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Abstract

This paper studies identification of latent utility functions in multiple discrete choice models
in which there may be endogenous explanatory variables, that is explanatory variables that are
not restricted to be distributed independently of the unobserved determinants of latent utilities.
The model does not employ large support, special regressor or control function restrictions,
indeed it is silent about the process delivering values of endogenous explanatory variables and
in this respect it is incomplete. Instead the model employs instrumental variable restrictions
requiring the existence of instrumental variables which are excluded from latent utilities and
distributed independently of the unobserved components of utilities.

We show that the model delivers set identification of the latent utility functions and we
characterize sharp bounds on those functions. We develop easy-to-compute outer regions which
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in parametric models require little more calculation than what is involved in a conventional
maximum likelihood analysis. The results are illustrated using a model which is essentially
the parametric conditional logit model of McFadden (1974) but with potentially endogenous
explanatory variables and instrumental variable restrictions.

The method employed has wide applicability and for the first time brings instrumental
variable methods to bear on structural models in which there are multiple unobservables in a
structural equation.

Keywords: Partial identification, random sets, multiple discrete choice, endogeneity, instru-
mental variables, incomplete models.

1 Introduction

This paper develops results on the identification of features of models of choice amongst

multiple, discrete, unordered alternatives. The model we employ allows for the possibility

that explanatory variables are endogenous.

Our model uses the random utility maximizing framework set down in the ground-

breaking work of McFadden (1974). Individuals choose one of y = 1, . . . , M alternatives,

achieving utility Uy = uy (X, Vy) if choice y is made. Individuals observe the utility achieved

from all choices and select the alternative delivering maximum utility. The econometrician

observes the choice made, a realization of a discrete random variable Y , and the explanatory

variables, X. There is interest in the functions u ≡ (u1, . . . , uM) and the distribution of

V ≡ (V1, . . . , VM) and functionals of these features.

In the setup considered by McFadden the explanatory variables X and unobservable util-

ity shifters V are independently distributed. Our model relaxes this restriction, permitting

components of X to be endogenous. For example in a travel demand context one of the

explanatory variables might be distance to work. This could be endogenous if individuals

choose where to live based in part on unobserved tastes for varieties of transport, for in-

stance because they dislike driving through rush-hour traffic and prefer public transit. We

bring a classical instrumental variable (IV) restriction on board, requiring that there exist

observed variables Z such that Z and V are independently distributed. Components of Z

may either correspond to components of X thought to be exogenous, or may be excluded

from the utility functions u1, . . . , uM . In the travel demand setting excluded components of

Z may be variables that influence choice of residential location but have no other role in

determining propensities to travel by alternative transport modes. We show that this model
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is set identifying and we characterize the identified set of utility functions and distributions

of unobservable utility shifters.

In McFadden (1974) the distribution of V is fully specified. The elements of V are

independently and identically distributed Type 1 extreme value variates leading to the con-

ditional logit model. Since that seminal contribution there have been many less restrictive,

parametric specifications, as in for example the conditional probit model of Hausman and

Wise (1978) which gives V a multivariate normal distribution, and the nested logit model

of Domencich and McFadden (1975)1 in which V has a Generalized Extreme Value distri-

bution. Our results apply in all these cases and our development is quite general, delivering

characterizations of the identified set even in the absence of parametric restrictions. In some

illustrative calculations we work with McFadden’s specification which produces a conditional

logit model when the explanatory variables are restricted to be exogenous.

A novel feature of our results is that they demonstrate that instrumental variable models

can have identifying power in cases in which there are multiple unobservables appearing in

structural functions. Hitherto IV models have required unobservables to be scalar - see for

example Newey and Powell (2003) Chernozhukov and Hansen (2005), and Chesher (2010).

A general approach to identification in models with multiple unobservables is set out in

Chesher, Rosen, and Smolinski (2011).

The IV model studied here is unrestrictive relative to many other models of multiple

discrete choice permitting endogeneity that have been used till now. In our IV model there

is no restriction placed on the process generating the potentially endogenous explanatory

variables. In this sense the model is incomplete. Because of this incompleteness the model

is generally not point identifying. The model does not employ large support conditions or

special regressors and there need not be alternative-specific covariates. Explanatory variables

and instrumental variables can be continuous or discrete. Because our model’s restrictions

are weak the model can be credibly applied in a wide variety of situations.

Here is a brief outline of the main results of the paper.

1.1 The main results

The set of utility functions and distributions of latent variables identified by our IV multiple

discrete choice model is characterized by a system of inequalities which it is convenient

to express in terms of a conditional containment functional associated with a set-valued

1See also Ben-Akiva (1973) and McFadden (1978).
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random variable, or random set, Tv(Y, X; u). A realization of one of these random sets,

Tv(y, x; u), is the set of values of unobserved utility shifters, V = (V1, ..., VM) that leads to a

particular realization y of the choice variable Y when the explanatory variables X take the

value x and the utility functions u govern choices. The conditional containment functional

Pr[Tv(Y, X; u) ⊆ S|z] gives the probability conditional on instrumental variable Z = z that

Tv(Y,X; u) is a subset of the set S.

We show that a utility function u and a distribution PV of unobservable utility shifters

lies in the identified set associated with conditional distributions of Y and X given Z, F 0
Y X|Z ,

if and only if

PV (S) ≥ Pr0[Tv(Y,X; u) ⊆ S|z]

for almost every z in the support of Z and all closed sets S on the support of V . Here Pr0

indicates probabilities taken with respect to F 0
Y X|Z and PV (S) is the probability mass the

distribution PV assigns to the set S. By the “identified set” we mean the set comprising all

and only admissible duples (u, PV ) which deliver the distributions F 0
Y X|Z for almost every z

in the support of Z.2

We show that the only sets S that need to be considered when judging whether a par-

ticular pair (u, PV ) are in the identified set are unions of sets on the support of Tv(Y, X; u),

with the property that the union of the interiors of these sets is a connected set. When X is

discrete this implies that the identified set is characterized by a finite number of inequalities,

and an algorithm is provided enabling computation of the collection of such sets and their

corresponding moment inequalities.

We also develop characterizations of two outer regions within which the identified set

is guaranteed to lie. Even if interest ultimately lies in the identified set, computation of

these outer regions is generally a simpler task and may therefore be a useful first step

in computation of the identified set. Alternatively, an outer region may be sufficiently

informative in the context of any particular model to address the question at hand.

Consider a model which specifies P ∗
V as the distribution of V and utility functions u∗

for which p(y, x; u∗, P ∗
V ) is the probability that Y = y given X = x when V and X are

independently distributed. In the classical conditional logit model with utility functions

u∗y(x) = x′β∗y

2Some authors term this the “sharp identified set”.
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the probabilities involved are the following well known expressions.

p(y, x; u∗, P ∗
V ) =

exp(x′β∗y)

1 +
∑M−1

y′=1 exp(x′β∗y′)
.

Our first outer region associated with conditional distributions of Y and X given Z,

F 0
Y X|Z , in the case of discrete X, contains all utility functions u∗ and distributions P ∗

V such

that the inequalities:

p(y, x; u∗, P ∗
V ) ≥ max

z∈Z
{Pr0[Y = y ∧X = x|Z = z]} (1.1)

hold for all y and x in the support of Y and X. Here Z denotes the support of the instru-

mental variables. Any researcher in a position to calculate a parametric likelihood function

when explanatory variables X are assumed exogenous is able to calculate our outer regions

directly. In the conditional logit case this outer region is convex which simplifies computa-

tion. Our second outer region provides a refinement of this region that can be informative

with discrete and continuous X.

1.2 Related results

The prior literature on multinomial choice models is substantial. Only a small subset of

this literature has allowed for endogeneity. An important early contribution is in Matzkin

(1993) where it is shown that, if the unobservable components of utility from the different

alternatives are identically distributed and conditionally independent of one another, and if

there is an alternative-specific regressor with large support, then the latent utility functions

can be nonparametrically identified. Lewbel (2000) shows how a special regressor can be used

to achieve point-identification in various qualitative response models, including multinomial

choice models where the joint distribution of the error and regressors is independent of the

special regressors conditional on the instrument. Some recent papers have provided sufficient

conditions for point-identification under alternative assumptions. This includes the use of

triangular structures as in Petrin and Train (2010), who provide a control function approach,

and Fox and Gandhi (2009), who provide sufficient conditions for identification in a fully

nonparametric recursive setting. Chiappori, Komunjer, and Kristensen (2011) provide an

alternative route to nonparametric identification, relying on conditional independence and

completeness conditions that differ from the marginal independence restrictions imposed

here. In limited dependent variables models with simultaneity, Matzkin (2012) builds on
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the results of Matzkin (2008) to provide conditions for the nonparametric identification

of structural functions and the distribution of unobserved heterogeneity when there are

exogenous regressors with large support.

Also related is the recent literature on the estimation of demand for differentiated prod-

ucts by means of random coefficient discrete-choice models pioneered by Berry, Levinsohn,

and Pakes (1995). This approach uses the insight of Berry (1994) to allow for the endogene-

ity of prices. The setting in which this method is applied differs from ours in that demand

estimation is carried out on market-level data that consists of a large number of markets.

Berry and Haile (2010) and Berry and Haile (2009) establish conditions for nonparamet-

ric identification, the latter when micro-level data is also available, as in Berry, Levinsohn,

and Pakes (2004). The endogenous variable in these models is product price, which varies

across alternatives and markets, but not across individuals. Our model allows endogenous

variables to differ across individuals, and does not require either variables that differ across

alternatives or covariates with large support.

There are antecedents to our work that partially identify quantities of interest in other

models of discrete choice. Chesher (2010) and Chesher and Smolinski (2010) study ordered

discrete outcome models with endogeneity. Those papers provide set identification results for

a single equation specification for an ordered choice, which includes endogenous covariates.

In this paper we focus on choices from unordered sets of alternatives. This differs fundamen-

tally by requiring a utility specification for each of the alternatives. Each utility function

admits an unobservable, and as a consequence the present context is one in which there are

multiple sources of unobserved heterogeneity, rather than a single source. Other research on

partially-identifying models of multinomial response includes Manski (2007) and Beresteanu,

Molchanov, and Molinari (2011), although the models studied and the mechanisms by which

partial identification is obtained in these papers are quite distinct. Manski (2007) provides

bounds on predicted choice probabilities from counterfactual choice sets using variation in

choices made by individuals who previously faced heterogeneous choice sets. Beresteanu,

Molchanov, and Molinari (2011) provide sharp bounds on the parameters of multinomial

response model with interval data on regressors, demonstrating general identification results

derived from random set theory. Papers with set identifying results for parameters of binary

choice models include Manski and Tamer (2002), Magnac and Maurin (2008), and Komarova

(2007).

To establish that our bounds are sharp we make use of important results from random

set theory, in particular Artstein’s inequality (Artstein (1983)). Such methods have been
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previously used to establish set identification in other contexts by Beresteanu, Molchanov,

and Molinari (2011), Galichon and Henry (2011), and Beresteanu, Molchanov, and Molinari

(2012). Beresteanu, Molchanov, and Molinari (2011) use the Aumann expectation of set-

valued random variables to tractably characterize the identified set in models with convex

moment predictions. Their characterization is shown to apply rather generally, covering as

examples models of games with multiple equilibria, and best linear prediction and multino-

mial choice models with interval data. Galichon and Henry (2011) characterize the identified

set of structural features in econometric models of normal form games through the use of

inequalities generated by the Choquet capacity functional. They provide several approaches

to facilitate the computational tractability of this approach, with further results pertain-

ing to optimal transportation given in Ekeland, Galichon, and Henry (2010). Beresteanu,

Molchanov, and Molinari (2012) illustrate how random set theory can be employed across

a variety of models, paying particular attention to the selection problem in the analysis of

treatment effects and best linear prediction, and discussing the relative merits of the capacity

functional and Aumann expectation approaches in different contexts.

Our use of random set theory for identification analysis of an instrumental variable model

of multiple discrete choice is novel, though the main device employed, Artstein’s inequality,

has been used in the above papers. Unlike previous approaches, our construction makes

use of random sets defined on the space of unobservables, rather than on the outcome

space. In models of games with strategic interactions among agents that can yield multiple

mixed or pure-strategy equilibria, and that have been the focus of much of the previous

research, exogenous variation is obtained from agents’ observed payoff shifters. In our setup

the choice problem entails a single decision maker, and exogenous variation is provided by

instruments that are excluded from agents’ utility functions and independent of unobserved

heterogeneity. Moreover, our use of random set theory provides a characterization of the

identified set that applies in fully nonparametric, semi-parametric, and parametric models.

We employ the notion of core-determining classes defined in Galichon and Henry (2011)

to refine our characterization of the identified set. They show how this can be done in

econometric models of games under a monotonicity condition which is not satisfied in our

model. Thus, we provide a novel algorithm for the construction of core-determining classes

in our setup.

There are now a variety of methods for estimation and inference available when model

parameters are set identified. We show in this paper that the identified set delivered by our

model, and the outer regions we provide, can be represented by a set of conditional moment
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inequalities. Papers that provide methods for estimation and inference on parameters char-

acterized by conditional moment inequalities are therefore applicable. For instance, when

covariates and instruments are discrete the identified set is characterized by a finite number of

moment inequalities, and one may apply the methods proposed by Chernozhukov, Hong, and

Tamer (2007), Beresteanu and Molinari (2008), Romano and Shaikh (2008), Rosen (2008),

Galichon and Henry (2009), Bugni (2010), or Canay (2010), among others. When covariates

or instruments are continuous, there are infinitely many moment inequalities to incorporate,

and one may employ for example the methods of Andrews and Shi (2009), Chernozhukov,

Lee, and Rosen (2009), Kim (2009), or Menzel (2009) for estimation and inference.

1.3 Plan of the paper

The paper proceeds as follows. Section 2 defines the instrumental variable multiple discrete

choice model with which we work throughout.

Section 3 develops our main identification results. In Section 3.1 we provide a theorem

that characterizes the identified set of structural functions applicable in both parametric and

nonparametric models. In Section 3.2 we show that when X and V are independent, equiv-

alently if Z = X, our characterization reduces to a system of equalities for the conditional

probabilities Pr0 [Y = y|X = x] for all (y, x) ∈ Supp(Y, X), which are precisely likelihood

contributions if the model is parametrically specified. In Section 3.3 we provide a theorem

that defines a minimal system of “core determining” inequalities that are all that need to be

considered when calculating the identified set. In Section 3.4 we provide two easy-to-compute

outer regions.

In Section 4 the results are illustrated for three-choice models, core determining inequal-

ities are listed for the binary explanatory variable case and identified sets and outer regions

are calculated and displayed for an instrumental variable version of the conditional logit

model studied by McFadden (1974). Section 5 concludes.

2 The Instrumental Variable Model

We begin with a model that allows utility functions to be nonseparable in components of

unobserved heterogeneity, and then specialize our results to the separable case, on which

much of the previous literature on models of multiple discrete choice has focused.
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2.1 Nonseparable Utility

An individual makes one choice from M alternatives obtaining utility Uy from alternative y

as follows.

Uy = uy (X,Vy) y ∈ Y ≡ {1, 2, . . . , M}, (2.1)

where for each y ∈ Y , Uy : Supp(X, Vy) → R, where Supp(A,B) denotes the joint support of

any two random vectors A, B. The elements of X are observed variables and the elements of

V are unobservable variables that capture heterogeneity in tastes across individuals. Thus

the specification of utility from each alternative y ∈ Y is dependent upon an alternative-

specific unobservable Vy. Each utility function uy (·, ·), is assumed monotone in its second

argument, with strict monotonicity imposed for all y < M , as we formalize in Restriction

A5 below. In Section 2.2 we consider the common special case where the utility functions

are additively separable in unobservables.

The elements of Z are observable variables which are required to be jointly independently

distributed with V ≡ (V1, ..., VM).

Individuals are utility maximizers, observing the value of U and choosing an alternative

that gives the highest utility, so that

Y ∈ hv (X, V ; u) ≡ arg max
y∈Y

uy (X,Vy) , (2.2)

where U ≡ (U1, . . . UM). This formulation allows for the possibility of multiple utility-

maximizing choices, and in this case remains agnostic as to the determination of Y among

these. However, due to monotonicity of the utility functions uy (·, ·) in their second argument

coupled with Restriction A4 below, ties in the value delivered by any two alternatives occur

with probability zero, and the utility-maximizing alternative is unique with probability one

conditional on any realization of (X,Z). We impose sufficient conditions for this both for

convenience and because it is common in models of multiple discrete choice, but the tools

of random set theory we employ can be applied to models where outcome variables are not

uniquely determined, see e.g. Beresteanu, Molchanov, and Molinari (2011) and Galichon

and Henry (2011) and the present setup can be easily modified to accommodate ties in

utility-maximizing choices.3 The model is comprised of the following restrictions.

3Specifically Theorem 1 goes through without modification if the conditional distribution of V |X,Z is
not absolutely continuous with respect to Lebesgue measure, while the results on core-determining class in
Section 3.3 would require some modification. Chesher and Rosen (2011) consider simultaneous equations
models of discrete choice for which multiple or indeed no solutions are feasible. This raises further issues of
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Restriction A1: (Y, X, Z, V ) are defined on a probability space (Ω,F ,P), where F contains

the Borel sets. The support of Y is a finite set Y ≡ {1, 2, ..., M}, and the supports of X

and Z are X and Z, respectively. The joint support of (Y,X, Z) is a (possibly non-strict)

subset of Y × X × Z. For any (x, z) on the support of (X,Z) the support of V conditional

on X = x and Z = z, denoted Supp(V |X = x, Z = z) is an open subset of RM with strictly

positive Lebesgue measure. Likewise the support of the marginal distribution of V , denoted

V , is an open, positive Lebesgue measure subset of RM .

Restriction A2: For each value z ∈ Z there is a conditional distribution of (Y, X) given

Z = z, F 0
Y X|Z(y, x|z). The associated conditional distribution of X given Z = z is denoted

by F 0
X|Z(x|z). The conditional distributions F 0

Y X|Z(y, x|z) and F 0
X|Z(x|z) are identified by

the sampling process. The marginal distribution of Z is either identified by the sampling

process or known a priori.

Restriction A3: Given (V, X, Z), Y is determined by (2.1) and (2.2).

Restriction A4: For any (x, z) on the support of (X, Z), the conditional distribution of

V | (X = x, Z = z) is absolutely continuous with respect to Lebesgue measure with every-

where positive density on its support, Supp(V |X = x, Z = z) ⊆ RM . The marginal distri-

bution of V belongs to a specified family of distributions PV .

Restriction A5: The utility functions u = {u1, ..., uM} belong to a specified family of

functions U such that for all x ∈ X , uy (x, ·) is continuous for all y ∈ Y , is strictly monotone

increasing for all y < M , and uM (x, ·) is weakly monotone increasing.

Restriction A6: V and Z are stochastically independent.

Restriction A1 formally defines the probability space on which (Y, X, Z, V ) lives. It also

provides some weak conditions on their support. The support of (Y, X, Z) is not required to

be the product of their marginal supports. The support of unobservable V may vary when

conditioning upon different realization of X and Z, but is required to be an open, positive

Lebesgue measure subset of RM . This includes the typical case where Supp(V |X = x, Z =

z) = RM for all (x, z).

In our analysis of the identifying power of this model we determine the set of observa-

tionally equivalent structures which are admitted by the model and deliver the probability

distribution F 0
Y X|Z(y, x|z) of Restriction A2. Throughout the notation “Pr0” will indicate

probabilities calculated using these distributions. Under Restriction A2 the distribution of Z

is either identified or a priori known, for example if individual observations are intentionally

drawn in accord with a particular distribution of Z. All statements regarding almost every

coherence and completeness that are logically distinct from the study of multiple discrete choice.
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z ∈ Z are made with respect to this distribution.

Restriction A6 requires V and the variables Z to be independently distributed. Of course

this restriction has no force unless Z has some role in the determination of X. The model

employed here is silent about this role unlike other models used in the analysis of multiple

discrete choice with potentially endogenous explanatory variables.

In Restriction A4 the family of distributions PV can be more or less constrained in

particular applications allowing consideration of nonparametric or parametric specifications.

Restriction A5 similarly allows consideration of parametric and nonparametric specifications

of utility functions. Note that although we do not assume the existence of alternative-specific

covariates in our analysis, this restriction is fully compatible with these, as it allows for the

possibility that only one of the utility functions uy (·) varies with a particular subset of

components of X. Moreover, we impose strict monotonicity of all but one of the utility

functions in its corresponding unobservable, and weak monotonicity of the remaining utility

function in its unobservable. Combined with Restriction A4 this guarantees that conditional

on any realization of (X, Z) there is a unique utility maximizing choice of Y almost surely.

2.2 Separable Utility

A common restriction in analyses of multiple discrete choice is additive separability of the

utility functions in unobservable components. This entails a restriction on the class of utility

functions U , formally expressed below as Restriction A5*. Since the optimal selection of

alternatives is entirely determined by utility differences it is convenient here to impose the

normalization that uM (x) = 0 for all x ∈ X .

Restriction A5* (Additive Separability): Restriction A5 holds with the added restriction

that for any u ∈ U , uy (X, Vy) ≡ uy (X) + Vy where for each y ∈ Y , uy : X → R, and where

the normalization uM (X) = 0 is imposed.

Two popular examples of models that satisfy additive separability, each placing different

sets of restrictions on the family of distributions PV are the following.

1. In an instrumental variable (IV) extension of McFadden’s (1974) conditional logit

model there is just one distribution in the family PV , namely the distribution in which

the elements of V are mutually independently distributed with common extreme value

distribution function as follows.

Pr[
∧
y∈Y

(Vy ≤ vy)] =
∏
y∈Y

exp(− exp(−vy)) (2.3)
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In McFadden’s (1974) model the class of utility functions U is restricted to the para-

metric family in which uy(X) ≡ X ′βy for y ∈ Y and each vector βy is nonstochastic.

2. The same restriction on U applies in an IV generalization of the conditional probit

model studied in Hausman and Wise (1978) which specifies PV as a parametric family

of multivariate normal, N(0, Σ), distributions with a suitable normalization of Σ.

Note that unlike the classical conditional logit and multinomial probit models, the spec-

ifications above do not require X and V to be independently distributed. The specification

of PV restricts the unconditional distribution of V , PV , to be i.i.d. Type I Extreme Value or

multivariate normal, respectively. Due to the independence Restriction A6 the conditional

distribution of V given Z = z is also PV for any instrument value z ∈ Z, but the conditional

distributions of V |X = x or V | (X = x, Z = z) can differ. An implication is that in the

conditional logit model above the components of V need not be independently distributed

conditional on either the realization of X or that of (X, Z). Thus the model need not adhere

to independence of irrelevant alternatives once we condition upon these variables.

Note that with the additively separable specification of utility, utility-maximizing choices

can be deduced from knowledge of utility functions u, covariates X, and W ≡ (W1, ..., WM−1) ∈
RM−1, where for each y ∈ Y ,

Wy ≡ Vy − VM .

To see why define the utility differences

∆Uy (X, W ) ≡ Uy − UM = uy (X) + Wy.

Then there is a convenient representation for the selection of alternatives equivalent to (2.2)

given by

Y ∈ hw (X, W ; u)

with hw defined as follows.

hw (x,w; u) ≡
{

y ∈ Y : min
y′∈Y

(∆Uy(x,w)−∆Uy′(x,w)) ≥ 0

}
(2.4)

Because the dependence of the structural function hw(X, W ; u) on the utility functions listed

in u is crucial it is made explicit in the notation. Under restriction A4 it continues to hold
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that the set hw (x,W ; u) is singleton with probability one for all x ∈ X .4

The model requires the random components of utility, V , to have a distribution in the

family PV . From the above we see that when Restriction A5* is imposed PV is observationally

equivalent to any P ′
V that produces the same distribution of W , denoted PW . Thus when

additive separability is imposed we let PW denote the family of probability distributions

for the random utility differences, W , implied by PV . In this case our interest is in the

identification of the utility functions listed in u ∈ U and the probability distribution PW ∈
PW that generate the distributions of Restriction A2.5 This reduces by one the effective

dimension of unobserved heterogeneity whose distribution we seek to set-identify. This will

prove convenient for the illustration of three-choice models taken up in Section 4, permitting

representation of sets of unobservables in R2.

3 Identification

3.1 The identified set

We now develop results on the identifying power of the IV model of multiple discrete choice.

The task is to infer what structures are admitted by the model given knowledge of F 0
Y X|Z .

The structures admitted are characterized by a duple, D ≡ (u, PV ), comprising a list of

utility functions, u, and a distribution of random utility shifters, PV .6 To characterize the

identified set for (u, PV ), we consider for any candidate (u, PV ), the probability that the

multivariate unobservable V lies in a collection of test sets. For any such test set S it is

shown that the restrictions of the IV model and knowledge of F 0
Y X|Z combined with the

candidate utility function u are compatible with a collection of upper and lower bounds on

PV (S), the probability that PV assigns to the event {V ∈ S}. The set of (u, Pv) pairs that

satisfy these inequality restrictions taken over any collection of test sets S comprise bounds

on D. We show that taken over a sufficiently rich collection of test sets S the implied bounds

are sharp, delivering the identified set, which we denote D0(Z). In general the collection of

4Note that Restriction A4 implies that the distribution of W conditional on X, Z is absolutely continuous
with respect to Lebesgue measure.

5Note that due to additive separability any PW with density fW is observationally equivalent to any
PV that has density fV (v1, ..., vM ) = fW (v1 − vM , ..., vM−1 − vM ) · fVM

(vm), for any density fVM
(·) on

the support of VM . Thus when additive separability is imposed, knowledge of the identified set for (u, PW )
implies knowledge of the identified set for (u, PV ), and vice-versa, so there is no loss of generality in restricting
attention to PW .

6In additively separable models we can replace V with W defined above and PV with PW , and the
subsequent derivations go through identically.
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all closed sets in V , denoted F (V), is sufficiently rich to characterize the sharp identified set.

In Section 3.3 we show how in the context of any particular model one can characterize a

smaller collection of test sets that are sufficient for characterization of the identified set. We

refer to these collections of test sets as core-determining classes as in Galichon and Henry

(2011).7

Key in what follows are the sets of values of the unobservable variables V that, for a

particular list of utility functions, u, deliver the value y of Y as a utility-maximizing choice

when X = x, defined as follows:

Tv(y, x; u) ≡ {v : y ∈ hv(x, v; u)} = {v : ∀k ∈ Y , uy (x, vy) ≥ uk (x, vk)} .

Note that for any admissible u and each value x, the sets Tv(y, x; u), y ∈ Y form a partition

of RM , ignoring shared boundaries which under Restriction A4 have measure zero according

to PV .

In the additively separable case with Restriction A5* imposed we can likewise define

Tw(y, x; u) ≡ {w : ∀k ∈ Y , uy (x) + wy ≥ uk (x) + wk}
= {(v1 − vM , ..., vM−1 − vM) : v ∈ Tv(y, x; u)} .

Using this set, we can then replace V with W , PV with PW , and V with W ≡ Supp(W ),

and the following derivations go through identically. These sets are illustrated for particular

structural functions in Section 4. Because the derivations are otherwise identical we proceed

in this section with the more general case where only Restriction A5 is imposed. Moreover,

under restriction A5*, one can recover Tv(y, x; u) from knowledge of Tw(y, x; u) through the

relation

Tv(y, x; u) = {(w1 + c, ..., wM−1 + c, c) : w ∈ Tw(y, x; u), c ∈ R} .

Consider now a family of conditional distributions PV |XZ for (x, z) ∈ Supp(X,Z) and

for any test set S ⊆ V let PV |XZ(S|x, z) denote the associated conditional probability of

the event {V ∈ S} given X = x and Z = z. Recall that F 0
X|Z denotes the conditional

distribution functions of X given Z associated with the particular distributions F 0
Y X|Z of

Restriction A2.

We first consider an implication of the IV model’s independence restriction, Restriction

7Throughout we use a calligraphic font, e.g. S, to denote a set and a sans serif font, e.g. K, to denote a
collection of sets.
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A6.

• Independence: The IV model requires V and Z to be independently distributed.

It follows that for a choice PV ∈ PV all associated conditional distributions PV |XZ

that (i) are admitted by the IV model and (ii) can generate the particular probability

distributions of Restriction A2 must satisfy the condition

∫

x∈X

PV |XZ(S|x, z)dF 0
X|Z(x|z) = PV (S) (3.1)

for all values z ∈ Z and test sets S ⊆ V . The left hand side of (3.1) is the conditional

probability PV |Z(S|z) which the independence restriction requires to be invariant with

respect to z.

Now consider observational equivalence conditions which all admissible utility functions

u ∈ U and probability distributions PV ∈ PV must satisfy if they are to be capable of

delivering the probability distributions of Restriction A2.

• Observational equivalence. Since for any value, x, of X, the utility functions u

deliver Y = y uniquely for almost every V ∈ Tv(y, x; u), and for no V /∈ Tv(y, x; u),

there is the requirement that, associated with PV , there are conditional distributions

PV |XZ such that for all (y, x, z) ∈ Supp(Y, X,Z):

PV |XZ(Tv(y, x; u)|x, z) = Pr0[Y = y|X = x, Z = z]. (3.2)

These two implications of the IV model’s restrictions lead to a system of inequalities

which must be satisfied by all admissible duples that deliver the particular distributions of

Restriction A2, that is all duples in the identified set associated with F 0
Y X|Z for z ∈ Z. This

system of inequalities is now derived.

Considering any test set S ⊆ V , equation (3.2) places restrictions on PV |XZ(S|x, z) and

the utility functions u associated with duples in D0(Z).

First, if (3.2) is to be satisfied then the smallest value that PV |XZ(S|x, z) can take is equal

to the sum of the probabilities Pr0[Y = y|X = x, Z = z] associated with all sets Tv(y, x; u)

contained entirely within S. This is expressed in the inequality

PV |XZ(S|x, z) ≥
∑
y∈Y

1[Tv(y, x; u) ⊆ S] Pr0[Y = y|X = x, Z = z] (3.3)

15



which holds for all (x, z) ∈ Supp(X,Z).

Second, for any test set S, the largest value that PV |XZ(S|x, z) can take is equal to the

sum of the probabilities Pr0[Y = y|X = x, Z = z] associated with all sets Tv(y, x; u) that

have a non-null intersection with S. This is expressed in the following inequality which holds

for all (x, z) ∈ Supp(X, Z). The symbol φ denotes the empty set.

PV |XZ(S|x, z) ≤
∑
y∈Y

1[Tv(y, x; u) ∩ S 6= φ] Pr0[Y = y|X = x, Z = z] (3.4)

Marginalizing with respect to X given Z = z on the left and right hand side of the

inequalities (3.3) and (3.4) and simplifying using (3.1) there are the following inequalities.

PV (S) ≥
∫

x∈X

(∑
y∈Y

1[Tv(y, x; u) ⊆ S] Pr0[Y = y|X = x, Z = z]

)
dF 0

X|Z(x|z) (3.5)

PV (S) ≤
∫

x∈X

(∑
y∈Y

1[Tv(y, x; u) ∩ S 6= φ] Pr0[Y = y|X = x, Z = z]

)
dF 0

X|Z(x|z) (3.6)

All duples (u, PV ) in the identified set D0(Z) satisfy these inequalities for all z ∈ Z and

all S ⊆ V . So the inequalities (3.5) and (3.6) obtained as S passes across all test sets S ⊆ V
comprise a system of inequalities that defines at least an outer region for the identified set

of duples. Note that given a choice of u ∈ U with knowledge of the distributions F 0
Y X|Z of

Restriction A2 the right hand sides of these inequalities can be calculated for any test set

S, and for any such S, given a choice PV ∈ PV the left hand sides of the inequalities can

be calculated. We will shortly show that the system of inequalities taken over all S that are

closed subsets of V define the identified set.

To facilitate that development it is convenient to express the inequalities (3.5) and (3.6)

in terms of set valued random variables as in Beresteanu, Molchanov, and Molinari (2011)

and Galichon and Henry (2011).

To this end, define random sets Tv(Y, x; u) and Tv(Y, X; u) as

Tv(Y, x; u) ≡ {v : hv(x, v; u) = Y } ,

and

Tv(Y,X; u) ≡ {v : h(X, v; u) = Y } ,
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which are random closed sets on the probability space (Ω,F ,P) of Restriction A1.8

Probability distributions of random closed sets are completely characterized either by

containment functionals or by capacity functionals, see e.g. Molchanov (2005) Sections 1.1.2

and 1.1.6.9 The containment and capacity functionals of Tv(Y,X; u) conditional on X = x

and Z = z under the particular probability distributions of Restriction A2 are respectively

Pr0 [Tv(Y, X; u) ⊆ S|X = x, Z = z] =
∑
y∈Y

1[Tv(y, x; u) ⊆ S] Pr0[Y = y|X = x, Z = z]

and

Pr0 [Tv(Y, X; u) ∩ S 6= φ|X = x, Z = z] =
∑
y∈Y

1[Tv(y, x; u)∩ S 6= φ] Pr0[Y = y|X = x, Z = z]

which are precisely the expressions on the right hand sides of respectively (3.3) and (3.4).

Similarly the containment and capacity functionals of Tv(Y, X; u) conditional on Z = z

alone, under the particular probability distributions of Restriction A2 are respectively

Pr0 [Tv(y, x; u) ⊆ S|Z = z] =

∫

x∈X

(∑
y∈Y

1[Tv(Y,X; u) ⊆ S] Pr0[Y = y|X = x, Z = z]

)
dF 0

X|Z(x|z)

and

Pr0 [Tv(y, x; u) ∩ S 6= φ|Z = z] =

∫

x∈X

(∑
y∈Y

1[Tv(Y, X; u) ∩ S 6= φ] Pr0[Y = y|X = x, Z = z]

)
dF 0

X|Z(x|z)

which are the expressions on the right hand sides of respectively (3.5) and (3.6).

It follows that all admissible duples (u, PV ) with probability distributions PV ∈ PV and

utility functions u ∈ U that deliver the particular distributions in Restriction A2 satisfy the

inequalities:

8These are random closed sets because the sigma-algebra F is endowed with the Borel sets. This guar-
antees that for any compact set S ⊆ RM−1, the events {Tv(Y, x; u) ∩ S 6= φ} and {Tv(Y,X; u) ∩ S 6= φ} are
F-measurable. For a formal definition of random closed sets see e.g. Molchanov (2005) or Beresteanu,
Molchanov, and Molinari (2012) Appendix A.

9Specifically, the Choquet Theorem in Molchanov (2005), page 10, originally from Choquet (1954), implies
that the capacity functional of a random closed set, taken over all compact sets of the relevant carrier space,
uniquely determines its distribution. The same holds for the containment functional applied to all closed
sets, see Molchanov (2005) page 22.
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Pr0 [Tv(Y,X; u) ⊆ S|Z = z] ≤ PV (S) ≤ Pr0 [Tv(Y,X; u) ∩ S 6= φ|Z = z] (3.7)

for all sets S ⊆ V and instrumental values z ∈ Z.

Capacity and containment functionals are equivalent characterizations of the distribution

of a random set because for all S ⊆ V and z ∈ Z,

Pr0 [Tv(Y, X; u) ⊆ S|Z = z] = 1− Pr0 [Tv(Y,X; u) ∩ Sc 6= φ|Z = z] (3.8)

where Sc is the complement of S. So the inequalities generated by the lower and upper

bounds in (3.7) as S passes through all subsets of V are identical. It follows that only one

of the bounds in (3.7) need be considered. We work henceforth with the lower bounding

probability given by the conditional containment functional of Tv(Y, X; u).

The following theorem states that all and only duples (u, PV ) which satisfy the system

of inequalities generated by the lower bound in (3.7) for all z ∈ Z and all S that are closed

subsets of V deliver the distributions of Restriction A2, that is that the system of inequalities

defines the identified set of duples.

Theorem 1 Let restrictions A1-A6 hold. Then the identified set of admissible duples

(u, PV ) associated with the conditional distributions F 0
Y X|Z, z ∈ Z, is

D0(Z) ≡ {(u, PV ) ∈ U × PV : Pr0 [Tv(Y,X; u) ⊆ S|Z = z] ≤ PV (S), ∀S ∈ F (V) a.e. z ∈ Z} ,

(3.9)

where F (V) denotes the set of all closed subsets of V.

Proof. D0(Z) contains all duples (u, PV ) ∈ U × PV that satisfy for all S ∈ F (V),

Pr0 [Tv(Y,X; u) ⊆ S|Z = z] ≤ PV (S)

for almost every z ∈ Z. The preceding development shows that all admissible duples that

deliver the conditional distributions F 0
Y X|Z, z ∈ Z lie in this set. Further, a key result from

random set theory, namely Artstein’s inequality, provided by Artstein (1983) and Norberg

(1992), see also Molchanov (2005) Section 1.4.8, guarantees sharpness, that is that all ad-

missible duples in the set D0(Z) can deliver the conditional distributions F 0
Y X|Z, for almost

every z ∈ Z. To apply this result, we first proceed in similar fashion to that of the proof of

Theorem 2.1 in Beresteanu, Molchanov, and Molinari (2012) to show that the containment

functional inequalities of (3.9) are equivalent to Artstein’s inequality. To do so consider any
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(u, PV ) ∈ D0(Z) and fix z ∈ Z. Then with probability one we have that

Pr0 [Tv(Y, X; u) ⊆ S|Z = z] ≤ PV (S), ∀S ∈ F (V) , (3.10)

by definition of D0(Z). Now using PV (S) = 1− PV (Sc) and

Pr0 [Tv(Y,X; u) ⊆ S|Z = z] = 1− Pr0 [Tv(Y, X; u) ∩ Sc 6= φ|Z = z] ,

it follows that (3.10) holds if and only if

Pr0 [Tv(Y,X; u) ∩ Sc 6= φ|Z = z] ≥ PV (Sc), ∀S ∈ F (V) ,

or equivalently

Pr0 [Tv(Y, X; u) ∩ S 6= φ|Z = z] ≥ PV (S), ∀S ∈ G (V) ,

where G (V) is the collection of all open subsets of V. By Corollary 1.4.44 of Molchanov

(2005) this is in turn equivalent to the collection of inequalities

Pr0 [Tv(Y,X; u) ∩ S 6= φ|Z = z] ≥ PV (S), ∀S ∈ K (V) ,

where K (V) is the collection of all compact subsets of V. This relation is Artstein’s inequality.

By Artstein (1983) and Norberg (1992) it follows that there exists a random variable Ṽ and a

random set T̃ realized on the same probability space as (V, Tv(Y,X; u)) such that conditional

on Z = z, both Ṽ ∼ PV and T̃ is distributed identically to Tv(Y, X; u) when (Y,X) is

distributed F 0
Y X|Z (·|Z = z), with Ṽ ∈ T̃ with probability one. This implies that conditional

on Z = z there exist random variables
(
Ỹ , X̃

)
defined on the same probability space with

Ṽ ∈ Tv(Ỹ , X̃; u) and
(
Ỹ , X̃

)
distributed F 0

Y X|Z (·|Z = z). The choice of z ∈ Z is arbitrary

and the inequality defining D0(Z) holds for almost every z ∈ Z. Thus the argument holds for

almost every z ∈ Z, implying there exist random variables
(
Ỹ , X̃

)
conditionally distributed

F 0
Y X|Z a.e. z ∈ Z so that Restriction A2 is satisfied.

Corollary 1 If Restriction A5 is replaced with the additive separability Restriction A5*, the
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identified set for (u, PW ) is

D0
w(Z) ≡ {(u, PV ) ∈ U × PV : Pr0 [Tw(Y, X; u) ⊆ S|Z = z] ≤ PW (S), ∀S ∈ F (W) a.e. z ∈ Z} ,

(3.11)

where F (V) denotes the set of all closed subsets of W.

Proof. The proof is identical to the proof of Theorem 1 upon replacing V with W and PV

with PW .

Remarks

1. Key to the proof of sharpness is Artstein’s inequality, which states that for any random

set T and any random variable V ∈ RM such that

Pr [T ∩ S 6= φ] ≥ PV (S), ∀S ∈ K (V) ,

we can couple with V and T a random variable Ṽ and a random set T̃ , respectively,

living on the same probability space and with the same distributions as the original

random variable V and random set T , such that Ṽ ∈ T̃ with probability one. Our

proof makes use of the existence of such a coupling conditional on each instrumental

value z ∈ Z to show that every duple (u, PV ) in D0(Z) can produce the distributions

F 0
Y X|Z of Restriction A2.

2. In the definition of the identified set D0(Z) the containment functional inequality:

Pr0 [Tv(Y, X; u) ⊆ S|Z = z] ≤ PV (S), ∀S ∈ F (V)

can be replaced by the capacity functional inequality:

Pr0 [Tv(Y, X; u) ∩ S 6= φ|Z = z] ≥ PV (S), ∀S ∈ K (V) .

3. The inequalities of Theorem 1 are required to hold for almost every z ∈ Z so for each

S ∈ F (V) only the maximum over z ∈ Z of the lower bounds is binding.

4. The development so far allows for the possibility that there are no parametric restric-

tions on the classes of utility functions U and probability distributions PV . When there

are parametric restrictions these classes of functions are indexed by a finite dimensional

parameter. It may be the case that only one of U and PV are parametrically specified,
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or that either are semiparametrically specified, in which case the model restrictions are

semiparametric.

3.2 Relation to independent X and V

When X and V are stochastically independent the above characterization reduces to the

usual maximum likelihood probabilities, and hence yields point identification under appro-

priate restrictions on the distribution of X. To show this is the case, we can apply the above

analysis by taking X = Z, and considering the lower bound of (3.7),

Pr0 [Tv(Y,X; u) ⊆ S|X = x] ≤ PV (S).

Setting S = Tv(y, x; u) for each x ∈ X and any u ∈ U , we have

∀y ∈ Y , Pr0 [Y = y|X = x] ≤ PV (Tv(y, x; u)),

where ∑
y∈Y

Pr0 [Y = y|X = x] = 1, and
∑
y∈Y

PV (Tv(y, x; u)) = 1.

So it follows that

∀y ∈ Y , Pr0 [Y = y|X = x] = PV (Tv(y, x; u)), (3.12)

which holds for (y, x) ∈ Supp(Y,X) and with sufficient restrictions on U and PV there may

be point identification of u and PV . For instance, in the conditional logit example given in

Section 2 with additive separability holding we have uy (x) = xβy for y < M , and uM (x) = 0,

PV [Tv(y, x; u)] takes the familiar form

PV [Tv(y, x; u)] =
exp

(
xβy

)

1 +
∑M−1

y′=1
exp

(
xβy′

) .

In this case (3.12) provides precisely the conditional probabilities used in the construction of

the classical maximum likelihood estimator, and under the usual rank condition there is point

identification, as shown by McFadden (1974). This is easily satisfied in models with discrete

regressors, but in semiparametric or nonparametric models with X and V independent, point

identification additionally requires more restrictive rank and support conditions. These are

not required for the characterization of the identified set provided by Theorem 1.
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3.3 Core determining sets

It may not be feasible to consider the complete system of inequalities of Theorem 1 that

are generated as S passes through all closed subsets of V . However a system of inequalities

based on only some of these sets will deliver at least an outer identification region and this

may be useful in practice.

For some models it is possible to find a much smaller collection of the sets S ∈F (V) whose

inequalities define D0(Z). This is a core-determining class of sets as studied by Galichon

and Henry (2011) in obtaining identified sets in models with multiple equilibria.

The result of Theorem 2 below is useful in producing collections of test sets that deliver

core-determining classes of inequalities for the models considered in this paper. Unlike

Galichon and Henry (2011) we allow these sets to be dependent upon the structural functions

u, or, in parametric settings, model parameters. We call these sets core-determining sets in

what follows. In the characterization of such collections we make use of the notation int (S)

and cl (S) to denote the interior and closure, respectively, of any set S. The proof of Theorem

2 makes use of the following lemma, which provides some properties of the sets Tv(y, x; u).

In this lemma and the subsequent analysis we make use of the support of the random set

Tv(Y,X; u),

Tv(Y, X; u) ≡ {Tv(y, x; u) : ∃x ∈ X s.t. P(Y = y|X = x) > 0},

and likewise the support of Tw(Y, X; u),

Tw(Y, X; u) ≡ {Tw(y, x; u) : ∃x ∈ X s.t. P(Y = y|X = x) > 0}.

Lemma 1 Consider the model defined by Restrictions A1-A6. Under these restrictions, the

following results hold: (i) The sets Tv(y, x; u) on the support of Tv(Y, X; u) are connected for

any u ∈ U and x ∈ X . (ii) If Restriction A5* holds the sets Tv(y, x; u) and Tw(y, x; u) are

convex. (iii) If Restriction A5* and V = RM these sets are non-empty, with strictly positive

Lebesgue measure whenever uy′ (x)− uy (x) < ∞ for all y′ ∈ Y, y′ 6= y.

Proof. (i) Consider any v, v′ ∈ Tv(y, x; u). Define v∗ such that v∗y = max
{
vy, v

′
y

}
, and

for all k 6= y, v∗k = min {vk, v
′
k}. From the monotonicity Restriction A5 it follows that at the

specified x the utility of choice y is weakly higher at V = v∗ than at either v or v′, that is

uy(x, v∗y) ≥ uy(x, vy) and uy(x, v∗y) ≥ uy(x, v′y).
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Likewise utility from any alternative k 6= y is weakly lower at V = v∗ than at either of v, v′.

Restriction A5 implies that indeed for any ṽ on the line from v to v∗, an individual with

X = x and V = ṽ is at least as disposed to y as an individual with X = x and V = v.

Thus any such ṽ is an element of Tv(y, x; u), so that the line from v to v∗ constitutes a path

in Tv(y, x; u) that connects these two point. By the same reasoning the line from v′ to v∗

constitutes a path in Tv(y, x; u) from v′ to v∗. Thus there is a path in Tv(y, x; u) that connects

any two points v, v′ ∈ Tv(y, x; u), and thus Tv(y, x; u) is a connected set.10

(ii) If Restriction A5* holds the sets Tv(y, x; u) and Tw(y, x; u) are convex because for any

u ∈ U and x ∈ X these sets are an intersection of linear half spaces.11

(iii) If uy′ (x)−uy (x) = ∞ for some y′ 6= y, then the set Tw(y, x; u) is empty. Otherwise,

for any wy = vy − vM ∈ R there exists wy′ = v′y′ − vM small enough for each y′ 6= y such

that wy − wy′ > uy′ (x) − uy (x). Therefore the interior of Tw(y, x; u) is both open and

non-empty. Since Tw(y, x; u) contains its interior and any non-empty open set has positive

Lebesgue measure, Tw(y, x; u) also has positive Lebesgue measure. Note that Tv(y, x; u) is

empty if and only if Tw(y, x; u) is empty, so the same conclusions hold for Tv(y, x; u).

The following theorem characterizes core determining classes for the IV model of multiple

discrete choice.

Theorem 2 Let Restrictions A1-A6 hold. The identified set (3.9) of Theorem 1 is given by

the inequalities generated by the collection of test sets S that (i) are unions of sets on the

support of Tv(Y,X; u), and (ii) are such that the union of the interiors of the component sets

is a connected set. The same statements hold applied to the characterization given by (3.11)

in Corollary 1 if additionally Restriction A5* holds, replacing the support of Tv(Y,X; u) with

that of Tw(Y,X; u).

Proof. We provide the proof for the more general case where Restrictions A1-A5 hold

with regard to the characterization (3.9). We separate the proof into two cases, depending

on whether or not the set

Zφ ≡ {z ∈ Z : Pr0 [Tv(Y, X; u) = φ|Z = z] > 0}

has positive measure Z, equivalently on whether Tv(Y,X; u) is empty with positive probabil-

ity. The proof for the characterization (3.11) where in addition Restriction A5* holds follows

10See e.g. Sutherland (2009) Chapter 12 p.120 for the formal definition of a path and a formal proof that
any set with the property that a path exists connecting any two elements is connected.

11They are convex polytopes if one uses a definition of “polytope” that does not exclude unbounded sets.
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identical steps, replacing V with W .

Case 1: Fix (u, PV ) ∈ U×PV and suppose that Zφ has positive measure. Then φ is the union

of all the sets Tv(y, x; u) with (y, x) ∈ Supp(Y, X) for which Tv(y, x; u) = φ, i.e. the empty

set can be written as a union of sets satisfying (i) and (ii). We now show that any u ∈ U
for which Zφ has positive measure violates the containment functional inequality evaluated

at S = φ conditioning on z ∈ Zφ, so that it indeed suffices to only use a test set satisfying

conditions (i) and (ii). This is because if the containment functional inequality were satisfied

with S = φ it would follow that

0 < Pr0 [Tv(Y, X; u) ⊆ φ|Z = z] ≤ PV (φ) = 0,

which is a contradiction.

Case 2: Again fix (u, PV ) ∈ U × PV and now suppose that Zφ has zero measure. Then for

almost every z ∈ Z the sets on the support of Tv(Y,X; u) are connected sets with positive

Lebesgue measure. This follows from Restriction A1, which requires that the support of

V |(X = x, Z = z) is open, in conjunction with Restriction A5 requiring for all (y, x) ∈
Supp(Y, X) and all u ∈ U that uy(x, vy) is continuous in vy. We now establish conditions (i)

and (ii) in turn.

(i) For any set S let CS(u) denote the collection of sets on the support of Tv(Y, X; u)

that are subsets of S. Let

GS(u) ≡
⋃

T ∈CS(u)

T ,

be the union of sets on the support of Tv(Y,X; u) that are contained in S. Then GS(u) ⊆ S
and

Pr0 [Tv(Y, X; u) ⊆ S|Z = z] = Pr0 [Tv(Y,X; u) ⊆ GS(u)|Z = z] .

It follows that if the inequalities of Theorem 1 hold for all unions of sets on the support of

Tv(Y,X; u), then they hold for all sets S ⊆ V, since for any such S,

Pr0 [Tv(Y, X; u) ⊆ GS(u)|Z = z] ≤ PV (GS(u)) ≤ PV (S) ,

where the final inequality follows by GS(u) ⊆ S.

(ii) We now show that the inequalities associated with those sets GS(u) such that (ii) does
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not hold are redundant. Define

G0
S(u) ≡

⋃

T ∈CS(u)

int (T ) ,

and suppose that G0
S(u) is not connected. Then CS(u) can be divided into mutually exclusive

and exhaustive sub-collections of sets each belonging to CS(u), the union of whose interiors

is connected. That is CS(u) can be written

CS(u) = {CS,1(u), ..., CS,J(u)} ,

for some J , dependent upon S, such that for any 1 ≤ j ≤ J , the sets

G0
S,j(u) ≡

⋃

T ∈CS,j(u)

int (T )

are connected, and for any j 6= k, G0
S,j(u) ∩ G0

S,k(u) = φ. Now define

GS,j(u) ≡
⋃

T ∈CS,j(u)

T ,

so that GS(u) = ∪J
j=1GS,j(u). Consider any set Tv(y, x; u) on the support of Tv(Y,X; u).

This set is connected by Lemma 1 and has positive Lebesgue measure, since Zφ has zero

measure, by the above reasoning. It therefore cannot be contained in both GS,j(u) and GS,k(u)

for any j 6= k since G0
S,j(u) ∩G0

S,k(u) = φ. Thus

Pr0 [Tv(Y, X; u) ⊆ GS(u)|Z = z] =
J∑

j=1

Pr0 [Tv(Y, X; u) ⊆ GS,j(u)|Z = z] , (3.13)

and

PV (GS(u)) =
J∑

j=1

PV (GS,j(u)). (3.14)

Therefore:

Pr0 [Tv(Y, X; u) ⊆ GS,j(u)|Z = z] ≤ PV (GS,j(u)) ∀j ∈ {1, . . . , J}
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implies
J∑

j=1

Pr0 [Tv(Y, X; u) ⊆ GS,j(u)|Z = z] ≤
J∑

j=1

PV (GS,j(u))

and so by (3.13) and (3.14):

Pr0 [Tv(Y, X; u) ⊆ GS(u)|Z = z] ≤ PV (GS(u)).

The following algorithm delivers the collection of sets that define core determining in-

equalities for discrete X. This collection varies with the specific utility functions u under

consideration but it is invariant with respect to changes in PV . Let the support of discrete

X be X ≡ {x1, . . . , xK}. X may be a finite dimensional vector. The algorithm may be

applied to the sets on the support of Tv(Y,X; u) using the characterization of the identified

set in Theorem 1 or in the separable case to sets on the support of Tw(Y,X; u) using the

characterization of Corollary 1. We thus use T (y, x; u) in what follows to denote either of

Tv(Y,X; u) or Tw(Y,X; u) throughout the remainder of this section.

For collections of sets C1 and C2 let C1 ⊗ C2 be the collection of sets obtained when the

union of each set in C1 with each set in C2 is formed.12 Let C1‖C2 denote the collection of

the sets that appear either in C1 or in C2.
13 Let C(u) denote the collection of the interiors

of the sets on the support of T (Y, X; u),

C(u) ≡ {int (T (y, x; u)) : (x, y) ∈ Supp (X, Y )} .

Let G(u) denote the list of core determining sets to be produced by the algorithm.

An algorithm for producing core determining sets when X is discrete

1. Initialization. Set G(u) = C(u) and G∗(u) = C(u).

2. Repeat steps (a)-(c) until the collection of sets G∗(u) is empty.

12This is a Kroneker-product-like operation hence our choice of symbol. For example if C1 = {C11, C12}
and C2 = {C21, C22} then

C1 ⊗ C2 = {C11 ∪ C21, C12 ∪ C21, C11 ∪ C22, C12 ∪ C22}.

13Thinking of collections of sets as sets of sets the concatenation C1‖C2 is the union of the “sets” C1 and
C2.
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(a) Create the collection of sets G∗(u) ⊗ C(u) and place the connected sets in this

collection that are not already present in G∗(u) into a collection of sets: B(u).

(b) Remove any duplicate sets from B(u).

(c) Let G∗(u) = B(u) and replace G(u) by G(u)‖G∗(u).

3. Set G(u) equal to the collection of closures of its component sets.

Let Con(·) applied to a list of sets select the connected sets in the list. Step two of the

algorithm recursively creates the following list of sets.

C(u)‖Con (C(u)⊗ C(u)) ‖Con (Con (C(u)⊗ C(u))⊗ C(u)) ‖ · · ·

This is the same as the list

Con (C(u)‖C(u)⊗ C(u)‖C(u)⊗ C(u)⊗ C(u)‖ · · · )

which is evidently the list of all connected unions of sets on C(u), but is more efficient com-

putationally. The closures of these sets provide the collection of sets required by Theorem

2, since the closure of a union of open sets is the same as the union of the closure of all the

component sets. The algorithm terminates in at most MK − 1 iterations.

The algorithm we use to produce core-determining sets in the three-choice examples of

Section 4 eliminates duplicates “from the left”: first each element of C(u) is compared with

every subsequent element in the list and elements in C(u) that arise further up the list are

deleted, then each element of Con (C(u)⊗ C(u)) is compared with every subsequent element

in the list and elements in Con (C(u)⊗ C(u)) that arise further up the list are deleted, and

so on. The result is that where sets in C(u) are subsets of other sets in C(u) the latter (i.e.

the “supersets”) will appear later in the list than the other elements in C(u).

An advantage of this approach is that the lists of unions that are obtained reveal precisely

which sets in C(u) lie in each of the unions that comprise the core determining sets. Thus,

consider a member, G, of a collection of core determining sets, G(u). Let CG(u) be the

sets on the support of T (Y,X; u) that are subsets of G. These are the lists produced by the

algorithm. The lower bound in the inequality associated with the set G and the instrumental

value z ∈ Z is: ∑

{(y,x):T (y,x;u)∈CG(u)}
Pr0[Y = y ∧X = x|Z = z].
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Number of points of support of X Number of core determining sets Number of unions of sets in T (u)
2 12 64
3 33 512
4 82 4096
5 188 32768
6 406 262144
7 842 2079152

Table 1: Number of core determining sets in the 3 choice model for each choice of u when
(i) X is discrete having K points of support and (ii) utilities are linear in X.

The number of core determining sets is far smaller than the number of possible unions of

sets on the support of T (Y, X; u). For example in a 3 choice model with a binary explanatory

variable and separable utility, for any choice of u, there are at most 12 potentially informative

core determining sets compared with 26 = 64 possible unions of the 6 sets on the support

of T (Y,X; u). In the three choice example studied in Section 4 in which a linear index

restriction is imposed, when X takes just 7 values there are over 2 million unions of the 21

sets on the support of T (Y, X; u) but the number of potentially informative core determining

sets for any choice of u is at most 842 - see Table 1.14

3.4 Two easy-to-compute outer regions

When X is discrete there is among the core determining inequalities always one associated

with each set on the support of T (Y,X; u), equivalently, with each set in the collection

C(u). These inequalities require that all duples (u, PV ) in the identified set be such that the

inequalities:

PV [Tv(y, x; u)] ≥ Pr0[Y = y ∧X = x|Z = z]

hold for all (y, x, z) ∈ Supp(Y,X,Z). It follows that:

PV [Tv(y, x; u)] ≥ max
z∈Z

Pr0[Y = y ∧X = x|Z = z] (3.15)

must hold for all (y, x, z) ∈ Supp(Y, X,Z). These inequalities define an outer region within

which lies the identified set of duples (u, PV ). This outer region is generally informative

with discrete X, but not with continuous X as then the probabilities on the right-hand

side of (3.15) are zero. Our second outer region, provided below, can be useful with either

14Note that with additive separability imposed the number of core-determining sets does not depend on
whether T (Y,X; u) = Tv(Y, X;u) or T (Y, X;u) = Tw(Y, X;u) is used.
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continuous or discrete X.

The probability PV [Tv(y, x; u)] that appears on the left hand side is simply the probability

assigned by the pair (u, PV ) to the event Y = y when X = x. When X is exogenous this is

the conditional probability that Y = y given X = x. For example in the conditional logit

model studied in Section 4 in which PV admits only the distribution for V generated by the

i.i.d. Type 1 Extreme Value distributions there is:

PV [Tv(y, x; u)] =
exp (uy(x))

1 +
∑M−1

y′=1 exp(uy′(x))
, y ∈ {1, . . . ,M}. (3.16)

In general the probability PV [Tv(y, x; u)] is the probability that would appear in a classical

discrete choice likelihood function (for independent realizations) constructed using (u, PV )

and defined by conditioning on observed values of the explanatory variables X as if they were

exogenous. When X is endogenous PV [Tv(y, x; u)] is the counterfactual choice probability

for alternative y were all members of the population to have their covariates set to x, keeping

each of their V fixed.

For all (u, PV ) in the identified set the inequalities (3.15) require that the probability

PV [Tv(y, x; u)] must exceed the maximal value over z ∈ Z of the joint probability that

Y = y and X = x conditional on Z = z. Whenever a model is considered for which, under

an exogeneity restriction, there is a well defined parametric likelihood function, the outer

region defined by these inequalities is very easy and quick to compute.

This outer region can be tightened whenever there is (y, x) for which there exist values of

x′ 6= x such that Tv(y, x′; u) ⊆ Tv(y, x; u) because in such cases the containment functional

inequality requires:

PV [Tv(y, x; u)] ≥
∫

(x′:Tv(y,x′;u)⊆Tv(y,x;u))

Pr0[Y = y ∧X = x′|Z = z]dF 0
X|Z (x′|z) .

In the three choice models with binary X considered in Section 4 this improvement is ob-

tained for 2 of the 6 sets on the support of Tv(Y, X; u). In general there are many cases

in which such improvements can be obtained. The lower bound in this inequality can be

positive with discrete and with continuous X.
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4 Illustration: Three choice models

4.1 Core determining sets

In this Section we provide illustrative examples of identified sets, focusing on models for

choice among M = 3 alternatives in which the utility functions are assumed additively

separable and in which X is discrete with finite support X ≡ {x1, . . . , xK}. Thus we work

with W , Pw, and T (Y,X; u) ≡ Tw(Y,X; u) throughout this section. In this case we can give

a graphical display of the support of the set valued random variable T (Y, X; u) in R2. We

provide the core determining inequalities for the case in which K = 2 and present numerical

examples of identified sets for a variety of values of K.

In the 3 choice model utilities are determined as follows.

U1 = u1(X) + V1, U2 = u2(X) + V2, U3 = V3

With W ≡ (W1,W2) = (V1 − V3, V2 − V3) the support of T (Y, X; u) is:

T (1, x; u) = {W : (W1 ≥ −u1(x)) ∧ (W1 ≥ W2 − u1(x) + u2(x))}
T (2, x; u) = {W : (W2 ≥ −u2(x)) ∧ (W1 ≤ W2 − u1(x) + u2(x))}
T (3, x; u) = {W : (W1 ≤ −u1(x)) ∧ (W2 ≤ −u2(x))}

for x ∈ X . The interior of these 3K sets comprise the collection of sets C(u).

For each value x ∈ X , the collection of sets: T (y, x; u), y ∈ {1, 2, 3}, is a partition of

R2 “centred” on a point denoted w(x) with coordinates W1 = −u1(x) and W2 = −u2(x).

The collection of sets G(u) that generates the core determining inequalities varies with u,

depending on the relative orientation of the points w(x), x ∈ X .

When M = 3 and K = 2 there are three such orientations, illustrated in Figure 1. Values

of W1 are measured vertically and values of W2 are measured horizontally. Sets T (1, x; u),

Tw(2, x; u) and T (3, x; u) lie respectively northwest, southeast and southwest of the point

w(x) for each of the two possible values of x.15 The relative orientations of w(x1) and w(x2)

are distinguished by the slope of the line that connects them: (1) in which the slope is

negative, (2) in which the slope is positive and less than 1/2 and (3) in which the slope is

positive and greater than 1/2. Within each of these cases there is one orientation in which

15Koning and Ridder (2003) consider these partitions in a paper studying the falsifiability of utility max-
imizing models of multiple discrete choice.
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w(x1) lies higher (in the W1 direction) than w(x2) and another in which these positions are

reversed.

When K is much larger than 2 the number of orientations to be considered may be very

large. There is substantial simplification in the case in which X is scalar and u1(x) and

u2(x) are both linear functions of x. In this case the locus of points described by w(x) as

x varies in X is linear and there are only six orientations to be considered as in the case in

which K = 2.

Tables 2 and 3 give the collections of sets G(u) that generate the core determining in-

equalities. There are 12 sets in each collection, substantially fewer than the 26 = 64 possible

unions of sets in the support of T (Y, X; u).

Table 2 gives the collections for three cases, 1a, 2a, 3a, in which w(x2) is above w(x1).

Table 3 gives the collections for three cases, 1b, 2b, 3b, in which w(x2) is below w(x1). Table

3 is obtained from Table 2 by exchanging indexes identifying the points of support of X.

In these Tables, in each case, only 4 of the 6 sets in C(u) appear in the initial 4 columns

of the Tables. The reason is that, as noted in Section 3.4, in each case two of the six

sets in C(u) are subsets of others. For example, in Case 1a Tw(1, x2; u) ⊆ T (1, x1; u) and

Tw(2, x1; u) ⊆ T (2, x2; u) (see Figure 1) and, as explained earlier, our algorithm includes the

“supersets”

T (1, x2; u) ∪ T (1, x1; u) = Tw(1, x1; u)

and

T (2, x1; u) ∪ T (2, x2; u) = Tw(2, x2; u)

later in the list of core determining sets (in columns 5 and 6 in Case 1a in Table 2).

The 12 core determining sets for Case 1a are illustrated in Figures 2 and 3. The first

six of these, shown in Figure 2 correspond to those sets on the support of T (Y, X; u). The

remaining six, shown in Figure 3 are non-singleton unions of sets on the support of T (Y, X; u)

obtained by following the algorithm provided above.

4.2 Some calculations

In this Section we give examples of identified sets for a particular probability distribution

F 0
Y X|Z . We study cases with K = 2 and K = 4 and to keep the dimensionality of the

identified set small enough to allow a graphical display we impose a linear index restriction.

The model whose identifying power we study has X discrete with support X = {x1, . . . , xK}
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Figure 1: Orientations of w(x) = (−u1(x),−u2(x)) when M = 3 and K = 2, cases 1a, 2a,
and 3a.
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Support Unions
Case set 1 2 3 4 5 6 7 8 9 10 11 12

T (1, x1; u) ¥ ¥ ¥ ¥
T (2, x1; u) ¥ ¥ ¥ ¥ ¥

1a T (3, x1; u) ¥ ¥ ¥ ¥ ¥
T (1, x2; u) ¥ ¥ ¥ ¥ ¥
T (2, x2; u) ¥ ¥ ¥ ¥
T (3, x2; u) ¥ ¥ ¥ ¥ ¥
T (1, x1; u) ¥ ¥ ¥ ¥ ¥
T (2, x1; u) ¥ ¥ ¥ ¥

2a T (3, x1; u) ¥ ¥ ¥ ¥ ¥
T (1, x2; u) ¥ ¥ ¥ ¥ ¥
T (2, x2; u) ¥ ¥ ¥ ¥ ¥
T (3, x2; u) ¥ ¥ ¥ ¥
T (1, x1; u) ¥ ¥ ¥ ¥
T (2, x1; u) ¥ ¥ ¥ ¥ ¥

3a T (3, x1; u) ¥ ¥ ¥ ¥ ¥
T (1, x2; u) ¥ ¥ ¥ ¥ ¥
T (2, x2; u) ¥ ¥ ¥ ¥ ¥
T (3, x2; u) ¥ ¥ ¥ ¥

Table 2: Blocked cells indicate sets on the support of T (Y, X; u) that appear in the unions
generating the 12 core determining inequalities, M=3, K=2, Case 1a, 2a and 3a.
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Support Unions
Case set 1 2 3 4 5 6 7 8 9 10 11 12

T (1, x1; u) ¥ ¥ ¥ ¥ ¥
T (2, x1; u) ¥ ¥ ¥ ¥

1b T (3, x1; u) ¥ ¥ ¥ ¥ ¥
T (1, x2; u) ¥ ¥ ¥ ¥
T (2, x2; u) ¥ ¥ ¥ ¥ ¥
T (3, x2; u) ¥ ¥ ¥ ¥ ¥
T (1, x1; u) ¥ ¥ ¥ ¥ ¥
T (2, x1; u) ¥ ¥ ¥ ¥ ¥

2b T (3, x1; u) ¥ ¥ ¥ ¥
T (1, x2; u) ¥ ¥ ¥ ¥ ¥
T (2, x2; u) ¥ ¥ ¥ ¥
T (3, x2; u) ¥ ¥ ¥ ¥ ¥
T (1, x1; u) ¥ ¥ ¥ ¥ ¥
T (2, x1; u) ¥ ¥ ¥ ¥ ¥

3b T (3, x1; u) ¥ ¥ ¥ ¥
T (1, x2; u) ¥ ¥ ¥ ¥
T (2, x2; u) ¥ ¥ ¥ ¥ ¥
T (3, x2; u) ¥ ¥ ¥ ¥ ¥

Table 3: Blocked cells indicate sets on the support of T (Y, X; u) that appear in the unions
generating the 12 core determining inequalities, M=3, K=2, Case 1b, 2b and 3b.
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Figure 2: Core-Determining Sets for Binary X: Sets on the Support of T (y, x; u)
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Figure 3: Core-Determining Sets for Binary X: Non-singleton Unions of Sets on the Support
of T (y, x; u)
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and utility functions determined by a parameter α = (α01, α02, α11, α12) as follows.

u1(x) = α01 + α11x

u2(x) = α02 + α12x

We generate probabilities from a structure in which a scalar explanatory variable is in

fact exogenous. The joint distribution of Y and X given Z = z is specified as ordered probit

for X given Z and multinomial logit for Y given X with Y independent of Z given X.

Probabilities are as follows.

Pr0[Y = 1∧X = xk|Z = z] =
exp(a01 + a11xk)

1 + exp(a01 + a11xk) + exp(a02 + a12xk)

(
Φ

(
ck − d1z

d2

)
− Φ

(
ck−1 − d1z

d2

))

Pr0[Y = 2∧X = xk|Z = z] =
exp(a02 + a12xk)

1 + exp(a01 + a11xk) + exp(a02 + a12xk)

(
Φ

(
ck − d1z

d2

)
− Φ

(
ck−1 − d1z

d2

))

Pr0[Y = 3∧X = xk|Z = z] =
1

1 + exp(a01 + a11xk) + exp(a02 + a12xk)

(
Φ

(
ck − d1z

d2

)
− Φ

(
ck−1 − d1z

d2

))

Here k ∈ {1, 2, . . . , K}, the thresholds ck are specified a priori, c0 ≡ −∞, cK = ∞ and scalar

z takes values in a set Z, a set of instrumental values to be specified.

Structures like this are admitted by the instrumental variable multiple discrete choice

model and in fact have X ‖ V but of course this information is not embodied in the IV

model whose identifying power we study. That model would be point identifying were

that restriction to be imposed. Our calculations give a feel for the degree of ambiguity

introduced when the exogeneity restriction is not imposed on X. A computational advantage

of this choice of distribution is that probabilities can be calculated without using numerical

integration methods.

In these calculations we study the IV extension of McFadden’s (1974) model so the family

of distributions PV is permitted to have just one member which has the three elements of

V identically and independently distributed with Type 1 extreme value distributions as in

(2.3) with M = 3. The associated probability distribution function for the differences W is

FW (w) =
1

1 + e−w1 + e−w2
.
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It is convenient to transform from W to W̃ = (W̃1, W̃2) using the transformations

W̃y =
1

1 + exp(−Wy)
, Wy = − log

(
1

W̃y

− 1

)
, y ∈ {1, 2}.

The support of (W̃1, W̃2) is the unit square. The joint distribution function of the random

variables W̃1 and W̃2 is

c(w̃1, w̃2) =
1(

w̃−1
1 + w̃−1

2 − 1
) . (4.1)

Probabilities PW (S) are approximated by evaluating the joint distribution function (4.1)

over a dense grid of equally spaced values16

w̃ji =
i

n
, j ∈ {1, 2}, i ∈ {1, . . . , n}

on the unit square and second differencing (once with respect to w̃1 and once with respect to

w̃2) to obtain exact probability masses on each cell in the grid. Denote the mass in the cell

whose north-east vertex has coordinates w1s and w2t by mst. The probability mass placed

by PW on a set S ⊆ [0, 1]2 is approximated by

P̂W (S) =
∑

{(s,t): (w̃1s,w̃2t)∈S}
mst.

Define the transformation of the set T (y, x; u):

T̃ (y, x; u) ≡
{

(w̃1, w̃2) :

(
− log

(
1

w̃1

− 1

)
,− log

(
1

w̃2

− 1

))
∈ T (y, x; u)

}

which is a subset of the unit square.

The support of T̃ (Y,X; u) is:

T̃ (1, x; u) =



W̃ :

(
W̃1 ≥ 1

1 + exp(u1(x))

)
∧


W̃1 ≥ 1

1 + exp (u1(x)− u2(x))
(
W̃−1

2 − 1
)








T̃ (2, x; u) =



W̃ :

(
W̃2 ≥ 1

1 + exp(u2(x))

)
∧


W̃1 ≤ 1

1 + exp (u1(x)− u2(x))
(
W̃−1

2 − 1
)








16A 500× 500 grid is used in the calculations reported here.
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T̃ (3, x; u) =

{
W̃ :

(
W̃1 ≤ 1

1 + exp(u1(x))

)
∧

(
W̃2 ≤ 1

1 + exp(u2(x))

)}

for x ∈ X . These are connected sets which meet at the point

W̃1 =
1

1 + exp(u1(x))
W̃2 =

1

1 + exp(u2(x))
,

the sets T̃ (1, x; u), T̃ (2, x; u) and T̃ (3, x; u) lying respectively north-west, south-east and

south-west of this point. The function separating T̃w(1, x; u) and T̃ (2, x; u):

W̃1 =
1

1 + exp (u1(x)− u2(x))
(
W̃−1

2 − 1
)

is monotone increasing, connecting the point

W̃1 =
1

1 + exp(u1(x))
W̃2 =

1

1 + exp(u2(x))

to the point

W̃1 = 1 W̃2 = 1

and is concave if u1(x)−u2(x) < 0, linear if u1(x)−u2(x) = 0 and convex if u1(x)−u2(x) > 0.

In the illustrative calculations presented now, probability distributions, F 0
Y X|Z are gen-

erated for cases in which the coefficients in the utility functions are

a01 = 0, a11 = 1, a02 = 0, a12 = −0.5.

The scalar instrumental variable takes two values, −1 and +1, the standard deviation

parameter in the ordered probit model for X is d2 = 1 and the slope coefficient is set to d1 = 1

in one set of calculations (A) and d1 = 1.5 in another (B). In the latter case the instrumental

variable is a better predictor of the value of the variable X and in the discussion we describe

this as the “strong instrument” case.

The explanatory variable has K = 2 points of support in one pair of cases, X = {−1, 1} (I)

and values are generated using the single threshold c1 = 0 in the ordered probit specification

above. In another pair of cases (II) K = 4, X = {−1,−1/2, 1/2, 1} and the thresholds are

c1 = −1/2, c2 = 0 and c3 = 1/2.

Table 4 summarizes the settings for the four cases considered.

Figure 4 shows 2 dimensional projections of the 4 dimensional identified set and of two
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Case K d1 a01 a11 a02 a12

I.A 2 1 0 1 0 -1/2
I.B 2 1.5 0 1 0 -1/2
II.A 4 1 0 1 0 -1/2
II.B 4 1.5 0 1 0 -1/2

Table 4: Parameter values used in generating the probability distributions used in the illus-
trative examples

outer regions for each pair of parameters. Case I.A in which X is binary and the instrument

is relatively weak is illustrated in Figure 4. Cases I.B, II.A and II.B are illustrated in Figures

5, 6 and 7.

In each case the results are obtained by calculating membership of identified sets and

outer regions at each point on a grid of around 130, 000 values of the 4 parameters and

plotting the boundary of the set or outer region for each pairing of parameters. For each

pair of values in a 2-D projection of a 4-D set there exists a value of the other two parameters

such that the quadruple thus obtained lies in the 4-D set.

In each case three sets are drawn.

1. The inner set (blue) is the identified set obtained using all the core determining in-

equalities of Theorem 2.

2. The outer set (green) is the outer region obtained using the 3K inequalities:

exp (a0y + a1yx)

1 +
∑2

y′=1 exp(a0y′ + a1y′x)
≥ max

z∈Z
Pr0[Y = y∧X = x|Z = z], y ∈ {1, 2, 3}, x ∈ X

(4.2)

implied by (3.15). Since, as shown in McFadden (1974), the logarithms of the choice

probabilities on the left hand side of (4.2) are concave functions of the parameters

a ≡ (a01, a11, a02, a12) these inequalities define a convex set.

3. The intermediate set (magenta) is the set obtained using 3K inequalities in which the

left hand sides are as in (4.2) but the right hand sides take account of the existence

of any x′ such that T (y, x′; u) ⊆ T (y, x; u). This intermediate set is a proper subset

of the other outer region because allowing for the subset relationships leads to some

increases in the values appearing on the right hand side of the inequalities (4.2) with

no change in the values on the left hand sides. This set cannot be guaranteed convex

because the identity of the values x′ that are involved in subset relationships depends
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on the relative signs and magnitudes of the parameters a11 and a12. However in the

cases considered here the values a11 and a12 in the outer region all have a11 > 0 and

a12 < 0 which implies that the subset relationships do not vary within the set. This

outer region is therefore an intersection of linear half spaces and so is convex.

In all four cases examined the calculations suggest that all the 2-D projections are convex.

Accordingly the set boundaries we draw are the convex hulls of the points on the grids that

are calculated to lie in the each of the projected 2-D sets. In each pane of the figures the red

solid diamond locates the parameter value that generates the probability distributions used

in this analysis.

The IV model is quite informative. For example the slope coefficients can be signed

in the sense that all values of a11 and a12 in the identified set and the outer regions have

a11 > 0 and a12 < 0. Comparing Figure 4 with Figure 5 (K = 2) and Figure 6 with Figure

7 (K = 4) it is clear that the identified set and the outer regions are much smaller in the

stronger instrument case.

The sets in Figure 4 (K = 2) are substantially smaller than those in Figure 6 (K = 4).

We believe this occurs because the predictive power of the binary instrumental variable for

particular values of X decreases as the number of points of support of X rises. This result

is sensitive to changes in the support of the instrumental variable and to changes in the

specification of the relationship between potentially endogenous X and the instrumental

variable Z.

The outer regions (green, magenta) are around 10 times faster to compute and they are

quite informative, in some cases wrapping the identified set quite tightly. In case II.A the

intermediate outer region (magenta) is substantially smaller than the extreme outer region.

We think this happens because when K is large there are many more subset relationships

and these bring substantial refinements of the inequalities defining the extreme outer region.

The probability distributions employed here are generated by structures in which the

explanatory variable is exogenous. The model we use, with the addition of the exogeneity

restriction, is point identifying, so the extent of the identified sets seen in these illustra-

tions, relative to the solid red diamond demonstrates the identifying power of the exogeneity

restriction.
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Figure 4: Case I.A. 2-D projections of the identified set and two outer regions, M = 3,
K = 2, weaker instrument.
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Figure 5: Case I.B. 2-D projections of the identified set and two outer regions, M = 3,
K = 2, stronger instrument.
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Figure 6: Case II.A. 2-D projections of the identified set and two outer regions, M = 3,
K = 4, weaker instrument.
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Figure 7: Case II.B. 2-D projections of the identified set and two outer regions, M = 3,
K = 4, stronger instrument.
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5 Conclusion

We have considered multiple discrete choice models with potentially endogenous explanatory

variables and an instrumental variable (IV) restriction. The IV restriction requires that there

exist variables that are excluded from the random utilities and distributed independently of

the latent variables that induce stochastic variation in utilities. Our model does not rely on

special regressor, large support, triangularity or control function restrictions. Nor does it

require the existence of aggregate, e.g. market level, data. Indeed the model imposes quite

minimal restrictions, being incomplete in the sense that the model is silent about the genesis

of the potentially endogenous explanatory variables.

We have shown that this instrumental variable multiple discrete choice model has set

identifying power and we have characterized the (sharp) identified set. The general char-

acterization may involve a large number of inequalities. We have characterized a smaller

collection of core-determining inequalities which in the context of any particular model serve

to define the identified set, and we have provided an algorithm for calculating these in the

case in which explanatory variables are discrete.

We also provide easy-to-compute outer regions that can further facilitate computation of

the identified set. These may be of interest in their own right, potentially sufficient to address

the qualitative economic questions pursued in some applications. In parametric models

with discrete explanatory variables these only require calculation of probability expressions

which appear in a conventional likelihood function and calculation of probabilities of the

joint occurrence of values of the outcome and the explanatory variables conditional on the

instrumental variables. This was demonstrated in the conditional logit model in Section 4,

and in continuing work we are investigating the geometry of identified sets and outer regions

in IV conditional probit and nested logit models.

A novel aspect of our results is that we have characterized the identifying power of an IV

model which permits multiple unobservable variables in a structural function that delivers a

discrete outcome. We develop a general approach to models of this sort in Chesher, Rosen,

and Smolinski (2011), in which we extend the methods employed here to other IV models

in which there are many unobservables in structural functions. Examples include random

coefficient models that allow for general stochastic dependence between random coefficients

and covariates with either continuous or discrete outcomes, and discrete choice models in

which individuals’ choices among alternatives need not be mutually exclusive.
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