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INFERENCE ON COUNTERFACTUAL DISTRIBUTIONS

VICTOR CHERNOZHUKOV† IVÁN FERNÁNDEZ-VAL§ BLAISE MELLY‡

Abstract. We develop inference procedures for policy analysis based on regression methods.

We consider policy interventions that correspond to either changes in the distribution of covari-

ates, or changes in the conditional distribution of the outcome given covariates, or both. Under

either of these policy scenarios, we derive functional central limit theorems for regression-based

estimators of the status quo and counterfactual marginal distributions. This result allows us

to construct simultaneous confidence sets for function-valued policy effects, including the effects

on the marginal distribution function, quantile function, and other related functionals. We use

these confidence sets to test functional hypotheses such as no-effect, positive effect, or stochastic

dominance. Our theory applies to general policy interventions and covers the main regression

methods including classical, quantile, duration, and distribution regressions. We illustrate the

results with an empirical application on wage decompositions using data for the United States.

Of independent interest is the use of distribution regression as a tool for modeling the entire

conditional distribution, encompassing duration/transformation regression, and representing an

alternative to quantile regression.
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gression, duration/transformation regression
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1. Introduction

Policy analysis in economics aims to predict the effect of a potential policy intervention or a

counterfactual change in economic conditions on some outcome variable of interest (e.g., Stock,

1989, Juhn, Murphy and Pierce, 1993, Abbring and Heckman, 2007). For example, we might be

interested in what the wage distribution would be in 2000 if workers have the same characteristics

as in 1990. Or we might be interested in what the distribution of wages for female workers would

be in the absence of gender discrimination in the labor market. More generally, we can often

think of a policy intervention either as a change in the distribution of a set of covariates X that

determine the outcome variable of interest Y , or as a change in the relationship of the covariates

with the outcome, i.e. a change in the conditional distribution of Y given X, or both. Policy

analysis consists of estimating the effect of such policy interventions on the marginal distribution

of Y .

The main objective and contribution of this paper is to develop inference procedures for policy

analysis based on regression methods. Starting from regression estimates of the conditional distri-

bution of the outcome given covariates and nonparametric estimates of the covariate distribution,

we obtain uniformly consistent and asymptotically Gaussian estimates for “policy functionals” –

namely, functionals of the marginal distribution of the outcome before and after the policy inter-

vention. Examples of these policy functionals include distribution functions, quantile functions,

quantile policy effects, distribution policy effects, Lorenz curves, and Gini coefficients. We then

construct confidence sets around these estimates that take into account the sampling variation

coming from the estimation of the conditional and covariate distributions. These confidence sets

are uniform in the sense that they cover the entire policy functional with pre-specified probabil-

ity and can be used to test functional hypotheses such as no-effect, positive effect, or stochastic

dominance.

Our analysis specifically targets and covers the principal regression methods for estimating

conditional distributions most commonly used in empirical work, including classical, quantile,

duration/transformation, and distribution regressions. We consider simple interventions con-

sisting of marginal changes in the values of a given covariate, as well as more elaborate policies

consisting of general changes in the covariate distribution or in the conditional distribution of the

outcome given covariates. Moreover, the changes in the covariate and conditional distributions

can correspond to known transformations of these distributions in a population or to the distri-

butions in different populations. This array of alternatives allows us to answer a wide variety of

policy questions such as the ones mentioned above.

This paper contains two sets of new theoretical results. First, we establish the validity of the

estimation and inference procedures under two high-level conditions. The first condition requires

the first stage estimators of the conditional and covariate distributions to satisfy a functional
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central limit theorem. The second condition requires validity of the bootstrap for estimating the

limit laws of the first stage estimators. Under the first condition, we derive functional central limit

theorems for the estimators of the policy functionals of interest, taking into account the sampling

variation coming from the first stage. Under both conditions, we show that the bootstrap is valid

for estimating the limit laws of the estimators of the policy functionals. The key to all these

results is the Hadamard differentiability of the policy functionals with respect to the first stage

function-valued parameters, which we establish in the paper. Given this key ingredient, all of

the results above follow from the functional delta method. An important feature of these results

is that they automatically imply estimation and inference validity of any existing or potential

estimation method that obeys the two high-level conditions set forth above.

The second set of results deals with estimation and inference under primitive conditions in

our leading examples. Specifically, we verify the high-level conditions – functional central limit

theorem and validity of bootstrap – for estimators of the conditional distribution based on quan-

tile and distribution regression. In the process of proving these results we establish also some

auxiliary results, which are of independent interest. In particular, we derive a functional central

limit theorem and prove the validity of exchangeable bootstrap for the empirical coefficient pro-

cesses of distribution regression. We also prove the validity of the exchangeable bootstrap for the

empirical coefficient processes of quantile regression. Prior work by Hahn (1995) and Feng, He,

and Hu (2011) showed bootstrap validity only for estimating pointwise laws of quantile regression

coefficients. Note that the exchangeable bootstrap covers the empirical, weighted, subsampling,

and m out of n bootstraps as special cases, which gives much flexibility to the practitioner.

This paper contributes to the previous literature on policy analysis based on regression meth-

ods. Stock (1989) introduced least squares regression-based estimators to evaluate the mean

effect of policy interventions. Gosling, Machin, and Meghir (2000) and Machado and Mata

(2005) proposed quantile regression-based estimators to evaluate distributional effects, but pro-

vided no econometric theory for these estimators. Our paper contributes to this literature in two

ways. First, building on Foressi and Peracchi (1995), we develop the use of distribution regres-

sion as a tool for modeling and estimating the entire conditional distribution in policy analysis.

The distribution regression encompasses the Cox (1972) transformation/duration model as a

special case, and represents a useful alternative to the Koenker and Bassett (1978) quantile re-

gression. Second, we provide limit theory as well as inference tools for policy estimators based

on quantile and distribution regression approaches. Moreover, our main results are generic and

apply to any estimator of the conditional and covariate distributions that satisfy the conditions

mentioned above, including classical regression (Juhn, Murphy and Pierce, 1993) and flexible

duration regression (Donald, Green and Paarsch, 2000), and potential other approaches.

2



An alternative approach to policy analysis, which is not covered by our theoretical results,

consists in re-weighting the observations using the propensity score, in the spirit of Horvitz and

Thompson (1952). For instance, DiNardo, Fortin, and Lemieux (1996) developed propensity

score weighting estimators for counterfactual densities, while Firpo (2007) used a similar ap-

proach to construct efficient estimators of quantile treatment effects. Under correct specification,

the regression and the weighting approaches are equally valid. In particular, if we use a saturated

specification for the propensity score and conditional distribution, then both approaches lead to

numerically identical results. An advantage of the regression approach is that the intermediate

step - the estimation of the conditional model - is often of independent economic interest. For

example, Buchinsky (1994) applies quantile regression to analyze the determinants of conditional

wage distribution. This model nests the classical Mincer wage regression and is useful for decom-

posing changes in the wage distribution into factors associated with between-group and within

group inequality.

We illustrate our estimation and inference procedures with an analysis of the evolution of the

U.S. wage distribution, motivated by the influential article by DiNardo, Fortin, and Lemieux

(1996). We complement their analysis by using a wider range of techniques, providing standard

errors for the estimates of the main effects, and extending the analysis to the entire distribution

using simultaneous confidence bands. We also compare quantile and distribution regression and

discuss the different choices that must be made to implement our estimators. Our results reinforce

the importance of the decline in the real minimum wage and the minor role of de-unionization

in explaining the increase in wage inequality during the 80s.

We organize the rest of the paper as follows. Section 2 describes our setting, the counterfactual

distributions of interest, and regression models for the conditional distribution. In Section 3

we define our proposed estimation and inference procedures, and outline the main estimation

and inference results. Section 4 contains the main theoretical results under simple high-level

conditions, which cover a broad array of estimation methods. In Section 5 we verify the previous

high-level conditions for the main estimators of the conditional distribution function – quantile

and distribution regressions – under suitable primitive conditions. In Section 6 we present the

empirical application, and in Section 7 we conclude with a summary of the main results and

pointing out some possible directions of future research. In the Appendix, we include all the

proofs and additional technical results. We give additional empirical results for women and a

numerical example comparing quantile and distribution regression in an online Supplementary

Appendix (Chernozhukov, Fernandez-Val, and Melly, 2012).

3



2. The Setting and Modeling Choices for Policy Analysis

2.1. Counterfactual distributions and policy functionals. In order to motivate the fore-

going analysis, let us first set up a simple running example. Suppose we would like to analyze the

impact of gender on the marginal distribution of wages for women. Let 0 denote the population

of women and 1 the population of men, Yj denote wages, and Xj denote job market-relevant

characteristics affecting wages for populations j = 0 and j = 1. The conditional distributions

FY0∣X0
and FY1∣X1

describe the wage schedules given the observable characteristics for women and

men, respectively. Let FY ⟨0∣0⟩ represent the observed distribution function of wages for women

and FY ⟨1∣0⟩ represent the counterfactual distribution function of wages that would have prevailed

had women faced the men’s wage schedule FY1∣X1
. The latter distribution is called counterfactual,

since it does not arise as a distribution from some observable population. Rather, this distribu-

tion is constructed by integrating the conditional distribution of wages for men with respect to

the distribution of characteristics for women:

FY ⟨1∣0⟩(y) :=
∫

X0

FY1∣X1
(y∣x)dFX0(x).

This quantity is well defined if X1, the support of men’s characteristics, includes X0, the support

of women’s characteristics, namely X0 ⊆ X1. We call the difference between FY ⟨1∣0⟩ and FY ⟨0∣0⟩
the distribution policy effect of shifting the status quo wage schedule for women to that of men.

We can also look at quantile policy effiects, the difference of quantile functions QY ⟨1∣0⟩ and

QY ⟨0∣0⟩, as well as differences of other functionals. We stress here that the policy effects are well

defined statistical parameters, and are widely used in empirical analysis. Under the conditional

exogeneity assumption stated in Heckman, Lalonde, Smith (1999) and Imbens (2004), the policy

effects have a causal interpretation of treatment/structural effects.

In what follows we formalize these definitions and treat more general case with several popula-

tions. We suppose that the populations are labeled by k ∈ K, and that for each population k there

is a random dx-vector Xk of covariates and a random outcome variable Yk. The covariate vector

is observable in all populations, but the outcome is only observable in populations j ∈ J ⊆ K.

Given observability, we can identify the covariate distribution FXk
in each population k ∈ K,

and the conditional distribution FYj ∣Xj
in each population j ∈ J , as well as the corresponding

conditional quantile function QYj ∣Xj
. Thus, we can associate each FXk

with label k and each

FYj ∣Xj
with label j. We denote the support of Xk by Xk ⊆ ℝ

dx and the region of interest for Yj

by Yj ⊆ ℝ.1 We assume for simplicity that the number of populations, ∣K∣, is finite. Further, we
define YjXj = {(y, x) : y ∈ Yj, x ∈ Xj}, YXJ = {(y, x, j) : (y, x) ∈ YjXj, j ∈ J }, and generate

other index sets by taking Cartesian products, e.g., JK = {(j, k) : j ∈ J , k ∈ K}.

1We shall typically exclude tail regions of Yj in estimation, as in Koenker (2005, p. 148).
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Our main interest lies in the counterfactual distribution and quantile functions created by com-

bining the conditional distribution in population j with the covariate distribution in population

k, namely:

FY ⟨j∣k⟩(y) :=
∫

Xk

FYj ∣Xj
(y∣x)dFXk

(x), y ∈ Yj, (2.1)

QY ⟨j∣k⟩(�) := F←Y ⟨j∣k⟩(�), � ∈ (0, 1), (2.2)

where F←Y ⟨j∣k⟩ is the left-inverse function of FY ⟨j∣k⟩ defined in Appendix A. In the definition (2.1)

we assume the support condition:

Xk ⊆ Xj , for all (j, k) ∈ JK, (2.3)

which ensures that the integral is well defined. In applications, if the support condition is not

met initially, we need to explicitly trim the supports and define the parameters relative to the

common support.2

The counterfactual distribution FY ⟨j∣k⟩ is the distribution function of the counterfactual out-

come Y ⟨j∣k⟩ created by first sampling the covariate Xk from the distribution FXk
and then

sampling Y ⟨j∣k⟩ from the conditional distribution FYj ∣Xj
(⋅∣Xk). This mechanism has a strong

representation in the form3

Y ⟨j∣k⟩ = QYj ∣Xj
(U ∣Xk), where U ∼ U(0, 1) independently of Xk ∼ FXk

. (2.4)

This representation is useful for connecting policy analysis with various forms of regression anal-

ysis that provide models for conditional quantiles. In particular, conditional quantile models

imply conditional distribution models through the relation:

FYj ∣Xj
(y∣x) ≡

∫

(0,1)
1{QYj ∣Xj

(u∣x) ≤ y}du. (2.5)

In what follows, we define a policy as a shift from one counterfactual distribution FY ⟨l∣m⟩ to

another FY ⟨j∣k⟩. Let t = (j, k, l,m), for some j, l ∈ J and k,m ∈ K. Then, we are interested in

estimating and performing inference on the policy distribution and quantile effects

ΔDE
t (y) = FY ⟨j∣k⟩(y)− FY ⟨l∣m⟩(y) and ΔQE

t (�) = QY ⟨j∣k⟩(�)−QY ⟨l∣m⟩(�),

as well as other policy functionals of the counterfactual distributions. For example, Lorenz curves,

commonly used to measure inequality, are ratios of partial means to overall means

L(y, FY ⟨j∣k⟩) =
∫

Yj
1(t ≤ y)tdFY ⟨j∣k⟩(t)/

∫

Yj
tdFY ⟨j∣k⟩(t),

2Specifically, given initial supports X o
j and X o

k such that X o
k ∕⊆ X o

j , we can set Xk = Xj = (X o
k ∩X o

j ). Then the

covariate distributions are recomputed over this support.
3This representation for counterfactuals was suggested by Roger Koenker in the context of quantile regression,

as noted in Machado and Mata (2005).
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defined for non-negative outcomes only, i.e. Yj ⊆ [0,∞). In general, the policy functionals of

interest take the form

Δt(w) := �
(
FY ⟨j∣k⟩ : (j, k) ∈ JK

)
(w). (2.6)

This includes, as special cases, the previous distribution and quantile policy effects; Lorenz

policy effects, with Δt(y) = L(y, FY ⟨j∣k⟩) − L(y, FY ⟨l∣m⟩); Gini coefficients, with Δt = 1 −
2
∫
Yj L(FY ⟨j∣k⟩, y)dy =: GY ⟨j∣k⟩; and Gini policy effects, with Δt = GY ⟨j∣k⟩ −GY ⟨l∣m⟩.

2.2. Types of policies and associated effects. Focusing on quantile policy effects as the

leading functional of interest, we can isolate the following special cases of policy effects (PE):

1) PE from changing the conditional distribution: QY ⟨j∣k⟩(�)−QY ⟨l∣k⟩(�).

2) PE from changing covariate distribution: QY ⟨j∣k⟩(�)−QY ⟨j∣m⟩(�).

3) PE from changing both covariate and conditional distributions: QY ⟨j∣k⟩(�)−QY ⟨l∣m⟩(�).

An example of type 1 PE is the gender effect on the marginal distribution of wages for women,

mentioned at the beginning of the section. An example of type 2 PE is the composition effect on

the change in the marginal distribution of wages over time. Concretely, let 0 denote the popula-

tion of workers in 1990 and 1 denote the population of workers in 2000, Y denote wages, and X

various characteristics affecting wages (age, education, experience, and other qualifications). The

conditional distribution FYj ∣Xj
describes the wage schedule given characteristics for populations

j = 0 and j = 1. Then, QY ⟨1∣1⟩ represents the observed quantile function of wages in 2000;

QY ⟨1∣0⟩ represent the counterfactual quantile function of wages in 2000, under the assumption

that workers have 1990’s characteristics FX0 but are paid according to the 2000 wage schedule

FY1∣X1
. The difference between the two quantile functions is the quantile PE of shifting the

worker’s composition in 2000 to that in 1990. Finally, we refer to Section 6 for an example of

type 3 PE.

While in the previous examples the populations correspond to different demographic groups or

time periods, we can also create populations artificially by transforming status quo populations.

This is especially useful when considering the second type of PE. Formally, we can think of Xk

as being created through a known transformation of X0 in population 0:

Xk = gk(X0), where gk : X0 → Xk. (2.7)

This case covers, for example, adding one unit to the first covariate, X1k = X10 + 1, holding the

rest of the covariates constant. The resulting policy effect becomes the unconditional quantile

regression, which measures the effect of a unit change in a given covariate component on the

unconditional quantiles of Y .4 For example, this type of policy is useful for estimating the effect

4The resulting notion of unconditional quantile regression is related but strictly different from the notion

introduced by Firpo, Fortin and Lemieux (2009). The latter notion measures a first order approximation to

such an effect, whereas the notion described here measures the exact size of such an effect on the unconditional
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of smoking on the marginal distribution of infant birth weights. Another example is a mean

preserving redistribution of the first covariate implemented as X1k = (1 − �)E[X10] + �X10.

These and more general types of transformation defined in (2.7) are useful for estimating the

effect of a change in taxation on the marginal distribution of food expenditure, or the effect of

cleaning up a local hazardous waste site on the marginal distribution of housing prices (Stock,

1991).

Even though the previous examples correspond to conceptually different thought experiments,

our econometric analysis will cover all of them.

2.3. Regression models for conditional distributions. The counterfactual distributions of

interest depend on either the underlying conditional distribution, FYj ∣Xj
, or the conditional quan-

tile function, QYj ∣Xj
, through the relation (2.5). Thus, we can proceed by modeling and esti-

mating either of these conditional functions. There are several principal approaches to carry out

these tasks, and our asymptotic inference theory will cover these approaches as leading special

cases. In this section we drop the dependence on the population index j to simplify the notation.

1. Conditional quantile models. Classical regression is one of the principal approaches

to modeling and estimating conditional quantiles. The classical location-shift model takes the

linear-in-parameters form: Y = P (X)′� + V, V = QV (U), where U ∼ U(0, 1) is independent of

X, P (X) is a vector of transformations of X such as polynomials or B-splines, and P (X)′� is a

location function such as the conditional mean. The disturbance V has unknown distribution and

quantile functions FV and QV . The conditional quantile function of Y given X is QY ∣X(u∣x) =
P (X)′�+QV (u), and the corresponding conditional distribution is FY ∣X(y∣x) = FV (y−P (X)′�).

This model, used in Juhn, Murphy and Pierce (1993), is parsimonious but restrictive, since no

matter how flexible P (X) is, the covariates impact the outcome only through the location. In

applications this model as well its location-scale generalizations are often rejected, so we cannot

recommend its use without appropriate specification checks.

A major generalization and alternative to classical regression is quantile regression, which is

a rather complete method for modeling and estimating conditional quantile functions (Koenker

and Bassett, 1978, Koenker, 2005).5 In this approach, we have the general non-separable rep-

resentation: Y = QY ∣X(U ∣X) = P (X)′�(U), where U ∼ U(0, 1) is independent of X(Koenker,

2005, p. 59). We can back out the conditional distribution from the conditional quantile function

quantiles. When the change is relatively small, the two notions coincide approximately, but generally they can

differ substantially.
5Quantile regression is one of most important methods of regression analysis in economics. For applications,

including to policy analysis, see, e.g., Buchinsky (1994), Chamberlain (1994), Abadie (1997), Gosling, Machin, and

Meghir (2000), Machado and Mata (2005), Angrist, Chernozhukov, and Fernández-Val (2006), and Autor, Katz,

and Kearney (2006b).
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through the integral transform:

FY ∣X(y∣x) =
∫

(0,1)
1{P (x)′�(u) ≤ y}du, y ∈ Y.

The main advantage of quantile regression is that it permits covariates to impact the outcome

by changing not only the location or scale of the distribution but also its entire shape. Moreover,

quantile regression is flexible in that by considering P (X) that is rich enough, one could approx-

imate the true conditional quantile function arbitrarily well, when Y has a smooth conditional

density (Koenker, 2005, p. 53).

2. Conditional distribution models. A common way to model conditional distributions

is through the Cox (1972) transformation model: FY ∣X(y∣x) = 1 − exp(− exp(t(y) − P (x)′�)),

where t(⋅) is an unknown monotonic transformation. This conditional distribution corresponds

to the following location-shift representation: t(Y ) = P (X)′�+V, where V has an extreme value

distribution and is independent of X. In this model, covariates impact an unknown monotone

transformation of the outcome only through the location. The role of covariates is therefore

limited in an important way. Note, however, that since t(⋅) is unknown, this model is not a

special case of quantile regression.

Instead of restricting attention to the transformation model for the conditional distribution, we

advocate to model FY ∣X(y∣x) separately for all thresholds y ∈ Y, developing further the idea set

forth in Foresi and Peracchi (1995).6 Namely, we propose to consider the distribution regression

model

FY ∣X(y∣x) = Λ(P (x)′�(y)), y ∈ Y, (2.8)

where Λ is a known link function and �(⋅) is an unknown functional parameter. We note that

this specification includes the Cox (1972) model as a strict special case, but allows for much

more flexible effect of the covariates. Indeed, to see the inclusion, we set the link function to be

the complementary log-log link, Λ(v) = 1 − exp(− exp(v)), P (x) include a constant as the first

component, and let P (x)′�(y) = t(y) − P (x)′�, so that the first component of �(y) varies with

the threshold y. To see the greater flexibility of (2.8), we note that (2.8) allows all components

of �(y) to vary with y.

The fact that distribution regression with a complementary log-log link nests the Cox model

leads us to consider this specification as an important reference point. Other useful link functions

include the logit, probit, linear, log-log, and Gosset functions (see Koenker and Yoon, 2009, for

the latter). We also note that the distribution regression model is flexible in the sense that, for

any given link function Λ, we can approximate the conditional distribution function FY ∣X(y∣x)
6Foresi and Peracchi (1995) propose to estimate the conditional distribution by a logit model for several values of

y. Previously, Han and Hausman (1990) considered an ordered logit specification. One of the main contributions

of our paper is to extend this idea by developing distribution regression as a model for the entire conditional

distribution function and deriving the corresponding limit theory for the distribution regression process.
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arbitrarily well by using rich enough P (X).7 Thus, the choice of the link function is not important

for sufficiently rich P (X).

Comparison. It is important to compare and contrast quantile regression and distribution

regression models. Just like quantile regression generalizes location regression by allowing slope

coefficients �(u) to depend on the quantile index u, distribution regression generalizes transforma-

tion (duration) regression by allowing the slope coefficients �(y) to depend on the threshold index

y. Both models therefore generalize important classical models and are semiparametric because

they have infinite-dimensional parameters �(⋅). When the specification of P (X) is saturated, the

quantile regression and distribution regression models coincide.8 When the specification of P (X)

is not saturated, distribution and quantile regression models may differ substantially and are not

nested. Accordingly, the model choice cannot be made on the basis of generality.

Note that both models are flexible in the sense that by allowing for a sufficiently rich P (X),

we can approximate the conditional distribution arbitrarily well. However, linear in parameters

quantile regression is only flexible if Y has a smooth conditional density, and may provide a poor

approximation to the conditional distribution otherwise, e.g. when Y is discrete or has mass

points, as it happens in our empirical application. In sharp contrast, distribution regression does

not require smoothness of the conditional density, since the approximation is done pointwise in the

threshold y, and thus handles continuous, discrete, or mixed Y without any special adjustment.

Thus, in practice, we recommend the researchers to choose one method over the other on the basis

of empirical performance, specification testing, or ability to handle complicated data situations.

In section 6 we explain how these factors influence our decision in a wage regression application.

3. Estimation and Inference Methods for Policy Analysis

In this section we introduce our proposed estimation and inference methods, and outline the

main estimation and inference results, without submersing into mathematical details. Note that

our proposal for using distribution regressions is new for policy analysis, while our proposal for

using quantile regressions builds on earlier work by Machado and Mata (2005).

3.1. Estimation of counterfactual distributions and associated policy effects. The pol-

icy estimator of each counterfactual distribution is obtained by the plug-in-rule, namely inte-

grating an estimator of the conditional distribution F̂Yj ∣Xj
with respect to an estimator of the

7Indeed, let P (X) denote the first p components of a basis in L2(X , P ). Suppose that Λ−1(FY ∣X(y∣X)) ∈

L2(X , P ) and � = ∂Λ is bounded above by �̄. Then, for some �(y) depending on p, �p =

E
[

Λ−1(FY ∣X(y∣X))− P (X)′�(y)
]2

→ 0 as p grows, so that E
[

FY ∣X(y∣X)− Λ (P (X)′� (y))
]2

≤ �̄�p → 0.
8For example, when P (X) contains indicators of all points of support of X, if the support of X is finite.
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covariate distribution F̂Xk
(x),

F̂Y ⟨j∣k⟩(y) =
∫

Xk

F̂Yj ∣Xj
(y∣x)dF̂Xk

(x), y ∈ Yj , (j, k) ∈ JK. (3.1)

For counterfactual quantiles and other functionals, we also obtain estimators via the plug-in rule:

Q̂Y ⟨j∣k⟩(�) = F̂ r←
Y ⟨j∣k⟩(�) and Δ̂t(w) = �(F̂Y ⟨j∣k⟩ : (j, k) ∈ JK)(w), (3.2)

where F̂ r
Y ⟨j∣k⟩ denotes the rearrangement of F̂Y ⟨j∣k⟩ if F̂Y ⟨j∣k⟩ is not monotone (see Chernozhukov,

Fernandez-Val, and Galichon, 2010).9

Assume that there are samples {(Yki,Xki) : i = 1, ..., nk} composed of i.i.d. copies of (Yk,Xk)

for all populations k ∈ K. The samples are independent across k ∈ K0 ⊂ K. We shall call

the case with K = K0 the independent samples case. We assume that Yji is observable only

for j ∈ J ⊆ K0. The independent samples case arises, for example, in the wage decomposition

application of Section 6.

In addition, we can have transformation samples created via transformation of some “reference”

samples k ∈ K0. For example, in unconditional quantile regression, mentioned in the previous

section, we create a “transformation” sample by shifting one of the covariates in the reference

sample up by a unit. Formally, we let the k-th transformation sample, with k ∈ Kt, be a transform

of the l(k)-th (reference) sample, with l(k) ∈ K0: namely, (Yki,Xki) = gl(k),k(Yl(k),i,Xl(k),i), i =

1, ..., nk, for some transformation function gl(k),k and the reference indexing function l : Kt → K0.

We also let K = Kt ∪ K0.

In either case, we can estimate the covariate distribution FXk
using the empirical distribution

function

F̂Xk
(x) = n−1k

nk∑

i=1

1{Xki ≤ x}, k ∈ K. (3.3)

To estimate the conditional distribution FYj ∣Xj
, we develop methods based on the regression

models described in Section 2.3. The estimator based on distribution regression (DR) takes the

form:

F̂Yj ∣Xj
(y∣x) = Λ(P (x)′�̂j(y)), (y, x) ∈ YjXj , j ∈ J , (3.4)

�̂j(y) = argmax
b∈ℝp

nj∑

i=1

[
1{Yji ≤ y} ln[Λ(P (Xji)

′b)] + 1{Yji > y} ln[1− Λ(P (Xji)
′b)]

]
, (3.5)

9If a functional �0 requires proper distribution functions as inputs, we assume that the rearrangement is applied

before applying �0. Hence formally, to keep notation simple, we interpret the final functional � as the composition

of the original functional �0 with the rearrangement.
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where p = dimP (Xj). The estimator based on quantile regression (QR) takes the form:

F̂Yj ∣Xj
(y∣x) = "+

∫ 1−"

"
1{P (x)′�̂j(u) ≤ y}du, (y, x) ∈ YjXj , j ∈ J , , (3.6)

�̂j(u) = arg min
b∈ℝp

nj∑

i=1

[u− 1{Yji ≤ P (Xji)
′b}][Yji − P (Xji)

′b], (3.7)

for some small constant " > 0. The trimming by " is commonly employed in practice to avoid

estimation of tail quantiles (Koenker, 2005, p. 148), and is valid under the conditions set forth

in Theorem 4.1.10

We provide additional examples of estimators of the conditional distribution function in the

working paper version (Chernozhukov, Fernandez-Val and Melly, 2009). Also our conditions in

Section 3 allow for various additional estimators of the covariate distribution.

To sum-up, our policy estimates are computed using the following algorithm:

Algorithm 1 (Estimation of policy effects). (i) Obtain estimates F̂Xk
of the covariate distri-

butions FXk
using (3.3). (ii) Apply one of the principal regression methods to obtain estimates

F̂Yj ∣Xj
of the conditional distributions FYj ∣Xj

. (iii) Obtain estimates of the counterfactual distri-

butions, quantiles and other policy functionals via (3.1) and (3.2). □

Remark 3.1. In practice, the quantile regression coefficients can be estimated on a fine mesh " ≤
u1 ≤ ... ≤ uS ≤ 1−", with meshwidth � such that �

√
nj → 0. In this case the final counterfactual

distribution estimator is computed as: F̂Y ⟨j∣k⟩(y) = " + n−1k �
∑nk

i=1

∑S
s=1 1{P (Xki)

′�̂(us) ≤ y}.
Likewise, for distribution regression, the counterfactual distribution estimator takes the compu-

tationally convenient form F̂Y ⟨j∣k⟩(y) = n−1k

∑nk

i=1 F̂Yj ∣Xj
(y∣Xki).

3.2. Inference. The policy estimators follow functional limit theorems under conditions that

we will make precise in the next section. For example, the estimators of the counterfactual

distributions satisfy

√
n(F̂Y ⟨j∣k⟩ − FY ⟨j∣k⟩)⇝ Z̄jk, jointly in (j, k) ∈ JK,

where n is a sample size index (say, n denotes the sample size of population 0) and Z̄jk are zero-

mean Gaussian processes with cross-covariance functions that depend on the type of sampling.

We characterize these functions for our leading examples in Section 5, so that we can perform

inference using standard analytical methods. However, for easy of inference, we recommend and

prove the validity of a general resampling procedure called the exchangeable bootstrap. This

procedure incorporates many known forms of resampling as special cases, namely the empirical

10In our empirical example, we use " = .01. Tail trimming seems unavoidable in standard practice, unless

we impose stringent tail restrictions on the conditional density or use explicit extrapolation to the tails as in

Chernozhukov and Du (2008).
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bootstrap, weighted bootstrap, m out of n bootstrap, and subsampling. It is quite useful for

applications to have all of these schemes covered by our theory. For example, in small samples, we

might want to use the weighted bootstrap to gain good accuracy and robustness to “small cells”,

whereas in large samples, where computational tractability can be an important consideration,

we might prefer subsampling.

In the rest of this section we briefly describe the exchangeable bootstrap method and its

implementation details, leaving a more technical discussion of the method to Sections 4 and 5.

We start by defining the bootstrap weights:

Definition 1 (Exchangeable weights). For each nk and k ∈ K0, let (wk1, ..., wknk
) be an ex-

changeable, nonnegative random vector, such that for some � > 0

sup
nk

E[w2+�
k1 ] <∞, nk

−1
nk∑

i=1

(wki − w̄k)
2 →ℙ 1, w̄2

k →ℙ 1 ≥ 0, (3.8)

where w̄k = nk
−1∑nk

i=1 wki.
11

Exchangeable bootstrap uses the components of the vector (wk1, ..., wknk
) as random sampling

weights in the construction of the policy estimators. In the presence of transformation samples

Kt, the exchangeable weights are inherited from the reference samples:

wki = wl(k)i, k ∈ Kt. (3.9)

Note that the weights constructed in this way preserve the dependence between the samples.

Remark 3.2 (Common bootstrap schemes). By appropriately selecting the distribution of the

weights, this procedure covers the most common bootstrap schemes as special cases. The em-

pirical bootstrap corresponds to the case where (wk1, ..., wknk
) is a multinomial vector with

parameter nk and probabilities (1/nk, ..., 1/nk). The weighted bootstrap corresponds to the case

where wk1, ..., wknk
are i.i.d. nonnegative random variables with E[wk1] = V ar[wk1] = 1, e.g.

standard exponential. The m out of n bootstrap corresponds to letting (wk1, ..., wknk
) be equal

to
√
nk/mk times multinomial vectors with parameter mk and probabilities (1/nk, ..., 1/nk).

The subsampling bootstrap corresponds to letting (wk1, ..., wknk
) be a row in which the number

nk(nk − mk)
−1/2m−1/2k appears of mk times and 0 appears nk − mk times ordered at random,

independent of the data. □

The bootstrap version of the estimator of the counterfactual distribution is

F̂ ∗Y ⟨j∣k⟩(y) =
∫

Xk

F̂ ∗Yj ∣Xj
(y∣x)dF̂ ∗Xk

(x), y ∈ Yj , (j, k) ∈ JK. (3.10)

11A sequence of random variables X1, X2, ... is exchangeable if for any finite permutation � of the indices 1, 2, ...

the joint distribution of the permuted sequence X�(1), X�(2), ... is the same as the joint distribution of the original

sequence.
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The component F̂ ∗Xk
is a bootstrap version of covariate distribution estimator. For example, if

using the estimator of FXk
in (3.3), set

F̂ ∗Xk
(x) = (n∗k)

−1
nk∑

i=1

wki1{Xki ≤ x}, x ∈ Xk, k ∈ K, (3.11)

for n∗k =
∑nk

i=1 wki. The component F̂ ∗Yj ∣Xj
is a bootstrap version of the conditional distribution

estimator. For example, if using DR, set F̂ ∗Yj ∣Xj
(y∣x) = Λ(P (x)′�̂∗j (y)), (y, x) ∈ YjXj, j ∈ J , for

�̂∗j (y) = argmax
b∈ℝp

nj∑

i=1

wji

[
1{Yji ≤ y} ln[Λ(P (Xji)

′b)] + 1{Yji > y} ln[1− Λ(P (Xji)
′b)]

]
.

If using QR, set F̂ ∗Yj ∣Xj
(y∣x) = "+

∫ 1−"
" 1{P (x)′�̂∗j (u) ≤ y}du, (y, x) ∈ YjXj , j ∈ J , for

�̂∗j (u) = arg min
b∈ℝp

nj∑

i=1

wji[u− 1(Yji ≤ P (Xji)
′b)][Yji − P (Xji)

′b)].

Bootstrap versions of the estimators of the counterfactual quantiles and other functionals are

obtained by monotonizing F̂ ∗Y ⟨j∣k⟩ using rearrangement if required and setting

Q̂∗Y ⟨j∣k⟩(�) = F̂ ∗←Y ⟨j∣k⟩(�) and Δ̂∗t (w) = �
(
F̂ ∗Y ⟨j∣k⟩ : (j, k) ∈ JK

)
(w). (3.12)

The following algorithm describes how to obtain an exchangeable bootstrap draw of a policy

estimator.

Algorithm 2 (Exchangeable bootstrap for a policy estimator). (i) Draw a vector of weights for

the observed samples according to the definition of the exchangeable weights given above, and, if

needed, construct weights for the transformation samples using (3.9). (ii) Obtain a bootstrap ver-

sion F̂ ∗Xk
of the covariate distribution estimator F̂Xk

using (3.11). (iii) Obtain a bootstrap version

F̂ ∗Yj ∣Xj
of the conditional distribution estimator F̂Yj ∣Xj

using the same regression method as for

the estimator. (iv) Obtain bootstrap versions of the estimators of the counterfactual distribution,

quantiles, and other policy functionals via (3.10) and (3.12). □

The exchangeable bootstrap distributions are useful to perform asymptotically valid inference

on the policy effects of interest. We focus on uniform methods that cover standard pointwise

methods for real-valued parameters as special cases, and also allow us to consider richer functional

parameters and hypotheses. For example, an asymptotic simultaneous (1 − �)-confidence band

for the counterfactual distribution FY ⟨j∣k⟩(y) over the region y ∈ Yj is defined by the end-point

functions

F̂±Y ⟨j∣k⟩(y) = F̂Y ⟨j∣k⟩(y)± t̂(1− �)Σ̂
1/2
jk (y)/

√
n, (3.13)

such that

lim
n→∞

ℙ

{
FY ⟨j∣k⟩(y) ∈ [F̂−Y ⟨j∣k⟩(y), F̂

+
Y ⟨j∣k⟩(y)] for all y ∈ Yj

}
= 1− �. (3.14)
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Here, Σ̂(y) is a uniformly consistent estimator of Σ(y), the asymptotic variance of
√
n(F̂Y ⟨j∣k⟩(y)−

FY ⟨j∣k⟩(y)). In order to achieve the coverage property (3.14), we set the critical value t̂(1−�) as

a consistent estimator of the (1− �)-quantile of the maximal t-statistic:

t = sup
y∈Yj

√
nΣ̂(y)−1/2∣F̂Y ⟨j∣k⟩(y)− FY ⟨j∣k⟩(y)∣.

The following algorithm describes how to obtain uniform bands using exchangeable bootstrap:

Algorithm 3 (Uniform inference for policy analysis). (i) Using Algorithm 2, draw {Ẑ∗jk,b : 1 ≤
b ≤ B} as i.i.d. realizations of Ẑ∗jk(y) =

√
n(F̂ ∗Y ⟨j∣k⟩(y)− F̂Y ⟨j∣k⟩(y)), for y ∈ Yj, (j, k) ∈ JK. (ii)

Compute bootstrap robust standard error estimates: Σ̂(y)1/2 = (q.75(y)− q.25(y))/1.34 for y ∈ Yj,

where qp(y) is the p-th quantile of {Ẑ∗jk,b(y) : 1 ≤ b ≤ B}. (3) Compute realizations of the

maximal t-statistic t̂b = supy∈Yj Σ̂(y)
−1/2∣Ẑ∗jk,b(y)∣ for 1 ≤ b ≤ B. (iii) Form a (1−�)-confidence

band for {FY ⟨j∣k⟩(y) : y ∈ Yj} using (3.13) setting t̂(1 − �) to the (1 − �)-sample quantile of

{t̂b : 1 ≤ b ≤ B}. □

We can obtain similar uniform bands for the counterfactual quantile functions and other func-

tionals replacing F̂ ∗Y ⟨j∣k⟩ by Q̂∗Y ⟨j∣k⟩ or Δ̂∗t and adjusting the indexing sets accordingly. If the

sample size is large, we can reduce the computational complexity of step (i) of the algorithm

by resampling the first order approximation to the estimators of the conditional distribution, by

using subsampling, or by simulating the limit process Z̄jk using multiplier methods (Barrett and

Donald, 2003).

Remark 3.3. Algorithm 3 uses a robust estimator Σ̂(y) for Σ(y). Uniform consistency of Σ̂(y)

over y ∈ Yj follows from the consistency of bootstrap for estimating the law of the limit Gaussian

process Z̄jk shown in Sections 4 and 5, by Lemma 1 in Chernozhukov and Fernandez-Val (2005).

Uniform validity of the confidence intervals also follows from the consistency of bootstrap for

estimating the law of the limit Gaussian process Z̄jk shown in Sections 4 and 5, by the same

argument as the proof of Theorem 1 in Chernozhukov and Fernandez-Val (2005), provided that

Σ(y) is bounded away from zero on the region y ∈ Yj . □

4. Inference Theory for Policy Analysis under General Conditions

This section contains the main theoretical results of the paper. We state the results under

simple high-level conditions, which cover a broad array of estimation methods. We verify the

high-level conditions for the principal approaches – quantile and distribution regressions – in the

next section. Throughout this section, n denotes a sample size index and all limits are taken as

n→ ∞. We refer to Appendix A for additional notation.
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4.1. Theory under general conditions. We begin by gathering the key modeling conditions

introduced in Section 2.

Condition S. (a) The condition (2.3) on the support inclusion holds, so that the counter-

factual distributions (2.1) are well defined. (b) The sample size nk for the k-th population is

nondecreasing in the index n and n/nk −→ �k ∈ [0,∞), for all k ∈ K, as n −→ ∞.

We impose high-level regularity conditions on the following empirical processes:

Ẑj(y, x) :=
√
nj(F̂Yj ∣Xj

(y∣x)− FYj ∣Xj
(y∣x)) and Ĝk(f) :=

√
nk

∫
fd(F̂Xk

− FXk
),

indexed by (y, x, j, k, f) ∈ YXJKℱ , where F̂Yj ∣Xj
is the estimator of the conditional distribution

FYj ∣Xj
, F̂Xk

is the estimator of the covariate distribution FXk
, and ℱ is a function class specified

below. We require that these empirical processes converge to well-behaved Gaussian processes.

In what follows, we consider YjXj as a subset of ℝ
1+dx

with topology induced by the standard

metric � on ℝ
1+dx

. We also let �k(f, f̃) = [
∫
(f − f̃)2dFXk

]1/2 be a metric on ℱ .

Condition D. Let ℱ be a function class that includes {FYj ∣Xj
(y∣⋅) : y ∈ Yj , j ∈ J } as well

as indicators of all rectangles in ℝ
dx
. (a) In the metric space ℓ∞(YXJKℱ)2,

(Ẑj(y, x), Ĝk(f))⇝ (Zj(y, x), Gk(f)),

as stochastic processes indexed by (y, x, j, k, f) ∈ YXJKℱ . The limit process is a zero-mean tight

Gaussian process, where Zj a.s. has uniformly continuous paths with respect to �, and Gk a.s.

has uniformly continuous paths with respect to the metric �k on ℱ . (b) The map y 7→ FYj ∣Xj
(y∣⋅)

is continuous with respect to the metric �k for all (j, k) ∈ JK.

Condition D requires that a uniform central limit theorem hold for the estimators of the con-

ditional and covariate distributions. We verify Condition D for semi-parametric estimators of

the conditional distribution function, such as quantile and distribution regression, under i.i.d.

sampling assumption. For the case of duration/transformation regression, this condition follows

from the results of Andersen and Gill (1982) and Burr and Doss (1993). For the case of clas-

sical regression, this condition follows from the results reported in the working paper version

(Chernozhukov, Fernandez-Val and Melly, 2009). We expect Condition D to hold in many other

applied settings. The requirement Ĝk ⇝ Gk on the estimated measures is weak and is satisfied

when F̂Xk
is the empirical measure based on a random sample, as in the previous section. Fi-

nally, we note that Condition D does not even impose the i.i.d sampling conditions, only that a

functional central limit theorem is satisfied. Thus, Condition D can be expected to hold more

generally, which may be relevant for time series applications.

Remark 4.1 (Technical aspects). Condition D does not impose compactness assumptions on the

regions Yj or Xk per se, but we shall impose compactness when we provide primitive conditions.

The requirement Ĝk ⇝ Gk holds not only for empirical measures but also for various smooth
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empirical measures; in fact, in the latter case the indexing class of functions ℱ can be much

larger than Glivenko-Cantelli or Donsker; see Radulovic and Wegkamp (2003) and Gine and

Nickl (2008). □

Theorem 4.1 (Uniform limit theory for counterfactual distributions and quantiles). Suppose

that Conditions S and D hold. (1) Then,

√
n
(
F̂Y ⟨j∣k⟩(y)− FY ⟨j∣k⟩(y)

)
⇝ Z̄jk(y) (4.1)

as a stochastic process indexed by (y, j, k) ∈ YJK in the metric space ℓ∞(YJK), where Z̄jk is a

tight zero-mean Gaussian process with continuous paths on Yj defined by

Z̄jk(y) :=
√
�j

∫
Zj(y, x)dFXk

(x) +
√
�kGk(FYj ∣Xj

(y∣⋅)). (4.2)

(2) If in addition FY ⟨j∣k⟩ admits a positive continuous density fY ⟨j∣k⟩ on an interval [a, b]containing

an �-neighborhood of the set {QY ⟨j∣k⟩(�) : � ∈ T } in Yj , where T ⊂ (0, 1), then

√
n
(
Q̂Y ⟨j∣k⟩(�)−QY ⟨j∣k⟩(�)

)
⇝ −Z̄jk(QY ⟨j∣k⟩(�))/fY ⟨j∣k⟩(QY⟨j∣k⟩

(�)) =: Vjk(�), (4.3)

as a stochastic process indexed by (�, j, k) ∈ T JK in the metric space ℓ∞(T JK), where Vjk is a

tight zero mean Gaussian Process with continuous paths on T .

This is the first main and new result of the paper. It shows that if the estimators of the condi-

tional and marginal distributions satisfy a functional central limit theorem, then the estimators

of the counterfactual distributions and quantiles also obey a functional central limit theorem.

This result forms the basis of all inference results on policy effect estimators.

As an application of the result above, we derive functional central limit theorems for distribu-

tion and quantile policy effects. Let t = (j, k, l,m), Y ⊆ Yj ∩ Yl, T ⊂ (0, 1), and

ΔDE
t (y) = FY ⟨j∣k⟩(y)− FY ⟨l∣m⟩(y), Δ̂DE

t (y) = F̂Y ⟨j∣k⟩(y)− F̂Y ⟨l∣m⟩(y),

ΔQE
t (�) = QY ⟨j∣k⟩(�)−QY ⟨l∣m⟩(�), Δ̂QE

t (�) = Q̂Y ⟨j∣k⟩(�)− Q̂Y ⟨l∣m⟩(�).

Corollary 4.1 (Limit theory for quantile and distribution policy effects). Under the conditions

of Theorem 4.1, part 1,

√
n
(
Δ̂DE

t (y)−ΔDE
t (y)

)
⇝ Z̄jk(y)− Z̄lm(y) =: St(y), (4.4)

as a stochastic process indexed by y ∈ Y in the space ℓ∞(Y), where St is a tight zero-mean

Gaussian process with continuous paths. Under conditions of Theorem 4.1, part 2,

√
n
(
Δ̂QE

t (�)−ΔQE
t (�)

)
⇝ Vjk(�)− Vlm(�) =:Wt(�), (4.5)

as a stochastic process indexed by � ∈ T in the space ℓ∞(T ), where Wt is a tight zero-mean

Gaussian process with continuous paths.
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The following corollary is another application of the result above. It shows that Hadamard-

differentiable policy functionals also satisfy a functional central limit theorem. Examples include

Lorenz curves and Lorenz policy effects, as well as real-valued parameters, such as Gini coefficients

and Gini policy effects. Regularity conditions for Hadamard-differentiability of Lorenz and Gini

functionals are given in Bhattacharya (2007).

Corollary 4.2 (Limit theory for smooth policy functionals). Consider the parameter � as an

element of a parameter space D� ⊂ D = ×(jk)∈JKℓ
∞(Yj), with D� containing the true value

�0 = (FY ⟨j∣k⟩ : (j, k) ∈ JK). Consider the plug-in estimator �̂ = (F̂Y ⟨j∣k⟩ : (j, k) ∈ JK).

Suppose �(�), a functional of interest mapping D� to ℓ∞(W), is Hadamard differentiable in �

at �0 tangentially to ×(jk)∈JKC(Yj) with derivative (�′jk : (j, k) ∈ JK). Let Δt = �(�0) and

Δ̂t = �(�̂). Then, under the conditions of Theorem 4.1, part 1,

√
n
(
Δ̂t(w) −Δt(w)

)
⇝

∑

(j,k)∈JK
(�′jkZjk)(w) =: T (w), (4.6)

as a stochastic processes indexed by w ∈ W in ℓ∞(W), where w 7→ T (w) is a tight zero-mean

Gaussian process.

4.2. Validity of bootstrap and simulation methods for policy analysis. Kolmogorov-

Smirnov type procedures offer a convenient and computationally attractive approach for per-

forming inference on function-valued parameters using functional central limit theorems. A

complication in our case is that the limit processes in (4.2)–(4.6) are non-pivotal, as their covari-

ance functions depend on unknown, though estimable, nuisance parameters.12 We deal with this

non-pivotality by using resampling and simulation methods. An attractive result shown as part

our theoretical analysis is that the policy functionals are Hadamard differentiable with respect

to the underlying conditional and covariate distributions. As a result, if bootstrap or any other

method consistently estimates the limit laws of the estimators of the conditional and covariate

distributions, it also consistently estimates the limit laws of our policy estimators. This conve-

nient result follows from the functional delta method for bootstrap of Hadamard differentiable

functionals.

In order to state the results formally, let Dn denote the data vector and Mn be the vector

of random variables used to generate bootstrap draws or simulation draws given Dn (this may

depend on the particular resampling or simulation method). Consider the random element ℤ∗n =

ℤn(Dn,Mn) in a normed space D. We say that the bootstrap law of ℤ∗n consistently estimates

the law of some tight random element ℤ and write ℤ
∗
n ⇝ℙ ℤ in D if

supℎ∈BL1(D) ∣EMnℎ (ℤ
∗
n)−Eℎ(ℤ)∣ →ℙ 0, (4.7)

12Similar non-pivotality issues arise in a variety of goodness-of-fit problems studied by Durbin and others, and

are referred to as the Durbin problem by Koenker and Xiao (2002).
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where BL1(D) denotes the space of functions with Lipschitz norm at most 1 and EMn denotes

the conditional expectation with respect to Mn given the data Dn.

Next, consider the processes #̂(t) = (F̂Yj ∣Xj
(y∣x),

∫
fdF̂Xk

) and #(t) = (FYj ∣Xj
(y∣x),

∫
fdFXk

),

indexed by t = (y, x, j, k, f) ∈ T = YXJKℱ , as elements of E# = ℓ∞(T )2. Condition D(a) can

be restated as
√
n(#̂n − #) ⇝ ℤ# in E#, where ℤ# denotes the limit process in Condition D(a).

Let #̂∗n be the bootstrap draw of #̂n. Consider the functional of interest � = �(#) in the normed

space E�, which can be either the counterfactual distribution and quantile functions considered

in Theorem 4.1, the distribution or quantile effects considered in Corollary 4.1, or any of the

functionals considered in Corollary 4.2. Denote the plug-in estimator of � as �̂ = �(#̂) and the

corresponding bootstrap draw as �̂∗ = �(#̂∗). Let ℤ� denote the limit law of
√
n(�̂ − �), as

described in Theorem 4.1, Corollary 4.1, and Corollary 4.2.

Theorem 4.2 (Validity of bootstrap and other simulation methods for policy estimators). As-

sume that the conditions of Theorem 4.1 hold. If
√
n(#̂∗n−#̂)⇝ℙ ℤ# in E#, then

√
n(�̂∗−�̂)⇝ℙ ℤ�

in E�. In words, if the exchangeable bootstrap or any other simulation method consistently esti-

mates the law of the limit stochastic process in Condition D, then this method also consistently

estimates the laws of the limit stochastic processes (4.2)–(4.6) for policy estimators of counter-

factual distribution, quantiles, distribution effects, quantile effects, and other functionals.

This is the second main and new result of the paper. It shows that any bootstrap method

is valid for estimating the limit laws of various policy functionals, provided this method is valid

for estimating the limit laws of the (function-valued) estimators of the conditional and covariate

distributions. We verify the latter condition for our principal estimators in Section 5, where we

establish the validity of exchangeable bootstrap methods for estimating the laws of function-

valued estimators of the conditional distribution based on quantile regression and distribution

regression processes.

5. Inference Theory for Policy Analysis under Primitive Conditions

We verify that the high-level conditions of the previous section hold for the principal estimators

of the conditional distribution functions, and so the various conclusions on inference methods

also apply to this case. We also present new results on limit distribution theory for distribution

regression processes and exchangeable bootstrap validity for quantile and distribution regression

processes, which may be of a substantial independent interest. Throughout this section, we re-

label P (X) to X to simplify the notation. This entails no loss of generality when P (X) includes

X as a subset.

5.1. Preliminaries on sampling. Let us first state formally the sampling conditions introduced

in Section 3.
18



Condition SM. The samples Sk = {(Yik,Xik) : 1 ≤ i ≤ nk}, k ∈ K, are generated as follows:

(a) For each population k ∈ K0, Sk contains i.i.d. copies of the random vector (Yk,Xk) that has

probability law Pk. (b) For each population k ∈ Kt, the samples Sk are created by transformation

maps Sk = {gl(k),k(Yil(k),Xil(k)) : 1 ≤ i ≤ nl(k)} for l(k) ∈ K0, as defined in Section 3. (c) Given

a universal Donsker class ℱ , the function class ℱ ∘gl(k),k remains universal Donsker, which holds

trivially if gl(k),k is an affine map or a Lipschitz map.

Lemma D.4 in Appendix D shows the following result under Condition SM: As n → ∞ the

empirical processes Ĝk(f) :=
1√
nk

∑nk

i=1 f(Yik,Xik)−
∫
fdPk converge weakly,

Ĝk(f)⇝ Gk(f),

as stochastic processes indexed by (k, f) ∈ Kℱ in ℓ∞(Kℱ). The limit processes Gk are tight

Pk-Brownian bridges, which are independent across k ∈ K0,
13 and for k ∈ Kt defined by:

Gk(f) = Gl(k)(f ∘ gl(k),k), ∀f ∈ ℱ .

After defining the limit processes Gk under the two most common sampling schemes, we

proceed to state the results for the leading cases formally.

5.2. Inference theory for policy estimators based on quantile regression. We proceed

to impose the following standard conditions on (Yj ,Xj) for each j ∈ J .

Condition QR. (a) The conditional quantile function takes the form QYj ∣Xj
(u∣x) = x′�j(u)

for all u ∈ U = [", 1 − "] with 0 < " < 1/2, and x ∈ Xj. (b) The conditional density function

fYj ∣Xj
(y∣x) exists, is uniformly continuous on (y, x) in the support of (Yj ,Xj), and is uniformly

bounded. (c) The minimal eigenvalue of Jj(u) = E[fYj ∣Xj
(X ′j�j(u)∣Xj)XjX

′
j ] is bounded away

from zero uniformly over u ∈ U . (d) E∥Xj∥2+� <∞ for some � > 0.

In order to state the next result, let us define

ℓj,y,x(Yj,Xj) = fYj ∣Xj
(y∣x)x′ j,FYj ∣Xj

(y∣x)(Yj ,Xj),

 j,u(Yj ,Xj) = −Jj(u)−1{u− 1(Yj ≤ X ′j�j(u))}Xj ,

�jk,y(Yj ,Xj ,Xk) =
√
�j

∫
ℓj,y,x(Yj ,Xj)dFXk

(x) +
√
�kFYj ∣Xj

(y∣Xk).

Theorem 5.1 (Validity for QR based policy analysis). Suppose that for each j ∈ J , Conditions
S, SM, and QR hold, the region of interest YjXj is a compact subset of ℝ1+dx , and Uj := {u :

x′�(u) ∈ Yj, for some x ∈ Xj} ⊆ U . Then, (1) Condition D holds for the quantile regression

estimator (3.6) of the conditional distribution and the empirical distribution estimator (3.3) of

13A zero-mean Gaussian process Gk is a Pk-Brownian bridge if its covariance function takes the form

E[Gk(f)Gk(l)] =
∫

fldPk −
∫

fdPk

∫

ldPk, for any f and l in L2(FXk
); see van der Vaart (1998).
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the covariate distribution. The limit processes are given by

Zj(y, x) = Gj(ℓj,y,x), Gk(f) = Gk(f), (j, k) ∈ JK,

where Gk are Pk-Brownian bridges defined above. In particular, {FYj ∣Xj
(y∣⋅) : y ∈ Yj} is a

universal Donsker class. (2) Exchangeable bootstrap consistently estimates the limit law of these

processes. (3) Therefore, all conclusions of Theorems 4.1- 4.2 and Corollaries 4.1 - 4.2 apply.

In particular, the limit law for the estimated counterfactual distribution is given by Z̄jk(y) :=

Gj(�jk,y), with covariance function E[Z̄jk(y)Z̄lm(ȳ)] = E[�jk,y�lm,ȳ]− E[�jk,y]E[�lm,ȳ].

This is the third main and new result of the paper. It derives the joint functional central limit

theorem for the quantile regression estimator of the conditional distribution and the empirical

distribution function estimator of the covariate distribution. It also shows that exchangeable

bootstrap consistently estimates the limit law. Moreover, the result characterizes the limit law Z̄jk

for the estimator of the counterfactual distribution in Theorem 4.1, which in turn determines the

limit laws of the estimators of the counterfactual quantile functions and other policy functionals,

via Theorem 4.1 and Corollaries 4.1 and 4.2. Note that the assumption Uj ⊆ U is the condition

that permits the use of trimming in (3.6), since it says that the conditional distribution of Yj

given Xj on the region of interest YjXj is not determined by the tail conditional quantiles.

While proving Theorem 5.1, we establish the following corollary that may be of independent

interest.

Corollary 5.1 (Validity of exchangeable bootstrap for QR coefficient process). Let {(Yji,Xji) :

1 ≤ i ≤ nj} be a sample of i.i.d. copies of the random vector (Yj ,Xj) that has probability law

Pj and obeys Condition QR. (1) As nj → ∞, the QR coefficient process possesses the following

limit law:
√
nj(�̂j(⋅)− �j(⋅))⇝ Gj( j,⋅) in ℓ∞(U), where Gj is a Pj- Brownian Bridge. (2) The

exchangeable bootstrap law is consistent for the limit law, namely, as nj → ∞,

√
nj(�̂

∗
j (⋅)− �̂j(⋅))⇝ℙ Gj( j,⋅) in ℓ

∞(U).

The result (2) is new and shows that exchangeable bootstrap (which includes empirical boot-

strap, weighted bootstrap, m out of n bootstrap, and subsampling) is valid for estimating the

limit law of the entire QR coefficient process. Previously, such result was available only for point-

wise cases (e.g. Hahn, 1995, and Feng, He, and Hu, 2011), and the process result was available

only for subsampling (Chernozhukov and Fernandez-Val, 2005, and Chernozhukov and Hansen,

2006). The result could be of independent interest.

5.3. Inference Theory for Policy Estimators based on Distribution Regression. We

shall impose the following condition on (Yj ,Xj) for each j ∈ J .

Condition DR. (a) The conditional distribution function takes the form FYj ∣Xj
(y∣x) =

Λ(x′�j(y)) for all y ∈ Yj and x ∈ Xj, where Λ is either the complementary log-log, probit or logit
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link function. (b) The region of interest Yj is either a compact interval in ℝ or a finite subset of

ℝ. In the former case, the conditional density function fYj ∣Xj
(y∣x) exists, is uniformly bounded

and uniformly continuous in (y, x) in the support of (Yj,Xj). In the latter case, y 7→ �(y) is

Lipschitz on y ∈ Yj. (c) E∥Xj∥2 <∞ and the minimum eigenvalue of

Jj(y) := E

[
�(X ′j�j(y))

2

Λ(X ′j�j(y))[1 − Λ(X ′j�j(y))]
XjX

′
j

]
,

is bounded away from zero uniformly over y ∈ Yj.

In order to state the next result, we define

ℓj,y,x(Yj,Xj) = �(x′�j(y))x
′ j,y(Yj ,Xj),

 j,y(Yj,Xj) = −J−1j (y)
Λ(X ′j�j(y))− 1{Yj ≤ y}

Λ(X ′j�j(y))(1 − Λ(X ′j�j(y)))
�(X ′j�j(y))Xj ,

�jk,y(Yj ,Xj ,Xk) =
√
�j

∫
ℓj,y,x(Yj ,Xj)dFXk

(x) +
√
�kFYj ∣Xj

(y∣Xk).

Theorem 5.2 (Validity for DR based policy analysis). Suppose that for each j ∈ J , Conditions

S, SM, and DR hold, and the region YjXj is a compact subset of ℝ1+dx. Then, (1) Condition

D holds for the distribution regression estimator (3.4) of the conditional distribution and the

empirical distribution estimator (3.3) of the covariate distribution, with limit processes given by

Zj(y, x) = Gj(ℓj,y,x), Gk(f) = Gk(f), (j, k) ∈ JK,

where Gk are Pk-Brownian bridges defined above. In particular, {FYj ∣Xj
(y∣⋅) : y ∈ Yj} is a uni-

versal Donsker class. (2) Exchangeable bootstrap consistently estimates the limit law of these pro-

cesses. (c) Therefore, all conclusions of Theorem 4.1 and 4.2, and of Corollaries 4.1 and 4.2 apply

to this case. In particular, the limit law for the estimated counterfactual distribution is given by

Z̄jk(y) := Gj(�jk,y), with covariance function EZ̄jk(y)Z̄lm(ȳ) = E[�jk,y�lm,ȳ]−E[�jk,y]E[�lm,ȳ ].

This is the fourth main and new result of the paper. It derives the joint functional central

limit theorem for the distribution regression estimator of the conditional distribution and the

empirical distribution function estimator of the covariate distribution. It also shows that boot-

strap consistently estimates the limit law. Moreover, the result characterizes the limit law Z̄jk

for the estimator of the counterfactual distribution in Theorem 4.1, which in turn determines

the limit laws of the estimators of the counterfactual quantiles and other policy functionals, via

Theorem 4.1 and Corollaries 4.1 and 4.2.

While proving Theorem 5.2, we also establish the following corollary that may be of indepen-

dent interest.

Corollary 5.2 (Limit law and exchangeable bootstrap for DR coefficient process). Let {(Yji,Xji) :

1 ≤ i ≤ nj} be a sample of i.i.d. copies of the random vector (Yj ,Xj) that has probability law
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Pj and obeys Condition DR. (1) As nj → ∞, the DR coefficient process possesses the following

limit law:
√
nj(�̂j(⋅)− �j(⋅)) = Ĝj( j,⋅) + oℙ(1)⇝ Gj( j,⋅) in ℓ

∞(Yj),

where Gj is a Pj- Brownian Bridge. The exchangeable bootstrap law is consistent for the limit

law, namely, as nj → ∞,

√
nj(�̂

∗
j (⋅)− �̂j(⋅))⇝ℙ Gj( j,⋅) in ℓ

∞(Yj).

These limit distribution and bootstrap consistency results are new. They could be of an

independent interest, and in fact they have already been applied in several studies (Chernozhukov,

Fernandez-Val and Kowalski, 2011, Rothe, 2011, and Rothe and Wied, 2011). Note that unlike

Theorem 5.2, this corollary does not rely on compactness of the region YjXj.

6. Labor Market Institutions and the Distribution of Wages

In this section we illustrate our estimation and inference procedures with an analysis of the

evolution of the U.S. wage distribution between 1979 and 1988. The first goal here is to compare

the methods proposed in Section 3 and to discuss the various choices that practitioners need to

make. The second goal is to complement the analysis of DiNardo, Fortin, and Lemieux (1996,

DFL hereafter) by providing confidence intervals for real-valued and function-valued effects of

the institutional and labor market factors driving changes in the wage distribution.

We use the same dataset and variables as in DFL, extracted from the outgoing rotation groups

of the Current Population Surveys (CPS) in 1979 and 1988. The outcome variable of interest

is the hourly log-wage in 1979 dollars. The regressors include a union status dummy, nine

education dummies interacted with experience, a quartic term in experience, two occupation

dummies, twenty industry dummies, and dummies for race, SMSA, marital status, and part-time

status. Following DFL we weigh the observations by the product of the CPS sampling weights

and the hours worked. We analyze the data only for men for the sake of brevity.14

The major factors suspected to have an important role in the evolution of the wage distribution

between 1979 and 1988 are the minimum wage, whose real value declined by 27 percent, the

level of unionization, whose level declined from 32 percent to 21 percent in our sample, and

the composition of the labor force, whose education levels and other characteristics changed

substantially during this period. Thus, following DFL, we decompose the total change in the US

wage distribution into the sum of four effects: (1) the effect of a change in minimum wage, (2)

the effect of de-unionization, (3) the effect of changes in the composition of the labor force, and

(4) the price effect.

14Results for women can be found in Section B of the Supplementary Appendix.
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We formally define these four effects as differences between appropriately chosen counterfactual

distributions. Let FY ⟨(t,s)∣(r,v)⟩ denote the counterfactual distribution of log-wages Y when the

wage structure is as in year t, the minimum wage M is at the level observed in year s, the union

status U is distributed as in year r, and the other worker characteristics C are distributed as in

year v. We use two indexes to refer to the conditional and covariate distributions because we treat

the minimum wage as a feature of the conditional distribution and we want to separate union

status from the other covariates. Given these counterfactual distributions, we can decompose

the observed change in the distribution of wages between 1979 (year 0) and 1988 (year 1) into

the sum of the previous four effects:

FY ⟨(1,1)∣(1,1)⟩ − FY ⟨(0,0)∣(0,0)⟩ = [FY ⟨(1,1)∣(1,1)⟩ − FY ⟨(1,0)∣(1,1)⟩]
(1)

+ [FY ⟨(1,0)∣(1,1)⟩ − FY ⟨(1,0)∣(0,1)⟩]
(2)

+ [FY ⟨(1,0)∣(0,1)⟩ − FY ⟨(1,0)∣(0,0)⟩]
(3)

+ [FY ⟨(1,0)∣(0,0)⟩ − FY ⟨(0,0)∣(0,0)⟩]
(4)

.

(6.1)

In constructing the decompositions (6.1), we follow the same sequential order as in DFL.15

We next describe how to identify and estimate the various counterfactual distributions ap-

pearing in (6.1). The first counterfactual distribution is FY ⟨(1,0)∣(1,1)⟩, the distribution of wages

that we would observe in 1988 if the real minimum wage was as high as in 1979. Identifying this

quantity requires additional assumptions.16 Following DFL, the first strategy we employ is to

assume the conditional wage density at or below the minimum wage depends only on the value

of the minimum wage, and the minimum wage has no employment effects and no spillover effects

on wages above its level. Under these conditions, DFL show that

FY(1,0)∣X1
(y∣x) =

⎧
⎨
⎩

FY(0,0)∣X0
(y∣x)

FY(1,1)∣X1
(m0∣x)

FY(0,0)∣X0
(m0∣x) , if y < m0;

FY(1,1)∣X1
(y∣x) , if y ≥ m0;

(6.2)

where FY(t,s)∣Xt
(y∣x) denotes the conditional distribution of wages in year t given worker charac-

teristics Xt = (Ut, Ct) when the level of the minimum wage is as in year s, and ms denotes the

level of the minimum wage in year s. The second strategy we employ completely avoids model-

ing the conditional wage distribution below the minimal wage by simply censoring the observed

wages below the minimum wage to the value of the minimum wage, i.e.

FY(1,0)∣X1
(y∣x) =

{
0, if y < m0;

FY(1,1)∣X1
(y∣x) , if y ≥ m0.

(6.3)

15The sequential order may matter because it defines the counterfactual distributions and the policies of interest.

We report some results for the reverse sequential order in Section B of the Supplementary Appendix.
16We cannot identify this quantity from random variation in minimum wage, since the federal minimum wage

does not vary across individuals and varies little across states in the years considered.
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Given either (6.2) or (6.3) we identify the counterfactual distribution of wages using the rep-

resentation:

FY ⟨(1,0)∣(1,1)⟩(y) =
∫
FY(1,0)∣X1

(y∣x)dFX1(x), (6.4)

where FXt is the joint distribution of worker characteristics and union status in year t. The other

counterfactual marginal distributions we need are

FY ⟨(1,0)∣(0,1)⟩(y) =
∫ ∫

FY(1,0)∣X1
(y∣x) dFU0∣C0

(u∣c)dFC1(c) (6.5)

and

FY ⟨(1,0)∣(0,0)⟩(y) =
∫
FY(1,0)∣X1

(y∣x) dFX0 (x) . (6.6)

All the components of these distributions are identified and we can estimate them using the

plug-in principle. In particular, we estimate the conditional distribution FU0∣C0
(u∣c), u ∈ {0, 1},

using logistic regression, and FX1 , FC1 and FX0 using the empirical distributions.

From a practical standpoint, the main implementation decision concerns the choice of the

estimator of the conditional distributions, FY(j,j)∣Xj
(y∣x) , for j ∈ {0, 1}. We consider the use

of quantile regression, distribution regression, classical regression, and duration/transformation

regression. The classical regression and the duration regression models are parsimonious special

cases of the first two models. However, in our application, these models are not appropriate due

to substantial conditional heteroscedasticity in log wages (Lemieux, 2006, and Angrist, Cher-

nozhukov, and Fernandez-Val, 2006). As the additional restrictions these two models impose are

rejected by the data in our application, we give our preference to the distribution and quantile

regression approaches.

Distribution and quantile regressions impose different parametric restrictions on the data gen-

erating process. In our application, a linear model for the conditional quantile function may not

provide a good approximation to the conditional quantiles near the minimum wage, where the

conditional quantile function may be highly nonlinear. Indeed, the assumptions taken from DFL

imply that the wage function has different determinants below from above the minimum wage.

In contrast, a distribution regression model may well capture this type of behavior, since it allows

the model coefficients to depend directly on the wage levels.

A second characteristic of our application is the sizeable presence of mass points around the

minimum wage and at some other round-dollar amounts. For instance, 20% of the wages take

exactly 1 out of 6 values and 50% of the wages take exactly 1 out of 25 values. We compare

the distribution and quantile regression estimators in a simulation exercise calibrated to fit many

properties of our application. The results presented in Section A of the Supplementary Appendix

show that quantile regression is more accurate when the dependent variable is perfectly contin-

uous but performs worse than distribution regression in the presence of realistic mass points.

Based on these simulations and on specification tests that reject the linear quantile regression
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model, we employ the distribution regression approach to generate the main empirical results.17

Since most of the problems for quantile regression take place in the region of the minimum wage,

we also check the robustness of our results with the censoring approach. We censor wages at the

value of the minimum wage and then apply censored quantile and distribution regressions to the

resulting data.

We present our empirical results in Table 1 and Figures 1–5. In Table 1, we report the

estimation and inference results for the decomposition (6.1) of the changes in various measures

of wage dispersion between 1979 and 1988 estimated using logit distribution regressions. Figures

1-3 refine these results by presenting estimates and 95% simultaneous confidence intervals for

several major policy functionals of interest, including quantile, distribution and Lorenz policy

effects. We construct the simultaneous confidence bands using 100 bootstrap replications and a

grid of quantile indices {0.02, 0.021, ..., 0.98}. We plot all of these function-valued effects against

the quantile indices of wages.

We see in the top panels of Figures 1-3 that the low end of the distribution is significantly

lower in 1988 while the upper end is significantly higher in 1988. This pattern reflects the well-

known increase in wage inequality during this period. Next we turn to the decomposition of the

total change into the sum of the four effects. For this decomposition we focus mostly on quantile

functions for comparability with recent studies and to facilitate the interpretation.18 From Figure

1, we see that the contribution of union status to the total change is quantitatively small and

has a U-shaped effect across the quantile function. The magnitude and shape of this effect on

the marginal quantiles between the first and last decile sharply contrast with the quantitatively

large and monotonically decreasing shape of the effect of the union status on the conditional

quantile function for this range of indexes (Chamberlain, 1994).19 This comparison illustrates

the difference between conditional and unconditional effects. The unconditional effects depend

not only on the conditional effects but also on the characteristics of the workers who switched

their unionization status. Obviously, de-unionization cannot affect those who were not unionized

at the beginning of the period, which is 70 percent of the workers. In our data, the unionization

rate declines from 32 to 21 percent, thus affecting only 11 percent of the workers. Thus, even

though the conditional impact of switching from union to non-union status can be quantitatively

large, it has a quantitatively small effect on the marginal distribution.

17Rothe and Wied (2011) suggest new specification tests for conditional distribution models. Applying their

tests to a similar dataset, they reject the quantile regression model but not the distribution regression model.
18Discreteness of wage data implies that the quantile functions have jumps. To avoid this erratic behavior in

the graphical representations of the results, we display smoothed quantile functions. The non-smoothed results

are available from the authors. The quantile functions were smoothed using a bandwidth of 0.015 and a Gaussian

kernel. The results in Table 1 have not been smoothed.
19We find similar estimates to Chamberlain (1994) for the effect of union status on the conditional quantile

function in our CPS data.
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From Figure 1, we also see that the change in the distribution of worker characteristics (other

than union status) is responsible for a large part of the increase in wage inequality in the upper

tail of the distribution. The importance of these composition effects has been recently stressed

by Lemieux (2006) and Autor, Katz and Kearney (2008). The composition effect is realized

through two channels. The first channel operates through between-group inequality. In our

case, more highly educated and more experienced workers earn higher wages. By increasing

their proportion, we induce a larger gap between the lower and upper tails of the marginal wage

distribution. The second channel is that within-group inequality varies by group, so increasing

the proportion of high variance groups increases the dispersion in the marginal distribution of

wages. In our case, more highly educated and more experienced workers exhibit higher within-

group inequality. By increasing their proportion, we induce a higher inequality within the upper

tail of the distribution. To understand the effect of these channels in wage dispersion it is useful

to consider a linear quantile model Y = X ′�(U), where X is independent of U . By the law of

total variance, we can decompose the variance of Y into:

V ar[Y ] = E[�(U)]′V ar[X]E[�(U)] + trace{E[XX ′]V ar[�(U)]}. (6.7)

The first channel corresponds to changes in the first term of (6.7) where V ar[X] represents

the heterogeneity of the labor force (between group inequality); whereas the second channel

corresponds to changes in the second term of (6.7) operating through the interaction of between

group inequality E[XX ′] and within group inequality V ar[�(U)].20

We also include estimates of the price effect. This effect captures changes in the conditional

wage structure. It represents the difference we would observe if the distribution of worker char-

acteristics and union status, and the minimum wage remained unchanged during this period.

This effect has a U-shaped pattern, which is similar to the pattern Autor, Katz and Kearney

(2006a) find for the period between 1990 and 2000. They relate this pattern to a bi-polarization

of employment into low and high skill jobs. However, they do not find a U-shaped pattern for the

period between 1980 and 1990. A possible explanation for the apparent absence of this pattern

in their analysis might be that the declining minimum wage masks this phenomenon. In our

analysis, once we control for this temporary factor, we do uncover the U-shaped pattern for the

price component in the 80s.

In Figure 4, we check the robustness of the results with respect to the link function used to

implement the distribution regression estimator. The results previously analyzed were obtained

with a logistic link function. The differences between the estimates obtained with the logistic,

normal, uniform (linear probability model), Cauchy and complementary log-log link functions are

so modest that the lines are almost indistinguishable. As we mentioned above, the assumptions

about the minimum wage are also delicate, since the mechanism that generates wages strictly

20See Aaverge, Bjerve, and Doksum (2005) for an analogous decomposition of the pseudo-Lorenz curve.
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below this level is not clear; it could be measurement error, non-coverage, or non-compliance

with the law. To check the robustness of the results to the DFL assumptions about the minimum

wage and to our semi-parametric model of the conditional distribution, we re-estimate the de-

composition using censored linear quantile regression and censored distribution regression with

a logit link, censoring the wage data below the minimum wage. For censored quantile regres-

sion, we use Powell’s (1986) censored quantile regression estimated by Chernozhukov and Hong’s

(2002) algorithm. For censored distribution regression, we simply censor to zero the distribution

regression estimates of the conditional distributions below the minimum wage and recompute

the functionals of interest. We find the results in Figure 5 to be very similar for the quantile and

distribution regressions, and they are not very sensitive to the censoring.

Overall, our estimates and confidence intervals reinforce the findings of DFL, giving them a

rigorous econometric foundation. Even though the sample size is large, the precision of some

of the estimates was unclear to us a priori. For instance, only a relatively small proportion

of workers are affected by unions. We provide standard errors and confidence intervals, which

demonstrate the statistical and economic significance of the results. Moreover, we validate the

results with a wide array of estimation methods. The similarity of the estimates may come as

a surprise because the estimators make different parametric assumptions. However, in a fully

saturated model all the estimators we have applied would give numerically the same results. The

similarity of the results can be explained by the flexibility of our parametric model.

7. Conclusion and directions for future work

This paper develops methods for performing inference about the effect on an outcome of in-

terest of a change in either the distribution of policy-related variables or the relationship of the

outcome with these variables. The validity of the proposed inference procedures in large samples

relies only on the applicability of a functional central limit theorem for the estimators of the con-

ditional and covariate distributions. This condition holds for the most common estimators of con-

ditional distribution and quantile functions, such as classical, quantile, duration/transformation,

and distribution regressions. Thus, we offer valid inference procedures for several popular existing

estimators and introduce distribution regression to estimate counterfactual distributions.

We focus on policy functionals of the marginal counterfactual distributions but we do not

consider their joint distribution. This joint distribution is required to compute other economically

interesting quantities such as the distribution of the policy effects. Abbring and Heckman (2007)

discuss this problem and various ways to identify the distribution of treatment effects. The

working paper version of this article provides inference procedures in one special case, rank

invariance.
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We focus on semi-parametric estimators of the conditional distribution due to their dominant

role in empirical work (Angrist and Pischke, 2008). We hope to extend the analysis to nonpara-

metric estimators in future work. Fully nonparametric estimators are in principle attractive but

their implementation in samples of moderate size might be problematic. Rothe (2010) makes

first steps in this direction and highlights some of the difficulties.

In principle, our approach can deal with endogeneity because our high level conditions do

not impose exogeneity of the regressors. In the presence of an endogenous regressor and an

instrumental variable, the estimator of Chernozhukov and Hansen (2006), for instance, satisfies

our technical assumptions. However, while technically covered, using an instrumental variable

opens new questions about the definition of the policy and counterfactual distributions of interest,

as discussed in Heckman and Vytlacil (2007a, 2007b). This problem is certainly worth pursuing

in future research.

Appendix A. Notation

Given a weakly increasing function F : Y ⊆ ℝ 7→ T ⊆ [0, 1], we define the left-inverse of F as

the function F← : T 7→ Y, where Y is the closure of Y, such that

F←(�) =

⎧
⎨
⎩
inf{y ∈ Y : F (y) ≥ �} if supy∈Y F (y) ≥ � ,

sup{y ∈ Y} otherwise.

Each sample for the population k is defined on a probability space (Ωk,Ak, Pk), and there is an

underlying common probability space (Ω,A,ℙ) that contains the product ×k∈K(Ωk,Ak, Pk). We

write Zn ⇝ Z in E to denote the weak convergence of a stochastic process Zn to a random element

Z in a normed space E, as defined in van der Vaart and Wellner (1996) (VW). We write →ℙ to

denote convergence in outer probability. We write ⇝ℙ to denote the weak convergence of the

bootstrap law in probability, as formally defined in Section 4. Given the sequences of stochastic

processes Zm1, ..., Zmn, m ∈ ℳ for some finite set ℳ, taking values in normed spaces Em, we say

that Zmn ⇝ Zm jointly in m ∈ ℳ, if (Zmn : m ∈ ℳ)⇝ (Zm : m ∈ ℳ) in E = ×m∈ℳEm, where

the product space E is endowed with the norm ∥ ⋅ ∥E = ∨m∈ℳ∥ ⋅ ∥Em , see Section 1.4 in VW.

The space ℓ∞(ℱ) represents the space of real-valued bounded functions defined on the index set

equipped with the supremum norm ∥ ⋅ ∥ℓ∞(ℱ). Following VW, we use the simplified notation

∥ ⋅ ∥ℱ to denote the supremum norm. A class ℱ of functions f : X → ℝ is called a universal

Donsker class if for every probability measure P on X , √n(Pn − P )⇝ G in ℓ∞(ℱ), where Pn is

the empirical measure and G is a P -Brownian bridge (Dudley, 1987).

Appendix B. Tools

We shall use the functional delta method, as formulated in VW. Let D0, D, and E be normed

spaces, with D0 ⊂ D. A map � : D� ⊂ D 7→ E is called Hadamard-differentiable at � ∈ D�
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tangentially to D0 if there is a continuous linear map �′� : D0 7→ E such that

�(� + tnℎn)− �(�)

tn
→ �′�(ℎ), n→ ∞,

for all sequences tn → 0 and ℎn → ℎ ∈ D0 such that � + tnℎn ∈ D� for every n.

Lemma B.1 (Functional delta-method). Let D0, D, and E be normed spaces. Let � : D� ⊂
D 7→ E be Hadamard-differentiable at � tangentially to D0. Let Xn : Ωn 7→ D� be maps with

rn(Xn − �) ⇝ X in D, where X is separable and takes its values in D0, for some sequence of

constants rn → ∞. Then rn (�(Xn)− �(�)) ⇝ �′�(X). If �′� is defined and continuous on the

whole of D, then the sequence rn (�(Xn)− �(�)) − �′� (rn(Xn − �)) converges to zero in outer

probability.

The applicability of the method is greatly enhanced by the fact that Hadamard differentiation

obeys the chain rule, for a formal statement of which we refer to VW. We will use the following

simple “stacking rule” in the proofs.

Lemma B.2 (Stacking rule). If �1 : D�1 ⊂ D1 7→ E1 is Hadamard-differentiable at �1 ∈ D�1

tangentially to D10 with derivative �′1�1 and �2 : D�2 ⊂ D2 7→ E2 is Hadamard-differentiable at

�2 ∈ D�2 tangentially to D20 with derivative �′2�2 , then � = (�1, �2) : D�1 × D�2 ⊂ D1 × D2 7→
E1 × E2 is Hadamard-differentiable at � = (�1, �2) tangentially to D01 × D02 with derivative

�′� = (�′1�1 , �
′
2�2

).

Let Dn denote the data vector andMn be a vector of random variables, used to generate boot-

strap draws or simulation draws (this may depend on particular method). Consider sequences of

random elements Vn = Vn(Dn) and G
∗
n = Gn(Dn,Mn) in a normed space D, where the sequence

Gn =
√
n(Vn − V ) weakly converges unconditionally to the tight random element G, and G∗n

converges conditionally given Dn in distribution to G, in probability, denoted as Gn ⇝ G and

G∗n ⇝ℙ G, respectively.
21 Let V ∗n = Vn +G∗n/

√
n denote the bootstrap or simulation draw of Vn.

Lemma B.3 (Delta-method for bootstrap and other simulation methods). Let D0, D, and E be

normed spaces, with D0 ⊂ D. Let � : D� ⊂ D 7→ E be Hadamard-differentiable at V tangentially

to D0. Let Vn and V ∗n be maps as indicated previously with values in D� such that
√
n(Vn −

V ) ⇝ G and
√
n(V ∗n − Vn) ⇝ℙ G, where G is separable and takes its values in D0. Then in E

√
n(�(V ∗n )− �(Vn))⇝ℙ �

′
V (G).

Another technical result that we use in the sequel concerns the equivalence of continuous and

uniform convergence.

21This standard concept is recalled in Section 4; see also VW, Chap. 3.9.
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Lemma B.4 (Uniform convergence via continuous convergence). Let D and E be complete sep-

arable metric spaces, with D compact. Suppose f : D 7→ E is continuous. Then a sequence of

functions fn : D 7→ E converges to f uniformly on D if and only if for any convergent sequence

xn → x in D we have that fn(xn) → f(x).

For the proofs of Lemmas B.1 and B.3, see VW, Chap. 1.11 and 3.9. Lemma B.2 follows from

the definition of Hadamard derivative and product space. For the proof of Lemma B.4, see, for

example, Resnick (1987), page 2.

Appendix C. Proof of Theorems 4.1–4.2 and Corollaries 4.1–4.2.

C.1. Key ingredient: Hadamard differentiability of counterfactual distribution. It will

suffice to consider a single pair (j, k) ∈ JK. In order to keep the notation simple, we drop the

indices (j, k) wherever possible.

We need some setup and preliminary observations. Let ℓ∞m (YX ) denote the set of all bounded

and measurable mappings YX 7→ ℝ. Let ℱ , Z, and G be specified as in Condition D, with

indices (j, k) omitted from subscripts. We consider YX as a subset of ℝ
1+dx

, with relative

topology. Let � denote a standard metric on ℝ
1+dx

. The closure of YX under �, denoted YX , is

compact in ℝ
1+dx

. By Condition D, Z takes values in UC(YX , �) a.s., and can be continuously

extended to YX , so that UC(YX , �) ⊂ ℓ∞m (YX ). By Condition D, G ∈ UC(ℱ , �) a.s., where

�(f, f̃) = [P (f − f̃)2]1/2 is a semi-metric on ℱ .

Lemma C.1 (Hadamard differentiability of counterfactual distribution). Let YX ⊆ ℝ
1+dx, and

ℱ be the class of bounded functions, mapping ℝ
dx

to ℝ, that contains {FY ∣X(y∣⋅) : y ∈ Y} as

well as indicators of all rectangles in ℝ
dx
. Let D� be the product of the space of measurable

functions Γ : YX 7→ [0, 1] defined by (y, x) 7→ Γ(y, x) and the bounded maps Π : ℱ 7→ ℝ defined

by f 7→
∫
fdΠ, where Π is restricted to be a probability measure on X . Consider the map

� : D� ⊂ D = ℓ∞m (YX ) × ℓ∞(ℱ) 7→ E = ℓ∞(Y), defined by

(Γ,Π) 7→ �(Γ,Π) :=

∫
Γ(⋅, x)dΠ(x).

Then the map � is well defined. Moreover, the map � is Hadamard-differentiable at (Γ,Π) =

(FY ∣X , FX ), tangentially to the subset D0 = UC(YX , �) × UC(ℱ , �), with the derivative map

(
, �) 7→ �′FY ∣X ,FX
(
, �) mapping D to E defined by

�′FY ∣X ,FX
(
, �)(y) :=

∫

(y, x)dFX (x) + �(FY ∣X(y∣⋅)),

where the derivative is defined and is continuous on D.

Proof of Lemma C.1. First we show that the map is well defined. Any probability measure

Π on X is determined by the values
∫
fdΠ for f ∈ ℱ , since ℱ contains all indicators of rectangles
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in ℝ
dx . By Caratheodory’s extension theorem Π(A) = Π1A is well defined on all Borel subsets

A of ℝ
dx . Since x 7→ Γ(y, x) is Borel measurable and takes values in [0, 1], it follows that∫

Γ(y, x)dΠ(x) is well defined as a Lebesgue integral, and
∫
Γ(⋅, x)dΠ(x) ∈ ℓ∞(Y).

Next we show the main claim. Consider any sequence (Γt,Πt) ∈ D� such that for 
t :=

(Γt − FY ∣X)/t, and �t(f) :=
∫
fd(Πt − FX)/t,

(
t, �t) → (
, �), in ℓ∞m (YX )× ℓ∞(ℱ), where (
, �) ∈ D0.

We want to show that as t↘ 0

�(Γt,Πt)− �(FY ∣X , FX)

t
− �′FY ∣X ,FX

(
, �) → 0 in ℓ∞(Y).

Write the difference above as
∫

(
t(y, x)− 
(y, x))dFX (x) + (�t − �)(FY ∣X(y∣⋅)) + t�t(
(y∣⋅)) + t�t(
t(y∣⋅)− 
(y∣⋅))

=: i(y) + ii(y) + iii(y) + iv(y).

Since 
t → 
 in ℓ∞m (YX ), we have that ∥i∥Y ≤ ∥
t − 
∥YX
∫
dFX → 0, where ∥ ⋅ ∥YX is the

supremum norm in ℓ∞m (YX ) and ∥ ⋅ ∥Y is the supremum norm in ℓ∞(Y). Moreover, since �t → �

in ℓ∞(ℱ) and {FY ∣X(y∣⋅) : y ∈ Y} ⊂ ℱ by assumption, we have ∥ii∥Y ≤ ∥�t − �∥ℱ → 0, where

∥ ⋅ ∥ℱ is the supremum norm in ℓ∞(ℱ). Further,

∥iv∥Y =

∥∥∥∥
∫

(
t − 
)(⋅, x)dt�t(x)
∥∥∥∥
Y
≤ ∥
t − 
∥YX

∫
∣d(Πt − FX)∣ ≤ ∥
t − 
∥YX 2 → 0,

since td�t = d(Πt − FX) and
∫
∣d(Πt − FX)∣ ≤

∫
dΠt +

∫
dFX ≤ 2, where

∫
∣d�∣ indicates the

total variation of a signed measure �.

Since 
 is continuous on the compact semi-metric space (YX , �), there exists a finite partition

of ℝ
1+dx

into non-overlapping rectangular regions (Rim : 1 ≤ i ≤ m) (rectangles are allowed not

to include their sides to make them non-overlapping) such that 
 varies at most � on YX im =

YX ∩Rim. Let �m(y, x) = (yim, xim) if (y, x) ∈ YX im, where (yim, xim) is an arbitrarily chosen

point within YX im for each i; also let �im(y, x) = 1{(y, x) ∈ YX im}. Then, as t→ 0,

∥iii∥Y =

∥∥∥∥
∫

(⋅, x)td�t(x)

∥∥∥∥
Y
≤

∥∥∥∥
∫

(
 − 
 ∘ �m)(⋅, x)td�t(x)
∥∥∥∥
Y
+

∥∥∥∥
∫

(
 ∘ �m)(⋅, x)td�t(x)
∥∥∥∥
Y

≤ ∥
 − 
 ∘ �m∥YX
∫

∣td�t∣+
m∑

i=1

∣
(yim, xim)∣t�t(�im)

≤ ∥
 − 
 ∘ �m∥YX 2 +
m∑

i=1

∣
(yim, xim)∣t�t(�im) ≤ 2�+

m∑

i=1

∣
(yim, xim)∣t(�(�im) + o(1))

≤ 2�+ tm

[
∥
∥YX max

i≤m
�(�im) + o(1)

]
≤ 2�+O(t) → 2�,
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since {�im : 1 ≤ i ≤ m} ⊂ ℱ , so that �t(�im) → �(�im), for all 1 ≤ i ≤ m. The constant � is

arbitrary, so the left hand side of the preceding display converges to zero.

Note that the derivative is well-defined over the entire D and is in fact continuous with respect

to the norm on D given by ∥⋅∥YX ∨∥⋅∥ℱ . The second component of the derivative map is trivially

continuous with respect to ∥ ⋅ ∥ℱ . The first component is continuous with respect to ∥ ⋅ ∥YX since

∥∥∥∥
∫

(
(⋅, x) − 
̃(⋅, x))dFX (x)

∥∥∥∥
Y
≤ ∥
 − 
̃∥YX

∫
dFX(x).

Hence the derivative map is continuous. □

C.2. Proof of Theorems 4.1 and 4.2. In the notation of Lemma C.1, F̂Y ⟨j∣k⟩(⋅) = �(F̂Yj ∣Xj
, F̂Xk

)(⋅) =∫
F̂Yj ∣Xj

(⋅∣x)dF̂Xk
(x) and FY ⟨j∣k⟩(⋅) = �(FYj ∣Xj

, FXk
) =

∫
FYj ∣Xj

(⋅∣x)dFXk
(x). The main result

needed to prove the theorem is provided by Lemma C.1 , which established that map � is

Hadamard differentiable uniformly in (j, k) ∈ JK, since JK is a finite set. Moreover, under

condition S, condition D can be restated as:

(√
n(F̂Yj ∣Xj

(y∣x)− FYj ∣Xj
(y∣x)),√n

∫
fd(F̂Xk

− FXk
)

)
⇝

(√
�jZj(y, x),

√
�kGk(f)

)
,

as stochastic processes indexed by (y, x, j, k, f) ∈ YXJKℱ in the metric space ℓ∞(YXJKℱ)2.

By the Functional Delta Method, it follows that

√
n(F̂Y ⟨j∣k⟩ − FY ⟨j∣k⟩)(y) =

√
�j

∫ √
n[F̂Yj ∣Xj

(y∣x)− FYj ∣Xj
(y∣x)]dFXk

(x)

+
√
�k

∫
FYj ∣Xj

(y∣x)√nd[F̂Xk
(x)− FXk

(x)] + oℙ(1) (C.1)

⇝ Z̄jk(y) :=
√
�j

∫
Zj(y, x)dFXk

(x) +
√
�kGk(FYj ∣Xj

(y∣⋅)),

jointly in (j, k) ∈ JK. The first order expansion (C.1) above is not needed to prove the theorem,

but it can be useful for other applications. The continuity of the sample paths of Z̄jk follows from

the continuity of the sample paths of Zj(y, x) with respect to (y, x) and from the continuity of

the sample paths of Gk(f) with respect to f under the metric �, noted in Appendix C.1. Mean

square continuity of FYj ∣Xj
(y∣⋅) with respect to y therefore implies continuity of the sample paths

of y 7→ Gk(FYj ∣Xj
(y∣⋅)). The first claim thus is proven.

In order to show the second claim, we first examine in detail the simple case where y 7→
F̂Y ⟨j∣k⟩(y) is weakly increasing in y. (For example, qr-based estimators are necessarily weakly

increasing, while dr-based estimators need not be.) In this case Q̂Y ⟨j∣k⟩ = F̂←Y ⟨j∣k⟩ and Hadamard

differentiability of quantile (left inverse) operator (Doss and Gill, 1992, VW) implies by the
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Functional Delta Method:

√
n
(
Q̂Y ⟨j∣k⟩(�)−QY ⟨j∣k⟩(�)

)
= −

√
n(F̂Y ⟨j∣k⟩ − FY ⟨j∣k⟩)

fY ⟨j∣k⟩
(QY ⟨j∣k⟩(�)) + oℙ(1) (C.2)

⇝
Z̄jk

fY ⟨j∣k⟩
(QY ⟨j∣k⟩(�)), (C.3)

as a stochastic process indexed by (�, j, k) ∈ T JK in the metric space ℓ∞(T JK).

When y 7→ F̂Y ⟨j∣k⟩(y) is not weakly increasing, the previous argument does not apply because

the references cited above require F̂Y ⟨j∣k⟩ to be a proper distribution function. In this case,

with probability converging to one we have that Q̂Y ⟨j∣k⟩ := F̂ r←
Y ⟨j∣k⟩, where F̂

r
Y ⟨j∣k⟩ is rearrange-

ment of F̂Y ⟨j∣k⟩ on the interval [a, b]. In order to establish the properties of this estimator,

we first recall the relevant result on Hadamard differentiability of the monotone rearrangement

operator derived by Chernozhukov, Fernandez-Val, and Galichon (2010). Let F be a continu-

ously differentiable function on the interval [a, b] with strictly positive derivative f . Consider

the rearrangement map G 7→ Gr, which maps bounded measurable functions G on the do-

main [a, b] and produces cadlag functions Gr on the same domain. This map, considered as

a map ℓ∞m ([a, b]) 7→ ℓ∞m ([a, b]), is Hadamard differentiable at F tangentially to C([a, b]), with

the derivative map given by the identity g 7→ g which is defined and continuous on the whole

ℓ∞m ([a, b]). Therefore, we conclude by the Functional Delta Method that for all (j, k) ∈ JK,
√
n(F̂ r

Y ⟨j∣k⟩ − FY ⟨j∣k⟩)(⋅) =
√
n(F̂Y ⟨j∣k⟩ − FY ⟨j∣k⟩)(⋅) + oℙ(1). Hence the rearranged estimator is

first order equivalent to the original estimator and thus inherits the limit distribution. Now

apply the differentiability of the quantile operator and the delta method again to reach the same

final conclusions (C.2)- (C.3) as above.

Theorem 4.2 follows from the application of the functional delta method for the (generalized)

bootstrap quoted in Lemma B.3 and the chain rule for the Hadamard derivative. □

C.3. Proof of Corollaries 4.1–4.2. Corollary 4.1 follows from Theorem 4.1 by the Extended

Continuous Mapping theorem. Corollary 4.2 follows from by the Functional Delta Method. □

Appendix D. Proof of Theorem 5.1 and 5.2

It is convenient to organize the proof in several steps. The task is complex: We need to show

convergence and bootstrap convergence simultaneously for estimators of conditional distributions

based on QR or DR and of estimators of covariate distributions based on empirical measures.

Since both distribution and quantile regression processes are Z-processes, we can complete the

task efficiently by using Hadamard differentiability of the so called Z-maps. Hence in Section

D.1 we present a functional delta method for Z-maps (Lemma D.2) and show how to apply it

to a generic Z-problem (Lemma D.3). The results of this section are of independent interest.

In Section D.2 we present the proofs for Section D.1. In Section D.3 we present the results on
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convergence of empirical measures, which take into account dependencies across samples in the

presence of transformation samples. Finally, with all these ingredients, we prove Theorems 5.1

and 5.2 in Sections D.4 and D.5.

D.1. Main ingredient: functional delta method for Z-processes. In our leading examples,

we have a functional parameter p-vector u 7→ �(u) where u ∈ U and �(u) ∈ Θ ⊆ ℝ
p, and, for

each u ∈ U , the value �0(u) solves the p-vector of moment equations Ψ(�, u) = 0. For estimation

purposes we have an empirical analog of the above moment functions Ψ̂(�, u). For each u ∈ U ,
the estimator �̂(u) satisfies

∥Ψ̂(�̂(u), u)∥2 ≤ inf
�∈Θ

∥Ψ̂(�, u)∥2 + r̂(u),

with ∥r̂∥U = oℙ(n
−1/2). Similarly suppose that a bootstrap or simulation method is available

that produces a pair (Ψ̂∗, r̂∗) and the corresponding estimator �̂∗(u) that obeys ∥Ψ̂(�̂∗(u), u)∥2 ≤
inf�∈Θ ∥Ψ̂∗(�, u)∥2 + r̂∗2(u), with ∥r̂∗∥U = oℙ(n

−1/2).

We can represent the above estimator and estimand as

�̂(⋅) = �(Ψ̂(⋅, ⋅), r̂(⋅)) and �0(⋅) = �(Ψ(⋅, ⋅), 0)

where � is a Z-map formally defined as follows. Consider a p-vector  (�, u) indexed by (�, u) as

a generic value of Ψ. An element � ∈ Θ is an r(⋅)-approximate zero of the map � 7→  (�, u) if

∥ (�, u)∥2 ≤ inf
�′∈Θ

∥ (�′, u)∥2 + r(u)2,

where r(u) ∈ ℝ is a numerical tolerance parameter. Let �( (⋅, u), r(u)) : ℓ∞(Θ)p × ℝ 7→ Θ be

a deterministic map that assigns one of its r(u)-approximate zeroes to each element  (⋅, u) ∈
ℓ∞(Θ)p. In our case  (⋅, u)’s are all indexed by u, and so we can think of  = ( (�, u) : u ∈ U)
as an element of ℓ∞(Θ × U)p, and of r = (r(u) : u ∈ U) as an element of ℓ∞(U). Then we can

define �( , r) as a map that assigns a function u 7→ �( (⋅, u), r(u)) to each element ( , r). The

properties of the Z-processes will therefore rely on Hadamard differentiability of the Z-map

( , r) 7→ �( , r)

at ( , r) = (Ψ, 0), i.e. with respect to the underlying vector of moments function and with

respect to numerical tolerance parameter r.

We make the following assumption about the vector of moment functions:

Condition Z. Let U be a compact set of some metric space, and Θ be an arbitrary subset

of ℝ
p. Assume (i) for each u ∈ U , Ψ(⋅, u) : Θ 7→ ℝ

p possesses a unique zero at �0(u), and

N = ∪u∈UB�(�0(u)) is a relatively compact subset of Θ for some � > 0, (ii) Ψ(⋅, u) has in-

verse Ψ−1(⋅, u) that is continuous at 0 uniformly in u ∈ U , (iii) there exists Ψ̇�0(u),u such that

limt↘0 supu∈U ,∥ℎ∥=1 ∣t−1(Ψ(�0(u) + tℎ, u) − Ψ(�0(u), u)) − Ψ̇�0(u),uℎ∣ = 0, where infu∈U inf∥ℎ∥=1

∥Ψ̇�0(u),uℎ∥ > 0.
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The following lemma is useful for verifying Condition Z.

Lemma D.1 (Simple sufficient condition for Z). Suppose that Θ = ℝ
p, and U is a compact

interval in ℝ. Let ℐ be an open set containing U . (a) Ψ : Θ × ℐ 7→ ℝ
p is continuous, and

� 7→ Ψ(�, u) is the gradient of a convex function in � for each u ∈ U , (b) for each u ∈ U ,
Ψ(�0(u), u) = 0, (c) ∂

∂(�′,u)Ψ(�, u) exists at (�0(u), u) and is continuous at (�0(u), u) for each u ∈
U , and Ψ̇�0(u),u := ∂

∂�′Ψ(�, u)∣�0(u) obeys infu∈U inf∥ℎ∥=1 ∥Ψ̇�0(u),uℎ∥ > c0 > 0. Then Condition Z

holds.

Lemma D.2 (Hadamard differentiability of approximate Z-maps). Suppose that Condition Z

holds. Then, the map ( , r) 7→ �( , r) is Hadamard differentiable at ( , r) = (Ψ, 0) as a map

� : D = ℓ∞(Θ × U)p × ℓ∞(U) 7→ E = ℓ∞(U)p tangentially to D0 = D ∩ (C(N × U)p × {0}), with
the derivative map (z, 0) 7→ �′Ψ,0(z, 0) defined by

�′Ψ,0(z, 0) = −Ψ̇−1�0(⋅),⋅z(�0(⋅), ⋅),

where the derivative is defined and continuous over z ∈ ℓ∞(Θ× U)p.

This lemma is an alternative to Lemma 3.9.34 in VW on Hadamard differentiability of Z-

functionals in general normed spaces, which we found difficult to use in our case. (The paths of

quantile regression processes �̂(⋅) in the non-univariate case are somewhat irregular and it is not

apparent how to place them in an entropically simple parameter space.) Moreover, our lemma

applies to approximate Z-estimators. This allows us to cover quantile regression processes, where

exact Z-estimators do not exist for any sample size. The following lemma shows how to apply

Lemma D.2 to a generic Z-problem.

Lemma D.3 (Limit theorem for approximate Z-estimator). Suppose condition Z holds. If
√
n(Ψ̂ − Ψ) ⇝ Z in ℓ∞(Θ × T )p, where Z is a Gaussian process with a.s. continuous paths

on N × U , and ∥n1/2r̂∥U →ℙ 0, then

√
n(�̂(⋅)− �0(⋅)) = −Ψ̇−1�0(⋅),⋅

√
n(Ψ̂−Ψ)(�0(⋅), ⋅) + oℙ(1)⇝ −Ψ̇−1�0(⋅),⋅ [Z(�0(⋅), ⋅)] in ℓ∞(U)p.

Moreover, if
√
n(Ψ̂∗ − Ψ̂)⇝ℙ Z in ℓ∞(Θ × U)p, and ∥n1/2r̂∗∥U →ℙ 0, then

√
n(�̂∗(⋅) − �̂(⋅)) ⇝ℙ

−Ψ̇−1�0(⋅),⋅ [Z(�0(⋅), ⋅)] in ℓ
∞(U)p.

D.2. Proofs of Lemma D.1-D.3. Proof of Lemma D.1. To show Condition Z(i), note

that for each u ∈ U , Ψ(⋅, u) : Θ 7→ ℝ
p possesses a unique zero at �0(u) by conditions (a) and

(b). Then, we have that ∂�0(u)/∂u = −Ψ̇−1�0(u),u
× [∂Ψ(�0(u), u)/∂u] is uniformly bounded and

continuous in u ∈ U . Hence N = ∪u∈UB�(�0(u)) is a compact subset of Θ for any � > 0. This

verifies Condition Z(i).

To show Condition Z(ii), we need to verify that for any xt → 0 such that xt ∈ Ψ(Θ, u),

dH(Ψ−1(xt, u),Ψ−1(0, u)) → 0, where dH is the Hausdorff distance, uniformly in u ∈ U . Suppose
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by contradiction that there is (xt, ut) → (0, u) with u ∈ U , and an element yt ∈ Ψ−1(xt, ut) ∕→
Ψ−1(0, u) := �0(u). Then, there is a further subsequence such that ytk → y ∕= Ψ−1(0, u) in

ℝ
p
, and Ψ(ytk , utk ) = xtk → 0. If ytk → y ∈ ℝ

p, by continuity Ψ(ytk , utk) → Ψ(y, u) and

Ψ(y, u) ∕= 0 since y ∕= Ψ−1(0, u), yielding a contradiction. If ytk → y ∈ ℝ
p ∖ ℝ

p, we need to

show that ∥Ψ(ytk , utk)∥ ∕→ 0 to obtain a contradiction. Since ∥Ψ(�, utk)�/∥�∥∥ is monotone in

∥�∥ by � 7→ Ψ(�) being the gradient of a convex function, and is bounded above by ∥Ψ(�, u)∥, it
suffices to show that inf�∈∂B�(�0(ut)) ∥Ψ(�, ut)∥ > c for some small �. Indeed, for small enough �,

by mean-value expansion and condition (c), min�∈∂B�(�0(ut)) ∥Ψ(�, ut)∥ ≥ c0� > 0.

To show Condition Z(iii), take any sequence (ut, ℎt) → (u, ℎ) with u ∈ U , ℎ ∈ ℝ
p and then note

that, for t∗ ∈ [0, t], Δt(ut, ℎt) = t−1{Ψ(�(ut) + tℎt, ut)−Ψ(�(ut), ut)} = ∂Ψ
∂� (�(ut) + t∗ℎt, ut)ℎt→

∂Ψ
∂� (�0(u), u)ℎ = Ψ̇�0(u),uℎ using the continuity characterizations of the derivative ∂Ψ/∂� and

the continuity of u 7→ �0(u). Hence by Lemma B.4, we conclude that supu∈U ,∥ℎ∥=1 ∣Δt(u, ℎ) −
Ψ̇�0(u),uℎ∣ → 0 as t↘ 0. □.

Proof of Lemma D.2. Consider  t = Ψ + tzt and rt = 0 + tqt with zt → z in ℓ∞(Θ × U)p
where z ∈ C(N × U)p and qt → 0 in ℓ∞(U). Then, for �t(u) = �( t, rt) we need to prove that

uniformly in u ∈ U ,
�t(u)− �0(u)

t
→ �′Ψ,0(z, 0)(u) = −Ψ̇−1�0(u),u

[z(�0(u), u)].

We have that Ψ(�0(u), u) = 0 for all u ∈ U . By definition, �t(u) satisfies

∥Ψ(�t(u), u)−Ψ(�0(u), u)+tzt(�t(u), u)∥2 ≤ inf
�∈Θ

∥Ψ(�, u)+tzt(�, u)∥2+t2q2t (u) =: t2�2t (u)+t
2q2t (u),

uniformly in u ∈ U . The rest of the proof has three steps. In Step 1, we establish a rate of

convergence of �t(⋅) to �0(⋅). In Step 2, we verify the main claim of the lemma concerning the

linear representation for t−1(�t(⋅) − �0(⋅)), assuming that �t(⋅) = o(1). In Step 3, we verify that

�t(⋅) = o(1).

Step 1. Here we show that uniformly in u ∈ U , ∥�t(u) − �0(u)∥ = O(t). Note that �t(u) ≤
∥t−1Ψ(�0(u), u) + zt(�0(u), u)∥ = ∥z(�0(u), u) + o(1)∥ = O(1) uniformly in u ∈ U . We conclude

that uniformly in u ∈ U , as t ↘ 0, t−1(Ψ(�t(u), u) − Ψ(�0(u), u)) = −zt(�t(u), u) + O(�t(u) +

qt(u)) = O(1) and that uniformly in u ∈ U , ∥Ψ(�t(u), u) − Ψ(�0(u), u)∥ = O(t). By assumption

Ψ(⋅, u) has a unique zero at �0(u) and has an inverse that is continuous at zero uniformly in u ∈ U ;
hence it follows that uniformly in u ∈ U , ∥�t(u)− �0(u)∥ ≤ dH(Ψ−1(Ψ(�t(u), u), u),Ψ

−1(0, u)) →
0, where dH is the Hausdorff distance. By condition Z(iii) uniformly in u ∈ U

lim inf
t↘0

∥Ψ(�t(u), u) −Ψ(�0(u), u)∥
∥�t(u)− �0(u)∥

≥ lim inf
t↘0

∥Ψ̇�0(u),u[�t(u)− �0(u)]∥
∥�t(u)− �0(u)∥

≥ inf
∥ℎ∥=1

∥Ψ̇�0(u),uℎ∥ = c > 0,

where ℎ ranges over ℝp, and c > 0 by assumption. The claim of the step follows.
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Step 2. (Main) Here we verify the main claim of the lemma. Using Condition Z(iii) again,

conclude ∥Ψ(�t(u), u) − Ψ(�0(u), u) − Ψ̇�0(u),u[�t(u) − �0(u)]∥ = o(t) uniformly in u ∈ U . Below

we will show that �t(u) = o(1) and we also have qt(u) = o(1) uniformly in u ∈ U by assumption.

Thus, we can conclude that uniformly in u ∈ U , t−1(Ψ(�t(u), u)−Ψ(�0(u), u)) = −zt(�t(u), u) +
o(1) = −z(�0(u), u) + o(1) and

t−1[�t(u)− �0(u)] = Ψ̇−1�0(u),u

[
t−1(Ψ(�t(u), u)−Ψ(�0(u), u)) + o(1)

]

= −Ψ̇−1�0(u),u
[z(�0(u), u)] + o(1).

Step 3. In this step we show that �t(u) = o(1) uniformly in u ∈ U . Note that for

�̄t(u) := �0(u) − tΨ̇−1�0(u),u
[z(�0(u), u)] = �0(u) + O(t), we have that �̄t(u) ∈ N , for small

enough t, uniformly in u ∈ U ; moreover, �t(u) ≤ ∥t−1Ψ(�̄t(u), u) + zt(�̄t(u), u)∥ which is equal to

∥ − Ψ̇�0(u),u{Ψ̇−1�0(u),u
[z(�0(u), u)]} + z(�0(u), u) + o(1)∥ = o(1), as t↘ 0. □

Proof of Lemma D.3. We shall omit the dependence on u signified by (⋅) in what follows.

Then, in the notation of Lemma D.2, �̂ = �(Ψ̂, r̂) is an estimator of �0 = �(Ψ, 0). By the

Hadamard differentiability of the �-map shown in Lemma D.2, the weak convergence conclusion

follows. The first order expansion follows by noting that the linear map  7→ −Ψ̇−1�0
 is triv-

ially Hadamard differentiable at  = Ψ, and so by stacking, (−√
n(�̂ − �0), Ψ̇

−1
�0

√
n(Ψ̂ − Ψ)) ⇝

(Ψ̇−1�0
Z, Ψ̇−1�0

Z) in ℓ∞(U)2p, and so the difference between the terms convergence in outer proba-

bility to zero. The validity of bootstrap follows from the delta method for the bootstrap. □

D.3. Limits of empirical measures. The following result is useful to organize thoughts for

the case of transformation sampling. Let

Ĝk(f) :=
1√
nk

n∑

i=1

(f(Yki,Xki)−
∫
fdPk) and Ĝ

∗
k(f) :=

1√
nk

n∑

i=1

(wki − w̄k)f(Yki,Xki)

be the empirical and exchangeable bootstrap processes for the sample from population k.

Lemma D.4. Suppose Conditions S and SM hold. Let ℱ be a universal Donsker class defined on

the space X ⊇ ∪k∈KXk. (1) Then Ĝk(f) ⇝ Gk(f) and Ĝ
∗
k(f) ⇝ℙ Gk(f) as stochastic processes

indexed by (k, f) ∈ K0ℱ in ℓ∞(K0ℱ). (2) Moreover, Ĝk(f) ⇝ Gk(f) and Ĝ
∗
k(f) ⇝ℙ Gk(f) as

stochastic processes indexed by (k, f) ∈ Kℱ in ℓ∞(Kℱ), where Gk(f) = Gℓ(k)(f ∘gℓ(k),k), provided
that ℱ ∘ gl(k),k remains universal Donsker on X .

Proof of Lemma D.4. Statement (1) follows from the independence of samples across k ∈ K0,

so that joint convergence follows from the marginal convergence for each k ∈ K0, and from the

results on exchangeable bootstrap given in Chapter 3.6 of VW. Let ℱ be the universal Donsker

class given. To show Statement (2) we note that Ĝk(f) = Ĝm(f ∘gm,k) for some m = l(k). Recall

that l(⋅) denotes the indexing function that indicates the population l(k) from which the k-th

population is created by transformation. Thus, l−1(m) is the set of all populations created from
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the m-th population. Let ℱ ′ include ℱ and ℱ ∘ gm,k for all k ∈ l−1(m) = {m, ..., } ⊂ K. Then

ℱ ′ is a a universal Donsker set by assumption, so statement (2) follows from statement (1). In

fact, this shows that the convergence analysis is reducible to the independent case by suitably

enriching ℱ into the class ℱ ′. □.

D.4. Proof of Theorem 5.1. (Validity of QR based Policy Analysis) The proof of preceding

lemma shows that by suitably enlarging the class ℱ , it suffices to consider only the independent

samples, i.e. those with population indices k ∈ K0. Moreover, by independence across k, the

joint convergence result follows from the marginal convergence for each k separately. It remains

to examine each case with k ∈ J separately, since otherwise for a given k ∕∈ J , the convergence

of empirical measures and associated bootstrap result are already shown in Lemma D.4. In what

follows, since the proof can be done for each k marginally, we shall omit the index k to simplify

the notation.

Step 1.(Results for coefficients and empirical measures). Let ℱ be any universal Donsker

class. We use the Z-process framework described above, where we let �(u) = �(u), and Θ = ℝ
dx .

Lemma D.3 above illustrates the use of the delta method for a single Z-estimation problem, which

the reader may find helpful before reading this proof. Let 'u,�(Y,X) = (u − 1{Y ≤ X ′�})X,
Ψ(�, u) = P['u,�], and Ψ̂(�, u) = Pn['u,�], where Pn is the empirical measure and P is the

corresponding probability measure. From the subgradient characterization, we know that the

QR estimator obeys �̂(u) = �(Ψ̂(⋅, u), r̂(u)), r̂(u) = max1≤i≤n ∥Xi∥dx/n, for each u ∈ U , with
n1/2∥r̂∥U →ℙ 0, where � is an approximate Z- map as defined in Appendix D.1. The random

vector �̂(u) and
∫
fdF̂X = Pn(f) are estimators of �(u) = �(Ψ(⋅, u), 0) and

∫
fdFX = P (f).

Then, by Step 3 below

(
√
n(Ψ̂ −Ψ), Ĝ)⇝ (W,G) in ℓ∞(ℝdx × U)dx × ℓ∞(ℱ), W(�, u) = G'u,�,

where W has continuous paths a.s. Step 4 verifies Conditions Z(i)–(iii) for Ψ̇�0(u),u = J(u).

Then, by Lemma D.2, the map � is Hadamard-differentiable with derivative map w 7→ −J−1w
at (Ψ, 0). Therefore, we can conclude by the Functional Delta Method that (

√
n(�̂(⋅)−�(⋅)), Ĝ)⇝

(J−1(⋅)W(�(⋅), ⋅),G) in ℓ∞(U)dx × ℓ∞(ℱ), where J−1(⋅)W(�(⋅), ⋅) has continuous paths a.s.

Similarly, for the bootstrap version, we have from the subgradient characterization of the QR

estimator that �̂∗(u) = �(Ψ̂(⋅, u), r̂∗(u)), r̂∗(u) = maxiwi∥Xi∥dx/n, with n1/2r̂∗n →ℙ 0 and hence

also⇝ℙ 0, by maxi≤nwi∥Xi∥/
√
n = oℙ(1), which holds sinceE∥wiXi∥2+� = E∣wi∣2+�E∥Xi∥2+� <

∞. By Step 3 below, (
√
n(Ψ̂∗ − Ψ̂), Ĝ∗) ⇝ℙ (W,G) in ℓ∞(ℝdx × U)dx × ℓ∞(ℱ). Therefore by

the Functional Delta method for Bootstrap (
√
n(�̂∗(⋅) − �̂(⋅)), Ĝ∗) ⇝ℙ (J−1(⋅)W(�(⋅), ⋅),G) in

ℓ∞(U)dx × ℓ∞(ℱ). Hence the conclusion (2) stated in Corollary 5.1 follows.

Step 2.(Main: Results for conditional cdfs). Here we shall rely on compactness of YX. In

order to verify Condition D, we first note that ℱ0 = {FY∣X(y∣⋅) : y ∈ Y} is a uniformly bounded
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“parametric” family indexed by y ∈ Y that obeys ∣FY∣X(y∣⋅) − FY∣X(y′∣⋅)∣ ≤ L∣y − y′∣, given the

assumption that the density function fY∣X is uniformly bounded by some constant L. Given

compactness of Y, the uniform �-covering numbers for this class can be bounded independently

of FX by const/�, and so the entropy integral is finite and the class is FX-Donsker for any FX .

Hence we can construct a class of functions ℱ containing the union of all the families ℱ0 for the

populations in J and the indicators of all rectangles in ℝ
dx . Note that these indicators form a

VC class, and hence a universal Donsker class. The final set ℱ is therefore a universal Donsker

class.

Next consider the mapping ' : D' ⊂ ℓ∞(U)dx 7→ ℓ∞(YX), defined as b 7→ '(b), '(b)(x, y) =

" +
∫ 1−"
" 1{x′b(u) ≤ y}du. It follows from the results of Chernozhukov, Fernandez-Val, and

Galichon (2010) that this map is Hadamard differentiable at b(⋅) = �(⋅) tangentially to C(U)dx ,
with the derivative map given by: � 7→ '′�(⋅)(�), '′�(⋅)(�)(y, x) = fY∣X(y∣x)x′�(FY∣X(y∣x)). Since
F̂Y∣X = '(�̂(⋅)) and

∫
fdF̂X =

∫
fdPn are estimators of FY∣X = '(�(⋅)) and

∫
fdFX =

∫
fdP,

by the delta method it follows that

(
√
n(F̂Y∣X − FY∣X), Ĝ)⇝ ('′�(⋅)J

−1(⋅)W(⋅, �(⋅)),G) in ℓ∞(YX)× ℓ∞(ℱ), (D.1)

(
√
n(F̂ ∗Y∣X − F̂Y∣X), Ĝ∗)⇝ℙ ('′�(⋅)J

−1(⋅)W(⋅, �(⋅)),G) in ℓ∞(YX)× ℓ∞(ℱ). (D.2)

Step 3. (Auxiliary: Donskerness). First, we note that {'u,�(Y,X) : (u, �) ∈ U × ℝ
dx}

is P-Donsker. This follows by a standard argument, which is omitted. Second, we note that

(u, �) 7→ 'u,�(Y,X) is L2(P) continuous by the dominated convergence theorem, and the fact

that (�, u) 7→ (u− 1(Y ≤ X ′�))X is continuous at each (�, u) ∈ ℝ
dx ×U with probability one by

the absolute continuity of FY∣X , and its norm is bounded by a square integrable function 2∥X∥
under P. Hence G('u,�) has continuous paths in (u, �) and the convergence results follow from

the convergence results in Lemma D.4.

Step 4. (Auxiliary: Verification of Conditions Z(i)–(iii)).We verify conditions (a)-(c) of

Lemma D.1, which imply Conditions Z(i)-(iii). Conditions (a) and (b) are immediate by the

assumptions. To verify (c), ∂
∂(�′,u)Ψ(b, u) = [−E[fY ∣X(X ′b∣X)XX ′],EX] at (b, u) = (�(u), u),

where the right side is continuous at (b, u) = (�(u), u) for each u ∈ U . This follows us-

ing the dominated convergence theorem, the a.s. continuity and boundedness of the mapping

y 7→ fY ∣X(y∣X) at X ′�(u), as well as E∥X∥2 < ∞. By assumption, the minimum eigenvalue of

J(u) = −E[fY ∣X(X ′�(u)∣X)XX ′] is bounded away from zero uniformly in u ∈ U . □

D.5. Proof of Theorem 5.2. (Validity of DR based Policy Analysis). As in the previous proof,

it suffices to show the result for each k ∈ J separately. In what follows, since the proof can be

done for each k marginally, we shall omit the index k to simplify the notation. We only consider

the case where Y is an interval of ℝ. The case where Y is finite is simpler and follows similarly.
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Step 1.(Results for coefficients and empirical measures). We use the Z-process framework

described above, where we let u = y, �(u) = �(y), Θ = ℝ
dx , and U = Y. Lemma D.3 above

illustrates the use of the delta method for a single Z-estimation problem, which the reader may

find helpful before reading this proof. Let

'y,�(Y,X) = [Λ(X ′�)− 1(Y ≤ y)]H(X ′�)X,

where H(z) = �(z)/{Λ(z)[1 − Λ(z)]} and � is the derivative of Λ. Let Ψ(�, y) = P['y,� ] and

Ψ̂(�, u) = Pn['y,� ], where Pn is the empirical measure and P is the corresponding probability

measure. From the first order conditions, we know that distribution regression in the sample

obeys �̂(y) = �(Ψ̂(⋅, u), 0), for each y ∈ Y, where � is the Z- map defined in Appendix D.1. The

random vector �̂(y) and
∫
fdF̂X = Pn(f) are estimators of �(y) = �(Ψ(⋅, u), 0) and

∫
fdFX =

P (f). Then, by Step 3 below

(
√
n(Ψ̂ −Ψ), Ĝ)⇝ (W,G) in ℓ∞(ℝdx × Y)dx × ℓ∞(ℱ), W(y, �) = G'y,� ,

where W has continuous paths a.s. Step 4 verifies Conditions Z(i)–(iii) of Lemma D.2 for

Ψ̇�0(u),u = J(y). Then, by Lemma D.2, the map � is Hadamard-differentiable with the de-

rivative map w 7→ −J−1w at (Ψ, 0). Therefore, we can conclude by the Functional Delta Method

that

(
√
n(�̂(⋅)− �(⋅)), Ĝ)⇝ (J−1(⋅)W(�(⋅), ⋅),G) in ℓ∞(Y)dx × ℓ∞(ℱ),

where J−1(⋅)W(�(⋅), ⋅) has continuous paths a.s.

Similarly, for the bootstrap version, we have from the first order conditions of the DR estimator

that �̂∗(y) = �(Ψ̂(⋅, u), 0), and (
√
n(Ψ̂∗− Ψ̂), Ĝ∗)⇝ℙ (W,G) in ℓ∞(ℝdx ×Y)dx × ℓ∞(ℱ) by Step

3 below. Therefore by the Functional Delta method for Bootstrap

(
√
n(�̂∗(⋅)− �̂(⋅)), Ĝ∗)⇝ℙ (J−1(⋅)W(⋅, �(⋅)),G) in ℓ∞(Y)dx × ℓ∞(ℱ).

Hence the conclusion (2) stated in Corollary 5.1 follows. The first-order expansion of the conclu-

sion (1) in Corollary 5.1 follows by an argument similar to the proof of Lemma D.3.

Step 2.(Main: Results for conditional cdfs). Here we shall rely on compactness of YX.

Then, Y is a closed interval of ℝ. In order to verify Condition D, we first note that ℱ0 =

{FY∣X(y∣⋅) : y ∈ Y} is a uniformly bounded “parametric” family indexed by y ∈ Y that obeys

∣FY∣X(y∣⋅) − FY∣X(y′∣⋅)∣ ≤ L∣y − y′∣, given the assumption that the density function fY∣X is

uniformly bounded by some constant L. Given compactness of Y, the uniform �-covering numbers

for this class can be bounded independently of FX by const/�, and so the entropy integral is finite

and the class is FX-Donsker for any FX . Hence we can construct a class of functions ℱ containing

the union of all the families ℱ0 for the populations in J and the indicators of all rectangles in

ℝ
dx
. Note that these indicators form a VC class, and hence a universal Donsker class. The final

set ℱ is therefore a universal Donsker class.
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Next consider the mapping ' : D' ⊂ ℓ∞(Y)dx 7→ ℓ∞(YX), defined as b 7→ '(b), '(b)(x, y) =

Λ(x′b(y)). It is straightforward to deduce that this map is Hadamard differentiable at b(⋅) =

�(⋅) tangentially to C(Y)dx with the derivative map given by: � 7→ '′�(⋅)(�), '′�(⋅)(�)(y, x) =

�(x′�(y))x′�(y). Since F̂Y∣X = '(�̂(⋅)) and
∫
fdF̂X =

∫
fdPn are estimators of FY∣X = '(�(⋅))

and
∫
fdFX =

∫
fdP, by the delta method it follows that

(
√
n(F̂Y∣X − FY∣X), Ĝ)⇝ ('′�(⋅)J

−1(⋅)W(⋅, �(⋅)),G) in ℓ∞(YX)× ℓ∞(ℱ), (D.3)

(
√
n(F̂ ∗Y∣X − F̂Y∣X), Ĝ∗)⇝ℙ ('′�(⋅)J

−1(⋅)W(⋅, �(⋅)),G) in ℓ∞(YX)× ℓ∞(ℱ). (D.4)

Step 3. (Auxiliary: Donskerness). We verify that {'y,�(Y,X) : (y, �) ∈ Y×ℝ
dx} is P-Donsker

with a square integrable envelope. The function classes ℱ1 = {X ′� : � ∈ ℝ
dx}, ℱ2 = {1(Y ≤

y) : y ∈ Y}, and {Xq : q = 1, ..., dx}, where q indexes elements of vector X, are VC classes of

functions. The final class G = {(Λ(ℱ1)−ℱ2)H(ℱ1)Xq : q = 1, ..., dx} is a Lipschitz transformation

of VC classes with Lipschitz coefficient bounded by const∥X∥ and envelope function const∥X∥,
which is square-integrable. Hence G is Donsker by Example 19.9 in van der Vaart (1998). Finally,

the map (�, y) 7→ (Λ(X ′�) − 1{Y ≤ y})H(X ′�)X is continuous at each (�, y) ∈ ℝ
dx × Y with

probability one by the absolute continuity of the conditional distribution of Y (when Y is not

finite).

Step 4. (Auxiliary: Verification of Conditions Z(i)–(iii)). We verify conditions (a)-(c)

of Lemma D.1, which imply Conditions Z(i)-(iii). Conditions (a) and (b) are immediate by

the assumptions. To verify (c), a straightforward calculation gives that at (b, y) = (�(y), y),
∂

∂(b′,y)Ψ(b, y) = [J(b, y), R(b, y)], where, for H(z) = �(z)/{Λ(z)[1 −Λ(z)]} and ℎ(z) = dH(z)/dz,

J(b, y) := E
[
{ℎ(X ′b)[Λ(X ′b)− 1(Y ≤ y)] +H(X ′b)�(X ′b)}XX ′

]
,

and R(b, y) = −E
[
H(X ′b)fY ∣X(y∣X)X

]
. Both terms are continuous in (b, y) at (�(y), y) for each

y ∈ Y. This follows from using the dominated convergence theorem, and the following ingredients:

(1) a.s. continuity of the map (b, y) 7→ ∂
∂b′'�(y),y(Y,X), (2) domination of ∥ ∂

∂b′'b,y(X,Y )∥ by a

square-integrable function const∥X∥, (3) a.s. continuity of the conditional density function y 7→
fY ∣X(y∣X), and (4) H(X ′b) bounded uniformly on b ∈ ℝ

dx , a.s. By assumption J(y) = J(�(y), y)

is positive-definite uniformly in y ∈ Y. □
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Table 1: Decomposing Changes in Measures of Wage Dispersion: 1979-1988 
 

  
Effect of: 

Statistic Total change 

Minimum 

wage Unions 

Individual 

attributes Coefficients 

Standard 

Deviation 

8.0 (0.3) 

 

2.8 (0.1) 0.7 (0.0) 1.8 (0.2) 2.7 (0.3) 

35.4 (1.4) 8.5 (0.6) 22.9 (1.9) 33.1 (2.4) 

90-10 

 

21.5 (1.0) 

 

11.2 (0.1) 0.0 (0.0) 9.2 (0.8) 1.1 (1.3) 

52.1 (2.4) 0.0 (0.1) 42.6 (4.4) 5.3 (5.9) 

50-10 

 

11.3 (1.4) 11.2 (0.1) -2.0 (1.0) 5.1 (0.4) -3.1 (1.1) 

 99.6 (14.1) -17.9 (11.2) 45.5 (8.3) -27.2 (14.0) 

90-50 

 

10.2 (1.2) 0.0 (0.0) 2.0 (1.0) 4.0 (0.8) 4.2 (1.1) 

 0.0 (0.0) 19.7 (8.4) 39.3 (8.8) 41.0 (9.8) 

75-25 

 

15.4 (1.1) 0.0 (0.0) 4.1 (1.0) 0.3 (1.3) 11.1 (1.2) 

 0.0 (0.0) 26.5 (6.2) 1.7 (8.6) 71.8 (8.7) 

95-5 

 

33.0 (2.1) 23.0 (0.7) 0.0 (0.6) 8.5 (1.1) 1.4 (1.5) 

 69.9 (4.1) 0.0 (1.7) 25.8 (2.6) 4.3 (4.4) 

Gini 

coefficient 

4.1 (0.1) 1.3 (0.0) 0.5 (0.0) 0.3 (0.1) 2.0 (0.1) 

 32.1 (1.2) 11.7 (0.6) 6.8 (1.8) 49.4 (1.8) 

Notes: All numbers are in %. Bootstrapped standard errors are given in parenthesis. The second line in each cell 

indicates the percentage of total variation. The logit distribution regression model has been applied. 
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Figure 1. Observed quantile functions, observed differences between the quantile
functions and their decomposition into four quantile policy effects. The 95%
simultaneous confidence bands were obtained by empirical bootstrap with 100
repetitions. Results for men.
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Figure 2. Observed distribution functions, observed differences between the dis-
tribution functions and their decomposition into four distribution policy effects.
The 95% simultaneous confidence bands were obtained by empirical bootstrap
with 100 repetitions. Results for men.
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Figure 3. Observed Lorenz curves, observed differences between the Lorenz
curves and their decomposition into four Lorenz policy effects. The 95% simulta-
neous confidence bands were obtained by empirical bootstrap with 100 repetitions.
Results for men.
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Results for men.
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