆ| |k nL L c− ≤  have 

high probabilities, and basic solutions for which neither of these inequalities holds have low probabilities.  

Therefore, a large number of bootstrap repetitions is unlikely to be needed to find all basic solutions for 

which one of the inequalities holds.  In addition, arguments like those used to prove Theorem 4 below 

show that if not all basic solutions satisfying ,max max
ˆ ˆ| |k nL L c− ≤  or ,min min

ˆ ˆ| |k nL L c− ≤  are found, then 

the resulting confidence regions have asymptotic coverage probabilities that equal or exceed their 

nominal coverage probabilities.  The error made by not finding all basic solutions satisfying the 

inequalities is in the direction of overcoverage, not undercoverage.7 

 The second bootstrap procedure is as follows.  Note that the optimal solution to the maximization 

or minimization version of (10) is unique if it is random.   

(i)  Generate a bootstrap sample * * *{ , , : 1,..., }i i iY X W i n=  by sampling the estimation data 

{ , , : 1,..., }i i iY X W i n=  randomly with replacement.  Use (15) and (16) to compute the bootstrap versions 

of ˆ km  and ˆ jkπ , which are *
km  and *

jkπ .  Define *Π  and *m , respectively, as the matrix and vector that 
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are obtained by replacing the estimation sample with the bootstrap sample in Π̂  and m̂ .  For any basic 

solution k  to problem (6), define *
kA  and *m  by replacing the estimation sample with the bootstrap 

sample in ˆ
kA  and m̂ . 

 (ii)  Let maxk̂  and mink̂ , respectively, denote the optimal basic solutions of the maximization and 

minimization versions of problem (10).  Define 

max max max max max

* 1/2 *-1 * -1
ˆ ˆ ˆ ˆ ˆ

ˆˆ ˆ( )k k k k kn A A′ ′∆ = −c m c m  

and 

min min min min min

* 1/2 * 1 * 1
ˆ ˆ ˆ ˆ ˆ

ˆˆ ˆ( )k k k k kn c A A− −′ ′∆ = − −m c m . 

 (iii)  Repeat steps (i) and (ii) many times.  Estimate the distributions of 1/2
max max

ˆ( )n L L− , 

1/2
min min

ˆ( )n L L− , and 1/2 1/2
max max min min

ˆ ˆ[ ( ), ( )]n L L n L L ′− − , respectively, by the empirical distributions 

of 
max

*
k̂∆ , 

min

*
k̂∆ , and 

max min

* *
ˆ ˆ( , )k k∆ ∆ .  Estimate ,mincα  and ,maxcα , respectively, by *

,mincα  and *
,maxcα , 

which solve 

 
min

* * *
ˆ ,min( ) 1kP cα α∆ ≤ = −  

max

* * *
ˆ ,max( ) 1kP cα α∆ ≥ − = − . 

 If the maximization version of (6) has a unique optimal basic solution, max,optk , then 

max max,optk̂ k=  with probability 1 for all sufficiently large n .  Therefore, the second bootstrap procedure 

estimates the asymptotic distribution of 1/2
max max

ˆ( )n L L−  uniformly consistently and *
,maxcα  is a 

consistent estimator of ,maxcα .  Similarly, if the minimization version of (6) has a unique optimal basic 

solution, then the second bootstrap procedure estimates the asymptotic distribution of 1/2
min min

ˆ( )n L L−  

uniformly consistently, and *
,mincα  is a consistent estimator of ,mincα .   

 If the maximization version of (6) has two or more optimal basic solutions that produce non-

deterministic values of the objective function of (10), then the limiting bootstrap distribution of 

1/2
max max

ˆ( )n L L−  depends on maxk̂  and is random.  In this case, the second bootstrap procedure does not 

provide a consistent estimator of the distribution of 1/2
max max

ˆ( )n L L−  or ,maxcα .  Similarly, if the 

minimization version of (6) has two or more optimal basic solutions that produce non-deterministic 

values of the objective function of (10), then the second bootstrap procedure does not provide a consistent 
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estimator of the distribution of 1/2
min min

ˆ( )n L L−  or ,mincα .  However, the following theorem shows that 

the asymptotic coverage probabilities of confidence regions based on the inconsistent estimators of 

,maxcα  and ,mincα  equal or exceed the nominal coverage probabilities.  Thus, the error made by the 

second bootstrap procedure is in the direction of overcoverage. 

 Theorem 4:  Let assumptions 1-5 hold.  Let n → ∞ .  Under the second bootstrap procedure,  

(i) *
max max ,max

ˆ( ) 1 (1)pP L L c oα α≤ + ≥ − +  

(ii) *
min min ,min

ˆ( ) 1 (1)pP L L c oα α≥ − ≥ − + .    

 Proof:  Only part (i) is proved.  The proof of part (ii) is similar.  With probability 1 all sufficiently 

large n , max maxk̂ ∈ , so  

 
maxmax

* *
ˆ ˆ 1max kkk ∈∆ ≤ ∆  

and  

 ( )
maxmax

* * * * * *
ˆ ˆ,max 1 ,max1 ( ) max kkkP c P cα αα ∈− = ∆ ≥ − ≤ ∆ ≥ − . 

Therefore, by Theorem 3(i) 

 1/2 *
max max

ˆ1 [ ( ) ) (1)pP n L L c oαα− ≥ − ≤ + .    

4.2  Monte Carlo Experiments 

 This section reports the results of Monte Carlo experiments that investigate the numerical 

performance of the bootstrap procedure of Section 4.1.  The design of the experiments mimics the 

empirical application presented in Section 5.  The experiments investigate the finite-sample coverage 

probabilities of nominal 95% confidence intervals for min max[ , ]L L  and ( )L g . 

 In the experiments, the support of W  is {0,1}, and 4J =  or 6J = , depending on the experiment.  

In experiments with 6J = , {2, 3, 4, 5, 6, 7}X ≡  and  

(17) 
0.20 0.10 0.06 0.05 0.03 0.03
0.15 0.12 0.07 0.08 0.06 0.05

 ′Π =  
 

. 

In experiments with 4J = , {2, 3, 4, 5}X ∈ , and ′Π  is obtained from (17) by 

5
2

( , )( , | 1)
[ ( , 0) ( , 1)]

P X j W kP X j W k j J
P X W P X W

=

= =
= = ≤ + =

= = + = =∑


 

. 
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In experiments with 6J = , (23,17,13,11, 9, 8)′=g .  Thus, ( )g x  is decreasing and convex.  We also 

require (1) ( ) 52g g J− ≤ .  In experiments with 4J = , (23,17,13,11)′=g .  The functionals ( )L g  are 

(3) (2)g g− , (5) (2)g g− , and (4)g .   

 The data are generated by sampling ( , )X W  from the distribution given by ′Π  with the specified 

value of J .  Then Y  is generated from ( )Y g X U= + , where 2 ( | )U XZ E X W= −  and ~ (0,1)Z N .  

There are 1000 Monte Carlo replications per experiment.  The sample sizes are 1000n =  and 5000n = .  

We show the results of experiments using bootstrap procedure 1 with 1nc =  and bootstrap procedure 2, 

which corresponds to 0nc = .  The results of experiments using bootstrap procedure 1 with larger values 

of nc  were similar to those with 1nc = . 

 The results of the experiments are shown in Tables 1 and 2, which give empirical coverage 

probabilities of nominal 95% confidence intervals for min max[ , ]L L .  The empirical coverage probabilities 

of nominal 95% confidence intervals for ( )L g  are similar and are not shown.  The empirical coverage 

probabilities are close to the nominal ones except when 4J =  and ( ) (4)L g g= .  In this case, the variance 

of Π̂  is large, which produces a large error in the asymptotic linear approximation to 1ˆ ˆ
k kc A−′ m .  

5.  AN EMPIRICAL APPLICATION 

 This section presents an empirical application that illustrates the use of the methods described in 

Sections 2-4.  The application is motivated by Angrist and Evans (1998), who investigated the effects of 

children on several labor-market outcomes of women.   

We use the data and instrument of Angrist and Evans (1998) to estimate the relation between the 

number of children a woman has and the number of weeks she works in a year.  The model is that of (1a)-

(1b), where Y is the number of weeks a woman works in a year, X  is the number of children the woman 

has, and W  is an instrument for the possibly endogenous explanatory variable X .  X  can have the 

values 2, 3, 4, and 5.  As in Angrist and Evans (1998), W  is a binary random variable, with 1W =  if the 

woman’s first two children have the same sex, and 0W =  otherwise.  We investigate the reductions in 

hours worked when the number of children increases from 2 to 3 and from 2 to 5.  In the first case, 

( ) (3) (2)L g g g= − .  In the second case, ( ) (5) (2)L g g g= − .  The binary instrument W  does not point 

identify ( )L g  in either case.  We estimate minL  and maxL  under each of two assumptions about the shape 

of g .  The first assumption is that g  is monotone non-increasing.  The second is that g  is monotone 

non-increasing and convex.  Both are reasonable assumptions about the shape of ( )g x  in this application. 

We also estimate ( )L g  under the assumption that g  is the linear function 
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0 1( )g x xβ β= + , 

where 0β  and 1β  are constants.  The binary instrument W  point identifies 0β  and 1β .  Therefore, ( )L g  

is also point identified under the assumption of linearity.  With data { , , : 1,..., }i i iY X W i n= , the 

instrumental variables estimate of 1β  is 

 1
1

1

( )( )
ˆ

( )( )

n

i i
i
n

i i
i

Y Y W W

X X W W
β =

=

− −

=

− −

∑

∑
, 

where 1
1

n
ii

Y n Y−
=

= ∑ , 1
1

n
ii

X n X−
=

= ∑ , and 1
1

n
ii

W n W−
=

= ∑ .  The estimate of ( )L g  is 

 1̂ˆ( )L g xβ= ∆ , 

where 1x∆ =  for ( ) (3) (2)L g g g= − , and 3x∆ =  for ( ) (5) (2)L g g g= − . 

The data are a subset of those of Angrist and Evans (1998).8  They are taken from the 1980 

Census Public Use Micro Samples (PUMS).  Our subset consists of 150,618 white women who are 21-35 

years old, have 2-5 children, and whose oldest child is between 8 and 12 years old.   

The estimation results are shown in Tables 3 and 4.  Table 3 shows the estimated identification 

intervals min max
ˆ ˆ[ , ]L L  and bootstrap 95% confidence intervals for min max[ , ]L L  and ( )L g  under the two 

sets of shape assumptions.  Table 4 shows point estimates and 95% confidence intervals for ( )L g  under 

the assumption that g  is linear.  It can be seen from Table 3 that the bounds on ( )L g  are very wide when 

g  is required to be monotonic but is not otherwise restricted.  The change in the number of weeks 

worked per year must be in the interval [ 52,0]− , so the estimated upper bound of the identification 

interval min max[ , ]L L  is uninformative if ( ) (3) (2)L g g g= − , and the estimated lower bound is 

uninformative if ( ) (5) (2)L g g g= − .  The estimated bounds are much narrower when g  is required to be 

convex as well as monotonic.  In particular, the 95% confidence intervals for min max[ , ]L L  and ( )L g  

under the assumption that g  is monotonic and convex are only slightly wider than the 95% confidence 

interval for ( )L g  under the much stronger assumption that g  is linear. 

6.  CONCLUSIONS 

 This paper has been concerned with nonparametric estimation of the linear functional ( )L g , 

where the unknown function g  satisfies the moment condition [ ( ) | ] 0E Y g X W− = , Y  is a dependent 

variable, X  is an explanatory variable that may be endogenous, and W  is an instrument for X .  In many 
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applications, X  and W  are discretely distributed, and W  has fewer points of support than X  does.  In 

such settings, ( )L g  is not identified and, in the absence of further restrictions, can take any value in 

( , )−∞ ∞ .  This paper has explored the use of restrictions on the shape of g , such as monotonicity and 

convexity, for achieving interval identification of ( )L g .  The paper has presented a sharp identification 

interval for ( )L g , explained how the lower and upper bounds of this interval can be estimated 

consistently, and shown how the bootstrap can be used to obtain confidence regions for the identification 

interval and ( )L g .  The results of Monte Carlo experiments and an empirical application have illustrated 

the usefulness of this paper’s methods.   

 This paper has concentrated on a model in which there is an endogenous explanatory variable and 

no exogenous covariates.  The methods of this paper can accommodate discretely distributed exogenous 

covariates with essentially no change by conditioning on them.  The extension to a model with a 

continuously distributed endogenous explanatory variable and instrument is also possible, though more 

challenging technically.  Nonparametric identification in such a model is always problematic because any 

distribution of ( , , )Y X W  that identifies g  is arbitrarily close to a distribution that does not identify g  

(Santos 2012), and the necessary condition for identification cannot be tested (Canay, Santos, and Shaikh 

2012).  The usefulness of shape restrictions for achieving partial identification of ( )L g  and carrying out 

inference about ( )L g  when point identification is uncertain will be explored in future research.  
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Table 1:  Results of Monte Carlo Experiments Assuming Only Monotonicity 
 

( )L g  
nc  J  Empirical 

Coverage 
Probability 
with 1000n =  

Empirical 
Coverage 
Probability with 

5000n =  
(3) (2)g g−  0 4 0.962 0.963 

 1  0.962 0.963 
(5) (2)g g−  0 4 0.941 0.938 

 1  0.941 0.938 
(4)g  0 4 0.882 0.895 
 1  0.882 0.895 

(3) (2)g g−  0 6 0.935 0.944 
 1  0.935 0.944 

(5) (2)g g−  0 6 0.965 0.970 
 1  0.961 0.969 

(4)g  0 6 0.936 0.923 
 1  0.926 0.914 

 
 
 

Table 2:  Results of Monte Carlo Experiments Assuming Monotonicity and Convexity 
 

( )L g  
nc  J  Empirical 

Coverage 
Probability 
with 1000n =  

Empirical 
Coverage 
Probability with 

5000n =  
(3) (2)g g−  0 4 0.950 0.963 

 1  0.950 0.963 
(5) (2)g g−  0 4 0.941 0.938 

 1  0.941 0.938 
(4)g  0 4 0.962 0.970 
 1  0.962 0.969 

(3) (2)g g−  0 6 0.944 0.951 
 1  0.944 0.951 

(5) (2)g g−  0 6 0.965 0.970 
 1  0.961 0.969 

(4)g  0 6 0.958 0.950 
 1  0.958 0.951 
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Table 3:  Estimates of min max[ , ]L L  and ( )L g  under Two Sets of Shape Restrictions 

 

Shape Restriction ( )L g  
min max

ˆ ˆ[ ]L L  95% Conf. Int. for 
min max[ , ]L L  

95% Conf. Int. 
for ( )L g  

g  is monotone 
non-increasing 

(3) (2)g g−  [ 6.0,0]−  [ 8.6,0]−  [ 8.6,0]−  

 (5) (2)g g−  [ 52.0, 6.0]− −  [ 52.0, 3.4]− −  [ 52.0, 3.4]− −  

     

g  is monotone 
non-increasing and 
convex 

(3) (2)g g−  [ 6.0, 5.0]− −  [ 9.0, 2.3]− −  [ 8.6, 2.8]− −  

 (5) (2)g g−  [ 14.9, 6.0]− −  [ 22.0, 2.4]− −  [ 21.2, 3.4]− −  

 

 

Table 4:  Estimates of ( )L g  under the Assumption that g  Is Linear 

 

( )L g  ˆ( )L g  95% Confidence 
Interval for ( )L g  

(3) (2)g g−  -5.0 [ 7.6, 2.4]− −  
(5) (2)g g−  -14.9 [ 22.7, 7.1]− −  
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FOOTNOTES 
 

1  minL  and maxL , respectively, are finite if the optimal values of the objective functions of the 

minimization and maximization versions of (6) are finite.  There are no simple conditions under which 

this occurs.  See, for example, Hadley (1962, Sec. 3-7). 
2   In some applications, ( )jg x  for each 1,...,j J=  is contained in a finite interval by definition, so 

unbounded solutions to (6) cannot occur.  For example, in the empirical application presented in Section 5 

of this paper, ( )jg x  is the number of weeks a woman with jx  children works in a year and, therefore, is 

contained in the interval [0,52] .  Such restrictions can be incorporated into the framework presented here 

by adding constraints to (6) that require ( )jg x  to be in the specified interval for each 1,...,j J= . 

3  The feasible region of problem (6) with Π  and m  replaced by consistent estimators may be empty if 

n  is small.  This problem can be overcome by expanding the feasible region by an amount that is large 

enough to make its interior non-empty if n  is small and zero if n  is large. 
4  Imbens and Manski (2004) show that a confidence interval for consisting of the intersection of one-

sided intervals for a partially identified parameter is not valid uniformly over a set of values of the lower 

and upper identification bounds that includes equality of the two ( min maxL L=  in the context of this 

paper).  However, the possibility that min maxL L=  is excluded by our assumption 3.   
5  We assume that 2K M J+ ≥  as happens, for example, if g  is assumed to be monotone, convex, or 
both. 
6 The bootstrap does not consistently estimate the distribution of the maximum of random variables with 
unknown means.  The bootstrap is consistent in the case treated here because *

1k∆ , *
2k∆ , and the 

asymptotic form of 1/2 1 1ˆ ˆ( )k k k kn A A− −′ ′−c m c m  all have means of zero. 
7  When n  is small, the optimal solution in the bootstrap sample may be infeasible in the original sample.  
Such solutions can be excluded from max̂  and min̂  without affecting the asymptotic distributional 
results presented here. 
8  Angrist’s and Evans’s (1998) data are available at http://economics.mit.edu/faculty/angrist/data1/ 

data/angev98. 

http://economics.mit.edu/faculty/angrist/data1/data/angev98
http://economics.mit.edu/faculty/angrist/data1/data/angev98

