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Abstract

We consider approximating a multivariate regression function by an affi ne combination of

one-dimensional conditional component regression functions. The weight parameters involved

in the approximation are estimated by least squares on the first-stage nonparametric kernel

estimates. We establish asymptotic normality for the estimated weights and the regression

function in two cases: the number of the covariates is finite, and the number of the covariates

is diverging. As the observations are assumed to be stationary and near epoch dependent, the

approach in this paper is applicable to estimation and forecasting issues in time series analysis.

Furthermore, the methods and results are augmented by a simulation study and illustrated by

application in the analysis of the Australian annual mean temperature anomaly series. We also

apply our methods to high frequency volatility forecasting, where we obtain superior results to

parametric methods.
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1 Introduction

In many situations of practical interest, we are faced with a large number of variables and uncertain

functional forms. Linearity is widely adopted in macroeconometrics where data is limited, but for

many relationships this implies absurd conclusions when covariates are pushed to extreme values.

In regression settings, we may have to choose between a large number of covariates. In the time

series case, the problem can get even worse, since in estimation and forecasting, all possible lags

of all possible predictor variables may be candidates and their influence may be of unknown form.

One approach to deal with this problem is to use model selection tools that choose the best model

according to some traditional criterion from a set of models. In some cases, this can be very time

consuming. Also, such an approach may be neglecting features of the data that arrive through models

that are not selected but which are almost as good as that which is selected. A popular method is to

use model averaging whereby we fit a number of candidate models and then weight them according

to some criterion (see, for example, Hansen 2007, Liang et al 2011). Another popular approach in

statistics is to use some penalization device to force many weights to be zero. For instance, the

least absolute shrinkage and selection operator (LASSO) proposed by Tibshirani (1996, 1997), is the

penalized least squares estimate with the L1 penalty. The penalized regression with general Lq penalty

leads to a bridge regression (Frank and Friedman 1993, Fu 1998). Fan and Li (2001) used the smoothly

clipped absolute deviation (SCAD) penalty in penalized likelihood estimation. However, most of the

above literature on model averaging and selection has been concerned with parametric models, which

assume some parametric linear or nonlinear relationships among the variables considered. In this

paper, we will consider nonparametric and semiparametric models.

Let (Yt, X
ᵀ
t ) be a stationary time series process, where Xt = (Xt1, . . . , Xtd)

ᵀ
is a d-dimensional

random vector and the superscript ᵀ stands for the transpose of a vector or matrix. In many appli-

cations, we need to consider estimating regression function E(Yt|Xt = x), where x = (x1, . . . , xd)
ᵀ
,

which can be well estimated by nonparametric method when the dimension d is small, but very

poorly if the dimension d is high (say larger than 3) owing to the so-called “curse of dimensionality”,

Stone (1980). Various nonparametric and semiparametric models, such as additive models, varying

coeffi cient models, partially linear models, have been studied to deal with the curse of dimensionality

problem in the literature (see, for example, Fan and Yao 2003, Teräsvirta et al 2010). In the time se-

ries case, as mentioned above, the conditioning information may consist of an infinite number of lags,

i.e., d = ∞. Linton and Sancetta (2009) established consistency of estimators of E(Yt|Yt−1, Yt−2 . . .)

under weak conditions without any functional form restrictions beyond some limited smoothness, but

rates of convergence are not available and practical performance is likely to be poor without further
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restrictions. Instead, it makes sense to use lower dimensional predictors, but which one? We next

consider some explicit semiparametric models that have been tried to address the issue in nonlinear

time series.

Linton and Mammen (2005) considered the semiparametric (volatility) regression model

E(Y 2
t |Yt−1, Yt−2 . . .) =

∞∑
j=1

ψj(θ)m(Yt−j),

where m(·) is an unknown function and the parametric family {ψj(θ), θ ∈ Θ, j = 1, . . . ,∞} satisfies
some regularity conditions. This model includes the GARCH(1,1) as a special case and includes

an infinite set of lags. They assumed that {Yt} is stationary and geometrically mixing and thereby
obtained a characterization of the function m as the solution of a linear integral equation with

intercept of the form m∗θ(x) =
∞∑
j=1

ψj(θ)mj(x), where mj(x) = E(Y 2
t |Yt−j = x) for each j. They

proposed an estimation strategy for the unknown quantities, which requires as input the estimation

of mj(x) for j = 1, 2, . . . , J(T ), where J(T ) = c log T for some c > 0. They required to bound the

estimation error of mj(x) uniformly over x and over j = 1, 2, . . . , J(T ). However, they provided only

a sketch proof of this result in the case where the process is assumed to have compact support and to

be strong mixing with geometric decay. A recent paper by Li et al (2012) provided a more rigorous

and complete proof of this result. Linton and Mammen (2008) generalized this class of models to

allow for exogenous regressors and more complicated dynamics. See Chen and Ghyssels (2010) for

an application of these methods to volatility forecasting.

This general approach to modelling is promising but quite computationally demanding. In ad-

dition, the models considered thus far all have a finite number of unknown functions (for example,

in Linton and Mammen (2005) only unknown function was allowed), and so appear to be heavily

over identified. In this paper, we aim at relaxing such restrictive assumptions and consider a semi-

parametric model that contains possibly infinitely many unknown functions all of which can enter

into the prediction. This may be particularly useful in situations where there is a lot of nonlinearity.

The most general version of our model is similar in some ways to the setting considered in Hansen

(2007) except instead of observed covariates we have nonparametrically estimated ones. We obtain

consistency and asymptotic normality of our procedures under general conditions. We further apply

our methods to volatility forecasting (where the time series is long and (log) linear models are pre-

dominant) and to Australian temperature data (where the data is shorter but nonlinear parametric

methods have already been considered) and obtain satisfactory results in both cases.

The rest of the paper is organized as follows. The model is presented in Section 2 and the

estimation method is presented in Section 3. The asymptotic properties for the estimators of wo and
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nonparametric estimators for finite covariates case are provided in Section 4.1, and Section 4.2 gives

the theoretical results when the dimension of the covariates is diverging. Discussions of some related

topics are given in Section 5. Numerical evidence of our methodology is given in Section 6. Section

7 concludes this paper. All the technical lemmas and the proofs of the main results are collected in

Appendix.

2 Model

We model or approximate the conditional regression function E(Y |X = x) by an affi ne combination

of lower dimensional regression functions. Let S` denote the set of all subsets of S = {1, 2, . . . , d}
of ` components, and this has cardinality J` =

(
d
`

)
. For example, S2 = {(1, 2), . . . , (d − 1, d)} has

cardinality d(d− 1)/2. We model or approximate m(x) = E(Y |X = x) by

mw(x) = w0 +
J∑
j=1

wjE(Y |X(j) = x(j))

for some weights wj, j = 0, 1, . . . , J , where X(j) = (Xi1 , . . . , Xikj
)
ᵀ
is a subset of X and x(j) =

(xi1 , . . . , xikj )
ᵀ
. In general, X(j) and X(k) could have different dimensions and of course overlapping

members. The union of X(j) may exhaust one or more of S` or it may not. A simple special case

that we focus on for much of the paper is where J = d and X(j) = Xj is just the jth component and

the covariates are non overlapping. This seems well suited to time series applications. In practice,

one would not wish to take kj to be too large, so as to avoid the curse of dimensionality.

We could be thinking of this as a family of models within which there is a true member that

corresponds to the true regressing function m(x) or we could be thinking of this as an approximating

or model averaging device. Either way, we are then seeking w = (w0, w1, . . . , wJ)
ᵀ
that minimizes

E
[
Y − w0 −

J∑
j=1

wjE(Y |X(j))
]2

. (2.1)

In general, the minimizing weights may not be unique, but the minimization problem is a projection

onto the space spanned by the functions {E(Y |X(j)), j = 1, . . . , J} and so there a unique solution
mw(x). We shall focus on the special case where there is a unique vector w (which is generally true

for the special case where J = d and X(j) = Xj is just the jth component and the covariates are non

overlapping). In this case, the minimizer to (2.1), wo = (wo,0, wo,1, . . . , wo,J)
ᵀ
, satisfies

wo,0 =
(
1−

J∑
j=1

wo,j
)
E(Y ), (wo,1, . . . , wo,J)

ᵀ
= A−1a, (2.2)
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where A is a J × J matrix whose (i, j)th component is Cov(E(Y |X(i)),E(Y |X(j))), and a is a J-

dimensional vector whose ith component is Cov(E(Y |X(i)), Y ). If the model is true, (2.1) is equal to

zero at the optimal weights but it need not be so. Obviously the conditional component regressions

E(Y |X(j) = xj), j = 1, . . . , J , are unknown but low dimensional, so they can be well estimated by

various nonparametric approaches. In Section 3, we will first estimate these conditional regression

functions by the Nadaraya-Watson method and we then use the least squares approach to obtain the

estimator of wo. We can consider this approach as a form of model averaging where we are averaging

the “models”: E(Y |X(j) = x(j)), j = 1, . . . , J , see Hansen (2007). We can also think of this as a

pragmatic use of lower dimensional relationships to build a more complex predictor.1

We now confine our attention to the simple special case where J = d and X(j) = Xj is just the

jth component and the covariates are non overlapping. We discuss the case where the “model”is not

necessarily true, and make a comparison with other “models”. Note that the above fit is equal to the

full linear regression model fit in the parametric linear case.2 However, in the general nonparametric

case, this is not necessarily so, i.e.,

E(Y |X) 6= w0 +
d∑
j=1

wjE(Y |Xj),

although there are clearly some nonlinear cases where this is so and where this would be a reason-

able model. For example, when the regression model is additive and the covariates are mutually

independent.

1The basic idea of considering pairwise relationships has been considered in Hong (2000) for testing the serial

independence of an observed scalar series Yt. In practice checking the independence of Yt from Yt−1, Yt−2, . . . is very

diffi cult due to the curse of dimensionality. He thus proposed to check all pairwise joint relationships (Yt, Yt−j) for

departures from the null.
2This is also true in infinite dimensional settings. Consider the AR(∞) model of the form

Yt =

∞∑
j=1

ρjYt−j + εt

for some (declining) coeffi cients ρj . Our general class of models would include processes of the form

Yt =

∞∑
j=1

θjE(Yt|Yt−j) + εt.

In the special linear Gaussian case, the two representations are equivalent (since all the E(Yt|Yt−j) are linear functions).
However, in general they will be different, even in the linear but non-Gaussian case (Tong, 1990, p13).
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The fit can be seen as an additive function of the individual components, i.e.,

w0 +
d∑
j=1

wjE(Y |Xj) =: w0 +

d∑
j=1

gj(Xj)

for a specific set of functions gj(Xj). Therefore, generally speaking,

inf
w
E
[
Y − w0 −

d∑
j=1

wjE(Y |Xj)
]2

≥ inf
h
E
[
Y − w0 −

d∑
j=1

hj(Xj)
]2

,

which means that the additive fit has lower mean squared error (if the model is true the MSE will

be the same, but when the model is not true, the additive approximation is better). In fact, we can

also interpret our procedure through the repeated projection argument that

inf
w
E
[
EAdd(Y |X)− w0 −

d∑
j=1

wjE(Y |Xj)
]2

,

where EAdd(Y |X) is the best additive fit of Y by the vector X. The space generated by w0 +∑d
j=1 wjE(Y |Xj) is a linear subspace of the space of additive functions and so we cannot do as

well as unrestricted additive fitting (see, Nielsen and Linton 1998, Mammen et al 1999, and Linton

2000 for more discussion on estimation of the additive models). However, if we compare with the

type of models considered in Linton and Mammen (2005), where there is only one unknown function

m, then the MSE of the two models is non-nested. That is, there are regression functions for which

inf
w
E
[
Y − w0 −

d∑
j=1

wjE(Y |Xj)
]2

≤ inf
w;m

E
[
Y − w0 −

d∑
j=1

wjm(Xj)
]2

.

In fact, we would generally expect this ordering of the MSE especially when d is large.

The main advantage of our method is computational, and perhaps performance in the case where

d is large. As we can obtain the closed form for the parametric estimator of wo and no iterative

algorithm is involved (see Section 3 for details), the computational procedure of our method is not

as time consuming as that for the nonparametric additive models, or even variations such as Linton

and Mammen (2005).

The modelling approach is also similar in some way to copulas. We allow general marginal

regression relationships but glue them together in a parametric way through the weights to give the

joint regression. A more general setting then would be

E(Y |X) = C(E(Y |X1), . . . ,E(Y |Xd);w),

where w is a parameter vector and C is a “regression copula”, in our case known (given w). We will
discuss this further below.

6



3 Estimation

In this section we define our estimation procedures using matrix formulae, which facilitate efficient

coding. Without loss of generality we assume that E(Y ) = 0, otherwise we replace Y by Y −E(Y ) and

Yt by Yt − Y = Yt − 1
n

∑n
t=1 Yt. Suppose that we have stationary and weakly dependent observations

(Yt, X
ᵀ
t ), t = 1, . . . , n. Let m(x) = E (Yt|Xt = x) and mj(xj) = E (Yt|Xtj), j = 1, . . . , d. We first

estimate mj(xj) by using the Nadaraya-Watson kernel method

m̂j(xj) =

n∑
t=1

YtK
(

Xtj−xj

hj

)
n∑

t=1

K
(

Xtj−xj

hj

) , (3.1)

where K(·) is a kernel function and hj is a bandwidth.

Since we are interested in estimating the marginal regression function at the sample points, we let

Mj =
[
mj(X1j), . . . ,mj(Xnj)

]ᵀ
and M̂j =

[
m̂j(X1j), . . . , m̂j(Xnj)

]ᵀ
. M̂j is the Nadaraya-Watson

estimator of Mj and we have

M̂j = SjY ,

where Sj is the n× n smoother matrix associated with Xj, Y is the n× 1 vector of observations on

the response, Y = (Y1, . . . , Yn)
ᵀ
. Then, for given w = (w1, . . . , wd)

ᵀ
,

M̂w = (w1S1 + · · ·+ wdSd)Y =: S(w)Y .

As E(Y ) = 0, it is easy to see that wo,0 = 0. Then, motivated by (2.1), to estimate w∗
o =

(wo,1, . . . , wo,d)
ᵀ
, we define the least squares sample objective function by

Q(w) = (Y − M̂w)
ᵀ
(Y − M̂w)

= Yᵀ
(I − w1S1 − · · · − wdSd)

ᵀ
(I − w1S1 − · · · − wdSd)Y

= Tr
[
YYᵀP(w)

]
, (3.2)

where I is the n× n identity matrix and

P(w) = (I − w1S1 − · · · − wdSd)
ᵀ
(I − w1S1 − · · · − wdSd)

= I −
d∑

j=1

wj(Sj + Sᵀ
j ) +

d∑
j=1

w2
jS

ᵀ
j Sj +

d−1∑
i=1

d∑
j=i+1

wiwj(S
ᵀ
i Sj + Sᵀ

j Si),
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while Tr(·) is the trace of a square matrix. We then minimize Q(w) with respect to the vector w to

obtain

∂

∂wi

Q(w) = Tr

[
YYᵀ ∂

∂wi

P(w)

]
= −Yᵀ

(Si + Sᵀ
i )Y + 2wiY

ᵀSᵀ
i SiY +

∑
j ̸=i

wjY
ᵀ
(Sᵀ

i Sj + Sᵀ
j Si)Y = 0.

We can write this as

Âw = â, Â =
(
Âij

)
d×d

, â = (â1, . . . , âd)
ᵀ
,

where Âij = Yᵀ
(Sᵀ

i Sj + Sᵀ
j Si)Y and âi = Yᵀ

(Si + Sᵀ
i )Y . Then we have

ŵ = (ŵo,1, . . . , ŵo,d)
ᵀ
= Â−1â. (3.3)

Defining

M̂ =

 m̂1(X11) · · · m̂d(X1d)
...

...
...

m̂1(Xn1) · · · m̂d(Xnd)

 ,

by (3.2), ŵ in (3.3) can be rewritten as

ŵ =
(
M̂ᵀM̂

)−1M̂ᵀY . (3.4)

Finally, we can estimate the conditional regression function
∑d

i=1wo,jmj(xj) by

m̂(x) := m̂ŵ(x) =
d∑

j=1

ŵo,jm̂j(xj). (3.5)

By the discussion in Section 2, m̂(x) can only be seen as the approximated value for m(x) as∑d
i=1wo,jmj(xj) does not necessarily equal to m(x) except the full linear regression case.

In Section 4.1, we will show that ŵ is asymptotically normal with root-n convergence rate. The

nonparametric estimator m̂(x) is also asymptotically normal with root-(nh) convergence rate, and

thus the curse of dimensionality is avoided. Furthermore, in Section 4.2, we will consider the more

general case that the dimension of Xt is diverging, i.e., dn → ∞ as n → ∞, which is common in

modern time series analysis.

4 Asymptotic properties

In this paper, we assume that {(Yt, X
ᵀ
t ), t ≥ 1} belongs to a class of stationary near epoch dependent

(NED) or stable processes, which is more general than the α-mixing process. Based on a stationary
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process {εt}, {Yt} and {Xt} are defined by

Yt = ΨY (εt, εt−1, εt−2, . . .),

Xt = (Xt1, · · · , Xtd)
ᵀ
= ΨX(εt, εt−1, εt−2, . . .),

(4.1)

where ΨY : R∞ → R1 and ΨX : R∞ → Rd are two Borel measurable functions, and {εt} may be

vector-valued. The definition of NED process is provided as follows.

Definition 4.1. The stationary process {(Yt, Xᵀ
t )} is said to be near epoch dependent in Lν norm

(NED in Lν) with respect to a stationary α-mixing process {εt}, if

vν(m) = E
[
|Yt − Y

(m)
t |ν + ∥Xt −X

(m)
t ∥ν

]
→ 0, ν > 0, (4.2)

as m → ∞, where | · | and ∥ · ∥ are the absolute value and the Euclidean norm of Rd, respectively,

Y
(m)
t = ΨY,m(εt, . . . , εt−m+1), X

(m)
t = (X

(m)
t1 , · · · , X(m)

td )
ᵀ
= ΨX,m(εt, . . . , εt−m+1), ΨY,m and ΨX,m

are R1- and Rd-valued Borel measurable functions with m arguments, respectively. vν(m) is said to

be the stability coefficients of order ν of the process {(Yt, X
ᵀ
t )}.

From the above definition, we know that the NED process includes the α-mixing process as

a special case. The concept of NED process can date back to Ibragimov (1962), and it is further

developed by Billingsley (1968), McLeish (1975a, 1975b, 1977) and Lin (2004), most of which assume

that {εt} is stationary martingale difference or φ-mixing. In this paper, we study the NED process

with respect to a stationary α-mixing process {εt} (α-mixing dependence is weaker than the φ-

mixing). As pointed by Lu and Linton (2007), such NED process can easily cover some important

compounded econometric processes, which are not covered by the α-mixing processes. Because of

this, there has been extensive literature on estimation and testing issues under NED assumption,

see, for example, Andrews (1995), Lu (2001), Ling (2007), Lu and Linton (2007) and Li et al (2012).

In this paper, we estimate the weight wo in the context of stationary NED process, which makes our

methodology applicable for some popular time series models such as AR(p)-GARCH(1,1) model.

In this section, we derive the asymptotic theory for ŵ and m̂(x) for two cases: (i) the dimension

of {Xt} is finite; and (ii) the dimension of {Xt} increases with the sample size n. We do not assume

that the model is true, i.e., mw(x) is not necessarily equal to m(x).

4.1 The dimension of {Xt} is finite

We start with a simple case that d is fixed. To establish the asymptotic theory, we introduce some

regularity conditions.
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Assumption 1 The kernel function K is continuous with a compact support. Furthermore, it

satisfies
∫
K(u)du = 1,

∫
ulK(u) = 0, for 1 ≤ l ≤ γ − 1, and 0 <

∫
uγK(u) <∞.

Assumption 2 (i) The joint density function of {Xt}, fX(·), and the marginal density function

of {Xtj}, fj(·), have continuous derivatives up the (γ +1)-order and inf1≤j≤d infx∈Ωj
fj(x) > 0,

where Ωj is the compact support of Xtj.

(ii) The joint density function of (Xtj, Xt+k,j), fj,k(·, ·), exists for 1 ≤ j ≤ d and k ≥ 1, and

satisfies that for some positive integer k∗ and all k ≥ k∗, fj,k(x1, x2) < Cf for 1 ≤ j ≤ d, all

(x1, x2) ∈ R2, 0 < Cf <∞.

(iii) The conditional density function of Xtj for given Xtk, k ̸= j, fj|k(·|·), exists and satisfies the

Lipschitz continuous condition.

(iv) The conditional regression functions m(·) and mj(·), 1 ≤ j ≤ d, have continuous and bounded

derivatives up to the (γ + 1)-order.

Assumption 3 (i) {(Yt, X
ᵀ
t ), t ≥ 1} is stationary NED in Lp0-norm with respect to a stationary

α-mixing process {εt} with E
[
|Yt|p0

]
<∞, where p0 = 2 + δ, δ > 0.

(ii) The mixing coefficient α(·) of the stationary α-mixing process {εt} satisfies

α(t) ∼ Cαθ
t
0, where 0 < Cα <∞ and 0 < θ0 < 1.

Assumption 4 (i) The bandwidths, hj, j = 1, . . . , d, satisfy hj = cjh for some positive constant

cj, 1 ≤ j ≤ d, and

nh2γ → 0,
n

p0−2
p0 h

log n
→ ∞ as n→ ∞. (4.3)

(ii) There exists two sequences of positive integers rn and Rn such that

rn → ∞, rn = o
(
Rn ∨ n1/2h

− p0+2
2p0

)
, Rn

(
h+ n

2−p0
p0 h−1 log n

)
→ 0. (4.4)

Furthermore, let

v1(rn) = O(h2τn), nh
− p0+2

p0 v2(rn) = o(1), h−2

(
v
1/2
2 (rn) + h

− p0−2
p0 v

p0−2
p0

1 (rn)

)
= o(1), (4.5)

where τn =
√

logn
nh

and vν(·) is defined in (4.2).
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Remark 4.1. Assumption 1 is a commonly-used condition on higher-order kernel function to reduce

the influence of the asymptotic bias of the nonparametric estimators, see, for example, Wand and

Jones (1995). Assumption 2 imposes some smoothness conditions on the density functions and

regression functions. The compact support condition on {Xt} can be relaxed with the expense of

more lengthy proofs. Assumption 3 provides the moment condition on {Yt} as well as the mixing

coefficient condition for {εt}. Note that, in Assumption 3 (ii), we assume that α-mixing coefficient

decays at the geometric rate, which can be relaxed to the algebraic rate at the cost of more lengthy

proofs and more complicated conditions on the bandwidth and stability coefficient. Assumption 4

gives some conditions on the bandwidths and stability coefficient of the NED process. In particular,

the technical conditions in Assumption 4(ii) are similar to the corresponding conditions in Lu and

Linton (2007) and Li et al (2012), and they can be satisfied by some interesting time series models

under mild conditions. More discussion can be found in Section 4.1 of Lu and Linton (2007) and

Remark 2.1 of Li et al (2012).

Before stating the main results, we need to introduce some notations. Define

ηt = Yt −
d∑

j=1

wo,jmj(Xtj), ηtj = Yt − E(Yt|Xtj) = Yt −mj(Xtj)

and βjk(Xsk) = E (mj(Xsj)|Xsk). Let ξt = (ξt1, . . . , ξtd)
ᵀ
with

ξtj = η′tj − η∗tj, η′tj = mj(Xtj)ηt, η∗tj =
d∑

k=1

wo,kηtkβjk(Xtk).

Define

Λ =

 E
[
m1(Xt1)m1(Xt1)

]
· · · E

[
m1(Xt1)md(Xtd)

]
...

...
...

E
[
md(Xtd)m1(Xt1)

]
· · · E

[
md(Xtd)md(Xtd)

]
 and Σ =

∞∑
t=−∞

E
[
ξ0ξ

ᵀ
t

]
.

We give the asymptotic distribution of ŵ in the following theorem.

Theorem 4.1. Suppose that the assumptions 1–4 are satisfied and Λ is positive definite. Then, we

have √
n (ŵ − w∗

o)
d−→ N

(
0,Λ−1ΣΛ−1

)
, (4.6)

where w∗
o = (wo,1, . . . , wo,d)

ᵀ
.

Remark 4.2. When d is finite, the above theorem shows that the parametric estimator of the optimal

weight can achieve the root-n convergence rate although we replace E(Yt|Xtj) by its nonparametric

estimator.
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Define

Σ1(x) =
( ∫

K2(u)du
)
diag

{c1σ2
1(x1)

f1(x1)
, . . . ,

cdσ
2
d(xd)

fd(xd)

}
and σ2

j(xj) = E
[
η2tj|Xtj = xj

]
,

where x = (x1, . . . , xd)
ᵀ
and cj is defined as in Assumption 4 (i). We next give the asymptotic

distribution for m̂(x).

Theorem 4.2. Suppose that the conditions in Theorem 4.1 are satisfied. Then, we have

√
nh (m̂(x)−mw(x))

d−→ N
(
0, σ2

w

)
, (4.7)

where mw(x) =
∑d

j=1wo,jmj(xj) and σ
2
w = (w∗

o)
ᵀ
Σ1(x)w

∗
o.

Remark 4.3. Theorem 4.2 above shows that the proposed nonparametric estimator m̂w(x) is asymp-

totically normal and enjoys the convergence rate of the nonparametric estimator in the standard

univariate nonparametric regression. Furthermore, if mw(x) = m(x), which indicates that there is

no approximation bias, by (4.7), we can easily prove that

√
nh (m̂(x)−m(x))

d−→ N
(
0, σ2

w

)
. (4.8)

4.2 The dimension of {Xt} is diverging

We next consider the case that the dimension of {Xt} increases with the sample size, which would

have potential applications in nonlinear forecasting with very large lag terms. It is well known

that the additive model performs poorly for the high-dimensional case, which is our motivation to

find an alternative method to deal with this case. In this section, we consider the semiparametric

approximation as discussed in the previous sections but with d replaced by dn which increases with

the sample size n. To avoid confusion, we let ŵ(n) and w∗
o(n) be defined as ŵ and w∗

0 with d replaced

by dn. Define

Λn =

 E
[
m1(Xt1)m1(Xt1)

]
· · · E

[
m1(Xt1)mdn(Xtdn)

]
...

...
...

E
[
mdn(Xtd)m1(Xt1)

]
· · · E

[
mdn(Xtdn)mdn(Xtdn)

]
 ,

Σn be defined as Σ with d replaced by dn, and Σn(w) = Λ−1
n ΣnΛ

−1
n . To establish asymptotic theory

for this case, in addition to Assumptions 1–4 in Section 4.1, we also need the following regularity

conditions.
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Assumption 5 (i) There exists a compact support Ω such that ∪jΩj ∈ Ω, where Ωj is defined in

Assumption 2 (i).

(ii) Let hj ≡ h for j = 1, . . . , dn, where h satisfies the conditions in Assumption 4.

(iii) The largest and smallest eigenvalues of Σn(w) are bounded away from zero and infinite.

(iv) The dimension of {Xt}, dn, satisfies

dn(τn + hγ) = o(1), ndnh
2γ = o(1), ndnh

− p0+2
p0 v2(rn) = o(1), (4.9)

where τn is defined in Assumption 4 (ii).

Remark 4.4. The technical conditions in Assumption 5 (i) and (ii) are imposed to simplify the

presentation of our theoretical results as well as the proofs. Assumption 5 (iii) is a commonly-

used condition in high-dimensional statistical inference, see, for example, Fan and Peng (2004).

Assumption 5 (iv) gives some restrictions on dn, which could increase with the sample size at some

polynomial rate.

We next give the asymptotic normal distribution theory for ŵ(n). Let A∗ be a given non-negative

p× p matrix, for example the identity, and let An be a p× dn matrix such that as n→ ∞

AnA
ᵀ
n → A∗.

Theorem 4.3. Suppose that the conditions of Theorem 4.1 and Assumption 5 are satisfied. Then,

we have √
nAnΣ

−1/2
n (w)

(
ŵ(n)− w∗

o(n)
) d−→ N

(
0,A∗

)
. (4.10)

Remark 4.5. The above theorem indicates that when dn → ∞, the parametric estimator of the

optimal weight w∗
o(n) can achieve the root-(n/dn) convergence rate. That is ∥ŵ(n) − w∗

o(n)∥ =

OP (
√
dn/n). Such result is analogous to some existing results in statistics literature such as Theorems

1 and 2 in Lam and Fan (2008). By using Theorem 4.3, we can also prove the asymptotic distribution

for nonparametric estimator as in Theorem 4.2. We will discuss this issue in details in the context

of nonlinear forecasting in Section 5.2 below.
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5 Some extensions

In this section, we give the discussions of some related topics including the nonlinear forecasting issue

in time series analysis, and applications in limited dependent variables and robust methods.

5.1 Nonlinear forecasting

We next study the problem of forecasting a future value YT+k0 by using given observations {Yt : 1 ≤
t ≤ T}, where k0 is a fixed number. Consider the forecast of the form defined by

ỸT+k0|T = w0 +

dT∑
j=1

wjE(YT+k0 |YT+1−j). (5.1)

Note that for a stationary process, E(YT+k0 |YT+1−j = y) = E(Yt|Yt+1−j−k0 = y), which can be

estimated using {Yt : 1 ≤ t ≤ T}, so long as dT + k0 ≪ T .

We next discuss different choices of dT and w in time series forecasting. First, we consider an

unstructured model where the weights are chosen by the predictive least squares unrestrictedly and

the lag horizon dT is fixed. For this case, we can use the semiparametric method introduced in

Section 3 to estimate the optimal weights, and then get ŶT+k0|T , the predicted value of ỸT+k0|T , by

replacing E(Yt|Yt+1−j−k0 = y) by its corresponding nonparametric estimated value.

For the more general case that the lag horizon dT → ∞ slowly (recommend taking dT = c log T

for some constant c), we can still use the semiparametric method developed in this paper to predict

YT+k. For the case of dT = c log T , by using Theorem 4.3, we can prove that, under some conditions,√
Th/σ2

w(T )
(
ŶT+k0|T − ỸT+k0|T

) d−→ N
(
0, 1
)
, (5.2)

where σ2
w(T ) is defined as σ2

w in Theorem 4.2 with d and (x1, . . . , xd)
ᵀ
replaced by dT and (YT , . . . , YT−dT+1)

ᵀ
,

respectively. We find that the convergence rate for the nonparametric predicted value can achieve

root-(Th) if σ2
w(T ) tends to a positive constant as T tends to infinity, although c log T lags are

involved in forecasting.

Notice that the above discussion ignores the fact that the importance of more distant lags should

be much less than those of more recent ones in time series analysis. That is the weights wj should

decay to zero as j → ∞. Hence, for a small enough ϵ > 0, we can always find a positive integer

d := d(ϵ) such that |wj| < ϵ when j ≥ d, which implies that the weights wj can be ignored when

14



j ≥ d. There are a number of ways of imposing the decay through parameterizations. For example,

we can impose a polynomial function on wj

wj = α0 + α1j
−1 + . . .+ αkj

−k, (5.3)

where α = (α0, . . . , αk)
ᵀ
are free parameters. Another popular approach is based on the ARMA

class of time series models. Define the lag polynomials A(L) =
∑p

j=0 ajL
j and B(L) =

∑q
j=0 bjL

j,

where L is a lap operator, and let the wj solve the equation

∞∑
j=0

wjL
j =

A(L)

B(L)
, (5.4)

which will happen uniquely under some conditions. Then the weights wj, j = 1, 2, . . ., just depend

on the parameter vector θ = (a0, . . . , ap, b0. . . . , bq)
ᵀ
. The problem then reduces to choosing θ to

minimize the sample least squares problem using some truncation (truncation may not be strictly

necessary here since provided the parameters are inside the usual “stationary invertible” region, the

weights should decay at some geometric rate). We will study this issue in our future research.

5.2 Limited dependent variables and robust methods

As mentioned in Section 2 briefly, consider the more general setting

E(Y |X) = C(E(Y |X1), . . . ,E(Y |Xd);w), (5.5)

where w is a parameter vector and C is a regression copula. The connection with copulas can be

made firmer in the case where the marginal regressions are monotonic in which case any regression

function (with monotonic marginals) can be represented as (5.5) for some copula function C. The

generalization encoded in (5.5) might be useful in the case of limited dependent variables. Suppose

that Y is binary but X is continuously distributed. A common parametric model here would be

probit or logit, where P(Y = 1|X = x) = E(Y |X = x) = F (β0 +
∑d

j=1 βjxj), where F is the normal

or logistic cdf. Therefore, consider

P(Y = 1|X = x) = E(Y |X = x) = F

(
w0 +

d∑
j=1

wjF
−1(E(Y |Xj = xj))

)
,

where F is a known c.d.f. Compare this with the generalized additive modelling approach, see Hastie

and Tibshirani (1990) in which the marginal regression functions E(Y |Xj = xj) are replaced by free

functions mj(xj) and the weights {wj} are not needed. Estimation of this model can be carried out
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using quasi-likelihood, which entails a nonlinear optimization over w, albeit one that can be coded

as iterative weighted least squares.

Finally, we could allow the conditional expectations operator to be replaced by conditional quan-

tiles. That is, we consider the model (or approximation)

Qα(Y |X) = w0 +
d∑

j=1

wjQα(Y |Xj = xj),

where Qα denotes the level α conditional quantile function. This model can be estimated by linear

quantile regression where the marginal quantile regressions are the covariates and so computationally

this is also relatively simple.

6 Numerical evidence

In this section, we are demonstrating certain advantages of the proposed semiparametric method

by Monte Carlo simulation and real data examples, to uncover and understand the time series lag

effects in applications. Monte Carlo simulation example is provided in the first subsection, and the

second one is the analysis of two real data sets, the Australian annual mean temperature anomaly

series and the one minute data from the FTSE100 index.

6.1 Monte Carlo simulation

We consider the model in our simulation as follows:

Yt =
9∑

k=1

g0k(Yt−k) + εt (6.1)

with

g0k(Yt−k) = akYt−k + δ
exp(−kYt−k)

1 + exp(−kYt−k)
+ γ cos(Yt−kYt−1)

and εt ∼ i.i.d. N(0, σ2), where the values of σ2 and ak’s, for k = 1, 2, · · · , 9, are specified in Table 1,

which are actually the estimated values of a linear AR(9) model using the whole time series data set

AMTA.res in Section 6.2. Let δ and γ be two constants for which we consider three cases of δ = 0,

δ = 0.1 and δ = 0.5, and three cases of γ = 0, γ = 0.1 and γ = 0.5. Although we can construct

a more involved GARCH structure for εt such as εt = etσt with σ2
t = α0 + α1ε

2
t−1 + α2ε

2
t−2 +

β1σ
2
t−1 and et i.i.d. N(0, 1), where α0 > 0, α1, α2 and β1 are suitable non-negative constants, so that
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Yt is a NED process with respect to an α-mixing process {εt}, we do not pursue this for simplicity.

Note that under the conditions specified as above, it follows from Lu (1998) that the model has

strictly stationary solution that is geometrically ergodic and thus α-mixing, a special NED process

defined in Definition 1.1, with mixing coefficient α(m) = O(ρm) as m → ∞, 0 < ρ < 1, for any real

values of δ and γ, owing to the fact that 1 −
∑9

k=1 akz
k ̸= 0 for any |z| ≤ 1 with ak specified in

Table 1. Further, note that in model (6.1), as (δ, γ) = (0, 0), this is a linear autoregressive model of

order 9; while as δ ̸= 0 but γ = 0, it is a nonlinear additive autoregressive model of order 9; and as

γ ̸= 0, this is a nonlinear autoregressive model of order 9 with interaction between Yt−k and Yt−1.

Table 1: The noise variance σ2 and the coefficients ak’s in the simulating model (6.1).

σ2 a1 a2 a3 a4 a5 a6 a7 a8 a9

0.08498 -0.1129 0.0245 -0.1892 -0.0820 -0.1962 -0.1232 0.1180 0.1282 -0.2407

It is worth mentioning that in the linear case, the fit in equations (2.1) and (2.2) is equal to the

full linear regression model fit. However, this may not hold in the nonparametric case. For example,

in model (6.1) with γ ̸= 0, E(Yt|Xt) ̸=
∑d

j=1wjE(Yt|Xtj), where Xt = (Xt1, . . . , Xtd)
ᵀ
with Xtj = Yt−j

and d = 9. Furthermore, the fit in equations (2.1) and (2.2) can be seen as an additive function

of the individual components, i.e.,
∑d

j=1wjE(Yt|Xtj) =
∑d

j=1 hj(Xtj) for a specific set of functions

hj(Xtj). Therefore, as introduced in Section 2,

inf
w

E
[
E(Yt|Xt)− w0 −

d∑
j=1

wjE(Yt|Xtj)
]2

≥ inf
g
E
[
E(Yt|Xt)− w0 −

d∑
j=1

gj(Xtj)
]2
, (6.2)

which indicates that the additive fit could reduce the mean squared error. In this simulation, we are

interested in understanding how large the difference between the LHS and the RHS of (6.2) from the

prediction perspective by Monte Carlo simulation.

We simulate the stationary time series data of size n from model (6.1) by deleting the first 100

observations among the (100+n) observations generated through iteration of (6.1) with initial values

of Y1 = · · · = Y9 = 0 for each given pair of (δ, γ) with δ = 0, 0.1, 0.5 and γ = 0, 0.1, 0.5. We

partition the whole sample of size n into two parts: the first part is an estimation sample of size

nest = n− npred for model estimation, and the second part is a prediction sample of size npred = 50
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Figure 1: Simulation — Boxplot of 100 repetitions of the mean squared error of npred = 50 one-step-ahead predictions

for γ = 0: (a) nest = 90, (b) nest = 150, (c) nest = 200. Here “AR”, “NMA” and “GAM” stand for the prediction

based on linear AR, semiparametric nonlinear model average and additive AR modelling, respectively.18
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Figure 2: Simulation — Boxplot of 100 repetitions of the mean squared error of npred = 50 one-step-ahead predictions

for γ = 0.1: (a) nest = 90, (b) nest = 150, (c) nest = 200. Here “AR”, “NMA” and “GAM” stand for the prediction

based on linear AR, semiparametric nonlinear model average and additive AR modelling, respectively.19
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Figure 3: Simulation — Boxplot of 100 repetitions of the mean squared error of npred = 50 one-step-ahead predictions

for γ = 0.5: (a) nest = 90, (b) nest = 150, (c) nest = 200. Here “AR”, “NMA” and “GAM” stand for the prediction

based on linear AR, semiparametric nonlinear model average and additive AR modelling, respectively.20



for evaluation of different prediction methods. We are considering three cases of n = 140, n = 200

and n = 250 so that nest = 90, nest = 150, nest = 200, respectively. Three prediction methods are

compared: linear AR model of order 9, semiparametric nonlinear model averaging of lag 9 (proposed

in this paper), and the nonlinear additive AR model of order 9. The estimation procedures for

linear AR model and nonlinear additive AR model are based on arima with “ML” method and gam

with gaussian family and smoothing splines in the R packages STATS and GAM, respectively. The

estimation procedure for semiparametric model averaging is based on that in Section 3 of this paper.

We are examining the one-step-ahead prediction of Ynest+i, say Ŷnest+i, for i = 1, 2, · · · , npred, based

on the estimated models, and consider the mean squared prediction error, defined by

MSPE =
1

npred

npred∑
i=1

(
Ynest+i − Ŷnest+i

)2
.

We repeat the simulation for 100 times, and the boxplots of the 100 MSPE values for three dif-

ferent methods with different pairs of (δ, γ) are depicted in Figures 1–3, corresponding to γ =

0, 0.1, 0.5, respectively. In each figure, there are three panels (a), (b) and (c), corresponding to

nest = 90, 150, 200, respectively, and in each panel, there are three sub-panels of boxplots, corre-

sponding to δ = 0, 0.1, 0.5, respectively, where “AR”, “NMA” and “GAM” stand for the methods of

prediction based on linear AR, semiparametric nonlinear model average and additive AR modelling,

respectively.

We first have a look at Figure 1 for γ = 0, where model (6.1) is a purely additive AR model of

order 9. In the case of δ = 0, model (6.1) further reduces to a linear AR model, where the linear

“AR” method should perform the best in prediction, as confirmed in the first column of Figure 1.

In this case, both “NMA” and “GAM” also appear quite acceptable with small values of MSPE

and perform similarly in prediction, where for the small estimation sample size, “NMA” appears a

bit better than “GAM”, while with larger estimation sample size, “GAM” is slightly better than

“NMA”. In the case of δ ̸= 0, model (6.1) is a purely nonlinear additive model, where it follows from

the second and third columns of Figure 1 that the linear “AR” method is much worse than both

“NMA” and “GAM”, both of which perform again quite similarly in prediction although “GAM” is

slightly better with the estimation sample size increasing.

We next turn to Figures 2 and 3 for γ ̸= 0, where model (6.1) is a nonlinear, but not purely

additive, AR model of order 9 with interaction between Yt−k and Yt−1. Both figures indicate that

the linear “AR” is very poor. For the case of small value of γ = 0.1, where model (6.1) is close to a

purely additive AR model, the performance of both “NMA” and “GAM” in Figure 2 looks similar to

that in Figure 1, that is both “NMA” and “GAM” perform very similarly in prediction with “GAM”
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slightly better as the estimation sample size increases. However, as γ = 0.5, model (6.1) is far away

from a purely additive AR model, and it clearly follows from Figure 3 that ‘GAM” performs much

worse than our “NMA” method in prediction although all three methods look poor in prediction

with much larger values of MSPE than those in Figures 1 and 2. This somehow indicates that the

interaction between different lags should be taken into account in the prediction. In theory, this

interaction can be much more easily incorporated into the our “NMA” prediction method than that

in “GAM” model. However, practically, we need to deal with the selection of interactions among a

large number of lag interactions. For example, there are 9 lags in model (6.1) and hence the number

of lag interactions is 36 in total, which requires model selection techniques in prediction in particular

when the estimation sample size is not that large, such as nest = 90. We leave this for future research.

In summary, our proposed “NMA” method performs quite well in prediction. When the actual

model is a purely additive model, it performs quite close to the optimal additive prediction “GAM”.

While a purely additive model is violated, it may even be better than the “GAM” in prediction. The

main advantage of our method is computational, and perhaps performance in the case where d is

large.

6.2 Two real data examples

6.2.1 Australian annual mean temperature anomaly (AMTA) series

Our first real data set is the Australian annual mean temperature anomaly (AMTA) series start-

ing from 1910 to year 2010, downloaded at http://www.bom.gov.au/cgi-bin/climate/change/time

series.cgi. The time series plot of the data is illustrated in Figure 4(a). Obviously there is an in-

creasing nonlinear trend in the AMTA series, indicating a global warming effect in Australia. We

therefore remove this nonlinear trend by using the sm.regression function in R SM package, which

is plotted in Figure 4(b); the resulting residual series, AMTA.res, plotted in Figure 4(c), appears

stationary.

We are analysing the stationary series, AMTA.res, the sample size of which is n = 101. We

partition it into two sub-samples for model estimation and prediction evaluation by taking npred = 10

so that the estimation sample is of size nest = n − npred = 91. We first apply linear AR(p) analysis

to the estimation sub-sample of AMTA.res by using R with p from 1 to 12. According to Akaike

Information Criterion (AIC), AR(9) model is selected (see Table 2). We also tried ARMA(9,1) model

for the series, the AIC value of which is 56.97. This demonstrates that the AR(9) model is reasonable

for the series AMTA.res, the estimated coefficients of which are reported in Table 3, indicating the

22



(a) (b)

Time

A
nn

ua
l M

ea
n 

Te
m

pe
ra

tu
re

 A
no

m
al

y 
(A

M
TA

)

0 20 40 60 80 100

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

0 20 40 60 80 100

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Time

Tr
en

d 
fit

tin
g 

of
 A

M
TA

 b
y 

sm
.r

eg
re

ss
io

n

(c)

Time

R
es

id
ua

l o
f A

M
TA

 w
ith

 tr
en

d 
re

m
ov

al

0 20 40 60 80 100

−
0.

5
0.

0
0.

5

Figure 4: Australian annual mean temperature anomaly (AMTA): (a) The series starting from 1910

to year 2010; (b) The trend fitting by sm.regression. (c) The resulting residual series, AMTA.res,

after trend removal.
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long term lag effects up to 9 years in the annual mean temperature anomaly series. We can clearly

see that the coefficients of ar1 – ar7 are insignificant from zero at the 5% significance level in this

linear analysis.

Table 2: AIC values of AR(p) models with order p from 1 to 12 for the estimation sample of

AMTA.res.

AR order p = 1 p = 2 p = 3 p = 4 p = 5 p = 6

AIC 56.4 58.39 58.11 59.49 59.49 60.87

AR order p = 7 p = 8 p = 9 p = 10 p = 11 p = 12

AIC 62.52 59.13 54.97 56.97 58.97 58.37

Table 3: The estimated coefficients (coef.) and their standard errors (s.e.) in the selected linear

AR(9) model for the series, AMTA.res:

intercept ar1 ar2 ar3 ar4

coef. -0.0074 -0.1086 0.0161 -0.1637 -0.0962

s.e. 0.0197 0.1029 0.1012 0.1007 0.1004

ar5 ar6 ar7 ar8 ar9

coef. -0.1429 -0.1154 0.1251 0.2075 -0.2775

s.e. 0.1017 0.1046 0.1041 0.1077 0.1088

However, checking the kernel density estimate of the AMTA.res series in Figure 5, we find that

it is not a Gaussian series, showing that some nonlinear effects may exist in this series. We apply

the semiparametric method proposed in this paper to explore the individual nonlinear lag effects.

We examine the lags from 1 to 9. Denote the AMTA.res series by yt. We estimate the nonlinear

individual lag effects, E(yt|yt−k), for k = 1, 2, 3, · · · , 9, the local constant estimators of which, by

applying sm.autoregression in R sm package, are plotted in Figure 6(a)–(i). The nonlinear individual

lag effects appear clear in Figure 6(a)–(c) and (f)–(g). We then apply model averaging by considering
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minimisation of E
(
yt − w0 −

∑9
k=1wkE(yt|yt−k)

)2
with respect to w0, w1, · · · , w9, and a least squares

estimate is made by minimising
∑nest

t=10

[
yt − w0 −

∑9
k=1wkÊ(yt|yt−k)

]2
, where Ê(yt|yt−k) is the local

constant estimator of E(yt|yt−k). The estimated values of wk, k = 0, 1, 2, · · · , 9, are given in Table 4.
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Figure 5: Density estimate of AMTA.res: The solid line for kernel estimate and the dashed line for

the Gaussian density with the same mean and variance.

Table 4 shows that the coefficients of the lag effects in nonparametric model averaging are mostly

significant at 5% significance level. We particularly note that the effects of the lags 1–6 that are

insignificant in the linear AR model (Table 3) become significantly different from zero in nonpara-

metric model averaging (Table 4), indicating that these lag effects may essentially be nonlinear in

annual mean temperature anomaly. In addition, it follows from Table 5 that the mean of residual

squares for our proposed “NMA” is 0.04652649, much smaller than that of linear “AR”, 0.08261, in

the estimation sample. This is further evidenced by the mean squared error of the one-step-ahead

prediction, MSPE, over the evaluation sample of size npred = 10, which is 0.1136318 and 0.1001797

for the linear “AR” and our proposed “NMA”, respectively.
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Figure 6: Individual lag effects for AMTA.res, estimated by sm.autoregression in R: (a) lag=1; (b)

lag=2; (c) lag=3; (d) lag=4; (e) lag=5; (f) lag=6; (g) lag=7; (h) lag=8; (i) lag=9.
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Table 4: The estimated coefficients and their standard error (s.e.) in the nonparametric model

averaging with lags from 1 to 9 for the estimation sub-sample of AMTA.res:

w0 w1 w2 w3 w4

value 0.06507 0.87392 1.80548 1.13594 2.13717

s.e. 0.02551 0.34763 0.46953 0.37083 0.94460

w5 w6 w7 w8 w9

value 1.15743 1.05129 0.87480 0.72317 0.80995

s.e. 0.51662 0.40191 0.46996 0.35264 0.30814

We also considered the comparison with the additive AR(9) model fitting. The 9 component

functions in the fitted additive AR(9) model are plotted in Figure 7, where Xi stands for the lag

i variable of yt. From Table 5, the mean of residual squares of the additive fitting “GAM” is

0.04372112, slightly smaller than that of our “NMA”, in the estimation sample. However, the MSPE

for the additive model “GAM” is 0.1333408, larger than that of our proposed “NMA”, 0.1001797.

This again shows that our approach is a useful tool to uncover nonlinear lag effects with simple

calculations and performs basically well.

Table 5: The comparison of mean of residual squares (MRS) and mean squared prediction error

(MSPE) for the linear “AR”, “NMA” and “GAM”.

linear “AR” “NMA” “GAM”

MRS (in sample) 0.08261 0.04652649 0.04372112

MSPE (out of sample) 0.1136318 0.1001797 0.1333408

6.2.2 FTSE100 real data

Our second real data set is a one minute financial data set of 2000 observations from the FTSE100

index, consisting of trading volume vt, open price ot, close price ct, minimum price mint, and maxi-

mum price maxt, of the index in each minute. The time period is the minutes within the trading days
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Figure 7: Additive modelling for the estimation sub-sample of AMTA.res: The solid line for loess

based estimate of each additive component and the dashed lines for the 95% pointwise confidence

interval.
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from 22–28 June 2012. We are concerned with the relationship of the volatility and the geometric

return, defined, respectively, by

Vt = 100(maxt −mint)/((maxt +mint)/2),

and

Rt = 100 log(ct/ct−1),

as well as the volume series vt. The three series are depicted in Figure 8.

Differently from the short lags in the above AMTA example, we are interested in the k-step-

ahead prediction of the volatility by using the information of the long lags (from lag 1 to lag 60) of

both volatility and return series, and also checking if the volume lags would be helpful in improving

the prediction of the volatility. That is, we are using Xt = (Vt−1, · · · , Vt−60, Rt−1, · · · , Rt−60)
ᵀ
or

Xt = (Vt−1, · · · , Vt−60, Rt−1, · · · , Rt−60, vt−1, · · · , vt−60)
ᵀ
to predict Yt = Vt+k, for k = 1, 2, · · · , 10. In

the last real example, we have shown some of the advantages of our proposed “NMA” method in

comparison with the additive model. Therefore here we only look at the comparison of the “NMA”

forecasting method with the linear forecasting. We use the sample from the M = (70 + k)th ob-

servation to the N = 1900th observation as our estimation sample. Our evaluation sample of the

prediction is the following npre = 60 observations right after the estimation sample. In order to avoid

the serious impact of the extreme return 0.5132315 of the 1262th observation (see Figure 8) on the

estimation of our model parameters, we tentatively delete it in our estimation step. We calculated

MSPE of the k-step-ahead prediction of the volatility for the “NMA” and the Linear forecasting, re-

spectively, for k from 1 to 10, which are plotted in Figure 9, where (a) corresponds to the case of Xt =

(Vt−1, · · · , Vt−60, Rt−1, · · · , Rt−60)
ᵀ
, and (b) toXt = (Vt−1, · · · , Vt−60, Rt−1, · · · , Rt−60, vt−1, · · · , vt−60)

ᵀ
.

Clearly, overall our proposed “NMA” is preferred to the linear forecasting with smaller MSPEs except

the k = 7 step ahead forecasting. In addition, comparing (a) with (b), it appears that the volume

lags contribute little to the prediction of the volatility.

7 Conclusion

In this paper, we have proposed approximating a multivariate regression function by an affine com-

bination of one-dimensional conditional component regression functions. A semiparametric method

with first-stage nonparametric kernel smoothing has been developed to estimate the weight parame-

ters involved in the approximation. Asymptotic properties for both the parametric and nonparamet-

ric estimators have been established under mild conditions. In particular, the parametric estimator

29



volume

Time

ft
.v

o
l

0 500 1000 1500 2000

5
0

1
5

0
2

5
0

volatility

Time

ft
.v

o
la

0 500 1000 1500 2000

0
.0

0
.2

0
.4

geometric return

Time

ft
.g

r

0 500 1000 1500 2000

−
0

.1
0

.2
0

.5

Figure 8: The time series plots of the volume vt, the geometric return Rt and the volatility Vt.

30



(a)

N

N

N

N

N N

N

N

N

N

2 4 6 8 10

0.0
00

45
0.0

00
50

0.0
00

55
0.0

00
60

0.0
00

65
0.0

00
70

k−step−ahead

MS
PE

L

L

L

L L L

L

L

L

L

N

L

NMA forecast

Linear forecast

(b)

N

N

N

N

N

N

N

N

N

N

2 4 6 8 10

0.0
00

45
0.0

00
50

0.0
00

55
0.0

00
60

0.0
00

65
0.0

00
70

k−step−ahead

MS
PE L

L

L

L

L L

L

L

L

L

N
L

NMA forecast
Linear forecast
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is shown to be asymptotically normal with root-n rate of convergence when the dimension of the

covariates is finite, and there is no curse of dimensionality for the nonparametric estimator. When

the dimension increases with the sample size, the parametric estimator is shown to be asymptoti-

cally normal with root-(n/dn) rate of convergence. The observations in this paper are assumed to

be stationary and near epoch dependent, which is very general and covers some popular time series

models such as AR(p)-GARCH(1,1) model. Hence, the developed approach is applicable to estima-

tion and forecasting issues in time series analysis. Our methods and results are further augmented

by a simulation study and two applications.

Appendix

In this appendix, we first give the detailed proofs of the asymptotic results stated in Sections 4, and

then provide some technical lemmas. In the sequel, C denotes a positive constant, whose value may

change from line to line.

A Proofs of the main results

Proof of Theorem 4.1. Recall that

ηt = Yt −
d∑

j=1

wo,jmj(Xtj)

and

ηtj = Yt − E(Yt|Xtj) = Yt −mj(Xtj).

Furthermore, define

M =

 m1(X11) · · · md(X1d)
...

...
...

m1(Xn1) · · · md(Xnd)

 , η = (η1, . . . , ηn)
ᵀ
.

Observe that

ŵ =
(
M̂ᵀM̂

)−1

M̂ᵀY

=
(
M̂ᵀM̂

)−1

M̂ᵀ
(Mw∗

o + η)

= w∗
o +

(
M̂ᵀM̂

)−1

M̂ᵀ
(M−M̂)w∗

o +
(
M̂ᵀM̂

)−1

M̂ᵀ
η

=: w∗
o +Πn1 +Πn2.
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We first derive the leading term of Πn1. Note that, for each 1 ≤ j ≤ d,

m̂j(xj)−mj(xj) =

n∑
t=1

ηtjK
(Xtj−xj

hj

)
n∑

t=1

K
(Xtj−xj

hj

) +

n∑
t=1

mj(Xtj)K
(Xtj−xj

hj

)
n∑

t=1

K
(Xtj−xj

hj

) −mj(xj).

By Taylor’s expansion and Lemma B.1 in Appendix B, uniformly for xj ∈ Ωj, we have

n∑
t=1

mj(Xtj)K
(Xtj−xj

hj

)
n∑

t=1

K
(Xtj−xj

hj

) −mj(xj)
P∼

(m ∗ f)(γ)j (xj)

fj(xj)
µγh

γ
j , (A.1)

where an
P∼ bn means that an/bn = 1+oP (1) and (m∗f)(γ)j is the γ-th derivative of mj(z)fj(z) which

exits by Assumption 2 (i) and (iv). By (A.1), we have, uniformly for xj ∈ Ωj,

m̂j(xj)−mj(xj) =

n∑
t=1

ηtjK
(Xtj−xj

hj

)
n∑

t=1

K
(Xtj−xj

hj

) +
m ∗ f (γ)

j (xj)h
γ
jµγ

fj(xj)
(1 + oP (1)). (A.2)

On the other hand, by Lemma B.1 again, we can also prove

M̂ᵀM̂ P∼ MᵀM P∼ Λ, (A.3)

where Λ is assumed to be positive definite in Theorem 4.1. Then, by (A.1)–(A.3), we have

Πn1
P∼
(
MᵀM

)−1
Πn3, (A.4)

where

Πn3 =
{ n∑

t=1

mj(Xtj)
d∑

k=1

wo,k

[
mk(Xtk)− m̂k(Xtk)

]}ᵀ

j=1,...,d

=
{ n∑

t=1

mj(Xtj)
d∑

k=1

wo,k

[− n∑
s=1

ηskK
(
Xsk−Xtk

hk

)
n∑

s=1

K
(
Xsk−Xtk

hk

) +OP (h
γ
k)
]}ᵀ

j=1,...,d

=
{
−

n∑
t=1

mj(Xtj)
d∑

k=1

wo,k ·

n∑
s=1

ηskK
(
Xsk−Xtk

hk

)
n∑

s=1

K
(
Xsk−Xtk

hk

) }ᵀ

j=1,...,d
+OP (nh

γ)

=
{
−

n∑
s=1

d∑
k=1

wo,kηsk

[ 1

nhk

n∑
t=1

mj(Xtj)f
−1
k (Xtk)K

(Xsk −Xtk

hk

)]}ᵀ

j=1,...,d
+OP (nh

γ)
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where fk(·) is the marginal density function of Xtk and h is defined in Assumption 4 (i). If k = j,

by Lemma B.1, we have

1

nhj

n∑
t=1

mj(Xtj)f
−1
j (Xtj)K

(Xsj −Xtj

hj

)
= mj(Xsj) + oP (1). (A.5)

If k ̸= j, by Lemma B.1 again, we have

1

nhk

n∑
t=1

mj(Xtj)f
−1
k (Xtk)K

(Xsk −Xtk

hk

)
= βjk(Xsk) + oP (1), (A.6)

where βjk(Xsk) = E (mj(Xsj)|Xsk). Then, by (A.5) and (A.6) and noting that βjj(Xsj) = mj(Xsj),

we have

Πn3 = −
( n∑

s=1

d∑
k=1

wo,kηskβjk(Xsk)
)ᵀ

j=1,...,d
+OP (nh

γ)

= −
( n∑

t=1

η∗t1, . . . ,

n∑
t=1

η∗td

)ᵀ

+OP (nh
γ), (A.7)

where η∗tj =
∑d

k=1wo,kηtkβjk(Xtk). By (A.4) and (A.7), we have

Πn1 = −
(
MᵀM

)−1
( n∑

t=1

η∗t1, . . . ,

n∑
t=1

η∗td

)ᵀ

+OP (h
γ). (A.8)

We next consider Πn2. Observe that

Πn2 =
(
M̂ᵀM̂

)−1M̂ᵀ
η

=
(
MᵀM

)−1M̂ᵀ
η(1 + oP (1))

=
(
MᵀM

)−1[Mᵀ
η +

(
M̂ −M

)ᵀ
η
]
(1 + oP (1)).

Using (A.4) and Lemma B.3 in Appendix B, we can show that the leading term of Πn2 is
(
MᵀM

)−1Mᵀ
η

by noting that nh2γ = o(1) and nh
− p0+2

p0 v2(rn) → 0 and taking Mn = o(
√
nh). By letting η′tj =

mj(Xtj)ηt, we have

Πn2 =
(
MᵀM

)−1
( n∑

t=1

η′t1, . . . ,
n∑

t=1

η′td

)ᵀ

(1 + oP (1)). (A.9)

Then, by (A.8), (A.9) and Lemma B.4 in Appendix B, we can prove (4.6). Hence, the proof of

Theorem 4.1 has been completed.

34



Proof of Theorem 4.2. Observe that

m̂w(x)−mw(x) =
d∑

j=1

ŵo,jm̂j(xj)−
d∑

j=1

wo,jmj(xj)

=
[ d∑

j=1

ŵo,jm̂j(xj)−
d∑

j=1

wo,jm̂j(xj)
]

+
[ d∑

j=1

wo,jm̂j(xj)−
d∑

j=1

wo,jmj(xj)
]

=: Πn4 +Πn5. (A.10)

By Theorem 4.1, we can prove that

Πn4 = OP (
√
n) = oP (

√
nh). (A.11)

By the Cramér-Wold device and following the proof of Theorem 3.1 in Lu and Linton (2007), we

can also prove that √
nhΠn5

d−→ N
(
0, σ2

w

)
. (A.12)

Equations (A.10)–(A.12) imply that (4.7) holds. The proof of Theorem 4.2 is completed.

Proof of Theorem 4.3. The proof is similar to the proof of Theorem 4.1 with some modifications.

Let ηt and ηtj, 1 ≤ j ≤ dn, be defined as in the proof of Theorem 4.1 by replacing d by dn, and

η =
(
η1, . . . , ηn

)ᵀ
. Define the n× dn matrices by

Mn =

 m1(X11) · · · mdn(X1dn)
...

...
...

m1(Xn1) · · · mdn(Xndn)

 , M̂n =

 m̂1(X11) · · · m̂dn(X1dn)
...

...
...

m̂1(Xn1) · · · m̂dn(Xndn)

 .
Letting ŵ(n) and w∗

o(n) be defined as ŵ and w∗
0 with d replaced by dn, we can easily show that

AnΣ
−1/2
n (w)

[
ŵ(n)− w∗

0(n)
]

= AnΣ
−1/2
n (w)

(
M̂ᵀ

nM̂n

)−1

M̂ᵀ
n(Mn − M̂n)w

∗
o(n)

+AnΣ
−1/2
n (w)

(
M̂ᵀ

nM̂n

)−1

M̂ᵀ
nη

=: Πn6 +Πn7,
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where, as in Theorem 4.3, An is a p×dn matrix such that AnA
ᵀ
n tends to a p×p nonnegative matrix

A∗, and Σn(w) = Λ−1
n ΣnΛ

−1
n , Λn and Σn are defined as Λ and Σ with d replaced by dn.

We first derive the leading term of Πn6. Using (A.1) in the proof of Theorem 4.1, we have,

uniformly for x ∈ Ω and 1 ≤ j ≤ dn,

m̂j(x)−mj(x) =

n∑
t=1

ηtjK
(Xtj−x

h

)
n∑

t=1

K
(Xtj−x

h

) +
(m ∗ f)(γ)j (x)

fj(x)
µγh

γ(1 + oP (1)). (A.13)

Note that

M̂ᵀ
nM̂n = Mᵀ

nMn +
(
M̂n −Mn

)ᵀ
Mn +Mᵀ

n

(
M̂n −Mn

)
+
(
M̂n −Mn

)ᵀ(
M̂n −Mn

)
. (A.14)

It is easy to see that
1

n
Mᵀ

nMn
P∼ Λn, (A.15)

which implies that the smallest eigenvalue of 1
n
Mᵀ

nMn is larger than 1
2
λmin in probability, where

λmin > 0 is the smallest eigenvalue of Λn. As dn(τn + hγ) = o(1), we can show that the maximum

eigenvalues (in absolute value) for the last three matrices (divided by n) on the right hand side of

(A.14) tends to zero. Hence, Mᵀ
nMn is leading term of M̂ᵀ

nM̂n, which leads to

1

n
M̂ᵀ

nM̂n
P∼ Λn. (A.16)

The above result can be seen as an extension of (A.3). We thus have

Πn6
P∼ AnΣ

−1/2
n (w)

(
Mᵀ

nMn

)−1

Πn8, (A.17)

where Πn8 is defined as Πn3 with d replaced by dn. Then, by (A.5) and (A.6), similar to the proof of

(A.7), we can prove that

Πn8 = −
[ n∑

t=1

η∗t1, . . . ,
n∑

t=1

η∗tdn

]ᵀ
+OP (ndnh

γ), (A.18)

where η∗tj =
∑dn

k=1wo,kηtkβjk(Xtk) is defined as that in the proof of Theorem 4.1 to avoid the abuse

of notations. By (A.17) and (A.18), we have

Πn6 = −AnΣ
−1/2
n (w)

(
Mᵀ

nMn

)−1
[ n∑

t=1

η∗t1, . . . ,
n∑

t=1

η∗tdn

]ᵀ
+OP (

√
dnh

γ). (A.19)
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We next consider Πn7. Note that, by (A.16),

Πn7 = AnΣ
−1/2
n (w)

(
M̂ᵀ

nM̂n

)−1M̂ᵀ
nη

= AnΣ
−1/2
n (w)

(
Mᵀ

nMn

)−1
[
Mᵀ

nη +
(
M̂n −Mn

)ᵀ
η
]
(1 + oP (1)).

As in the proof of Theorem 4.1, we can also show that the leading term of Πn7 is
(
Mᵀ

nMn

)−1Mᵀ
nη

by noting that ndnh
2γ = o(1) and ndnh

− p0+2
p0 v2(rn) = o(1) and taking Mn = o(

√
nh/dn). We thus

have

Πn7 =
(
Mᵀ

nMn

)−1( n∑
t=1

η′t1, . . . ,

n∑
t=1

η′tdn
)ᵀ
(1 + oP (1)). (A.20)

Then, by (A.19), (A.20) and following the proof of Lemma B.4 in Appendix B, we can prove

(4.10). Then, the proof of Theorem 4.3 is completed.

B Technical lemmas

We next give some technical lemmas, which have been used to prove the main results in Appendix

A. Define

Wnj(xj) =
1

nhj

n∑
t=1

YtK
(Xtj − xj

hj

)
.

Lemma B.1. Suppose that the assumptions 1–4 are satisfied. Then, we have, uniformly for 1 ≤ j ≤ d,

sup
xj∈Ωj

∣∣Wnj(xj)− E [Wnj(xj)]
∣∣ = OP (τn) , (B.1)

where τn =
√

logn
nh

is defined as in Section 4.1.

Proof. The uniform consistency result (B.1) follows directly from Theorem 3.1 in Li et al (2012).

The next lemma, which can be found in Bradley (1983), will help us use coupling technique to

get the order of the nonparametric type U-statistic, which is crucial for the proofs of Theorems 4.1

and 4.3.

Lemma B.2. Let X and Y be real-valued random variable and Rp-valued random vector, p ≥ 1.

Assume that E|X|γ < ∞ and let 0 < ϵ ≤ E
1
γ |X|γ. Then, there exists (after replacing the underlying
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probability space by a bigger one if necessary) a random variable X∗ such that (i) X∗ has the same

distribution as X, and is independent of Y ; and (ii)

P (|X −X∗| ≥ ϵ) ≤ 18
(E 1

γ |X|γ

ϵ

) γ
2+γ

α
2γ
2+γ (X,Y ). (B.2)

For j = 1, . . . , d, define

Unj =
n∑

t=1

∑
s ̸=t

ηtηsjK
(Xsj −Xtj

hj

)
, (B.3)

U
(rn)

nj =
n∑

t=1

∑
s̸=t

η
(rn)
t η

(rn)
sj K

(X(rn)
sj −X

(rn)
tj

hj

)
, (B.4)

where η
(rn)
t and η

(rn)
tj are defined as Y

(rn)
t and X

(rn)
t in Definition 1.1. By the definitions of ηt and

ηtj, it is easy to prove that

E
(
|ηt − η

(rn)
t |ν +

d∑
j=1

|ηtj − η
(rn)
tj |ν

)
≤ Cvν(rn), 0 ≤ ν ≤ p0, (B.5)

where C is a positive constant. We next calculate the orders for both Unj and U
(rn)

nj .

Lemma B.3. Suppose that the conditions of Theorem 4.1 are satisfied. Then, we have

max
1≤j≤d

E
[(
U

(rn)

nj

)2] ≤ C∗n
2M2

nh, (B.6)

where C∗ is a positive constant and Mn ≥ nζ for some ζ > 0. Furthermore, we have

max
1≤j≤d

∣∣Unj

∣∣ = OP

(
nMnh

1/2 + n2h
p0−2
2p0 v

1/2
2 (rn)

)
. (B.7)

Proof. Observe that

n∑
t=1

∑
s̸=t

ηtηsjK
(Xsj −Xtj

hj

)
−

n∑
t=1

∑
s ̸=t

η
(rn)
t η

(rn)
sj K

(X(rn)
sj −X

(rn)
tj

hj

)
=

n∑
t=1

∑
s ̸=t

(
ηt − η

(rn)
t

)
ηsjK

(Xsj −Xtj

hj

)
+

n∑
t=1

∑
s ̸=t

η
(rn)
t

(
ηsj − η

(rn)
sj

)
K
(Xsj −Xtj

hj

)
=: Ξn1(j) + Ξn2(j). (B.8)
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Letting Bn = h
− 1

p0
j , by (B.5) and some standard calculations, we have

E
[∣∣Ξn1(j)

∣∣] = n∑
t=1

∑
s ̸=t

E
[
|ηt − η

(rn)
t ||ηsj|K

(Xsj −Xtj

hj

)]
=

n∑
t=1

∑
s ̸=t

E
[
|ηt − η

(rn)
t ||ηsj|I

(
|ηsj| ≤ Bn

)
K
(Xsj −Xtj

hj

)]
+

n∑
t=1

∑
s ̸=t

E
[
|ηt − η

(rn)
t ||ηsj|I

(
|ηsj| > Bn

)
K
(Xsj −Xtj

hj

)]
= O

(
n2Bnv

1/2
2 (rn)h

1/2 + n2B
− p0−2

2
n v

1/2
2 (rn)

)
= O

(
n2h

p0−2
2p0 v

1/2
2 (rn)

)
(B.9)

uniformly for 1 ≤ j ≤ d, where I(·) is the indicator function. Analogously, we can also show that

E (|Ξn2(j)|) = O
(
n2h

p0−2
2p0 v

1/2
2 (rn)

)
(B.10)

uniformly for 1 ≤ j ≤ d.

By (B.6), (B.8)–(B.10), we can prove (B.7).

We next give the detailed proof of (B.6). By standard calculation, we have

E
[(
U

(rn)

nj

)2]
=

n∑
t1=1

n∑
t2=1

∑
s1 ̸=t1

∑
s2 ̸=t2

E
[
η
(rn)
t1 η

(rn)
t2 η

(rn)
s1j

η
(rn)
s2j

×K
(X(rn)

s1j
−X

(rn)
t1j

hj

)
K
(X(rn)

s2j
−X

(rn)
t2j

hj

)]
. (B.11)

Without loss of generality, we only consider the case of t1 < t2 < s1 < s2. Let η
(rn)
t1∗ be the random

variable, which has the same distribution of η
(rn)
t1 but independent of

(
η
(rn)
t2 , η

(rn)
s1j

, η
(rn)
s2j

)ᵀ

. Letting

X = η
(rn)
t1 , Y =

(
η
(rn)
t2 , η

(rn)
s1j

, η
(rn)
s2j

)ᵀ

and X∗ = η
(rn)
t1∗ in Lemma B.2, it is easy to show that

E
[
η
(rn)
t1∗ η

(rn)
t2 η

(rn)
s1j

η
(rn)
s2j

K
(X(rn)

s1j
−X

(rn)
t1j

hj

)
K
(X(rn)

s2j
−X

(rn)
t2j

hj

)]
= 0. (B.12)

Letting

∆t1,t2,s1,s2 = η
(rn)
t1 η

(rn)
t2 η

(rn)
s1j

η
(rn)
s2j

− η
(rn)
t1∗ η

(rn)
t2 η

(rn)
s1j

η
(rn)
s2j

,
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by (B.12), we have

E
[(
U

(rn)

nj

)2]
= C

{ n∑
t1=1

t1+Mn∑
t2=t1+1

n∑
s1=t2+1

n∑
s2=s1+1

E
[
η
(rn)
t1 η

(rn)
t2 η

(rn)
s1j

η
(rn)
s2j

×K
(X(rn)

s1j
−X

(rn)
t1j

hj

)
K
(X(rn)

s2j
−X

(rn)
t2j

hj

)]
+

n∑
t1=1

n∑
t2=t1+Mn+1

n∑
s1=t2+1

n∑
s2=s1+1

E
[
∆t1,t2,s1,s2

×K
(X(rn)

s1j
−X

(rn)
t1j

hj

)
K
(X(rn)

s2j
−X

(rn)
t2j

hj

)]}
=: Ξn3(j) + Ξn4(j). (B.13)

For ϵ > 0, let

∆t1,t2,s1,s2 = ∆t1,t2,s1,s2I
(
|η(rn)t1 − η

(rn)
t1∗ | < ϵ

)
and

∆̃t1,t2,s1,s2 = ∆t1,t2,s1,s2I
(
|η(rn)t1 − η

(rn)
t1∗ | ≥ ϵ

)
.

It is easy to see that

Ξn4(j) = C
{ n∑

t1=1

n∑
t2=t1+Mn+1

n∑
s1=t2+1

n∑
s2=s1+1

E
[
∆t1,t2,s1,s2K

(X(rn)
s1j

−X
(rn)
t1j

hj

)
K
(X(rn)

s2j
−X

(rn)
t2j

hj

)]
+

n∑
t1=1

n∑
t2=t1+Mn+1

n∑
s1=t2+1

n∑
s2=s1+1

E
[
∆̃t1,t2,s1,s2K

(X(rn)
s1j

−X
(rn)
t1j

hj

)
K
(X(rn)

s2j
−X

(rn)
t2j

hj

)]}
=: Ξn5(j) + Ξn6(j). (B.14)

Note that uniformly for 1 ≤ j ≤ d,

Ξn5(j) = O
(
ϵn4h2

)
. (B.15)

On the other hand, by Lemma B.2, we have, uniformly for 1 ≤ j ≤ d,

Ξn6(j) = O
(
n3ϵ

− p0−2
p0

∞∑
t=Mn

α
p0−2
p0+1 (t)

)
. (B.16)

By (B.15), (B.16) and taking ϵ = (nh2)
− p0

2(p0−1)
[ ∞∑
t=Mn

α
p0−2
p0+1 (t)

] p0
2(p0−1) , we have

Ξn4(j) = O
(
n4h2

(
nh2
)− p0

2(p0−1)

[ ∞∑
t=Mn

α
p0−2
p0+1 (t)

] p0
2(p0−1)

)
= o(n2M2

nh) (B.17)
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uniformly for 1 ≤ j ≤ d, as the α-mixing coefficient decays at the geometric rate and Mn ≥ nζ ,

where ζ > 0.

On the other hand, note that

Ξn3(j) = C
{ n∑

t1=1

t1+Mn∑
t2=t1+1

n∑
s1=t2+1

s1+Mn∑
s2=s1+1

E
[
η
(rn)
t1 η

(rn)
t2 η

(rn)
s1j

η
(rn)
s2j

×K
(X(rn)

s1j
−X

(rn)
t1j

hj

)
K
(X(rn)

s2j
−X

(rn)
t2j

hj

)]
+

n∑
t1=1

n∑
t2=t1+Mn

n∑
s1=t2+1

n∑
s2=s1+Mn+1

E
[
η
(rn)
t1 η

(rn)
t2 η

(rn)
s1j

η
(rn)
s2j

×K
(X(rn)

s1j
−X

(rn)
t1j

hj

)
K
(X(rn)

s2j
−X

(rn)
t2j

hj

)]}
.

Similarly to the calculation of Ξn4(j), we can also show that

Ξn3(j) = O
(
n2M2

nh
)
+ o

(
n2M2

nh
)

(B.18)

uniformly for 1 ≤ j ≤ d.

Then, (B.6) follows from (B.13), (B.17) and (B.18). Then, we have completed the proof of Lemma

B.3.

Lemma B.4. Suppose that the conditions of Theorem 4.1 are satisfied. Then, we have

1√
n
Vn

d−→ N
(
0,Σ

)
, (B.19)

where Σ is defined in Section 4.1 and

Vn =
[ n∑

t=1

(η′t1 − η∗t1), . . . ,
n∑

t=1

(η′td − η∗td)
]ᵀ
.

Proof. For 1 ≤ j ≤ d, let ξtj = η′tj − η∗tj and

ξ
(rn)
tj = mj(X

(rn)
tj )η

(rn)
t −

d∑
k=1

wo,kη
(rn)
tk βjk(X

(rn)
tk ).

Note that

n∑
t=1

ξtj =
n∑

t=1

[
ξ
(rn)
tj − E(ξ

(rn)
tj )

]
+

n∑
t=1

(
ξtj − ξ

(rn)
tj

)
+

n∑
t=1

[
E(ξtj)− E(ξ

(rn)
tj )

]
=:

9∑
k=7

Ξnk(j). (B.20)
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By Definition 4.1 and the fact that nv2(rn) = o(1) implied by (4.5), we can prove that

Ξn8(j) + Ξn9(j) = nv
1/2
2 (rn) = oP (

√
n) (B.21)

uniformly for 1 ≤ j ≤ d.

By (B.21), we have

Vn =
{ n∑

t=1

[
ξ
(rn)
t1 − E(ξ

(rn)
t1 )

]
, . . . ,

n∑
t=1

[
ξ
(rn)
td − E(ξ

(rn)
td )

]}ᵀ

+ oP (
√
n) = V (rn)

n + oP (
√
n). (B.22)

Then, by Theorem 1.7 in Bosq (1998), we have

1√
n
V (rn)
n

d−→ N
(
0,Σ(rn)

)
, (B.23)

where

Σ(rn) =
∞∑

k=−∞

Cov(ξ
(rn)
0 , ξ

(rn)
k ), ξ

(rn)
t =

(
ξ
(rn)
t1 , . . . , ξ

(rn)
td

)ᵀ

.

Observe that

∞∑
k=1

Cov(ξ
(rn)
0 , ξ

(rn)
k ) =

M∗
n∑

k=1

Cov(ξ
(rn)
0 , ξ

(rn)
k ) +

∞∑
k=M∗

n+1

Cov(ξ
(rn)
0 , ξ

(rn)
k ), (B.24)

where M∗
n = n

1
2h

− p0+2
2p0 .

As the α-mixing coefficient decays at the geometric rate, we can prove that

∞∑
k=M∗

n+1

Cov(ξ
(rn)
0 , ξ

(rn)
k ) = o(1), (B.25)

as rn = o(M∗
n) by the second term in Assumption 4 (ii). Meanwhile, by Definition 1.1 and (4.5) in

Assumption 4, we can also prove that

M∗
n∑

k=1

Cov(ξ
(rn)
0 , ξ

(rn)
k ) =

M∗
n∑

k=1

Cov(ξ0, ξk) +O
(
n1/2h

− p0+2
2p0 v

1/2
2 (rn)

)
=

∞∑
k=1

Cov(ξ0, ξk) + o (1) . (B.26)

Similarly, we also have

Var(ξ
(rn)
0 ) = Var(ξ0) + o(1),

−1∑
k=−∞

Cov(ξ
(rn)
0 , ξ

(rn)
k ) =

−1∑
k=−∞

Cov(ξ0, ξk) + o (1) ,
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which together with (B.24)–(B.26), lead to

Σ(rn) → Σ, as n→ ∞.

Then, the proof of Lemma B.4 is completed.
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