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Abstract

We study identification in static, simultaneous move finite games of complete information,
where the presence of multiple Nash equilibria may lead to partial identification of the model pa-
rameters. The identification regions for these parameters proposed in the related literature are
known not to be sharp. Using the theory of random sets, we show that the sharp identification
region can be obtained as the set of minimizers of the distance from the conditional distribution
of game’s outcomes given covariates, to the conditional Aumann expectation given covariates of
a properly defined random set. This is the random set of probability distributions over action
profiles given profit shifters implied by mixed strategy Nash equilibria. The sharp identification
region can be approximated arbitrarily accurately through a finite number of moment inequal-
ities based on the support function of the conditional Aumann expectation. When only pure
strategy Nash equilibria are played, the sharp identification region is exactly determined by
a finite number of moment inequalities. We discuss how our results can be extended to other
solution concepts, such as for example correlated equilibrium or rationality and rationalizability.
We show that calculating the sharp identification region using our characterization is com-

putationally feasible. We also provide a simple algorithm which finds the set of inequalities that
need to be checked in order to insure sharpness. We use examples analyzed in the literature to
illustrate the gains in identification afforded by our method.

Keywords: Identification, Random Sets, Aumann Expectation, Support Function, Capacity
Functional, Normal Form Games, Inequality Constraints.
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1 Introduction

This paper belongs to the literature on identification in incomplete econometric models. Examples

of such models may arise when the data are incomplete (sample realizations are not fully observable)

or when the model asserts that the relationship between the outcome variable and the exogenous

variables is a correspondence rather than a function. When the econometric model is incomplete,

the sampling process and the maintained assumptions may be consistent with a set of parameter

vectors or functionals, rather than a single one. In this case, the model is partially identified. The

analyses in Manski (1989, 2003), Manski and Tamer (2002), Haile and Tamer (2003), Ciliberto and

Tamer (2004) and Andrews, Berry, and Jia (2004) are examples of research studying the identified

features of incomplete econometric models.

Our main contribution is to provide a simple and novel procedure to determine the sharp identi-

fication region of the parameters characterizing static, simultaneous move finite games of complete

information in the presence of multiple Nash equilibria. By contrast, the identification region for

this class of models provided in the related literature is known not to be sharp. Establishing whether

a conjectured region for the identified features of an incomplete model is sharp is a key question in

identification analysis. For simplicity, we focus on the parametric case. An econometric model then

consists of a sampling process and a set of maintained modeling assumptions summarized by an

unknown finite dimensional parameter vector θ. This vector, or one of its subvectors, is the focus of

empirical research. Given the joint distribution of the observed variables, a researcher asks herself

what parameters θ are consistent with this distribution. The region in the parameter space which

includes all possible parameter values that could generate the same distribution of observables for

some data generation process consistent with the maintained modeling assumptions, and no other

parameter value, is called the sharp identification region. Examples of sharp identification regions

for parameters of incomplete models are given in Manski (2003) and Manski and Tamer (2002),

among others. In some cases, researchers are only able to characterize a region in the parameter

space that includes all the parameter values that may have generated the observables, but may

include other (infeasible) parameter values as well. These larger regions are called outer regions.

Examples of outer regions for parameters of incomplete models are given in Ciliberto and Tamer

(2004) and Andrews, Berry, and Jia (2004). The inclusion in the outer regions of parameter values

which are infeasible may weaken the model’s ability to make useful predictions, and the researcher’s

ability to test for model misspecification.

Point identification of the class of models treated in this paper has been previously studied by
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Bjorn and Vuong (1985), Bresnahan and Reiss (1988, 1990, 1991), Berry (1992), Mazzeo (2002),

Tamer (2003), and Bajari, Hong, and Ryan (2007) among others. These authors achieve point

identification of the payoff parameters by adding assumptions to the model.1 Examples of such

restrictions include assumptions on the nature of competition, heterogeneity of firms, availability

of covariates with sufficiently large support and/or instrumental variables, and restrictions on the

selection mechanism which, in the data generating process, picks an equilibrium in the regions

of multiplicity. By contrast, we do not impose any assumption on the selection mechanism, on

the nature of competition, or on the form of heterogeneity across players. Our approach does

not require availability of covariates with large support or instruments, but fully exploits their

identifying power if they are present. Andrews, Berry, and Jia (2004), Ciliberto and Tamer (2004),

and Berry and Tamer (2007) study partial identification of the same class of models as we do.

Their work is the closest in spirit to ours. However, they only provide outer regions for the model

parameters.

While throughout most of the paper we assume that players follow Nash behavior, we show

that our methodology easily extends to other solution concepts for the game. We illustrate this

by looking at games where rationality of level-1 is the solution concept (a problem first studied by

Aradillas-Lopez and Tamer (2008)), and by looking at games where correlated equilibrium is the

solution concept.2

Our paper is exclusively about identification. However, our characterization of the sharp identi-

fication region leads to an obvious sample analog counterpart which can be used when the researcher

is confronted with a finite sample of observations. This sample analog is given by the set of min-

imizers of a criterion function obtained from a finite number of sample moment equalities and

inequalities, so that the recent contributions of Chernozhukov, Hong, and Tamer (2007), Andrews

and Guggenberger (2007), Andrews and Soares (2007), Galichon and Henry (2006), Romano and

Shaikh (2006), Rosen (2006), and Pakes, Porter, Ho, and Ishii (2006), among others, can be applied

for estimation and statistical inference.

1.1 Overview

The literature on identification in games with multiple equilibria often describes the sharp identifi-

cation region of the model parameters using the concept of “selection mechanism.” An admissible

1Tamer (2003) also suggests an approach to partially identify the model’s parameters when no additional assump-
tions are imposed.

2Yang (2008) exploits the fact that all Nash equilibria are correlated equilibria to provide simple-to-compute outer
regions for the model parameters when Nash equilibrium is the solution concept.
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selection mechanism is the probability distribution of a random variable which chooses the equi-

librium played in the regions of the sample space where the model admits multiple equilibria. By

definition, the sharp identification region includes all the parameter values for which one can find

an admissible selection mechanism, such that the model augmented with this selection mechanism

generates the joint distribution of the observed variables. If, as it is the case in this paper, no

assumptions are placed on it, the selection mechanism may represent an infinite dimensional nui-

sance parameter. Hence, “standard” approaches to characterizing the sharp identification region,

which are based on the selection mechanism, entail dealing with an infinite dimensional nuisance

parameter. This task is sufficiently difficult that Berry and Tamer (2007, page 68) have suggested

to give up on obtaining sharp identification regions. Rather, they suggest focusing on outer regions

for the model parameters that do not exploit all the information contained in the model, but are

practically appealing because they are defined by a finite number of moment inequalities. These

moment inequalities have to hold for x−a.s., with x the observable payoff shifters (in what follows,
for simplicity we do not keep repeating that all statements concerning moment inequalities and set

membership have to hold for x− a.s.).

The methodology that we propose allows us to bypass the need to directly deal with infinite

dimensional nuisance parameters. Our treatment of the problem distinguishes between two cases.

When only pure strategies are considered, the main benefit of our approach is that the sharp

identification region is obtained through a finite number of moment inequalities. When mixed

strategies are also allowed, one loses the ability to characterize the sharp identification region

through a finite number of moment inequalities. Intuitively, this is because there is additional

information provided by the fact that players must be indifferent among the actions that they play

with positive probability according to a given equilibrium strategy.3 However, we show that even

in this case one can approximate the sharp identification region arbitrarily accurately through a

finite number of moment inequalities.

We achieve our results by using the theory of random sets (Molchanov (2005)). The key insight

that leads to our characterization of the sharp identification region is the following. Suppose that

the researcher observes game’s outcomes y and payoff shifters x from a cross section of markets

in which players play the same game and follow Nash behavior. Profits also depend on payoff

shifters ε that are unobservable by the econometrician, but observable by the players (the game

is one of complete information). Let the cross section be large enough that the distribution of y

conditional on x, denoted P (y|x), can be learned exactly. Parametrize the payoff functions of
3Section 4 further discusses this fact.
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the game, and fix a given value of the parameter vector θ. Each realization of x and ε implies a

(necessarily non-empty) set of mixed strategy Nash equilibria, which we denote by Sθ (x, ε) . Each of

the equilibria in this set determines a probability distribution over the game’s outcomes, conditional

on the realization of x and ε. Let the random closed set of probability distributions over the game’s

outcomes implied by Sθ (x, ε) be denoted Q (Sθ (x, ε)) . In Section 3 we establish that the entire

collection of model’s predicted probability distributions of the game’s outcomes conditional on x is

given by the Aumann expectation of Q (Sθ (x, ε)) conditional on x, denoted E (Q (Sθ (x, ε))|x) .4

Framing the set of the model’s predicted probability distributions in terms of an Aumann

expectation is practically very advantageous. A candidate value for the parameter vector may

have generated the observed conditional distribution P (y|x) if and only if P (y|x) belongs to
the conditional Aumann expectation associated with that parameter vector. Hence, the sharp

identification region of the model parameters is given by the collection of θ’s that determine a

conditional Aumann expectation E (Q (Sθ (x, ε))|x) that contains P (y|x) for x− a.s.

Given a candidate value for θ, one can verify whether it belongs to the sharp identification

region in the following way. The set E (Q (Sθ (x, ε))|x) can be evaluated exactly or approximated
by simulation, depending on the complexity of the game. The candidate parameter vector θ is in

the sharp identification region if and only if P (y|x) is an element of this set. This corresponds
to checking whether the support function of P (y|x) is dominated by the support function of
E (Q (Sθ (x, ε))|x).5 Showing that one support function dominates another amounts to checking

an infinite number of inequalities, each associated with a point on a unit sphere of an appropriate

dimension. A finite set of moment inequalities can be obtained by discretizing this unit sphere.

The properties of this approximation are discussed in Section 5.2.

A substantial simplification is possible in the special case where one assumes that players do

not randomize across their actions, and pure strategy Nash equilibria exist (see Assumption 4). We

show that the number of inequalities to be checked in order to assure that the support function of

P (y|x) is dominated by the support function of E (Q (Sθ (x, ε))|x) is finite, without the need to
discretize the unit sphere. This is because when players are only allowed to play pure strategies,

E (Q (Sθ (x, ε))|x) is a closed convex polytope, fully characterized by a finite number of supporting
hyperplanes, i.e., by its support function evaluated at a finite number of directions in the unit

sphere. These directions are trivial to determine. We connect this result to a related notion in

4We formally define the notions of both random closed set and Aumann expectation in Section 3.
5See Schneider (1993, Section 1.7) for a thorough discussion of the support function of a closed convex set, and

its properties.
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the theory of random sets, that of a capacity functional, which is the probability distribution of

a random closed set. We show that our characterization of the sharp identification region based

on the support function of E (Q (Sθ (x, ε))|x) is dual to a characterization based on the capacity
functional of the random set of pure strategy equilibrium outcomes, by exploiting a result due

to Artstein (1983). While the number of inequalities to be checked in order to obtain the sharp

identification region is finite, in some applications it may be quite large. However, we show that in

some cases this number can be substantially reduced by exploiting basic notions of set algebra.

There are no precedents to our characterization of the sharp identification region of the payoff

function parameters characterizing static, simultaneous move finite games of complete information

in the presence of multiple Nash equilibria. However, there are two precedents, with respect to this

paper, to the use of the theory of random sets within the econometrics literature. Both of them are

mainly focused on statistical inference. One is given by the work of Beresteanu and Molinari (2006,

2008). They study a class of partially identified models in which the sharp identification region

of the parameter vector of interest can be written as a transformation of the Aumann expectation

of a properly defined random set.6 For this class of models, they propose to use a sample analog

estimator given by a transformation of a Minkowski average of properly defined random sets. They

use limit theorems for independent and identically distributed sequences of random sets, to establish

consistency of this estimator with respect to the Hausdorffmetric. They propose two Wald-type test

statistics, based on the Hausdorff metric and on the lower Hausdorff hemimetric, to test hypothesis

and make confidence statements about the entire sharp identification region and its subsets.

The other is given by the work of Galichon and Henry (2006). The goal of their paper is

to provide a specification test for partially identified structural models. They introduce various

formulations of the notion of a correctly specified structural model which is partially identified,

and establish their equivalence. One of the notions that they use is based on the (Choquet)

capacity functional of a random set. In particular, they show that the model is correctly specified

if the distribution of the observed outcome is dominated by the capacity functional of the random

correspondence between the latent variables and the outcome variables characterizing the model.

This allows them to extend the Kolmogorov-Smirnov test of correct model specification to partially

identified models. They then define the notion of “core determining” classes of sets, to find a

manageable class of sets for which to check that the dominance condition is satisfied.

6 In order to establish sharpness of the identification region of the parameters of a best linear predictor with
interval outcome data, Beresteanu and Molinari (2006, 2008) use the same result involving the capacity functional of
a random set due to Artstein (1983) that we use in this paper.
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1.2 Structure of the Paper

In Section 2 we introduce notation and assumptions, and present the identification problem for the

class of models treated in this paper. In order to clearly connect our work to the related literature,

we discuss the definition of the sharp identification region provided by Berry and Tamer (2007).

In Section 3 we give a computationally feasible characterization of the sharp identification region

when players may randomize across their actions. We illustrate the gains in identification afforded

by our methodology through the simple example of a two player entry game. In Section 4 we

show how our approach further simplifies when only pure strategy Nash equilibria are played. We

illustrate the gains in identification afforded by our methodology through the simple example of a

four player, two type entry game. In Section 5 we address the computational issues associated with

our characterization of the sharp identification region. We first discuss how E (Q (Sθ (x, ε))|x) and
its support function can be approximated by simulation. We then show how one can use the result

of this simulation to compute the sharp identification region in the case that only pure strategies

are considered. We also provide a very simple algorithm that may allow one to significantly reduce

the number of inequalities to check, in order to obtain the sharp identification region. Finally, we

discuss how to approximate the sharp identification region when mixed strategies are played. In

Section 6 we show how our methodology can be extended to the case that players are only assumed

to be level-1 rational, or are assumed to play correlated strategies. Section 7 concludes. Appendix

A collects all the proofs. Appendix B gives additional details about one of our examples, a two

player entry game with mixed strategies.

2 Notation, Assumptions, and Identification Problem

We focus on simultaneous-move games of complete information (normal form games) in which each

player has a finite set of pure strategies. A key example is the static game of entry, in which each

player can choose between two actions: “enter” or “not enter.” Partial identification of this model

is studied by Andrews, Berry, and Jia (2004, ABJ henceforth), Ciliberto and Tamer (2004, CT

henceforth) and Berry and Tamer (2007).

2.1 Notation and Assumptions

Throughout the paper, we use capital Latin letters to denote sets and random sets. We use lower

case Latin letters for random vectors. We denote parameter vectors and sets of parameter vectors,

respectively by θ and Θ. For a given finite set W, we denote by κW its cardinality. Given two
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nonempty sets B,C ⊂ <d, we denote by

dH (C,B) = sup
c∈C

inf
b∈B

kc− bk ,

ρH (C,B) = max {dH (C,B) , dH (B,C)} ,

respectively, the directed Hausdorff distance from C to B and the Hausdorff distance between C

and B. The Hausdorff norm of B is denoted kBkH = ρH (B, {0}) = sup {kbk : b ∈ B} .
We let J denote the number of players. Each player has a finite set of actions (pure strategies)

Aj , j = 1, . . . , J. We denote by a = (a1, . . . , aJ) ∈ A a generic vector specifying an action for

each player (a pure strategy profile), with A = ×J
j=1Aj . We denote by πj (aj , a−j , xj , εj , θ) the

payoff function for player j, where a−j is the vector of player j’s opponents’ actions, xj ∈ X is a

vector of observable payoff shifters, εj is a payoff shifter observed by the players but unobserved

by the econometrician, and θ ∈ Θ ⊂ <p is a vector of parameters to be estimated, with Θ the

parameter space. We denote by σj : Aj → [0, 1] the mixed strategy for player j that assigns to

each action aj ∈ Aj a probability σj (aj) ≥ 0 that it is played, with
P

aj∈Aj
σj (aj) = 1 for each

j = 1, . . . , J.We let ∆ (Aj) denote the mixed extension of Aj , and ∆ (A) = ×J
j=1∆ (Aj) .With the

usual slight abuse of notation, we denote by πj (σj , σ−j , xj , εj , θ) the expected payoff associated

with the mixed strategy profile σ = (σ1, . . . , σJ) . We denote by y ∈ Y the vector of potentially

observable outcomes of the game. In the remainder of this section, we formalize our assumptions

on the games and sampling processes.

Assumption 1 (i) The set A of pure strategy profiles and the set Y of potentially observable out-
comes are finite. Each player has a finite number κAj ≥ 2 of pure strategies to choose from. The
number of players is J ≥ 2.
(ii) Players follow Nash behavior. They move simultaneously and only once.

(iii) The strategy profiles determine the outcomes observable by the econometrician through a contin-

uous mapping g : A→ Y, the “outcome rule”. This outcome rule is known by the econometrician.
(iv) The parametric form of the payoff functions πj (aj , a−j , xj , εj , θ) , j = 1, . . . , J, is known, and

for a known action ā it is normalized to πj (āj , ā−j , xj , εj , θ) = 0 for each j. The payoff functions are

continuous in the observable and unobservable payoff shifters. The parameter space Θ is compact.

Assumption 1-(i) assures that there is a finite set of strategies for each player, and a finite set of

possible outcomes observable by the econometrician. It restricts attention to normal form games.

Part (ii) of the assumption requires that players follow Nash behavior, so that for given payoff

shifters xj and εj , the mixed strategy profile σ constitutes a Nash equilibrium if each player’s
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mixed strategy is a best response. Part (iii) of the assumption requires continuity of the outcome

rule. Part (iv) of the assumption requires continuity of the payoff functions in xj and εj . These

conditions are needed to establish measurability and closedness of certain sets. Assumption 1-

(iv) also provides a location normalization. Such normalization is implicit in entry models, where

players are commonly assumed to earn zero payoffs if they do not enter the market (regardless of

the action chosen by their opponents).

In many normal form games, such as the static simultaneous move entry games analyzed by

ABJ, CT, and Berry and Tamer (2007), players’ actions and the outcomes observable by the

econometrician coincide. We simplify the exposition in all that follows, by restricting attention to

games satisfying this condition:

Assumption 2 The outcome rule g (·) is the identity mapping, so that y = a.

Our results, however, apply to the more general case stated in Assumption 1-(iii), as we illustrate

in Section 4.2 with a simple example.

Assumption 3 The econometrician observes a random sample (yi, xi)
n
i=1 of equilibrium outcomes

and observable payoff shifters from a large cross section of n markets drawn from a population

distribution that satisfies Assumption 1. The outcome vector for market i is yi = (yi1, . . . , yiJ) . The

observed matrix of payoff shifters for market i, xi, is comprised of the non-redundant elements of xji,

j = 1, . . . , J (the observable payoff shifters of firm j in market i). The unobserved random vector

εi = (ε1i, . . . , εJi) is independently and identically distributed across i with a distribution function

F that is known up to a finite dimensional parameter that is part of θ. The random vectors (y, x, ε)

are defined on a non-atomic product probability space (Ω,F,P) = (Ω1,F1,P1)× (Ω2,F2,P2) .

Assumption 3 allows us to identify P (y|x) , the population distribution of observed equilibrium
outcomes given covariates. Since our focus in this paper is identification, we treat identified distri-

butions as population distributions.

The requirement that the probability space is non-atomic is fairly weak and facilitates some

of the technical details below. We use a product probability space to clearly differentiate between

the randomness in the payoff functions due to the payoff shifters, represented by Ω1, and the

randomness in the actions taken by the players for a given mixed strategy profile, represented by

Ω2. Hence, for any ω1 ∈ Ω1, ω2 ∈ Ω2, (x (ω1, ω2) , ε (ω1, ω2)) = (x (ω1) , ε (ω1)) . On the other hand,
y (ω1, ω2) depends both on ω1, which determines the equilibrium mixed strategy profiles σ (ω1),
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and ω2, which determines the specific action taken by the players when they randomize according

to the mixed strategy profile σ (ω1) .

2.2 The Identification Problem

It is well known that the games and sampling processes satisfying Assumptions 1-3 may lead

to multiple Nash equilibria. Multiplicity implies that there are regions of values of the exogenous

variables where the econometric model predicts more than one outcome. Therefore, the relationship

between the outcome variable of interest and the exogenous variables is a correspondence rather

than a function. Hence, the parameters of the payoff functions may not be point identified, see for

example Berry and Tamer (2007) for a thorough discussion of this problem.

Nevertheless, these parameters can be partially identified given knowledge of P (y|x) for all x. In
particular, their identification region is given by the set of parameter vectors which are consistent

with the sampling process and the maintained modeling assumptions, and therefore may have

generated the distribution of observables. If the conjectured region for the parameters of interest

contains all its observationally equivalent feasible values and no other, the region is sharp. Berry and

Tamer (2007, equation (2.21), page 67) provide an abstract formulation for the sharp identification

region in a two player entry model. Here we report their formulation, modified to allow for games

with more than two players and two actions. This formulation, however, requires the introduction

of an infinite dimensional nuisance parameter, and thus is considered to be impractical. In the next

section we show that an alternative and practical formulation, which avoids the need for an infinite

dimensional nuisance parameter, delivers the same sharp identification region.

We start with some additional notation. Let Sθ (x, ε) denote the set of mixed strategy Nash

equilibria associated with a specific realization of the payoff shifters x and ε (this set is defined

formally in equation (3.2) below). Let ψ (σ;Sθ (x, ε)) denote a selection mechanism giving the

probability that an equilibrium σ ∈ Sθ (x, ε) is selected. Observe that for this selection mech-

anism to be admissible it is required that ψ (σ;Sθ (x, ε)) ≥ 0 for all σ ∈ Sθ (x, ε), and thatP
σ∈Sθ(x,ε) ψ (σ;Sθ (x, ε)) = 1. This summation is well defined because except on a set of x, ε

realizations of measure zero, the set Sθ (x, ε) contains a finite number of equilibria (Wilson (1971)).

Notice that the equilibrium selection mechanism ψ is left unspecified and can depend on market

unobservables. Then we have the following definition.

Definition 1 In a game which satisfies Assumptions 1-3, the sharp identification region for the

9



parameter vector θ ∈ Θ is given by:

(2.1) ΘB
I =

⎧⎪⎨⎪⎩θ ∈ Θ :
∃ ψ such that ∀ t ∈ Y,

P (y = t|x) =
Z Ã P

σ∈Sθ(x,ε)
ψ (σ;Sθ (x, ε))

JQ
j=1

σj (tj)

!
dF (ε|x) x− a.s.

⎫⎪⎬⎪⎭
where ψ is an admissible equilibrium selection mechanism as described above.

LetP (y|x; θ, ψ) denote the integral on the right hand side of the second line of equation (2.1) above.
Berry and Tamer explain this formulation and the practical difficulties involved in computing the

set ΘB
I as follows (page 68):

“The set ΘB
I is the sharp identified set, i.e., the set of parameters θ that are consistent

with the data and the model. Heuristically, a θ ∈ ΘB
I if and only if there exists a (proper)

selection mechanism ψ (...) such that the induced probability distribution P {y|x; θ, ψ}
matches the choice probabilities P (y|x) for all x almost everywhere. So, the presence
of multiple equilibria introduces nuisance parameters that are not specified and hence

makes it harder to identify the parameter θ. (...) Inference on the set ΘB
I based on

definition (2.1) [(2.21) in the original] though theoretically attractive is not practically

feasible since one needs to deal with infinite dimensional nuisance parameters (the ψ’s).

A practical approach to inference in this class of models follows the approach in Ciliberto

and Tamer (2004) by exploiting the fact that the selection mechanism ψ is a probability

and hence bounded between zero and one. Although this approach does not provide a

sharp set, it is practically attractive.”

In the following sections we provide a tractable characterization of the sharp identification

region. In the special case that players play only pure strategy Nash equilibria (Section 4 below),

we show that the sharp identification region is given by a finite number of moment inequalities

which have to hold for x− a.s.

3 The Sharp Identification Region

3.1 The Random Set of Mixed Strategy Equilibrium Profiles

We assume that players in each market follow Nash behavior. For a given realization of x and ε,

the mixed strategy profile σ = (σ1, . . . , σJ) constitutes a Nash equilibrium if

(3.1) πj (σj , σ−j , xj , εj , θ) ≥ πj (σ̃j , σ−j , xj , εj , θ) ∀σ̃j ∈ ∆ (Aj) ∀j.

10



Hence, we define the following θ-dependent set:

(3.2) Sθ (x, ε) = {σ ∈ ∆ (A) : πj (σj , σ−j , xj , εj , θ) ≥ πj (σ̃j , σ−j , xj , εj , θ) ∀σ̃j ∈ ∆ (Aj) ∀j} .

For a given value of θ and realization of x and ε, this is the set of mixed strategy Nash equilibrium

profiles. For ease of notation we write Sθ ≡ Sθ (x, ε) and omit the explicit reference to x and ε.

Given Assumption 1, Sθ is a random closed set in ∆ (A).

Definition 2 Denoting by F the family of closed subsets of a topological space F, a map Z : Ω→ F
is called a random closed set, also known as a closed set valued random variable, if for every

compact set K in F, Z−1 (K) = {ω ∈ Ω : Z (ω) ∩K 6= ∅} ∈ F.

The fact that the set Sθ satisfies the conditions in Definition 2 can be shown by writing the set Sθ

as follows:

Sθ =
JT
j=1

{σ ∈ ∆ (A) : πj (σj , σ−j , xj , εj , θ) ≥ π̃j (σ−j , xj , εj , θ)} ,

where

π̃j (σ−j , xj , εj , θ) = sup
σ̃j∈∆(Aj)

πj (σ̃j , σ−j , xj , εj , θ) .

Since πj (σj , σ−j , xj , εj , θ) is a continuous function of σ, xj , εj , its supremum π̃j (σ−j , xj , εj , θ) is a

continuous function. Therefore Sθ is the finite intersection of sets defined as solutions of inequalities

for continuous (random) functions. Thus, Sθ is a random closed set, see Molchanov (2005, Section

1.1).

For a given parameter θ ∈ Θ, each element σ (ω1) ∈ Sθ (ω1) P− a.s. determines a distribution

of players’ actions in A1 × · · · × AJ . Such random elements σ are the selections of Sθ:

Definition 3 Let Z be a random closed set in a topological space F. A random element z with

values in F is called a (measurable) selection of Z if z(ω) ∈ Z (ω) for almost all ω ∈ Ω. The family
of all selections of Z is denoted by Sel (Z) .

Each realization of the selection σ (ω1) ∈ Sθ (ω1) takes values in ∆ (A1) × · · · × ∆ (AJ) and

is one of the admissible mixed strategy Nash equilibrium profiles associated with the realizations

x (ω1) and ε (ω1) determined by ω1 ∈ Ω1. As briefly discussed after Assumption 3, the vector
of players actions y (ω1, ω2) depends not only on ω1 through the selection σ (ω1) ∈ Sθ (ω1) , but

also on ω2 ∈ Ω2, which determines players’ choice of which action to take in accordance with the
mixed strategy profile σ (ω1) . Let σ (ω1) = (σ1 (ω1) , . . . , σJ (ω1)) . By definition of a mixed strategy

11



profile, for each j = 1, . . . , J, σj (ω1) : Aj → [0, 1] assigns to each action aj ∈ Aj a probability

σj (ω1, aj) ≥ 0 that it is played, with
P

aj∈Aj
σj (ω1, aj) = 1.

Recall that by Assumption 2, the realizations of y coincide with the actions a taken with positive

probability and Y = A. Index the set Y in some (arbitrary) way, such that Y =
©
t1, . . . , tκY

ª
. Then

by the law of iterated expectations, for a given parameter value θ ∈ Θ and selection σ ∈ Sel (Sθ) ,
the implied probability that y = tk, k = 1, . . . , κY , is given by7

E
³
P
³
y (ω1, ω2) = tk

¯̄̄
ω1; θ

´´
= E

JY
j=1

σj

³
ω1, t

k
j

´
.

Hence, we can use σ = (σ1, . . . , σJ) to define a random point q (σ) whose realizations have coordi-

nates

(3.3) [q (σ (ω1))]k =
JY
j=1

σj

³
ω1, t

k
j

´
, k = 1, . . . , κY ,

This random point lies in a space of dimension equals to κY and is such that [q (σ (ω1))]k ≥ 0 for
each k = 1, . . . , κY and

PκY
k=1 [q (σ (ω1))]k = 1. Hence, it is an element of the κY − 1 dimensional

simplex, denoted ∆κY−1. The resulting set

(3.4) Q (Sθ) = {([q (σ)]k , k = 1, . . . , κY) : σ ∈ Sel (Sθ)} ,

is a closed random set in ∆κY−1. Each vector ([q (σ (ω1))]k , k = 1, . . . , κY) ∈ Q (Sθ (ω1)) gives the

probability with which each outcome (a J-tuple of actions under Assumption 2) of the game is

observed under the mixed strategy equilibrium σ (ω1) when the realization of x is x (ω1) and the

realization of ε is ε (ω1) . Section 3.3 below illustrates these ideas through the simple example of a

two player complete information static game of entry.

3.2 The Sharpness Result

Every realization of q ∈ Sel (Q (Sθ)) is contained in ∆κY−1, and therefore Q (Sθ) is an integrably

bounded random closed set, see Molchanov (2005, Definition 2.1.11), and all its selections are

integrable. Hence we can define the set

E (Q (Sθ)|x) = {E (q|x) : q ∈ Sel (Q (Sθ))}

= {(E ( [q (σ)]k|x) , k = 1, . . . , κY) : σ ∈ Sel (Sθ)} .
7Under the more general Assumption 1-(iii), this probability is equal to

E P y (ω1, ω2) = tk ω1; θ = E
J

j=1

J

aj∈Aj

(σj (ω1, aj))
1(tkj=g(aj)) .
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The set E (Q (Sθ)|x) is the conditional Aumann expectation8 of Q (Sθ). The following example
illustrates the notion of Aumann expectation. To keep it as simple as possible, we omit covariates

and do not base it on a game theoretic model.

Example 1 Let Z be a random closed set in <4 defined as follows:

Z (ω) =

½ ©£
1
3
2
3 0 0

¤
,
£
2
3
1
3 0 0

¤ª
for ω ∈ Ω01,©£

2
3
1
3 0 0

¤
,
£
0 0 1

3
2
3

¤ª
for ω ∈ Ω1\Ω01,

where P (Ω01) =
1
2 . Consider the set Ω

0
1. Then all selections of Z (ω) for ω ∈ Ω01 can be obtained as

z (ω) =

½ £
1
3
2
3 0 0

¤
for ω ∈ Ω001,£

2
3
1
3 0 0

¤
for ω ∈ Ω01\Ω001,

for all measurable Ω001 ⊂ Ω01. Since E (z|ω ∈ Ω01) =
£
1
3
2
3 0 0

¤
P (Ω001|Ω01)+

£
2
3
1
3 0 0

¤
(1−P (Ω001|Ω01)),

the range of expectations of selections depends on the atomic structure of the underlying probabil-

ity space. If the probability space has no atoms, then the possible values for P (Ω001|Ω01) fill in the
whole segment [0, 1]. Hence, E (Z|ω ∈ Ω01) is the interval with extreme points given by

£
1
3
2
3 0 0

¤
,£

2
3
1
3 0 0

¤
. A similar reasoning allows one to conclude that

E (Z) = co
£©£

2
3
1
3 0 0

¤ª
,
©£

1
2
1
2 0 0

¤ª
,
©£

1
6
1
3
1
6
1
3

¤ª
,
©£

1
3
1
6
1
6
1
3

¤ª¤
,

where co [·] denotes the convex hull of the set in square brackets. Hence, in this simple example
E (Z) is a parallelogram. ¤

By Theorem 2.1.46 in Molchanov (2005) the conditional Aumann expectation exists and is

unique. Because by Assumption 3 the probability space is non-atomic,9 and because the random

setQ (Sθ) takes its realizations in a subset of the finite dimensional space <κY , it follows by Theorem

2.1.15 and Theorem 2.1.24 of Molchanov (2005) that E (Q (Sθ)|x) is a closed convex set for x−a.s.,
and E (Q (Sθ)|x) = E (co [Q (Sθ)]|x).

The set E (Q (Sθ)|x) collects vectors of probabilities with which each outcome of the game can
be observed, by averaging over ω1 ∈ Ω1 the corresponding probability with which each outcome of
the game is observed under the mixed strategy equilibrium σ (ω1) . We emphasize that in case of

multiplicity, a different mixed strategy equilibrium σ (ω1) ∈ Sθ (ω1) may be selected for each ω1.

If the model is correctly specified, there exists at least one value of θ ∈ Θ such that the observed
8Aumann (1965) introduces the notion of integrals for set valued functions that we use here.
9When the probability space contains atoms, all the discussion that follows applies, with co [Q (Sθ)] replacing

Q (Sθ) .
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conditional distribution of y given x, P (y|x) , is a point in the set E (Q (Sθ)|x) for x− a.s.10 Let

the support function of a nonempty closed convex set B ∈ <κY be denoted h (B, ·) , with

h (B, u) = sup
b∈B

u0b, u ∈ <κY ,

Then P (y|x) ∈ E (Q (Sθ)|x) if and only if

(3.5) u0P (y|x) ≤ h (E (Q (Sθ)|x) , u) = E [h (Q (Sθ) , u)|x] ∀ u ∈ <κY ,

where P (y|x) ≡
£
P
¡
y = tk

¯̄
x
¢
, k = 1, . . . , κY

¤
, and where the last equality follows by Theorem

2.1.47-(iv) in Molchanov (2005). Because the support function is positively homogeneous, i.e.,

h (Q (Sθ) , cu) = ch (Q (Sθ) , u) for all c > 0 and for all u ∈ <κY , condition (3.5) is equivalent to

(3.6) u0P (y|x) ≤ E [h (Q (Sθ) , u)|x] ∀ u ∈ S,

where S = {u ∈ <κY : kuk = 1} denotes the unit sphere in <κY .

The key result of this paper is the following:

Theorem 3.1 Let Assumptions 1-3 be satisfied, and no other information be available. Then

(3.7) ΘI =
©
θ ∈ Θ : u0P (y|x) ≤ E [h (Q (Sθ) , u)|x] ∀ u ∈ S x− a.s.

ª
is the sharp identification region for the parameter vector θ ∈ Θ.

By standard arguments, condition (3.6) is equivalent to

dH (P (y|x) ,E (Q (Sθ)|x)) = 0.

Hence, ΘI can be defined in three equivalent ways:

ΘI = {θ ∈ Θ : dH (P (y|x) ,E (Q (Sθ)|x)) = 0 x− a.s.}

=
©
θ ∈ Θ : u0P (y|x) ≤ E [h (Q (Sθ) , u)|x] ∀ u ∈ S x− a.s.

ª
=

©
θ ∈ Θ : u0P (y|x) ≤ E [h (Q (Sθ) , u)|x] ∀ u ∈ S∆ x− a.s.

ª
,(3.8)

where

S∆ =
©
u ∈ <κY : u1 + . . .+ uκY = 1 and kuk = 1

ª
.

The last equality follows because E (Q (Sθ)|x) is a subset of the κY−1 dimensional simplex ∆κY−1.

Therefore, it suffices to restrict the directions used in condition (3.6) to those parallel to the

(κY − 1)-dimensional hyperplane that defines the unit simplex.
10By the definition of E (Q (Sθ)|x) , P (y|x) ∈ E (Q (Sθ)|x) if and only if ∃ q ∈ Sel (Q (Sθ)) : E (q|x) = P (y|x) .
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The three definitions of ΘI given above are equivalent. The definition based on the support

function can be straightforwardly applied, by discretizing the unit sphere in the relevant space and

checking a finite number of moment inequalities which have to hold for x−a.s.We discuss in detail
how to do this in Section 5.2 below. In practice, the definition based on u ∈ S∆ should be preferred

to the one based on S, because S∆ is of a lower dimension than S.

The definition based on the distance from P (y|x) to E (Q (Sθ)|x) may be used depending on
whether it is computationally more convenient in the specific application, as it yields a straightfor-

ward criterion function11 which is minimized by every parameter in the identification region:

(3.9) W (θ) =

Z
dH (P (y|x) ,E (Q (Sθ)|x)) dFx,

where Fx denotes the joint distribution of x. Clearly, W (θ) ≥ 0 for all θ ∈ Θ, and W (θ) = 0 if

and only if θ ∈ ΘI .

3.3 Example: Two Players Entry Game

In this case Aj = {0, 1} for j = 1, 2, A = Y = {0, 1} × {0, 1} , and κY = 4. Let P (y|x) =
[P (y = t|x) , t ∈ {(0, 0) , (1, 0) , (0, 1) , (1, 1)}] . Let σj ∈ [0, 1] denote the probability that player j
enters the market, with 1− σj the probability that he does not. Omit the regressors x in all that

follows, and let players’ payoffs be πj = aj (a−jθj + εj) , j = 1, 2. Figure 1 plots the set of mixed

strategy equilibrium profiles Sθ resulting from the possible realizations of ε1, ε2.

With only two players and two actions, we have that

Q (Sθ) =

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣
(1− σ1) (1− σ2)
σ1 (1− σ2)
(1− σ1)σ2
σ1σ2

⎤⎥⎥⎦ : σ ∈ Sel (Sθ)
⎫⎪⎪⎬⎪⎪⎭ .

Appendix B provides additional details giving the values of the coordinates ofE (q) , q ∈ Sel (Q (Sθ)) ,
and relating our approach to the discussion in Berry and Tamer (2007, pages 65-70). In order not to

deal with the infinite dimensional nuisance parameter (the selection mechanism) discussed in sec-

tion 2.2, Berry and Tamer suggest to estimate an outer region for the parameter vector of interest,

based on the insight in CT. Using our notation, their outer region is given by

11This criterion function was used, in the case of pure strategies only, by Ciliberto and Tamer (2004). However, in
their case the distance is from P (y|x) to a superset of E (Q (Sθ)|x) .
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ΘCT
I =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
θ ∈ Θ :

CSθ ((0, 0)) ≤ P (y = (0, 0)) ≤ CSθ ((0, 0)) +
R
Mθ

³
1 + ε2

θ2

´³
1 + ε1

θ1

´
dF (ε)

CSθ ((1, 0)) ≤ P (y = (1, 0)) ≤ CSθ ((1, 0)) +P
¡
ε ∈Mθ

¢
CSθ ((0, 1)) ≤ P (y = (0, 1)) ≤ CSθ ((0, 1)) +P

¡
ε ∈Mθ

¢
CSθ ((1, 1)) ≤ P (y = (1, 1)) ≤ CSθ ((1, 1)) +

R
Mθ

ε2
θ2

ε1
θ1
dF (ε)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
,

where Mθ = {ε : ε ∈ [0,−θ1]× [0,−θ2]} and CSθ (σ) = P (Sθ = {σ}), see Definition 4 below.
Alternatively, one may adopt the insight of ABJ and define another outer region (which contains

ΘCT
I ) which, using our notation, is given by

ΘABJ
I =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
θ ∈ Θ :

P (y = (0, 0)) ≤ CSθ ((0, 0)) +
R
Mθ

³
1 + ε2

θ2

´³
1 + ε1

θ1

´
dF (ε)

P (y = (1, 0)) ≤ CSθ ((1, 0)) +P
¡
ε ∈Mθ

¢
P (y = (0, 1)) ≤ CSθ ((0, 1)) +P

¡
ε ∈Mθ

¢
P (y = (1, 1)) ≤ CSθ ((1, 1)) +

R
Mθ

ε2
θ2

ε1
θ1
dF (ε)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
Appendix B shows that, compared withΘI as defined in equation (3.8), ΘCT

I andΘABJ
I are obtained

by checking the support function dominance only for u equal to the canonical basis vectors in <4

(ΘABJ
I ), and by taking the canonical basis vectors in <4 and each of these vectors multiplied by

−1 (ΘCT
I ). Clearly, these inequalities are a small subset of the ones required to obtain the sharp

identification region, and therefore give an outer region for θ.

Figure 6 and Table 1 report ΘI , Θ
CT
I , and ΘABJ

I in a simple example with (ε1, ε2)
iid∼ N (0, 1)

and Θ = [−5, 0]2 . In the figure, ΘABJ
I is given by the union of the yellow, red, and black areas, and

ΘCT
I by the union of the red and black areas. ΘI is the black region. In Section 5 we explain how

this region is calculated. The data is generated with θB1 = −1.15, θB2 = −1.4, and using a selection
mechanism which picks each of outcome (0, 0) and (1, 1) for 10% of ω : ε (ω) ∈ [0,−θB1] × [0,−θB2],
and each of outcome (1, 0) and (0, 1) for 40% of ω : ε (ω) ∈ [0,−θB1]× [0,−θB2]. Hence, the observed
distribution is P (y) = [0.26572 0.34315 0.36531 0.02582]. Our results clearly show that ΘI is

substantially smaller than ΘCT
I and ΘABJ

I : the sharp identification region has an area which is

43.5% of ΘABJ
I , and 52% of ΘCT

I .

4 Pure Strategies Only: A Further Simplification

4.1 The Random Set of Equilibrium Outcomes Generated by Pure Strategies

We now assume that players in each market do not randomize across their actions. In this case, the

set Sθ takes its realizations in the vertices of ∆ (A) . For a given realization of x and ε, a strategy
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profile a ∈ A is a pure strategy Nash Equilibrium if

(4.1) πj (aj , a−j , xj , εj , θ) ≥ πj (ãj , a−j , xj , εj , θ) ∀ãj ∈ Aj ∀j.

Using this inequality, we define the following θ-dependent set:

(4.2)

Yθ (x, ε) = {y ∈ Y : ∃ a ∈ A s.t. y = a, πj (aj , a−j , xj , εj , θ) ≥ πj (ãj , a−j , xj , εj , θ) ∀ãj ∈ Aj ∀j} .

For a given value of θ, this is the set of outcomes generated by pure strategies Nash equilibria.12 As

we did for Sθ, we omit the explicit reference to this set’s dependence on x and ε. Given Assumption

1, one can easily show that Yθ is a random closed set in Y (see Definition 2). Because the realizations
of Yθ are subsets of the finite set Y, it suffices that π (·) is a measurable (rather than continuous)
function of x and ε in order to establish that Yθ is a random closed set in Y.

For the model to be correctly specified, it is necessary that at least for some parameter values

a pure strategy Nash equilibrium exists P− a.s. Hence, we impose the following assumption:

Assumption 4 For a subset of values of θ ∈ Θ which include the values of θ that have generated
the observed outcomes y, a pure strategy Nash equilibrium exists P− a.s.

Under Assumptions 1-4, the observed outcomes y are consistent with Nash behavior if and only

if there exists at least one θ ∈ Θ such that y(ω) ∈ Yθ (ω) P − a.s. (i.e., y is a selection of Yθ, see

Definition 3). In what follows, we exploit this insight to provide an equivalent characterization of

the identification region in equation (3.8) based on a finite number of moment inequalities which

have to hold for x− a.s. Mathematically, this simplification is due to the fact that when only pure

strategies are played, E (Q (Sθ)|x) is a closed convex polytope, fully characterized by a finite number
of supporting hyperplanes. The vertices of Q (Sθ) are determined by the selections of Sθ, which

in turn are degenerate mixed strategy profiles placing probability one on a specific action for each

player. Hence, the supporting hyperplanes determining E (Q (Sθ)|x) can be easily obtained (see
Theorem 4.1 below). On the other hand, when players randomize across their actions, in equilibrium

they must be indifferent among the actions over which they place positive probability. This implies

that the equilibrium mixed strategy profiles are a function of both θ and ε. If ε has a discrete

12Restrict the set Sθ to be a set of pure strategy Nash equilibria. Then under Assumption 2, Yθ coincides with Sθ.
However, under the more general Assumption 1-(iii), these two sets differ, and

Yθ (x, ε) = {y ∈ Y : ∃ a ∈ A s.t. y = g (a) , πj (aj , a−j , xj , εj , θ) ≥ πj (ãj , a−j , xj , εj , θ) ∀ãj ∈ Aj ∀j} .
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distribution, E (Q (Sθ)|x) remains a convex polytope, and one can exactly calculate its supporting
hyperplanes. But when the distribution of ε is continuous, E (Q (Sθ)|x) may have infinitely many
extreme points, and therefore one needs an infinite number of inequalities to determine whether

P (y|x) belongs to it.

For the case that there are no covariates x, one can determine whether a random vector y is

a selection of an almost surely non-empty random closed set Yθ by using the results of Artstein

(1983), Norberg (1992) and Molchanov (2005, Theorem 1.2.20 and Section 1.4.8). These results

establish that y ∈ Sel (Yθ) if and only if13

(4.3) P{y ∈ K} ≤ P{Yθ ∩K 6= ∅} for all compact sets K ⊂ Y.

Because Y is finite, all subsets of Y are compact. The functional P{Yθ ∩K 6= ∅} on the right-hand
side of (4.3) is called the capacity functional of Yθ. The following definitions formally introduce

this functional and a few related ones:

Definition 4 Let Z be a random closed set in the topological space F, and denote by K the family
of compact subsets of F.

1. A functional TZ : K→ [0, 1] given by

TZ (K) = P{Z ∩K 6= ∅}, K ∈ K

is said to be the capacity functional of Z.

2. A functional CZ : K→ [0, 1] given by

CZ (K) = P{Z ⊂ K}, K ∈ K

is said to be the containment functional of Z.

3. A functional IZ : K→ [0, 1] given by

IZ (K) = P{K ⊂ Z}, K ∈ K

is said to be the inclusion functional of Z.

The following relationships hold:

CZ (K) = 1−TZ (K
c) ,(4.4)

IZ (K) = 1−TZc (K) .

13Beresteanu and Molinari (2008, Proposition 4.1) use this result to establish sharpness of the identification region
of the parameters of a best linear predictor with interval outcome data. Galichon and Henry (2006) use it to define a
correctly specified partially identified structural model, and derive a Kolmogorov-Smirnov test for Choquet capacities.
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where Kc and Zc denote, respectively, the complement of the sets K and Z.

Example 2 Consider a simple two player entry game similar to the one in Tamer (2003), omit the

covariates, assume that players’ payoffs are given by πj = aj (a−jθj + εj) , where aj ∈ {0, 1} and
θj < 0, j = 1, 2, and assume that players only play pure strategy equilibria. Figure 2 plots the set Yθ

against the realizations of ε1, ε2. In this case, TYθ ({(0, 0)}) = P (ε1 ≤ 0, ε2 ≤ 0) , TYθ ({(1, 0)}) =
P (ε1 ≥ 0, ε2 ≤ −θ2) , TYθ ({(0, 1)}) = P (ε1 ≤ −θ1, ε2 ≥ 0) , TYθ ({(1, 1)}) = P (ε1 ≥ −θ1, ε2 ≥ −θ2) ,
TYθ ({(1, 0) , (0, 1)}) = TYθ ({(1, 0)})+ TYθ ({(0, 1)})− P (0 ≤ ε1 ≤ −θ1, 0 ≤ ε2 ≤ −θ2) . The ca-
pacity functional of the remaining subsets of Y can be calculated similarly. Corollary 5.1 and

Algorithm 5.1 show that the capacity functional of those remaining subsets can be obtained as sums

of the capacity functional of the subsets reported here. ¤

For the case that there are covariates x, the researcher observes the tuple (y, x), and the random

set Yθ is a function of x (and of course ε). Hence, one needs to work with the pair (Yθ, x) . In this

case, the results of Artstein (1983), Norberg (1992) and Molchanov (2005, Theorem 1.2.20 and

Section 1.4.8) imply that (y, x) is a selection of (Yθ, x) if and only if

P{(y, x) ∈ K × L} ≤ P{(Yθ, x) ∩K × L 6= ∅} ∀K ⊂ Y, ∀ compact sets L ⊂ X .

This inequality can be written as

P (y ∈ K|x ∈ L)P (x ∈ L) ≤ P {Yθ ∩K 6= ∅|x ∈ L}P (x ∈ L) ∀K ⊂ Y, ∀ compact sets L ⊂ X ,

and it is satisfied if and only if

(4.5) P (y ∈ K|x) ≤ P {Yθ ∩K 6= ∅|x} ∀K ⊂ Y x− a.s.

Notice that given equation (4.4), inequalities (4.5) can be equivalently written as

(4.6) CYθ|x (K) ≤ P (y ∈ K|x) ≤ TYθ|x (K) ∀K ⊂ Y x− a.s.,

where the subscript Yθ|x denotes that the functional is for the random set Yθ conditional on x.

We return to this representation of inequalities (4.5) when discussing the relationship between our

analysis and that of CT. Clearly, if one considers all K ⊂ Y, the left-hand side inequality in (4.6)
is superfluous: when the inequalities in (4.6) are used, only subsets K ⊂ Y of cardinality up to half
of the cardinality of Y are needed.

We define the identified set of parameters θ as

(4.7) ΘI =
©
θ ∈ Θ : P (y ∈ K|x) ≤ TYθ |x (K) ∀K ⊂ Y x− a.s.

ª
.
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For comparison purposes, we reformulate the definition of the identified sets given by ABJ and CT

respectively through the capacity functional and the containment functional:

ΘABJ
I =

©
θ ∈ Θ : P {y = t|x} ≤ TYθ|x (t) ∀t ∈ Y x− a.s.

ª
,(4.8)

ΘCT
I =

©
θ ∈ Θ : CYθ|x (t) ≤ P {y = t|x} ≤ TYθ|x (t) ∀t ∈ Y x− a.s.

ª
.(4.9)

Both ABJ and CT acknowledge that the identification regions they give are not sharp. Comparing

the sets in equations (4.8)-(4.9) with the set in equation (4.7), one observes that ΘABJ
I is obtained

applying inequality (4.5) only for K = {y} ∀y ∈ Y. Similarly, ΘCT
I is obtained applying inequality

(4.6) only for K = {y} (or, equivalently, applying inequality (4.5) for K = {y} and K = Y\ {y}
∀y ∈ Y). Clearly both ABJ and CT do not use the information contained in the remaining subsets
of Y, while this information is used to obtain ΘI . Two questions arise: (1) whether ΘI as defined in

equation (4.7) coincides with ΘI as defined in equation (3.8), hence yielding the sharp identification

region of θ through a finite number of moment inequalities which need to hold for x− a.s.; and (2)

if and by how much ΘI differs from ΘABJ
I and ΘCT

I .

We answer here the first question. Section 4.2 answers the second question by looking at a

simple example.

Theorem 4.1 Assume that players use only pure strategies, that Assumptions 1-3 are satisfied,

that θ is such that Assumption 4 is satisfied, and that no other information is available. Then for

x− a.s. these two conditions are equivalent:

1. u0P (y|x) ≤ E [h (Q (Sθ) , u)|x] ∀ u ∈ S,

2. P (y ∈ K|x) ≤ TYθ|x (K) ∀K ⊂ Y.

Notice that a candidate value of θ ∈ Θ such that with positive probability a pure strategy Nash
equilibrium does not exist for a set of values of x of positive probability is trivially rejected as a

member of ΘI using either definitions of the identification region in equations (3.8) and (4.7).

4.2 Example: Entry Game With 2 Types of Players and Pure Strategies Only

Consider a game where in each market there are four potential entrants, two of each type. The two

types differ from each other by their payoff function. This model is an extension of the seminal

papers by Bresnahan and Reiss (1990, 1991). An empirical application of a version of this model

appears in Ciliberto and Tamer (2004). We adopt the version of this model described in Berry and
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Tamer (2007, pages 84-85), and for illustration purposes we simplify it by omitting the observable

payoff shifters x and by setting to zero the constant in the payoff function.

Let ajk ∈ {0, 1} be the strategy of firm j = 1, 2 of type k = 1, 2. Entry is denoted by ajk = 1,

with ajk = 0 denoting staying out. Let y1 = a11 + a21 denote the number of rivals of type 1 and

y2 = a12+a22 the number of rivals of type 2 that a firm faces so that yk ∈ {0, 1, 2}. Players j = 1, 2
of type 1 and type 2 have respectively the following payoff functions:

πj1 (aj1, a−j1, a12, a22, ε1) = aj1 (θ11 (a−j1 + a12 + a22)− ε1) ,(4.10)

πj2 (aj2, a−j2, a11, a21, ε2) = aj2 (θ21 (a11 + a21) + θ22a−j2 − ε2) .(4.11)

We assume that θ11, θ21 and θ22 are strictly negative and that θ22 > θ21. This means that a type 2

firm is worried more about rivals of type 1 than of rivals of its own type. Since firms of a given type

are indistinguishable to the econometrician, the observable outcome is the number of firms of each

type which enter the market. Hence there are 9 possible outcomes to this game: Y = {(0, 0) , (0, 1) ,
(1, 0) , (1, 1) , (2, 0) , (0, 2) , (1, 2) , (2, 1) , (2, 2)}. Figure 3 plots the set Yθ against the realizations
of ε1, ε2.

We use this example to illustrate our methodology. We first define the specific form taken by

the set Yθ given equations (4.10)-(4.11):

Yθ =

⎧⎪⎪⎨⎪⎪⎩y ∈ Y : ∃ a ∈ A s.t.

y1 = a11 + a21,
y2 = a12 + a22,
aj1 (θ11 (a−j1 + y2)− ε1) ≥ (1− aj1) (θ11 (a−j1 + y2)− ε1) , j = 1, 2,
aj2 (θ21y1 + θ22a−j2 − ε2) ≥ (1− aj2) (θ21y1 + θ22a−j2 − ε2) , j = 1, 2.

⎫⎪⎪⎬⎪⎪⎭
Because the set Y has cardinality 9, in principle there are 29 = 512 inequality restrictions to

consider, corresponding to each compact subset K ⊂ Y. However, the number of inequalities to be
checked is significantly smaller. In particular, by a simple application of Algorithm 5.1 below, the

sharp identification region that we give is based on 26 inequalities, whereas the identification region

obtained following CT’s insight is based on 18 inequalities. Section 5 below addresses formally the

issue of how to reduce the number of inequalities to be checked.

Figure 7 and Table 2 report ΘI , Θ
CT
I , and ΘABJ

I in a simple example with (ε1, ε2)
iid∼ N (0, 1)

and Θ = [−5, 0]3 . In the figure, ΘABJ
I is given by the union of the yellow, red and black segments,

and ΘCT
I by the union of the red and black segments. ΘI is the black segment. Notice that

the identification regions are segments because the outcomes (0, 0) and (2, 2) can only occur as

unique equilibrium outcomes, and therefore imply two moment equalities which make θ21 and θ22

a function of θ11. While, strictly speaking, the approach in ABJ does not take into account this
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fact, as it uses only upper bounds on the probabilities that each outcome occurs, it is clear (and

indicated in their paper) that one can incorporate equalities into their method. Hence, we use

the equalities on P (y = (0, 0)) and P (y = (2, 2)) also when calculating ΘABJ
I . We generate the

data with θB11 = −0.15, θB21 = −0.20, and θB22 = −0.10 and use a selection mechanism to choose

the equilibrium played in the many regions of multiplicity. The resulting observed distribution is

P (y) = [0.3021 0.0335 0.0231 0.0019 0.2601 0.2779 0.0104 0.0158 0.0752]. Our results clearly show

that ΘI is substantially smaller than ΘCT
I and ΘABJ

I . The width of the bounds on each parameter

vector obtained using our method is about 46% of the width obtained using ABJ’s method, and

about 63% of the width obtained using CT’s method.

5 Computational Aspects of the Problem

In order to compute the sharp identification region, we need to calculate the support function of the

random set Q (Sθ) . This is achieved by applying the Method of Simulated Moments, see McFadden

(1989) and Pakes and Pollard (1989). The first step in the procedure requires one to compute the

set of all mixed strategy Nash equilibria for given realizations of the payoff shifters, Sθ (x, ε) . This

is a computationally challenging problem, though a well studied one which can be performed using

the Gambit software described by McKelvey and McLennan (1996).14 Notice that this step has to

be performed regardless of which features of normal form games are identified: whether sufficient

conditions are imposed for point identification of the parameter vector of interest, or this vector is

restricted to lie in an outer region, or its sharp identification region is characterized through the

methodology proposed in this paper.

In our case, for given realizations of x and ε, computation of the set Sθ (x, ε) is needed in order

to obtain by simulation, for each u ∈ S∆,

E [h (Q (Sθ) , u)|x] = E
"

sup
σ∈Sθ(x,ε)

u0q (σ)

¯̄̄̄
¯x
#
=

Z
sup

σ∈Sθ(x,ε)
u0q (σ) dF (ε|x) .

One can simulate this integral using the following procedure.15 For any x ∈ X , draw realizations of
ε, denoted εb, b = 1, . . . , B, according to the distribution F ( ·|x) with identity covariance matrix.
These draws stay fixed throughout the remaining steps. Transform the realizations εb, b = 1, . . . , B,

14The Gambit software can be freely downloaded at http://gambit.sourceforge.net/. Bajari, Hong, and Ryan (2007)
use this software to compute the set of mixed strategy Nash equilibria in finite normal form games whose parameters
are point identified.
15The procedure described here is very similar to the one proposed by Ciliberto and Tamer (2004). When the

assumptions maintained by Bajari, Hong, and Ryan (2007, Section 3) are satisfied, their algorithm can be used to
significantly reduce the computational burden associated with simulating the integral.
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into draws with covariance matrix specified by θ. For each εb, compute the payoffs πj
³
·, xj , εbj , θ

´
for j = 1, . . . , J and obtain the set Sθ

¡
x, εb

¢
. Then compute the set Q

¡
Sθ
¡
x, εb

¢¢
. Pick a u ∈ S∆,

compute the support function h
¡
co
£
Q
¡
Sθ
¡
x, εb

¢¢¤
, u
¢
, and average it over a large number of draws

of εb.

The same reasoning gives that the conditional Aumann expectation E (Q (Sθ)|x) can be ap-
proximated by a simulated Minkowski average,

bEB (Q (Sθ)|x) = 1

B

LB
b=1 co

h
Q
³
Sθ

³
x, εb

´´i
.

The strong law of large numbers in Molchanov (2005, Theorem 3.1.6) guarantees that as B →∞,

i.e., the number of simulations increases, ρH
³bEB (Q (Sθ)|x) ,E (Q (Sθ)|x)´ → 0 P − a.s. This in

turn implies almost sure convergence of ÊB

£
h
¡
co
£
Q
¡
Sθ
¡
x, εb

¢¢¤
, u
¢¯̄
x
¤
to E [h (Q (Sθ) , u)|x] ,

uniformly in u ∈ S∆, see Schneider (1993, Theorem 1.8.12).

Denoting byWB (θ) =
R
dH

³
P (y|x) , bEB (Q (Sθ)|x)´ dFx the analog ofW (θ) from equation

(3.9), with bEB (Q (Sθ)|x) replacing E (Q (Sθ)|x) , we have that by triangle inequality
sup
θ∈Θ

|WB (θ)−W (θ)| ≤ sup
θ∈Θ

Z
ρH

³bEB (Q (Sθ)|x) ,E (Q (Sθ)|x)´ dFx
≤ sup

θ∈Θ
ρH

³bEB (Q (Sθ)) ,E (Q (Sθ))´ ,
where the last inequality follows by the properties of the conditional Aumann expectation, Molchanov

(2005, Theorem 2.1.47-(v)). For each θ ∈ Θ,
√
BρH

³bEB (Q (Sθ)) ,E (Q (Sθ))´ converges in distri-
bution to the supremum of a Gaussian process (Molchanov (2005, Theorem 2.2.1)). Hence, the

arguments in Manski and Tamer (2002, Proposition 5), Ciliberto and Tamer (2004), and Cher-

nozhukov, Hong, and Tamer (2007) assure that an identification region based on the simulated

conditional Aumann expectation and its support function delivers an approximation of ΘI which

converges to ΘI with respect to the Hausdorff metric as B → ∞. In what follows we do not

differentiate between the set ΘI , and its counterpart resulting from numerical simulations.

5.1 Computing the Identification Region in the Pure Strategies Case

When it is assumed that players play only pure strategies, one needs to calculate the capacity

functional of the random set Yθ. As established in Theorem 4.1, TYθ|x (K) , K ⊂ Y, is equal to the
expectation of the support function of the set Q (Sθ) evaluated at u equal to each of the 2κY vectors

with each entry equal to either 1 or 0. Hence TYθ |x (K) , K ⊂ Y, can be approximated through the
procedure described above.
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The set ΘI is defined by 2κY inequalities which have to hold for x− a.s. This number can be,

in practice, very large. However, we emphasize that once the set Yθ has been computed, evaluating

whether all 2κY inequalities are satisfied is a matter of “bookkeeping.” Nevertheless, it can be a

demanding task when the number of players or the number of actions each player can take is large.

Fortunately, in many cases there is no need to verify the complete set of 2κY inequalities, because

many are redundant.16 In particular, if K1 and K2 are two disjoint subsets of Y such that

(5.1) {ω : Yθ (ω) ∩K1 6= ∅|x} ∩ {ω : Yθ (ω) ∩K2 6= ∅|x} = ∅,

that is, the set of ω for which Yθ intersects both K1 and K2 has probability zero, then the

inequality P {y ∈ K1 ∪K2|x} ≤ P {Yθ ∩ (K1 ∪K2) 6= ∅|x} does not add any information be-
yond that provided by the inequalities P {y ∈ K1|x} ≤ P {Yθ ∩K1 6= ∅|x} and P {y ∈ K2|x} ≤
P {Yθ ∩K2 6= ∅|x}. Therefore, prior knowledge of some properties of the game can be very helpful
in eliminating unnecessary inequalities. For example, in a Bresnahan and Reiss entry model with

4 players, if the number of entrants is identified, the number of inequalities to be verified reduces

from 65,536 to at most 100. Theorem 5.1 below gives the general result. While its proof is simple,

this result is conceptually and practically important.

Theorem 5.1 Take θ ∈ Θ and let Assumptions 1-4 hold. Consider a partition of Ω into sets

Ω1, . . . ,ΩM of positive probability. Let Yi

Yi = ∪{Yθ(ω) : ω ∈ Ωi}.

denote the range of Yθ(ω) for ω ∈ Ωi. Assume that Y1, . . . ,YM are disjoint. Then it suffices to

check (4.5) only for all subsets K such that there is i = 1, . . . ,M for which K ⊆ Yi.

A simple Corollary of Theorem 5.1, the proof of which is omitted, is the following:

Corollary 5.1 Take θ ∈ Θ and let Assumptions 1-4 hold. Assume that Ω = Ω1∪Ω2 with Ω1∩Ω2 =
∅, such that Yθ(ω) is a singleton almost surely for ω ∈ Ω1. Let Yi = ∪ω∈ΩiYθ(ω), i = 1, 2, and assume
that Y1 ∩ Y2 = ∅ and that κY2 ≤ 2. Then inequalities (4.5) hold if

(5.2) P{Yθ = {t}|x} ≤ P{y = t|x} ≤ P{t ∈ Yθ|x}

x− a.s. for all t ∈ Y.
16The game we described in Section 4.2 above is an example for the possible elimination of redundant inequalities.
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An implication of this Corollary is that in a static entry game with two players in which only

pure strategies are played, the identification region proposed by CT coincides with ours, and is

sharp.17 In this example, Y1 = {(0, 0) , (1, 1)} , Y2 = {(0, 1) , (1, 0)} , and Ω2 = {ω : Yθ ∩ Y2 6= ∅}.
An application of Algorithm 5.1 below shows that actually the sharp identification region can be

obtained by checking only five inequalities which have to hold for x − a.s., given by inequalities

(4.5) for K = {(0, 0)} , {(1, 0)} , {(0, 1)} , {(1, 1)} , {(1, 0) , (0, 1)} . On the other hand, the example
in Section 3.3 above shows that CT’s approach does not yield the sharp identification region when

mixed strategies are allowed for.

When no prior knowledge of the game such as, for example, that required in Theorem 5.1 is

available, it is still possible to use the insight in equation (5.1) within an algorithm that determines

which inequalities yield the sharp identification region. In particular, one can use the following

procedure to build a collection of sets C such that checking inequalities (4.5) for each element of
C suffices for sharpness. That is, the algorithm decomposes Y into subsets such that Yθ does not
jointly hit any two of them with positive probability. Observe that

P {Yθ ∩K1 6= ∅, Yθ ∩K2 6= ∅|x} =
Z
1 (Yθ (x, ε) ∩K1 6= ∅) 1 (Yθ (x, ε) ∩K2 6= ∅) dF (ε|x) ,

so that this probability can be easily approximated by simulation for any K1,K2 ⊂ Y as described
above. Hence, one can use the following algorithm to determine which inequalities to check.

Algorithm 5.1

0) Set C1 = Y and C2 = ∅.
1) For each ti, tj ∈ C1 i 6= j, if there exists a set X̃ij ⊂ X such that P

³
X̃ij
´
> 0 and

P
©
Yθ ∩ ti 6= ∅, Yθ ∩ tj 6= ∅

¯̄
x
ª
> 0 ∀x ∈ X̃ij

let C2 = C2 ∪
©
ti, tj

ª
. If C2 6= ∅, set C3 = ∅.

2) For each
©
ti, tj

ª
∈ C2, for each tk ∈ C1, k 6= i, j, if there exists a set X̃ijk ⊂ X such that

P
³
X̃ijk

´
> 0 and

P
n
Yθ ∩

©
ti, tj

ª
6= ∅, Yθ ∩ tk 6= ∅

¯̄̄
x
o
> 0 ∀x ∈ X̃ijk,

let C3 = C3 ∪
©
ti, tj , tk

ª
. If for all

©
ti, tj

ª
∈ C2, for each tk ∈ C1, k 6= i, j, the above condition is not

satisfied, let m̄ = 2 and stop. Else, let m̄ = 3, set Cm̄ = ∅, and go to the next step.
17A literal application of ABJ’s approach does not take into account the fact that in this game (0, 0) and (1, 1) only

occur as unique equilibria of the game, and therefore does not yield the sharp identification region as ABJ discuss
(see page 32)
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3) For κY ≥ m̄ ≥ 3, repeat the same operation as follows. For each
©
ti1 , . . . , tim−1

ª
∈ Cm−1, for

each tk ∈ C1, k 6= i1, . . . , im−1, if there exists a set X̃i1,...,im−1 ⊂ X such that P
³
X̃i1,...,im−1

´
> 0 and

P
n
Yθ ∩

©
ti1 , . . . , tim−1

ª
6= ∅, Yθ ∩ tk 6= ∅

¯̄̄
x
o
> 0 ∀x ∈ X̃i1,...,im−1 ,

let Cm = Cm ∪
©
ti1 , . . . , tim−1 , tk

ª
. If for all

©
ti1 , . . . , tim−1

ª
∈ Cm−1, for each tk ∈ C1, k 6=

i1, . . . , im−1, the above condition is not satisfied, let m̄ = m − 1 and stop. Else, let m̄ = m,

set Cm̄ = ∅, and continue.

The set ΘI is then given by equation (4.7) for K ∈
Sm̄
m=1 Cm.

One may wonder whether in general the above algorithm will yield a different set of inequalities

compared to those used by ABJ or CT. The following result shows that in general the system of

constraints (4.5) obtained by restricting attention to K being singletons, as it is done by ABJ,

does not yield a full characterization of the random set Yθ, and therefore is not suited to yield

the sharp identification region. Hence, Algorithm 5.1 returns a different set of inequalities to be

checked compared to ABJ when the assumptions of Theorem 5.2 are satisfied.

Theorem 5.2 Let Assumptions 1-4 hold. Assume that there exists θ ∈ Θ, with Yθ 6= ∅ P − a.s.,

such that for all x ∈ X̃ ⊂ X , with P
³
X̃
´
> 0, the expected cardinality of Yθ given x is strictly

greater than one, and such that P
©©

t1, t2
ª
∩ Yθ 6= ∅

¯̄
x
ª
< 1 for all t1, t2 ∈ Y. Then there exists a

random vector z which satisfies inequalities (4.5) for K = {t} ∀t ∈ Y but is not a selection of Yθ.

This result shows that the extra inequalities matter in general, compared to those used by ABJ,

to fully characterize Yθ and determine if y ∈ Sel (Yθ). In fact, the assumptions of the theorem are

satisfied whenever the model has multiple equilibria with positive probability, which implies that

the expected cardinality of Yθ given x is strictly greater than one, and it has at least three different

equilibria.

On the other hand, CT strengthen the use of the singleton-based inequalities through an insight

that corresponds to the observation that

(5.3) P{Yθ = {t}|x} = CYθ|x ({t}) ≤ P{y = t|x} ≤ P{t ∈ Yθ|x} = TYθ|x({t}) ∀t ∈ Y x− a.s.

For simplicity write I(t) instead of I({t}), and I(t1, t2) instead of I({t1, t2}) and the same for the
capacity functional T and the containment functional C. The following result shows that under

certain assumptions the system of constraints (4.6) obtained by restricting attention to K being

singletons, as it is done by CT, does not yield a full characterization of the random set Yθ, and
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therefore is not suited to yield the sharp identification region. Hence when the assumptions of

Theorem 5.3 are satisfied, Algorithm 5.1 returns a different set of inequalities to be checked than

those used by CT.

Theorem 5.3 Let Assumptions 1-4 hold. Assume that there exists θ ∈ Θ, with Yθ 6= ∅ P − a.s.,

such that for all x ∈ X̃ ⊂ X , with P
³
X̃
´
> 0, there exist t1, t2 ∈ Y with

(5.4) IYθ|x(t
1, t2) > 0

and

(5.5) P{κYθ > 1|x} > IYθ |x(t
1) + IYθ|x(t

2)−CYθ|x(t
1)−CYθ |x(t

2).

Then there exists a random vector z which satisfies inequalities (5.3) but is not a selection of Yθ.

This result shows that the extra inequalities matter in general, compared to those used by CT,

to fully characterize Yθ and determine if y ∈ Sel (Yθ). In fact, the assumptions of the theorem
are satisfied whenever (1) there are regions of the unobservables of positive probability where two

different outcomes can result from equilibrium strategy profiles; and (2) the probability that the

cardinality of Yθ is greater than one exceeds the probability that each of these two outcomes is

not a unique equilibrium. It is easy to see that these assumptions are not satisfied in a two player

entry game where players are allowed only to play pure strategies, but they are satisfied in the four

player, two type game described in Section 4.2.

5.2 Computing the Identification Region in the Mixed Strategies Case

Consider now the case where players randomize across their actions. The support function of the

conditional Aumann expectation E (Q (Sθ)|x) can be approximated by simulation as described at
the beginning of Section 5. We now discuss how to discretize the unit sphere S∆ in order to

transform the definition of ΘI based on the support function in equation (3.8) into a definition

involving a finite number of moment inequalities which have to hold for x− a.s.

Our proposal is to use a νk-net on the sphere. For a given 0 < νk < 1, a νk-net of S∆ is given

by a finite subset of vectors Uk = {u1, . . . , uk} ⊂ S∆ such that for every vector u ∈ S∆ there is an

i ∈ {1, . . . , k} with the property that u is within distance νk from ui. By construction,

νk = max
u∈S∆

min
1≤i≤k

ku− uik .
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One can build this νk-net such that it contains a number of points that is O
³
ν
−(κY−1)
k

´
, see

Gardner and Milanfar (2003, Lemma 7.1). An easy to implement algorithm which allows one to

build such a νk-net is provided in Lovisolo and DaSilva (2001, Section 2). This is the algorithm

used for the construction of the νk-net used in the examples in Sections 3.3 and 6.2. In those

examples, we approximate ΘI using 1,160 points uniformly distributed over the unit sphere.18 This

corresponds to a value of νk equal to 0.222.

Once the νk-net is constructed, one can define the set

(5.6) ΘIUk =
©
θ ∈ Θ : u0P (y|x) ≤ E [h (Q (Sθ) , u)|x] ∀ u ∈ Uk x− a.s.

ª
.

Then by construction ΘI ⊂ ΘIUk . As νk → 0, ΘIUk decreases to ΘI , a result formally established

in the following Theorem.

Theorem 5.4 Let ΘI and ΘIUk be defined by equations (3.8) and (5.6) respectively. Let UK be a

νk-net of S∆, with νk → 0 as k →∞. Then ρH (ΘI ,ΘIUk)→ 0 as k →∞.

6 Extensions to Other Solution Concepts

While in the main body of this paper we focus on economic models of games in which Nash Equi-

librium is the solution concept employed, our approach easily extends to other solution concepts.

Here we consider the case that players are assumed to be only level-1 rational, and the case that

they are assumed to play correlated strategies. For simplicity, we exemplify these extensions using

a two player simultaneous move static game of entry with complete information.

6.1 Level-1 Rationality

Suppose that players are only assumed to be level-1 rational. The identification problem under this

weaker solution concept was first studied by Aradillas-Lopez and Tamer (2008, AT henceforth). Let

the econometrician observe players’ actions, so that Assumption 2 is satisfied. A level-1 rational

profile is given by a mixed strategy for each player that is a best response to one of the possible

mixed strategies of her opponent. In this case one can define the θ-dependent set

Rθ (x, ε) =

(
σ ∈ ∆ (A) :

∀j ∃ σ̃−j ∈ ∆ (A−j) s.t.
πj (σj , σ̃−j , xj , εj , θ) ≥ πj

³
σ0j , σ̃−j , xj , εj , θ

´
∀σ0j ∈ ∆ (Aj)

)
.

18We experimented with a significantly larger number of points, but this did not appreciably change the approxi-
mation of ΘI .
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Omitting the explicit reference to its dependence on x and ε, Rθ is the set of level-1 rational strategy

profiles of the game. By similar arguments to what we used above, this is a random closed set in

∆ (A) . Figure 4 plots this set against the possible realizations of ε1, ε2, in a simple two player
simultaneous move, complete information, static game of entry. We ignore covariates for ease of

exposition, and assume that players’ payoffs are given by πj = aj (a−jθj + εj) , where aj ∈ {0, 1}
and θj is assumed to be negative (monopoly payoffs are higher than duopoly payoffs), j = 1, 2.

The same approach of Section 3 allows us to obtain the sharp identification region for θ as

ΘI =
©
θ ∈ Θ : u0P (y|x) ≤ E [h (Q (Rθ) , u)|x] ∀ u ∈ S∆ x− a.s.

ª
,

with

q (Rθ) = {([q (σ)]k , k = 1, . . . , κY) : σ ∈ Sel (Rθ)} ,

where [q (σ)]k , k = 1, . . . , κY , is defined in equation (3.3).

Observing, however, that in our simple example for ω ∈ Ω1 such that ε (ω) ∈ [0,−θ1]× [0,−θ2] ,∙
q

µµ
ε2 (ω)

−θ2
,
ε1 (ω)

−θ1

¶¶¸
k

∈ co [{[q (0, 0)]k , [q (1, 0)]k , [q (0, 1)]k , [q (1, 1)]k}] ,

k = 1, . . . , 4, it follows that E (Q (Rθ)|x) is equal to E
³
Q
³
R̃θ

´¯̄̄
x
´
, with R̃θ restricted to be the

set of level-1 rational pure strategies. Hence, by Theorem 4.1, ΘI can be obtained by checking a

finite number of moment inequalities.

For the case that ε has a discrete distribution, AT (Section 3.1) suggest to obtain the sharp

identification region as the set of parameter values that return value zero for the objective function of

a linear programming problem. For the general case in which ε may have a continuous distribution,

AT apply the same insight of CT and characterize an outer identification region through eight

moment inequalities as in equation (4.9). One may also extend ABJ’s approach to this problem,

and obtain a larger outer region through four moment inequalities as in equation (4.8). Our

approach, which yields the sharp identification region, in this simple example requires one to check

14 inequalities.

As shown in AT (Figure 3), the model with level-1 rationality only places upper bounds on θ1, θ2.

Figure 8 plots the upper contours ofΘI ,Θ
CT
I , andΘABJ

I in a simple example with (ε1, ε2)
iid∼ N (0, 1)

and Θ = [−5, 0]2 . The data is generated with θB1 = −1.15, θB2 = −1.4, and using a selection
mechanism which picks outcome (0, 0) for 40% of ω : ε (ω) ∈ [0,−θB1]× [0,−θB2] , outcome (1, 1) for
10% of ω : ε (ω) ∈ [0,−θB1] × [0,−θB2], and each of outcome (1, 0) and (0, 1) for 25% of ω : ε (ω) ∈
[0,−θB1]× [0,−θB2]. Hence, the observed distribution is P (y) = [0.5048 0.2218 0.1996 0.0738]. Our
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methodology allows us to obtain significantly lower upper contours compared to AT (and CT)

and ABJ. The upper bounds on θ1, θ2 resulting from the projections of ΘABJ
I , ΘCT

I and ΘI are,

respectively, (−0.02,−0.02, ) , (−0.15,−0.26) , and (−0.54,−0.61).

6.2 Objective Correlated Equilibria

Suppose that players play correlated equilibria, a notion introduced by Aumann (1974). A corre-

lated equilibrium can be interpreted as the distribution of play instructions given by some “trusted

authority” to the players. Each player is given her instruction privately but does not know the

instruction received by others. The distribution of instructions is common knowledge across all

players. Then a correlated joint strategy γ ∈ ∆κA−1, where ∆κA−1 denotes the set of probability

distribution on A, is an equilibrium if, conditional on knowing that her own instruction is to play

aj , each player j has no incentive to deviate to any other strategy a0j , assuming that the other

players follow their own instructions. In this case one can define the θ-dependent set

Cθ (x, ε) =

⎧⎪⎨⎪⎩γ ∈ ∆κA−1 :

P
a−j∈A−j

γ (aj , a−j)πj (aj , a−j , xj , εj , θ) ≥P
a−j∈A−j

γ (aj , a−j)πj
³
a0j , a−j , xj , εj , θ

´
, ∀aj ∈ Aj , ∀a0j ∈ Aj , ∀j

⎫⎪⎬⎪⎭ .

Omitting the explicit reference to its dependence on x and ε, Cθ is the set of correlated equilibrium

strategies of the game. By similar arguments as those used before, it is a random closed set in

∆κA−1. Notice that Cθ is defined by a finite number of linear inequalities on the set ∆κA−1 of

correlated strategies, and therefore it is a non-empty polytope. Yang (2008) is the first to use this

fact, along with the fact that co [Q (Sθ)] ⊂ Cθ, to develop a computationally easy-to-implement

estimator for an outer identification region of θ, when the solution concept employed is Nash

equilibrium. Here we provide a simple characterization of the sharp identification region ΘI , when

the solution concept employed is objective correlated equilibrium. In particular, the same approach

of Section 3 allows us to obtain the sharp identification region for θ as

ΘI =
©
θ ∈ Θ : u0P (y|x) ≤ E [h (Cθ, u)|x] ∀ u ∈ S∆ x− a.s.

ª
.

In our simple two player simultaneous move, complete information, static game of entry, Aj =

{0, 1} , j = 1, 2, A = {(0, 0) , (1, 0) , (0, 1) , (1, 1)} . We ignore covariates for ease of exposition, and
assume that players’ payoffs are given by πj = aj (a−jθj + εj) , where aj ∈ {0, 1} and θj is assumed
to be negative (monopoly payoffs are higher than duopoly payoffs), j = 1, 2. Figure 5 plots the

set Cθ against the possible realizations of ε1, ε2, for this example. Notice that for ω ∈ Ω1 such
that ε (ω) /∈ [0,−θ1] × [0,−θ2] , the game is dominance solvable and therefore Cθ (ω) is given by
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the singleton Q (Sθ (ω)) resulting from the unique Nash equilibrium in those regions. For ω ∈ Ω1
such that ε (ω) ∈ [0,−θ1]× [0,−θ2] , Cθ (ω) is given by a polytope with five vertices, three of which

are implied by Nash equilibria, see Calvó-Armengol (2006).19 Also in this case one can extend the

approaches of ABJ and CT to obtain outer identification regions defined, respectively, by four and

eight moment inequalities as in equations (4.8)-(4.9).

Figure 9 and Table 3 report ΘI , Θ
CT
I , and ΘABJ

I in a simple example with (ε1, ε2)
iid∼ N (0, 1)

and Θ = [−5, 0]2 . In the figure, ΘABJ
I is given by the union of the yellow, red and black areas, and

ΘCT
I by the union of the red and black areas. ΘI is the black region. The data is generated with

θB1 = −1.15, θB2 = −1.4, and using a selection mechanism which picks each of outcome (0, 0) and (1, 1)
for 10% of ω : ε (ω) ∈ [0,−θB1]× [0,−θB2], and each of outcome (1, 0) and (0, 1) for 40% of ω : ε (ω) ∈
[0,−θB1] × [0,−θB2]. Hence, the observed distribution is P (y) = [0.26572 0.34315 0.36531 0.02582].
Also in this case ΘI is smaller than ΘCT

I and ΘABJ
I , although the reduction in the size of the

identification region is less pronounced than in the case where mixed strategy Nash equilibrium is

the solution concept.

7 Conclusions

This paper introduces a computationally feasible characterization of the sharp identification region

of the model parameters in static, simultaneous move finite games of complete information in

the presence of multiple equilibria. The methodology that we propose allows us to bypass the

need to directly deal with infinite dimensional nuisance parameters, the selection mechanisms, a

simplification that was considered unattainable in the related literature (see, e.g., Berry and Tamer

(2007)).

For the case that players are assumed to play only pure strategies, we show that the sharp

identification region is given by a finite number of moment inequalities which have to hold for x−a.s.
While finite, this number of moment inequalities can be very large in certain games. However, we

19These vertices are

γ0 (ω) = [0, 0, 1, 0]

γ1 (ω) = 1,− ε2(ω)
θ2+ε2(ω)

,− ε1(ω)
θ1+ε1(ω)

, 0 1− ε1(ω)
θ1+ε1(ω)

− ε2(ω)
θ2+ε2(ω)

−1

γ2 (ω) = 1 + ε2(ω)
θ2

1 + ε1(ω)
θ1

,−ε2(ω)
θ2

1 + ε1(ω)
θ1

,− 1 + ε2(ω)
θ2

ε1(ω)
θ1

, ε2(ω)θ2

ε1(ω)
θ1

γ3 (ω) = 0,− ε2(ω)
θ2+ε2(ω)

,− ε1(ω)
θ1+ε1(ω)

, ε1(ω)
θ1+ε1(ω)

ε2(ω)
θ2+ε2(ω)

ε1(ω)
θ1+ε1(ω)

ε2(ω)
θ2+ε2(ω)

− ε1(ω)
θ1+ε1(ω)

− ε2(ω)
θ2+ε2(ω)

−1

γ4 (ω) = [0, 1, 0, 0]
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show that many such inequalities may be redundant, and we provide a simple algorithm that

allows the researcher to determine a (often significantly) smaller set of moment inequalities that

are sufficient to preserve sharpness.

When players may also randomize across their actions, the sharp identification region cannot

in general be characterized through a finite number of moment inequalities. Intuitively, this is

because there is additional information provided by the fact that players must be indifferent among

the actions that they play with positive probability according to a given equilibrium strategy. While

there is an infinite number of inequalities characterizing the sharp identification region, we show

that this region can be approximated arbitrarily accurately through a finite number of moment

inequalities, which again have to hold for x−a.s. As this number of moment inequalities increases,

the approximated identification region converges to the sharp identification region with respect to

the Hausdorff metric.

We acknowledge that the method proposed in this paper may be, for some models, compu-

tationally more intensive than existing methods (e.g., Andrews, Berry, and Jia (2004), Ciliberto

and Tamer (2004)). However, the benefits in terms of identification coming from considering these

additional inequalities may be substantial, as illustrated by our examples.
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A Proofs

Theorem 3.1.

Proof. In order to establish sharpness, it suffices to show that ΘI = Θ
B
I . Take θ ∈ ΘI .

Then ∃ q ∈ Sel (Q (Sθ)) : E (q|x) = P (y|x) . Hence a selection mechanism that selects with

probability 1 a σ ∈ Sel (Sθ) : q=([q (σ)]k , k = 1, . . . , κY) is admissible and assures that θ ∈ ΘB
I

(notice that by the definition of Q (Sθ) , such a σ ∈ Sel (Sθ) exists). Conversely, take θ ∈ ΘB
I . Then

there exists an admissible selection mechanism ψ which picks a selection σ ∈ Sel (Sθ), such that
P (y|x) = P (y|x; θ, ψ) = E (q|x) for x− a.s. for q=([q (σ)]k , k = 1, . . . , κY) . Hence θ ∈ ΘI .

Theorem 4.1.

Proof. Let condition (1) hold. Notice that because the support function is positively ho-

mogeneous, this condition is equivalent to u0P (y|x) ≤ E [h (Q (Sθ) , u)|x] ∀ u ∈ <κY . Take any

ū ∈ <κY such that its entries are zeros and ones. The coordinates of ū correspond to the vertices of

∆ (A1)× . . .×∆ (AJ), and determine a subset Kū of Y. By definition, the scalar product ū0P (y|x)
equals P (y ∈ Kū|x). Moreover,

h (E (Q (Sθ)|x) , ū) = E [h (Q (Sθ) , ū)|x] = E
"
sup
σ∈Sθ

ū0q (σ)

¯̄̄̄
¯x
#
.

Because we are allowing only pure strategy equilibria, the realizations of any σ ∈ Sθ are vectors

of zeros and ones. Hence, ∀ω1 ∈ Ω1, [q (σ (ω1))]k = 1 if
QJ

j=1 σj

³
ω1, t

k
j

´
= 1, and zero otherwise.

Thus, given the choice of ū, the value of ū0q (σ (ω1)) equals one if y (ω1) ∈ Kū and zero otherwise.

Hence, condition (1) reduces to

P (y ∈ Kū|x) = ū0P (y|x) ≤ E [h (Q (Sθ) , ū)|x] = E
"
sup
σ∈Sθ

ū0q (σ)

¯̄̄̄
¯x
#

= E [1 (Yθ ∩Kū 6= ∅)|x] = P {Yθ ∩Kū 6= ∅|x} .

Choosing ū equal to each of the 2κY vectors with entries equal to either 1 or 0, yields condition (2).

Suppose now that condition (2) holds. Then y ∈ Sel (Yθ) . This means that ∃ σ ∈ Sel (Sθ) :
σj (ω1, aj) = 1 if yj (ω1) = aj and zero otherwise. Hence, P (y|x) ∈ E (Q (Sθ)|x) for x− a.s., and

therefore condition (1) is satisfied.

Theorem 5.1.

Proof. If Ki = K ∩ Yi for i = 1, . . . ,M , then

P{y ∈ K|x} =
MP
i=1
P{y ∈ Ki|x} ≤

MP
i=1
P{Yθ ∩Ki 6= ∅|x} = P{Yθ ∩K 6= ∅|x}, x− a.s.,
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since Yθ cannot hit both Ki and Kj simultaneously in view of the disjointedness assumption.

Theorem 5.2.

Proof. To simplify the notation, we omit the conditioning on x ∈ X̃ and the subscript Yθ|x
indexing the inclusion functional in all that follows. For each finite set K = {t1, . . . , tk} ⊂ Y write
I(t1, . . . , tk) = P{K ⊂ Yθ} for the inclusion functional of K. Since the expected cardinality of Yθ is

more than one, there exist t1, t2 ∈ Y such that I(t1, t2) > 0.
Assume that I(t1) + I(t2) ≥ 1. Then choose a random element z which takes values t1 and t2

with probabilities that sum to one and are dominated by I(t1) and I(t2) respectively. Then (4.5)

holds for all singletons K, while if K =
©
t1, t2

ª
, then

P (z ∈ K) = P
¡
z = t1

¢
+P

¡
z = t2

¢
= 1

cannot be smaller than P
©
Yθ ∩

©
t1, t2

ª
6= ∅

ª
, since the latter is less than one by assumption.

Assume that I(t1) + I(t2) < 1. Then construct a random element z that takes values t1 and t2

with probabilities I(t1) and I(t2) and some values t outside of
©
t1, t2

ª
with probabilities dominated

by I(t) for the chosen t, such that
P
t∈Y

P{z = t} = 1. This is possible, since the total sum of I(t)

over t ∈ Y equals the expected cardinality of Yθ and so is at least one. Then

P
¡
z = t1

¢
+P

¡
z = t2

¢
= I(t1) + I(t2)

whereas

P
©
Yθ ∩

©
t1, t2

ª
6= ∅

ª
= I(t1) + I(t2)− I(t1, t2) < I(t1) + I(t2) = P{z ∈

©
t1, t2

ª
}.

Theorem 5.3.

Proof. To simplify the notation, we omit the conditioning on x ∈ X̃ and the subscript Yθ|x
indexing the containment, inclusion, and capacity functionals in all that follows. We use notation

from the proof of Theorem 5.2. Note that

(A.1)
P
t∈Y

C(t) = P{κYθ = 1}

and P
t∈Y

I(t) = E (κYθ) .

Note that the expected cardinality E (κYθ) is greater than one, since the random set Yθ is almost

surely non-empty and has cardinality at least two with positive probability.
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Take t1, t2 to satisfy the assumptions of Theorem 5.3. If I(t1) + I(t2) ≥ 1, then define z which
takes values t 6= t1, t2 with probabilities C(t). Furthermore, assume that z takes values t1 and

t2 with the probabilities pt1 = C(t1) + δt1 and pt2 = C(t2) + δt2 dominated by I(t
1) and I(t2)

respectively, with δt1 , δt2 two non-negative constants for whichP
t∈Y

C(t) + δt1 + δt2 = 1.

Such constants δt1 , δt2 exist, because the left-hand side in the above expression is less than 1 for

δt1 = δt2 = 0 since κYθ > 1 with positive probability, and the left-hand side is greater than or equal

to 1 for δt1 = I(t
1)−C(t1) and δt2 = I(t

2)−C(t2). This together with equation (A.1) implies that
P{κYθ = 1}+ δt1 + δt2 = 1, whence

pt1 + pt2 = C(t
1) +C(t2) + δt1 + δt2 = C(t

1) +C(t2) +P{κYθ > 1} .

By (5.5), the right-hand side is strictly greater than I(t1) + I(t2) > I(t1) + I(t2) − I(t1, t2) =
T(t1, t2) = P

©
Yθ ∩

©
t1, t2

ª
6= ∅

ª
, where the inequality follows by equation (5.4). Thus, P{z ∈ K}

is not dominated by T(K) for K = {t1, t2}, i.e. z is not a selection of Yθ.
Consider now the case that I(t1) + I(t2) < 1. Then construct a random element z that takes

values t1 and t2 with probabilities pt1 = I(t
1) and pt2 = I(t

2) and some values t outside of {t1, t2}
with probabilities pt = λI(t) + (1− λ)C(t) for some λ ∈ [0, 1]. One can find values of λ such that
these assignments give a probability distribution, since

P
t pt equals

P
t I(t) > 1 if λ = 1, while

λ = 0 yields thatP
t
pt =

P
t
C(t)+I(t1)−C(t1)+I(t2)−C(t2) = 1−(P{κYθ > 1}−I(t1)−I(t2)+C(t1)+C(t2)) < 1

by (5.5). Finally,

P{z ∈ {t1, t2}} = pt1 + pt2 = I(t
1) + I(t2)

while (5.4) yields that

T(t1, t2) = P{{t1, t2} ∩ Yθ 6= ∅} = I(t1) + I(t2)− I(t1, t2) < I(t1) + I(t2) .

Thus, P{z ∈ K} is not dominated by T(K) for K = {t1, t2}, i.e. in this case it is also possible to
construct a random element that satisfies (5.3), but fails to satisfy (4.5).

Theorem 5.4.

Proof. Observe that {ΘIUk}k∈N , is a decreasing sequence in the set of non-empty compact
subsets of <p. Moreover,

∞T
k=1

ΘIUk =
∞T
k=1

©
θ ∈ Θ : u0P (y|x) ≤ E [h (Q (Sθ) , u)|x] ∀ u ∈ Uk x− a.s.

ª
= ΘI .
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Hence, ρH (ΘI ,ΘIUk)→ 0, see, e.g., Schneider (1993, Lemma 1.8.1).

B Details for the Two Players Entry Game

Elements of the Aumann Expectation

For a given q ∈ Sel (Q (Sθ)) , the values of the coordinates of E (q) are:

E [(1− σ1) (1− σ2)] = P (ε1 ≤ 0, ε2 ≤ 0)

+E

∙
(1− σ1) (1− σ2) 1

µ
0 ≤ ε1 ≤ −θ1, 0 ≤ ε2 ≤ −θ2, σ1 =

ε2
−θ2

, σ2 =
ε1
−θ1

¶¸
,

E [σ1 (1− σ2)] = P ((ε1, ε2) ∈ [−θ1,+∞)× (−∞,−θ2] ∪ [0,−θ1]× (−∞, 0])

+P (0 ≤ ε1 ≤ −θ1, 0 ≤ ε2 ≤ −θ2, σ1 = 1, σ2 = 0)

+E

∙
σ1 (1− σ2) 1

µ
0 ≤ ε1 ≤ −θ1, 0 ≤ ε2 ≤ −θ2, σ1 =

ε2
−θ2

, σ2 =
ε1
−θ1

¶¸
,

E [(1− σ1)σ2] = P ((ε1, ε2) ∈ (−∞, 0]× [0,+∞) ∪ [0,−θ1]× [−θ2,+∞))

+P (0 ≤ ε1 ≤ −θ1, 0 ≤ ε2 ≤ −θ2, σ1 = 0, σ2 = 1)

+E

∙
(1− σ1)σ21

µ
0 ≤ ε1 ≤ −θ1, 0 ≤ ε2 ≤ −θ2, σ1 =

ε2
−θ2

, σ2 =
ε1
−θ1

¶¸
E [σ1σ2] = P (ε1 ≥ −θ1, ε2 ≥ −θ2)

+E

∙
σ1σ21

µ
0 ≤ ε1 ≤ −θ1, 0 ≤ ε2 ≤ −θ2, σ1 =

ε2
−θ2

, σ2 =
ε1
−θ1

¶¸
where 1 (·) denotes the indicator function of the event in brackets.

Further Exemplification of the Sharpness Result

In order to further illustrate the sharpness result, we apply Berry and Tamer (2007) formulation

to this game. Let

Uθ
t = {ε : t is the unique equilibrium outcome given θ} ,

Mθ
D = {ε : D is the set of multiple equilibrium outcomes given θ} ,

where t ∈ Y is an equilibrium outcome, and D is the set {(0, 1) , (1, 0) , (σ1, σ2)}, with (0, 1) , (1, 0)
being pure strategy equilibria, and (σ1, σ2) being a mixed strategy equilibrium. Notice that in

this case, Mθ
D = {ε : ε ∈ [0,−θ1]× [0,−θ2]} . If ω1 : ε (ω1) ∈ [0,−θ1]× [0,−θ2] , let d be a random

variable denoting which of the possible equilibria is selected in the region of multiplicity, with d = 1

if (1, 0) is selected, d = 2 if (0, 1) is selected, and d = 3 if the mixed strategy equilibrium is selected.

Let ψ (ε) = [P (d = i| ε) , i = 1, 2, 3] denote an admissible equilibrium selection mechanism in the

region of multiplicity. As in Berry and Tamer, this equilibrium selection mechanism is left unspec-

ified and can depend on market unobservables. Then for a given equilibrium selection mechanism
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ψ (ε) , one has:

P [ (0, 0)| θ, ψ] = P
³
ε ∈ Uθ

(0,0)

´
+
R
Mθ
D

µ
1− ε2
−θ2

¶µ
1− ε1
−θ1

¶
ψ3 (ε) dF (ε) ,

P [ (1, 0)| θ, ψ] = P
³
ε ∈ Uθ

(1,0)

´
+
R
Mθ
D

∙
ψ1 (ε) +

ε2
−θ2

µ
1− ε1
−θ1

¶
ψ3 (ε)

¸
dF (ε) ,

P [ (0, 1)| θ, ψ] = P
³
ε ∈ Uθ

(0,1)

´
+
R
Mθ
D

∙
ψ2 (ε) +

µ
1− ε2
−θ2

¶
ε1
−θ1

ψ3 (ε)

¸
dF (ε) ,

P [ (1, 1)| θ, ψ] = P
³
ε ∈ Uθ

(1,1)

´
+
R
Mθ
D

ε2
−θ2

ε1
−θ1

ψ3 (ε) dF (ε) ,

where P
³
Uθ
(0,0)

´
= P (ε1 ≤ 0, ε2 ≤ 0) etc. Comparing these equations with the ones above defining

E (q) , q ∈ Sel (Q (Sθ)) , one observes that the expressions are identical. In fact, each selection
q ∈ Sel (Q (Sθ)) determines an admissible selection mechanism (observing that q ∈ Sel (Q (Sθ)) if
and only if ∃ σ ∈ Sel (Sθ) such that q = q (σ)), and each admissible selection mechanism determines

a selection σ ∈ Sel (Sθ) .

ABJ and CT Inequalities as a Special Case of the Support Function Inequalities

Finally, we show that the inequalities defining the set ΘCT
I in Section 3.3 (and therefore those

defining the set ΘABJ
I ) are a subset of the inequalities defining ΘI in equation (3.8). Using the

information in Figure 1, we have that for ω ∈ Ω1,

Q (Sθ (ω)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

©
[1 0 0 0]0

ª
if ε (ω) ∈ (−∞, 0]× (−∞, 0] ,©

[0 1 0 0]0
ª

if ε (ω) ∈ [−θ1,+∞)× (−∞,−θ2] ∪ [0,−θ1]× (−∞, 0] ,©
[0 0 1 0]0

ª
if ε (ω) ∈ (−∞, 0]× [0,+∞) ∪ [0,−θ1]× [−θ2,+∞) ,©

[0 0 0 1]0
ª

if ε (ω) ∈ [−θ1,+∞)× [−θ2,+∞) ,©©
[0 1 0 0]0

ª
, {δ (ω)}

©
[0 0 1 0]0

ªª
if ε (ω) ∈ [0,−θ1]× [0,−θ2] ,

where

δ (ω) =
h³
1 + ε2(ω)

θ2

´³
1 + ε1(ω)

θ1

´
,−ε2(ω)

θ2

³
1 + ε1(ω)

θ1

´
,−
³
1 + ε2(ω)

θ2

´
ε1(ω)
θ1

, ε2(ω)θ2

ε1(ω)
θ1

i
Hence,

h (Q (Sθ (ω)) , u) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u1 if ε (ω) ∈ (−∞, 0]× (−∞, 0] ,
u2 if ε (ω) ∈ [−θ1,+∞)× (−∞,−θ2] ∪ [0,−θ1]× (−∞, 0] ,
u3 if ε (ω) ∈ (−∞, 0]× [0,+∞) ∪ [0,−θ1]× [−θ2,+∞) ,
u4 if ε (ω) ∈ [−θ1,+∞)× [−θ2,+∞) ,

max
¡
u2, δ (ω)

0 u, u3
¢
if ε (ω) ∈ [0,−θ1]× [0,−θ2] .

Take u =
£
1 0 0 0

¤0
. Then max

¡
u2, δ (ω)

0 u, u3
¢
= δ (ω)0 u =

³
1− ε2(ω)

−θ2

´³
1− ε1(ω)

−θ1

´
, and

P (y = (0, 0)) ≤ E (h (Q (Sθ) , u))

= P (Sθ = {(0, 0)}) +E
µµ
1− ε2
−θ2

¶µ
1− ε1
−θ1

¶
1 (ε ∈ [0,−θ1]× [0,−θ2])

¶
.

37



Take u =
£
−1 0 0 0

¤0
. Then max

¡
u2, δ (ω)

0 u, u3
¢
= 0, and

−P (y = (0, 0)) ≤ E (h (Q (Sθ) , u)) = −P (Sθ = {(0, 0)}) .

A similar argument applies to the remaining canonical basis vectors in <4, and to these vectors
multiplied by −1. This yields the desired result.
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Table 1: Projections of ΘABJ
I , ΘCT

I and ΘI , reduction in bounds width (in parentheses), and area
of the identification regions compared to ABJ. Two player entry game with mixed strategy Nash
equilibrium as solution concept.

True Values Projections of:
ΘABJ
I ΘCT

I ΘI

θ1 −1.15 [−2.715,−0.485] [−2.715,−0.585] [−2.205,−0.605]
(4.5%) (28.3%)

θ2 −1.40 [−2.785,−0.625] [−2.785,−0.725] [−2.245,−0.745]
(4.6%) (30.6%)

Approximate Reduction in Total Area Compared to ΘABJ
I (16.4%) (56.5%)

Table 2: Projections of ΘABJ
I , ΘCT

I and ΘI , and reduction in bounds width compared to ABJ.
Four player, two type entry game with pure strategy Nash equilibrium as solution concept.

True Values Projections of:
ΘABJ
I ΘCT

I ΘI

θ11 −0.15 [−0.154,−0.144] [−0.153,−0.146] [−0.152,−0.147]
(27%) (54%)

θ21 −0.20 [−0.206,−0.195] [−0.204,−0.197] [−0.203,−0.198]
(27%) (54%)

θ22 −0.10 [−0.106,−0.096] [−0.104,−0.097] [−0.103,−0.098]
(27%) (54%)

Table 3: Projections of ΘABJ
I , ΘCT

I and ΘI , reduction in bounds width (in parentheses), and area
of the identification regions compared to ABJ. Two player entry game with correlated equilibrium
as solution concept.

True Values Projections of:
ΘABJ
I ΘCT

I ΘI

θ1 −1.15 [−4.475,−0.485] [−4.475,−0.585] [−4.125,−0.595]
(2.5%) (11.5%)

θ2 −1.40 [−4.585,−0.625] [−4.585,−0.725] [−4.425,−0.735]
(2.4%) (6.8%)

Approximate Reduction in Total Area Compared to ΘABJ
I (7.9%) (23.1%)
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ε 2          

 -θ 2

 -θ 1      ε 1

S θ  =  {(0 ,1),(-ε 2/θ 2,-ε1/θ 1),(1 ,0)}S θ  =  {(0 ,1)} S θ  =  {(1 ,0 )}

S θ  =  {(0 ,1)} S θ  =  {(0 ,1)} S θ  =  {(1 ,1 )}

S θ  =  {(0 ,0)} S θ  =  {(1 ,0)} S θ  =  {(1 ,0 )}

Figure 1: The random set of mixed strategy NE profiles as a function of ε1, ε2 in a two player entry
game.

ε 2          

 -θ 2

 -θ 1      ε 1

Y θ  =  {(1 ,0)}Y θ  =  {(0 ,0)} Y θ  =  {(1 ,0 )}

Y θ  =  {(1 ,1)}

Y θ  =  {(0 ,1)} Y θ  =  {(0 ,1),(1 ,0)} Y θ  =  {(1 ,0)}

Y θ  =  {(0 ,1)} Y θ  =  {(0 ,1 )}

Figure 2: The random set of pure strategy NE outcomes as a function of ε1, ε2 in a two player
entry game.
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ε2         

Yθ = {(2,0)} Yθ = {(0,0)} Yθ = {(0,0)}

 4θ11  3θ11  2θ11 θ11

ε1

Yθ = {(2,0)} Yθ = {(0,0)} Yθ = {(0,0)}
 θ22

Yθ = {(2,0)} Yθ = {(0,1)}

 2θ22

Yθ = {(2,0)} Yθ = {(0,2)} Yθ = {(0,2)}
 θ21 + θ22

Yθ = {(2,0)} Yθ = {(0,2)} Yθ = {(0,2)}

 θ21 + 2θ22

Yθ = {(2,0)} Yθ = {(0,2)} Yθ = {(0,2)}
 2θ21 + θ22

Yθ = {(2,1)} Yθ = {(0,2)} Yθ = {(0,2)}
 2θ21 + 2θ22

Yθ = {(2,2)} Yθ = {(0,2)}

Yθ = {(1,0)}

Yθ = {(0,2)}

Yθ = {(0,2)}

Yθ = {(0,2)}

Yθ = {(0,2)}

Yθ = {(0,2)}

Yθ = {(1,0),(0,1)}

Yθ = {(2,0),(0,2)} Yθ = {(1,0),(0,2)}

Yθ = {(1,0)}

Yθ = {(2,0),(1,2)} Yθ = {(2,0),(0,2)}

Yθ = {(2,0)} Yθ = {(2,0)}

Yθ = {(2,0)} Yθ = {(2,0)}

Yθ = {(2,1),(1,2)}

Yθ = {(1,2)}

Yθ = {(0,1)}

Yθ = {(0,2)}

Yθ = 
{(2,0),(1,1),(0,2)}

Yθ = {(2,0)}

Yθ = {(2,0)}

Yθ = {(2,0)}Yθ = {(2,0)}

Yθ = {(0,2)}

Figure 3: The random set of pure strategy NE outcomes as a function of ε1, ε2 in a four player,
two type entry game.

44



ε 2          

 -θ 2

 -θ 1      ε 1

R θ =  {(0 ,0),(0 ,1 ),
(-ε 2/θ 2,-ε 1/θ 1),(1 ,0 ),(1 ,1)}

R θ  =  {(1 ,0),(1 ,1)}

R θ  =  {(0 ,0)} R θ  =  {(1 ,0),(0 ,0)} R θ  =  {(1 ,0)}

R θ  =  {(0 ,1 ),(0 ,0)}

R θ  =  {(0 ,1)} R θ  =  {(0 ,1),(1 ,1)} R θ  =  {(1 ,1)}

Figure 4: The random set of level-1 rational profiles as a function of ε1, ε2 in a two player entry
game.

ε 2          

 -θ 2

 -θ 1      ε 1

C θ  =  {[1  0  0  0]} C θ  =  {[0  1  0  0]} C θ  =  {[0  1  0  0]}

C θ =  co [[0  0  1  0],γ 1,γ 2,γ 3,[0  1  0  0]]C θ  =  {[0  0  1  0]} C θ  =  {[0  1  0  0]}

C θ  =  {[0  0  1  0]} C θ  =  {[0  0  1  0]} C θ  =  {[0  0  0  1]}

Figure 5: The random set of correlated equilibria for different values of ε1 and ε2 in a two player
entry game. The correlated equilibria γ1, γ2, γ3 are defined in Section 6.2.
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Figure 6: Identification regions in a two player entry game with mixed strategy Nash equilibrium
as solution concept.

Figure 7: Identification regions in a four player, two types entry game with pure strategy Nash
equilibrium as solution concept.
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Figure 8: Upper contours of the identification regions in a two player entry game with level-1
rationality as solution concept.

Figure 9: Identification regions in a two player entry game with correlated equilibrium as solution
concept.
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