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Abstract

We develop methods for testing the hypothesis that an econometric model is underi-
dentified and inferring the nature of the failed identification. By adopting a generalized-
method-of moments perspective, we feature directly the structural relations and we
allow for nonlinearity in the econometric specification. We establish the link between
a test for overidentification and our proposed test for underidentification. If, after at-
tempting to replicate the structural relation, we find substantial evidence against the
overidentifying restrictions of an augmented model, this is evidence against underiden-
tification of the original model.
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1 Introduction

It is common in econometric practice to encounter one of two different phenomena. Either the

data are sufficiently powerful to reject the model, or the sample evidence is sufficiently weak

so as to suspect that identification is tenuous. The early simultaneous equations literature

recognized that underidentification is testable, but to date such tests are uncommon in

econometric practice despite the fact that there are many situations of economic interest in

which seemingly point identified models may be only set identified.

We adopt a generalized-method-of-moments (GMM) perspective and provide a way to

test for underidentification (an I test) using statistics that are commonly employed as tests

for overidentification (J tests). More specifically, we consider an augmented structural model

in which the moment conditions are satisfied by a curve instead of a point. In this context, our

proposal is to test for underidentification by testing for overidentification in the augmented

model. This leads us to adapt or extend standard overidentifying testing methods available

in the literature. If it is possible to estimate a curve without statistically rejecting the

overidentifying restrictions of the augmented model, then we may conclude that the original

econometric relation could be not identified, or equivalently, that it is underidentified. In

contrast, rejections provide evidence that the original model is indeed point identified.

We consider in progression three different estimation environments: linear in parameters

models (section 3), models with nonlinear restrictions on the parameters (section 4), and

finally, more fundamental nonlinearities (section 5). Throughout we develop specific exam-

ples in detail to illustrate the nature and the applicability of I testing. In the next section

we provide a more detailed overview of the paper.

2 Overview

As in Hansen (1982), suppose that {xt} is an observable stationary and ergodic stochastic

process1 and let P be a parameter space that we take to be a subset of Rk. Introduce a

function f(x, ·) : P → Rp for each x. The function f is jointly Borel measurable and it is

1 As elsewhere in the econometrics literature, analogous results can be obtained using other data gener-
ating processes. For cross-sectional and panel extensions of Hansen (1982) formulation see the textbooks by
Hayashi (2000) and Arellano (2003), respectively.
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continuously differentiable in its second argument for each value of x. Finally suppose that

E|f(xt, β)| <∞ for each β ∈ P.

In light of this assumption we define Ef(xt, β) = f̄(β) for each β ∈ P. GMM estimation

uses the equation:

f̄(β) = 0 (1)

to identify a parameter vector β0. When β0 is identified, it is the unique solution to (1),

otherwise there will be multiple solutions.

We pose an alternative estimation problem as a device to formally explore underiden-

tification. We consider a parameterization of the form: β = π(θ), where θ ∈ Θ for some

conveniently chosen domain Θ with a corresponding norm and π is a continuous function

with range P. For example, suppose that

π(θ) =

[
θ

τ(θ)

]
(2)

so that θ is the first component of the parameter vector. We then explore a set of such

functions that is restricted appropriately.2

As an alternative identification condition, we require f̄ [π(θ)] = 0 for all θ ∈ Θ if, and

only if π = π0.

If we can successfully identify a nonconstant function π0 that realizes alternative values

in the parameter space, then we cannot uniquely identify a single parameter vector β0 from

the moment conditions (1). Thus the parameter vector β0 is underidentified. Conveniently,

this estimation problem looks like a standard estimation problem except that we seek to

estimate a function instead of a finite-dimensional parameter vector. This naturally leads

to a test of underidentification of β0 based on an attempt to identify π0. The resulting test

is the counterpart to the GMM overidentification test of Sargan (1958) and Hansen (1982).

Henceforth, we shall refer to this test as an I test.

Our development of a statistical test for underidentification leads naturally to the question

of how to estimate π0 efficiently. One approach would be to use one of the standard GMM

objective functions and try to construct an estimator of π0 as an approximate minimizer

of a quadratic form. In this paper we explore a rather different approach. As in Sargan

2See section 5.1 for further details.
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(1959), our approach requires that we put an explicit structure on the lack of identification

and this structure will be evident when we construct our parameterization of π used in our

alternative (and weaker) identification condition 2.

To motivate the efficiency gain, consider the special case in which Θ consists of two

different known values, θ[1] and θ[2], say, and π(θ) can be written as in (2).

Example 2.1. In this case we seek to identify π0(θ
[1]) and π0(θ

[2]), with π0(θ
[1]) 6= π0(θ

[2]).

We can map this into a standard GMM problem where we simply stack or duplicate the

moment conditions. This leads us to consider GMM estimators of the unknown elements of

[π(θ[1]), π(θ[2])] as approximate solutions to:

AN
1

N

N∑

t=1

[
f [xt, πN(1)]
f [xt, πN(2)]

]
= 0. (3)

for a selection matrix AN that is 2(k − 1) by 2p. Form

K(i, j) = lim
N→∞

1

N
E

[
N∑

t=1

(
f [xt, π0(i)] − f̄ [π0(i)]

) N∑

s=1

(
f [xs, π0(j)] − f̄ [π0(j)]

)′
]

and

D(i) =
∂f̄

∂β2

∣∣∣∣
π0(i)

.

where we have partitioned β as (β1, β2) so that it conforms with the partition of π(θ) in (2).

From Hansen (1982), the efficient limiting selection matrix to be used in (3) will be

A∗ =

[
D(1)′ 0

0 D(2)′

] [
K(1, 1) K(1, 2)
K(2, 1) K(2, 2)

]−1

.

If by chance K(1, 2) = 0, the efficient selection matrix would simplify to be
[
D(1)′K(1, 1)−1 0

0 D(2)′K(2, 2)−1

]
,

and there would be no gain from efficient estimation. In our applications K(1, 2) is typically

different from zero so there are potential gains for joint estimation. Thus we are lead to

modify the GMM objective function when we seek to estimate the function π0 instead of β0

and use this as the basis of a GMM-based test of underidentification.

We include this two-point example only by way of illustration. For the estimation prob-

lems in this paper we seek to identify subspaces in the case of linear models and curves in

the case of nonlinear models and design our GMM problem accordingly.
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Our work is related to two different strands of the literature that have gained prominence

in recent years. One is the weak instruments literature (see e.g. Stock et al. (2002)), which

maintains the assumption that the rank condition is satisfied, but only just. To relate to

this line of research suppose that Θ is an interval and consider an interior point θ∗. Suppose

that π is differentiable at θ∗. Then under appropriate regularity conditions:

[
∂f̄(β)

∂β

∣∣∣∣
β∗

] [
dπ(θ)

dθ

∣∣∣∣
θ∗

]
= 0, (4)

where β∗ = π(θ∗). In other words, the matrix

[
∂f̄(β)

∂β

∣∣∣∣
β∗

]

has reduced rank for any θ∗ in the interior of Θ. In contrast the weak instruments literature

considers the reduced rank as the limit of a sequence of data generating models indexed by

the sample size.3 In our analysis such a sequence could be interesting as a local specification

under the alternative hypothesis of identification. We seek to infer the specific manner in

which identification may fail whereas the weak instrument literature focuses on developing

reliable standard errors and tests of hypotheses about a unique true value of β.

The other strand is the set estimation literature (see e.g. Chernozhukov et al. (2007)),

which often assumes up-front that E[f(x; β)] = 0 for some manifold of values of β that in-

cludes β0, possibly because β0 is unequivocally underidentified a priori, and whose objective

is to make inferences about this manifold.4 In contrast, in this paper we focus on models in

which β0 is not unequivocally underidentified. Given this focus, unstructured underidentifi-

cation will not be of interest in general. By adding a particular structure to the identification

failure, we are led to alter the usual GMM objective in order to estimate efficiently the one-

dimensional function π that parameterizes the potential lack of identification.

3Typically in this literature the rank is not just reduced but is zero in the limit.
4Some of this literature also considers moment inequalities as a source of underidentification. Our analysis

does not cover this situation.
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3 Linear in the Parameters

We first study the identification of an econometric model that is linear in parameters, in

which case we can write (1) as:

E(Ψi)α = 0, (5)

where α is a k+1-dimensional unknown parameter vector in the null space of the population

matrix E(Ψi), and Ψi is an r by k+1 matrix constructed from data.5 If there is a solution α0

to this equation, then any scale multiple of α0 will also be a solution. Thus from a statistical

perspective, we consider the problem of identifying a direction. To go from a direction to

the parameters of interest requires an additional scale normalization of the form q′α = 1,

where q is a k + 1 vector that is specified a priori. For instance, we could choose q to be a

member of the canonical basis, which would restrict one of the components of α to be one

as in:

α =

[
1
−β

]

Alternatively, we could choose q = α so that |α| = 1, together with a sign restriction on one

of the nonzero coefficients as in:

α =

[
+
√

1 − |β|2
β

]

where |β| ≤ 1. Neither of these approaches can be employed without loss of generality,

however. The particular application dictates how to select the parameters of interest from

this direction.6

Consider now an alternative specification that reflects a precise form of underidentifica-

tion. Let

π(θ) = θα[1] + (1 − θ)α[2] (6)

where we restrict α[1] to have ones in the first two positions and α[2] to a have one in the

5Therefore, we consider not only models which are linear in both variables and parameters, but also
the non-linear in variables but linear in parameters models discussed in chapter 5 of Fisher (1966), which
combine different non-linear transformations of the same variables.

6Sensitivity to the choice of normalization can be avoided in GMM by using the approach of Hillier (1990)
and Alonso-Borrego and Arellano (1999) or by using the continuously-updated estimator of Hansen et al.
(1996). As a consequence, our more general rank formulation can be explored using such methods.
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first position and a zero in the second position.7 The null hypothesis of interest is:

E (Ψi)π(θ) = 0 ∀θ ∈ R (7)

and some α[1] and α[2]. Given the linear structure of (5), it suffices to check this restriction

at two values of θ, say θ = 0 and θ = 1. This leads us to efficiently estimate those α
[1]
0 and

α
[2]
0 for which

E(Ψi)α
[1] = 0

E(Ψi)α
[2] = 0

}
(8)

The duplicated moment conditions (8) give us a direct link to the rank condition familiar

in the econometrics literature. Suppose the order condition (r ≥ k) is satisfied, but not

necessarily the rank condition. Thus the maximal possible rank of the matrix E(Ψi) is

min{r, k + 1}. Model (5) is said to be identified when E(Ψi) has rank k in which case its

null space is precisely one dimensional. When r > k and the model is identified, it is said

to be overidentified because the rank of the matrix E(Ψi) now must not be full. Instead

of having maximal rank k + 1, E(Ψi) has reduced rank k. This implication is known to be

testable and statistical tests of overidentification are often conducted in practice.

In contrast, model (5) is said to be underidentified when the rank of E(Ψi) is less than k.

In this case the null space of E(Ψi) will have more than one dimension. A single normalization

will no longer select a unique element from the parameter space. By focusing on (6), our

approach puts an explicit structure on the lack of identification, as illustrated by (8). Thus,

we initially make the following assumption (see section 3.1.2 for other possibilities):

Hypothesis 3.1. E(Ψi) has rank k − 1.

Under this hypothesis the set of solutions to equation (5) is two-dimensional. To test for

this lack of identification, we think of (8) as a new augmented model. We attempt to deter-

mine (α[1], α[2]) simultaneously and ask whether they satisfy the combined overidentifying

moment restrictions (8). If they do, then we may conclude that the original econometric

relation is not identified or equivalently is underidentified. Thus by building an augmented

equation system, we may pose the null hypothesis of underidentification as a hypothesis that

7Strictly speaking these are more than just normalizations. Other normalizations (see section 3.1) are
also not only possible but also desirable in some applications.
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the augmented equation system is overidentified. Rejections of the overidentifying restric-

tions for the augmented model provide evidence that the original model is indeed identified.

Posed in this way, underidentification can be tested simply by applying appropriately an ex-

isting test for overidentification. For instance, a standard J test for overidentification, such

as those of Sargan (1958) and Hansen (1982), is potentially applicable to the augmented

model. This test will be our I test.

The following example illustrates our formulation.

Example 3.1. Suppose that r = 1 and k = 1. Write

E(Ψi) =
[
a1 a2

]

For there to be identification in the sense that we consider, at least one of the entries of

this vector must be different from zero. If we normalize the first entry of α′ =
[
1 −β

]

to be one, then we obtain the more restrictive rank condition condition that a2 6= 0. The

“normalization” rules out the case that E(Ψi) is of the form
[
0 a2

]
and α′ =

[
α1 0

]
. Our

notion of identification includes this possibility.

To understand better implementation, in the remainder of this section we consider as

examples three specific situations: single equation IV, multiple equations with cross-equation

restrictions, and sequential moment conditions.

3.1 Single equation IV

Example 3.2. Suppose the target of analysis is a single equation from a simultaneous system:

yi · α = ui (9)

where the scalar disturbance term ui is orthogonal to an r-dimensional vector zi of instru-

mental variables:

E (ziui) = 0. (10)

Form:

Ψi = ziy
′
i.

Then orthogonality condition (10) is equivalent to α satisfying the moment relation (5).

7



For this example we duplicate the moment conditions as in (8), and study the simultaneous

overidentification of those 2r moment conditions. To proceed with the construction of a test,

we have to rule out the possibility that α[1] and α[2] are proportional. One strategy is to

restrict α[2] to be orthogonal to α[1]. Two orthogonal directions can be parameterized with

2k − 1 parameters, k parameters for one direction and k − 1 for the orthogonal direction.

However, there is not a unique choice of orthogonal directions to represent a two-dimensional

space. There is an additional degree of flexibility. A new direction can be formed by taking

linear combinations of the original two directions and a corresponding orthogonal second

direction. Thus the number of required parameters is reduced to 2k − 2, and the number of

overidentifying restrictions for the I test of underidentification is 2r − 2k + 2.

In practice, we can impose the normalizing restrictions |α[1]| = |α[2]| = 1 by using spher-

ical coordinates, force α[1] · α[2] = 0, and set the first entry of α[2] to zero. This works

provided that all vectors in the null space of E(ziyi
′) do not have zeros in the first entry.

Alternatively, we could restrict the top two rows (α[1], α[2]) to equal an identity matrix of

order two. This rules out the possibility of a vector in the null space that is identically zero

in its first two entries, but this may be of little concern for some applications.8 When k = 1,

both approaches boil down to setting (α[1], α[2]) = I2 so that the 2r moment conditions:

E (ziyi
′) = 0

can be represented without resort to parameter estimation. As a result, the “identified” set

will be the whole of R2.

Example 3.1 could emerge as a special case of example 3.2 with r = 1 and k = 1. Notice

that our underidentification test in this case tests simultaneously the restriction that a1 = 0

and a2 = 0. More generally, when r ≥ 2 our test considers simultaneously E(ziy1,i) = 0 and

E(ziy2,i) = 0. The resulting I test is different from the test for the relevance of instruments

in a model with a normalization restriction on one variable to be estimated by say two-stage

least squares. Such a test would examine only E (ziy2,i) = 0.

In contrast, when k > 1, some parameters must be inferred as part of implementing the

I test. The estimated parameters can then be used for efficiently estimating the identified

8Once again, it is desirable to construct a test statistic of underidentification using a version of the test
of overidentifying restrictions that is invariant to normalization
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linear set by exploiting (6). To illustrate this point, suppose a normalized relationship

between three endogenous variables with instrument vector zi:

E [zi (y0i − α1y1i − α2y2i)] = 0.

Now zi need not be uncorrelated to the three endogenous variables for underidentification.

Lack of correlation with two linear combinations of them is enough. For example, we may

write the null of underidentification as

H0 : E

[
zi (y0i − βy2i)
zi (y1i − γy2i)

]
= 0.

If H0 holds, for any α∗
1

E {zi [y0i − α∗
1y1i − (β − γα∗

1) y2i]} = 0,

so that the observationally equivalent values (α∗
1, α

∗
2) are contained in the line α∗

2 = β− γα∗
1.

A time series example is a forward-looking Phillips curve as in Gaĺı et al. (2001), where

the components of y denote current inflation, future inflation, and a measure of aggregate

demand, whereas the components of z consist of lags of the previous variables, and of other

variables such as the output gap and wage inflation. There are theoretical and empirical

considerations to suggest that a null like H0 is plausible in this context. For example, lack

of higher-order dynamics in a new Keynesian macro model has been shown to be a source

of underidentification of a hybrid Phillips curve with lagged inflation by Nason and Smith

(2008). Relatedly, Cochrane (2007) also raises similar concerns regarding the identification

of Taylor rules by Clarida et al. (2000) and others.

3.1.1 Related Literature

Tests of underidentification in a single structural equation were first considered by Koopmans

and Hood (1953) and Sargan (1958). When the model is correctly specified and identified,

the rank of E(ziyi
′) is k. Under the additional assumptions that the error term ui is a

conditionally homoskedastic martingale difference, an asymptotic chi-square test statistic of

overidentifying restrictions with r − k degrees of freedom is given by Nλ1, where

λ1 = min
α

α′Y ′Z (Z ′Z)−1 Z ′Y α

α′Y ′Y α
, (11)
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and Z ′Y =
∑N

i=1 ziyi
′, etc. Thus λ1 is the smallest characteristic root of Y ′Z (Z ′Z)−1 Z ′Y

in the metric of Y ′Y . (See Anderson and Rubin (1949) and Sargan (1958)). This a version

of the J test for overidentification, and it does not require that we normalize α.

Koopmans and Hood (1953) and Sargan (1958) indicated that when the rank of E(ziy
′
i)

is k−1 instead, if λ2 is the second smallest characteristic root, N(λ1 +λ2) has an asymptotic

chi-square distribution with 2(r − k) + 2 degrees of freedom. These authors suggested that

this result could be used as a test of the hypothesis that the equation is underidentified and

that any possible equation has an iid error term.

The statistic N(λ1 + λ2) has a straightforward interpretation in terms of our approach.

Indeed, it can be regarded as a continuously-updated GMM test of overidentifying restric-

tions of the augmented model (8), subject to the additional restrictions on the error terms

mentioned previously. To see this, let A =
[
α[1] α[2]

]
and consider the minimizer of

[
α[1]′Y ′Z α[2]′Y ′Z

]
(A′Y ′Y A⊗ Z ′Z)−1

[
Z ′Y α[1]

Z ′Y α[2]

]

subject to A′Y ′Y A = I2. The constraint restricts the sample covariance matrix of the

disturbance vector to be an identity matrix. It uses the positive definite matrix Y ′Y to define

orthogonal directions when duplicating equations, which is convenient for this application.

In light of this normalization, the minimization problem may be written equivalently as

min
A′Y ′Y A=I2

α[1]′Y ′Z (Z ′Z)
−1
Z ′Y α[1] + α[2]′Y ′Z (Z ′Z)

−1
Z ′Y α[2], (12)

and the minimized value coincides with λ1 +λ2 (Rao (1973), page 63). A comparison of (12)

with (11) makes clear that the I test will be numerically at least as large as the J test, a

result that is a special case of Proposition B.2 in Appendix B. This comparison also shows

that the estimate of α obtained from (11) coincides with the estimate of α[1] obtained from

(12), so that in this special case the optimal point estimate belongs to the optimal linear set

estimate.

More recently, Cragg and Donald (1993) considered single equation tests of underidenti-

fication based on the reduced form. For the single equation model, the rank of the matrix

E (Ψi) is the same as that of

P = E (Ψi)
′ [E(zizi

′)]
−1

= E (yiz
′
i) [E(zizi

′)]
−1
.

10



This is the matrix of coefficients of the reduced form system of population regressions of

the entries of yi onto zi. Suppose the second component of yi is the first component of zi.

Partition P as:

P =

[
Π1 Π2

I 0

]
.

The nullity of P and hence E (Ψi) is the same as the nullity of Π2. Cragg and Donald (1993)

construct a minimum chi-square test statistic that enforces then rank restriction in Π2.
9

Their statistic can also be related to our approach. As we show in Appendix A, under the

assumption that ui is a conditionally homoskedastic martingale difference, the Cragg-Donald

statistic minimizes

[
α[1]′Y ′Z α[2]′Y ′Z

]
(A′Y ′MYA⊗ Z ′Z)−1

[
Z ′Y α[1]

Z ′Y α[2]

]

subject to A′Y ′MYA = I2 where M = I−Z (Z ′Z)−1 Z ′. Moreover, a Cragg-Donald statistic

that is robust to heteroskedasticity and/or serial correlation can be reinterpreted as a con-

tinuously updated GMM criterion of the augmented structural model using MYA as errors

in the weight matrix. Since the difference between Y A and MYA at the truth is of small

order, using one form of errors or the other is asymptotically irrelevant.

While the Cragg and Donald (1993) approach is straightforward to implement in the

single-equation case, it is more difficult to implement in some models with cross-equation

restrictions. This difficulty can emerge because we must simultaneously impose the restric-

tions on the reduced form together with the rank deficiency. In example 3.2, this is easy to

do, and it is also feasible in the applications to linear observable factor pricing models of

asset returns carried out by Cragg and Donald (1997) and Burnside (2007), but not in more

general models as we will illustrate in sections 3.2 and 3.3.

3.1.2 Underidentification of a higher dimension

Although the null hypothesis 3.1 is the natural leading case in testing for underidentification,

it is straightforward to extend the previous discussion to situations in which the underiden-

tified set is of a higher dimension. Suppose that the rank of E(Ψi) is k− j for some j. Then

9Cragg and Donald also considered an alternative null of no identifiability in an equation with the coef-
ficient of one of the endogenous variables normalized to unity. This was a rank restriction in the submatrix
of Π2 that excludes the row corresponding to the normalized entry.
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we can write all the admissible equations as linear combinations of the (j+1)r orthogonality

conditions

E(Ψi)
(
α[1], α[2], ..., α[j+1]

)
= 0. (13)

If we impose (j + 1)2 normalizing restrictions on (α[1], α[2], ..., α[j+1]) to avoid indeter-

minacy,10 the effective number of parameters is (j + 1)(k + 1) − (j + 1)2 = (j + 1)(k − j)

and the number of moment conditions is (j + 1)r under the assumption that there are no

redundancies. Therefore, by testing the (j+ 1)(r− k+ j) overidentifying restrictions in (13)

we test the null that α is underidentified of dimension j against the alternative of underi-

dentification of dimension less than j or identification. Henceforth, we shall refer to those

tests as Ij tests.

3.2 Multiple equations with cross-equation linear restrictions

We next consider examples with multiple equations with common parameters.11

Example 3.3. Consider the following two equation model with cross-equation restrictions:

α ·
[
y1,i

y3,i

]
= u1,i

α ·
[
y2,i

y3,i

]
= u2,i

where y1,i, y2,i are scalars. Let zi denote an r∗-dimensional vector of instrumental variables

appropriate for both equations.

E (ziu1,i) = 0

E (ziu2,i) = 0.

Form:

Ψi =

[
ziy1,i ziy3,i

′

ziy2,i ziy3,i
′

]
.

Thus r = 2r∗. We transform this equation system to obtain an equivalent one by forming:

Ψ∗
i =

[
zi(y1,i − y2,i) 0

ziy1,i ziy3,i
′

]
(14)

10For instance, we may make the top j+1 rows of A[j+1] = (α[1], α[2], ..., α[j+1]) equal to the identity matrix
of order j +1. More generally, we can impose the (j +1)2 normalizing restrictions A[j+1]′A[j+1] = I(j+1) and

aiℓ = 0 for ℓ > i, where aiℓ denotes the (i, ℓ)-th element of A[j+1].
11Interestingly, Kim and Ogaki (2009) suggest to use models with cross equation restrictions to try to

break away from the potential identifiability problems that affect single equation IV estimates.
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implying that

E [zi(y1,i − y2,i)] = 0 (15)

In this example, duplicating (15) would induce a degeneracy because equation (15) does not

depend on parameters. Instead these r∗ moment conditions should be included just once.

The I test is implemented by again parameterizing a two-dimensional subspace with 2k − 2

free parameters. There are 3r∗ < 2r composite moment conditions to be used in estimating

these free parameters. Thus the degrees of freedom of the I test is 3r∗ − 2k + 2.

This I test includes (15) among the moment conditions to be tested even though these

conditions do not depend on the unknown parameters. If these moment conditions were ex-

cluded, then it would matter if the second row block of Ψ∗
i in (14) is replaced by

[
ziy2,i ziy3,t

′].

By including (15) among the moment conditions to be tested this change is inconsequential.

An extended version of this example arises in log-linear models of asset returns such as

those studied by Hansen and Singleton (1983) and others. Such models have a scalar y3,i given

by consumption growth expressed in logarithms. The variables y1,i and y2,i are the logarithms

of gross returns. In addition there are separate constant terms in each equation that capture

subjective discounting and lognormal adjustments. By differencing the equations we obtain a

counterpart to (15) except that a constant term needs to be included. Duplication continues

to induce a degeneracy because this constant term is trivially identified.

Example 3.4. Consider a normalized four-input translog cost share equation system. After

imposing homogeneity of degree 1 in prices and dropping one equation to take care of the

adding-up condition in cost shares we have

yji = βj1p1i + βj2p2i + βj3p3i + vji (j = 1, 2, 3) (16)

where yji denotes the cost share of input j, and pji is the log price of input j relative to

the omitted input.12 The underlying cost function implies the following three cross-equation

symmetry constraints

βjk = βkj j 6= k. (17)

12See (Berndt, 1991, page 472). For simplicity we abstract from intercepts and log output terms since
they have no effect on our discussion.
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Moreover, prices are endogenous (possibly due to data aggregation) and an r -dimensional

vector of instruments zi is available:

E(zivji) = 0 (j = 1, 2, 3) (18)

In the absence of the symmetry restrictions, the order condition is satisfied if r ≥ 3. It

would appear that the parameters may be just identified with r = 2 when the symmetry

restrictions are taken into account, for in that case the order condition is satisfied. However,

it turns out that such system has reduced rank 5 by construction.

To test for underidentification, we duplicate the original moment conditions, introduce

suitable normalizations, and drop redundant moments, obtaining

E[zi(yji − γj2p2i − γj3p3i)] = 0 (j = 1, 2, 3) (19)

E[zi(p1i − γ02p2i − γ03p3i)] = 0 (20)

Since there are 4r orthogonality conditions and 8 parameters, with r = 2 the augmented set

of moments does not introduce any overidentifying restrictions. For arbitrary r, (19)-(20)

imply that (18) is satisfied for any β∗
j1, and for β∗

j2, β
∗
j3 (j = 1, 2, 3) such that

β∗
j2 = γj2 − β∗

j1γ02 β∗
j3 = γj3 − β∗

j1γ03. (21)

Thus, if we do not impose symmetry, the identified set will be of dimension three (β∗
11, β

∗
21, β

∗
31)

and will be characterized by the eight γ parameters in (19)-(20). However, one restriction

must be imposed on those parameters for the augmented model to characterize observation-

ally equivalent values of the original β parameters satisfying the symmetry constraints. To

see this, note that, subject to the cross-restrictions, (19)-(20) imply that (18) are satisfied

as before for any β∗
11 (and for β∗

12 and β∗
13 as in (21)), but only for β∗

21 = β∗
12 so that

β∗
21 = γ12 − β∗

11γ02,

and for β∗
22 and β∗

23 such that

β∗
22 = γ22 − (γ12 − β∗

11γ02)γ02 β∗
23 = γ23 − (γ12 − β∗

11γ02)γ03.

Equally, they are satisfied only for β∗
31 = β∗

13 so that

β∗
31 = γ13 − β∗

11γ03,
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and for β∗
32 and β∗

33 such that

β∗
32 = γ32 − (γ13 − β∗

11γ03)γ02 β∗
33 = γ33 − (γ13 − β∗

11γ03)γ03.

Moreover, the restriction β∗
32 = β∗

23 implies that the admissible values of the coefficients

in the augmented model must satisfy for any β∗
11:

γ32 − (γ13 − β∗
11γ03)γ02 = γ23 − (γ12 − β∗

11γ02)γ03

or

γ32 − γ23 = γ13γ02 − γ12γ03. (22)

Thus, after enforcing symmetry the identified set is of dimension one (β∗
11) and depends on

seven parameters only. The I test for this problem is a test of overidentifying restrictions

based on the moments (19)-(20) subject to (22). Enforcing (22) reduces the set of observa-

tionally equivalent parameters under the null, but this is the right way to proceed since the

existence of other β’s that satisfy the instrumental-variable conditions but not the symmetry

conditions should not be taken as evidence of underidentification of the model.13

3.3 Sequential moment conditions

Consider next an example with an explicit time series structure.

Example 3.5. Suppose that

yi,t+2 =
[
vi,t+2 vi,t+1 ... vi,t−ℓ

]′

for a scalar process {vi,t : t = 1, 2, ...}. Thus k = ℓ+ 2. Form:

α · yi,t+2 = ui,t+2

where

E [zi,tui,t+2] = 0

for t = 1, ... and α 6= 0. Thus

E [zi,tyi,t+2
′]α = 0. (23)

13Note that when r = 2, the model’s parameters are not identified, but it is still possible to test the
restriction (22) as a specification test of the model.
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The dimension of the vector zi,t varies with t. This dependence is relevant in a panel data

setting in which the number of time periods is small relative to the number of individuals.14

Assume that there is no redundancy among the entries of zi,t. That is, E
(
zi,tz

′
i,t

)
is nonsin-

gular. Moreover, assume that the entries of zi,t−1 are among the entries of zi,t.

For this model to be underidentified, we must be able to find an α∗ 6= α, both distinct

from zero, such that α∗ also satisfies equation system (23). Since α and α∗ are distinct and

linear combinations of α and α∗ must satisfy (23), it follows that

E
[
zi,ty

∗
i,t+1

′] γ = 0 (24)

for t = 1, 2, ... where

y∗i,t+1 =
[
vi,t+1 vi,t ... vi,t−ℓ

]′

and γ is not degenerate and has k entries.

Conversely, suppose that moment conditions (24) are in fact satisfied. Notice that

E
[
zi,ty

∗
i,t+2

′] γ = 0

because

E
[
zi,t+1y

∗
i,t+2

′] γ = 0,

where this latter equation is just (24) shifted one time period forward. As a consequence,

both

α =
[
γ′ 0

]′

α∗ =
[
0 γ′

]′
.

necessarily satisfy (23). Thus the Itest for underidentification naturally leads us to test an

alternative set of moment conditions with one less free parameter given by (24). Identification

of the parameter vector α from (23) up to scale requires that we reject moment equations

(24) up to scale.

In a panel data setting, the I test is built from moment conditions (24) for t = 1, 2, ..., T

and large N . This construction of the I does not simply duplicate moments conditions,

14In a pure time series setting, there is only one i, say i = 1 but T is large.
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as this would lead to a degeneracy or repetition of moment conditions. Instead, the time

series structure naturally leads to an alternative equation system to be studied. Also we

could construct a collection of reduced form equations by projecting yi,t+2 onto zi,t for each

i and explore the restrictions imposed on coefficients. The reduced-form coefficients would

necessarily be time dependent, and they would include some implicit redundancies. For this

example, it is particularly convenient to work directly with the original structural equation

system.

A concrete example of this estimation comes from Arellano and Bond (1991). They

consider the estimation of a scalar autoregression with a fixed effect. In this example there

is an underlying process {vi,t : t = 0, 1, ..}. Form the scalar ∆vi,t = vi,t − vi,t−1 and construct

zi,t to include vi,0, vi,1, ..., vi,t. By taking first differences the fixed effect is eliminated from

the estimation equation. When there is a unit root, this differencing reduces the order of the

autoregression, but in general the order is not reduced. The I test checks whether in fact

the order can be reduced.

We illustrate this using an AR(2) model for panel data with an individual specific inter-

cept ηi:

α1(vi,t+2 − ηi) = −α2(vi,t+1 − ηi) − α3(vi,t − ηi) + ui,t+2 (t = 3, ..., T ), (25)

and

E (ui,t|vi,1, ..., vi,t−1; ηi) = 0. (26)

Taking the first differences of equation (25) eliminates the fixed effect. Following Arellano and

Bond (1991), consider GMM estimation of α1 and α2 based on a random sample {vi,1, ..., vi,T :

i = 1, ..., N} and the unconditional moment restriction:

E[zi,t(α1∆vi,t+2 + α2∆vi,t+1 + α3∆vi,t)] = 0 (t = 1, ..., T − 2). (27)

Thus, we have a system of T − 3 equations with a set of admissible “instruments” that

increases with T , but a common parameter vector α. With T = 3 there is a single equation

in first differences with two instruments so that α is at best just identified up to scale. We

may pin down the scale by letting the residual variance be zero or we could normalize the

first coefficient to be unity, in which case the remaining coefficients are the negatives of the

familiar autoregressive coefficients.
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Returning to our original specification (25), suppose that α1 + α2 + α3 = 0. Then

α1(vi,t+2 − ηi) = −α2(vi,t+1 − ηi) − α3(vi,t − ηi) + ui,t+2 (t = 3, ..., T ),

Under this parameter restriction the fixed effect is inconsequential and can be dropped.

Imposing this zero restriction allows us to rewrite the equation as:

α1∆vi,t+2 = −(α2 + α1)∆vi,t+1 + vi,t+2.

This first-order AR specification in first-differences is implicitly the specification that is used

in building the I test. If this specification fails to satisfy the orthogonality restrictions, then

the parameters of the original model cannot be identified using the approach of Arellano and

Bond (1991). Accepting the hypothesis that underlies the I test is tantamount to assuming

accepting an identified AR(2) specification with a unit root.

Up until now we have considered only models that are linear in the variables. We extend

this discussion to include models with nonlinearities. In this discussion, it is important to

distinguish two cases. In the first case there is a separation between variables and param-

eters, and hence the nonlinearity is confined to the parameters. In the second case, the

nonlinearities between variables and parameters interact in a more essential way.

4 Nonlinearity in the Parameters

In order to discuss lack of identification in non-linear models, it is important to carefully

distinguish the different situations that may arise. We say that β∗ 6= β0 is observationally

equivalent to β0 if and only if E[f(xi; β
∗)] = 0. The true value β0 is locally identifiable if

there is no observationally equivalent value in a neighborhood of β0, or more formally, if

E[f(xi; β
j)] 6= 0 for any sequence βj such that limj→∞ βj = β0 (Fisher (1966)). Similarly,

β0 is globally identifiable if E[f(xi; β)] 6= 0 for all β 6= β0, that is, if there is no observation-

ally equivalent structure anywhere in the admissible parameter space. The order condition

dim (f) ≥ dim (β) provides a first check of identification, but this is only necessary. A com-

plement is provided by the rank condition: If D(β) = E [∂f(x, β)/∂β′] is continuous at β0,

and rank[D(β0)] = dim(β), then β0 is locally identified (Fisher (1966); Rothenberg (1971)).

In contrast to the order condition, this condition is only sufficient. But if rank[D(β)] is

also constant in a neighborhood of β0, then the above rank condition becomes necessary too.
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In a linear model such that f(xi; β) = Ψ(xi)α, where Ψ(xi) is r× ℓ+ 1 and β results from α

after normalization, the condition rank{E[Ψ(xi)]} = k is necessary and sufficient for both

local and global identification. However, as argued in Sargan (1983b,a), there are non-linear

models in which the rank condition fails, and yet β0 is locally identified. In that case, β0 is

said to be first-order underidentified.

Another possibility that can only arise in non-linear models is a situation in which there

are either a finite or a countably infinite number of isolated values of β which are observa-

tionally equivalent to β0. In our analysis of nonlinear models we focus on situations where

there is a continuum of observationally equivalent structures. We proceed by first showing

how the analysis for linear models can be extended to decomposable nonlinear models of the

form:

E(Ψi)φ (β0) = 0. (28)

We extend our previous analysis by replacing the parameter vector α by a nonlinear,

continuously differentiable function φ : P → Rk+1 where P is the closure of an open set in

Rℓ. We study the nonlinear equation:

Assumption 4.1.

E (Ψi)φ(β) = 0.

for some β in β ∈ P.

The identification question is only of interest when φ is a one-to-one (i.e. injective)

function. If there are two distinct parameter values β and β∗ for which φ(β) = φ(β∗) then

we know a priori that we cannot tell β from β∗ on the basis of Assumption 4.1. We make

the stronger restriction

Assumption 4.2. For any two values of the parameter vector β 6= β∗ in P, φ(β) 6= cφ(β∗)

for some real number c.

We know that we can only identify φ(β) up to a proportionality factor. In Assumption 4.2

we ask the nonlinear parameterization to eliminate scale multiples from consideration.

Suppose now that two values β̂ and β̌ satisfy Assumption 4.1 and are distinct. Thus

both φ(β̂) and φ(β̌) are in the null space of the matrix E(Ψi). By Assumption 4.2, the
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vectors φ(β̂) and φ(β̌) are not proportional, that is they are not in the same subspace. Any

two linear combinations of φ(β̂) and φ(β̌) must also be in the null space of E(Ψi). We now

find it fruitful to think of the function φ as imposing restrictions on a parameter vector α

through the mapping φ(β) = α. By thinking of α as the parameter to be estimated, we can

use aspects of the approach described previously. Since φ is one-to-one, we can uncover a

unique β for each α. This leads us to construct the parameter space:

Q
.
= {α : α = φ(β) for some β ∈ P}.

To study underidentification using our previous approach, we expand the parameter space

as follows:

Q∗ .
= {α : α = c1α1 + c2α2, α1 ∈ Q, α2 ∈ Q, c1, c2 ∈ R}.

Notice that if

E(Ψi)α = 0

for two values of α in Q, then there is a two-dimensional subspace of solutions to this

equation in Q∗. This problem is not just a special case of our earlier analysis because Q∗ is

not necessarily a linear space.

4.1 An illustrative example

To illustrate how nonlinearity in parameters can alter the analysis, we use an example that

is closely related to the non-linear IV model with serially correlated errors considered by

Sargan (1959). Nevertheless, it differs in an important way because in our case the valid

instrumental variables are predetermined but not necessarily strictly exogenous.15

Example 4.1. Consider a time series example:

xi · β1 = ui + γ1 · wi (29)

ui = β2ui−1 + γ2 · wi. (30)

where {wi} is a multivariate martingale difference sequence. Suppose also that zi−1 is a

linear function of wi−1, wi−2, .... The process {ui} is unobservable to the econometrician, but

xi · β1 − β2(xi−1 · β1) = (γ1 + γ2) · wi − β2γ1 · wi−1.

15In his Presidential address to the Econometric Society Sargan (1983a) studied a static model with the
same mathematical structure, while Sargan (1983b) analyzed a dynamic multivariate version.
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Let

Ψi =
[
zi−2x

′
i −zi−2x

′
i−1

]
,

and consider identification of β based on:

E(Ψi)φ(β) = 0

where

φ(β) =

[
β1

β2β1

]
. (31)

To achieve identification requires that we impose an additional normalization, say |β1| =

1. We may wish to restrict |β2| < 1. Since have not restricted γ2 ·wi to be uncorrelated with

ut−1, the unobserved (to the econometrician) process {ui} can be stationary and still satisfy

equation (30). Thus when |β2| > 1,

ui = −
∞∑

j=1

(β2)
−jwi+j

is a stationary process that satisfies (30). Notice, however, in this case ui+γ1·wi is orthogonal

to zi−1 so there is an additional moment restriction at our disposal. As is well known the

case of |β2| = 1 requires special treatment.

Consider two parameter choices (β1, β2) and (β∗
1 , β

∗
2). Without loss of generality write

β∗
1 = cβ1 + dη1 (32)

where c = β1 · β∗
1 , |η1| = 1 and η1 ⊥ β1, and impose that c

2 + d
2 = 1 to guarantee that

|β∗
1 | = 1 too.

In line with the linear case assume that rank[E(Ψi)] = k− 1 so that its nullity is 2. This

means that if there are other observationally equivalent structures, they must satisfy

E(Ψi)

[
cβ1 + dη1

cβ∗
2β1 + dβ∗

2η1

]
= 0 (33)

Given the partly linear, partly non-linear structure of the model only the following two

locally underidentified situations may arise.
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4.1.1 Only β1 identified

There is one arguably special way in which identification can break down. Suppose that

E(zi−2x
′
i−1)β1 = 0,

and hence

E(zi−1x
′
i)β1 = 0 (34)

for some β1. This phenomenon can occur for one of two reasons. First perhaps the choice

zi−2 is unfortunate. Alternatively, xi · β1 may depend only on current and possibly future

values of the martingale difference sequence {wi}. As we have seen, this may happen when

|β2| > 1 or in the degenerate case when ui is identically zero (γ1 = 0).16

Note that this equivalent to choosing d = 0 and β2 6= β∗
2 in (33). For this same β1, it is

also required that

E(zi−2x
′
i−1)β1 = 0

Typically, there will be common entries in zi−1 and zi−2. Let z∗i−1 be a random vector formed

after eliminating these redundancies in order that E
[
z∗i−1z

∗′
i−1

]
is nonsingular. Then the I

test for β2 is based on:

E(z∗i−1x
′
i)β1 = 0.

In other words, if the composite disturbance term ui + γ1 · wi is orthogonal to z∗i−1, then β2

is not identified via the moment conditions. This I test is implemented by estimating the

econometric relationship without quasi-differencing, and then testing the resulting overiden-

tifying restrictions. Of course, if the null hypothesis underlying the I test is accepted, there

are other moment conditions that could be used to identify β2 given β1.

Notice in this case there is a continuum of values of the composite parameter vector β

that satisfy the moment conditions under the null hypothesis of the I test, but only a single

value of β1, which our procedure will estimate efficiently.

This test is closely related but not identical to the underidentification test proposed by

Sargan (1959) for the non-linear in parameters model that he studied. The augmented set

16In the case in which |β2| > 1 we may identify β2 from other moment conditions.
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of moment conditions that he considered were (34) and

E(Ψi)

[
β∗

1

β∗
2β

∗
1

]
= 0,

where he implicitly chose β∗
2 so that the sample covariance matrix of x′iβ1 and (x′i−β∗

2x
′
i−1)β

∗
1

were 0. Apart from our modern emphasis on symmetric normalization and robustness to

serial correlation and heteroskedasticity, the main difference with his approach is that we

impose the restriction β1 = β∗
1 , which, in parallel with a gain in estimation efficiency, leads

to a reduction in the number of degrees of freedom and the resulting gain in power, and also

eliminates the need to choose two arbitrary values for β2.

As we mentioned previously, we could allow for the value of β2 to have an absolute value

greater than one. In this case identification of β2 will fail unless we replace zi−2 by zi−1.

4.1.2 Only β2 is identified

Suppose now there is a vector β∗
1 6= β1 such that

α∗ =

[
β∗

1

β2β
∗
1

]

satisfies the moment conditions:

E (Ψi)α
∗ = 0.

Since any linear combination of α and α∗ must satisfy moment conditions, we can choose

c = 0 in (32) so that [
η1

β2η1

]

should also satisfy the moment conditions (33). This gives rise to a second I test. We

parameterize two orthonormal directions η1 and β1 along with a single parameter β2. When

β1 has only two components, we are free to set β1 and η1 equal to the two coordinate vectors

and freely estimate only the parameter β2. In that case the moment conditions of the I test

can be expressed as

E[zi−2(yi − β2yi−1)] = 0, i = 1, 2

More generally, under the null hypothesis associated with this I test there is a two-

dimensional plane of (non-normalized) values of the original parameter vector β1 that satisfy
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the moment conditions, but only value of β2. After normalisation, the manifold of observa-

tionally equivalent structures will be given by (32) with c
2 + d

2 = 1. In this sense, note that

if E[zi−2(yi − β2yi−1)] = 0 for some i, then all the β1 coefficients will be identified except the

one corresponding to yi.

Importantly, this test is different from a linear test of rank[E(Ψi)] = k− 1 derived along

the lines of section 3.1, since such a test would not impose that the observationally equivalent

structures must satisfy (31).

Once again, as a by-product of our procedure we will obtain efficient GMM estimators

of β2, and the parameters β1 and η1 that characterize the identifed set through (32).

5 Fundamental nonlinearity

We now explore the underidentification problem when there is a more fundamental nonlin-

earity of the parameters in the moment conditions. Recall that in the linear model discussed

in section 3, underidentification implies that we can estimate a line, which we chose to im-

plicitly parameterize by means of two parameter vectors. Similarly, in the non-linear in

parameters model discussed in section 4, we also implicitly parameterize a curve as a func-

tion of a finite number of parameters. The natural extension for a fully nonlinear model is

to estimate a one-dimensional curve. As in the linear and non-linear in parameters models,

joint estimation of the curve implies improvements in statistical efficiency. The tools de-

veloped by Hansen (1982, 1985) and Carrasco and Florens (2000) can be extended to this

application.

As in section 2, we pose the inferential problem as one in which a function, π of a scalar θ

is estimated. We restrict θ to be in a compact interval Θ. For each value of θ, a hypothetical

parameter vector, say π(θ), satisfies the population moment conditions. Such a function

could feature θ as the first entry of the parameter vector so the first coordinate of π is the

identity function, as in (2), but this is only one possibility. Associated with the function π

is a curve

C = {π(θ) : θ ∈ Θ}

in the parameter space.17

17Underidentification of a higher dimension arises when θ is a vector instead of a scalar, as in section 3.1.2.
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5.1 Estimation Environment

Conveniently, this estimation problem looks like a standard problem except that we seek to

estimate a function instead of a finite dimensional parameter vector. Suppose that {xt} is a

stationary and ergodic stochastic process (but see footnote 1).

Assumption 5.1. Let P be a compact subset of Rk.

Introduce a function f(x, ·) : P → Rp for each x. The function f is jointly Borel mea-

surable and at the very least continuous in its second argument for each value of x. Thus

f(xt, ·) is p-dimensional random function on P or a random element.

Assumption 5.2. E|f(xt, β)| <∞ for each β ∈ P.

In light of this assumption we define Ef(xt, β) = f̄(β) for each β ∈ P.

As in Hansen (1982), we also assume:

Assumption 5.3. f(xt, ·) is first-moment continuous for each β ∈ P.

Under this assumption f̄ is continuous in β. This continuity condition along with a

point-wise (in β) Law of Large Numbers implied by ergodicity gives a Uniform Law of Large

Numbers (see Hansen (1982)).

We are interested in extending the usual GMM estimation framework by considering

parameterizations of the form π(θ), where π is a continuous function with range P and

θ ∈ Θ.

Assumption 5.4. Π is a compact set of admissible functions defined using the supnorm.

From the Arzelà–Ascoli Theorem it suffices that there be uniform bound on the functions in

Π and that the functions be equicontinuous. The uniform bound comes from the compactness

of P (Assumption 5.1).

Consider next first-moment continuity. Notice that

|f [x, π(θ)] − f [x, π̃(θ)]| ≤ sup
β∈P,β̃∈P,|β−β̃|≤ǫ

|f(x, β) − f(x, β̃)|

provided that ‖π − π̃‖ ≤ ǫ. This simple inequality implies that the first-moment continuity

restriction given in Assumption 5.3 extends to the parameter space Π.
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Given that we now seek to identify a function π0 instead of a vector β0, under the null

hypothesis of underidentification of β our new “identification condition” requires that:

Assumption 5.5. f̄ [π(θ)] = 0 for all θ ∈ Θ if, and only if π = π0.

This assumption rules out constant functions in the sup-norm closure of the set Π. More

generally, it rules out the possibility that there exists π̃ such that

{π̃(θ)|θ ∈ Θ} ⊂ {π0(θ)|θ ∈ Θ} (35)

for some π̃ 6= π0, in which case there would exist two functions in this closure for which the

image of one function is a proper subset of the other. Note that (35) is ruled out a priori if

we use parameterization (2) given by:

π(θ) =

[
θ

τ(θ)

]
(36)

because the first coordinate of π is allowed to vary.

A consistent estimator can be obtained for π0 in the usual fashion except that our pa-

rameter is now a function. In other words, consistency is a straightforward extension. It

turns out, however, that statistical efficiency is altered in a more fundamental way.

As we previously observed in expression (4) of section 2, the matrix

E

[
∂f [xt, π0(θ)]

∂β

]

is of rank k − 1 for all values of θ in the interior of Θ when f̄ is continuously differentiable

in β and π0 is differentiable in θ.18 This rank failure confirms the underidentification of

β over a range of values of θ and hence along a one-dimensional curve in the parameter

space. Part of our econometric challenge is to make inferences about the function π0 used

to parameterize this curve. This leads to explore efficient estimation of π0 using some limit

theory approximations:

Assumption 5.6. 1√
N

∑N
t=1

[
f(xt, ·) − f̄

]
converges to a Gaussian random element with

covariance function:

K(α, β) = lim
N→∞

1

N
E

(
N∑

t=1

[f(xt, α) − f̄(α)]
N∑

s=1

[f(xs, β) − f̄(β)]′

)
.

18Wright (2003) focuses on testing this restriction at a single value in the parameter space under the
assumption that the true parameter is locally identified but not first-order identified.
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This requires a functional version of a central limit theorem, but it is well understood

how to justify this restriction.

5.2 Ignoring Efficiency Gains for Joint Estimation

In what follows we use parameterization (36). For each value of θ we estimate the k − 1-

dimensional parameter vector τ(θ). In this section we explore the efficient estimation of τ(θ)

for each choice of θ as a separate estimation problem. As a consequence, we may apply

directly the analysis in Hansen (1982) and the earlier analysis in Sargan (1958, 1959), which

involves reducing the moment conditions by introducing a k − 1 by p matrix A for every

choice of θ.

Specifically, construct

D(θ) = E

[
∂f [xt, π0(θ)]

∂β

] [
0k−1

Ik−1

]

where 0k−1 is a row vector of zeros and Ik−1 is an identity matrix of dimension k − 1. If

we imitate standard GMM optimization, we conclude that a “point-wise efficient” selection

matrix is:

A(θ) = D(θ)′ (K[π0(θ), π0(θ)])
−1 . (37)

By premultiplying the selection matrix by a nonsingular matrix, possibly distinct for each

value of θ, we preserve statistical efficiency. This “point-wise efficient” selection can be

implemented by choosing a weighting matrix

(K[π0(θ), π0(θ)])
−1

for each θ.

Notice since the covariance matrix K[π0(θ), π0(θ)] depends on θ, point-wise efficiency

cannot be achieved by any fixed weighting matrix, as typically used in a quadratic form

minimization. Thus in this environment, optimally selecting the weighting matrix, and

hence the selection matrix by choice of θ improves (first-order) asymptotic efficiency.19

While this one-value-at-time approach improves efficiency, it ignores correlation across

the values of θ. As a consequence, further improvement is possible as was illustrated in

Example 2.1.

19Set inference methods in GMM settings typically use a fixed weighting matrix and ignore these efficiency
improvements.
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5.3 Efficiency

To characterize further efficiency gains, we need to construct a covariance operator and its

inverse. Our development will be informal in places, and we defer to subsequent research a

more rigorous analysis.

Following Carrasco and Florens (2000) we construct a covariance operator K as:

Kφ(θ)
.
=

∫
K[π0(θ), π0(ϑ)]φ(ϑ)dϑ

where φ maps Θ into Rp. The coordinate functions of φ are restricted to be in an L2

space defined using a conveniently chosen measure on [0, 1]. We denote this space L2
p. For

notational simplicity we use Lebesgue measure, but in some applications other measures may

turn out to be more convenient. We take the operator K to be bounded. Notice that

∫
φ∗ · [K(φ)] =

∫
φ · [K(φ∗)].

Thus K is a self-adjoint operator.

When the kernel K is continuous on Θ × Θ, the operator K is necessarily bounded and

it has a discrete spectrum.20 In this case we may represent the covariance operator as:

Kφ =
∞∑

j=1

λjφj

∫
φ · φj

where the {λj : j = 1, ...} are decreasing and

∞∑

j=0

λ2
j <∞,

and the {φj : j = 1, 2, ...} are orthonormal and complete. We consider two other operators

that are constructed from K. The square root operator is:

K1/2φ =
∞∑

j=1

√
λjφj

∫
φ · φj,

and its inverse:

K−1/2φ =
∞∑

j=1

1√
λj

φj

∫
φ · φj.

20In fact K is a Hilbert-Schmidt operator.
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In fact the operator K1/2 generally fails to have an inverse on all of L2
p because either there

may be only a finite number of nonzero eigenvalues or there may be an infinite number of

eigenvalues in which case the λj converge to zero. We focus on the latter case.

For a given φ∗, we construct a solution φ to the equation:

K1/2φ = φ∗

by forming:

φ =
∞∑

j=1

< φ∗, φj >√
λj

φj

which is well-defined when
∞∑

j=1

< φ∗, φj >
2

(λj)
<∞.

With this in mind, let

H2
p =

{
φ :

∞∑

j=1

< φj, φ >
2

λj

<∞
}
.

In our analysis of efficiency, we assume that f̄ [π0(·)] is in H2
p .

The counterpart to an efficient selection matrix of the form given in Sargan (1958, 1959),

and Hansen (1982, 1985) is:

D(θ)′
∞∑

j=1

λj

λ2
j + ηN

φj(θ)

∫ 1

0

φj(ϑ) · 1

N

N∑

t=1

f [xt, π̂N(ϑ)]dϑ = 0, (38)

where ηN is a regularization parameter that decays to zero with the sample size. We in-

clude the regularization parameter because of the error that is present in approximating the

function f̄(β) by 1
N

∑N
t=1 f(xt, β). The estimated function π̂N(θ), defined as the solution to

(38) for all θ, is infeasible because λj and φj are population quantities. This selection can

be implemented by solving

min
π∈Π

∞∑

j=1

λj

λ2
j + ηN

(∫ 1

0

φj(θ) ·
1

N

N∑

t=1

f [xt, π(θ)]dθ

)2

. (39)

The objective function (39) is the operator counterpart to the quadratic minimization prob-

lem often used in GMM estimation. More specifically, it is a version of the continuum of

moment condition objective function of Carrasco and Florens (2000) extended to the estima-

tion of the (infinite-dimensional) parameter vector π. Carrasco and Florens (2000) provide

justification and discuss implementation for their related GMM setting.
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In terms of efficiency it is most convenient to work with the counterpart to an information

matrix. Thus we construct an information operator J . To construct the operator domain,

let ψ map Θ into Rk−1, and let

H̃2
k−1 = {ψ : Dψ ∈ H2

p}.

Then

Jψ(θ) =
∞∑

j=1

1

λj

D′(θ)φj(θ)

[∫

Θ

φj · (Dψ)

]
.

Notice that

∫

Θ

ψ · (Jψ) =
∞∑

j=1

1

λj

[∫

Θ

φj · (Dψ)

]2

≥ 1

λ1

∞∑

j=1

[∫

Θ

φj · (Dψ)

]2

=
1

λ1

∫

Θ

(Dψ) · (Dψ)

since eigenfunctions are a complete orthonormal sequence of functions in the space. While

the information operator J is defined on the restricted domain H̃2
k−1, its inverse, which we

denote C, can be extended to a larger domain of functions L̃2
k−1 consisting of ψ such that

Dψ ∈ L2
p. Our conjectured and (hopefully sharp) efficiency bound for integral averages of

the parameter estimator
√
N

∫ 1

0

ψ(θ) · [τ̂N(θ) − τ0(θ)]dθ

is given by ∫

Π

ψ · (Cψ)).

We suspect that this bound can be extended to a broader class of linear functionals of the

parameter π including functions that evaluate π at individual points, however, this will be

left for subsequent research.

It is interesting to relate the inferential problems in the previous sections with the one

in this section. The main difference is that the linearity of (5) and (28) implies that the

resulting operator K would only have a finite number of positive eigenvalues. Once we take

this fact into account, though, the curves that we will estimate with the procedure that
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we have developed in this section will coincide with the curves that we implicitly estimated

using the procedures developed in sections 3 and 4.

To see why, consider for instance the linear in parameters model (5), and suppose that

instead of (6) we seek to estimate a non-linear parametric curve with the following structure

π(θ) = θ · α[1] + (1 − θ) · α[2] +

[
θ

υ(θ)

]
(40)

Further, assume that π(θ) can be uniquely identified from the continuum of moment con-

ditions (7). We know that for each possible υ the linear span of the image will be finite-

dimensional. As we show in appendix B, the method proposed in this section will select

υ(θ) = 0 ∀θ in order to keep the dimension of the linear span as small as possible, in this

case two.

5.4 Testing

Suppose that π0(θ) is a known function of θ, say π0(θ) = θ. Under full identification there

is a unique but unknown parameter vector, given by say β0 = π0(θ0), but we wish to

test for underidentification by pre-specifying π0 but not θ0. By assumption, estimation of

π0 is unnecessary. This is a special case of our analysis, but it is also a special case of

the analysis of Carrasco and Florens (2000). While estimation has been pushed aside, the

“overidentification” test of Carrasco and Florens (2000) is directly applicable to this problem

as a test of underidentification.

More generally, an overidentification test could be constructed analogously to that of

Carrasco and Florens (2000) by scaling appropriately the minimized sample counterpart to

(39). The resulting test could produce a normal distribution as the limit of a sequence of

appropriately scaled (approximate) chi-square distributions with an arbitrarily large number

of degrees of freedom. An alternative approximation that incorporates the role of regular-

ization leads instead to an approximate quadratic form in normal variables. Our experience

suggests that such an Imhof (1961)-style approximation becomes an attractive alternative

to the limiting normal distribution (see Appendix C for a further discussion of this point).

To illustrate the previous discussion, we use an asset pricing example from Hansen and

Singleton (1982), which is closely related to Example 3.3.21 For simplicity, we consider the

21This example has also been explored in Hansen et al. (1996), Stock and Wright (2000) and Kleibergen
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case of a single asset.22

Example 5.1. Consider:

E {zt [y1t exp(−ϕy2t) − exp(−ρ)]} = 0, (41)

where y1t denotes the gross return on some risky financial asset over period t, y2t denotes

the continuously compounded rate of growth in consumption of a representative agent with

time-separable expected utility preferences of the isoelastic variety over the same period, zt

is a vector of p ≥ 2 instrumental variables known in period t − 1, ϕ is the reciprocal of the

elasticity of intertemporal substitution and ρ is the rate of time preference.

If the joint distribution of y1t and y2t conditional on zt does not depend on zt,
23 then

(41) will be compatible with any pair of values of ϕ and ρ that satisfy the following moment

condition

E [y1t exp(−ϕy2t) − exp(−ρ)] = 0. (42)

Equation (42) can be understood as defining a curve in ϕ, ρ space that is the locus of

all the structures that are observationally equivalent to the true one. In particular we

can trace out values for the subjective rate of time preference for a range of values of the

elasticity of intertemporal substitution. Under specific distributional assumptions, such as

joint normality and homoskedasticity of logy1t and y2t conditional on zt, it is possible to

obtain a parametric expression for such a locus. The approach that we have developed in

this section makes such parametric assumptions unnecessary. All we need to do to test for

the identifiability of model (41) is to apply our procedures to:

E {zt [y1t exp(−θy2t) − exp(−τ(θ))]} = 0.

(2005) in their analysis of continuously-updated GMM and weak identification.
22Multiple asset versions of this example typically lead to substantial empirical evidence against the asset

pricing model. Similarly, empirical analyses with Treasury bill data also reject the model. In contrast,
aggregate data on equities provides only weak evidence about the parameters of interest. See for instance,
section 3 and Figure 1 of Hansen and Singleton (1996) for further discussion of these issues.

23Note that the independence assumption of the joint distribution of y1t and y2t given zt is much stronger
than the equivalent condition in the linear case discussed in example 3.3. On the other hand, conditional
independence is only a sufficient condition for the failure of identification in this nonlinear model.
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6 Conclusions

In instrumental variables or generalized-method-of-moments estimation of an econometric

model it is useful to have a statistical test designed to ascertain whether the model is un-

deridentified. Indeed Koopmans and Hood (1953) (see page 184) wrote:

“It is ... natural to abandon without further computation the set of restrictions

strongly rejected by the (likelihood ratio) test. Similarly, it is natural to apply

a test of identifiability before proceeding with the computation of the sampling

variance of estimates ... and to forego any use of the estimates, if the indication

of nonidentifiability is strong.”

While it was recognized in the early econometric literature on simultaneous equations sys-

tems that underidentification is testable, to date such tests are uncommon in econometric

practice. Nevertheless, many econometric models of interest often imply a large number of

moment restrictions relative to the number of unknown parameters and are therefore seem-

ingly overidentified. However, this situation is often coupled with informal evidence that

identification may be at fault. In those cases, an identification test in conjunction with some

specificity about the potential nature of the identification failure will help to assess to what

extent the sample is informative about the parameters of interest.

In this paper we proposed a method for constructing tests of underidentification based

on the structural form of the equation system. We regard underidentification as a set of

overidentifying restrictions imposed on an augmented structural model. Therefore, our pro-

posal is to test for underidentification by testing for overidentification in the augmented

model using either standard overidentifying testing methods available in the literature, or

some generalizations developed in this paper. A by-product of our analysis is an estimate

of a direction or a curve that shows the parameter-tradeoffs that have comparable empirical

implications.

Our idea for how to build a test or underidentification is straightforward: estimate a curve

instead of a point and test the resulting overidentification. If it is possible to construct such

a curve without statistical rejection, then the original model is likely to be underidentified.

But if the attempt fails statistically, then the null hypothesis is rejected and we may conclude
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the model is identified.

We show that our approach can be used not only for single equation linear models, but

also for systems with cross-equation restrictions, possibly with different valid instruments

for different equations. We also extend our methods to models which are non-linear in the

parameters, as well as to fundamentally non-linear models in which there is a one-dimensional

manifold of observationally equivalent structures.

In summary, the approach we develop in the paper for linear and nonlinear models has

the following characteristics in common:

1) We use the structural specification and exploit the fact that if β0 is not identified, then

there will be a manifold of β′s that will satisfy the original moment conditions.

2) We implicitly parameterize this underidentified manifold, and write all the implied

moment conditions as an extended system with either a finite or a continuum of moment

conditions.

3) Then we simply compute the overidentification test of the extended system.

4) As a by-product, we obtain an “efficient estimator” of the underidentified manifold.

We do not provide an omnibus underidentification test, but a general approach to test for

underidentification in situations in which the characteristics of the identified set of interest

are either theoretically or empirically motivated.

Although we posed the target of the estimation to be a function π0, it would perhaps

more natural to pose the target to be a curve in the parameter space P and to develop

estimation methods that are invariant to how the curve is parameterized. We hope to

address this point and to provide some additional formality in subsequent research. In their

study of observable factor models, Nagel and Singleton (2009) show that taking account

of the conditioning information in an efficient way substantially alters the assessment of

competing linear asset pricing models. Thus another important topic for future research is

to incorporate conditional moment restrictions and to explore more generally the extent to

which underidentification remains an important concern in practice.
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Appendices

A The Cragg and Donald test of underidentification

Cragg and Donald (1993) considered single equation tests of underidentification based on the

reduced form. Let us partition yi into a (p+ 1)- and a r1-dimensional vectors of endogenous

and predetermined variables, respectively, yi = (y′1i, z
′
1i)

′, so that k = p+r1 and zi = (z′1i, z
′
2i)

′,

where z2i is the vector of r2 instruments excluded from the equation. Moreover, let Π and

Π̂ = Y ′
1Z(Z ′Z)−1 be the (p+ 1)× r matrices of population and sample reduced form linear-

projection coefficients, respectively. With this notation and the partition Π = (Π1,Π2)

conforming to that of zi, α is identified up to scale if and only if the rank of Π2 is p, but it

is underidentified if the rank is p− 1 or less.

To test for underidentification Cragg and Donald considered the minimizer of the mini-

mum distance criterion

T [vec(Π̂ − Π)]′V −1vec(Π̂ − Π) (43)

subject to the restriction that the rank of Π2 is p−1. Under the null of lack of identification

and standard regularity conditions, this provides a minimum chi-square statistic with 2(r−
k) + 2 degrees of freedom, as long as V is a consistent estimate of the asymptotic variance

of vec(Π̂).

If the rank of Π2 is p− 1, there are two linearly independent vectors, denoted by Γ, such

that Π′
2Γ = 0. For some ordering of the rows of Π2, we can normalize Γ as Γ′ = (I2,Γ

′
2).

Partitioning Π2 accordingly as Π′
2 = (Π′

21,Π
′
22), we then have that Π′

21 = −Π′
22Γ2. To enforce

the rank restriction, Cragg and Donald considered Π as a function of Π1,Π22 and Γ2.

To relate (43) to our framework, write the augmented model

yi · α = ui

yi · α∗ = vi

as a complete system by adding to it p− 1 reduced form equations, and denote it by

By1i + Czi = u†i

where B = (B′
1, B

′
2)

′, C = (C ′
1, C

′
2)

′, B2 =

(
0p−1,2

...Ip−1

)
, and (B1, C1) = A′. To visualize

the mapping between the structural parameters and the Cragg-Donald parameterization of
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the rank restriction, let us introduce the partitions C1 = (C11, 0), C2 = (C21, C22) and B1 =

(B11, B12). We then have that Π22 = −C22 and Π21 = B−1
11 B12C22, so that Γ2 = −B−1

11 B12.

Π1 is unrestricted with −B−1
11 (C11 −B12C21) as the first component and −C21 as the second.

Then noting that

Π̂−Π (A,C2) = [Y ′
1 − Π (A,C2)Z

′]Z(Z ′Z)−1 =
(
Y ′

1 +B−1CZ ′)Z(Z ′Z)−1 = B−1U †′Z(Z ′Z)−1,

so that

vec(Π̂ − Π) = (B ⊗ Z ′Z)−1

N∑

i=1

(u†i ⊗ zi),

(43) can be expressed as

N∑

i=1

(u†i ⊗ zi)
′[(B ⊗ Z ′Z)V (B′ ⊗ Z ′Z)]−1

N∑

i=1

(u†i ⊗ zi), (44)

which is in the form of a continuously updated GMM criterion that depends on (α, α∗) and

the coefficients C2 in the additional p− 1 reduced form equations. Since B does not depend

on the latter, those parameters can be easily concentrated out of the criterion. A convenient

feature of this criterion is that it is invariant to normalization through the updating of B

while V is kept fixed.

Specifically, using a standard result on the irrelevance of unrestricted moments Arellano

(2003) (see pages 196–197), criterion (44) concentrated with respect to C2 can be shown to

equal:

(α′Y ′Z, α∗′Y ′Z) [(B1 ⊗ Z ′Z)V (B′
1 ⊗ Z ′Z)]

−1

(
Z ′Y α
Z ′Y α∗

)
.

An optimal weight matrix under classical errors is V = Y ′
1MY1 ⊗ (Z ′Z)−1, where M =

I − Z (Z ′Z)−1 Z ′, in which case the concentrated criterion boils down to

(α′Y ′Z, α∗′Y ′Z) (A
′

Y ′MYA⊗ Z ′Z)−1

(
Z ′Y α
Z ′Y α∗

)
. (45)

Its minimizer subject to A
′

Y ′MYA = I coincides with the sum of the two smallest charac-

teristic roots of Y ′Z (Z ′Z)−1 Z ′Y in the metric of Y ′MY , which is one of the (non-robust)

test statistics discussed by Cragg and Donald.

Next, an optimal weight matrix under heteroskedastic errors is

V = (I ⊗ Z ′Z)
−1
∑

i

(ε̂iε̂
′
i ⊗ ziz

′
i) (I ⊗ Z ′Z)

−1
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where ε̂i is a reduced-form residual (the i-th column of Y ′
1M). In this case the concentrated

criterion becomes

(α′Y ′Z, α∗′Y ′Z)

(
∑

i

A′ỹiỹ
′
iA⊗ ziz

′
i

)−1(
Z ′Y α
Z ′Y α∗

)
(46)

where ỹi denotes the i-th column of Y ′M , so that the values of components of ỹi that

correspond to predetermined explanatory variables are identically zero.

To conclude, both robust and non-robust Cragg-Donald criteria can be regarded as

continuously-updated GMM criteria of the augmented structural model using ỹ′iA as er-

rors. Since the difference between A′yi and A′ỹi at the truth is of small order, using one

or the other is asymptotically irrelevant. Similar remarks can be made for optimal weight

matrices under autocorrelated errors.

B Estimating Finite-Dimensional Specifications of π

We begin by considering a general GMM estimation result, which will prove useful for our

purposes. Suppose the moment conditions used in GMM estimation can be partitioned as

f(xt, β) =

[
f [1]
(
xt, β

[1]
)

f [2]
(
xt, β

[1], β[2]
)
]
.

Let

gN(β) =
1

N

N∑

t=1

f(xt, β) =

[
1
N

∑N
t=1 f

[1]
(
xt, β

[1]
)

1
N

∑N
t=1 f

[2]
(
xt, β

[1], β[2]
)
]
.

Let VN(β) be the asymptotic covariance estimator used in a continuously-weighted GMM

estimation, whose partition we denote by:

VN(β) =

[
V

[11]
N

(
β[1]
)

V
[12]
N (β)

V
[21]
N (β) V

[22]
N (β)

]
.

We compare GMM objectives for estimating β
[1]
0 alone using the first set of moment conditions

versus estimating the entire vector β0 using the full set of moment conditions.

Lemma B.1.

min
β∈P

gN(β)′[VN(β)]−1gN(β) ≥ min
β∈P

g
[1]
N

(
β[1]
)′ [

V
[11]
N

(
β[1]
)]−1

g
[1]
N

(
β[1]
)

.
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Proof. Form

f̃(xt, β, γ) =

[
f [1](xt, β

[1])
f [2]
(
xt, β

[1], β[2]
)
− γ

]

and construct similarly g̃N(β, γ). The proof follows in three steps.

1.

min
β∈P

gN(β)′[VN(β)]−1gN(β) ≥ min
β∈P,γ

g̃N(β, γ)′[VN(β)]−1g̃N(β, γ)

The right-hand side minimization problem will not have a unique solution but this

does not matter.

2.

min
γ
g̃N(β, γ)′[VN(β)]−1g̃N(β, γ) = g

[1]
N (β[1])′

[
V

[11]
N

(
β[1]
)]−1

g
[1]
N (β[1]) (47)

This follows by using the first-order conditions for γ to show that

g
[2]
N (β) − γ =

([
0 I

]
[VN(β)]−1

[
0
I

])−1 [
0 I

]
[VN(β)]−1

[
I
0

]
g

[1]
N

(
β[1]
)
.

Substitute this outcome into the objective function on the left-hand side of (47) and

apply the partitioned inverse formula to establish equality with the right-hand side of

(47).

3. Finally,

min
β∈P,γ

g̃N(β, γ)′[VN(β)]−1g̃N(β, γ) = min
β∈P

min
γ
g̃N(β, γ)′[VN(β)]−1g̃N(β, γ)

= min
β∈P

g
[1]
N (β[1])′

[
V

[11]
N

(
β[1]
)]−1

g
[1]
N (β[1]).

The conclusion follows from these three steps.

We apply this result to an estimation problem where f2 corresponds to the moment

conditions added when we replicate the original moment conditions, and β[2] is introduced

to parameterize the additional econometric relation when then model is underidentified. The

previous lemma is not directly applicable to this problem because when we replicate moment

conditions we add restrictions on the initial parameter vector β[1]. However, restricting β[1]

shrinks the parameter space P in the minimization problem given in the left-side of Lemma

B.1 and hence can only increase the minimized objective function. Thus a corollary of this

lemma is
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Corollary B.2. Consider the r moment conditions

E[f̃(xi, β̃)] = 0

used to estimate the k×1 parameter vector β̃0, and denote by Ij the value of the continuously-

updated GMM version of the test of the null hypothesis that β is underidentified of dimension

j introduced in section 3.1.2. Then, Ij ≥ Ij−1 for any j ≥ 1.

As a result, if we use continuously-updated GMM and allow for explorations across alter-

native degrees of underidentification, then the objective will lead us to the smallest allowable

degree of underidentification. In particular, if we allow for the estimation of nonlinear curves

such as (40) in a model that is fundamentally linear, then the continuously-updated GMM

objective will lead us to represent the underidentification by means of a line or at least the

segment of a line.

C Imhof-based approximation to the distribution of

GMM tests

Let

gN(β) =
1

N

N∑

t=1

f(xt, β),

and define

M = lim
T→∞

V ar
[√

NgN(βo)
]
.

Since the purpose of this appendix is to explain the application of Imhof (1961) results

in our context, in what follows we will abstract from estimation issues by assuming that βo

is known.

As shown by Hansen (1982), under certain regularity conditions the quadratic form

NgN(βo)M
−1gN(βo)

will converge in distribution to a χ2 random variable with p degrees of freedom as N → ∞.

If the matrix M is ill-conditioned, the quality of the previous approximation can be rather

poor. To address this problem, we could use the Tikhonov version of the generalized inverse,
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and replace the above criterion function by

Ng′N(βo)M
1/2(ηNIp +M2)−1M1/2gN(β0)

=
√
NgN(βo)

′W∆1/2W ′(ηNIp +W∆2W ′)−1W∆1/2W ′√NgN(βo)

=
[√

NgN(βo)
′W∆−1/2

] [
(ηNIp + ∆2)−1∆2

] [
∆−1/2W ′√NgN(βo)

]

=

p∑

j=1

δ2
j

δ2
j + ηN

[√
Nεj,N

]2
,

where W∆W ′ provides the spectral decomposition of M , εj,N is the jth entry of the random

vector εN = ∆−1/2W ′gN(β0) and ηN is a regularization parameter. Since
√
NεN → N(0, Ip),

we will recover the chi-square limiting distribution under the null if we let ηN go to 0 at a

suitable rate. But given that for a fixed ηN the above statistic will converge to a diagonal

quadratic form in standard normal random variables as N → ∞, we can use Koerts and

Abrahamse (1969) implementation of Imhof (1961) procedure for evaluating the probability

that a quadratic form of normals is less than a given value (see also Farebrother (1990)).

Although the smallest eigenvalue of M , δmin say, will generally be strictly positive, from a

numerical point of view it makes sense to truncate the previous expression so that we only

use those terms for which (
δ2

j

δ2

j +ηN

)

(
δ2
max

δ2
max+ηN

)

exceeds some small threshold. Finally, since under standard regularity conditions the asymp-

totic distribution of the above tests is unaffected if we replace M with a consistent estimator,

in practice we can treat the sample counterparts of δj as if they coincided with their popu-

lation values.

The same analysis can be applied to GMM contexts with a continuum of moment con-

ditions. For simplicity, we again discuss the case in which π0(θ) is known, in which case our

approach and the Carrasco and Florens (2000) approach coincide.

Define v and C as a vector and square matrix, respectively, of dimensionN , with elements

cst =
1

N
〈f [xs, π0(θ)] , f [xt, π0(θ)]〉 =

∫

Θ

f [xs, π0(θ)]
′ f [xt, π0(θ)] dθ

vs = 〈gN (π0(θ)) , f (xs, π0(θ))〉 =
1

N

N∑

t=1

∫

Θ

f [xt, π0(θ)]
′ f [xs, π0(θ)] dθ = C ′

·sιN ,
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where C·s is the sth column of C and ιN is a vector of N 1’s. Consider the spectral decompo-

sition C = UΛU ′. Then, it is possible to show that the continuum of moment conditions test

studied by Carrasco and Florens (2000) is numerically identical to the following expression

v′
[
ηNIN + C2

]−1
v = ι′NC

[
ηNIN + C2

]−1
CιN = ι′NU




λ2

1

ηN+λ2

1

· · · 0
...

. . .
...

0 · · · λ2

N

ηN+λ2

N


UιN .

Carrasco and Florens (2000) show that under certain conditions on the regularization con-

stant ηN :
v′ [ηNIN + C2]

−1
v − pN(ηN)√

qT (ηN)
→ N (0, 1)

where

pN(ηN) =
N∑

j=1

λ2
j

λ2
j + ηN

qN(ηN) = 2
T∑

j=1

λ4
j(

λ2
j + ηN

)2

As Carrasco and Florens (2000) argue in remark 11 of their paper, their test can also be

asymptotically regarded as a centered and standardized version of a diagonal quadratic form

in N standard normal variables. Thus we can again attempt to improve the finite sample

approximation by using Imhof (1961) results treating the eigenvalues of the empirical matrix

C as if they were the true eigenvalues of its population counterpart.

Another advantage of this Imhof approximation is that it will not breakdown when the

number of strictly positive eigenfunctions is finite regardless of the sample size. Such a

situation arises in the linear and non-linear in parameters models discussed in sections 3 and

4, respectively.
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