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Abstract

Using generating functions, the top-order zonal polynomials that occur in much
distribution theory under normality can be recursively related to other symmetric

functions (power-sum and elementary symmetric functions, Ruben [19], Hillier, Kan,
and Wang [9]). Typically, in a recursion of this type the k-th object of interest, dj

say, is expressed in terms of all lower-order d;’s. In Hillier, Kan, and Wang [9] we
pointed out that, in the case of top-order zonal polynomials (and generalizations
of them), a shorter (i.e., fixed length) recursion can be deduced. The present paper
shows that the argument in [9] generalizes to a large class of objects/generating
functions. The results thus obtained are then applied to various problems involving

quadratic forms in noncentral normal vectors.
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1 Introduction

Relations between the generating functions for different mathematical objects can yield use-
ful recurrence relations between those objects. This has long been appreciated in the theory
of symmetric functions, for instance, and in statistics can be exploited to yield recurrence re-
lations between moments and cumulants (Smith [26]). And, the top-order zonal polynomials
that occur in much statistical distribution theory under normality can, by this device, be re-
cursively related to other symmetric functions, in particular, the power-sum and elementary
symmetric functions (Ruben [19], Hillier, Kan, and Wang [9]).

These results greatly facilitate the efficient computation of these functions, and hence our
ability to compute moments, densities, distribution functions, etc., that are expressed in
terms of the objects of interest dj, say. However, such recursions typically express dj in
terms of all lower-order d;’s, and in Hillier, Kan, and Wang [9] (henceforth abbreviated
to HKW) we pointed out that, in the case of top-order zonal polynomials (and invariant
polynomials with several matrix arguments), a shorter (i.e., fixed length) recursion can also
be deduced by exploiting the relations between several generating functions. In this paper
we show that the argument in HKW applies much more generally. We first show that any
generating function may be used to define an associated function that induces a recurrence
relation of exactly the same form as holds between the top-order zonal polynomials and the
power-sum symmetric functions. Then, we show that, under certain often-satisfied condi-
tions on the associated function, there is a short recursion that can considerably improve
the efficiency of the recursion for computational purposes. The results are applied to vari-
ous problems involving quadratic forms in noncentral normal vectors, including: moments,
product moments, densities, distribution functions, and expectations of ratios of powers of
quadratic forms. In all of these cases we provide new short recursions that are extremely
efficient for computation. We begin by briefly explaining the results in HKW, and a little
more of the background.

The top-order zonal polynomials of a symmetric matrix A, Cy(A), and the top-order invariant
polynomials with several matrix arguments introduced by Davis [5] [6], Ck, ky....k, (A1, ..., A}),
occur sufficiently frequently in multivariate calculations as to deserve special attention. For
example, if z ~ N(0,, I,,), the moments of the quadratic form ¢ = 2’ Az are given by

1
pe= Bl = 2" (3) CulA) (1)
and the product-moments of the several quadratic forms ¢; = 2’A;z, i = 1,...,r, are given
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by
1
[ = Elgi g5? - ¢fr] = 2* (2)k Cr(Ar, -+ A4y), (2)

where k = (ky,..., k), k = |k| = X[_k;, and (¢)r = c¢(c+1)---(c+ k — 1) is the usual
Pochhammer symbol. These expressions follow easily from the moment generating function
(MGF) of ¢, and the joint moment generating function of the ¢;, both of which have ex-
pansions in terms of these polynomials (see below). Ruben [19] and James [10] essentially
give (1), while Chikuse [3] gives (2). The density function of ¢ may also be expressed as an
infinite series in the Cy(A), see James [10], Ruben [19], and Section 4 below.

Many alternative expressions for these polynomials (or, equivalently, moments) have ap-
peared in the literature, but for computation purposes the most efficient expressions have,
until recently, been the recurrence relations due to Ruben [19] for the Cj(A), and Chikuse
[3] for the C\(Aq, -+, A). These recursions involve the power-sum symmetric functions, py
say, in the eigenvalues of A, and, in the multivariate case, generalizations of them defined
in terms of a multivariate generating function. Although superior to the explicit formulae
for the polynomials, these recurrence relations have length k, and hence have computation
complexity of order O(k?), which means that the recursions are computationally quite ineffi-
cient. However, in HKW, we have given new recurrence relations for both cases that involve,
instead, the elementary symmetric functions, and appropriate generalizations of them for
the multivariate case. These have length at most equal to n, the dimension of the matrix (or
matrices) involved, that does not increase with k. These new recursions therefore improve
computational complexity to O(k), and the fact that they involve only a fixed number of
terms, whatever the degree of the polynomial, means that there is also a substantial saving
on storage requirements.

The new recurrence relations in HKW were derived by exploiting properties of, and rela-

tions between, the various generating functions for the polynomials that are involved. If we
normalize the top-order zonal polynomial Cy(A) by writing

1) G4
dk(A)=(2)’“k!k( 3

the (ordinary) generating function for the dj, is:
D(t) = 1, — tA] "% = Y dyt",
k=0

while the power sums p; and elementary symmetric functions e, have generating functions
P(t) = tr(tA(IL, — tA)™') and E(t) = |I, — tA|, respectively,! where tr(-) is the trace

! Note here that, for convenience, we define E(t) in such a way that the ey are the elementary
symmetric functions of the eigenvalues of —A, rather than of A.



operator. Here, dy = ¢y = 1, and, crucially, e, = 0 for £ > n. Note that, in terms of the dj,

These generating functions may easily be shown to satisfy the differential equations:
tE'(t) = —E@t)P(t),

and

The second of these immediately yields (on equating coefficients of like powers of ¢ on both
sides) Ruben’s [19] recursion:

1 k
dy, = %jz::lpjdkja (3)

while combining the two leads to the alternative recursion in terms of the ej given in HKW:

dk = Z <2‘7l€ — 1) ejdk_j.

J=1

In HKW we show that these relations generalize in the obvious way to the multivariate case.
For brevity we refer to the recursions involving the e; as the “short” recursions, and those
involving the p; as the “long” recursions.

Our first purpose in this paper is to show that the generating function relationships that
underpin the short recursions given in HKW for the polynomials dy and d. apply much
more generally than we at first appreciated. These results are given in Section 2, first for
univariate generating functions, then for the general multivariate case. In the remainder
of the paper we apply these results to various problems connected with the properties of
quadratic forms in noncentral normal vectors, and of functions of such forms. In Section 3
we show that the recurrence formulae that hold for the moments of ¢ when z ~ N(0,, I,,),
also hold in the noncentral case with z ~ N(u, I,,), given suitable modifications of definitions
of the p, and e;. Section 4 gives computationally efficient results for the density of ¢, and
Section 5 presents some analogous results for the product moments of several quadratic
forms. Finally, in Section 6 we study the expectation of a ratio of powers of two quadratic
forms in noncentral normal vectors. Throughout the paper we use Wilf’s [27] notation for
coefficients in generating functions: the expression [t*] f(¢) denotes the coefficient of t* in the
power series expansion of the function f(¢) in powers of ¢t.



2 Generating Functions and Recursions
2.1 Generating Functions with a Single Variable

Let D(t) be an arbitrary generating function for the objects dy, which themselves will in
general be functions of other variables,

D(t) =Y dt".
k=0

In applications D(t) will typically be the MGF of some random variable of interest, or a
more general generating function for moment-like quantities associated with one or more
random variables. Note that we treat D(t¢) as a formal power series, without using any of
the function-theoretic properties of the function that may be represented by the series, and
without worrying about whether such a series converges or not.

We define a second generating function P(t) by the formula:

P(t) _ talnal;<t) _ tgl(gf)) — ipktk, (4)

k=1

so that
tD'(t) = D(t)P(t). (5)

Equating coefficients on both sides of this identity yields the recursion in (3), except for the
factor 1 :
2

1 k 1 k—1
%:me%ﬁI%Z%Mﬁ (6)
j=1 J=0

With the initial condition on dy = D(0), this recurrence relation allows us to recursively
obtain the dj, using the py. The usefulness of this type of result depends, of course, on whether
the functions py are significantly easier to compute than are the d; themselves. And, unless
P(t) is a finite order polynomial, the length of the recursion increases with k, so it may be
computationally inefficient to use this recurrence relation when k is large. In the case D(t) =
I, — tA|"2 (the MGF of ¢/2 = ZAz/2 when z ~ N(0,,1,)), P(t) = Str(tA(L, — tA)™),
so that the p; = %tr(Aj ) are essentially the power-sum symmetric functions, and these are
indeed easily computed. However, it is now clear that this same recursion applies for any

generating functions D(t) and P(t) related by (5).

Remark 1 Note that, if M(t) = X2, 5", say, is the moment generating function for a

r=0 r!
random variable with cumulant generating function K(t) = In M(t) = 302, t", say, then

dp = p/k! and P(t) = tK'(t) = Y02, 2=t", so that p, = K, /(r — 1)I. Thus, (6) gives the

r=1 (r—1)!



well-known recursion for moments in terms of cumulants:
k k—1
E—1 E—1
=3 (57 e = (1 i
i=1 \J =0\ J

See, for instance, Smith [26].

Now, suppose that P(t), as defined in (4), is a rational function of ¢ and can be written as

where G(t) = X1, git* and E(t) = 72, ext” are both finite order polynomials in t. Note that
go = 0 because py = 0, and that gz can be obtained by using the fact that g = 25"} e;pr_s,
which follows from the identity G(t) = E(t)P(t). Without loss of generality, we normalize
the two polynomials G(t) and E(t) so that ey = 1. The following result generalizes the result

given in equation (24) in HKW:
Lemma 1 Suppose that the generating function P(t) defined in (4) can be written as

PO =it

with both G(t) and E(t) polynomials of finite order, say my and mso respectively, and eq = 1.
Then the dy, may be determined recursively from the relation

1 min[k,m)]
de = 7 > cidi, (7)
j=1

together with the initial condition dy, where m = max|[my, ma| and ¢; = (j — k)e; + g;.>

Proof. Define .
F(t)= E@)D(t) =) fit",
k=0

with

min[k,m2]

fk = Z ejdkfj- (8)

J=0

2 Note that the ¢j, as defined in the Lemma, depend on k. However, it is a simple matter to avoid
that potentially undesirable aspect of the result: we can alternatively write

with ¢; = je; + g;, which now does not depend on k.



Differentiating F'(t), and making use of the relationship in (5),
F'(t) = E'(t)D(t)+ E(t)D'(t) = E'(t)D(t) + 1E(t)P(t)D(t) = lE’(t) + Git)] D(t).

Thus,

S kit = (3G, + ;)0 (Z d#) ,

k=1 j=1 i=0
where m = max|[m, ms|. Equating coefficients of like powers of ¢ on both sides and using
(8) we obtain:

min[k,m2)] min[k,m]
koY, edij=kfu="D_ (jej+;)dij.
j=0 J=1

Rearranging this and using the fact that ey = 1 gives the stated relation. B

The key advantage of (7) over (6) is that at most m terms are needed to compute dj. As
a result, the computation time for the d; does not increase with k, and there is no need to
store all previous values of the c;, so the memory requirement also does not increase with k.
Again, though, the usefulness of the result depends on whether or not the c; are significantly
easier to compute than the dy themselves. As we shall see, this is certainly the case in the
applications involving quadratic forms in normal variates that we discuss below.

Remark 2 For the case D(t) = |I, — tA|"2, P(t) = tr(tA(I, — tA)™")/2 and P(t) can be
written as G(t)/E(t), where G(t) = tr((tA)adj(l, — tA))/2 where adj(l, — tA) denotes the
adjoint matriz of I, — tA, and E(t) = |I, — tA|. Since the elements of adj(I, — tA) are
polynomials of degree n — 1 in t, both G(t) and E(t) are polynomials of degree n in t. Thus,
P(t) satisfies the hypotheses of the Lemma.

2.2  Multivariate Generating Functions

We now extend the results in the previous subsection to deal with generating functions of
more than one variable. Special cases of these results were given in Section 3 of HKW. For the
rest of the paper, we shall adopt the following notation: t = (¢1,...,t.), kK = (ki,..., k,), the
k; being nonnegative integers, |k| will denote the sum of the parts of K, i.e., || = X1, ki,
tt = Hletfi, and k! =T[/_,k;!.

With this notation, we can also extend Wilf’s notation for the coefficients in a generating

function .
G(t> = Z Z glﬂitnv

k=0 |k|=k
say, by writing
9gr = [t7]G(2).



Also, generalizing the familiar relation between the coefficients in the product of two (formal)
power series with those of the two constituent series, we have that, if G(t) = P(t)E(t), say,
where P(t) and F(t)are at this stage arbitrary, then, if k£ = |k|,

g = [EIPOE) =Y Y e,

v<kK

where the notation v < k means that v = (vy,...,v,) is a sequence of nonnegative integers
satisfying 0 < v; < k; for all 4.

Next, for a given (ordinary) generating function

=3 futn,

k=0 |k|=k
we define
' a t o0
f =t Sy g
i=1 atz k=1 |k|=Ek

as a generalization of ¢ f'(t) for the single variable case.

Assume given, as in the univariate case, an arbitrary multivariate generating function D(¢)
for objects dy, i.e.,

D(t) = i > dyt”.
k=0 |k|=k

Then, exactly as in the case with single variable, we define P(t) by the equation

PU) = B = X, )
so that
D(t) = PO)D® (10

Since P(0) = 0, we can write P(t) as

P =3 pat®

k=1 |r|=k

and rewrite (10) as

5 b (55 ) (£ 2 00)

k=1 |n|=k i=1 juf=i J=0|X=j



Comparing the coefficients of t* on both sides, we obtain the multivariate version of the
recurrence relation (6):

1 k
dn = % Z Z pvdn—w (11)

= =i
v<k
where k = |k|. Together with the boundary condition dg = D(0), this result provides a (long)
recursive algorithm for computing the d,, given the p,.’s, and is a generalization of (6) for the
single variable case. However, (11) expresses d,, as a linear combination of [];_, (k; +1) — 1
different d,’s, so it is extremely inefficient when any of the k;’s are large.

Before presenting the generalized version of (7), we note that a different, and potentially
slightly shorter recursive algorithm for the d,, can be obtained by using a different general-
ization of the expression ¢ f’(t). Instead of computing D(t), we can pick a j such that k; > 0,
and consider just the derivative of D(t) with respect to t;. This gives us

L OD(t) _, dln(D())

J atj ) atj D(t)a
which implies:
> D kjdtt = (Z > kjp"tn) (Z > dnt“) :
k=1 |k|=k k=1 |k|=k k=0 |k|=k

since the coefficient of ¢* in In(D(t)) is p./k. Comparing the coefficients of * on both sides,
we obtain a second recursive algorithm for the d,:

1 k V;
dn = E Z Z 7pudn—ua (12)

J =1 |v|=1
v<k

which can also be considered as a multivariate generalization of (6).

Equation (12) expresses d,, as a linear combination of [k;/(k; +1)] Tj_, (k; + 1) different d,’s
with v < k. While (12) works for any j with k; > 0, it is best to pick the j with the smallest
nonzero k; in order to achieve the shortest recursion. When k; = 1, the length of recursion in
(12) is only half of that of (11). Nevertheless, there is no substantial computational advantage
of using (12) over (11). This is because, while (12) requires summing fewer terms than (11),
each term in the recursion entails an extra multiplication by v; /.

As in the single variable case, we can obtain a shorter recurrence relation for the dy if P(¢)
is a rational function of ¢ and can be expressed as

P(t) = -5 (13)



where both
Gt)=> > gut"
k=1 |k|=k
and
ma
Eit)=) > eqt”
k=0 |k|=k

are finite-order polynomials in ¢ and ey = 1. Note that go = G(0) = 0 because P(0) = 0,
and that the coefficients g, in G(t) can be obtained from

k—1
Ik = Z Z €vPr—v

v<kK

as in the single variable case. We have, in generalization of Lemma 1:

Lemma 2 Given an arbitrary multivariate generating function D(t), defining P(t) as in
(9), and assuming that P(t) is a rational function of t as in (13), with both G(t) and E(t)
finite of degrees mq and mo, respectively, then the d. can be determined recursively from the

short recurrence relation:
min[k,m]

dic :]1 Y cdiw, (14)

v<K

where m = max[my, ms| and ¢, = (i — k)ey + gy

Proof. Defining, as in the single variable case,

F(t) = EOD®) =3 Y fut”,

k=0 |r|=k
where
min[k,ma]
fo= > Y evdew. (15)
=
Then

F(t) = E(t)D(t) + E(t)D(t) = [E(t) + G(t)| D(¢)
on using (10) and (13). Hence

k=1 |r|=k i=1 |v|=i k=0 |r|=k

SY kfut = (i S (iew + g0) t"””) (i 3 d,J”) |

10



where m = max|my, my]. Equating the coefficients of ¢* on both sides gives us

min[k,m|

kf.= Z Z (tey + gu)dp—w

v<kK

Finally, using (15) and rearranging terms gives the stated result for the d,. ®

As before — and in contrast to (11) and (12) — the short recurrence relation only ever uses
at most (m + r)!/(m!r!) — 1 terms, and so significantly reduces the computation time and
memory requirement.

In the remainder of the paper we present a variety of applications of these results to prob-
lems involving properties of quadratic forms in normal random variables. From now on we
reserve the notation D(t) for the multivariate generating function for the top-order invariant
polynomials d,

D(t) =l = AW 72 = 3° 3 dut™, (16)
k=0 |r|=k
where A(t) =t1A; + ... + t, A, and P(t) for the generalized power-sum generating function

associated with it:
oo

Pt) = tr(A@) (I — A1) ) = 30 3 pat®.
k=1 |k|=k
Also, we reserve E(t) for the determinant |I,, — A(t)|. In all other applications of the results
given in this Section we add a tilde to D, P, and E, and their associated coefficients dy, py,
and e, to indicate that these are not the basic forms. Beware, though, that this means that
the same symbol will appear in different places with different meanings.

Remark 3 P(t) can be written as G(t)/E(t), where G(t) = tr (A(t)adj (I, — A(t))). Since
the elements of adj (I, — A(t)) are polynomials of degree n — 1, both E(t) and G(t) are
polynomials of degree n. Therefore, P(t) satisfies the hypotheses of Lemma 2.

In the applications to follow we always have

1

wa::Lx@exp<25x@)

for some choice of K (t). In this case we obviously have the simplification:

N D, 1 1.
E@)_§P@y+§K@y

g
—
(o
S——
I
|

Since we already know that P(%) is a ratio of finite-order polynomials, P(t) will have that
property if K(t) does.

11



3 First Application: Moments of Quadratic Forms

Before presenting results on the moments of the ¢; and other applications to follow, we note
the following useful lemma:

Lemma 3 Any property of any statistic that depends only on quadratic forms in z, with
z ~ N(p, I,), will be unchanged if the N(u, I,,) density for z,

a(z) = (2m) 2 exp (—?) exp <_,u;,u> exp(2'p)

1s replaced by

a(z) = (2m) % exp (—Z;> exp (—M;M> oF1 (;, Z,Mf/Z) : (17)

This result follows from the observation that quadratic forms of the type 2'z, 2’ Az, 2’ Bz, etc.,
are invariant under z — —z. If z ~ N(u, I,,), any property of a statistic that is a function
only of such quadratic forms will, as a consequence, be unchanged if the term exp(z'u) in
a(z) is replaced by its average over £z (i.e., [exp(z'u) + exp(—2'p)]/2), which is precisely
the final hypergeometric function in (17).

3.1 Formulae for the Moments

It is straightforward to obtain an explicit formula for the moments of ¢ when z ~ N(u, I,,),
and a variety of such expressions are extant in the literature. Virtually all of these are most
parsimoniously expressed in terms of the normalized top-order zonal polynomials dj. Using
(17), we can write the moment generating function of ¢ = 2’ Az as:

M,(1) = Elexp(12'Az)] = i %Tk

k=0 j=0 k171221

:exp< ) 33 - o () Ey (' A2)*(z'mpt'2)7 ]

where Fjy[-] denotes expectation with respect to z ~ N(0,, I,,), and § = p/p. But, from HKW
equation (48) we have

Ey {(Z’Az)k(zluu'z)j] = 2RI\ dy, (A, ).

12



Hence,

Mq(ﬂ—exp( )ii (<1); dyj (A, ppt')

k=0 j=0 27 2),

and

0\ 1
Wy = ok L1 exp (—2> 1 ‘ko(A, Iu,lu/) (18)
Jj=0 (2)j 2

It is straightforward to check (by majorization) that the series converges for all A and pu.
This generalizes the result mentioned earlier for the central (i = 0,,) case:

= Eo[(# A2)*] = 2Fkld,(A).
In the central case the short recursion given in HKW for evaluating the dj is extremely
efficient, and the short recursion given there for evaluating the dj, ; can be used in conjunction

with (18) to compute the moments in the noncentral case. However, we shall now show that
the results in Section 2 provide an even more efficient procedure in the noncentral case.

3.2 Recursions for the Noncentral Case

It is easy to show that the MGF of ¢ may also be written as

1 "L — 927 A Ly — o
MQ(T):|In_2TA|_§exp <ljl(n T ) ,UJ ﬂﬂ)

2

Let

- 1 "I — A—l _ oo
D) = 11, v exp (IR 52 (19)
k=0

so that the moments of ¢ are given by
1, = El¢¥] = 28k\dy,.

Note that the coefficients dj, are functions of both A and p (see (18) above), but we omit
this dependence in the notation when A and pu are clear from the context.

Using the fact that when ¢ is sufficiently small, (I, —tA)™" = 322, A"*, and In|I, — tA| =
— 302 tr(AF)EE, we can write In(D(t)) as

In(D(t)) = —;1n|l —tA| + 1u[(1 —tA)7! S l ’A’“u+tr(Ak)] th.

k=1 k

l\D\»—l

13



Defining P(t) as in (4) above, we therefore have

P(t) = 5 ot A+ tr(AF)| £,
k=1
so that, in this case,

Pr = ; [ku’Aku + tr(Ak)} :

The recursion (6) thus applies and gives a long recurrence relation for the dp:

dk - - Zﬁjdk*j' (20)

Obviously, p; reduces to p;/2 when p = 0,.

To see that P(t) is a rational polynomial with both numerator and denominator of finite
degree, so that the result in Lemma 1 also applies, first note that, by definition,

-~ OW|,—tA"z 1.0 , .

= ;tr (tA(L, — tA) ") + ;;/(zn —tA) T (LAY (I, — tA) (21)

Writing (I, — tA)~" = adj(I, — tA)/|I, — tA| we have P(t) = G(t)/E(t), where
G(t) = ;\In — tA|tr(tAladj(L, — tA)]) + ;,u’[adj(ln —tA)|(tA)[adj(I,, — tA)]pu, (22)

a polynomial of degree 2n, and .
E(t) = |1, — tA]?, (23)

also of degree 2n. In view of Lemma 1 we may state:

Proposition 1 The moments of a quadratic form q = 2’ Az, with z ~ N(u,I,), satisfy
exactly the same recurrence relations — those given in (6) and (7) — whether p is
zero or not. In the central case D(t) = D(t), P(t) = P(t)/2, and E(t) = E(t), while in the
noncentral case D(t), P(t), and E(t) are as in (19), (21) and (23), respectively.

Note again that, in applying the result of Lemma 1, the g may be computed indirectly from
the py, and €, by using the identity G(t) = P(t)E(t) (rather than directly from the expansion
of G(t) in (22)). Also, since E(t) = E(t)E(t),

min[k,n]

=D €
j=0
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where the e are the elementary symmetric functions of the eigenvalues of — A.

A second expression for the moments of ¢ that also leads to a simple recursion may be
obtained as follows. Let

G(t) = p/ (In — tA) " — plu =Y it
i=1
where 1, = ¢/ A", and define functions a,.; by the equation

a1 = [t"]D(t)g(t)" (24)

Note that a,o = d,.(A), and that the lowest-order term in ¢(¢)' is !, so that a,; = 0 for [ > r.
We then have, from the generating function for d, (A, pu') in (16),

Lemma 4 With the functions a,; as defined by (24),

where § = ny, = 1 .

The proof of Lemma 4 is given in Appendix A. Using this result in (19) and simplifying we
obtain the formula:

t k
i = 211D (0 exp [ A2 ) = 24 S kL
2 24112

This is evidently simpler than (18) in that the sum is finite. In addition, though, the ay;
themselves satisfy a very simple recurrence relation. To see this, simply note that

Dto(t)' = [DBs(t) '] o(t) = (i %utﬂ') (i mf') |

Equating coefficients of like powers of ¢ on both sides, and taking account of the fact that
a,; = 0 for r < [, gives the following recursion for the a,:

Lemma 5 Forl > 1, the functions a,; defined by (24) satisfy the recursion:

r—I4+1
Arl = Z 1j0r—j5,1-1, (25)
j=1

where n; = ' A and we have the boundary conditions a, = d,(A).

The functions a,; will also be useful later in Section 6 where some low-order cases are given
explicitly.
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3.8 Special Cases: Repeated Eigenvalues and the Partially Central Case

The recurrence relations for moments given so far hold for any values of the eigenvalues
of A, and any value of u. However, some further improvement is possible if either some
eigenvalues of A occur with multiplicity greater than one, and/or the noncentrality present
is of dimension lower than n. To see this, first let A = HAH', where A = Diag(Ay, -+, \,)
is a diagonal matrix containing the eigenvalues of A, and H = [hy, ..., h,| is an orthogonal
matrix of the corresponding eigenvectors. Using this decomposition, we can write

q=7Az=2HANH 2z = Z'Az,
where Z = H'z ~ N(H'u, I,) = N(fi, I,,), say.

Now, suppose that the eigenvalues \; are not distinct, but that the s < n distinct eigenvalues
A; occur with multiplicities n;, where n = ¥?_;n;. This setup occurs naturally in the context
of much-studied statistics of the form

q:)‘1Ql+"'+>\SQS>

where the ¢; are independent noncentral x2 (d;) random variables (see Ruben [19] and Press
[18]). Letting z; ~ N(f,;, I,,) denote the sub-vector of Z associated with \;, we set §; =
fifi; for i = 1,...,s. We wish to consider the case where, in addition to the possibility of
repeated eigenvalues, some of the noncentrality parameters §; may also vanish. Without loss
of generality, we assume that §; 0 fort=1,...,r,and 0; =0fori=r+1,... s

With these assumptions and notation the MGF of ¢/2 in (19) becomes:

D) = lf[a—u) ]eXp (;letf?Q

=1

Thus, defining P(t) as in (4) again, we have from (21)

S L[St & i R A
P(t)—2lzl_t>\ +Z(1_M ] 2§<ZniAi+k;5iAi>t

Hence, in this case,
1 S T
=5 (Z VRS mf) : (26)
i=1 i=1

and the recursion (6) applies with these f,. However, as before, P(t) is a rational polynomial
with both denominator polynomial

E(t) = (ﬁ(l —m-)2> ( H (1 —m)) :féiti, (27)

i=1 i=r+1
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say, and numerator polynomial

- 1 T S S S T T
Gt)= = <H(1 — t)\i)> Syt [T =) |+ T @—=tx) | | Dot [J(Q =)
21\ i=1 j=1 i=r+1 i=1 j=1
J#i JFi
of finite degree. Applying Lemma 1 we have:
Proposition 2 Suppose A has s distinct eigenvalues \q, . .., \s, with multiplicities nq, . .., ng

(n1+---+ns =n), respectively, and there are r < s non-vanishing noncentrality parameters
d; (as defined above). Then di may be computed from the short recursion given in (7), with
the pr as given in (26), and the éj as defined by (27). The recursion has length at most r+ s
(rather than 2n as in the case where r = s =n).

Remark 4 To illustrate the improvement afforded by this new recursive algorithm, we con-
sider an example with A = I, so that ¢ = 2’z ~ x2(8) is a noncentral chi-square variate.
Using (20), we obtain the following recurrence relation for the u, = E[q*]:
1 & .
e =5 > (k—i+1)2(n+ib)p,_; fork > 0.
i=1

However, applying Proposition 2, we obtain the following much more efficient recurrence
relation:

pp = Ak +04+n—Dp,_ 1 —2(k—1)2k+n—4)u,_o fork >1,
with the boundary conditions py =1 and py =n+9.

Remark 5 For the special case of u = 0,, i.e., z ~ N(0,, 1), we have dy, = dp(A), where
dp(A) is the normalized top-order zonal polynomial. For this case, Proposition 2 gives a
more efficient short recurrence relation for top-order zonal polynomials when some of the
eigenvalues of A are repeated (see HKW, Section 2.3).

4 Second Application: The Density of g

We next consider the probability density function (pdf) of ¢ = 2’Az, where A is assumed
to be positive definite. Let y = A2z, so that ¢ = y'y. Transforming z — y in (17) by using
(dz) = |A|"2(dy), we have

1 n "ATL / 1 v ai
o) = A7) e (< o (1o ()

2 2 27 4
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where i = A~3yu. Transforming y — (¢,v), with ¢ = y'y and v = y(y'y)"2, the volume
element becomes (in Muirhead’s [16] notation) (dy) = 1¢%~'dg(v'dv), the final term denoting
(unnormalized) Haar measure on the unit n-sphere. We thus obtain:

1 n n /A_l / 1 il
a(q,v) = 5(2'”)7§|A’7%q571 exp <—qvv> exp <—’u’u> oF < qu pLpe U) .

—_

— 7

) n_q 2 = - ) -1
pdf(q) = W exXp (‘2) q2 Z Z (%>k (%)ﬁk 2j+2kdg,k(A NTITSB (28)

221

This expression for the density seems to have been given first by Phillips [17] as part of
a much more complicated study of test statistics, but (28) can also be easily obtained by
differentiating the expression for the cumulative density function (cdf) of ¢ as given in Shah
and Khatri [21] [22]. The recursions given in HKW for the invariant polynomials d,, permit
reasonably efficient computations of the density based on (28). However, as we shall see,
even more efficient recursions can be obtained by exploiting the results given in Section 2.

An alternative expression for the density of ¢ in the noncentral case can be easily obtained
from the cdf of q as given in Ruben [19], see also Kotz, Johnson, and Boyd [12]. This can be
obtained easily from the joint density of (¢, v) above. Let 3 be an arbitrary positive constant,
and define w = ¢/f3. Then, transforming ¢ — w in @(q, v) we obtain

_ ) 1 wpv pp'v
1 S SNy A et ) I
exp ( 2) 041 <2a 4

o3

1 n 1 wBv' A
(w.v) = L (2x) 554 b exp (—ﬁQ) v

Now writing the term exp(—wfv'A™'v/2) as

exp <_wﬁv’A‘1v> ~ exp ( w) exp (wv’[[n - 614_1]1))
B 2

and integrating out v gives
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A3 n
pdf (w) = Wn T'f exp (—g) exp (—Z) w2t
241 (3)
0o oo Bkwﬁk L
X ZZ 1 " ,+2kdj,k<ln_ﬁA 17/1“:“/)
j=0k=0 <5>k (§)j+k 2
L 0\ & & Bl — BA™Y !
= |BA7YZ exp <—2> Z Z s 71 )9n+2(j+k)(w)
=i 2(y),
_ 0\ == 7
= |BA7Yz exp (—2> > hiGnion(w),
k=0
where g,,(w) = e 2wz "1/25T (%) is the pdf of the x2, distribution, and

_ k J o o -1
=3 By (In 1&4 )
Jj=0 2j (5)]

The expressions for the hy, follow by summing the double series by diagonals.

Transforming back to ¢ = wB (dw = B 'dg) we obtain the following expression for the
density of ¢ :

n 1 5 e ~
pdf(q) = B3 A exp (—2) S s (g) | (29)
k=0

Remark 6 When pu =0, we have hy, = dp(I, — BA™Y), so that

pdf(q) = B3| A 2 i di(In — BA™) gnon <;> .
k=0

This is a very simple version of the density for the central case, and we have efficient recur-
sions for the dy available from HKW.

Remark 7 Note that, provided 0 < [ < \,, where X\, is the smallest eigenvalue of A,
I, — BA™ is a positive definite matriz, so we have d;(I, — AT @) > 0 and hence
hi > 0. Since

0o 0o oo kd [n_ A_l,__/ N )
th — Z ﬁ ],k( ﬁ :u/'L) — |/8A—1|—§ exp <2> ’

1
k=0 =0 k=0 (5) . 2k

we have |BA7Y|z exp(—8/2)(52, hi) = 1, so the density of w is a mizture of central x>
densities.

Remark 8 Ifweletc,(k)=2" (g) denote the r-th moment of a central x2 random variable,
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we have an expression for the moments of q in term of those of central x* variates:

n 1 5 0 od
n, = E[q"] = 21| A| 77 exp <—2> > e (n + 2k). (30)
k=0

We next show that there are efficient short recursions for the hy based on the results given
in Section 2. These provide efficient methods for computing the density in (29), and also yet
another procedure for computing the moments of ¢, the p,, based on (30).

4.1  Recursions for the hy,

The generating function for the &y, is

=3t
k=0
co k s -1 —+/
ﬁ dkfrr(ln_ﬁA mulu) k
= 2 t
IO

_Zzﬁdkr n 514 lalu,u)tk-i—r

k=0 r=0 (§)r
= [ & dy, (I, — BA 18 |
-5 B

= [l = t(I = BAT) " exp (W[In e “‘lﬂ‘lﬂ) .

The final equality here follows from (18) and (19). Defining, as in (4),

P(t) = ﬂfll(t),
H{(t)
we find that
P(t) = ;tr (tA(L, — tA) ") + ;tﬁ,u’(ln —tA) 2, (31)

where A = I, — BA™!, and
N NP Ki
pi=g [@MIA i+ tr(A )] ;
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Thus, the recursion (6) holds with dj, replaced by hy., and py, by P, i.e.,
- 1k .
hy = T > Dihe—j,
j=1

with the boundary condition kg = 1. This is the (long) recursion given by Ruben [19].
Using Ruben’s recursive algorithm for computing hz, Sheil and O’Muircheartaigh [23] and
Farebrother [7] develop computer programs for approximating the pdf and cdf of q. However,
it is often the case that a large number of terms is required to achieve a desirable accuracy,
S0 it is important to have a faster method for computing the hy.

In this case it is again clear that P(t) satisfies the hypotheses of Lemma 1, with G(t) and
E(t) replaced by

~ 1 ~ ~ ~ 1 -
G(t) = 51, — tAltr (tAadj(I, —tA)) + SO ladj(L — tA)p,

and E(t) = |I, — tAJ? again, so that both G(t) and E(t) are of order 2n. Thus, in view of
Lemma 1, we may state:

Proposition 3 In the expansion (29) for the density of q, the short recursion given in (7)
applies for the hy,. The py. are the coefficients in P(t), as defined by (31), the &, are defined
by E(t) = |I, — tA|]?, and the gy by G(t) = P(t)E(t).

A reduction in the length of the short recursion for the hy, can also be achieved when the
eigenvalues are not distinct, or some noncentrality parameters vanish, as above for the mo-
ments. We omit the details.

In addition to the above expansion in terms of central chi-squared densities, there are other
expansions for the density: the power series, the Laguerre series, and the series in noncentral
chi-squared densities expansions (see Ruben [19] and Kotz, Johnson, and Boyd [12]). Fast
recursive algorithms for generating the coefficients in these other series expansions can also
be obtained by applying the result in Lemma 1, but again we omit the details.

5 Third Application : Product Moments of Several Quadratic Forms

Let A; to A, be r n x n real symmetric matrices, and let ¢; = 2’A;z, ¢ = 1,...,r, denote
the variates of interest, with z ~ N(u, I,,). Explicit expressions of p,, have, at least for low-
order cases, long been available in the statistics literature. However, most of the existing
work expresses [, as a sum of various products of the traces of |k| matrices related to A;’s
and are extremely inefficient for computational purposes. Kan [11] provides a review of this
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literature, and a discussion of why current methods are impractical for computing p,, even
for moderately large |k|. See also Mathai and Provost [14] for an excellent review of quadratic
forms in random variables.

A straightforward generalization of the result in Section 3.1 yields an expression for the
product moments p,, in terms of the normalized Davis polynomials d,.. And, the results in
Section 2.2 give both long and short recursions for their computation that are extremely
efficient.

5.1 FExplicit Formulae

Direct expansion of the MGF
MQL---#]r(T) =F [eXp(qul + 4t TT’qT‘)] )
together with Lemma 3, gives, on using equation (48) from HKW:

2k

My, g (T) = exp (—“2“> $I (3)

> di (A, A )T,

j=0 k=0 27 ; |sl=k

so that

ppyes 1
fe = E gl g5 - g7 | = 2"kl exp (—2> > €
i=0 (3

d '(Ah s 7AT7MM/)7

again generalizing the result for the central case:

e = 2"Kld (AL, ..., A).

The recursions presented in HKW for the invariant polynomials d, provide one way of
computing these moments. In addition, Kan [11] presents a much more efficient method for
computing p,,. Proposition 4 of Kan [11] shows that

=g 3 0M(B) BB )

C0<vk

where B, = 0, (& — v;) A;, k = |k, and
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As noted in Kan [11], half of the terms on the right hand side of (32) are repeated, so one can
compute f,, by computing the k-th moments of |[Ti_,(k; + 1)/2] different quadratic forms
in z, where |z] stands for the integral part of x. Kan [11] suggests using the recurrence
relation (20) to compute E[(2'B,z)*]. With the new recursive algorithm given above, we
can now significantly improve the computation speed of E[(z'B,z)¥], especially when k is
large. Although, with this procedure, (32) is quite efficient, there are circumstances where
we still prefer to use a recurrence relation to compute p,.. This is particularly so if we need
to compute not just a single p,, but require all p,, with 0 < v < k. In addition, when n or
r is small, the new recursive algorithm based on the result in Section 2.2 is very short, and
it significantly dominates (32) in terms of computation speed.

5.2 Recursions Long and Short

The joint moment generating function of (¢, ..., q.) may also be written as:

Mq1 ..... q7»(T) _ |In . 2A(T)|_% exp (M’(In — QA(T))_I,U PJ“) Z Z :un K,

2 2 k=0 [rs|=k ¥
where A(T) = 171A; + -+ - + 7, A, (see, for example, Lemma 5 of Magnus [13]).

Let

D(t) = |1, — A(t)|_% exp <#/(In —A®) MM) Z > dt", (33)

2 k=0 |r|=k

where A(t) =t1A; + - - + ¢, A,. The product moments themselves are given by:

o= B [Tl = 20
i=1

Defining P(t) as in (9), we have

1 (e.¢] o B o
k:l k=1 |k|=k
where, for k = |k,
R
b = SE7[tr(A)") + ki A()" ],

We can also write P(t) in the form

P(t) = Str(A) (L — AW®) ™) + Sl — AR) ™ A@) (T — A®)
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so it is clear that this satisfies the hypotheses of Lemma 2, with m = 2n. Defining

B) =L~ ABP =3 3 éut (35)

k=0 |k|=k

we see that both E(t) and
Gt) = EOP) = 3. Y et (36)

are polynomials of degree 2n in t.

In view of the results in Section 2.2, we can use (11), (12) and (14) to obtain the following
three recurrence relations for the functions d,, defined by (33):

Proposition 4 Using py, éx and §,. as defined by (34), (35) and (36), the d,, in (33) can
be recursively obtained from one of the following recurrence relations:

.1k .
dy = % Z Z ﬁVdK,7V7 (37>
s
~ 1 k v ~
de=—> ~pudy—,  when k; > 0, (38)
ki i,
v<k
~ 1 min[k,2n] ~
de=— > cdew, (39)
LR =
v<kK

where ¢, = (i — k)é, + G, and we have the boundary condition czo =1.

Remark 9 (38) can also be obtained by using the recurrence relation between moments
and cumulants for multivariate distributions (see, for example, Smith [26] (Eq.10)). For the
special case of ky = -+ =k, = 1, Bao and Ullah [1] provide a further simplification of this
recurrence relation.

In contrast to the recurrence relations (37) and (38) which are in terms of the p,, our new
recurrence relation (39) only involves the é,, and g, and these vanish for |k| > 2n. Regardless
of the value of k, (39) suggests that d,. can be expressed as a linear combination of at most
(2n 4 7)!/[(2n)!r!] — 1 other d,’s with v < k. Therefore, (39) can provide a significant
improvement over (37) and (38) when k;’s are large.

In order to use the above recursive algorithms to compute d,, we need to first obtain the
coefficients p,, and é,. When n is very small, we can use a symbolic mathematics program
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to compute p, and e,. However, this is extremely time consuming even when n is only
moderately large. Therefore, it is crucial that we have efficient numerical algorithms for
computing the p, and é,. HKW provide an efficient method for computing the coefficients
of t¥ in the expansion of tr(A(t)¥), which then allows us to easily obtain the é,. In addition,
their algorithm can be extended in a straightforward manner to compute the coefficients of
t" in the expansion of u'A(t)*u. Therefore, both the é, and jp,. can be efficiently computed
by the methods described in HKW. 3

6 Final Application: Ratios of Powers of Quadratic Forms

In this section we give results for the more complicated problem of evaluating expectations

of the form »
u;:E[“ ) ] (10)

(2/Bz)*
where A is a symmetric n X n matrix, B is a positive definite n x n matrix, z ~ N(u, I,,), 7
is a nonnegative integer and s is a positive real number. We shall assume throughout that
the largest eigenvalue of A is positive (i.e., that A is not negative definite). If A is negative
definite the results to follow can be applied to (—1)"u”, rather than pf itself. It is easy to
show that the expectation in (40) exists if and only if § 4 > s, and we shall assume that
this condition is satisfied throughout this section.

Many estimators in statistics take the form of ratio of quadratic forms in normal random
variables. As a result, the problem of computing expectations of the form given in (40) has
attracted the attention of many researchers. Most of the results in this literature are based
on a lemma due to Sawa [20], and present formulae that take the form of a one-dimensional
integral that must be evaluated numerically. For the development of this type of formula,
see the excellent papers of Magnus [13] and Meng [15] and the references therein. We shall
briefly describe the result here before presenting our own results.

Let B = PAP’, where A is a diagonal matrix of the eigenvalues of B, and P is an orthogonal
matrix of the corresponding eigenvectors. By combining the results of Theorem 6 of Magnus
[13] and Lemma 1 of Meng [15], we obtain

= F(ls) I (“/P 2l = il 7‘) Bl(w/Rw))dt,  (41)

where A = (I, + 2tA)"2, R = AP'APA, and w ~ N(AP'y,1,). Currently, this is the
only practical method that can be used for numerical evaluation of u}. However, there are

3 A set of Matlab programs for implementing the three recursive algorithms is available upon
request.
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two problems associated with the use of this formula. The first is in the computation of
E[(w'Rw)"], which we have discussed in Section 3.1 above. As we have seen, both explicit
formulae for this term, and efficient recursions for evaluating it, are available. However,
because R is a function of ¢, this expectation must be evaluated many times. The second
problem is that it is difficult to control the accuracy of the numerical integration: there is
no general result in the literature that allows us to analyze and control the errors in the
numerical integration of (41). For these reasons, we seek here a more efficient method for
evaluating the p} based on the results in Section 2. Before doing so, we briefly describe the
exact formulae that are available.

6.1 Explicit Formulae

Smith [24] provides a very different expression for the u”. He shows that p/ can be expressed
as a doubly infinite series involving the top-order invariant polynomials d,. In our notation,
his expression is:

T (3 —o) et o G (30— ), ,
- T, A, n — , ,
M F(g+r) ]z:;),;) ok (%) <g+r>j+kd,j,k( I, — BB, ) (42)

reducing to
C2IET (B —s) & (s),
e = r(3+r) ;)(%r)j
when p = 0,,. Here, § = ¢/, and 3 is a constant that satisfies 0 < 5 < 2/byax, With bpax the

largest eigenvalue of B.* When B = I,, we may choose 3 = 1, so that the sum on j in (42)
vanishes, and we have the simpler result

dr,j (A> In - 63) ) (43)

9r=s, I (g—f—r—s) e~ = (%+T_S>k
r_ ) A’ , ‘
o Ry e o

Finally, when both B = [,, and u = 0,, we have

. 2rID(5 4 — 8)
BTG

d, (A),
a multiple of the corresponding moment of ¢ dealt with in Section 3.1 above. Smith [25]
makes an attempt to use these formulae to compute the moments for the case r = 1, and

4 This condition is needed to ensure that the expansion of [1 —v/(I,, — 3B)v]~* as a power series in
v'(I,—BB)v (from which (42) is derived) actually converges uniformly over the region of integration.
This is so if and only if |1 — Bbmax| < 1, the condition stated.
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with either 4 = 0, or B = I,,, but there has been great difficulty in using this formula for
computation in the general case.

Recently, HKW have given an efficient recursive algorithm for computing the top-order invari-
ant polynomials d, ; 5. In principle, their algorithm can be used to compute the d, ; (A, I,, —
BB, '), and the moments approximated by truncating the double series in (42) at some
suitable point. However, this process is extremely inefficient. As a result, HKW focus only
on the simpler special case of ; = 0,,, when only a singly infinite series of top-order invari-
ant polynomials with two matrix arguments is involved. In addition, for the case pu = 0,,
HKW give an upper bound on the approximation error when truncating the infinite series
at 7 = M. For the general case of u # 0,, it remains a significant challenge to bound this
truncation error.

6.2 New Formulae for the (i,

To address these difficulties, in this section we provide two new formulae that greatly simplify
the evaluation of the ul for the general case when p # 0,,. Unlike Smith’s formula, both of
our two new expressions involve only a singly infinite series, and the coefficients are easily
obtained using a fast recursive algorithm based on Lemma 2. In addition, we also provide
error control, so we can compute the expectation up to any desired level of accuracy.

The results we develop are based on the following formal representation for u’ — which is
also the basis of the formula (41) (see Sawa [20] or Cressie, Davis, Folks, and Policello [4]):

e T e o
U = F(S)/O xT ququQ(t, —C(])dl',

where M, 4,(t1,t2) = Elexp(t12'Az + t32'Bz)] is the joint moment generating function of
¢ = 2'Az and ¢ = Z’Bz when z ~ N(u, I,,), i.e.,

1 "(I, — 2t A — 2t,B) ! )
My, 4, (t1,t2) = |1, — 2t1 A — 2, B| "2 exp (u( ! 5 2B) " 2) :

where § = p/u. Our starting point is thus the following integral expression for pu!:

] oo ‘I, —2tA+2zB) 'y 6
e = rl ]/ :1:5_1|In—2tA—|—2xB|_% exp e 2B 0 dz.
I(s) Jo 2 2

We discuss the existence of the integral as necessary below. For convenience later we trans-
form to y = x/0 in the integral, with [ a positive constant to be chosen. This leads to the
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following expression for p:

. _ Bt

I, —2tA+2yBB)" 'y 6

oo /
/ y I, — 2tA + 2yﬁB|_% exp (H ( — 2) dy. (45)
0

2

We derive two different expressions for !, from (45), each suited to different circumstances.
These arise from slightly different ways of rewriting the matrix I,, — 2tA + 2yGB.

To obtain the first result of this type, observe that we can write

2t 2y~
I, —2%A+2y8B=(1+2y) (I, — A— B, 46
#2098 = (142 (1~ oA o) (46

where B = I,, — 3B. Define, for fixed y, functions h. (A1, As) by the generating function®

1 1—t¢ /[_tA_tA—l /
HAl,A2<t1at2):|I_t1A1—t2A2|_2eXp<< 2)1( 1 A1 — t2As) :“_MM)

2 2

=D heg(Ar, Ao)tith, (47)

r=075=0

In fact, the h,;(A;, A2) may be expressed explicitly in terms of the d, ;;(A1, Ag, ppt'), as
described in the following lemma, which is proved in Appendix A:

Lemma 6 The functions h, ;(Ai, As) defined by (47) can be expressed in terms of the in-
variant polynomials d, as follows:

N & 1 (=D +m) )
hr7j(A17 AQ) = eXp <_2> Z 2mm| Z (2[“) <(1> ) dr,j—l,l-i—m(Ala A27 27 )
I+

This result is useful for proving the convergence of the infinite series involved in the result
to follow, but not directly for computation purposes.

Transforming now to b = 2y /(1 + 2y) in (46), the integrand in (45) has the form

275 (1= b) 21N (2t(1 - b))V, (A, B),
r=05=0
so that the coefficient of ¢" is

20T (L= B)ETT S by (A, B),

J=0

® We include the term exp(—p/u/2) in the generating function to ensure that hg (A1, A2) = 1.
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We show in the Appendix that term-by-term integration can be justified when § +1r > s
and 0 < 3 < 2/byax. We may therefore state:

Proposition 5 For (r, s) satisfying §+r > s, and any choice of 8 satisfying 0 < 3 < 2/bmax,
where by 18 the largest eigenvalue of B, we have the following expression for the moments
I

2" =535\ (g +r— s) o0

F(%—i—r) g % r); hyj (A, I, — BB). (48)

pe =

Note that when =0, h,;(A, I, — 8B) =d, (A, I, — 6B), and (48) specializes to (43).

To obtain the second expression of this type, note that we can alternatively write

1 2t . 1 4 1
I, —2tA+2ypBB = ((1+2y)B2 | I, — A— B| Bz,
208 =B+ 2y) 2( 2" 1+ 2 ) 2
where A= B"2AB~2/f and B = I, — (3B)~". Changing the variable of integration in (45)
tob=1/(1+2y),0<b <1, we then have

5rl t" 1, A A
o= —Me dul | =0y L, — 2 — bBI
*I'(s)|3B]2

— A _ pB) 1
X exp (b,u (n 2tb2A bB) M) db, (49)

where 1 = (ﬂB)*%u

Now, for fixed ji, define functions h,.;(A;, Ay) by the generating function

- tofi (I, — t1 Ay — taAs) L
HAl,Az(tlat2):|In —tlAl —t2A2|_% exp( 2,“( ! 21 2 2> M)

=2 e (Ar, A8, (50)

r=075=0

These functions h, (A1, As) can again be expressed directly in terms of the d, ;;(A;, A, ifi'),
as described in the following lemma:

Lemma 7 The functions Bm(Al,Ag) defined by (50) are given by:

- J 1
hej(Ar, Ag) =)

=0 % <%>l

drj—11(A1, Ao, 1fi).
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Again, this result is useful analytically, but not directly for computational work.
Now, the integrand in (49) has the form
b (1 —0) N ST (2th) W he (A, B),
r=0j=0

so that the coefficient of ¢" is

27p2 T (1= b)Y W h, (A, B).
7=0

We show in the Appendix that term-by-term integration is justified if § +r > s and 8 >
1/(2bmin ), where by, is the smallest eigenvalue of B. We may therefore state:

Proposition 6 For (r,s) satisfying 5 +r > s, and any choice of 3 satisfying 3 > 1/(2bwmin),
where by, is the smallest eigenvalue of B, we have the following expression for the moments
py
2T_Sﬁsr!e_%F nyp—s) oo 5tr—s)
1 (2 ) (2 )JhT,j(A7B)= (51)
|6B|2T (%-I—r) =0 (%—l—r)

Wy =

where the functions h,.; are defined by (50), A = B 2AB~2/8, and B =1, — (3B)~".

Note that when y = 0,,, h,.;(A, B) = d,;(A, B), so (51) gives us the following new expression

)

for pf in the case p = 0,

- 2r=5 6% (% +7r— s)

i(g—FT—S)‘

|ﬁB’%F (%4‘7’) j=0 (%—i—r)j

The expressions for p given in Propositions 5 and 6 seem superficially similar to Smith’s
expression (42) given above. However, there are two important simplifications that make (48)
and (51) much more efficient for computation purposes than is (42). The first is simply that
these new expressions involve only a singly infinite series, rather than the doubly infinite
series present in (42). The second, and more important, aspect of the results is that both of
the generating functions Ha, a,(t1,ts) and Hya, a,(t1,ts) satisfy the hypotheses of Lemma 2,
so that short recursions are available for both the the h, ; and the ﬁr,j. We describe these in
more detail below, but first give some additional results for the special case in which B = [,,,
when the above results simplify considerably.
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6.3 The Special Case: B = I,

The moments ! simplify considerably when B = I,,. Clearly, like the moments f;, of ¢ =
2! Az, they depend only upon the matrices A and up', and in fact, like the p,, they can be
concisely expressed in terms of the functions a,; introduced at the end of Section 3.2. To see
this, simply insert the result in Lemma 4 into (44) to obtain:

T_QT_sr!F(%er—s)e*? > (%+r—s)k LA
S ,Eozkkq%r)k;(z)é

B 2r=spIl (% +r— s) € 2 o0
B T(2+47) 2 Z
2r—sril (% +r— s) ez (% +7r— S)l

r (g +7) = 20 (2 +7)

2 k+

— ( —l—r—s—irl) n 6

where the third line follows from the fact that a,; = 0 for [ > r, and the last step follows from
the Kummer formula for the confluent hypergeometric function: e=* Fi(a,c; z) = 1Fi(c —
a,c; —z). We may therefore state:

Proposition 7 When B = I,,,

e ( fr—s—irl) n 6
=2 IZ Qll'F( —|—r—|—l> v (8,2+r+l,—2> ar, (52)

where the functions a,; are defined by (24), and satisfy the recursion (25).

Remark 10 Forr =0, (52) is the inverse moment of a noncentral chi-squared distribution,
and its expression was first provided by Bock, Judge, and Yancey [2] when s is a positive
integer. For r = 1, Smith [25] uses a different approach to obtain the same expression as
ours. For the case that r = s, Ghazal [8] presents the results for r = 1 to 4. Our results are
more general in that s can be an arbitrary positive real number and r can be any nonnegative
mnteger.

Although it is straightforward to evaluate the a,; numerically, we present the explicit ex-
pressions of a,; for r = 1 to 4 here for easy reference. Setting 7, = tr(A*) and n;, = p'A'y,
we have:
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Table 1: The a,; for 1 <r <4

l 1 2 3 4
0 T1 T% T2 T? T1T2 T3 7‘11 7'%7'2 T% T1T3 T4
s tTT |mT 5 t% T3 T T Ty

T2 T T 7—3 T1T: 7—2 T T T

O R T e e e e i T o e i e i e o el e o/

9 2 TR o Ting | Teni 2.9

UR 5~ T 2117 s T 4 T TiMmNy TN+ 2003

3 3 7'1777‘;’ 3 2
m 5 T 9NN

4 Ul

6.4 Long and Short Recursions for the h,; and fLm

We now show that the results in Section 2.2 provide both long and short recursions for the
functions h, ; and Bm-, and give the details for implementing these. Consider the generating
function for the h,;, H(t1,ts) as defined in (47), first. Defining P(t) as in (9) (with D(t)
replaced by H(t,t,)), we find that the associated function P(t) is given by

~ (9lnH(t1,t2) 81nH(t1,t2)
P(t,ty)=t t
(t1,t2) =t ot + 12 ot

1 1 1
= §P(t) + 5(1 — tQ)ILL/(In — tlAl — t2A2)72,u — 5/,/([” — tlAl — tQAQ)illlq

where

P(t) = tr ((t1A1 + 1o A2) (I, — 1Ay — tQAQ)—l) =3 piatith.

§=0 k=0
j+k>0
This clearly satisfies the hypotheses of Lemma 2, with
N 2n 2n—1 o
E(t) = |1, — t1 Ay — t2 Ao =D > & tit, (53)
i=0 j=0

and G(t) both of degree 2n.

Now, for fixed p, define functions 7, , of matrices Ay, A by

,LLI(In — tlAl — tgAg)illu = Z Z nj,ktjltg

=0 k=0
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Then,

1 1.
5 5(] +E)Njk = Mjx-1)5 (54)

The corresponding function P(t) for the case D(t) = H(t1,t5), as defined in (50), is:

Dik = =Djk +

ﬁlnﬁ(tl,@) 1t ahl[j[(tl,tg)
ot 2 ot

1 1, —9.
= §P(t) + itgul(ln — tlAl — tQAQ) 2[,67

P(t17t2) =t

and again the hypotheses of Lemma 2 are satisfied, with E’(t) = |I,, — t1 Ay — tyA5|* again.
In this case we find that

- 1 1 . .
Pk = 5Pis+ 5 (7 + k)M, (55)
where 7); ;. are functions defined by
[L (] — tlAl — t2A2 Z Z ﬁjkt%tlg
j=0 k=0

We may therefore state:

Proposition 8 (i) Using the boundary condition of hoo = 1, the functions h,; defined by
the generating function (47) may be generated by the long recursion given in (11), which has
the form:

Z Zpk17k2 r—ki,j—ka» (56)

T4 J 1520 k=0
k1+k2>0

7j

where Pg, k, are as in (54). Or, they may be more efficiently generated using the short recur-
sion given in Lemma 2, which has the form:

Z Z Ck17k2 r—ki,j—ka» (57)

T4 J 120 s
0<k1+k2<2n

7j

with
Chi ks = (k1 + ko — 7 = J)€ky ko + Tha o
and with the €y, k, as in (53) and the Gy, r, determined by

)
Gk ,ka = Z Z pvlﬂfzelﬁ —v1,ko—v2-

v1=0 vo=
v1+v2 >0
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(ii) Using the boundary condition of 5070 = 1, the functions Bm- defined by the generating
function (50) may be generated by exactly the same long and short recursions, as given in
(56) and (57), respectively, except that in this case the py, , are as in (55).

6.5 Truncation Errors

When using (48) or (51) to evaluate pf, we must in practice truncate the infinite series at
j = M for some value of M. In order to control the accuracy of the computation, we need
to obtain an upper bound on the truncation error. For the presentation of our error bounds,
we introduce the following notation. Suppose A is a symmetric matrix. We define AT = A
when A is positive semidefinite or when r is even, and AT = PAT P’ otherwise, where A™ is
a diagonal matrix of the absolute eigenvalues of A, and P is a matrix of the corresponding

eigenvectors of A. With this notation, we now present an upper bound on the truncation
error for (48).

Proposition 9 For any choice of B satisfying 0 < [ < 1/byax, where byay is the largest
eigenvalue of B, an upper bound on the approximation error of . when truncating the
infinite series in (48) at j = M 1is given by

2B (G4 —s) M (s), h (A1
- R
g r(s+r) f;(g”)j ! )
2" 3°rIl (%4—7'—5) (8)m41 63%6 ~r(f_1,ﬂ) — . h.j(A*, 1, — BB
< r(3+7) (5+7)y L 18BI ;0 |

o', A= B_%AJFB_%/ﬁ, d, is defined as in (19), and the
generating function of h; (A1, As) is given by

. 1 L+ o)/ [, — t1 A1 — 6 A P 6
Ha, a,(t, 1) = |1, — 1 Ay — ta Ay 2exp<( + o) pt'[ 21 1 — oAy ,LL_2>‘

Our bound on the truncation error for (51) is simpler, and it is given in the following
Proposition.
Proposition 10 For any choice of 3 satisfying 5 > 1/bmin where by, is the smallest eigen-

value of B, an upper bound on the approximation error of . when truncating the infinite
series in (51) at j = M is given by
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275 @l (% - 3) 3 (% o S>j

ro_ ~T' A, a
. |BBzT (% + r) =0 (% + T)j fr ( B)
2B e 30 (34— s+ M+1) L s Mo
BBIST (% + 7+ M +1) BB[2exd (A7, 1) = el B

where d, is defined as in (19) and A is defined in Proposition 9.

With the results in Propositions 9 and 10, we can now approximate pu! to any desired level
of accuracy. However, it is not an easy matter to decide which one of these two algorithms to
use for a given problem. The relative speed of convergence of (48) and (51) depends on A, B,
1, r, s, as well as the choice of (. For given values of A, B, u, neither algorithm dominates
the other for all values of (r,s). Our experience seems to indicate that (48) is more efficient
when s is small whereas (51) is more efficient when s is large. Further analysis is required to
better understand this issue, but we leave this topic for future research.

6.6 An Example

For illustrative purpose, we consider an example with n = 20, A a Toeplitz matrix with
(i, j)th element given by (|7 — j| — 1)/n?, B a diagonal matrix with i-th diagonal element
bi; = i/n? and p is set to be a vector of y; = i/n for ¢ = 1,...,n. Using the choice of
B = 1/byayx for (48) and 5 = 1/by, for the case of (51), Table 2 reports the value of ul
for various combinations of r and s, with approximation errors less than 107°. The table
also reports the number of required terms (M) to achieve the desired level of accuracy in
parentheses, with the first number being the required terms when using (48) and the second
number being the required terms when using (51).

From Table 2, we can observe that for a fixed r, the number of required terms (M) increases
with s when using (48). In contrast, M decreases with s when using (51). For our particular
example, the expression based on (48) generally converges much faster than (51) except when
s = 10. Nevertheless, both expressions are very fast and efficient. Using either (48) or (51),
it takes less than three seconds for our Matlab programs to generate Table 2 using a PC
with an Intel E6600 CPU.
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Table 2: Expectation of Ratio of Quadratic Forms in Noncentral Normal Vectors

The table presents F[(z'Az)"/(2'Bz)*] for various values of r and s, where z ~ N(u,I,),
n = 20, A is a Toeplitz matrix with its (4, j)th element as a;; = (|i — j| —1)/n?, B is a diagonal
matrix with its ith diagonal element as b; = i/n? and u; = i/n. The approximation error is
set to be less than 107> and the number of terms required to achieve this level of accuracy is
reported in the parentheses, with the first number being the required terms when using (48)
and the second number being the required terms when using (51).

s=1 s=2 s=3 s=4 s=25 s=10
r=20 1.42721 2.36909 4.67693 11.30111 34.72798 n/a
(63, 487) (91, 464) (128, 444) (176, 426) (236, 409)
r=1 1.40950 1.91118 2.96700 5.36157 11.50669 7638.94030
(69, 551) (98, 525) (135, 501) (181, 479) (239, 459) (726, 383)
r=2 4.19497 5.18942 7.28829 11.80941 22.53012 27925.79115
(74, 580) (102, 552) (137, 527) (179, 503) (232, 482) (660, 400)
r=3 13.34410 14.79819 18.34967 25.75133 41.50710 8655.50979
(86, 695) (118, 662) (156, 631) (202, 602) (256, 576) (678, 470)
r=4 59.03048 60.36432 68.43545 86.92433 125.28018 10856.79180
(89, 703) (118, 670) (152, 640) (192, 611) (240, 584) (606, 478)

r=>5 | 29593344 279.52112  290.15474  333.80538  430.35843  14607.30704
(108, 854) (143,815) (183, 779) (229, 744) (282, 711) (668, 575)

r =10 | 6425021.47108 4505458.62224 3383790.18983 2734240.84284 2389287.33517 5009200.42040
(151, 1147)  (185,1103) (220, 1061) (258, 1020) (300, 980) (579, 807)

7 Concluding Remarks

We have shown in this paper that, given a generating function for some objects of interest
(moments, the coefficients in a series expansion, etc.), an associated generating function may
be defined that induces a recurrence relation between the original objects of interest and a set
of associated objects. This generalizes some known results relating moments and cumulants,
and also results relating top-order zonal polynomials and power-sum symmetric functions.
We then showed that, when the associated generating function is a ratio of two generating
functions of finite order, more efficient recurrence relations of fixed bounded length can be

deduced.

These general results have been applied here to a number of problems involving quadratic
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forms in noncentral normal vectors, including the following much-studied problems: the mo-
ments and density function of a single quadratic form, product-moments for several quadratic
forms, and the moments of a ratio of powers of two quadratic forms. In addition to their
intrinsic interest, these examples show that the methodology is certainly useful for a number
of different distribution-theoretic problems in statistics.

Many other distribution problems share many of the features present in the examples treated
here. For example, the density of a ratio of a linear to a quadratic form is important in
econometrics (generalizations of the cases discussed in Sawa [20]), and can be expressed as
multiple infinite series involving the Davis-Chikuse invariant polynomials. It seems highly
likely that our methodology will prove useful there, and we are confident many other new
applications of the results will follow.
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Appendix A

Proof of Lemma 4. We have that

(A, ') = [ 88| T — 01 A — togupr!| 2
=[t5]1 1 — 01 A] 72 (1 — topd (I — 11 A) ') ™2
1
- <2k?k [T — 0 A2 (1 (I — 1. A) " )

_ <2>k[tg]|1n — i A[TE(5 + o(t))

k!
e (s
= (z)‘sk )10 =t A E (),

k) k—1
J Qr 1,
L (l

by the definition of the a,; in (24). B

Proof of Lemma 6. Since
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[e’e) )m

5 L& (-t .
HALAQ (tlu t2> =exXp <_2> |In — 11 A1 — t2A2|_5 Z (m2‘<'u (]n —t1A; — tgAg) llu)

m=0

o
2) I, — t1A; — 152142|7§ Z Z 2m+ll' p (L, =t Ay — ta Ag) ™t p)*,

=0 m=

we have

hT,j (A17 A2) - [t;té]HAhAz (tla t2)
0\ & 1
—en(=5) 3 g

I (—1) .
XY : 1) (48111 — 1 Ar — 2 Ao| 72 (1 (1, — t1 Ay — 2 A3) ')

S\ & 1 J [+m)! ,
=exp —2> Z IZ (2ll|) ( 1 ) dr,j—l,l+m(A1aA27NU)>
a0 2 i 20 (5),

as stated. l

Proof of Lemma 7. We have

dyji(Ar, Ag, i) = [ L, — 1 Ay — to Ay — tofil] =2

1
= (l‘) [tTtJ” n— 1A — tQAz‘_%(ﬂ’(]n A — tQAQ)_lﬂ)l.

But, by definition,

- . 1 1
hr7j(A1, Ag) = [t;t%”]n — tlAl — t2A2|_% exp (th,u’(fn — tlAl — tQAQ) l,u)
1
12!

1

l(%)l

M- I~

I
o
N}

(58571 — 1Ay — b Ag| =2 ( (I, — 1y Ay — 3 A5) " )

o~

dyj—11(A1, Ag, fifi”).

Proof of Convergence in (48). We shall show that, if 3 is chosen so that 0 < 5 < 2/byax,
the series in (48) converges, justifying the term-by-term integration. We shall make use here
of the following lemma:
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Lemma 8 If a; is the largest absolute eigenvalue of A; for each i, then

1 /n U
(v, A < (Q)kH’“ (58)

Proof. From equation (81) in HKW,

r

[ (frvaer)

i=1

<L (Z)k/ TT 1/ Asol* (dv).

=10

du(Ar, . A = — <n>k

But, it is well-known that

sup [v'Av| = a;.
v'v=1

This immediately yields the stated inequality. B

Let a and b be the largest absolute eigenvalue of A and B, respectively. Using Lemma 6 and
(58), we can bound |k, ;(A, B)| by

~ &1 L (I+m)
hej(A,B)| <e
WOl G ),

j n rij—I sl+m
1 & (+m) (§)T+j+m "o
o 2rml o (), i = DI+ m)!

(34),.. (9"

dr,j—l,l-{—m(Aa B> ,LLIM,) ‘

Under the condition 0 < § < 2/bpax, we have 0 < b < 1. Together with the condition
5 +r > s, we can bound the absolute value of the terms in the infinite series in (48) by
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Jj=0 7=0

f:( oy lhes(4.B) <3 Ihy(A, B)]

7l
" I+m n
) e‘ga;(’;)r S (ﬁ;)'HT (3) > @”ﬂf’”%bﬁ
! m=01=0  mll{3) =0 I
(D), oo 60 ()
B e 2a" %T o o (5T I+m <2(1—E)>
B (1 - 5)%+TT! mz::();) mll! (%)l+m
k
B e—gar (%)T 0o (%—i—?”)k (2(1(15)) ok
(=i & (3),%
e (3), 10
- ()

where the fourth line is obtained by using the identity

(%—l—r—i—l—i—m)‘bj

Z : J — (1 o b)f%frflfm

j=0 J!

when 0 < b < 1, and the fifth line is obtained by using the identify SF l,(k il = 2 and
setting k& = [ + m. Since the 1 F} converges uniformly for all values of its argument, this
confirms the claim that term-by-term integration in (45) is justified. B

Proof of Convergence in (51). In this case any choice of 3 such that 3 > 1/(2byin) will
ensure that b, the largest absolute eigenvalue of B, is less than one. Using Lemma 7 and
(58), and assuming that (3 is so chosen, we have that

hei(A,B)| < —

where @ is the largest absolute eigenvalue of A and 6 = f'fi. And the infinite series in (51)
is dominated termwise by
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- m 1 5
1 b)) (n—i—r—s;;A).
(1-9) 2 27 9(1 - b)

Since the ; F} converges uniformly for all values of its argument, this confirms the claim that
term-by-term integration is justified. H

Proof of Proposition 9. Following the proof of Lemma 6, we can show that

~ 5 o J [4+m dr, i—1,1 m(Ah A27 ,U,,LL,)
hrj (A1, Ag) = €72 Z( l ) : Qlim L '
m=0 [=0 (a)l—&—m

Under the assumption 0 < § < 1/byax, I,,— BB is positive semidefinite. Therefore, d, ; (A, I,,—
BB, ') is nonnegative when A is positive semidefinite or r is even. When A is not positive
semidefinite and r is odd, we have |2’Az| = |2’PAP'z| < 2’PATP'z = 2/A*z. Using the
fact that 2/(I, — 3B)z > 0 and 2'up'z > 0, we have |(2’Az)" (2 (I, — BB)2) (2'up/'2)*| <
(2’ AT2)" (2 (I, — BB)2)? (2’ pu' 2)*, which implies

|dr,j,k(Au ]n - BB7 ,u,u,)| S dr,j,k(A+7 In - ﬁBa /'LM/>

Using Lemma 6, we have

s I 1+ m\ |driiem(A, T, — BB, .
’hrvj(A’[n_ﬁBﬂ <e? Z Z( >| . l7l+2l§_m (l) MM>| < hr,j(A+>[n_ﬂB)'
2)1+m

Using this result and the fact that § +r > s, we obtain
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X (s); - (5);
i A —pB)|< S k(AL - BB
j:%:ﬂ (% +T)j i ) j:%:ﬂ (% J””)j [hj( )|

The last inequality holds because

o0

Z J(A*, 1, — BB)

11— 04 = (0, = ) e (3 [1 07 = (1, - 98] - )

2
ﬂ/(]n — tl[l)lﬂ>

=[)8B| e 73|I, — tlAy—%exp< :

5-6

e 2 _
An
|BB|2 d (A, ).
m

Proof of Proposition 10. For any choice of 3 satisfying 5 > 1/bmm, = I,—(8B)™!is pos-
itive semidefinite. When A is positive semidefinite or r is even, d, ;, k(A B ,u,u ') is nonnegative.

When A is not positive semidefinite and r is odd, we have |2/Az| = ‘z’B 2 PAP'B 22/5’ <
2B 2 PAt P~ 22/6 — 2/ Az. Using the fact that 2’Bz > 0 and 2/jiii/z > 0, we have

<dpji (A B, ).

dr,j,k (Aa B? [Iﬁal>

Applying Lemma 7, we have

Using this result and the fact that § 4+ r > s, we obtain
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o0 (%—H“—s),~ o0 (g+r—s),~

M+1 (AR

T )
_ (g:r_ i BBIE AT 1) — 3 Ty (A, B)
(§+T)M+1 7=

The last equality holds because

L1
]n—tlA—B‘ *exp

i}ﬁr,j ( A, B) = [t]]

= [t}]|3B|>

=|3B|3exd, (AT, pu).
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