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1 Introduction

This paper is concerned with the problem of testing the null hypothesis H0 that the true value

of a �nite p-dimensional parameter vector � is non-negative versus the alternative that at least

one element of � is strictly negative. A major problem for testing such hypotheses has been

dependence of null rejection probability on the unknown subset of binding inequalities (zero-

valued �j). Under H0, the asymptotic distribution of a nontrivial test statistic is typically

degenerate at interior points (all elements of � strictly positive) of parameter space. But at

boundary points (one or more elements zero), that distribution is non-degenerate and may depend

on the number and position of the zero elements but not on strict positives. In consequence,

determining the critical value to be used for the test at some nominal signi�cance level � is a

nontrivial issue. The classic least favorable con�guration (LFC) approach seeks the parameter

point in the null that maximizes the rejection probability (e.g., see Perlman (1969) and Robertson,

Wright and Dykstra (1988)). This principle risks yielding tests which have comparatively low

power against sequences of alternatives converging to boundary points which are not LFC. To

improve test power, recent literature has proposed using data-driven selection of the true binding

inequalities in place of the LFC point to compute test critical values. Whatever the critical value,

it is important to demonstrate that null rejection probability does not exceed � uniformly over all

H0-compliant data generating processes for sample size large enough. Such uniformity has been

emphasized in recent literature (e.g., see Mikusheva (2007), Romano and Shaikh (2008), Andrews

and Guggenberger (2009), Andrews and Soares (2010) and Linton et al. (2010)) to ensure validity

of asymptotic approximation to actual �nite sample test size especially when the test statistic

has a limiting distribution which is discontinuous on parameter space. Regardless of whether

the binding inequalities are �xed according to the LFC or determined via a stochastic selection

mechanism, the functional forms of test statistics proposed in this literature are generally non-

smooth and hence computation of test critical values requires simulation or bootstrap.

The contributions of the present paper are as follows. We develop a multiple inequality

test whose implementation does not require computer intensive methods. The central idea is

to construct a sequence of origin-smooth approximators of indicators underlying the sum-of-

negative-part statistic for testing multiple inequalities. The approximation is a form of indicator

smoothing in the spirit of Horowitz (1992), enabling standard asymptotic distribution results

and obviating simulation and bootstrap computation of test critical values. Moreover, the test

allows for estimator covariance singularity.

The test statistic of this paper has a non-degenerate asymptotic distribution of simple analytic

form at boundary points of the null hypothesis but becomes degenerate at interior points. Despite

this type of discontinuity, the test critical value can be �xed ex ante without compromising

asymptotic validity in the uniform sense that the limit of �nite sample test size (de�ned as

supremal rejection probability over all H0-compatible data generating processes) is equal to the

nominal size. We prove that this uniformity property holds for every approximator in a wide
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class allowed by the paper.

The smoothing design of this paper embodies a data driven weighting scheme which automati-

cally concentrates the test statistic onto those parameter estimates signaling binding inequalities.

This feature is connected to methods of binding inequality selection used in Hansen (2005), Cher-

nozhukov et al. (2007), Andrews and Soares (2010) and Linton et al. (2010). Indeed, the smoother

can also be interpreted as an asymptotic selector and the key component of our test statistic

coincides with the sum of elements of the di¤erence between the estimated and recentered null-

compatible mean used to obtained the simulated test critical values for Andrews and Soares

(2010)�s generalized moment selection (GMS) based tests. The di¤erence itself, however, is not

within the class of test statistics covered by the theory of these authors but its properties emerge

from the theory developed in the present paper.

The relative computational ease of the test of this paper might be expected to carry a cost

in terms of power. However, as we show, the test is consistent against all �xed alternatives and

is unbiased for a wide class of local alternatives. In comparison with existing tests, its relative

strength varies with the particular direction of local alternative. We provide a new theorem

establishing directions in which the test is locally most powerful. Monte Carlo results support

the theory and reveal that �nite sample performance of the present test is not dominated by the

GMS based tests.

We now review relevant test methods in addition to the works cited above. The QLR test

has been well developed in the inequality test literature. See, e.g. Perlman (1969), Kodde

and Palm (1986), Wolak (1987, 1988, 1989, 1991), Gourieroux and Monfort (1995, chapter 27)

and Silvapulle and Sen (2005, chapters 3-4). This test is also applied in the moment inequality

literature (see Rosen (2008), Andrews and Guggenberger (2009) and Andrews and Soares (2010)).

The asymptotic null distribution of the QLR test statistic generally has no analytical form. Since

computing this test statistic requires solution of a quadratic optimization program subject to non-

negativity constraints, simulation and bootstrapping for the test critical value is particularly

heavy.

An extreme value (EV) form of test statistic was developed by White (2000) in the context

of comparing predictive abilities among forecasting models. Such a statistic is lighter on com-

putation but its asymptotic null distribution remains non-standard. Hansen (2005) incorporates

estimation of actual binding inequalities to bootstrap null distribution of the extreme value sta-

tistic. Hansen�s re�nement is a special case of the GMS based critical value estimation proposed

by Andrews and Soares (2010) who also consider a broad class of test functions including both

the QLR and other simpler forms using negative-part functions.

The rest of the paper is organized as follows. Section 2 summarizes the method of Andrews

and Soares (2010) for testing with estimated critical values which embody the GMS procedure

for estimation of binding inequalities. We contrast that with the smoothing approach of this

paper and highlight connecting features. Section 3 sets out functional assumptions on the class

3



of smoothers and completes construction of the test statistic. Section 4 states basic distribu-

tional assumptions on parameter estimators and presents asymptotic null distribution of the test

statistic. Section 5 establishes key results on asymptotic size of the test. Section 6 studies test

consistency and local power. Section 7 presents results of some Monte Carlo simulation studies.

Section 8 concludes. Appendix A derives the details of an adjustment component of the test

statistic. Appendix B provides proofs of theoretical results of the paper. Appendix C gives

examples of covariance matrix singularity and illustrates how they can �t into our framework.

2 Recentering, Selection and Smoothing in Inequality Tests

Let � = (�1; �2; :::; �p)
0 be a column vector of (functions of) parameters appearing in an econo-

metric model. We are interested in testing :

H0 : �j � 0 for all j 2 f1; 2; :::; pg versus H1 : �j < 0 for at least one j: (2.1)

We assume that there exists a vector b� of parameter estimators based on sample size T such

that
p
T (b���) is asymptotically multivariate normal with mean 0 and covariance V consistently

estimated by bV . The vector � and matrix V may depend on common parameters but this is

generally kept implicit for notational simplicity.

2.1 Recentering and Generalized Moment Selection in Critical Value
Estimation

Recent improved tests developed by Andrews and Soares (2010) of the hypothesis (2.1) are distin-

guished by their use of estimated critical values embodying a selection rule to statistically decide

which inequalities are binding (�j = 0). In brief, these tests proceed operationally as follows.

A statistic S(
p
Tb�; bV ) is �rst computed for some �xed function S(:; :). The asymptotic critical

value of the statistic is then obtained by simulation (or resampling) as the appropriate quantile

of the distribution of S(Z + K(T )e�; bV ) where Z is an arti�cially generated vector such that

Z � N(0; bV ) conditionally on data, e� is a recentered null-compatible mean and K(T ) = o(
p
T )

is some positive "tuning� function increasing without bound as T �! 1. Basic recentering
de�nes e�j = 0 for K(T )b�j � 1. Setting e�j = 0 amounts to selecting j as the index of a binding
constraint. For K(T )b�j > 1, e�j is de�ned to ensure K(T ) e�j �! 1 as T �! 1, this being
simply achieved by taking e�j = b�. Basic selection as stated here is a special case of the Andrews
and Soares (2010) Generalized Moment Selection (GMS) procedure.1

1 Indeed, this selection rule corresponds to use of moment selection function '(2)j considered by Andrews and
Soares (2010, pp. 131-132) with due allowance for standardization of parameter estimates. See also Andrews and
Barwick (2012, pp. 8-9) for various examples of the GMS selection rules.
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Data-dependent selection of binding constraints reduces possible ine¢ ciencies arising from

�xing all the elements of e� to be zero (least favorable). On the other hand, regardless of howe� is constructed, simulation (or bootstrap) is still needed since the asymptotic distribution of
the statistic used in this literature is generally non-standard. This applies even to test statistics

which aggregate individual discrepancy values min(b�j ; 0) in a simple manner. They include the
extreme value form studied by Hansen (2005) and the sum

pX
j=1

[�
p
T min(b�j ; 0)] (2.2)

lying within the very wide class of right-tailed tests studied by Andrews and Soares (2010).

2.2 The Smoothed Indicator Approach

Let 1f:g denote the indicator taking value unity if the statement inside the bracket is true and
zero otherwise. The root cause of non-standard distribution of (2.2) is the discontinuity at the

origin of the indicator 1fx � 0g underlying the negative-part function min(x; 0) = 1fx � 0gx.
To overcome this problem, the present paper investigates an indicator smoothing approach as

follows.

First, we approximate the function min(x; 0) by 	T (x)x where f	T (x)g is a sequence of non-
negative and non-increasing functions each of which is continuously di¤erentiable at the origin

and converges pointwise (except possibly at the origin) as T �! 1 to the indicator function

1fx � 0g. We refer to 	T (x) as an (origin-smoothed) indicator smoother or a smoothed indicator
for 1fx � 0g.

In this paper, we will focus on the class of smoothed indicators generated as 	T (x) =

	(K(T )x) for some �xed function 	 and a �tuner�K(T ) of the type mentioned in Subsec-

tion 2.1. The functional form of 	 includes decumulative distribution functions for continuous

variates as well as discrete yet origin-smooth functions. We therefore replace the individual

negative-part statistic
p
T min(b�j ; 0) of (2.2) bypT	T (b�j)b�j . Subject to regularity conditions

set out later, 	T (b�j) = op(1=
p
T ) for strictly positive �j and hence the term

p
T	T (b�j)b�j van-

ishes asymptotically. For zero-valued �j , 	T (b�j) tends to 	(0) in probability and pT	T (b�j)b�j
is asymptotically equivalent to 	(0)

p
Tb�j .

Second, we consider a left-tailed test based on the statistic that replaces (2.2) with

pX
j=1

hp
T	T (b�j)b�j � �T (b�j ; bvjj)i (2.3)

where bvjj is the jth diagonal element of bV and �T is an adjustment term approximating the

expectation of [	T (b�j) � 	(0)]pTb�j evaluated at �j = 0. This expectation is non-positive,
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though shrinking to zero in large samples.2 Under suitable regularity conditions �T , whose

detailed construction is given in Section 3, is non-positive for all T but converges to zero in

probability. Hence, under the null hypothesis the statistic (2.3) will be asymptotically either

degenerate or equivalent in distribution to a normal variate and thus critical values for a test

using (2.3) will not require simulation.

Besides indicator smoothing, it is also appropriate to view 	T as a form of binding inequality

selection akin to the aforementioned GMS procedure. The smoothed indicators in (2.3) essentially

embed a data driven weighting scheme which automatically concentrates the statistic (2.3) onto

those parameter estimates signaling binding inequalities. Indeed, consider the speci�c smoothed

indicator constructed as 	T (x) = 1fK(T )x � 1g. Such 	T (x) simply shifts the point of discon-
tinuity away from the origin whilst still acting as a pure zero-one selector. Then the GMS based

recentering described in Subsection 2.1 would amount to setting e�j = (1 � 	T (b�j))b�j . In this
case, the statistic (2.3) is equal to

pX
j=1

p
T (b�j � e�j) + op(1): (2.4)

Since both b� and e� are available as a by-product of the mainstream tests of Subsection 2.1, one

may as well perform a test on their di¤erence. The asymptotic distribution of (2.4) does not

itself require simulation and recentering, so there is no circularity of argument. Though (2.4)

and the GMS test procedure are closely related, it is important to stress that the present test

enforces data driven selection of binding inequalities through smoothed indicators within the

test statistic itself rather than at the stage of critical value estimation. Therefore, the class of

statistics (2.3) does not lie in the otherwise very wide class covered by the work of Andrews and

Soares (2010).

It is worth noting that the approach to achieve asymptotic normality in this paper is distinct

from alternative devices such as those of Dykstra (1991) and Menzel (2008) who demonstrate

that even the QLR statistic can be asymptotically normal when p, the dimension of �, is viewed

as increasing with T to in�nity. Recent papers by Lee and Whang (2009) and Lee, Song and

Whang (2011) obtain asymptotic normality for a class of functional inequality test statistics.

Their particular device (poissonization) requires � to be in�nitely dimensional at the outset.

By contrast, in the framework of testing �nite and �xed p inequalities, the present paper (and

its preliminary versions (Chen and Szroeter (2006, 2009) and Chen (2009, Chapter 3)) where a

prototype asymptotically normal test statistic appears) uses only large T asymptotics and an

indicator smoothing device. The strategy adopted by this work in testing is akin to Horowitz

(1992) who sought to resolve non-standard asymptotic behavior in estimation by replacing a

discrete indicator function with a smoothed version. Therefore, the smoothing mechanism in-

2Note that 	T (b�j)b�j � 	(0)b�j for any T because the function 	T (x) = 	(K(T )x) is constructed to be
non-negative and non-increasing in x.
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vestigated by this paper to obtain standard asymptotic distribution results could also be of

theoretical interest in its own right.

3 Smoothed Indicator Class and Test Procedure

We now formally set out regularity conditions on the smoothed indicator 	T (x), x 2 R. We

require that

	T (x) = 	(K(T )x) (3.1)

where 	(:) and K(T ) are functions satisfying the following assumptions:

[A1] 	(x) is a non-increasing function and 0 � 	(x) � 1 for x 2 R:

[A2] 	(0) > 0 and, throughout some open interval containing x = 0 and at all except

possibly a �nite number of points outside that interval, 	(x) has a continuous

�rst derivative  (x) that is bounded absolutely by a �nite positive constant.

The left-hand limits of  (y) as y approaches x exist at any x 2 R.

[A3] K(T ) is positive and increasing in T :

[A4] K(T ) �!1 and K(T )=
p
T �! 0 as T �!1:

[A5] 	(x) �! 1 as x �! �1:

[A6]
p
T	(K(T )x) �! 0 as T �!1 for x > 0:

Assumptions [A1]-[A6] are very mild and satis�ed by all the particular 	 functions including

step-at-unity, logistic and normal, discussed in Section 7.1 and used in the simulations of this

paper. Assumption [A4] regulates the rate at which the �tuning� parameter K(T ) can grow

and, in the context of Andrews and Soares (2010) discussed in Subsection 2.1, enables consistent

selection of binding constraints. Forms of tuning are also used by Chernozhukov et al. (2007) and

Linton et al. (2010). [A2] enables smoothing for asymptotic normality through zero-valued �j ,

whilst [A6] creates data-driven importance weighting in the sense that each b�j corresponding to
strictly positive �j is likely to contribute ever less to the value of the test statistic as T increases.

In consequence, the statistic will be asymptotically dominated by those b�j corresponding to zero
or negative �j , detection of which is the very purpose of the test.

To implement the test, we have to construct the term �T in (2.3) of Subsection 2.2. Though

Assumptions [A2], [A4] and (3.1) above are given so that, for �j = 0,
p
T	T (b�j)b�j in (2.3) is

asymptotically equivalent to 	(0)
p
Tb�j , the di¤erence pT	T (b�j)b�j �	(0)pTb�j remains non-

positive in large samples. Whilst asymptotically negligible, this may be size-distorting in �nite

samples. To systematically o¤set that e¤ect, the adjustment term �T is constructed as follows

to approximate the expectation of [	T (b�j)�	(0)]pTb�j .
7



Under Assumption [A2], there are �nite increasing values a1; :::; an for some n � 1 such

that 	(x) is continuously di¤erentiable in intervals (�1; a1); (a1; a2); :::; (an;1). Because 	
is bounded and non-increasing, its one-sided limits 	(a�i ) � limx�!a�i

	(x) and 	(a+i ) �
limx�!a+i

	(x) for i 2 f1; 2; :::; ng exist. Let e (x), x 2 R be the "extended" derivative of 	

de�ned as the left-hand limit of  (x). Namely, e (x) � limy�!x�  (y). Then the algebraic form

of �T whose detailed derivation is given in Appendix A can be written as

�T (b�j ; bvjj) = bvjje (K(T )b�j)K(T )=pT �pbvjj nX
i=1

(	(a�i )�	(a
+
i ))�(

ai
p
TpbvjjK(T ) ) (3.2)

where � is the standard normal density function.

For the simple choice 	(x) = 1fx � 1g used to form the statistic (2.4), e = 0 and there is a
single discontinuity at x = 1 so the proxy simpli�es to

�T (b�j ; bvjj) = �pbvjj�( p
TpbvjjK(T ) ): (3.3)

On the other hand, for everywhere continuously di¤erentiable 	, e (x) =  (x) for x 2 R and

	(a�i ) = 	(a
+
i ) for i 2 f1; 2; :::; ng: Hence �T for such case simpli�es to

�T (b�j ; bvjj) = bvjj (K(T )b�j)K(T )=pT . (3.4)

Note that since 	 is non-increasing, for any T , �T (b�j ; bvjj) given by (3.2) is non-positive by
construction. Besides, under Assumption [A4] �T (b�j ; bvjj) tends to zero in probability as T
tends to in�nity. Hence for those �j 6= 0, the impact of adjusting

p
T	T (b�j)b�j with the term

�T (b�j ; bvjj) on test behavior is asymptotically negligible though the adjustment (3.2) is applied
for each j 2 f1; 2; ::; pg.

Finally, we consider a further useful generalization by replacing each b�j in (2.3) with b�jb�j for
any positive scalar b�j , which can be �xed known or estimated. Choosing b�j to be inverse of the
estimated asymptotic standard deviation of b�j amounts to conducting the test on t-ratios. Other
choices of b�j are discussed in Appendix C which deals with estimator covariance singularity issues.
With this enhancing feature, the adjustment term �T (b�j ; bvjj) is replaced by �T (b�jb�j ;b�2jbvjj). We
now present the test procedure as follows.

Let b	; b�; ep be the p dimensional column vectors and b� be the diagonal matrix de�ned as

b	 � (	(K(T )b�1b�1);	(K(T )b�2b�2); :::;	(K(T )b�pb�p))0; (3.5)b� � (�T (b�1b�1;b�21bv11);�T (b�2b�2;b�22bv22); :::;�T (b�pb�p;b�2pbvpp))0; (3.6)

ep � (1; 1; :::; 1)0; (3.7)b� � diag(b�1;b�2; :::;b�p): (3.8)
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Let

Q1 �
p
T b	0 b�b�� e0pb� (3.9)

Q2 �
pb	0 b�bV b�b	: (3.10)

We de�ne the test statistic as

Q =

(
�(Q1=Q2) if Q2 > 0

1 if Q2 = 0
(3.11)

where �(x) is the standard normal distribution function. For asymptotic signi�cance level �, we

reject H0 if Q < �. The test statistic Q is therefore a form of tail probability or p-value.

We now sketch the reasoning which validates the test. Formal theorems are given later.

Intuitively, we should reject H0 if Q1 is too small. For those parameter points under H0 for which

the probability limit of Q2 is nonzero, Q2 will be strictly positive with probability approaching

one. Then the ratio Q1=Q2 will exist and be asymptotically normal. By contrast, for all points

under H1, the value of Q1 will go in probability to minus in�nity. Therefore, in cases where Q2 is

positive, we propose to reject H0 if Q1=Q2 is too small compared with the normal distribution.

Note that our assumptions on the smoothed indicators do not rule out discrete but origin-

smooth 	 functions such as the step-at-unity example of Section 7.1. For such a discrete function,b	 will be a null vector with probability approaching one when all �j ; j 2 f1; 2; :::; pg; are strictly
positive. In this case, Q2 is also zero by (3.10) with probability approaching one. Therefore,

occurrence of the event Q2 = 0 is possible and signals that we should not reject H0. Note

that it is not an adhoc choice to set Q = 1 when Q2 = 0 occurs because the probability limit

of �(Q1=Q2) is also one when all �j parameters are strictly positive and 	 is an everywhere

positive function.3

4 Distributional Assumptions and Asymptotic Null Dis-

tribution

We begin by stating the following high-level assumptions which enable us to derive some basic

asymptotic properties of the test. Except for [D2], these assumptions are standard.

De�ne � as the diagonal matrix � � diag(�1; �2; :::; �p) where �j is strictly positive and

its estimator b�j is almost surely strictly positive for j 2 f1; 2; :::; pg. Let d(�) be de�ned as
the p dimensional vector whose jth element equals 0, 	(0), 1 when �j > 0, �j = 0, �j < 0

3The case of 	 being everywhere positive is more complicated because Q2 can then be almost surely strictly
positive. If all �j parameters are strictly positive, both numerator and denominator in the ratio Q1=Q2 tend to
zero in probability. See Appendix B.4 for analysis of the asymptotic properties of the test statistic Q in that case.
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respectively. For notational simplicity, we keep implicit the possible dependence of the true

values of the parameters �, V and � on the underlying data generating process.

We assume that, as T tends to in�nity,

[D1]
p
T (b�� �) d�! N(0; V ) where V is some �nite positive semi-de�nite matrix.

The variance V need not be invertible but must satisfy the following condition (whose veri�cation

is illustrated in Appendix C).

[D2] V�d(�) 6= 0 for non-zero d(�).

Assumption [D2] amounts to saying that the asymptotic distribution of
p
Td(�)0�(b���) should

not be degenerate.

[D3] bV p�! V for some almost surely positive semi-de�nite estimator bV .
[D4] b� p�! �:

Now let J denote the set f1; 2; :::; pg and decompose this as J = A [M [B, where

A � fj 2 J : �j > 0g; M � fj 2 J : �j = 0g; B � fj 2 J : �j < 0g:

Let U(0; 1) denote a scalar random variable that is uniformly distributed in the interval [0; 1].

We now present the asymptotic null distribution of the test statistic.

Theorem 1 (Pointwise Asymptotic Null Distribution) Given [A1], [A2], [A3], [A4], [A6]
with [D1] - [D4], the following are true under H0 : �j � 0 for all j 2 J with limits taken along
T �!1:
(1) If M 6= ?, then Q d�! U(0; 1):

(2) If M = ?, then Q p�! 1:

Part (1) of this theorem re�ects the fact that, for any �xed data generating process whose

� value lies on the boundary of null hypothesis space, the distribution of the test statistic Q is

asymptotically non-degenerate and given (3.11), the limiting distribution of the ratio Q1=Q2 is

standard normal. This justi�es the idea of smoothing for normality. Moreover, Q has the same

limiting distribution at each boundary point. Part (2) says that, at any �xed data generating

process whose � value lies in the interior of null hypothesis space, the asymptotic distribution of

Q is degenerate and Q will take value above � with probability tending to 1.
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5 Asymptotic Test Size

5.1 Pointwise and Uniform Asymptotic Control of Test Size

Theorem 1 shows that the test statistic Q is not asymptotically pivotal since its limiting distri-

bution and hence the asymptotic null rejection probability depend on the true value of �. By

de�nition, the pointwise asymptotic size of the test is the supremum of the asymptotic rejection

probability viewed as a function of � on the domain de�ned by H0. So Theorem 1 implies that

this size equals the nominal level � and hence the test is asymptotically exact in the pointwise

sense. However, pointwise asymptotic exactness is a weak property. It is desirable to ensure the

convergence of the test size to the nominal level holds uniformly over the null-restricted parame-

ter and data distribution spaces. In this section we present results showing that the test size is

asymptotically exact in the uniform sense.

To distinguish between pointwise and uniform modes of analysis, we need some additional

notation. Note that parameters such as � and V are functionals of the underlying data gen-

erating distribution. Suppose the data consist of i.i.d. vectors xt (t = 1; :::; T ) drawn from a

joint distribution G. We henceforth use the notation PG(:) to make explicit the dependence of

probability on G. Let � denote the set of all possible G compatible with prior knowledge or

presumed speci�cation of the data generating process. Then Assumptions [D1] - [D4] amount to

restrictions characterizing the class �. Let �0 be the subset of � that satis�es the null hypothesis.

In the present test procedure, "Q < ��is synonymous with �Q rejects H0�. Hence, the rejection

probability of the test is PG(Q < �) and the �nite sample test size is supG2�0 PG(Q < �).

Though Theorem 1 implies that convergence of rejection probability is not uniform over

G 2 �0, the test can be shown to be uniformly asymptotically level � (Lehmann and Romano
(2005, p. 422)) in the sense that

lim sup
T�!1

sup
G2�0

PG(Q < �) � �: (5.1)

Inequality (5.1) and Part (1) of Theorem 1 together imply the test size is asymptotically exact

in the uniform sense that

lim sup
T�!1

sup
G2�0

PG(Q < �) = �: (5.2)

The property (5.2) is important for the asymptotic size to be a good approximation to the �nite-

sample size of the test.4 Such uniformity property has been emphasized in recent literature

(e.g., see Mikusheva (2007), Romano and Shaikh (2008), Andrews and Guggenberger (2009)

and Andrews and Soares (2010)) particularly when limit behavior of the test statistic can be

discontinuous. Accordingly, we establish the validity of (5.2) in Theorem 2.

4Note that the notion of asymptotic test size using lim supT�!1 supG2�0 PG(Q < �) is stronger than its
pointwise version supG2�0 lim supT�!1 PG(Q < �): See Lehmann and Romano (2005, p. 422) for an illustrating
example in which pointwise asymptotic size can be a very poor approximation to the �nite sample test size.
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Before presenting the formal regularity conditions ensuring (5.2), we explain here how (5.2)

is possible despite asymptotic non-pivotality of the test statistic. First note that by (3.11),

PG(Q < �) � PG(Q1 � z�Q2 < 0) (5.3)

where z� is the � quantile of the standard normal distribution. The transformed statistic (Q1�
z�Q2) is still not asymptotically pivotal but it can be shown that, given any arbitrary su¢ ciently

small (relative to model constants) positive scalar �, we have with probability at least (1� �)
for all su¢ ciently large T that

Q1 � z�Q2 � r0T
p
T (b�� �)� (z�c2(�) + c1(�))qr0TV rT

where rT , � and V are non-stochastic G-dependent quantities such that either rT = 0 or r0TV rT
is bounded away from zero over G 2 �0, whilst c1(�) and c2(�) are non-stochastic functions that
do not depend on G and c1(�) �! 0 and c2(�) �! 1 as � �! 0. Therefore,

PG(Q1 � z�Q2 < 0) � PG(r
0
T

p
T (b�� �) < (z�c2(�) + c1(�))qr0TV rT ) + � (5.4)

whose right hand will tend, uniformly over G giving non-zero rT , to �(z�c2(�)+c1(�))+� which

is also automatically a weak upper bound on (5.4) for the case rT = 0. This uniformly valid

probability bound therefore applies to (5.3) for arbitrarily small � hence implies that (5.1) holds.

Equality is obtained by invoking Theorem 1 which says � is actually attained as the limit of

PG(Q < �) evaluated at any �xed G 2 �0 whose � has at least a zero-valued element.

The explanation provided above is indicative but short of a formal proof. In the next sub-

section we present additional �uniform� assumptions, strengthening the existing �pointwise�

assumptions [D1] - [D4] of Section 4, that are needed to make the argument rigorous. The full

proof, along with examples to illustrate some of the assumptions, will be found in the Appendix

B.

5.2 Uniform Asymptotic Exactness of Test Size

In this section we rigorously address the issue of asymptotic exactness of test size in the uniform

sense given by (5.2). For this purpose, we strengthen Assumptions [D1] - [D4] by the following

Assumptions [U1] - [U4] where objects such as K(T ) have already been de�ned in Assumptions

[A1] - [A6]. De�ne the vector Y and the scalar �T as

Y �
p
T (b�� �); �T �

q
K(T )=

p
T :

Note that Assumption [A4] implies that �T �! 0 as T �! 1. For any matrix m, let kmk �
maxfjmij jg where mij denotes the (i; j)-th element of m:
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Assumption [U1] : For any �nite scalar value � > 0,

lim
T�!1

inf
G2�0

PG(�T kY k < �; jjbV � VGjj < �) = 1:

Assumption [U2] : Let �(:) denote the standard normal distribution function. Then given
any �nite scalar c,

lim
T�!1

sup
G2�0

sup
�:�0VG�=1

jPG(�0Y � c)� �(c)j = 0: (5.5)

To illustrate how the high-level Assumptions [U1] and [U2] may be veri�ed, consider the

leading example where b� and bV are the sample mean and variance of i.i.d. random vectors xt,

(t = 1; 2; :::; T ) with joint distribution G.5 Then the simple but not necessarily the weakest

primitive condition guaranteeing both Assumptions [U1] and [U2] is that the �rst four moments

of every element of xt exist and are bounded uniformly over G 2 �0. This condition allows the
application of the Chebychev inequality to components of the right-hand side of the inequality

PG(�T kY k < �; jjbV � VGjj < �) � PG(�T kY k < �) + PG(jjbV � VGjj < �)� 1

to deduce that Assumption [U1] holds. To verify Assumption [U2] we �rst note that, by Lemma

4 proved in the Appendix, it is su¢ cient for (5.5) that

lim
T�!1

jPGT
(�0TY � c)� �(c)j = 0 (5.6)

for all non-stochastic sequences (GT ; �T ) satisfying GT 2 �0 and �0TVGT
�T = 1. By the i.i.d.

assumption, �0TY is 1=
p
T times the sum of T variates �0T (xt � EGT

(xt)) which are mutually

i.i.d. with mean 0 and variance 1 for each T when �0TVGT
�T = 1. This meets the requirements

of the double array version of the classic Lindeberg-Feller central limit theorem thus establishing

asymptotic unit normality of �0TY hence verifying (5.6).

For the next assumption, recall that �j is the jth diagonal element of the matrix �. For

notational simplicity, the general dependence of �j and � on G will be kept implicit.

Assumption [U3] : (i) There are �nite positive scalars � and �0 such that �0 � �j � �;

(j = 1; 2; :::; p) uniformly over G 2 �0. (ii) For any �nite scalar value � > 0,

lim
T�!1

inf
G2�0

PG(



b���


 < ��T ) = 1:

Assumption [U3] holds automatically when � is numerically speci�ed by the user henceb� = �. It also allows �j to be 1=pvjj where vjj is the jth diagonal element of VG provided that
5This simple average framework is used extensively in recent literature on inference for (unconditional) moment

inequality models. See, e.g. Chernozhukov et al. (2007), Romano and Shaikh (2008), Rosen (2008), Andrews and
Guggenberger (2009), Andrews and Soares (2010), Andrews and Barwick (2012) and references cited therein.
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vjj is bounded below by some constant, say L > 0, uniformly over G 2 �0.6 In such case,���b�j � �j��� � jbvjj � vjj jp2L�3=2 (5.7)

when jbvjj � vjj j < L=2.7 Hence in the sample mean example described after Assumption [U2],

we can verify [U3]-(ii) by applying the Chebychev inequality to show that PG(jbvjj � vjj j < ��T )

also tends to 1 uniformly over G 2 �0.

For any given positive scalar �, let d�(�) denote the p dimensional vector whose jth element

equals 	(0) when 0 � �j � � and equals 0 otherwise.

Assumption [U4] : There are �nite positive real scalars !, !0 and � such that the following
hold uniformly over G 2 �0 : (i) kVGk < !: (ii) d�(�)0�VG�d�(�) > !0 for all non-zero d�(�).

Assumption [U4]-(i) is simply a boundedness assumption which automatically holds when

VG is a correlation matrix. [U4]-(ii) holds automatically when the smallest eigenvalue of VG is

bounded away from zero over G 2 �0. Note that [U4]-(ii), essentially strengthening Assumption
[D2], requires that the asymptotic variance of

p
Td�(�)

0�(b� � �) be bounded away from zero

for all non-zero d�(�). This is a high level assumption whose veri�cation will be illustrated in

examples of Appendix C.

We can now present the following theorem establishing asymptotic exactness of the test in

the uniform sense.

Theorem 2 (Uniform Asymptotic Exactness of Test Size) Given Assumptions [D1] - [D4],
suppose Assumptions [U1] - [U4] also hold. Assume some G 2 �0 has � value containing at
least one zero-valued element. Then under Assumptions [A1], [A2], [A3], [A4], [A6] and given

0 < � < 1=2;

lim sup
T�!1

sup
G2�0

PG(Q < �) = �:

6 Asymptotic Power of the Test

In this section, we study the asymptotic power properties of the test. Proof of all results are

presented in the Appendix. For notational simplicity, we suppress the dependence of probability

and parameters on the underlying data generating distribution. We �rst show that the test is

consistent against �xed alternative hypotheses.

6Assumption [U3]-(ii) is stronger than requiring consistency of b�j as an estimator of �j . An alternative approach
is to strengthen Assumption [U2] by taking Y to be

p
T (b�b����) rather than just pT (b���). But that would be

implicitly assuming
p
T (b�j � �j) is asymptotically normal (or degenerate). Such an assumption is even stronger

than [U3]-(ii) and quite unnecessary for our results.
7By mean value expansion,

���b�j � �j

��� = jbvjj � vjj j =(2jvjj j3=2) where vjj lies between bvjj and vjj . Thus when
jbvjj � vjj j < L=2, inequality (5.7) follows by noting that jvjj � vjj j � jbvjj � vjj j.
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Theorem 3 (Consistency) Given [A1] - [A6] with [D1] - [D4], the following is true under

H1 : �j < 0 for some j 2 f1; 2; :::; pg.

P (Q < �) �! 1 as T �!1:

Besides consistency, we are also interested in the local behavior of the test. In order to derive

a local power function, we consider a sequence of � values in the alternative-hypothesis space

tending at rate T�1=2 to a value 
 � (
1; 
2; :::; 
p)
0 on the boundary of the null-hypothesis

space. Speci�cally, we represent the jth element of � of such a local sequence as

�j = 
j +
cjp
T

(6.1)

where 
j � 0 and cj are constants such that 
j = 0 and cj < 0 hold simultaneously for at least
one j. The sequence (6.1) is said to be core if cj < 0 holds in every instance of 
j = 0. A

core local sequence corresponds to Neyman-Pitman drift in the original sense (McManus (1991))

whereby parameter values con�icting with the null hypothesis are imagined ceteris paribus to

draw ever closer to compliance as T increases. In the easily-visualized case p = 2, all points on

the boundary of null-restricted space are limits of core sequences. Non-core sequences can only

converge to the origin, a single point compared to the continuum of the full boundary. We may

now state :

Theorem 4 (Local Power) Assume [A1], [A2], [A3], [A4], [A6] and [D1], [D3], [D4] hold
with the elements �j of � taking the T-dependent forms as speci�ed by (6.1). De�ne

� �
pX
j=1

1f
j = 0g�jcj

� �
pX
i=1

pX
j=1

1f
i = 0g1f
j = 0g�i�jvij

where vij denotes the (i; j)-th element of variance matrix V . Assume � > 0. Then, as T �!1;

P (Q < �) �! �(z� � ��1=2�); (6.2)

where z� is the � quantile of the standard normal distribution.

Theorem 4 implies that the test has power exceeding size against all core sequences because

the composite drift parameter � is necessarily negative for such local scenarios. By contrast,

tests based on LFC critical values can be biased against core local sequences tending to boundary

points o¤ the origin. This is easily seen for statistics such as EV and QLR which are continuous

in their arguments. In such cases, local power under any core sequence (6.1) tends to rejection

probability at the boundary point � = (
1; 
2; :::; 
p)
0. Unless this point is the LFC itself,
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rejection probability there will be smaller than that at any LFC point by de�nition. Hence the

LFC critical value based test is biased against core local alternatives. A similar argument is

given in Hansen (2003, 2005).

Against non-core local sequences, our test can be biased because a trade-o¤ comes into force

between negative and positive cj as Theorem 4 shows. Some degree of local bias is common

in multivariate one-sided tests and exists even in GMS procedures using estimated rather than

LFC test critical values, as noted by Andrews and Soares (2010, p.146, comment (vi)). However,

the exact local direction at which a test exhibits strength or weakness may vary across tests.

Therefore, di¤erent tests are complementary rather than competing. To obtain a formal result, we

consider a local sequence converging to the origin, namely 
j = 0 for j 2 f1; 2; :::; pg. Let c denote
the vector (c1; c2; :::; cp)0. Under such a local scenario, the GMS procedure will asymptotically

treat all inequalities as binding in the critical value calculation. Thus the asymptotic distribution

of the statistic S(
p
Tb�; bV ) of Subsection 2.1 is the same as that of S(Z + c; V ) and the test

rejection probability tends to

P (S(Z + c; V ) > q�) (6.3)

where q� is the (1��) quantile of S(Z; V ) under Z � N(0; V ). We now present a theorem showing

that the test of this paper is locally most powerful for a non-empty subclass of directions. Let �

denote the vector of diagonal elements of the matrix �.

Theorem 5 Suppose the variance matrix V is positive de�nite and 
j = 0 for j 2 f1; 2; :::; pg in
the local sequence (6.1). Then for every testing function S(:; :) such that P (S(Z; V ) > q�) = �

under Z � N(0; V ), the asymptotic local power in (6.2) is at least � and is not smaller than

(6.3) when c = ��V � for any positive scalar �.

Depending on the o¤-diagonal elements of V , the local directions ��V � can be for either core
or non-core sequences.8 Theorem 5 implies that along such local alternatives, the present test is

not biased and its limiting local power is not dominated by those of existing tests based on GMS

critical values. Note that the result of Theorem 5 does not require speci�cation of particular

functional forms of S(:; :). It is achieved by indirectly exploiting the Neyman-Pearson lemma.

Some special forms are used in Section 7 for numerical illustration.

7 Monte Carlo Simulation Studies

In this section we conduct a series of Monte Carlo simulations to study the �nite sample per-

formance of the test. All tables of simulation results are placed together at the end of the

section.
8Note that the vector ��V � necessarily contains at least one negative element since V is positive de�nite, � is

a positive vector and � is a postive scalar.
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7.1 The Speci�cation of Smoothed Indicator

Our objective is to investigate how well the asymptotic theory of the test works in �nite sample

simulations. For this purpose, we choose 	 functions which are simple, recognized and not

contrived. It would be premature at this stage to undertake a more elaborate exercise to �nd an

optimal combination of 	(x) and K(T ).

For the speci�cation of 	, the following functions are heuristic choices that are widely adopted

in research on smoothed threshold crossing models.

Normal : 	Nor(x) � 1� �(x)

Logistic : 	Log(x) � (1 + exp(x))�1

Besides 	Nor and 	Log, the following simple choice of 	, mentioned in Section 2.2, is also valid.

Step-at-unity : 	Step(x) � 1fx � 1g

As regards the choice of K(T ), the following two speci�cations closely match tuning parameters

used in recent literature on inference of moment inequality models (See e.g. Chernozhukov et

al. (2007) and Andrews and Soares (2010)). These choices are

SIC : KSIC(T ) �
p
T= log(T )

LIL : KLIL(T ) �
p
T=(2 log log(T ))

The �rst name re�ects a connection with the Schwarz Information Criterion (SIC) for model

selection and the second with the Law of the Iterated Logarithm (LIL).

7.2 The Simulation Setup

The simulation experiments are designed as follows. We choose a nominal test size of � = 0:05.

We use R = 10000 replications for simulated rejection probabilities. In each replication, we

generate i.i.d. observations fxtgTt=1 with T = 250 according to the following scheme :

xt = �+ V 1=2wt (7.1)

where wt is a p dimensional random vector whose elements are i.i.d. from distribution Gw:

We compute b� and bV as the sample average and sample variance of the generated data. We

take the scalars �j = 1=
p
vjj and b�j = 1=pbvjj where vjj and bvjj are the jth diagonal elements

of V and bV respectively. This simple simulation setup is also adopted by Andrews and Soares

(2010) and Andrews and Barwick (2012) in simulation study of the GMS tests. For Gw, we

consider three distributions: standard normal, logistic and U(�1; 2), the uniform distribution on
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the interval [�1; 2]. All of these distributions are centered and scaled such that E(wt;j) = 0 and
V ar(wt;j) = 1 for j 2 f1; 2; :::; pg. Standard normality of Gw is the benchmark. The logistic
distribution has thicker tails than the normal whilst the support of a uniform distributed random

variate is bounded. The latter two distributions are included to assess the test performance under

�nite sample non-normality of b�. For comparison, we also conduct simulations using the following
test statistics:

S1 = �minf
p
Tb�1b�1;pTb�2b�2; :::;pTb�pb�p; 0g;

S2 = min
�:��0

T (b�� �)0 bV �1(b�� �);
S3 =

pX
j=1

(minf
p
Tb�jb�j ; 0g)2;

S4 =

pX
j=1

[�
p
T min(b�jb�j ; 0)]:

The extreme value form S1 is essentially Hansen (2005)�s test statistic appropriated for testing

multiple non-negativity hypotheses. S2 is the classic QLR test statistic. S3 is the modi�ed-

method-of-moments (MMM) statistic considered in the literature of moment inequality models

(see, e.g. Chernozhukov et al. (2007), Romano and Shaikh (2008), Andrews and Guggenberger

(2009) and Andrews and Soares (2010)). S4 is the raw sum-of-negative-part statistic which can

be transformed by smoothing into the key component of the test of the present paper.

The critical values for tests based on S1 to S4 are estimated using bootstrap coupled with the

GMS procedure of the elementwise t-test type as suggested by Andrews and Soares (2010) and

Andrews and Barwick (2012). We use 10000 bootstrap repetitions for calculation of the GMS

test critical values. The tuning parameter in the GMS procedure is set to be the SIC or LIL type

(Andrews and Soares (2010, p. 131)). For ease of reference, let Sj(SIC) and Sj(LIL) denote the

GMS test using statistic Sj with tuning SIC and LIL respectively. Furthermore, let Q(	;K)

denote the present test implemented with its smoothed indicator speci�ed by 	 and K.

We consider simulation scenarios based on p 2 f4; 6; 10g. For multivariate simulation design,
we have to be more selective on the speci�cations of � and V parameters of (7.1). Concerning

the � vector, we follow a design similar to that previously employed by Hansen (2005, p. 373) in

simulation study of the test size performance. To be speci�c, � is the p dimensional vector given

by

�1 = 0; �j = �(j � 1)=(p� 1) for p � j � 2

where � 2 f0; 0:25; 0:5g. Note that the � values are introduced to control the extent to which
inequalities satisfying the null hypothesis are in fact non-binding. Regarding the variance matrix

18



V , we set V to be a Toeplitz matrix with elements Vi;j = �j�i for j � i; where � 2 f0;�0:5; 0:5g.
This greatly simpli�es the speci�cation for o¤-diagonal elements of V but still allows for presence

of various degrees of both positive and negative correlations.

For power studies, we consider the � vector given by

� = ��V � + �e� (7.2)

where � 2 f0:15; 0:1; 0:05g, V is the variance matrix given as above, � = (�1; �2; :::; �p)
0, � 2

f0; 0:5; 0:8g and e� is the vector with e�j = � for 1 � j � p=2 and e�j = �� for p=2 < j � p.

For � = 0, the design (7.2) mimics the local direction as suggested by Theorem 5 under which

the test Q(	;K) is expected to outperform other tests. When � is non-zero, the local direction

in favor of the present test is perturbed with another vector e� containing mixture of positive
and negative elements. Such e� may incur power trade-o¤ in light of Theorem 4 and thus the

perturbation parameter � controls the degree of deviation toward e� and enables some sensitivity
check of test power performance.

7.3 Simulation results

We report the simulated maximum null rejection probability (MNRP) and average power (AP)

for each test. Given Gw, the maximization for the MNRP is over all H0 compatible combinations

of � and � values whilst given both Gw and �, the averaging for AP is over all H1 compatible �

and � con�gurations. Table 1 lists the MNRP values in three block columns side by side for the

three speci�cations of Gw. The AP values generated by three � values are then listed separately

for each Gw in Tables 2, 3 and 4.

In Table 1, the primary interest is how close the MNRP values are to the nominal 5% signif-

icance level, particularly in cases of over-rejecting. In that respect, we compare the percentage

of values not exceeding 0.05, 0.055, 0.06, 0.065. These percentages are about 18, 51, 87, 96 for

the 54 Q(	;K) values and 9, 52, 79, 94 for the 72 values of the GMS tests. Plainly, the Q(	;K)

test is no more prone to over-rejection than the GMS tests. A common feature across all tests

is that over-rejection tends to increase with p. However, only 2 out of 54 Q(	;K) entries and

4 out of 72 GMS entries exceed 0.065. These excesses amount to less than 5% of a table of 126

simulated entries.

We now examine the sensitivity of MNRP to the underlying data generating distribution Gw.

For all tests, Table 1 exhibits little systematic di¤erence attributable to the three di¤erent spec-

i�cations of Gw. These �gures suggest that the MNRP results are not sensitive to �nite sample

non-normality. Furthermore, for each test, regardless of Gw, Table 1 suggests that use of SIC

type tuner in place of the LIL can yield better control of test size. This �nding is consistent with

the simulation studies of Andrews and Soares (2010, pp. 149-152) demonstrating that the SIC

tuner tends to give better MNRP properties. Overall, Q(	Step;KSIC) and Q(	Log;KSIC) have
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better MNRP results among the class of Q(	;K) tests and their size performance is comparable

to that of the four SIC tuned GMS tests.

We now turn to Tables 2, 3, 4 giving AP results of the tests. For the unperturbed direction

(� = 0), Theorem 5 of Section 6 indicates that the Q(	;K) test is locally more powerful than

the GMS tests considered in the simulations. Along such local direction, irrespective of the

underlying Gw, the simulation results indicate that the Q(	;K) tests dominate the GMS tests

in AP performance. The GMS QLR test (S2) is not far behind. Hansen�s test (S1), which is

arguably the most stable in terms of MNRP performance, has distinctly lower power. But it is

still a good performer. For the perturbed directions (� 2 f0:5; 0:8g), while the Q(	;K) tests still
outperform the S1 tests, they do not generally dominate other versions of the GMS tests but the

AP di¤erences are not large.

We comment on the comparative performance of the Q(	;K) tests with the S4 tests. Their

comparison is of particular interest since the present test essentially attempts to smooth the

statistic S4. The smoothed version is less costly in computation because its critical value is

obtained without resampling. We compare S4(SIC) with Q(	Step;KSIC) and Q(	Log;KSIC).

The simulation results suggest that the Q(	Step;KSIC) and Q(	Log;KSIC) tests have similar

degree of size control as S4(SIC). Against the alternative hypothesis, Q(	Log;KSIC) has slightly

larger power than S4(SIC) in all 27 cases while Q(	Step;KSIC) outperforms S4(SIC) in 18 out

of the 27 cases. These �ndings suggest that implementational advantage of the present test based

on smoothing does not appear to be achieved at the cost of test performance.

Perusing all the other entries in Tables 2, 3, 4, it seems that the di¤erent variants of the

Q(	;K) test perform quite similarly to one another retaining power well in excess of 0.73

throughout. What these results illustrate is that the Q(	;K) test has identi�able directions

of strength as indicated theoretically by this paper. Given the simulation results above, the

Q(	Step;KSIC) and Q(	Log;KSIC) tests work at least as well as other Q(	;K) versions exam-

ined here but have better size performance. Hence while KSIC is the preferred tuner, both 	Step
and 	Log are the recommended smoothers.
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Table 1 : Simulated Maximum Null Rejection Probability for T = 250

DGP Gw N(0; 1) Logistic U(�1; 2)
Number of inequalities 4 6 10 4 6 10 4 6 10

Q(	Step;KSIC) .049 .056 .055 .052 .054 .056 .051 .052 .055

Q(	Log;KSIC) .046 .053 .055 .046 .054 .057 .048 .052 .058

Q(	Nor;KSIC) .050 .059 .061 .050 .058 .063 .050 .056 .063

Q(	Step;KLIL) .051 .059 .059 .053 .056 .059 .051 .053 .057

Q(	Log;KLIL) .049 .056 .057 .048 .057 .060 .048 .053 .059

Q(	Nor;KLIL) .054 .062 .065 .052 .059 .066 .053 .058 .066

S1(SIC) .050 .052 .054 .049 .052 .053 .051 .052 .053

S2(SIC) .050 .054 .053 .052 .055 .054 .050 .050 .054

S3(SIC) .050 .056 .052 .050 .051 .057 .052 .052 .056

S4(SIC) .051 .058 .054 .053 .054 .057 .052 .055 .058

S1(LIL) .053 .055 .055 .051 .054 .056 .054 .054 .056

S2(LIL) .058 .061 .061 .059 .063 .063 .058 .058 .061

S3(LIL) .056 .061 .057 .055 .058 .065 .058 .058 .064

S4(LIL) .059 .068 .066 .060 .064 .070 .061 .065 .070

Table 2 : Simulated Average Power for T = 250, Gw = N(0; 1)

� = 0 � = 0:5 � = 0:8

Number of inequalities 4 6 10 4 6 10 4 6 10

Q(	Step;KSIC) .770 .837 .900 .773 .840 .904 .783 .849 .909

Q(	Log;KSIC) .754 .827 .893 .783 .849 .910 .813 .872 .927

Q(	Nor;KSIC) .741 .814 .882 .780 .845 .906 .817 .875 .928

Q(	Step;KLIL) .752 .822 .886 .761 .830 .895 .780 .847 .906

Q(	Log;KLIL) .748 .821 .888 .781 .847 .908 .815 .874 .928

Q(	Nor;KLIL) .734 .807 .875 .778 .844 .903 .819 .876 .928

S1(SIC) .593 .626 .650 .699 .728 .761 .774 .803 .831

S2(SIC) .714 .781 .847 .784 .844 .901 .834 .887 .937

S3(SIC) .678 .735 .793 .750 .804 .858 .805 .854 .899

S4(SIC) .730 .794 .855 .767 .830 .886 .808 .864 .913

S1(LIL) .594 .626 .650 .700 .729 .762 .776 .805 .832

S2(LIL) .716 .782 .848 .785 .846 .903 .836 .889 .939

S3(LIL) .678 .736 .794 .751 .805 .860 .808 .856 .902

S4(LIL) .732 .795 .857 .769 .833 .889 .811 .868 .916
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Table 3 : Simulated Average Power for T = 250, Gw = Logistic

� = 0 � = 0:5 � = 0:8

Number of inequalities 4 6 10 4 6 10 4 6 10

Q(	Step;KSIC) .772 .839 .900 .774 .841 .903 .781 .850 .910

Q(	Log;KSIC) .757 .828 .893 .785 .851 .910 .813 .875 .929

Q(	Nor;KSIC) .744 .815 .882 .781 .847 .906 .817 .878 .930

Q(	Step;KLIL) .753 .824 .886 .763 .831 .894 .779 .848 .908

Q(	Log;KLIL) .751 .823 .888 .783 .849 .908 .815 .876 .930

Q(	Nor;KLIL) .738 .808 .874 .780 .845 .904 .819 .878 .930

S1(SIC) .599 .629 .651 .697 .729 .762 .775 .803 .831

S2(SIC) .718 .782 .847 .784 .845 .901 .834 .889 .938

S3(SIC) .681 .737 .794 .750 .803 .858 .806 .855 .901

S4(SIC) .734 .795 .854 .768 .830 .886 .807 .866 .915

S1(LIL) .600 .629 .651 .699 .730 .763 .777 .805 .833

S2(LIL) .719 .784 .849 .786 .846 .903 .837 .891 .940

S3(LIL) .682 .738 .796 .751 .805 .861 .808 .857 .903

S4(LIL) .735 .797 .856 .771 .833 .889 .811 .869 .919

Table 4 : Simulated Average Power for T = 250, Gw = U(�1; 2)
� = 0 � = 0:5 � = 0:8

Number of inequalities 4 6 10 4 6 10 4 6 10

Q(	Step;KSIC) .769 .837 .899 .775 .842 .902 .782 .849 .908

Q(	Log;KSIC) .754 .826 .892 .785 .850 .910 .812 .874 .926

Q(	Nor;KSIC) .741 .813 .880 .781 .846 .906 .817 .876 .927

Q(	Step;KLIL) .752 .821 .885 .763 .832 .894 .779 .847 .907

Q(	Log;KLIL) .749 .820 .886 .784 .848 .908 .815 .876 .927

Q(	Nor;KLIL) .735 .806 .873 .780 .844 .903 .819 .878 .928

S1(SIC) .594 .623 .652 .698 .727 .758 .773 .801 .830

S2(SIC) .715 .778 .846 .784 .843 .900 .834 .887 .937

S3(SIC) .678 .733 .793 .749 .803 .858 .805 .854 .899

S4(SIC) .730 .793 .852 .768 .831 .886 .807 .866 .914

S1(LIL) .594 .623 .652 .699 .728 .759 .775 .803 .831

S2(LIL) .716 .780 .848 .785 .845 .902 .836 .889 .939

S3(LIL) .679 .734 .794 .751 .805 .860 .807 .857 .901

S4(LIL) .731 .794 .853 .770 .833 .889 .811 .869 .918
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8 Conclusions

This paper develops a test of multiple inequality hypotheses whose implementation does not re-

quire computationally intensive procedures. The test is based on origin-smooth approximation of

indicators underlying the sum-of-negative-part statistic. This yields a simply structured statistic

whose asymptotic distribution, whenever non-degenerate, is normal under the null hypothesis.

Hence test critical values can be �xed ex ante and are essentially based on the unit normal

distribution. Moreover, the test is applicable under weak assumptions allowing for estimator

covariance singularity.

We have proved that the size of the test is asymptotically exact in the uniform sense. The

test is consistent against all �xed alternative hypotheses. We have derived a local power function

and used it to demonstrate that the test is unbiased against a wide class of local alternatives.

We have also provided a new theoretical result pinpointing directions of alternatives for which

the test is locally most powerful.

We have performed simulations which illustrate the potential of the test to be of practical

inferential value along with simplicity and speed. These simulations, carried out for a range of

p values, also shed light on the choice of smoothed indicator. They suggest that when coupled

with the SIC type tuner, both the logistic and the step-at-unity smoothers perform well in �nite

samples. These are the recommended choices for test implementation. The simulation study

also compares the test of this paper with several di¤erent tests which estimate critical values

using the GMS procedure. We �nd that the test appears to be a viable complement to the GMS

critical value estimation methodology.
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A Supplementary Derivation of �T (b�j; bvjj)
The term �T (b�j ; bvjj) acts as an approximation for the expectation of [	T (b�j) � 	(0)]pTb�j
evaluated at �j = 0. Under regularity condition [D1], when �j = 0, the distribution of

p
Tb�j for

T su¢ ciently large is approximately normal with mean zero and variance vjj . Let X denote any

scalar random variable distributed as N(0; c). De�ne hT � K(T )=
p
T . Given (3.1), �T (b�j ; bvjj)

is thus constructed to approximate E((	(hTX) � 	(0))X) = E(	(hTX)X) with c = vjj . In

what follows, we take as read the notation and de�nitions stated between equations (3.1) and

(3.2).

De�ne a0 � �1 and an+1 � 1. Let � denote the standard normal density function. Note
that

E(	(hTX)X)

=
n+1X
i=1

Z ai=hT

ai�1=hT

	(hTx)x�(x=
p
c)=
p
cdx

=
p
c

"
n+1X
i=1

Z ai=hT

ai�1=hT

hT (hTx)�(x=
p
c)dx�

nX
i=1

(	(a�i )�	(a
+
i ))�(

ai
hT
p
c
)

#
(A.1)

= chTE(e (hTX))�pc nX
i=1

(	(a�i )�	(a
+
i ))�(

ai
hT
p
c
) (A.2)

where (A.1) follows from integration by parts and re-arrangement of terms in the sum and (A.2)

follows by using [A2] which implies e (x) =  (x) almost everywhere. Taking c = vjj and plugging

in the parameter estimates, we hence construct �T (b�j ; bvjj) as
�T (b�j ; bvjj) � bvjje (K(T )b�j)K(T )=pT �pbvjj nX

i=1

(	(a�i )�	(a
+
i ))�(

ai
p
TpbvjjK(T ) ): (A.3)

We now comment on the derivative term in the expression (A.3). Since hT goes to zero as

T increases, E(e (hTX)) tends to  (0) by Assumption [A2] and the Dominated Convergence
Theorem. The limit value  (0) also coincides with the probability limit of e (K(T )b�j) for the
case �j = 0. Hence, we use e (K(T )b�j) instead of E(e (hTX)) to account for the slope e¤ect,9
thus allowing the derivative term to depend on the estimate b�j . This has the advantage that for
non-zero valued �j , e (K(T )b�j) itself also tends to zero and hence yields faster convergence of �T
to zero when the function 	 further has the properties of limx�!�1  (x) = limx�!1  (x) = 0.

Speci�cations of 	 satisfying these properties are numerous, including the logistic and the normal

smoothers given in Section 7.1.

9By taking X � N(0; c) with c = bvjj , E(e (hTX)) can be computed using numerical integral asZ 1

�1
e (hT x)�(x=qbvjj)=qbvjjdx:
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B Proofs of Theoretical Results

The section presents proofs of all theoretical results stated in the paper. Proofs of Theorems 1,

3, 4 and 5 (pointwise asymptotics and local power) along with preliminary Lemmas 1, 2 and 3

are presented in Subsections B.1 - B.7. Proofs of Lemma 4 providing a su¢ cient condition for

Assumption [U2] and Theorem 2 (uniform asymptotics) are given separately in Subsections B.8

and B.9 of the Appendix.

Recall that J denotes the set f1; 2; :::; pg and the sets A, M , and B are de�ned as

A � fj 2 J : �j > 0g; M � fj 2 J : �j = 0g; B � fj 2 J : �j < 0g:

B.1 Probability Limits of the Smoothed Indicator

We �rst prove a lemma that states the probability limits of the smoothed indicator 	T (b�jb�j),
which will be referred to in the proofs of some theorems in this paper.

Lemma 1 (Probability Limits of the Smoothed Indicator )

Assume [D1] and [D4]. Then the following results are valid as T �!1:

(1) If j 2 A and [A1], [A3], [A6] hold, then
p
T	T (b�jb�j) p�! 0:

(2) If j 2M and [A2], [A4] hold, then 	T (b�jb�j) p�! 	(0):

(3) If j 2 B and [A1], [A3], [A5] hold, then 	T (b�jb�j) p�! 1:

Proof. To show part (1), for " > 0 and for � > 0, we want to �nd some T ("; �) > 0 such that

for T > T ("; �),

P (
p
T	T (b�jb�j) � ") � 1� �.

By [D1] and [D4], we have b�jb�j p�! �j�j , which is strictly positive for j 2 A. Then there is a

T1(�) such that for T > T1(�);

P (�j�j=2 � b�jb�j � 3�j�j=2) � 1� �:
Therefore, by [A1] and [A3] we have

1� � � P (	T (3�j�j=2) � 	T (b�jb�j) � 	T (�j�j=2))
� P (	T (b�jb�j) � 	T (�j�j=2))
� P (

p
T	T (b�jb�j) � pT	T (�j�j=2))

where the �rst inequality follows because 	 is a non-increasing function. [A6] implies thatp
T	T (�j�j=2) �! 0 as T �! 1. Therefore, there is some T2(") such that for T > T2(");
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p
T	T (�j�j=2) < ". Combining all these results, part (1) in this lemma follows by choosing

T ("; �) = max(T1(�); T2(")):

To show part (2), note that If j 2M , by [D1] and [D4], we have
p
Tb�jb�j = Op(1). By [A4],

K(T )=
p
T = o(1) so that K(T )b�jb�j p�! 0. By [A2], 	 is continuous at origin. Therefore, part

(2) follows from the application of the continuous mapping theorem.

To show part (3), for " > 0 and for � > 0, we want to �nd some T ("; �) > 0 such that for

T > T ("; �),

P (1� " � 	T (b�jb�j) � 1 + ") � 1� �.
Following the proof given in part (1), we have that there is a T1(�) such that for T > T1(�)

1� � � P (�j�j=2 � b�jb�j � 3�j�j=2)
� P (	T (3�j�j=2) � 	T (b�jb�j) � 	T (�j�j=2)).

Note that if j 2 B, then �j�j < 0 and thus by [A5], 	T (�j�j=2) �! 1 and 	T (3�j�j=2) �! 1.

Then there is some T3(") such that for T > T3("), 	T (�j�j=2) � 1+ " and 	T (3�j�j=2) � 1� ".
Therefore, part (3) follows by choosing T ("; �) = max(T1(�); T3(")):

B.2 Asymptotic Properties of
p
T	T (b�jb�j)b�jb�j

Based on Lemma 1, we derive the asymptotic properties of the components corresponding to

j 2 A; j 2 M; j 2 B of the sum
P

j2J
p
T	T (b�jb�j)b�jb�j . The results are stated in the

following lemma.

Lemma 2 (Asymptotic Properties of
p
T	T (b�jb�j)b�jb�j)

Let vjj denote the jth diagonal element of V . Assume [D1] and [D4]. Then the following

results are valid as T �!1:

(i) If j 2 A and [A1], [A3], [A6] hold, then
p
T	T (b�jb�j)b�jb�j p�! 0:

(ii) If j 2M and [A2], [A4] hold, then
p
T	T (b�jb�j)b�jb�j d�! N(0; (	(0)�j)

2vjj):

(iii) If j 2 B and [A1], [A3], [A5] hold, then
p
T	T (b�jb�j)b�jb�j p�! �1:

Proof. Note that part (i) follows from [D1], [D4] and part (1) of Lemma 1. To show part (ii),

by [D1] and [D4], if j 2 M , we have that
p
Tb�jb�j d�! N(0; �2jvjj). Therefore, part (ii) follows

by applying part (2) of Lemma 1. To show part (iii), note that for j 2 B;

p
T	T (b�jb�j)b�jb�j = 	T (b�jb�j)pTb�j(b�j � �j) + 	T (b�jb�j)pTb�j�j : (B.1)

Therefore, part (iii) follows from the fact that by [D1], [D4] and part (3) of Lemma 1, the �rst

term on the right hand side of (B.1) is Op(1) and the second term goes to �1 in probability.

28



B.3 Asymptotic Properties of �T (b�jb�j;b�2jbvjj)
The following lemma states the asymptotic properties of the adjustment term �T (b�jb�j ;b�2jbvjj)
de�ned by (3.2).

Lemma 3 (Asymptotic Properties of �T (b�jb�j ;b�2jbvjj))
Assume [A1], [A2], [A4], [D3] and [D4]. Then for j 2 J , �T (b�jb�j ;b�2jbvjj) p�! 0.

Proof. By [A1] and [A2] and the properties of standard normal density function, we �nd that

����T (b�jb�j ;b�2jbvjj)��� � b�2jbvjjK(T )p
T

"
b	 +

q
2b�2jbvjj��1K(T )p

T

nX
i=1

a�2i

#

where b	 denotes the �nite positive bound on the derivative of 	 given in Assumption [A2].

Note that [A2] also implies a2i > 0 for each i. By [A4], [D3] and [D4], the right-hand side of the

inequality above is op(1) and thus Lemma 3 follows.

B.4 Proof of Theorem 1

Proof of part (1) :

By Lemma 3 and under H0, the quantity Q1 may be written as

Q1 =
X
j2A

p
T	T (b�jb�j)b�jb�j +X

j2M

p
T	T (b�jb�j)b�jb�j + op(1)

which, by part (i) of Lemma 2, is asymptotically equivalent in probability to merelyX
j2M

p
T	T (b�jb�j)b�jb�j :

which, by [D1], [D2], [D4] and part (2) of Lemma 1, is asymptotically normal with mean zero

and strictly positive variance equal to 	(0)2!M where !M � d0M�V�dM in which dM denotes

the p dimensional vector whose jth element is unity for j 2M but zero for j =2M . Using similar
arguments along with [D3], we also �nd that

Q2 �
pb	0 b�bV b�b	 p�! 	(0)!

1=2
M :

From these results about Q1 and Q2 and the de�nition (3.11) of Q, we conclude that Q equals

to �(Q1=Q2) with probability tending to 1 as T �!1 and thus Q d�! U(0; 1).

Proof of part (2) :

29



When M is empty yet H0 holds, only the sums taken for j 2 A remain in the de�nitions of

Q1 and Q2 hence the following analysis is con�ned to j 2 A. We distinguish between smoothed
indicators which are such that 	T (x) = 0 for all T su¢ ciently large when x > 0 and smoothed

indicators such that 	T (x) remains strictly positive for x > 0 for all T . In the former case, part

(1) of Lemma 1 implies that P (	T (b�jb�j) = 0) �! 1 for j 2 A and hence P (Q2 = 0) �! 1 and

thus P (Q = 1) �! 1:

Now we consider the latter case where 	T (x) > 0 for x > 0 regardless of T . This happens for

everywhere positive 	 functions. Then the quantity b�j � b�j	T (b�jb�j) is almost surely strictly
positive for all j 2 A. By eigenvalue theory, for all T ,

Q2 �
sb�maxX

j2A

b�2j �qpb�maxmax
j2A

fb�jg (B.2)

where b�max is the largest eigenvalue of bV . Note that (B.2) holds even if Q2 = 0, which under

current scenario could only happen because of singularity of bV and V . However, when P (Q2 =

0) �! 1, we have P (Q = 1) �! 1 and thus part (2) of the theorem follows.

Note that for j 2 J , equation (3.2) and Assumptions [A1] and [A2] imply that the term

�T (b�jb�j ;b�2jbvjj) is non-positive for all T . Hence, since all �j are positive by supposition, as T
�!1, by (3.9) we have that

Q1 � max
j2A

fb�jgmin
j2A

f
p
Tb�jg:

with probability tending to 1: Because the mapping from a positive semi-de�nite matrix to its

maximum eigenvalue is continuous on the space of such matrices, by [D3] we have b�max p�! �max

where �max is the largest eigenvalue of V . By [D2], 0 < �max <1 and thus we have

Q1=Q2 � min
j2A

f
p
Tb�jg=qpb�max

with probability tending to 1 as T �!1: Since
p
Tb�j goes to in�nity as T �!1 for j 2 A, it

follows that Q = �(Q1=Q2)
p�! 1:

B.5 Proof of Theorem 3

Since rejection ofH0 occurs if Q < � for the test statistic (3.11), it su¢ ces for consistency to show

that under H1, Q2 goes in probability to some positive constant and Q1 goes to minus in�nity

as T �! 1. By (3.5) and Lemma 1, the probability limit of b	 under H1 is the p dimensional

vector whose jth element is [1f�j < 0g+	(0)1f�j = 0g]. Therefore, by [D3] and [D4]

Q2 �
pb	0 b�bV b�b	 p�!

p
d(�)0�V�d(�);
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which is strictly positive by the regularity condition [D2]. On the other hand, Lemma 2 implies

that
p
T	T (b�jb�j)b�jb�j is bounded in probability for j 2 JnB but tends to negative in�nity for

j 2 B. Furthermore, Lemma 3 implies that �T (b�jb�j ;b�2jbvjj) = op(1) for j 2 J . Under H1, B is

non-empty and thus Q1=Q2 goes to �1 in probability and hence P (Q < �) �! 1 as T �!1 .

B.6 Proof of Theorem 4

Under the assumed form of local sequence (6.1), for all j we have

K(T )b�jb�j = (K(T )=pT )b�j [pT (b�j � �j) + cj ] +K(T )b�j
j
where 
j � 0. In the case 
j = 0, Assumptions [A4], [D1] and [D4] imply that K(T )b�jb�j p�! 0 as

T �!1 . By [A2] and the continuous mapping theorem, this then implies that	(K(T )b�jb�j) p�!
	(0): On the other hand, if 
j > 0, (6.1) implies that there is some � > 0 such that �j >


j � � > 0 for all T su¢ ciently large. So under [A1], [A3], [A6], [D1] and [D4], we have thatp
T	T (b�jb�j)b�jb�j p�! 0 by using arguments closely matching the proof of part (1) of Lemma 1.

Therefore, from these results and by (6.1), [D1], [D4] and Lemma 3, Q1 is asymptotically

equivalent in probability to

	(0)

pX
j=1

1f
j = 0g�j [
p
T (b�j � �j) + cj ]

and thus has an asymptotic normal distribution with mean 	(0)� and variance 	(0)2�. Using

similar arguments, it is straightforward to see that Q2
p�! 	(0)

p
�. Therefore, Q1=Q2

d�!
N(��1=2� ; 1) from which the assertion of Theorem 4 follows.

B.7 Proof of Theorem 5

We shall establish that for any non-zero vector c,

�(z� +
p
c0V �1c) � P (S(Z + c; V ) > q�) (B.3)

holds for every testing function S(:; :) such that P (S(Z; V ) > q�) = � under Z � N(0; V ). The

theorem then follows by noting that the left-hand side of (B.3) when c = ��V � coincides with
the power function (6.2) under the local direction speci�ed by the theorem.

To show (B.3), consider an imaginary situation where X is the observable random vector

that is distributed as Z + �X where Z � N(0; V ). For given V , a simple application of the

Neyman-Pearson lemma (Lehmann and Romano (2005, p. 60, Theorem 3.2.1)) implies that a

most powerful test at level � of the simple null hypothesis �X = 0 versus the simple alternative

�X = c is to reject the null if and only if �c0V �1X=
p
c0V �1c < z�. Hence (B.3) holds by

noting that such test has power equal to �(z� +
p
c0V �1c) which is therefore not smaller than
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P (S(Z + c; V ) > q�), the power of another test at level � which rejects the null hypothesis

�X = 0 if and only if S(X;V ) > q�.

B.8 Su¢ cient Condition for Assumption [U2]

The following lemma provides a su¢ cient condition for Assumption [U2] of Section 5. Recall

that Y �
p
T (b�� �):

Lemma 4 Assumption [U2] holds provided that given any �nite scalar c,

lim
T�!1

jPGT
(�0TY � c)� �(c)j = 0 (B.4)

for any sequence (GT ; �T ) satisfying GT 2 �0 and �0TVGT
�T = 1.

Proof. Let
fT (G; �) � jPG(�0Y � c)� �(c)j.

Let S denote the set f(G; �) : G 2 �0; � 2 �(G)g where the set �(G) � f� 2 Rp : �0VG� = 1g.
Note that

sup
G2�0

sup
�2�(G)

fT (G; �) = sup
(G;�)2S

fT (G; �): (B.5)

Since for any " > 0, there is a pair (GT ("); �T (")) in S such that

sup
(G;�)2S

fT (G; �) < fT (GT ("); �T (")) + ";

Assumption (B.4) used with equality (B.5) implies

lim
T�!1

sup
G2�0

sup
�2�(G)

fT (G; �) < ":

Hence Assumption [U2] follows by noting that " is arbitrary chosen and fT � 0.

B.9 Proof of Theorem 2

We aim to establish the inequality

lim sup
T�!1

sup
G2�0

PG(Q < �) � �: (B.6)

Then Theorem 2 follows by combining together the results implied by (B.6) and Part (1) of

Theorem 1.
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Let z� be the � quantile of the standard normal distribution. The test rejects the null

hypothesis if and only if Q2 > 0 and Q1 � z�Q2 < 0. Therefore,

PG(reject H0) � PG(Q1 � z�Q2 < 0): (B.7)

The strategy of the proof is to demonstrate that PG(Q1 � z�Q2 < 0) is asymptotically bounded
by the nominal size � uniformly for all G satisfying the null hypothesis. That then validates

(B.6) via (B.7). Note that �z� > 0 for 0 < � < 1=2 as used in this theorem. By (3.9), (3.10)

and non-positivity of the �T term, we have

Q1 �
pX
j=1

	(K(T )b�jb�j)pTb�jb�j
Q2 =

vuut pX
i=1

pX
j=1

	(K(T )b�ib�i)	(K(T )b�jb�j)b�ib�jbvij
where bvij and vij are the (i; j) elements of bV and VG, respectively. For notational simplicity, the

dependence of � and vij on G is kept implicit.

Now we give details of the proof. For ease of presentation, they are organized in the following

headed subsections.

1. Lower Bound for the Di¤erence (Q1 � z�Q2)

Let �T �
q
K(T )=

p
T . For any � > 0, de�ne the set

RT (�) � fj : 0 � K(T )�j � 2��T g:

We show that, with probability tending to 1 uniformly over G 2 �0 as T �!1,

Q1 � z�Q2 � Q1;RT
� z�Q2;RT

(B.8)

where

Q1;RT
�

X
j2RT (�)

	(K(T )b�jb�j)pTb�jb�j ;
Q2;RT

�

vuut X
i2RT (�)

X
j2RT (�)

	(K(T )b�ib�i)	(K(T )b�jb�j)b�ib�jbvij :
We follow the convention that summation over an empty set yields value zero. Note that (B.8)

automatically holds when RT (�) = f1; 2; :::; pg. For RT (�) being a proper subset of f1; 2; :::; pg,
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we rely on the fact (proved in the next subsection) that, with probability tending to 1 uniformly

over G 2 �0 as T �!1,
K(T )b�j > ��T for j =2 RT (�) (B.9)

and, for RT (�) nonempty,

Q2;RT
>
p
!0=2 > 0 (B.10)

where !0 is the constant de�ned in Assumption [U4]-(ii). Letm be any index such thatm =2 RT (�)
and b�mb�m � b�jb�j for all j =2 RT (�). Since 	 is non-negative, (B.9) implies

Q1 � Q1;RT
+	(K(T )b�mb�m)b�m���1T : (B.11)

Furthermore, by [A1] the function 	 is non-increasing and 	 � 1. Thus, (B.9) and (B.10)

together imply

jQ2;RT
�Q2j �

��Q22;RT
�Q22

�� =Q2;RT
� p2	(K(T )b�mb�m)


b�


2 


bV 


p2=!0: (B.12)

Given that �z� > 0, when RT (�) is empty, (B.11) alone implies (B.8). With RT (�) non-

empty, (B.11) and (B.12) together imply (B.8) provided

b�m���1T � �z�p2



b�


2 


bV 


p2=!0: (B.13)

We show that under the null hypothesis, (B.9), (B.10) and (B.13) will indeed hold for � small

enough and T large enough (yielding �T small enough by Assumption [A4]) under the key event

E�T described next.

2. The Key Event E�T and Lower Bound for the Di¤erence (Q1;RT
� z�Q2;RT

)

Let Yj be the jth element of Y �
p
T (b�� �). For � > 0, de�ne the event

E�T � f�T kY k < �; jjbV � VGjj < �;



b���


 < ��T g

which holds with probability tending to 1 uniformly over G 2 �0 as T �! 1 by Assumptions

[A4], [U1] and [U3]-(ii). Since K(T )b�j = K(T )�j + �2TYj , under the null hypothesis the event

E�T implies the inequality (B.9). To show that the event E�T also implies (B.10) and (B.13),

and then derive the key result (B.18) of this subsection, we �rst need to draw out the following

inequalities (B.14) - (B.17).

Note that when 0 � K(T )�j � 2��T , we have that by Assumption [U3]-(i) and under the

event E�T ,

p
Tb�jb�j � �jYj � 3�2; (B.14)���K(T )b�jb�j��� � 3��T (�+ ��T ): (B.15)
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By Assumption [A2], 	(x) is di¤erentiable on jxj � 3��T (� + ��T ) for � small enough and T

large enough. Therefore, given 	 � 1, the event E�T and inequalities (B.14) and (B.15) imply

that

	(K(T )b�jb�j)pTb�jb�j � 	(0)�jYj � 3(�b	(�+ ��T ) + 1)�2
where b	 denotes the bound on the derivative of 	(x) de�ned in Assumption [A2]. Hence, when

� < 1 and �T < 1, we may certainly write

Q1;RT
� 	(0)

X
j2RT (�)

�jYj � C1� (B.16)

where C1 is a �xed positive quantity given values of p, � and b	. By Assumptions [U3]-(i) and

[U4]-(i) and using similar arguments with � < 1 and �T < 1, we can obtain a bound for Q22;RT

under the event E�T as the following

Q22;RT
� 	(0)2

X
i2RT (�)

X
j2RT (�)

�i�jvij � C2� (B.17)

where C2 is �xed and positive given values of p, �, !, b	 and 	(0).

We can choose � to satisfy � < minf1; !0=(2C2)g and choose T such that 2��T =K(T ) < �,

where � is the constant de�ned in Assumption [U4] by which the right-hand side of (B.17) is

larger than !0=2 and hence inequality (B.10) is satis�ed. Using Assumptions [U3]-(i) and [U4]-(i),

under the event E�T , we see b�m > �0��T � whilst



b�


2 


bV 


 � (�+�T �)2(!+�). Since ��1T �!1

by Assumption [A4], given � > 0, (B.13) will indeed hold for large enough T . Finally, let rT
denote the p dimensional vector whose jth element is �j if j 2 RT (�) and zero, otherwise. Then
given that �z� > 0 and with � small enough and T large enough, (B.16) and (B.17) together

imply

Q1;RT
� z�Q2;RT

� 	(0)r0TY � C1� � z�
q
	(0)2r0TVGrT � C2�: (B.18)

3. The Probability Bounds

We have shown above how occurrence of the event E�T implies the inequality (B.8) given � small

enough and T large enough. Hence

PG(Q1 � z�Q2 < 0) � 1� PG(E�T ) + PG(Q1 � z�Q2 < 0; E
�
T )

� 1� PG(E�T ) + PG(Q1;RT
� z�Q2;RT

< 0) (B.19)

where the last term of (B.19) is zero when RT (�) is empty. For non-empty RT (�), using (B.18)

yields

PG(Q1;RT
� z�Q2;RT

< 0) � PG(r
0
TY � z�

q
r0TVGrT � C2�=	(0)2 < C1�=	(0)): (B.20)
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The probability in the right-hand side of (B.20) may be written as

PG(�
0
TY < z� eC2;RT

+ � eC1;RT
) (B.21)

where

�T � rT =
q
r0TVGrT ;eC1;RT

� C1=(	(0)
q
r0TVGrT );eC2;RT

�
q
r0TVGrT � C2�=	(0)2=

q
r0TVGrT :

Note that by [U4]-(ii), we have that with T large enough, 0 � eC1;RT
� C1=(	(0)

p
!0) andp

1� C2�=!0 � eC2;RT
� 1. Hence, given z� < 0 and � small enough, the probability (B.21)

cannot exceed

PG(�
0
TY < z�

p
1� C2�=!0 + C1�=(	(0)

p
!0)): (B.22)

Given the fact that �T is non-stochastic with �
0
TVG�T = 1, Assumption [U2] implies that

given �, for any � > 0; there is a threshold T �(�; �) such that for T > T �(�; �), the probability

(B.22) will be smaller than

�(z�
p
1� C2�=!0 + C1�=(	(0)

p
!0)) + �

uniformly over all G obeying the null hypothesis. On the other hand, by Assumptions [A4], [U1]

and [U3]-(ii) applied to the event E�T , for any " > 0, there is a threshold T ��(�; ") such that

for T > T ��(�; "), PG(E
�
T ) > 1 � " uniformly over all G obeying the null hypothesis. Putting

together these facts and (B.19), (B.20), (B.22), we have that for T > maxfT �(�; �); T ��(�; ")g,

sup
G2�0

PG(Q1 � z�Q2 < 0) � �(z�
p
1� C2�=!0 + C1�=(	(0)

p
!0)) + � + "

from which by letting T �! 1 in accordance with T > maxfT �(�; �); T ��(�; ")g as the scalars
�, � and " approach zero, it follows that lim supT�!1 supG2�0 PG(Q1 � z�Q2 < 0) � �.

C Covariance Singularity Examples

In this appendix section, we present three examples of estimator covariance singularity for which

the high level assumptions [D2] and [U4]-(ii) are veri�ed. Recall that G is the joint distribution

from which the underlying individual data vector is randomly sampled. � is the set of all possible

G compatible with presumed speci�cation of the data generating process and �0 is the subset of

� that satis�es the null hypothesis. All parameter values such as � and V depend on the point

G of evaluation but we keep that implicit to avoid notational clutter.

In the �rst two examples, the econometric model is initially characterized by an r dimensional
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vector of parameters � � (�1; �2; :::; �r)0. The restrictions being tested are synthesized into the
one-sided form � � 0 with � = (�1; �2; :::; �p)0 = C� + b where C is a known p� r matrix and b
is a known p dimensional vector of constants. We assume an asymptotically normal estimator b�
is available with non-singular asymptotic variance matrix 
. Since V = C
C 0, V value induced

by any G 2 � is necessarily singular when r < p. In the third example, we consider a di¤erent

scenario where singularity arises only for some speci�c V values.

Example 1: Triangle Restriction

For a Cobb-Douglas production function with capital and labor elasticity coe¢ cients �1 and �2,

the restrictions being tested �1 � 0; �2 � 0 and �1 + �2 � 1 (non-increasing returns to scale)

form a triangle for the graph of (�1; �2). Here r = 2, p = 3 and

� = (�1; �2; �3)
0 = (�1; �2; 1� �1 � �2)0: (C.1)

Veri�cation of [D2] and [U4]-(ii) : Note that V = C
C 0 where 
 is the variance matrix

of the asymptotic distribution of
p
T ( b� � �) and

C 0 =

"
1 0 �1
0 1 �1

#
, C 0�d(�) =

"
�1 0 ��3
0 �2 ��3

#
d(�):

We assume the primitive condition that the smallest eigenvalue of 
 is bounded away from zero

over all G 2 �. Assumption [D2] is true since C 0�d(�) being zero for non-zero d(�) would

require all elements of d(�) to be non-zero, in turn requiring all elements of � given by (C.1) to

be negative or zero, which is impossible. For Assumption [U4]-(ii), we note that for su¢ ciently

small �, the only non-zero values for d�(�) possible under the null hypothesis are 	(0) multiples

of (1; 0; 0)0, (0; 1; 0)0, (0; 0; 1)0, (1; 1; 0)0, (1; 0; 1)0, (0; 1; 1)0, because it is not possible for more

than two of the elements of � to simultaneously lie between 0 and � < 1=3 as �1 + �2 + �3 = 1.

Therefore, given Assumption [U3]-(i) and the primitive condition on 
, Assumption [U4]-(ii) is

satis�ed here.

Example 2: Interval Restrictions with Fixed Known End-Points

Suppose the r dimensional parameter vector � is hypothesized to satisfy interval restrictions

l � � � u; where l and u are numerically speci�ed. In this case, p = 2r and � = ((��l)0; (u��)0)0.
An estimator b� is available such that pT ( b���) is asymptotically normal with variance 
 whose
smallest eigenvalue is assumed primitively to be bounded away from zero over all G 2 �. Note
that V = C
C 0 where C 0 = [Ir;�Ir]. Thus, C 0�d(�) is the r dimensional vector whose jth
element is

[1f�j < ljg+	(0)1f�j = ljg]�j � [1f�j > ujg+	(0)1f�j = ujg]�j+r (C.2)

37



for j � r. We consider the following two cases of interval hypotheses.

Case I : All hypothesized intervals are non-degenerate

For Case I, the null hypothesis concerns only non-degenerate intervals in the sense that uj > lj

for all j � r.

Veri�cation of [D2] and [U4]-(ii) for null hypothesis given by Case I : Note that
under H1, �j < lj or �j > uj for some j � r and thus (C.2) is either �j or ��j+r for some
j � r. Hence C 0�d(�) is non-zero and Assumption [D2] holds under the alternative hypothesis.

We need to further show that C 0�d(�) is not equal to zero for non-zero d(�) under the null

hypothesis. But under H0, (C.2) simpli�es to

	(0)
�
1f�j = ljg�j � 1f�j = ujg�j+r

�
: (C.3)

for all j � r. Given that uj > lj for all j, there is some j such that expression (C.3) equals either

	(0)�j or �	(0)�j+r whenever d(�) is non-zero under the null hypothesis. Hence, Assumption
[D2] is veri�ed.

We now verify the high level assumption [U4]-(ii). Under the null hypothesis, the jth element

of C 0�d�(�) is

	(0)[1flj + � � �j � ljg�j � 1fuj � �j � uj � �g�j+r]: (C.4)

For � < minj2f1;2;:::;rg(uj�lj)=2, if d�(�) is a non-zero, then there is some j such that expression
(C.4) equals either 	(0)�j or �	(0)�j+r and thus C 0�d�(�) is a non-zero vector of length which
is bounded away from zero by Assumption [U3]-(i). Given the primitive eigenvalue assumption

on 
, this completes veri�cation of Assumption [U4]-(ii).

Case II : At least one hypothesized interval is degenerate

For Case II, at least one interval is speci�ed to be degenerate (i.e. lj = uj for some j � r) in the

null hypothesis. Let Se denote the subset of f1; 2; :::; rg such that lj = uj holds for all j 2 Se

but lj < uj for all j =2 Se.

Veri�cation of [D2] and [U4]-(ii) for null hypothesis given by Case II : Under H1,

Assumption [D2] holds by the same arguments as given in Case I. Under H0, (C.3) becomes

	(0) (�j � �j+r) for all j 2 Se. In this case, Assumption [D2] still holds but the restriction that
�j 6= �j+r for at least one j 2 Se has to be imposed. This extra restriction guarantees that

C 0�d(�) is not equal to zero for all non-zero d(�) and thus [D2] is ful�lled.

We now verify the high level assumption [U4]-(ii). Note that [U4]-(ii) only concerns the

null hypothesis under which (C.4) becomes 	(0) (�j � �j+r) for all j 2 Se. Therefore, provided
that there is one j 2 Se such that j�j � �j+rj is bounded away from zero over all G 2 �0,
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then C 0�d�(�) is also a non-zero vector of length which is bounded away from zero. Given the

primitive condition on 
, Assumption [U4]-(ii) is thus satis�ed for any � > 0.

We now comment on testing interval hypothesis of the Case II type within the framework of

this paper. For validity of the test, it su¢ ces to choose any single equality hypothesis indexed

by h 2 Se and specify �h 6= �h+r at the outset. This single asymmetry requirement is the only

operational di¤erence compared with Case I. Moreover, since vh;h = vh+r;h+r where vh;h denotes

the h-th diagonal element of V , weighting inversely proportional to standard error is not ruled

out. The user can indeed set

�h+r = (1 + ")�h with �h = 1=
p
vh;h, " > �1 and " 6= 0: (C.5)

Here " is a non-stochastic quantity chosen by the user to control the degree of deviation from

perfect standardization of the estimate b�h+r. The weighting scheme (C.5) ensures that the test
has exact asymptotic size in the uniform sense and is consistent against all �xed alternatives.

On the other hand, Theorem 4 suggests that the user can specify " < 0 (or reverse) to attach

more (or less) weight to detection of violation of H0 in the direction of �h < lh.

Note that asymmetric weighting (C.5) adopted here can be viewed as �perturbing� both

Q1 and Q2 from the values they would take under symmetry. One might think to perturb

only Q2 to ensure that singularity does not cause division by (near) zero. For example, one

could perturb bV in the expression (3.10) de�ning Q2 in a manner akin to Andrews and Barwick

(2012) who adjust the QLR test statistic by perturbing bV with a diagonal matrix when the

determinant of the correlation matrix induced by bV is smaller than some pre-speci�ed threshold.
This alternative approach can allow for symmetric weighting. However unperturbed Q1 will

asymptotically converge to zero and hence rejection probability will tend to zero under the null

and local alternative scenarios where all non-degenerate interval inequalities are non-binding.

By contrast, the procedure (C.5) perturbing both Q1 and Q2 in a balanced way ensures that

the ratio Q1=Q2 stays asymptotically standard normal in the null even when the only binding

constraints are the equality hypotheses. It thus enables non-zero test power to be retained in

the aforementioned scenarios of local alternatives.

Example 3: Interval Restrictions with Unknown End-Points

In Example 2, testing the inequalities l � � � u was performed on �xed known interval end-

points. Suppose now that l and u are not known but are parameters which satisfy l � u and can

take a continuum of values including those which make (u� l) arbitrarily close to zero as well as
precisely zero. There is no point estimator for � but consistent estimators bl and bu are available
having joint asymptotic normal distribution with variance matrix 
. This, for the univariate

case, is the scenario considered by Imbens and Manski (2004) and Stoye (2009). For clarity, we

stay with the setup where � is a scalar. We consider testing H0 : l � �0 � u for a numerically
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speci�ed candidate value �0 for �. We then take b� = (�0 � bl; bu� �0)0 and � = (�0 � l; u� �0)0.
The asymptotic distribution of

p
T (b�� �) is normal with variance
V =

"

11 �
12
�
12 
22

#
:

For any given l and u, there is no reason why V should be singular. However, Stoye (2009. p.

1304, Lemma 3) demonstrates that, if one insists on P (bu � bl) = 1 holding over the underlying
data generating distribution space where the di¤erence (u� l) is bounded away from in�nity and
the elements 
11 and 
22 bounded away from zero and in�nity, then V necessarily depends on

(u� l) in such a way that 
12�
11 �! 0 and 
22�
11 �! 0 as u� l �! 0. Thus, singularity

of V where 
11 = 
22 = 
12 must be allowed for.

Veri�cation of [D2] and [U4]-(ii) : For Assumption [D2], note that under the maintained
assumption that l � u, the vector d(�) can be non-zero only if it takes one of the following

forms: (1; 0)0, (0; 1)0, (	(0); 0)0, (0;	(0))0, (	(0);	(0))0. The �rst four of these cannot make

V�d(�) = 0. The last form can only occur when l = �0 = u in which case we have

V�d(�) = 	(0)[�1
11 � �2
12;��1
12 + �2
22]0: (C.6)

Note that (C.6) is zero only if V is singular and �1=�2 = 
12=
11 = 
22=
12. Singularity occurs

in Stoye�s scenario where the model allows for 
11 = 
22 = 
12. Since the weights �1 and �2 are

chosen by the user, we can use �1 = 1=
p

11 and �2 = (1 + ")=

p

22 where " is a pre-speci�ed

non-stochastic and non-zero quantity satisfying " > �1. Then Assumptions [D2] holds regardless
of singularity of V . For Assumption [U4]-(ii), we only need to consider the null hypothesis. In this

case, the possible forms of non-zero d�(�) can take are (	(0); 0)0, (0;	(0))0 and (	(0);	(0))0. It

is easily seen that d�(�)0�V�d�(�) equals 	(0)2 for the �rst, 	(0)2(1 + ")2 for the second, and

	(0)2
�
"2 + 2(1 + ")(1� 
12=

p

11
22)

�
for the third form. Hence Assumption [U4]-(ii) holds.

In this example, the weights �1 and �2 are chosenly asymmetrically and setting " to be greater

(smaller) than zero amounts to attaching more (or less) weight to detection of violation of H0

in the direction u < �0. The "-perturbation arguments adopted here are indeed based on those

given in Case II of Example 2. The value of the perturbation parameter " is a user�s input to the

test procedure. The choice does not a¤ect validity of the results concerning asymptotic test size

and consistency. Asymmetry does a¤ect local power but, by the same device, o¤ers the user an

opportunity to input a subjective assessment of the relative importance of di¤erent directions of

violation of the null hypothesis.
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