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Abstract

This paper develops asymptotic theory for estimated parameters in differentiated product

demand systems with a fixed number of products, as the number of markets T increases,

taking into account that the market shares are approximated by Monte Carlo integration. It

is shown that the estimated parameters are
√

T consistent and asymptotically normal as long

as the number of simulations R grows fast enough relative to T . Monte Carlo integration

induces both additional variance as well additional bias terms in the asymptotic expansion

of the estimator. If R does not increase as fast as T , the leading bias term dominates the

leading variance term and the asymptotic distribution might not be centered at 0. This

paper suggests methods to eliminate the leading bias term from the asymptotic expansion.

Furthermore, an adjustment to the asymptotic variance is proposed that takes the leading

variance term into account. Monte Carlo results show that these adjustments, which are

easy to compute, should be used in applications to avoid severe undercoverage caused by the

simulation error.
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1 Introduction

Discrete choice models have been widely used in the empirical industrial economics litera-

ture to estimate demand for differentiated products. In these models consumers in market

t can typically choose one of Jt products or an outside option. The market share of good

j in market t is calculated as the probability that a consumer chooses good j given prices

and product characteristics. In models with heterogeneous consumers, such as the model

of Berry, Levinsohn, and Pakes (1995) (often referred to as the BLP model), the market

shares involve integrals over the distribution of random coefficients. When estimating the

parameters of the model these integrals cannot be calculated analytically. Therefore, they

are usually approximated by Monte Carlo integration with R random draws from the known

distribution of the random coefficients.1 The limiting distribution of the estimated param-

eters can be obtained by either letting the number of products, the number of markets, or

both approach infinity. Since the asymptotic distribution of the estimator serves as an ap-

proximation of its unknown finite sample distribution, it depends on the particular data set

which approximation is most suitable. While in some cases using an approximation where

the number of products approaches infinity is appropriate (as in Berry, Levinsohn, and Pakes

(1995)), in other cases the number of markets is a lot larger than the number of products

(e.g. Nevo (2001)). As shown in this paper the asymptotic properties of the estimator differ

a lot depending on which approximation is used. Therefore, it is important that both ap-

proximations are well understood.

Berry, Linton, and Pakes (2004) provide asymptotic theory for estimating the parameters of

differentiated product demand systems for a large number of products in one market. They

allow for three sources of errors: The sampling error in estimating the market shares, the

simulation error in approximating the shares predicted by the model, and the underlying

sampling error. In their paper all market shares go to 0 at the rate 1/J and a necessary

condition for asymptotic normality is that J2/R is bounded. In this case, without a sampling

error in estimating the market shares, their estimator θ̂ of the parameter vector θ0 satisfies

√
J
(
θ̂ − θ0

)
d→ N (0, VGMM + λ1VMC)

where λ1 = limJ,R→∞ J2/R. Here VGMM denotes the variance of the estimator when the

integral is calculated exactly and VMC is an additional variance term due to the simulation

1Although the focus lies on the effect of using Monte Carlo integration to approximate integrals, non-

stochastic approximations such as quadrature rules are also discussed.
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error. Hence, if J2/R is bounded away from 0, the asymptotic distribution is centered at 0

but the use of Monte Carlo integration leads to a larger variance.

This paper is concerned with the asymptotic theory for a fixed number of products, J , in a

growing number of markets T . Since a market can be defined as a geographic region but also

as different time periods, in many data sets used in applications the number of markets is a

lot larger than the number of products (see for example Nevo (2001), Kim (2004), and Villas-

Boas (2007)). In the study of Nevo (2001), for example, the number of markets is 1124 while

the number of products is 24. For these cases, using an asymptotic approximation where the

number of markets approaches infinity and the number of products is fixed is the natural

choice. However, this setup has not been investigated in the literature so far. Furthermore, in

a similar (but more general) class of models, Berry and Haile (2010) provide non-parametric

identification results for a large number of markets and a fixed number of products. These

identification results can serve as a basis for non-parametric or semi-parametric estimation

of the model. Before such a flexible estimation procedure is developed, it is interesting to

know how the commonly used fully parametric estimators behave in this setup. I prove

consistency and asymptotic normality in a general setup for these cases where T approaches

infinity and J is fixed. I use Nevo’s widely used parameterization of the BLP model as an

example throughout the paper. For this model, I also provide intuitive conditions for local

identification and show under which circumstances point identification fails.

I find that the estimated parameters are
√

T consistent and asymptotically normal as long

as
√

T/R is bounded. In this case, θ̂ satisfies

√
T
(
θ̂ − θ0

)
d→ N (λ2µ, VGMM)

where λ2 = limT,R→∞
√

T/R, again VGMM is the variance of the estimator without integra-

tion error, and µ 6= 0. Hence, if
√

T/R is bounded away from 0, Monte Carlo integration (as

opposed to evaluating the integral) leads to an asymptotic normal distribution of the esti-

mated parameters which is not centered at 0. The reason for this result is that Monte Carlo

integration yields both additional bias as well as additional variance terms in the asymp-

totic expansion. If one uses different draws to evaluate the integral in different markets, the

leading bias term may dominate the leading variance term. The leading additional variance

term is of order Op(1/
√

R) and does not enter the first order asymptotic distribution as

long as R → ∞. These results rely on using different draws to approximate the integral in

different markets. If the same R draws are used in all markets one needs T/R to be bounded
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to obtain
√

T consistency which means that more draws are needed to approximate each

integral relative to the number of markets.

In a similar way one can introduce sampling error in the observed markets shares. Similar to

Berry, Linton, and Pakes (2004), one could assume that one does not observe the true mar-

kets shares but an approximation from n random consumers. Observing only approximated

market shares leads to additional bias and variance terms in the asymptotic expansion. The

rate at which n has grow to relative to T in order to obtain
√

T consistency is identical to

the rate requirement for R.

From these two asymptotic distributions it is apparent that there are important differences

between letting the number of products or the number of markets approach infinity. With a

large number of products, it is important to correct the variance for the use of Monte Carlo

integration. With a large number of markets and different draws in each market, the asymp-

totic distribution might not be centered at 0 and hence, a bias corrected estimator is needed.

In both cases if R is too small, confidence intervals based on the usual asymptotic GMM

distribution have the wrong size even asymptotically. Also notice that with J approaching

infinity one needs that J2/R goes to 0 for an asymptotic distribution that is not affected by

Monte Carlo integration. Contrary, if T goes to infinity one only needs that
√

T/R goes to

0 to obtain this result. Hence, a lot fewer draws to evaluate each integral are needed relative

to the sample size.

The finite sample properties of the estimator depend on the number of draws R due to both

the additional bias and the additional variance induced by simulations. I suggest two differ-

ent methods that allow eliminating the leading bias term from the asymptotic distribution.

One method is an analytical bias adjustment. The other method is a jackknife bias adjust-

ment. I also show how one can easily incorporate the leading variance term when calculating

standard errors. These two corrections greatly improve finite sample results. In particular,

Monte Carlo simulations demonstrate that using a small number of draws in comparison to

the number of markets and using the usual GMM asymptotic distribution can yield distorted

inference while the use of bias correction and adapted standard errors leads to a considerably

better performance.

The focus of this paper is on understanding the asymptotic theory when Monte Carlo inte-
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gration is employed because this is the method which has almost exclusively been used in

applications. Furthermore, an advantage of Monte Carlo integration is that it can easily be

used to integrate over complicated distributions such as the joint distribution of demographic

characteristics as in Nevo (2001). For these distributions there is no closed form expression

for the density function. An interesting alternative is to use non-stochastic approximations,

such as quadrature rules recently advocated by Judd and Skrainka (2011). These approxima-

tions are shown to perform well in simulations when integrating over a normal distribution.

However, it is not clear how a distribution of demographic characteristics, which does not

have a closed form expression, can be handled with quadrature rules. Although the focus lies

on Monte Carlo integration, the asymptotic expansions derived in this paper also provide

insights into finite sample bias from non-stochastic approximations.

These results might suggest that practitioners can simply use a very large number of draws

and ignore Monte Carlo integration issues. Although this might be feasible depending on the

model and computing resources available, in applications this is often not possible for several

reasons. First, one does not know in advance how many draws suffice to obtain satisfactory

results. As discussed in Section 4, the number of draws needed depends, among others, on

the sample size, the number of random coefficients as well as unknown parameters, such

as the variance of the random coefficients. Second, taking a very large number of draws

is computationally very demanding because one needs to solve a complicated nonlinear op-

timization problem to estimate the parameters. The Monte Carlo results of the random

coefficients logit model presented in Section 4 are based on a small number of products

(J = 4) and five random coefficients to make the problem tractable. However, in the same

setup as in Section 4 but with a sample size of J = 24 and T = 1, 124 (as in Nevo (2001))

it takes around 24 hours to minimize the objective function when R = 2, 000 and the the

starting values of the parameters are close to the true values.2 Since we are dealing with a

nonlinear optimization problem one needs to use several different starting values in appli-

cations. With an even larger number of draws or with a larger sample size estimating the

model can take more than one week. Taking a smaller number of draws considerably speeds

up calculations. Third, even when taking the same draws for each product and each random

coefficient, the number of draws needed is T × R. In the previous example this means that

2, 248, 000 draws are used to calculate the shares and the draws have to be stored before

2Computational details are presented in the Monte Carlo section. The programs are run on the North-

western Social Sciences Computing Cluster which use 260 AMD Opteron CPU cores, running at 2.8Ghz.
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optimizing the function. As a consequence, more than 10 GB of memory is needed to run

the program which is used to do the simulations in this paper. Finally, in case one wants

to integrate over empirical distributions of demographic characteristics, R is constrained by

the number of people in the database for a certain market.

The implication for empirical work that makes use of Monte Carlo integration is that in

practice one should always use bias corrections and standard errors that correct for the sim-

ulation error. If the number of simulations is sufficiently large, the bias correction is close

to 0 and the corrected standard errors will be very close to the usual GMM standard errors.

If the number of simulations is small, the simulation error will affect the finite sample per-

formance of the estimator, the usual GMM standard errors underestimate the true variance,

and the estimates might be severely biased. In this case the proposed corrections, which can

be computed easily, considerably improve the finite sample performance. Nevertheless, the

number of draws should be as large as possible, subject to computational constraints and

data availability, in order to improve the precision of the initial estimate which is used to

calculate the bias correction.

The results in this paper are related to similar findings of Lee (1995) in simulated maximum

likelihood estimation of discrete choice models. Lee (1995) also finds that the asymptotic

distribution might not be centered at 0 if the number of draws is small relative to the sam-

ple size. Furthermore, similar bias corrections have been proposed by Arellano and Hahn

(2007) in nonlinear fixed effects panel data models and by Kristensen and Salanie (2010) for

a general class of approximate estimators. The results in the aforementioned papers do not

directly apply to the setup presented here because there is no closed form analytic expression

for the objective function which is constructed by solving a system of equations. The results

are also in line with simulation results in a recent study by Judd and Skrainka (2011) who

find among others finite sample bias and excessively tight standard errors when using Monte

Carlo integration. Other recent contributions to literature on estimation of discrete choice

demand models include Gandhi and Kim (2011) and Armstrong (2012). In both papers

J → ∞. Gandhi and Kim (2011) allow for interactions between the unobserved demand

error and product characteristics which affects both the identification arguments and esti-

mation method. Armstrong (2012) discusses the validity of commonly used instruments in

models with a large number of products (i.e. J →∞) under conditions on economic primi-

tives. He shows that in several models using product characteristics as instruments for price
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yields inconsistent estimates and he shows how consistent estimates can be obtained.

The remainder of this paper is organized as follows. The next section introduces the mod-

els of Berry, Levinsohn, and Pakes (1995) and Nevo (2001) in detail. I provide intuitive

conditions for local identification and show under which circumstances point identification

fails. Then I prove consistency and asymptotic normality in a general setup. I argue that

the assumptions are satisfied in the model of Nevo (2001). Finally, I discuss Monte Carlo

results to demonstrate that the proposed corrections considerably improve the finite sample

performance.

2 A motivating example

The following widely used model of Berry, Levinsohn, and Pakes (1995), and in particular

the parameterization of Nevo (2001), is used as a motivating example throughout the paper.

The asymptotic theory provided in the section holds more generally. Since identification

is one of the main assumption in the next sections, I provide intuitive conditions for local

identification for this model and show under which circumstances point identification fails.

2.1 Model

In this model, the utility of consumer i from product j in market t is assumed to be

ui,j,t = x1,j,tβ1,i,t+x2,jβ2,i,t−αi,tpj,t+ξj+∆ξj,t+εi,j,t, i = 1, . . . , I, j = 1, . . . , J, t = 1, . . . , T.

Here x1,j,t is a K1 dimensional vector of product characteristics that differ across markets and

x2,j is a K2 dimensional vector of product characteristics that are identical in all markets.

The price of product j in market t is denoted by pj,t. Unobserved product characteristics

which are identical in each market for product j are called ξj, while ∆ξj,t are the unobserved

characteristics that vary across markets (deviations from the mean ξj). Finally, εi,j,t is a

mean zero stochastic term. The utility of an outside option, j = 0, is standardized to 0.

Nevo (2001) assumes that
αi,t

β1,i,t

β2,i,t

 =


α

β1

β2

+ ΠDi,t + Σvi, vi ∼ N(0, IK+1)

where K = K1 + K2. Here, Di,t is a draw from the known distribution of demographics,

with dimension B × 1 which may vary across markets. The matrix Σ is assumed to be
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diagonal. Next define βi = (β′1,i β′2,i)
′ and θ = (θ′1, θ

′
2)
′ where θ1 = (α, β′, ξ1, . . . , ξJ)′ and

θ2 = (vec(Π)′, vec(Σ)′)′. Using the previous specifications the utility can be rewritten as

ui,j,t = δ(x1,j,t, x2,j, pj,t, ξj, ∆ξj,t; θ1) + µ(x1,j,t, x2,j, pj,t, vi, Di; θ2) + εi,j,t,

where

δ(x1,j,t, x2,j, pj,t, ξj, ∆ξj,t; θ1) ≡ x1,j,tβ1 + x2,jβ2 − αpj,t + ξj + ∆ξj,t,

µ(x1,j,t, x2,j, pj,t, vi, Di; θ2) ≡ [pj,t, x1,j,t, x2,j]
′(ΠDi,t + Σvi).

Also define

γ(x1,j,t, x2,j, pj,t, ξj, ∆ξj,t, vi, Di; θ) ≡ δ(x1,j,t, x2,j, pj,t, ξj, ∆ξj,t; θ1)+µ(x1,j,t, x2,j, pj,t, vi, Di; θ2).

Furthermore, there are instruments zt ∈ RJ×L such that

E(z′t∆ξt) = 0.

Assuming that εi,j,t is independent extreme value distributed, it can be shown that the

market share of product j in market t is given by

sj,t =

∫
exp(γ(x1,j,t, x2,j, pj,t, ξj, ∆ξj,t, v, D; θ))

1 +
∑J

m=1 exp(γ(x1,m,t, x2,m, pm,t, ξm, ∆ξm,t, v, D; θ))
dQt(D)dF (v).

The distribution functions of demographics and v in market t are denoted by Qt and F ,

respectively, where the latter is market invariant.

For each market t, given data on market shares, prices, and product characteristics, as well

as a value of θ2, Berry (1994) showed that there is a unique value of (δ1,t, . . . , δJ,t) that sets

the observed market shares equal to the market shares generated by the model. That is for

each market t,

sj,t =

∫
exp(δj,t + µ(x1,j,t, x2,j, pj,t, v, D; θ2))

1 +
∑J

m=1 exp(δm,t + µ(x1,m,t, x2,m, pm,t, v, D; θ2))
dQt(D)dF (v) (1)

with j = 1, . . . , J constitutes a system of J equations and J unknowns (δ1,t, . . . , δJ,t) which

can be solved uniquely. Nevo (2001) denotes this solution by δj,t(st, x1,t, x2, pt; θ2) for j =

1, . . . , J . The model is commonly estimated by taking R random draws from the known

distributions of v and D, approximating the integral by an average, and solving the above

system of equations numerically for δj,t(st, x1,t, x2, pt; θ2). Now define

ωj,t(θ) = δj,t(st, x1,t, x2, pt; θ2)− x2,jβ2 − ξj − x1,j,tβ1 + αpj,t

7



which can then be used to estimate the parameters by a nonlinear instrumental variables

estimator. The identification condition is that there is a unique value θ0 such that

E(z′t∆ξt) = E(z′tωt(θ0)) = 0.

This identification condition cannot hold if ξj 6= 0 and K2 > 0 due to collinearity of the

regressors. Thus, Nevo defines product dummies dj = x2,jβ2 + ξj and uses instead

ωj,t(θ) = δj,t(st, x1,t, x2, pt; θ2)− dj − x1,j,tβ1 + αpj,t

where now θ1 = (α, β1, d1, . . . , dJ). Notice that one can assume without loss of generality that

E(∆ξj,t) = 0 because ξj captures the mean of each product, but not that E(ξj + ∆ξj,t) = 0.

Using this parameterization, all price elasticities can be identified. I discuss identification in

more detail below.

The model is estimated using instrumental variables and not simply by a minimum distance

procedure because it is usually assumed that prices are endogenous in the sense that they

are correlated with ∆ξt. The reason is that firms take all product characteristics into ac-

count when setting prices. The analysis remains the same if some of the observed product

characteristics, x1,t, are treated as endogenous as well. If x1,t is not correlated with ∆ξt,

then zt includes x1,t.

2.2 Identification

The consistency arguments below require that the model is point identified. Nonparamet-

ric identification in a setup that nests the one in this paper is shown in Berry and Haile

(2010). This, however, does not imply that any parameterization of the model yields point

identification. In order to provide insight on identification of the model of Nevo (2001), I

mainly focus on local identification conditions and discuss under which circumstances point

identification fails.

First define ς = diag(Σ). As already mentioned, β2 cannot be identified. Furthermore, if

there are more product characteristics that do not change over markets than products, the

model is not identified. To see this, notice that µ(x1,j,t, x2,j, pj,t, v, D; θ2) contains

K∑
k=K1+1

xk
2,jςkv

k ∼ N

(
0,

K∑
k=K1+1

(
xk

2,jςk
)2)

.

8



Now define

ϕ2
j =

K∑
k=K1+1

(
xk

2,jς
0
k

)2
, j = 1, . . . , J

where ς0 is the true value of ς. But if K2 > J , then

ϕ2
j =

K∑
k=K1+1

(
xk

2,jςk
)2

, j = 1, . . . , J

is a system of more unknowns (K2) than equations (J). Hence, ς0 is not the unique solution.

It follows that the model is not identified without normalizations because several parameter

values predict the same market shares given the product characteristics.3 Notice that this

argument relies on the facts that the normal distribution is just determined by the mean

and variance and that a sum of normals is normal. So if v had a different distribution, one

might get identification from higher order moments. In case K2 > J one can normalize

ςK1+J+1 = . . . = ςK = 0.

Similarly observe that µ(x1,j,t, x2,j, pj,t, v, D; θ2) contains

B∑
r=1

Db

K∑
k=K1+1

xk
2,jπkb j = 1, . . . , J.

Again, if K2 > J , for each b = 1, . . . , B different values of πkb yield the same value

K∑
k=K1+1

xk
2,jπkb j = 1, . . . , J.

Thus, one has to normalize similar as before.

Sufficient conditions for local identification in GMM estimation include that the matrix

∂

∂θ
E(z′tωt(θ))

∣∣∣
θ=θ0

has full rank (see Rothenberg (1971)). This is convenient here because there is a closed

form expression for the derivative of the moment condition although there is no closed form

expression for the objective function. For simplicity assume that there is only one inside

and one outside good. Then the index j can be dropped. Moreover, assume that there are

3This result is similar to non-identification in a linear IV model if the matrix of regressors does not have

full rank. For any vector of parameter values there is a different parameter vector that predicts the same

distribution of the dependent variable given the regressors.
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two product characteristics with random coefficients, one that changes over markets and one

that does not. Furthermore, assume that B = 1. Then

ωt(θ) = δt(st, x1,t, x2, pt; ς1, ς2, π1, π2)− d− x1,tβ1 + αpt,

where δt = δt(st, x1,t, x2, pt; ς1, ς2, π1, π2) solves

st =

∫
exp(δt + x1,tς1v

1 + x1,tπ1D + x2ς2v
2 + x2π2D)

1 + exp(δt + x1,tς1v1 + x1,tπ1D + x2ς2v2 + x2π2D)
dQt(D)dF (v).

Here st is the market share of the inside good in market t. By the Implicit Function Theorem

∂δt

∂ςk
= −∂st

∂ςk

(
∂st

∂δt

)−1

∂δt

∂πk

= − ∂st

∂πk

(
∂st

∂δt

)−1

.

Therefore,

∂

∂d
E(z′tωt(θ))

∣∣∣
θ=θ0

= −E (z′t)

∂

∂β1

E(z′tωt(θ))
∣∣∣
θ=θ0

= −E (z′tx1,t)

∂

∂α
E(z′tωt(θ))

∣∣∣
θ=θ0

= E (z′tpt)

∂

∂ς1
E(z′tωt(θ))

∣∣∣
θ=θ0

= −E

(
z′tx1,t

∫
f(v, x2, δt; ς0)v

1dQt(D)dF (v)

)
∂

∂ς2
E(z′tωt(θ))

∣∣∣
θ=θ0

= −E

(
z′tx2

∫
f(v, x2, δt; ς0)v

2dQt(D)dF (v)

)
∂

∂π1

E(z′tωt(θ))
∣∣∣
θ=θ0

= −E

(
z′tx1,t

∫
f(v, x2, δt; ς0)DdQt(D)dF (v)

)
∂

∂π2

E(z′tωt(θ))
∣∣∣
θ=θ0

= −E

(
z′tx2

∫
f(v, x2, δt; ς0)DdQt(D)dF (v)

)
where

f(v, D, x2, x1,t, x2, pt, θ) =

exp(δt+x1,tς1v1+x1,tπ1D+x2ς2v2+x2π2D)

(1+exp(δt+x1,tς1v1+x1,tπ1D+x2ς2v2+x2π2D))2∫ exp(δt+x1,tς1v1+x1,tπ1D+x2ς2v2+x2π2D)

(1+exp(δt+x1,tς1v1+x1,tπ1D+x2ς2v2+x2π2D))2
dQt(D)dF (v)

can be seen as a weighting function.

If there are L instrument, the gradient is the L× 7 matrix containing the derivatives. Since

for identification the gradient needs to have rank 7, one needs at least 7 instruments (in-

cluding a constant term or x2 and x1,t). In applications it is often mentioned that one needs
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an instrument for the price because the price is endogenous. However, zt also has to be

correlated with the interactions of product characteristics (including price) and weighted

averages of distributions. In case one assumes that zt is mean independent of ∆ξt and that

zt is chosen based on its correlation with the product characteristics, it makes sense to use

nonlinear functions of zt as instruments as well. Similarly, it also may make sense to take

the mean of the distribution of demographics in each market as an instrument if the mean

varies over markets.4

Full rank means that the rows are linearly independent. This fails for example if π1 =

π2 = α = β1 = ς1 = 0 (or α = 0, no product characteristics change over markets, and the

distribution of demographics is the same in all markets). Then f(v, D, x2, x1,t, x2, pt, θ) only

varies over markets because of ∆ξt which usually is assumed to be mean independent of zt.

However, one would of course assume that α > 0. Nevertheless, it may happen that no

product characteristic changes over markets (as in Nevo (2001)) and that the distributions

of the random coefficients are the same in all markets. If in such cases α is close to 0, one is

in the setup of Andrews and Cheng (2010) and the normal approximation is poor in finite

samples. With more products, the expressions become more complicated, but the previous

intuition remains the same.

3 Asymptotic theory

The setup in this section is more general than the motivating example presented in the last

section.

3.1 Notation and definitions

I denote the norm of any m×n matrix A by ||A|| = tr(A′A)1/2. For any two vectors a, b ∈ Rn,

I define

ρ(a, b) ≡ n−1||a− b||2 = n−1

n∑
i=1

(ai − bi)
2.

Furthermore, I define the neighborhoods

N∆ξ0(θ; ε) ≡ {∆ξ ∈ RJ : ρ(∆ξ, ∆ξ(θ, P0)) ≤ ε},
4Using mean demographics as instruments has been suggested by Romeo (2010) to improve the numerical

performance in the BLP model. See also Abito (2011).
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Nθ0(ε) ≡ {θ ∈ Rq : ρ(θ, θ0) ≤ ε},

and

NP0(ε) ≡
{

P ∈ P : sup
v∈Rd

|P0(v)− P (v)| ≤ ε

}
.

I follow the approach of Berry, Linton, and Pakes (2004) but I neglect the sampling error in

the observed market shares. I comment below on how this additional source of error can be

incorporated without affecting the main results. I prove consistency and asymptotic normal-

ity in a general setup. Let xt ≡ (x1,t, x2) ∈ RJ×K be the observed product characteristics,

∆ξt ∈ RJ the unobserved product characteristics that differ across markets, and pt ∈ RJ the

price vector in market t. Define the map ϑ : Rp ×Θ×Rd → RJ where p is the dimension of

the vector of stacked elements of (xt, pt, ∆ξt), the parameter space Θ is a compact subset of

Rq where q is the dimension of the parameter vector of interest θ, and d is the dimension of

a random variable in market t with known distribution Pt. I assume that Pt ∈ P where P is

a space of probability distributions which is restricted in the assumptions that follow. The

J × 1 vector of market shares generated by the model is assumed to have the form

σ(xt, pt, ∆ξt, θ, Pt) ≡
∫

ϑ(xt, pt, ∆ξt, θ, v)dPt(v), ∀t = 1, . . . , T

where σ : Rp × Θ × P → RJ . For notational convenience, I refer to ϑ(xt, pt, ∆ξt, θ, v) as

ϑt(∆ξt, θ, v) and to σ(xt, pt, ∆ξt, θ, Pt) as σt(∆ξt, θ, Pt). The jth element of σt(∆ξt, θ, Pt) is

denoted by σj,t(∆ξt, θ, Pt). The J×1 vector of observed market shares in market t is denoted

by st. Hence, I assume that

st =

∫
ϑ(xt, pt, ∆ξt, θ, v)dPt(v), ∀t = 1, . . . , T

for some θ which is analogous to the discussion in the previous section but without specific

functional form or distributional assumptions. Notice that ∆ξt ∈ RJ and that the distribu-

tion function Pt can differ in each market.

Given the assumptions made in this paper, Berry, Levinsohn, and Pakes (1995) proved that

for any pair (P, θ), there is a unique solution ∆ξ to

st − σt(∆ξ, θ, P ) = 0

where st are the true observed market shares. This solution is denoted by ∆ξ(θ, P, st, pt, xt)

and usually abbreviated by ∆ξt(θ, P ).
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Now define the function

G(θ, Pt) ≡ E(z′t∆ξ(θ, Pt, st, pt, xt))

where st, pt, ∆ξt ∈ RJ and zt ∈ RJ×L. The moment condition of the model is

E(z′t∆ξ(θ0, P0,t, st, pt, xt)) = 0

where θ0 and P0,t denote the true value of θ and the true probability distribution, respectively.

The market shares generated by the model can be approximated by using the empirical

probability measure PR,t of an i.i.d. sample v1,t, . . . , vR,t from Pt. These estimated shares

are given by

σt(∆ξt, θ, PR,t) =

∫
ϑt(∆ξt, θ, v)dPR,t(v) =

1

R

R∑
r=1

ϑt(∆ξt, θ, vr,t).

Throughout this paper I assume that the number of draws, R, is a function of T and all

limits are taken as T →∞. For any function h(v, x) denote by E∗
t (h(v, x)), the expectation

with respect to P0,t given the data. Next define the sample moment

GT (θ, PR) ≡ 1

T

T∑
t=1

z′t∆ξ(θ, PR,t, st, pt, xt).

Finally, define the estimator

θ̂ ≡ arg min
θ∈Θ

∣∣∣∣∣∣W 1/2
T GT (θ, PR)

∣∣∣∣∣∣
where WT is a L × L symmetric positive definite weighting matrix such that WT

p→ W for

some positive definite nonstochastic matrix W ∈ RL×L. The estimator θ̂ is the one used in

practice and its asymptotic properties are analyzed in this paper.

3.2 Consistency

I first make high level assumptions which provide sufficient conditions for consistency. After

stating the consistency theorem, I discuss the role of each assumption. I also provide sufficient

primitive conditions for the most abstract assumptions.

Assumption A1. (i) For any fixed (∆ξ, θ) and ∀t = 1, . . . , T ,

σt(∆ξ, θ, PR,t)− σt(∆ξ, θ, P0,t) =
1

R

R∑
r=1

εr,t(∆ξ, θ)
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where, conditional on the data, εr,t(∆ξ, θ) is independent across r and t and has mean

0. Each element of the vector εr,t(∆ξ, θ) is bounded, continuous, and differentiable in

∆ξ and θ.

(ii) For all j = 1, . . . , J ,

sup
θ∈Θ

max
1≤t≤T

|σR
j,t(θ)− σj,t(θ)|

p→ 0, as T →∞

where σR
j,t(θ) = σj,t(∆ξt(θ, P0,t), θ, PR,t) and σj,t(θ) = σj,t(∆ξt(θ, P0,t), θ, P0,t).

Assumption A2. (i) For every j = 1, . . . , J and t = 1, . . . , T , for all θ ∈ Θ, and for all Pt

in a neighborhood of P0,t,
∂

∂∆ξk,t
σj,t(∆ξt, θ, Pt) exists, and is continuously differentiable

in both ∆ξt and θ, with
∂

∂∆ξj,t

σj,t(∆ξt, θ, Pt) > 0,

and
∂

∂∆ξk,t

σj,t(∆ξt, θ, Pt) ≤ 0

for all k 6= j where k, j = 1, . . . , J .

(ii) The matrix ∂
∂∆ξ′t

σt(∆ξt, θ, Pt) is invertible for all Pt in a neighborhood of P0,t, for all

θ ∈ Θ, and for all t = 1, . . . , T .

(iii) There exists an ε > 0 such that for every j = 0, . . . , J and t = 1, . . . , T ,

ε ≤ sj,t ≤ 1− ε.

Assumption A3. Define the JT × L matrix of instruments Z. The instruments are such

that the matrix Z ′Z/T has full rank and is stochastically bounded, i.e. for all ε > 0 there

exists an Mε such that Pr(||Z ′Z/T || > Mε) < ε.

Assumption A4. For all δ > 0, there exists C(δ) > 0 such that for all t = 1, . . . T ,

lim
T→∞

Pr

(
inf
θ∈Θ

{
inf

∆ξ /∈N∆ξt(θ,PR,t)
(θ;δ)

{
ρ (σt(∆ξ, θ, PR,t), σt(∆ξt(θ, PR,t), θ, PR,t))

}}
> C(δ)

)
= 1.

Assumption A5. For all δ > 0, there exists C(δ) > 0 such that

lim
T→∞

Pr

(
inf

θ/∈Nθ0
(δ)
||GT (θ, P0)−GT (θ0, P0)|| ≥ C(δ)

)
= 1.

I now provide the main theorem of this section.
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Theorem 1. Suppose that Assumptions A1-A5 hold. Then θ̂
p→ θ as T →∞.

The proof can be found in the appendix.

Assumptions A1 and A4 are needed because in the proof its is required that

sup
θ∈Θ

||GT (θ, PR)−GT (θ, P0)|| = sup
θ∈Θ

∣∣∣∣∣
∣∣∣∣∣ 1T

T∑
t=1

z′t (∆ξt(θ, PR,t)−∆ξt(θ, P0,t))

∣∣∣∣∣
∣∣∣∣∣ = op(1).

A sufficient condition for this to hold is that ∆ξt(θ, PR,t)−∆ξt(θ, P0,t) converges to 0 in prob-

ability uniformly over θ and t. Since there is no expression for ∆ξt, I assume instead that

the market shares generated by the model, with the true and the approximated distribu-

tion, are uniformly close (Assumption A1) and that this would be violated if ∆ξt(θ, P0,t)

was not close to ∆ξt(θ, PR,t) (Assumption A4). For the fourth assumption notice that

σt(∆ξt, θ, PR,t) = st and that Berry, Levinsohn, and Pakes (1995) prove that in their model

for each θ and each t, the vector ∆ξt(θ, PR,t) is the unique solution to σt(∆ξt, θ, PR,t) = st.

So if ∆ξt /∈ N∆ξt(θ,PR,t)(θ; δ), then

ρ(σt(∆ξt, θ, PR,t), σt(∆ξt(θ, PR,t), θ, PR,t)) > C(δ)

for some C(δ) > 0. The assumption says that C(δ) does not depend on t or T , but the

statement only has to hold in the limit with probability 1. The assumption ensures that, at

least asymptotically, the ∆ξ that sets the models predictions for shares equal to the actual

shares can be distinguished from other values of ∆ξ.

Assumption A1 implies that R(T ) →∞ as T →∞. In this case for each t = 1, . . . , T ,

sup
θ∈Θ

|σR
j,t(θ)− σj,t(θ)|

p→ 0

by a standard uniform law of large numbers (see for example Amemiya (1985)). Assumption

1 is more difficult to verify due to the maximum over all markets. The following lemma

provides sufficient conditions for Assumption 1 to hold in the model discussed in Section 2

without the normality assumption on the distribution of random coefficients.

Lemma 1. Let vt ∼ Pt and let P̃ = {P 1, . . . , Pm} be finite set of distributions. Assumption

A1 holds in the random coefficients logit model if

1. ln(T )/R → 0,

2. mt = (pt, xt) ∈M where M is a compact set,
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3. the lth element of vt, namely vl,t, satisfies (a) vl,t = g(al,t, wl,t) where wl,t ∼ P̃l,t and

P̃l,t ∈ P̃ , g is continuously differentiable in both arguments, and at ∈ Υ ⊂ RA where

Υ is a compact set or (b) the support of vl,t is compact.

The proof is in the appendix. It follows from similar arguments as the proof of Jennrich’s

uniform law of large numbers (see Jennrich (1969)). Other sufficient conditions that do not

require boundedness of the data are, for example, that ln(T )/R → 0 and that |σR
j,t(θ)−σj,t(θ)|

converge to 0 in probability uniformly in θ at an exponential rate. This holds under conti-

nuity conditions given in Xu (2010) that might be hard to verify in practice. All of these

conditions require that R(T ) → ∞ because as opposed to the setup of Pakes and Pollard

(1989), the integral over PR,t enters the objective function non-linearly. Assuming compact-

ness is not a very desirable assumption but this assumption is basically implied by assuming

that all market shares are bounded away from 0 or by Condition S in Berry, Linton, and

Pakes (2004). The last condition holds if the random coefficients have the same distribution

in all markets but the distribution is also allowed to change across markets. For example one

could have a log-normal distribution with a different mean and a different variance in each

market. The assumption does not allow for an arbitrary distribution in each market. Similar

to the assumptions on the data, the family of distribution has to be restricted in some way

to obtain consistency. Assumption A1 holds in other models under the same conditions as

in the previous lemma as long as ∆ξt(θ, P0,t) is an element from a compact set. I conjecture

that Assumption A4 is also satisfied in the models of Berry, Levinsohn, and Pakes (1995)

and Nevo (2001) under the conditions of Lemma 1 but the verification of this conjecture is

beyond the scope of this paper.

Assumption A2(i) is easily verifiable in practice and holds in the models of Berry, Levin-

sohn, and Pakes (1995) and Nevo (2001) in particular due to the parametric assumptions.

Assumption A2(ii) also holds in these models (see for example Dubé, Fox, and Su (2009)).

Assumption A2(iii) is similar to Condition S in Berry, Linton, and Pakes (2004). Assump-

tion A2 guarantees among others that the demand system is invertible. Assumption A3 is

mild and depends on the data. Assumption A5 is an identification condition and depends

on the particular model under consideration.

3.3 Asymptotic normality

Next I present additional assumptions which are sufficient for asymptotic normality. Then

I provide the main theorem which states the asymptotic expansion of the estimator. A
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corollary to this theorem establishes asymptotic normality. In order to provide some intuition

on the results I outline the proof for the case where J = 1. The details for the more general

case are in the appendix.

Assumption B1. Assume that θ0 is an interior point of Θ.

Assumption B2. For all P ∈ P , the function GT (θ, P ) is differentiable at θ0. Define the

derivative matrix Γt ≡ ∂G(θ0,P0,t)

∂θ
and assume that 1

T

∑T
t=1 Γt converges to a matrix, Γ, of full

rank.

Assumption B3. (i) For any fixed (∆ξ, θ) and ∀t = 1, . . . , T and ∀j = 1, . . . , J ,

∂σt(∆ξ, θ, PR,t)

∆ξj

− ∂σt(∆ξ, θ, P0,t)

∂∆ξj

=
1

R

R∑
r=1

dεr,j,t(∆ξ, θ)

where, conditional on the data, dεr,j,t(∆ξ, θ) is independent across r and t and has mean

0. Each element of the vector dεr,j,t(∆ξ, θ) is bounded, continuous, and differentiable

in ∆ξ and θ.

(ii) For any fixed (∆ξ, θ) and ∀t = 1, . . . , T and ∀j, k = 1, . . . , J ,

∂2σt(∆ξ, θ, PR,t)

∂∆ξj∂∆ξk

− ∂2σt(∆ξ, θ, P0,t)

∂∆ξj∂∆ξk

=
1

R

R∑
r=1

d2εr,j,k,t(∆ξ, θ)

where, conditional on the data, d2εr,j,k,t(∆ξ, θ) is independent across r and t and has

mean 0. Each element of the vector d2εr,j,k,t(∆ξ, θ) is bounded, continuous, and differ-

entiable in ∆ξ and θ.

Assumption B4. Let vt ∼ Pt and let P̃ = {P 1, . . . , Pm} be finite set of distributions.

Assume that

(i) ln(T )/R(T ) → 0 as T →∞,

(ii) vr,t is i.i.d. across r and independent of xt and zt, and

(iii) the lth element of vt, namely vl,t, satisfies (a) vl,t = g(al,t, wl,t) where wl,t ∼ P̃l,t and

P̃l,t ∈ P̃ , g is continuously differentiable in both arguments, and at ∈ Υ ⊂ RA where

Υ is a compact set or (b) the support of vl,t is compact.

Assumption B5. The random variables xt, and pt have bounded support and for all l =

1, . . . , L, t = 1, . . . , T and j = 1, . . . , J

E(|zl,j,t|4) ≤ M

for some constant M .
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Assumption B6. The absolute value of each element of(
∂σt(∆ξ(θ, P0,t), θ, P0,t)

∂∆ξ

)−1

is bounded above by some constant M in a neighborhood of θ0 for all t = 1, . . . , T .

Assumption B7. All partial derivatives up to order 3 of the function σj,t(∆ξ, θ0, P0,t) with

respect to ∆ξ are bounded in absolute value by some constant M for all t = 1, . . . , T and

j = 1, . . . , J .

Assumption B8. There exists a J ×K matrix H(v) such that each element has 4 bounded

absolute moments with respect to P0,t and∣∣∣∣∂ϑt(∆ξt, θ, v)

∂θ

∣∣∣∣ ≤ H(v)

and for all j = 1, . . . , J ∣∣∣∣∂2ϑt(∆ξt, θ, v)

∂θ∂∆ξj,t

∣∣∣∣ ≤ H(v)

where the inequalities are understood element by element.

Assumption B9. Define

H0,t ≡
∂σt (∆ξt(θ0, P0,t), θ0, P0,t)

∂∆ξ
.

Assume that

lim
T→∞

E

(
1

T

T∑
t=1

z′t∆ξ(θ0, P0,t, st, pt, xt)∆ξ(θ0, P0,t, st, pt, xt)
′zt

)
= Φ1

and that

lim
T→∞

1

T

T∑
t=1

V ar
(
z′tH

−1
0,t εr,t(∆ξt(θ0, P0,t), θ0)

)
= Φ2

for positive definite matrices Φ1 and Φ2. Furthermore, assume that ∆ξ(θ0, P0,t, st, pt, xt) is

uncorrelated across t conditional on zt and that all conditions of the Lindeberg-Feller central

limit theorem hold for the random variables z′t∆ξ(θ0, P0,t, st, pt, xt) and z′tH
−1
0,t εr,t(∆ξt(θ0, P0,t), θ0).

5

5These conditions limit the dependence structure of the data as well the degree to which the distribution

can differ over markets. These conditions are probably implied by more primitive conditions on the data

which are simply assumed here.
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Assumption B10. Assume that the following limit exists

µ̄ ≡ lim
T→∞

1

T

T∑
t=1

J∑
j=1

E
(
z′j,t
(
e′jH

−1
0,t E∗

t

(
dεr,t(∆ξt(θ0, P0,t), θ0)H

−1
0,t εr,t(∆ξt(θ0, P0,t), θ0)

)
−1

2
E∗

t (εr,t(∆ξt(θ0, P0,t), θ0)
′I0,t,jεr,t(∆ξt(θ0, P0,t), θ0))

))
where

I0,t,j ≡
J∑

k=1

H−1
0,t K0,t,kH

−1
0,t eje

′
kH

−1
0,t

and

K0,t,k ≡
∂2σt (∆ξt(θ0, P0,t), θ0, P0,t)

∂∆ξ∂∆ξk

.

The vector ej denotes the jth column of the J × J identity matrix.

Notice that εr,t(∆ξt(θ0, P0,t) is J × 1 and dεr,t(∆ξt(θ0, P0,t) as well as H0,t and I0,t,j are J ×J

matrices.

Assumptions B1 and B2 are very common. Differentiability holds in the BLP model in partic-

ular. Assumption B4 places additional restrictions on the distribution of random coefficients.

Assumption B5 is common in the simulation based estimation literature (for example Mc-

Fadden (1989), Lee (1995), and Berry, Linton, and Pakes (2004)). Assumptions B3, B7, and

B8 hold in the BLP model in particular. For example it is easy to verify that each element

of ∂2ϑt(∆ξt,θ,v)
∂θ∂∆ξj,t

and ∂ϑt(∆ξt,θ,v)
∂θ

is dominated by C
∑q

d=1 |vd| where q is the dimension of v and

C is some constant. The remaining assumptions place restrictions on the data generating

process and are immediate if P0,t is the same in all markets and the data is i.i.d. across

markets.

These assumptions lead to the main theorem of this section.

Theorem 2. Assume that Assumptions A1-A5 and B1-B10 hold. Then

√
T
(
θ̂ − θ0

)
=
(
(Γ′WΓ)

−1
Γ′W + op(1)

)(
Q1,T +

1√
R

Q2,T,R +

√
T

R
Q3,T,R + op

(√
T

R

))

where

Q1,T
d→ N (0, Φ1) ,

Q2,T,R
d→ N (0, Φ2) ,
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and

Q3,T,R
p→ µ̄.

Furthermore, Q1,T and Q2,T,R are asymptotically independent.

The proof is in the appendix. An immediate consequence of Theorem 2 is the following

result.

Corollary 1. Assume that Assumptions A1-A5 and B1-B10 hold. If λ = limT→∞
√

T
R

< ∞,

then √
T
(
θ̂ − θ0

)
d→ N

(
λ (Γ′WΓ)

−1
Γ′Wµ̄, V1

)
where

V1 = (Γ′WΓ)−1Γ′WΦ1WΓ(Γ′WΓ)−1.

Theorem 2 shows that the use of Monte Carlo integration (as opposed to evaluating the

integral exactly) leads to additional variance and additional bias terms. The leading vari-

ance term is of order 1/
√

R while the leading bias term is of order
√

T/R. Hence, if R

grows slower than T , the leading bias term dominates the leading variance term which may

lead to an asymptotic distribution that is not centered at 0. As a consequence, if λ > 0,

confidence intervals based on the usual GMM asymptotic distribution have the wrong size

asymptotically. If R grows faster than T , the leading variance term becomes dominating

but the first order asymptotic distribution is not affected by Monte Carlo integration. It

can also be shown that, under slightly different assumptions, if the distribution of random

coefficients is the same in all markets and if one uses the same draws from P0,t in all markets

then

√
T
(
θ̂ − θ0

)
=
(
(Γ′WΓ)

−1
Γ′W + op(1)

)(
Q1,T +

√
T√
R

Q∗
2,T,R +

√
T

R
Q3,T,R + op

(√
T

R

))

where Q∗
2,T,R converges to a normally distributed random variable with mean 0 as well. In

this case one needs T/R to be bounded to obtain asymptotic normality (which is a stronger

condition than the rate in Corollary 1) and the additional variance term dominates the

additional bias term. This means that if λ̃ = limT→∞
√

T√
R

< ∞, then

√
T
(
θ̂ − θ0

)
d→ N

(
0, V1 + λ̃2V2

)
where

V1 = (Γ′WΓ)−1Γ′WΦ1WΓ(Γ′WΓ)−1
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and

V2 = (Γ′WΓ)−1Γ′WΦ2WΓ(Γ′WΓ)−1.

This result is very similar to the one of Berry, Linton, and Pakes (2004).

The expansions are very similar if one uses non-stochastic approximations such as quadra-

ture rules. However, the nodes are not random in these cases and hence, one cannot use

laws of large numbers or a central limit theorems to deal with the terms Q2,T,R and Q3,T,R.

Since none of these terms has a mean of 0 with non-stochastic approximations, quadrature

rules lead to an additional bias only and one obtains asymptotic normality if R grows fast

enough relative to T .

To get a better sense of where the terms Q2,T,R and Q3,T,R come from I now present an

intuitive outline of the asymptotic normality proof with J = 1. The intuition for the general

case is very similar. The objective is to minimize GT (θ, PR)′WT GT (θ, PR) where

GT (θ, PR) ≡ 1

T

T∑
t=1

z′t∆ξt(θ, PR,t).

The first order condition is (
∂

∂θ
GT (θ̂, PR)′

)
WT GT (θ̂, PR) = 0.

Now define

DT (θ̂, PR) =
∂

∂θ
GT (θ̂, PR).

Using a first order expansion of GT (θ̂, PR) around θ = θ0 yields

DT (θ̂, PR)′WT

(
GT (θ0, PR) + DT (θ̃, PR)

(
θ̂ − θ0

))
= 0

where θ̃ is between θ0 and θ̂. Thus

√
T
(
θ̂ − θ0

)
=
(
DT (θ̂, PR)′WT DT (θ̃, PR)

)−1

DT (θ̂, PR)′WT

√
TGT (θ0, PR).

It is shown in the appendix(
DT (θ̂, PR)′WT DT (θ̃, PR)

)−1

DT (θ̂, PR)′WT
p→ (Γ′WΓ)

−1
Γ′W.

Now consider
√

TGT (θ0, PR), write

GT (θ0, PR) = GT (θ0, P0) + GT (θ0, PR)−GT (θ0, P0),
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and notice that
√

TGT (θ0, P0) converges to a normally distributed random variable by As-

sumption B9. Next write

GT (θ0, PR)−GT (θ0, P0) =
1

T

T∑
t=1

z′t (∆ξt(θ0, PR,t)−∆ξt(θ0, P0,t)) .

Also notice that for all t, ∆ξt(θ, P ) solves

st = σt (∆ξ, θ, P )

where st are the observed market shares. This implies that we can write

∆ξt(θ0, P ) = σ−1
t (st, θ0, P ) .

It follows that

st = σt (∆ξt(θ0, P0,t), θ0, P0,t) = σt (∆ξt(θ0, PR,t), θ0, PR,t)

and

σ−1
t (σt (∆ξt(θ0, P0,t), θ0, PR,t) , θ0, PR,t) = ∆ξt(θ0, P0,t).

Thus,

GT (θ0, PR)−GT (θ0, P0) =
1

T

T∑
t=1

z′t
(
σ−1

t (st, θ0, PR,t)− σ−1
t (σt (∆ξt(θ0, P0,t), θ0, PR,t) , θ0, PR,t)

)
.

Next consider only

σ−1
t (st, θ0, PR,t)− σ−1

t (σt (∆ξt(θ0, P0,t), θ0, PR,t) , θ0, PR,t)

and the function ft : R → R where

ft(s) = σ−1
t (s, θ0, PR,t) .

By a third order Taylor expansion

ft(st) = ft (σt (∆ξt(θ0, P0,t), θ0, PR,t))

+f ′t (σt (∆ξt(θ0, P0,t), θ0, PR,t)) (st − σt (∆ξt(θ0, P0,t), θ0, PR,t))

+
1

2
f ′′t (σt (∆ξt(θ0, P0,t), θ0, PR,t)) (st − σt (∆ξt(θ0, P0,t), θ0, PR,t))

2

+
1

6
f ′′′t (s̃t) (st − σt (∆ξt(θ0, P0,t), θ0, PR,t))

3
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where s̃t is between st and σt (∆ξt(θ0, P0,t), θ0, PR,t). For any s0,

∂f ′t(s)

∂s

∣∣∣∣
s=s0

=
∂σ−1

t (s, θ0, PR,t)

∂s

∣∣∣∣
s=s0

=

(
∂σt (∆ξ, θ0, PR,t)

∂∆ξ

∣∣∣∣
∆ξ=σ−1

t (s0,θ0,PR,t)

)−1

and

∂f ′′t (s)

∂s

∣∣∣∣
s=s0

=
∂2σ−1

t (s, θ0, PR,t)

∂2s

∣∣∣∣
s=s0

=

(
− ∂2σt (∆ξ, θ0, PR,t)

∂2∆ξ

∣∣∣∣
∆ξ=σ−1

t (s0,θ0,PR,t)

)(
∂σt (∆ξ, θ0, PR,t)

∂∆ξ

∣∣∣∣
∆ξ=σ−1

t (s0,θ0,PR,t)

)−3

.

In the expansion above, the derivatives are evaluated at s0 = σt (∆ξt(θ0, P0,t), θ0, PR,t) which

implies that

σ−1
t (s0, θ0, PR,t) = σ−1

t (σt (∆ξt(θ0, P0,t), θ0, PR,t) , θ0, PR,t) = ∆ξt(θ0, P0,t).

Combining these results yields

∆ξt(θ0, PR,t) = ∆ξt(θ0, P0,t)

+

(
∂σt (∆ξt(θ0, P0,t), θ0, PR,t)

∂∆ξ

)−1

× (σt (∆ξt(θ0, P0,t), θ0, P0,t)− σt (∆ξt(θ0, P0,t), θ0, PR,t))

+
1

2

(
−∂2σt (∆ξt(θ0, P0,t), θ0, PR,t)

∂2∆ξ

)(
∂σt (∆ξt(θ0, P0,t), θ0, PR,t)

∂∆ξ

)−3

× (σt (∆ξt(θ0, P0,t), θ0, P0,t)− σt (∆ξt(θ0, P0,t), θ0, PR,t))
2

+
1

6
f ′′′t (s̃t) (σt (∆ξt(θ0, P0,t), θ0, P0,t)− σt (∆ξt(θ0, P0,t), θ0, PR,t))

3 .

Now define

HR,t ≡
(

∂σt (∆ξt(θ0, P0,t), θ0, PR,t)

∂∆ξ

)
H0,t ≡

(
∂σt (∆ξt(θ0, P0,t), θ0, P0,t)

∂∆ξ

)
IR,t ≡

(
∂2σt (∆ξt(θ0, P0,t), θ0, PR,t)

∂2∆ξ

)(
∂σt (∆ξt(θ0, P0,t), θ0, PR,t)

∂∆ξ

)−3

I0,t ≡
(

∂2σt (∆ξt(θ0, P0,t), θ0, P0,t)

∂2∆ξ

)(
∂σt (∆ξt(θ0, P0,t), θ0, P0,t)

∂∆ξ

)−3

.

Notice that HR,t and IR,t are smooth functions of the sample averages

1

R

R∑
r=1

dεr,t(∆ξt(θ0, P0,t), θ0) and
1

R

R∑
r=1

d2εr,t(∆ξt(θ0, P0,t), θ0)
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while H0,t and I0,t are smooth functions of the corresponding conditional expectations. It

now follows that

∆ξt(θ0, PR,t) = ∆ξt(θ0, P0,t)

+H−1
0,t (σt (∆ξt(θ0, P0,t), θ0, P0,t)− σt (∆ξt(θ0, P0,t), θ0, PR,t))

+
(
H−1

R,t −H−1
0,t

)
(σt (∆ξt(θ0, P0,t), θ0, P0,t)− σt (∆ξt(θ0, P0,t), θ0, PR,t))

−1

2
I0,t (σt (∆ξt(θ0, P0,t), θ0, P0,t)− σt (∆ξt(θ0, P0,t), θ0, PR,t))

2

+
1

2
(I0,t − IR,t) (σt (∆ξt(θ0, P0,t), θ0, P0,t)− σt (∆ξt(θ0, P0,t), θ0, PR,t))

2

+
1

6
f ′′′t (s̃t) (σt (∆ξt(θ0, P0,t), θ0, P0,t)− σt (∆ξt(θ0, P0,t), θ0, PR,t))

3 .

We can also write

H−1
R,t −H−1

0,t = −
(

∂σt (∆ξt(θ0, P0,t), θ0, P0,t)

∂∆ξ

)−2

×
(

∂σt (∆ξt(θ0, P0,t), θ0, PR,t)

∂∆ξ
− ∂σt (∆ξt(θ0, P0,t), θ0, P0,t)

∂∆ξ

)
+ (σ̃t)

−3

(
∂σt (∆ξt(θ0, P0,t), θ0, PR,t)

∂∆ξ
− ∂σt (∆ξt(θ0, P0,t), θ0, P0,t)

∂∆ξ

)2

where σ̃t is between
∂σt(∆ξt(θ0,P0,t),θ0,PR,t)

∂∆ξ
and ∂σt(∆ξt(θ0,P0,t),θ0,P0,t)

∂∆ξ
. Now define

eR,t ≡ (σt (∆ξt(θ0, P0,t), θ0, PR,t)− σt (∆ξt(θ0, P0,t), θ0, P0,t)) =
1

R

R∑
r=1

εr,t(∆ξt(θ0, P0,t), θ0)

and

∂eR,t

∂∆ξ
≡
(

∂σt (∆ξt(θ0, P0,t), θ0, PR,t)

∂∆ξ
− ∂σt (∆ξt(θ0, P0,t), θ0, P0,t)

∂∆ξ

)
=

1

R

R∑
r=1

dεr,t(∆ξt(θ0, P0,t), θ0).

Moreover, define εr,0,t ≡ εr,t(∆ξt(θ0, P0,t), θ0) and dεr,0,t ≡ dεr,t(∆ξt(θ0, P0,t), θ0) Both eR,t

and
∂eR,t

∂∆ξ
are averages of R terms with conditional expectation of 0. It follows that

∆ξt(θ0, PR,t) = ∆ξt(θ0, P0,t)−H−1
0,t eR,t

−1

2
I0,t (eR,t)

2 + H−2
0,t

(
∂eR,t

∂∆ξ

)
eR,t

+errorR,t

where

errorR,t ≡ 1

6
f ′′′t (s̃t) (σt (∆ξt(θ0, P0,t), θ0, P0,t)− σt (∆ξt(θ0, P0,t), θ0, PR,t))

3

+ (IR,t − I0,t) (eR,t)
2 + (σ̃t)

−3

(
∂eR,t

∂∆ξ

)2

eR,t.
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Plugging this expansion back into the objective function gives

√
TGT (θ0, PR) =

√
TGT (θ0, P0) +

√
T (GT (θ0, PR)−GT (θ0, P0))

=
√

TGT (θ0, P0)−
1√
T

T∑
t=1

z′tH
−1
0,t eR,t

+
1√
T

T∑
t=1

z′t

(
H−2

0,t

(
∂eR,t

∂∆ξ

)
eR,t −

1

2
I0,t (eR,t)

2

)

+
1√
T

T∑
t=1

z′terrorR,t.

We now have four terms. The first term,
√

TGT (θ0, P0), is Op(1) and belongs to the GMM

objective function without simulation error. Therefore, by Assumption B9 it converges to

a normally distributed random variable. The second term, 1√
T

∑T
t=1 z′tH

−1
0,t eR,t, is Op

(
1√
R

)
and converges to a normally distributed random variable as well when multiplied by

√
R by

Assumption B9. These two normal terms are asymptotically independent.

The third term does not have a mean of zero because

E

(
1√
T

T∑
t=1

z′t

(
H−2

0,t

(
∂eR,t

∂∆ξ

)
eR,t −

1

2
I0,t (eR,t)

2

))

=

√
T

R

1

T

T∑
t=1

E

(
z′t

(
H−2

0,t cov∗t (εr,0,t, dεr,0,t)−
1

2
I0,tE

∗
t

(
ε2

r,0,t

)))
.

By Assumption B10

lim
T→∞

1

T

T∑
t=1

E

(
z′t

(
H−2

0,t cov∗t (εr,0,t, dεr,0,t)−
1

2
I0,tE

∗
t

(
ε2

r,0,t

)))
= µ̄.

Furthermore, by the weak law of large numbers

R√
T

1√
T

T∑
t=1

z′t

(
H−2

0,t

(
∂eR,t

∂∆ξ

)
eR,t −

1

2
I0,t (eR,t)

2

)
p→ µ̄

which implies that the third term is Op

(√
T

R

)
and converges in probability to a constant

when multiplied by R√
T
.

It follows from the proof of Theorem 2 that

1√
T

T∑
t=1

z′terrorR,t = op

(√
T

R

)
.
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and therefore

√
TGT (θ0, PR) = Op(1) + Op

(
1√
R

)
+ Op

(√
T

R

)
+ op

(√
T

R

)
.

Furthermore, under the assumptions of Theorem 2 it also holds that(
DT (θ̂, PR)′WT DT (θ̃, PR)

)−1

DT (θ̂, PR)′WT
p→ (Γ′WΓ)

−1
Γ′W.

Hence,
√

T consistency is only achieved if
√

T
R

does not diverge. If
√

T
R
→ λ, then

√
T
(
θ̂ − θ0

)
d→ N

(
λ (Γ′WΓ)

−1
Γ′Wµ̄, V1

)
where V1 is the usual GMM variance given by

V1 ≡ (Γ′WΓ)−1Γ′WΦ1WΓ(Γ′WΓ)−1.

This implies that if R converges to 0 at a smaller rate than T , the additional bias (second

order term in the Taylor expansion) dominates the additional variance (first order). Fur-

thermore, the additional bias term yields a rate restriction on R relative to T whereas the

first order term converges to 0 as R → ∞ at any rate. In the following section it will be

shown how the leading bias term can be removed and how and the additional variance can

be taken into account when calculating standard errors.

3.4 Bias and variance correction

This section shows how the leading bias term, namely the Op

(√
T

R

)
term in the expansion

above, can be eliminated by using either an analytic bias correction or a jackknife method.

Similar methods have been suggested by Lee (1995), Arellano and Hahn (2007) and Kris-

tensen and Salanie (2010) in related setups. Furthermore, the leading additional variance

term, in particular the Op

(
1
R

)
term can easily be taken into account when calculating stan-

dard errors.

Let R̃ be large relative to R. Estimators for the bias and the variance can be obtained by

replacing P0,t with PR̃,t and θ0 with θ̂. Moreover, moments are replaced by the corresponding

sample analogs. I use PR̃,t instead of PR,t in order to obtain a better estimate P0,t and to

make the corrections less dependent on the number of draws. Notice that the computational

costs are quite low because one has to solve for ∆ξ
(
θ̂, PR̃,t, st, pt, xt

)
only once and not

repeatedly as during the optimization procedure.6

6For the the Monte Carlo simulations in this paper, I use R between 50 and 800 and set R̃ = 20, 000.
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3.4.1 Analytic bias correction

Define the bias adjusted estimator as

θ̂A ≡ θ̂ − 1

R

(
Γ̂′WT Γ̂

)−1

Γ̂′WT ˆ̄µ

where

Γ̂ =
∂

∂θ
GT

(
θ̂, PR̃

)
=

∂

∂θ

1

T

T∑
t=1

z′t∆ξ
(
θ̂, PR̃,t, st, pt, xt

)
and

ˆ̄µ =
1

T

T∑
t=1

J∑
j=1

z′j,t

(
e′jĈR,t −

1

2
ŜR,j,t

)
where

ŜR,j,t =
1

R

R∑
r=1

(
ϑt

(
∆ξt

(
θ̂, PR̃,t

)
, θ̂, vr,t

)
− σt

(
∆ξt

(
θ̂, PR̃,t

)
, θ̂, PR̃,t

))′
ÎR̃,t,j

∗
(
ϑt

(
∆ξt

(
θ̂, PR̃,t

)
, θ̂, vr,t

)
− σt

(
∆ξt

(
θ̂, PR̃,t

)
, θ̂, PR̃,t

))
and

ĈR,t =
1

R

R∑
r=1

Ĥ−1

R̃,t

∂ϑt

(
∆ξt

(
θ̂, PR̃,t

)
, θ̂, vr,t

)
∂∆ξ

−
∂σt

(
∆ξt

(
θ̂, PR̃,t

)
, θ̂, PR̃,t

)
∂∆ξ

 Ĥ−1

R̃,t

∗
(
ϑt

(
∆ξt

(
θ̂, PR̃,t

)
, θ̂, vr,t

)
− σt

(
∆ξt

(
θ̂, PR̃,t

)
, θ̂, PR̃,t

))
with

ĤR̃,t =

∂σt

(
∆ξt

(
θ̂, PR̃,t

)
, θ̂, PR̃,t

)
∂∆ξ


and

ÎR̃,t,j =
J∑

k=1

Ĥ−1

R̃,t

∂2σt

(
∆ξt

(
θ̂, PR̃,t

)
, θ̂, PR̃,t

)
∂∆ξ∂∆ξk

 Ĥ−1

R̃,t
eje

′
kĤ

−1

R̃,t
.

Again ej denotes the jth column of the J × J identity matrix.

Subtracting an estimate of 1
R

(Γ′WΓ)−1 Γ′Wµ̄ from θ̂ eliminates the leading bias term from

the asymptotic expansion which is established by the following theorem.

Using R̃ = R performs worse in terms of nominal coverage rates, especially if R is small, but the this would

not change the result in Theorem 3.
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Theorem 3. Assume that Assumptions A1-A5 and B1-B10 hold. Then

√
T
(
θ̂A − θ0

)
=
(
(Γ′WΓ)

−1
Γ′W + op(1)

)(
Q1,T +

1√
R

Q2,T,R + op

(√
T

R

))
.

As opposed to the results of Theorem 2, it follows that as long as
√

T
R

is bounded, it holds

that
√

T
(
θ̂A − θ0

)
d→ N(0, V1).

3.4.2 Jackknife bias correction

A second possibility to eliminate the leading term of the bias is to use a Jackknife style

bias correction. Let θ̂R/2,n, n = 1, . . . , N be estimators of θ using R/2 independent draws to

approximate the integral. Define

θ̂JK = 2θ̂ − 1

N

N∑
n=1

θ̂R/2,n.

It is easily verified that this procedure eliminates the leading term of the bias as well.

However, this estimator is computationally costly. If N = 2, the optimization problem has

to be solved two additional times. Furthermore, this procedure increases the additional

variance due to the simulations by a factor of 4 + 2/N . Therefore, in the Monte Carlo

study below only the analytic bias correction is pursued. Similarly, the panel jackknife

bias correction suggested by Hahn and Newey (2004) is not very appealing in this setting

because it requires to estimate the parameter vector R + 1 times which is computationally

too demanding.

3.4.3 Variance correction

The variance of the estimator can be estimated by

V̂ =
(
Γ̂′Ŵ Γ̂

)−1

Γ̂′Ŵ

(
Φ̂1 +

1

R
Φ̂2

)
Ŵ Γ̂

(
Γ̂′Ŵ Γ̂

)−1

where

Φ̂1 =
1

T

T∑
t=1

z′t∆ξ
(
θ̂, PR̃,t, st, pt, xt

)
∆ξ
(
θ̂, PR̃,t, st, pt, xt

)′
zt

and

Φ̂2 =
1

R

1

T

R∑
r=1

T∑
t=1

z′tĤ
−1

R̃,t
ε̂r,tε̂

′
r,tĤ

−1′

R̃,t
zt

and

ε̂r,t = ϑt

(
∆ξt

(
θ̂, PR̃,t

)
, θ̂, vr,t

)
− σt

(
∆ξt

(
θ̂, PR̃,t

)
, θ̂, PR̃,t

)
.
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In this way the variance of the Op

(
1
R

)
term is taken into account as well. In case a bias

adjustment is used, θ̂ can be replaced by θ̂A or θ̂JK .

4 Monte Carlo simulation

In this section, I illustrate that the simulation error will affect the finite sample performance

of the estimator because the usual GMM standard errors underestimate the true variance

and the estimates are biased. I use the model described in Section 2. The setup for the

Monte Carlo simulation is adapted from Dubé, Fox, and Su (2009) with very few changes

to accommodate the asymptotics in the number of markets. This setup is also used by

Judd and Skrainka (2011). The number of products is set to 4 and I vary the number of

markets, T , and draws, R. I use a constant term and three product characteristics next to

the price. Two of these three product characteristics vary across markets and one product

characteristic does not. The product characteristics are distributed as
x1,j

x2,j,t

x3,j,t

 ∼ TN




0

0

0

 ,


1 −0.8 0.3

−0.8 1 0.3

0.3 0.3 1


 , t = 1, . . . , T

where TN denotes the standard normal distribution truncated at −4 and 4. There is also

a constant term, x0,j = 1 for all j. The unobserved product characteristics are ξj,t =
1
2
(ξj + ∆ξj,t) where

ξj ∼ TN(0, 1), j = 1, . . . , 4

and

∆ξj,t ∼ TN(0, 1), j = 1, . . . , 4, t = 1, . . . , T.

The price is generated by

pj,t =
1

2

∣∣0.5ξj,t + ej,t + 1.1 (x1,j + x2,j,t + x3,j,t)
∣∣

where ej,t ∼ TN(0, 1). There is a random coefficient on all product characteristics including

price and the constant term. The random coefficient are distributed as follows

β0
i

β1
i

β2
i

β3
i

αi


∼ N





−1

1.5

1.5

0.5

3


,



0.5 0 0 0 0

0 0.5 0 0 0

0 0 0.5 0 0

0 0 0 0.5 0

0 0 0 0 0.2




, t = 1, . . . , T.
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For each product j in market t, I generate 6 instruments (b = 1, . . . , 6) as

zb,j,t = ab,j,t + 0.25 (ej,t + 1.1 (x1,j + x2,j,t + x3,j,t)) , j = 1, . . . , 4, t = 1, . . . , T.

Here ab,j,t ∼ U(0, 1). For reasons explained in Section 2.2, next to zb,j,t, x2,j,t and x3,j,t, I also

use product dummies, z2
b,j,t and z3

b,j,t for all b, x2
2,j,t, x2

3,j,t, x3
2,j,t, x3

3,j,t as well as
∏6

b=1 zb,j,t,

x2,j,tx3,j,t, x2,j,tzb,j,t and x3,j,tzb,j,t as instruments.

I make use of a nested fixed point approach. The code is written in Matlab and C++.

The latter program is used to calculate the market shares and their derivative. Using C++

for these calculations yields a large time improvement compared to Matlab which reduces

the time advantage of the MPEC approach of Dubé, Fox, and Su (2009).7 As mentioned

in the introduction estimating the model is computationally demanding, especially if R is

large. The nested fixed point approach solves the non-linear system of equations given in (1)

using a contraction mapping when evaluating the objective function for a certain parameter

value. In each step of the contraction mapping the integrals have to be calculated. With

the MPEC approach the moments are treated as additional parameters which adds J × T

parameters. The system of equations in (1) is then enforced as constraints and for each of

these constraints the integrals have to be calculated. For further computational details see

Nevo (2001) and Dubé, Fox, and Su (2009).

Below I investigate the actual coverage rate of a 95% nominal confidence interval for α =

E(αi) = 3 using bias correction methods as well as standard errors with and without cor-

recting for the simulation error. The usual GMM standard errors are estimated using

V̂1 =
(
Γ̂′Ŵ Γ̂

)−1

Γ̂′Ŵ Φ̂1Ŵ Γ̂
(
Γ̂′Ŵ Γ̂

)−1

and the adjusted standard errors are calculated using

V̂ =
(
Γ̂′Ŵ Γ̂

)−1

Γ̂′Ŵ

(
Φ̂1 +

1

R
Φ̂2

)
Ŵ Γ̂

(
Γ̂′Ŵ Γ̂

)−1

.

In both cases, as well as for estimating the bias, R̃ = 20, 000. I also compare the median

length of the confidence intervals obtained from different simulations. I make use of 50−800

draws from the normal distribution as well as 100 − 800 markets. I use different draws to

7I am very grateful to Ketan Patel for sharing his code. The CPU time using the NFP approach is in fact

lower than the one reported by Judd and Skrainka (2011) in their Tables 4 and 5 with the MPEC approach

when I use the same setup.
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approximate the integral in different markets. Hence, with 100 markets and 800 draws I

sample in total 80, 000 times from the normal distribution. The computational costs only

depend on the number draws that are used to evaluate each integral which is 800 in this

case. All coverage rates are based on 1000 Monte Carlo iterations.

Table 1 shows that the number of simulations affects the actual coverage rate of a nominal

95% confidence interval if the usual GMM asymptotic distribution is employed. For example

with 800 markets the actual coverage rate is only 68.8% with 50 draws while it increases

to 90.8% with 800 draws. It is also striking that the coverage rate tends to decrease if R

is fixed but T increases which is intuitive because the relation between T and R matters

for the asymptotic results. Using the bias corrected estimator leads to an improvement in

these coverage rates. However, in general there is still a large difference between using a

small number and large number of draws. For instance, with 800 marktes and 50 draws one

obtains a coverage rate of 85.6% while 800 draws yield a coverage rate of 91.3%. The same

holds when simulation adjusted standard errors but no bias adjustment is used. In case one

uses both the analytical bias adjustement and the standard error adjustement, the coverage

rate is very close to 95% even with a small number of draws. For example with 800 markets

and 50 draws one obtains a coverage rate of 93.4%.

The cost of the improved coverage rate is a wider confidence interval. Table 2 shows that

with the usual GMM asymptotic distribution, using a large number of draws has almost no

effect on the median length of the confidence intervals. This is not the case for the adjusted

standard errors. For example with 100 markets, the median length is 1.059 with 50 draws

and 0.748 with 800 draws. It is also striking that the lengths are very similar with 800 draws

for both types of standard errors. Thus, corrected standard errors only affect the coverage

rate and the median length when the number of simulations is small compared to the num-

ber of markets. This was expected since the variance of the second term of the asymptotic

expansion decreases with the number of draws.

Table 3 shows the finite sample bias with and without bias correction. It can be seen that

the finite sample bias decreases as R increases. Nevertheless, especially if T is small, the

finite sample bias is still substantial even if R is large. The reason is that we are dealing with

a nonlinear estimator which is biased in finite samples even if R = ∞. The bias correction

reduces the finite sample bias. The bias correction works particularly well if T is large. The
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Table 1: Coverage rates of 95% confidence intervals for α

50 draws 100 draws 200 draws 400 draws 800 draws

GMM point estimates and GMM standard errors

100 markets 0.788 0.863 0.902 0.910 0.911

200 markets 0.720 0.790 0.848 0.887 0.899

400 markets 0.638 0.755 0.840 0.896 0.914

800 markets 0.688 0.802 0.846 0.899 0.886

Bias corrected point estimates and GMM standard errors

100 markets 0.866 0.912 0.920 0.936 0.932

200 markets 0.826 0.854 0.894 0.912 0.917

400 markets 0.809 0.827 0.894 0.921 0.931

800 markets 0.858 0.877 0.872 0.903 0.898

GMM point estimates and adjusted standard errors

100 markets 0.872 0.901 0.919 0.927 0.923

200 markets 0.842 0.863 0.884 0.906 0.910

400 markets 0.801 0.846 0.902 0.919 0.931

800 markets 0.846 0.885 0.890 0.938 0.906

Bias corrected point estimates and adjusted standard errors

100 markets 0.920 0.940 0.941 0.946 0.942

200 markets 0.907 0.917 0.922 0.931 0.925

400 markets 0.902 0.898 0.930 0.936 0.942

800 markets 0.935 0.933 0.917 0.939 0.920

The nominal coverage rate is 0.95 and the number of Monte Carlo simulations

is 1000. The true value of α is 3. If the actual coverage rate is 95%, the

standard error with 1000 simulations is around 0.0069. If the actual coverage

rate is 80%, the standard error increases to 0.0126.

reason is that estimation of the bias relies on an initial estimate of θ0 which is more precise

if T is large. With 800 markets the finite sample bias of the bias adjusted estimator is very

close to 0 even if only a small number of draws is used.

Many parameter choices drive the results in this Monte Carlo study. First, there is the ratio

of the variance of the error term and the variance of the products characteristics. Second,

there is the strengths of the instruments. A low variance ratio or strong instruments imply

that one gets more precise estimates for a given number of markets. Furthermore, the effect
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Table 2: Median length of confidence intervals for α

50 draws 100 draws 200 draws 400 draws 800 draws

GMM point estimates and GMM standard errors

100 markets 0.772 0.769 0.757 0.758 0.748

200 markets 0.603 0.602 0.603 0.596 0.604

400 markets 0.478 0.475 0.453 0.474 0.480

800 markets 0.375 0.369 0.368 0.365 0.371

Bias corrected point estimates and adjusted standard errors

100 markets 1.059 0.945 0.859 0.818 0.786

200 markets 0.868 0.772 0.701 0.667 0.642

400 markets 0.796 0.648 0.573 0.531 0.512

800 markets 0.732 0.541 0.464 0.420 0.399

Table 3: Finite sample bias of α

50 draws 100 draws 200 draws 400 draws 800 draws

GMM point estimates

100 markets -0.229 -0.185 -0.153 -0.128 -0.115

200 markets -0.188 -0.159 -0.130 -0.108 -0.091

400 markets -0.158 -0.125 -0.092 -0.071 -0.064

800 markets -0.097 -0.065 -0.054 -0.041 -0.041

Bias corrected point estimates

100 markets -0.198 -0.160 -0.130 -0.112 -0.108

200 markets -0.161 -0.134 -0.104 -0.080 -0.081

400 markets -0.087 -0.080 -0.056 -0.046 -0.053

800 markets -0.004 0.006 0.001 -0.008 -0.017

of the number of draws depends on the variance of the random coefficients relative to the

variance of the product characteristics. A high variance of the random coefficient implies

that a lot of draws are needed to eliminate the effect of the second term of the asymptotic

expansion.

This highlights that one cannot give a general guideline of how many draws (or how many

markets) suffice to obtain satisfactory results. These Monte Carlo results, however, demon-

strate that one should always use bias corrections and standard errors that correct for the
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simulation error when making use of Monte Carlo integration in this setup. If the number

of simulations is sufficiently large, the corrected estimates and standard errors will be very

close to the GMM standard errors. If the number of simulations is small, the simulation

error will affect the finite sample performance of the estimator and using the usual GMM

asymptotic distributions yields biased estimates and underestimation of the true variance.8

As mentioned before, there might be computational constraints that do not allow taking a

very large number of draws with a larger sample size or with a larger number of random

coefficients. In other cases, i.e. when using empirical distributions of demographic charac-

teristics, R might be fixed. Nevertheless, the number of draws should be as large as possible,

subject to computational constraints and data availability. The reason is that a large number

of draws improves the precision of the initial estimator which is in turn used to calculate the

bias correction.

5 Conclusion

One could easily introduce errors in the observed markets shares. Similar to Berry, Linton,

and Pakes (2004), one could assume in this setup that one does not observe the true markets

shares but an approximation from n random consumers. Also in this case, observing only

approximated market shares lead to additional bias and variance terms in the asymptotic

expansion. The rate at which n has to go to infinity relative to T in order to obtain
√

T con-

sistency is identical to the rate requirement for R. This is simple to incorporate because the

error in the market shares can be assumed to be independent of the other errors. Moreover,

this error does not even depend on the parameter θ. Hence, uniform convergence in any of

the additional assumptions employed is not required. It is not treated in this paper because

in applications n is usually a lot larger than T in which case this additional error is negligible.

Furthermore, the results in this paper are also likely to hold if one observes an unbalanced

panel where, asymptotically, all products are observed in infinitely many markets and the

total number of products is bounded.

8I obtain the same conclusions in various simulation setups.
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A Useful lemmas

Lemma A1. Let f(x, θ, v) : X ×Θ×Rq → [−M1,M2] be a continuously differentiable function in

all arguments where X is a compact subset of Rp and Θ is a compact subset of Rd. Let v1,t, . . . , vR,t

be i.i.d. draws from Pt ∈ P. Let xt ∈ X denotes the (random) data. Assume that

(i) ln(T )/R(T ) → 0 as T →∞,

(ii) vr,t and xt are independent, and

(iii) The lth element of vr,t, namely vr,t,l, satisfies (a) vr,t,l = g(γt,l, wr,t,l) where wr,t,l ∼ P̃t ∈
{P 1, . . . , Pm} with m finite, g is continuously differentiable in both arguments, and γt,l ∈ Γ

where Γ is a compact subset of Rk or (b) the support of vr,t,l is compact.

Then

sup
θ∈Θ

max
1≤t≤T

∣∣∣∣∣ 1R
R∑

r=1

f(xt, θ, vr,t)−
∫

f(xt, θ, v)dPt(v)

∣∣∣∣∣ p→ 0 as T →∞.

Proof. Denote the expectation with respect to the distribution vr,t and conditional on xt as E∗
t .

Then we have to show that

sup
θ∈Θ

max
1≤t≤T

∣∣∣∣∣ 1R
R∑

r=1

(f(xt, θ, vr,t)− E∗
t (f(xt, θ, vr,t)))

∣∣∣∣∣ p→ 0

or that for any ε > 0,

Ex

(
Pr∗t

(
max

1≤t≤T
sup
θ∈Θ

∣∣∣∣∣ 1R
R∑

r=1

(f(xt, θ, vr,t)− E∗
t (f(xt, θ, vr,t)))

∣∣∣∣∣ > ε

))
→ 0 as T →∞

where Pr∗t denotes the probability with respect to the distribution v and conditional on x.

Notice that

sup
θ∈Θ

∣∣∣∣∣ 1R
R∑

r=1

(f(xt, θ, vr,t)− E∗
t (f(xt, θ, vr,t)))

∣∣∣∣∣ p→ 0

simply follows from Jennrich’s uniform law of large numbers. The proof now follows from arguments

similar to the proof of the uniform law of large numbers of Jennrich. First define λ = (x, θ) and

Λ = X ×Θ. Furthermore, denote f(λ, v) = f(x, θ, v). Now partition Λ in Λn
1 , . . . ,Λn

n such that the

difference between any two elements in Λn
i goes to 0 as n → ∞ for all i. Let λn

i be an arbitrary
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element from Λn
i for all i. Then

Pr∗t

(
sup
θ∈Θ

max
1≤t≤T

∣∣∣∣∣ 1R
R∑

r=1

(f(xt, θ, vr,t)− E∗
t (f(xt, θ, vr,t)))

∣∣∣∣∣ > ε

)

≤
T∑

t=1

Pr∗t

(
sup
θ∈Θ

sup
x∈X

∣∣∣∣∣ 1R
R∑

r=1

(f(x, θ, vr,t)− E∗
t (f(x, θ, vr,t)))

∣∣∣∣∣ > ε

)

=
T∑

t=1

Pr∗t

(
sup
λ∈Λ

∣∣∣∣∣ 1R
R∑

r=1

(f(λ, vr,t)− E∗
t (f(λ, vr,t)))

∣∣∣∣∣ > ε

)

≤
T∑

t=1

Pr∗t

(
n⋃

i=1

sup
λ∈Λn

i

∣∣∣∣∣ 1R
R∑

r=1

(f(λ, vr,t)− E∗
t (f(λ, vr,t)))

∣∣∣∣∣ > ε

)

≤
T∑

t=1

n∑
i=1

Pr∗t

(
sup
λ∈Λn

i

∣∣∣∣∣ 1R
R∑

r=1

(f(λ, vr,t)− E∗
t (f(λ, vr,t)))

∣∣∣∣∣ > ε

)

≤
T∑

t=1

n∑
i=1

Pr∗t

(∣∣∣∣∣ 1R
R∑

r=1

(f(λn
i , vr,t)− E∗

t (f(λn
i , vr,t)))

∣∣∣∣∣ > ε/2

)

+
T∑

t=1

n∑
i=1

Pr∗t

(
1
R

R∑
r=1

sup
λ∈Λn

i

∣∣∣∣∣f(λ, vr,t)− f(λn
i , vr,t)

+E∗
t (f(λn

i , vr,t))− E∗
t (f(λ, vr,t))

∣∣∣∣∣ > ε/2

)

The first term converges to 0 if ln(T )
R → 0 because by the Bernstein inequality for bounded random

variables, there exists a constant C such that for each fixed λ and t

Pr∗t

(∣∣∣∣∣
R∑

r=1

(f(λ, vr,t)− E∗
t (f(λ, vr,t)))

∣∣∣∣∣ > Rε

)
≤ 2 exp

(
−ε2R2

CR

)
= O (exp(−R)) .

For the second term first assume that for all r and t, vr,t ∈ V where V is compact. Then, since f is

a continuous function on a compact set, f is by the Heine Cantor theorem uniformly continuous.

Hence, for n large enough (so large that supλ∈Λn
i
||λn

i − λ|| ≤ δ for some small δ, but n is finite),

sup
v∈V

sup
λ∈Λn

i

|f(λ, v)− f(λn
i , v)| ≤ ε/4.

Hence, also for all t,

sup
λ∈Λn

i

|E∗
t (f(λn

i , vr,t))− E∗
t (f(λ, vr,t))| ≤ ε/4

which implies that

Pr∗t

(
1
R

R∑
r=1

sup
λ∈Λn

i

|f(λ, vr,t)− f(λn
i , vr,t) + E∗

t (f(λn
i , vr,t))− E∗

t (f(λ, vr,t))| > ε/2

)
= 0.

Alternatively assume that for all l, vr,t,l = g(γt,l, wr,t,l) where wr,t,l ∼ P̃t ∈ {P 1, . . . , Pm} where m

is finite and γt,l ∈ Γ where Γ is a compact subset of Rk. Denote the vector of stacked elements
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vr,t,l by vr,t = g(γt, wr,t). With abuse of notation now define λ = (x, θ, γ) and Λ = X × Θ × Γ.

Furthermore, denote f(λ, w) = f(x, θ, v) = f(x, θ, g(γ, w)). Now partition Λ in Λn
1 , . . . ,Λn

n such

that the difference between any two elements in Λn
i goes to 0 as n → ∞ for all i. Let λn

i be an

arbitrary element from Λn
i for all i. Then

Pr∗t

(
sup
θ∈Θ

max
1≤t≤T

∣∣∣∣∣ 1R
R∑

r=1

(f(xt, θ, vr,t)− E∗
t (f(xt, θ, vr,t)))

∣∣∣∣∣ > ε

)

= Pr∗t

(
sup
θ∈Θ

max
1≤t≤T

∣∣∣∣∣ 1R
R∑

r=1

(f(xt, θ, g(γt, wr,t))− E∗
t (f(xt, θ, g(γt, wr,t))))

∣∣∣∣∣ > ε

)

≤
T∑

t=1

Pr∗t

(
sup
θ∈Θ

sup
x∈X

sup
γ∈Γ

∣∣∣∣∣ 1R
R∑

r=1

(f(x, θ, g(γ, wr,t))− E∗
t (f(x, θ, g(γ, wr,t))))

∣∣∣∣∣ > ε

)

=
T∑

t=1

Pr∗t

(
sup
λ∈Λ

∣∣∣∣∣ 1R
R∑

r=1

(f(λ, wr,t)− E∗
t (f(λ, wr,t)))

∣∣∣∣∣ > ε

)

≤
T∑

t=1

n∑
i=1

Pr∗t

(∣∣∣∣∣ 1R
R∑

r=1

(f(λn
i , wr,t)− E∗

t (f(λn
i , wr,t)))

∣∣∣∣∣ > ε/2

)

+
T∑

t=1

n∑
i=1

Pr∗t

(
1
R

R∑
r=1

sup
λ∈Λn

i

∣∣∣∣∣f(λ, wr,t)− f(λn
i , wr,t)

+E∗
t (f(λn

i , wr,t))− E∗
t (f(λ, wr,t))

∣∣∣∣∣ > ε/2

)

Again, the first term converges to 0 if ln(T )
R → 0 by the Bernstein inequality for bounded random

variables. For the second term define

ht(λ, wr,t) = f(λ, wr,t)− E∗
t (f(λ, wr,t))

where the expected value is with respect to wr,t which can only be drawn from a finite number of

distributions for each t. Then for all t,

lim
n→∞

sup
λ∈Λn

i

|(ht(λ, wr,t)− ht(λn
i , wr,t))| = 0

for all t. Thus, by Lebesgue’s dominated convergence theorem,

lim
n→∞

E∗
t sup

λ∈Λn
i

|(ht(λ, wr,t)− ht(λn
i , wr,t))| = 0

uniformly over i. This function depends on t since the distribution might differ. However, since

only a finite number of distributions are allowed, there exists an n such that for all t

E∗
t sup

λ∈Λn
i

|(h(λ, wr,t)− h(λn
i , wr,t))| ≤ ε/4.
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Then

T∑
t=1

n∑
i=1

Pr∗
(

1
R

R∑
r=1

sup
λ∈Λn

i

|(ht(λ, wr,t)− ht(λn
i , wr,t))| > ε/2

)

≤
T∑

t=1

n∑
i=1

Pr∗
(

1
R

R∑
r=1

sup
λ∈Λn

i

|(ht(λ, wr,t)− ht(λn
i , wr,t))|

−E∗
t sup

λ∈Λn
i

|(ht(λ, wr,t)− ht(λn
i , wr,t))| > ε/4

)

This probability converges to 0 using the Bernstein inequality as in the first part.

One can combine these results to show that

sup
θ∈Θ

max
1≤t≤T

∣∣∣∣∣ 1R
R∑

r=1

f(xt, θ, v
1
r,t, v

2
r,t)−

∫
f(xt, θ, v

1, v2)dP 1
t (v1)dP 2

t (v2)

∣∣∣∣∣ p→ 0 as T →∞

where v1 satisfies condition (iii− a) and v2 satisfies condition (iii− b).

The following lemma is Lemma A in Serfling (1980, p. 304).

Lemma A2. Let Y1, Y2, . . . be independent random variables with mean 0. Let v be an even

integer. Then

E

(∣∣∣∣∣
R∑

r=1

Yr

∣∣∣∣∣
v)

≤ AvR
(v/2−1)

R∑
r=1

E (|Yr|v)

where Av is a universal constant depending only on v.

Proof. See Serfling (1980).

Lemma A3. Suppose that (v(t)
1 , ..., v

(t)
R , xt) with t = 1, . . . , T are random vectors such that v

(t)
r is

i.i.d. across r and independent of xt. Let

yR,t = s(xt)

[
1
R

R∑
r=1

p
(
v(t)
r , xt

)]m1 [
1
R

R∑
r=1

q
(
v(t)
r , xt

)]m2

where m1 and m2 are nonnegative integers and s, p and q are measurable functions such that

E
(
p
(
v(t)
r , xt

)
|xt

)
= E

(
q
(
v(t)
r , xt

)
|xt

)
= 0

for all t. Also assume that if m1 > 0 and m2 > 0 for some a and b satisfying 1
a + 1

b = 1 it holds

that for some finite M

E

(
|s(xt)|2ap

(
v(t)
r , xt

)2am1
)
≤ M
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and

E

(
|s(xt)|2bq

(
v(t)
r , xt

)2bm2
)
≤ M.

If m1 > 0 and m2 = 0 assume instead that

E

(
|s(xt)|2p

(
v(t)
r , xt

)2m1
)
≤ M.

Then
1
T

T∑
t=1

|yR,t| = Op

(
R−(m1+m2)/2

)
.

Proof. The proof is very similar to the proof of Lemma A.2 in Lee (1995). By Hölder’s inequality

E
(
y2

R,t

)
≤

E

|s(xt)|2a

[
1
R

R∑
r=1

p
(
v(t)
r , xt

)]2am1
1/aE

|s(xt)|2b

[
1
R

R∑
r=1

q
(
v(t)
r , xt

)]2bm2
1/b

.

Lemma A2 implies that for some constant c,

E

[ 1
R

R∑
r=1

p
(
v(t)
r , xt

)]2am1
∣∣∣∣∣∣xt

 ≤ c

Rm1a
E

(
p
(
v(t)
r , xt

)2am1

∣∣∣∣xt

)

and

E

[ 1
R

R∑
r=1

q
(
v(t)
r , xt

)]2bm2
∣∣∣∣∣∣xt

 ≤ c

Rm2b
E

(
q
(
v(t)
r , xt

)2bm2

∣∣∣∣xt

)
.

It follows that

E
(
y2

R,t

)
≤ c

Rm1+m2

(
E

(
|s(xt)|2ap

(
v(t)
r , xt

)2am1
))1/a(

E

(
|s(xt)|2bp

(
v(t)
r , xt

)2bm2
))1/b

≤ cM

Rm1+m2
.

By Markov’s inequality it now follows that

P

(
R(m1+m2)/2 1

T

T∑
t=1

|yR,t| ≥ ε

)
≤ R(m1+m2)/2

ε

1
T

T∑
t=1

E (|yR,t|)

≤ R(m1+m2)/2

ε

1
T

T∑
t=1

(
E
(
|yR,t|2

))1/2

≤ R(m1+m2)/2

ε

1
T

T∑
t=1

(
cM

Rm1+m2

)1/2

=
(cM)1/2

ε

which means that R(m1+m2)/2 1
T

∑T
t=1 |yR,t| is Op(1).
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Lemma A4. Suppose F : RJ → R is a k +1 times continuously differentiable function on an open

convex set S ⊆ RJ . For α ∈ RJ , let |α| = α1 + . . . + αJ and α! = α1! ∗ . . . ∗ αJ !. Furthermore, for

x ∈ RJ let

x|α| = xα1
1 xα2

2 · · ·xαJ
J

and
∂|α|F (x)

∂x|α|
=

∂|α|F (x)
∂xα1

1 ∂xα2
2 · · · ∂xαJ

J

.

If a ∈ S and a + h ∈ S, then

F (a + h) =
∑

α∈R+:|α|≤k

1
α!

(
∂|α|F (x)

∂x|α|

∣∣∣∣∣
x=a

h|α|

)
+

∑
α∈R+:|α|=k+1

1
α!

(
∂|α|F (x)

∂x|α|

∣∣∣∣∣
x=a+ch

)
h|α|.

for some c ∈ (0, 1).

Proof. This is a standard result.

B Proof of Lemma 1

I will first prove that the assumptions imply that ∆ξ(θ, P0,t, st, pt, xt) is an element of a bounded

subset of RJ . Let Qt denote the distribution with compact support. Assume for simplicity that

for the random coefficients with non-compact support, vr,t,l = g(at,l, wr,t,l) where wr,t,l has a distri-

bution function F and at ∈ Υ. The more general case can easily be dealt with. Now assume that

∆ξ(θ, P0,t, st, pt, xt) is not an element of a bounded subset of RJ . Then, there exist, a sequence

{sn, pn, xn, θn}, n = 1, 2, . . . with ε ≤ sn
j ≤ 1 − ε, j = 0, . . . , J , θ ∈ Θ and (xn, pn) ∈ M such that

for some j, ∆ξn
j ≡ ∆ξj(θn, P0,tn , sn, pn, xn) → ∞ or ∆ξn

j → −∞. I assume that ∆ξn
j → ∞. The

other case is similar. Note that for all k = 1, . . . , J , sn
k satisfies

sn
k =

∫
exp(γ(xn

k , pn
k , ξn

k ,∆ξn
k , v,D; atn , θn))

1 +
∑J

m=1 exp(γ(xn
m, pn

m, ξn
m,∆ξn

m, v,D; atn , θn))
dQtn(D)dF (v).

Let Qt be a distribution with compact support and let F be a distribution that is identical in all

markets. Define

sk(∆ξn) ≡ sup
θ∈Θ

sup
(x,p)∈M

sup
D∈supp(Qt)

sup
a∈Υ

∫
exp(γ(xk, pk, ξk,∆ξn

k , v, D; a, θ))

1 +
∑J

m=1 exp(γ(xm, pm, ξm,∆ξn
m, v, D; a, θ))

dF (v).

Let K ∈ R be arbitrary and assume that ∆ξn
k ≤ K for some k 6= j and all n. Since Θ, M, and

supp(Qt) are compact sets,

sn
k ≤ sk(∆ξn)

≤ sup
θ∈Θ

sup
(x,s)∈M

sup
D∈supp(Qt)

sup
a∈Υ

∫
exp(γ(xk, pk, ξk,∆ξn

k , v, D; a, θ))
1 + exp(γ(xj , pj , ξj ,∆ξn

j , v,D; a, θ))
dF (v)

→ 0
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as n → ∞ because ∆ξn
j → ∞. Hence, for some N ∈ N, sn

k < ε for all n > N which contradicts

Assumption 2. The previous argument also implies that if ∆ξn∗
k ≤ K for some n∗ > N , sn∗

k < ε,

which is again a contradiction. Thus ∆ξn
k > K for all n > N . Since K was arbitrary, this implies

that sn
0 → 0 which is a contraction.

The proof now follows from Lemma A1.

C Proof of Theorem 1

I use a simplified version of the proof of Berry, Linton, and Pakes (2004). The proof consists of two

steps. I first show that an estimator defined as any sequence that satisfies

||GT (θ̆, P0)|| = inf
θ∈Θ

||GT (θ, P0)||+ op(1)

is a consistent estimator for θ. To prove this, first notice the law of large numbers implies that

||GT (θ0, P0)|| = Op(1/
√

T ). Thus, by Theorem 1 of Pakes and Pollard (1989), It is sufficient to

prove that

sup
||θ−θ0||>δ

||GT (θ, P0)||−1 = Op(1) for all δ > 0.

This is implied by proving that for any (ε, δ) > (0, 0) there exists C∗(δ) > 0 and T (ε, δ) such that

for all T ≥ T (ε, δ),

Pr

(
inf

θ/∈Nθ0
(δ)
||GT (θ, P0)|| ≥ C∗(δ)

)
≥ 1− ε.

Now fix (ε, δ) > (0, 0). Take C(δ) such that

lim
T→∞

Pr

(
inf

θ/∈Nθ0
(δ)
||GT (θ, P0)−GT (θ0, P0)|| ≥ C(δ)

)
= 1.

Now let ε∗ = min{ε, C(δ)}, such that 0 < ε∗ ≤ ε. Then by the triangle inequality

Pr

(
inf

θ/∈Nθ0
(δ)
||GT (θ, P0)|| ≥ C(δ)− ||GT (θ0, P0)||

)

≥ Pr

(
inf

θ/∈Nθ0
(δ)
||GT (θ, P0)−GT (θ0, P0)|| ≥ C(δ)

)
.

Now by Assumption 5, there exists T1(ε∗) such that for all T ≥ T1(ε∗, δ)

Pr

(
inf

θ/∈Nθ0
(δ)
||GT (θ, P0)−GT (θ0, P0)|| ≥ C(δ)

)
≥ 1− ε∗/2.

Since ||GT (θ0, P0)|| = op(1), there exists a T2(ε∗) such that for all T ≥ T2(ε∗)

Pr (||GT (θ, P0)|| ≥ ε∗/2) ≤ ε∗/2.
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It follows that for all T ≥ T2(ε∗),

Pr

(
inf

θ/∈Nθ0
(δ)
||GT (θ, P0)|| ≤ C(δ)− ε∗/2

)

≤ Pr

(
inf

θ/∈Nθ0
(δ)
||GT (θ, P0)|| ≤ C(δ)− ||GT (θ0, P0)||

)
+ ε∗/2.

Thus for all T ≥ max{T1(ε∗, δ), T2(ε∗)}

Pr

(
inf

θ/∈Nθ0
(δ)
||GT (θ, P0)|| ≥ C(δ)/2

)

≥ Pr

(
inf

θ/∈Nθ0
(δ)
||GT (θ, P0)|| ≥ C(δ)− ε∗/2

)

≥ Pr

(
inf

θ/∈Nθ0
(δ)
||GT (θ, P0)|| ≥ C(δ)− ||GT (θ0, P0)||

)
− ε∗/2.

≥ Pr

(
inf

θ/∈Nθ0
(δ)
||GT (θ, P0)−GT (θ0, P0)|| ≥ C(δ)

)
− ε∗/2.

≥ 1− ε∗/2− ε∗/2

≥ 1− ε.

Defining C∗(δ) = C(δ)/2 > 0 completes the proof.

In the second part I show that supθ∈Θ ||GT (θ, PR)−GT (θ, P0)|| converges to 0 in probability. This

implies by the triangle inequality that for any sequence θT ∈ Θ we have∣∣||GT (θT , PR)|| − ||GT (θT , P0)||
∣∣ ≤ ||GT (θT , PR)−GT (θT , P0)|| = op(1)

Denote

θ̃ = arg inf
θ∈Θ

||GT (θ, P0)||.

Then we get that the actual estimator θ̂ satisfies

||GT (θ̂, P0)|| = inf
θ∈Θ

||GT (θ, P0)||+ op(1)

because

0 ≤ ||GT (θ̂, P0)|| − inf
θ∈Θ

||GT (θ, P0)|| = ||GT (θ̂, P0)|| − ||GT (θ̃, P0)||

= ||GT (θ̂, PR)|| − ||GT (θ̃, P0)||+ op(1)

≤ ||GT (θ̃, PR)|| − ||GT (θ̃, P0)||+ op(1)

= op(1).
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Hence, by the first step, proving that

sup
θ∈Θ

||GT (θ, PR)−GT (θ, P0)|| = op(1)

is sufficient for consistency. Now by the Cauchy Schwarz inequality,

||GT (θ, PR)−GT (θ, P0)||2 =
1
T 2
||Z ′(∆ξ(θ, PR)−∆ξ(θ, P0))||2

≤ 1
T
||Z ′Z|| × 1

T
||∆ξ(θ, PR)−∆ξ(θ, P0)||2.

Since 1
T ||Z

′Z|| = Op(1) by Assumption 3, it suffices to prove that

sup
θ∈Θ

1
T
||∆ξ(θ, PR)−∆ξ(θ, P0)||2 = sup

θ∈Θ

1
T

T∑
t=1

||∆ξt(θ, PR,t)−∆ξt(θ, P0,t)||2 = op(1).

By Assumption 1 we have

sup
θ∈Θ

max
1≤t≤T

||σt(∆ξt(θ, PR,t), θ, PR,t)− σt(∆ξt(θ, P0,t), θ, PR,t)||

= sup
θ∈Θ

max
1≤t≤T

||σt(∆ξt(θ, P0,t), θ, P0,t)− σt(∆ξt(θ, P0,t), θ, PR,t)||

= op(1).

This then implies that

sup
θ∈Θ

max
1≤t≤T

||∆ξt(θ, PR,t)−∆ξt(θ, P0,t)||2 = op(1)

because by Assumption 4, if instead

sup
θ∈Θ

max
1≤t≤T

||∆ξt(θ, PR,t)−∆ξt(θ, P0,t)||2 > δ,

then

sup
θ∈Θ

max
1≤t≤T

||σt(∆ξt(θ, PR,t), θ, PR,t)− σt(∆ξt(θ, P0,t), θ, PR,t)|| > ε

with probability approaching 1 which is a contradiction.

D Proof of Theorem 2

The objective is to minimize GT (θ, PR)′WT GT (θ, PR) where

GT (θ, PR) ≡ 1
T

T∑
t=1

z′t∆ξt(θ, PR,t).

The first order condition is (
∂

∂θ
GT (θ̂, PR)′

)
WT GT (θ̂, PR) = 0.
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Define

DT (θ̂, PR) =
∂

∂θ
GT (θ̂, PR).

Using a first order expansion of GT (θ̂, PR) around θ = θ0 yields

DT (θ̂, PR)′WT

(
GT (θ0, PR) + DT (θ̃, PR)

(
θ̂ − θ0

))
= 0

where θ̃ is between θ0 and θ̂. Thus

√
T
(
θ̂ − θ0

)
=
(
DT (θ̂, PR)′WT DT (θ̃, PR)

)−1
DT (θ̂, PR)′WT

√
TGT (θ0, PR).

The proof now consists of two parts. First I show that

√
TGT (θ0, PR) =

√
TGT (θ0, P0) + Op

(
1√
R

)
+ Op

(√
T

R

)
+ op

(√
T

R

)

and I derive an expression for the third term. Next I prove that for any consistent estimator θ̌ of θ

it holds that D̂T (θ̂, PR) converges to Γ in probability. Combining these results yields the conclusion

of the theorem.

Let F : RJ → RJ be a three times continuously invertible function. The inverse function is defined

by F−1 : RJ → RJ . Then by Lemma A4 for any s1, s0 ∈ RJ there exists a c ∈ (0, 1) such that

F−1
j (s1) = F−1

j (s0) +
∂F−1

j (s)
∂s

∣∣∣∣∣
s=s0

(s1 − s0) +
1
2

(s1 − s0)
′ ∂F−1

j (s)
∂s′∂s

∣∣∣∣∣
s=s0

(s1 − s0)

+
∑

α∈R+:|α|=3

1
α!

 ∂|α|F−1
j (s)

∂s|α|

∣∣∣∣∣
s=s0+c(s1−s0)

 (s1 − s0)|α|

where F−1
j denotes the jth element of vector F−1.

Next we derive an expression for the first and second derivative of the inverse function. First note

that

F−1(F (x)) = x.

It follows that
∂F−1(F (x))

∂x
= I ⇔ ∂F−1(F (x))

∂F (x)
∂F (x))

∂x
= I

and hence with s = F (x)
∂F−1(s)

∂s
=
(

∂F (x)
∂x

)−1

.

The jth row of this matrix is
∂F−1

j (s)

∂s which implies that

∂F−1
j (s)
∂s

= e′j

(
∂F (x)

∂x

)−1
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and
∂F−1

j (s)
∂s′

=
(

∂F (x)
∂x′

)−1

ej

where ej is a J × 1 vector of zero with a 1 at the jth element. Next notice that

∂F−1
j (F (x))

∂F (x)′∂xi
=

∂F−1
j (F (x))

∂F (x)′∂F (x)
∂F (x)
∂xi

which implies that
∂F−1

j (F (x))
∂F (x)′∂x

=
∂F−1

j (F (x))
∂F (x)′∂F (x)

∂F (x)
∂x

or
∂F−1

j (F (x))
∂F (x)′∂F (x)

=
∂F−1

j (F (x))
∂F (x)′∂x

(
∂F (x)

∂x

)−1

.

Finally

∂F−1
j (F (x))

∂F (x)′∂xi
=

∂
(

∂F (x)
∂x′

)−1
ej

∂xi
= −

(
∂F (x)
∂x′

)−1(∂2F (x)
∂x′∂xi

)(
∂F (x)
∂x′

)−1

ej

It now follows that

∂F−1
j (F (x))

∂F (x)′∂F (x)
= −

((
∂F (x)
∂x′

)−1
∂2F (x)
∂x′∂x1

(
∂F (x)
∂x′

)−1
ej . . .

(
∂F (x)
∂x′

)−1
∂2F (x)
∂x′∂xJ

(
∂F (x)
∂x′

)−1
ej

)(∂F (x)
∂x′

)−1

= −
J∑

k=1

(
∂F (x)
∂x′

)−1 ∂2F (x)
∂x′∂xk

(
∂F (x)
∂x′

)−1

eje
′
k

(
∂F (x)
∂x′

)−1

.

The previous expansion implies that there exists ct ∈ (0, 1) such that

∆ξj,t(θ0, PR,t) = ∆ξj,t(θ0, P0,t)

−e′jH
−1
R,teR,t

+
1
2
e′R,t

(
−

J∑
k=1

H−1
R,t

(
∂2σt (∆ξt(θ0, P0,t), θ0, PR,t)

∂∆ξ∂∆ξk

)
H−1

R,teje
′
kH

−1
R,t

)
eR,t

+
∑

α∈R+:|α|=3

1
α!

 ∂|α|σ−1
j,t (s, θ0, PR,t)

∂s|α|

∣∣∣∣∣
s=ctst+(1−ct)σt(∆ξ(θ0,P0,t),θ0,PR,t)

 e
|α|
R,t

= ∆ξj,t(θ0, P0,t)

−e′jH
−1
0,t eR,t

+e′jH
−1
0,t

∂eR,t

∂∆ξ
H−1

0,t eR,t

−1
2
e′R,t

(
J∑

k=1

H−1
0,t

(
∂2σt (∆ξt(θ0, P0,t), θ0, P0,t)

∂∆ξ∂∆ξk

)
H−1

0,t eje
′
kH

−1
0,t

)
eR,t

+errorj,t
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where

errorj,t = e′j

(
H−1

R,t −H−1
0,t

)
(HR,t −H0,t) H−1

0,t eR,t

−1
2
e′R,t

(
J∑

k=1

(
H−1

R,t

(
∂2σt (∆ξt(θ0, P0,t), θ0, PR,t)

∂∆ξ∂∆ξk

)
H−1

R,teje
′
kH

−1
R,t

−H−1
0,t

(
∂2σt (∆ξt(θ0, P0,t), θ0, P0,t)

∂∆ξ∂∆ξk

)
H−1

0,t eje
′
kH

−1
0,t

))
eR,t

+
∑

α∈R+:|α|=3

1
α!

 ∂|α|σ−1
j,t (s, θ0, PR,t)

∂s|α|

∣∣∣∣∣
s=ctst+(1−ct)σt(∆ξ(θ0,P0,t),θ0,PR,t)

 e
|α|
R,t.

Now define

K0,t,k ≡
(

∂2σt (∆ξt(θ0, P0,t), θ0, P0,t)
∂∆ξ∂∆ξk

)
and

I0,t,j ≡
J∑

k=1

H−1
0,t K0,t,kH

−1
0,t eje

′
kH

−1
0,t .

Then

∆ξj,t(θ0, PR,t) = ∆ξj,t(θ0, P0,t)

−e′jH
−1
0,t eR,t

+e′jH
−1
0,t

∂eR,t

∂∆ξ
H−1

0,t eR,t −
1
2
e′R,tI0,t,jeR,t

+errorj,t,

It now follows that

√
TGT (θ0, PR) =

√
TGT (θ0, P0) +

√
T (GT (θ0, PR)−GT (θ0, P0))

=
√

TGT (θ0, P0) +
1√
T

T∑
t=1

z′t (∆ξt(θ0, PR,t)−∆ξt(θ0, P0,t))

=
√

TGT (θ0, P0)−
1√
T

T∑
t=1

z′tH
−1
0,t eR,t

+
1√
T

T∑
t=1

J∑
j=1

z′j,t

(
e′jH

−1
0,t

∂eR,t

∂∆ξ
H−1

0,t eR,t −
1
2
e′R,tI0,t,jeR,t

)

+
1√
T

T∑
t=1

z′terrort.

Now we have four terms. The first term is Op(1) and belongs to the GMM objective function with-

out simulation error. Therefore, by Assumption B9 it converges to a normally distributed random

variable. The second term is Op

(
1√
R

)
and converges to a normally distributed random variable

as well when multiplied by
√

R by Assumption B9. These two normal terms are asymptotically
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independent.

The third term does not have means 0 because

E

 1√
T

T∑
t=1

J∑
j=1

z′j,t

(
e′jH

−1
0,t

(
∂eR,t

∂∆ξ

)
H−1

0,t eR,t −
1
2
e′R,tI0,t,jeR,t

)
=

1√
T

T∑
t=1

J∑
j=1

E

(
z′j,t

(
1
R

e′jH
−1
0,t E∗

t

(
dεr,0,tH

−1
0,t εr,0,t

)
− 1

2
1
R

E∗
t

(
ε′r,0,tI0,t,jεr,0,t

)))

=
√

T

R

1
T

T∑
t=1

J∑
j=1

E

(
z′j,t

(
e′jH

−1
0,t E∗

t

(
dεr,0,tH

−1
0,t εr,0,t

)
− 1

2
E∗

t

(
ε′r,0,tI0,t,jεr,0,t

)))
.

By Assumption B10

lim
T→∞

1
T

T∑
t=1

J∑
j=1

E

(
z′j,t

(
e′jH

−1
0,t E∗

t

(
dεr,0,tH

−1
0,t εr,0,t

)
− 1

2
E∗

t

(
ε′r,0,tI0,t,jεr,0,t

)))
= µ̄.

By a weak law of large numbers

R√
T

1√
T

T∑
t=1

J∑
j=1

z′j,t

(
e′jH

−1
0,t

(
∂eR,t

∂∆ξ

)
H−1

0,t eR,t −
1
2
e′R,tI0,t,jeR,t

)
p→ µ̄

which implies that the third term is Op

(√
T

R

)
and converges in probability to a constant term when

multiplied by R√
T

.

Finally I need to prove that

1√
T

T∑
t=1

z′terrorR,t = op

(√
T

R

)
.

Recall that

1√
T

T∑
t=1

z′terrorj,t

=
1√
T

T∑
t=1

z′te
′
j

(
H−1

R,t −H−1
0,t

)
deR,tH

−1
0,t eR,t

−1
2

1√
T

T∑
t=1

z′te
′
R,t

(
J∑

k=1

(
H−1

R,t

(
∂2σt (∆ξt(θ0, P0,t), θ0, PR,t)

∂∆ξ∂∆ξk

)
H−1

R,teje
′
kH

−1
R,t

−H−1
0,t

(
∂2σt (∆ξt(θ0, P0,t), θ0, P0,t)

∂∆ξ∂∆ξk

)
H−1

0,t eje
′
kH

−1
0,t

))
eR,t

+
1√
T

T∑
t=1

z′t
∑

α∈R+:|α|=3

1
α!

 ∂|α|σ−1
j,t (s, θ0, PR,t)

∂s|α|

∣∣∣∣∣
s=ctst+(1−ct)σt(∆ξ(θ0,P0,t),θ0,PR,t)

 e
|α|
R,t.
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Furthermore, by Lemma A1 and Assumption B6

H−1
R,t = H−1

0,t + op(1)

where the J × J op(1) term does not depend on t. Similarly

J∑
k=1

H−1
R,t

(
∂2σt (∆ξt(θ0, P0,t), θ0, PR,t)

∂∆ξ∂∆ξk

)
H−1

R,teje
′
kH

−1
R,t

=
J∑

k=1

H−1
0,t

(
∂2σt (∆ξt(θ0, P0,t), θ0, P0,t)

∂∆ξ∂∆ξk

)
H−1

0,t eje
′
kH

−1
0,t + op(1)

where the J × J op(1) term does not depend on t. It now follows from Assumptions B5 and B6 as

well as Lemma A3 that

1√
T

T∑
t=1

z′te
′
j

(
H−1

R,t −H−1
0,t

)
deR,tH

−1
0,t eR,t = op

(√
T

R

)

and

1
2

1√
T

T∑
t=1

z′te
′
R,t

(
J∑

k=1

(
H−1

R,t

(
∂2σt (∆ξt(θ0, P0,t), θ0, PR,t)

∂∆ξ∂∆ξk

)
H−1

R,teje
′
kH

−1
R,t

−H−1
0,t

(
∂2σt (∆ξt(θ0, P0,t), θ0, P0,t)

∂∆ξ∂∆ξk

)
H−1

0,t eje
′
kH

−1
0,t

))
eR,t = op

(√
T

R

)
.

Finally consider

1√
T

T∑
t=1

z′t
∑

α∈R+:|α|=3

1
α!

 ∂|α|σ−1
j,t (s, θ0, PR,t)

∂s|α|

∣∣∣∣∣
s=ctst+(1−ct)σt(∆ξ(θ0,P0,t),θ0,PR,t)

 e
|α|
R,t.

Similar as for the second derivative, we can write the third partial derivatives of the inverse function

as a function of partial derivatives of σt(∆ξ, θ0, P0,t) evaluated at ∆̃ξt that satisfies

σt

(
∆̃ξt, θ0, PR,t

)
= σt (∆ξ(θ0, P0,t, θ0, PR,t)) + ct (st − σt (∆ξ(θ0, P0,t), θ0, PR,t))

But since

max
1≤t≤T

|st − σt (∆ξ(θ0, P0,t), θ0, PR,t)| = op(1)

it follows that

max
1≤t≤T

∣∣∣st − σt

(
∆̃ξt, θ0, PR,t

)∣∣∣ = op(1)

or

max
1≤t≤T

∣∣∣σt (∆ξ(θ0, PR,t), θ0, PR,t)− σt

(
∆̃ξt, θ0, PR,t

)∣∣∣ = op(1).
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This implies by Assumption A4 that

max
1≤t≤T

∣∣∣∆ξ(θ0, PR,t)− ∆̃ξt

∣∣∣ = op(1)

which in turn means that

max
1≤t≤T

∣∣∣∆ξ(θ0, P0,t)− ∆̃ξt

∣∣∣ = op(1).

Next, it easy to verify that

∂|α|σ−1
j,t (s, θ0, PR,t)

∂s|α|

∣∣∣∣∣
s=ctst+(1−ct)σt(∆ξ(θ0,P0,t),θ0,PR,t)

is a function of (
∂σt(∆ξ, θ0, PR,t)

∂∆ξ

∣∣∣∣
∆ξt=∆̃ξt

)−1

as well as partial derivatives of σt(∆ξ, θ0, PR,t) up to order 3 evaluated at ∆̃ξt. But since

max
1≤t≤T

∣∣∣∆ξ(θ0, P0,t)− ∆̃ξt

∣∣∣ = op(1)

and since ∆ξ(θ0, P0,t) is in a compact set it follows from Lemma A1 as well Assumption B7 that

∂|α|σ−1
t (s, θ0, PR,t)

∂s|α|

∣∣∣∣∣
s=ctst+(1−ct)σt(∆ξ(θ0,P0,t),θ0,PR,t)

= Qt,0,|α| + op(1)

where Qt,0,|α| is bounded for each t and |α| and the op(1) term does not depend on t. As a

consequence, it follows from Lemma A3 that

1√
T

T∑
t=1

z′t
∑

α∈R+:|α|=3

1
α!

 ∂|α|σ−1
j,t (s, θ0, PR,t)

∂s|α|

∣∣∣∣∣
s=ctst+(1−ct)σt(∆ξ(θ0,P0,t),θ0,PR,t)

 e
|α|
R,t = op

(√
T

R

)
.

Next consider

DT (θ̂, PR) =
1
T

T∑
t=1

z′t
∂∆ξt(θ, PR,t)

∂θ

We have to prove that

DT (θ, PR)
p→ lim

T→∞

1
T

T∑
t=1

∂G(θ, P0,t)
∂θ

uniformly over θ. If this holds then for any consistent estimator, θ̌, of θ, it holds that

DT (θ̌, PR)
p→ Γ.

It is sufficient to prove that

DT (θ, PR)− 1
T

T∑
t=1

∂GT (θ, P0,t)
∂θ

p→ 0
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uniformly over θ because

1
T

T∑
t=1

(
∂GT (θ, P0,t)

∂θ
− ∂G(θ, P0,t)

∂θ

)
p→ 0

uniformly over θ by Assumption B8 and the uniform law of large numbers (see for example Amemiya

(1985)). Now

DT (θ, PR)− 1
T

T∑
t=1

∂GT (θ, P0,t)
∂θ

=
1
T

T∑
t=1

z′t

(
∂∆ξt(θ, PR,t)

∂θ
− ∂∆ξt(θ, P0,t)

∂θ

)

= − 1
T

T∑
t=1

z′t

((
∂σt (∆ξt(θ, PR,t), θ, PR,t)

∂∆ξt

)−1 ∂σt (∆ξt(θ, PR,t), θ, PR,t)
∂θ

−
(

∂σt (∆ξt(θ, P0,t), θ, P0,t)
∂∆ξt

)−1 ∂σt (∆ξt(θ, P0,t), θ, P0,t)
∂θ

)

where
∂σt (∆ξt(θ, P0,t), θ, P0,t)

∂θ

denotes the derivative only with respect to the second element of the function. Similar to before

∂σt (∆ξt(θ, PR,t), θ, PR,t)
∂∆ξt

=
∂σt (∆ξt(θ, P0,t), θ, P0,t)

∂∆ξt
+ op(1)

in a neighborhood of θ0 where the op(1) term does not depend θ or t. Now by Assumption B6(
∂σt (∆ξt(θ, PR,t), θ, PR,t)

∂∆ξt

)−1

=
(

∂σt (∆ξt(θ, P0,t), θ, P0,t)
∂∆ξt

)−1

+ op(1)

where the op(1) term does not depend θ or t. As a consequence

DT (θ, PR)− 1
T

T∑
t=1

∂GT (θ, P0,t)
∂θ

= − 1
T

T∑
t=1

z′t

(
∂σt (∆ξt(θ, P0,t), θ, P0,t)

∂∆ξt

)−1(∂σt (∆ξt(θ, PR,t), θ, PR,t)
∂θ

− ∂σt (∆ξt(θ, P0,t), θ, P0,t)
∂θ

)

+op(1)
1
T

T∑
t=1

z′t
∂σt (∆ξt(θ, PR,t), θ, PR,t)

∂θ
.

But Assumptions B7 and B8 imply that

1
T

T∑
t=1

z′t
∂σt (∆ξt(θ, PR,t), θ, PR,t)

∂θ
= Op(1)
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uniformly over θ. Hence,

DT (θ, PR)− 1
T

T∑
t=1

∂GT (θ, P0,t)
∂θ

= − 1
T

T∑
t=1

z′t

(
∂σt (∆ξt(θ, P0,t), θ, P0,t)

∂∆ξt

)−1(∂σt (∆ξt(θ, PR,t), θ, PR,t)
∂θ

− ∂σt (∆ξt(θ, P0,t), θ, P0,t)
∂θ

)
+op(1)

= − 1
T

T∑
t=1

z′t

(
∂σt (∆ξt(θ, P0,t), θ, P0,t)

∂∆ξt

)−1(∂σt (∆ξt(θ, PR,t), θ, PR,t)
∂θ

−
∂σt (∆ξt(θ, P0,t), θ, PR,t)

∂θ

)

− 1
T

T∑
t=1

z′t

(
∂σt (∆ξt(θ, P0,t), θ, P0,t)

∂∆ξt

)−1(∂σt (∆ξt(θ, P0,t), θ, PR,t)
∂θ

− ∂σt (∆ξt(θ, P0,t), θ, P0,t)
∂θ

)
+op(1).

But for all j it follows from Assumption B8 that∣∣∣∣∂σj,t (∆ξt(θ, PR,t), θ, PR,t)
∂θ′

−
∂σj,t (∆ξt(θ, P0,t), θ, PR,t)

∂θ′

∣∣∣∣
≤ 1

R

R∑
r=1

|H(vr,t)| |∆ξt(θ, PR,t)−∆ξt(θ, P0,t)| = op(1)

uniformly over θ and t. Thus,

1
T

T∑
t=1

z′t

(
∂σt (∆ξt(θ, P0,t), θ, P0,t)

∂∆ξt

)−1(∂σt (∆ξt(θ, PR,t), θ, PR,t)
∂θ

−
∂σt (∆ξt(θ, P0,t), θ, PR,t)

∂θ

)
= op(1)

independent of θ and t. Finally write

1
T

T∑
t=1

z′t

(
∂σt (∆ξt(θ, P0,t), θ, P0,t)

∂∆ξt

)−1(∂σt (∆ξt(θ, P0,t), θ, PR,t)
∂θ

− ∂σt (∆ξt(θ, P0,t), θ, P0,t)
∂θ

)

=
1
T

T∑
t=1

1
R

R∑
r=1

z′t

(
∂σt (∆ξt(θ, P0,t), θ, P0,t)

∂∆ξt

)−1

×
(

∂νt (∆ξt(θ, P0,t), θ, vr,t)
∂θ

− E∗
t

(
∂νt (∆ξt(θ, P0,t), θ, P0,t)

∂θ

))
= op(1)

uniformly over xt, pt and θ by the uniform law of large numbers. Hence

sup
θ∈Θ

∣∣∣∣∣DT (θ, PR)− 1
T

T∑
t=1

∂GT (θ, P0,t)
∂θ

∣∣∣∣∣ = op(1).

E Proof of Theorem 3

By the proof of Theorem 2 it suffices to prove that

ĈR,t = E∗
t

(
H−1

0,t dεr,t(∆ξt(θ0, P0,t), θ0)H−1
0,t εr,t(∆ξt(θ0, P0,t), θ0)

)
+ op(1)
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and

ŜR,j,t = E∗
t

(
εr,t(∆ξt(θ0, P0,t), θ0)′I0,t,jεr,t(∆ξt(θ0, P0,t), θ0)

)
+ op(1)

where the op(1) terms do not depend on t. These two results follow from identical arguments as

the last part of the proof of Theorem 2.
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