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Abstract

We establish the consistency and asymptotic normality for a class of estimators that are linear

combinations of a set of
√
n– consistent estimators whose cardinality increases with sample size.

A special case of our framework corresponds to the conditional moment restriction and the

implied estimator in that case is shown to achieve the semiparametric efficiency bound. The

proofs do not rely on smoothness of underlying criterion functions.
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1 Introduction

In this paper we derive the properties of an estimator formed by taking linear combinations of an

increasing number of inefficient but
√
n-consistent estimators obtained from a sequence of moment

restrictions. The proposed methodology has the advantage that one can see how much variation

there is in the parameter estimates, and how much weight an optimal combination would place on

them. In cases where there is truly little variation, the practitioner can presumably do with very

simple inference rules. The new estimator is also liable to be useful in high-dimensional models where

there is a larger set of instruments than sample observations. A leading example is where the model

information is a conditional moment restriction, which generates an infinite number of unconditional

moment restrictions. The usual approach here is to combine the unconditional moment restrictions

into a single estimating equation; our proposal involves estimating the parameters several times from

subsets of the moment conditions and then combining the resulting estimators.

The idea of combining estimates is not new, and has been used to improve finite sample properties

of estimators and forecasts. Granger and Jeon (2004) provides an useful discussion. For example,

Sawa (1973) considered combining k-class estimators in simultaneous equations systems, for the rea-

son of reducing bias. Breiman (1996, 1999) introduced the idea of bagging, which is based on using

bootstrap resamples to compute a large(ish) sample of subsample estimators and then combining

them. Watson (2003) and Stock and Watson (1999) propose various methods for combining large

numbers of predictors to improve forecasting performance. In the nonparametric literature, Gray

and Schucany (1972) and Bierens (1987) have proposed jacknife estimators that combine different

kernel smoothers in order to reduce bias. Similarly, Kotlyarova and Zinde-Walsh (2006, 2007) and

Schafgans and Zinde-Walsh (2010) have proposed combining kernel smoothers calculated with differ-

ent bandwidths and kernel functions to construct robust estimators of densities and density-weighted

average derivatives respectively.

Our method is in effect a generalization of the classical method of minimum chi-squared or

minimum distance discussed in Malinvaud (1966) and Rothenberg (1973), which was conceived as

a way of imposing equality restrictions in estimation via first estimating an unrestricted model and

then finding the best combination of the unrestricted estimators that imposes the restrictions. In a

number of cases this strategy is preferable to solving the constrained estimation problem directly. In

our case, the best combination is linear with weights that add up to one.

There is a vast literature on estimating models defined through conditional moment restrictions.

We just mention one recent paper that is particularly relevant to our study, Koenker and Machado
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(1999). They considered a similar problem albeit restricted to certain linear models and to a rather

specific estimator. They proved that a sufficient condition for the usual asymptotics for generalized

method of moments estimation GMM to be valid when the number of unconditional moment equa-

tions τ increases with n is that τ 3/n → 0.1 Their results can be interpreted as a warning not to

include too many moment conditions in GMM: that the consequences of so doing are not just that

no improvement is made, but that the distributional approximation can potentially break down. Our

objective is quite different and we deal with nonlinear models.2

In linear models and with efficiency in mind, the proposed method can also be viewed as an

alternative to choosing a subset of instruments among a large class of valid instruments, see e.g.

Donald and Newey (2001) and Kuersteiner and Okui (2010). For example, consider the case where

an unknown but fixed number of instruments yields non-identified (Lobato and Dominguez, 2004)

or weakly-identified (Stock and Wright, 2000) unconditional moment restrictions, then a simple

averaging would make their first-order impact vanish with sample size. On the other hand, if efficiency

is not of primary importance, knowledge of the quality of instruments can be readily incorporated

into the proposed estimator via the weighting scheme.

We first establish consistency and
√
n-asymptotic normality of a class of estimators that involve

finite linear combinations of an infinite dimensional set of estimators, where the cardinality of the

linear combinations increases with sample size. The class of estimators considered is allowed to

include those computed from discontinuous criterion functions that are nonlinear in the parameters

and data. We also establish that a member of our class of estimators achieves the semiparametric

efficiency bound for the conditional moment model. We propose a scheme for estimating the optimal

weights and show that this is consistent. We conclude by presenting results of two Monte Carlo

experiments showing how our procedure works in practice.

We use ‖A‖ = (tr(A⊤A))1/2 for any matrix A. Let λmin(A) and λmax(A) denote the smallest and

largest eigenvalues of a real symmetric matrix A.

1Also related is work by Donald, Imbens, and Newey (2003) who transform conditional moment restriction into

increasing number of unconditional moment equations, and obtain efficiency and consistent asymptotic variance esti-

mation under τ2/n → 0 instead.
2We do not search for the largest value of τ consistent with our asymptotics, although of course the Koenker and

Machado (1999) results provide an upper bound.
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2 The Model Framework and Estimation

We observe an independent and identically distributed sample {Zi}ni=1 ∈ R
d. We suppose that there

are a sequence of moment conditions g1, g2, . . . with gj ∈ R
q such that for some unique θ0 ∈ Θ ⊆ R

p

we have

E[gj(Zi, θ0)] = 0.

For simplicity, we shall assume that q = p so that the jth problem is exactly identified. We define

the estimators θ̂j , j = 1, 2, . . ., as any sequence that satisfies

Gnj(θ̂j) =
1

n

n∑

i=1

gj(Zi, θ̂j) = op(n
−1/2). (2.1)

For each j, this problem is completely parametric and will result in a
√
n–consistent and asymptot-

ically normal estimator θ̂j (under standard conditions).

We consider a subset Jn = {j1, . . . , jτ} of all possible such estimators, where τ = τ(n) is a

truncation parameter. We combine these estimators in a linear fashion to produce a new estimator

θ̂ =
∑

j∈Jn

Wnj θ̂j , (2.2)

where Wnj are some matrix weights, possibly stochastic, that sum to the identity. This defines a

class of estimators E indexed by the weighting matrices {Wnj , j ∈ Jn}; as we show below, there is a

choice of weights that will minimize the asymptotic variance of the estimator θ̂. In some special cases

we can show that the resulting estimator will achieve a semiparametric efficiency bound. Although,

we later on set Jn = {1, . . . , τ(n)}, the derived asymptotic properties below hold for general sets Jn.

The estimator (2.2) is a form of minimum distance where the number of restrictions could in-

crease with sample size.3 Even though each criterion function Gnj is a nonlinear function of θ, the

computational costs of this procedure may not be so great, since one can use the estimates in one

step as starting values in the computation of the next step. Additional computational issues arise in

connection with the weights Wnj but these are discussed below.

There are two tasks we now pursue. The first is to prove that such an estimator (2.2) is consistent

and
√
n–asymptotically normal under general conditions on the truncation parameter and weighting

sequence. The second task is to determine the optimal choice of weights. We next consider some

examples.

3See Rothenberg (1973) and Newey and McFadden (1994) for finite fixed τ .
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3 Examples

Example 1 (Classical two stage least squares in simultaneous equations)

Suppose that4

y1i = θy2i + εi; y2i = π⊤
2 Xi + ui,

where (εi, ui)
⊤ are i.i.d. error terms, E[εi|Xi] = 0, E[ui|Xi] = 0 and Xi ∈ R

k. The two stage least

squares estimator is

θ̃ =

∑n
i=1 ŷ2iy1i∑n
i=1(ŷ2i)

2
=

∑n
i=1 ŷ2iy1i∑n
i=1 ŷ2iy2i

, (3.1)

where ŷ2i = π̂⊤
2 Xi and π̂2 is the vector of least squares estimates obtained from the reduced from

regression of y2i on all the instruments Xi = (X1i, . . . , Xki)
⊤. Our estimator is

θ̂ =
k∑

j=1

Wnj θ̂j , (3.2)

where

θ̂j =

∑n
i=1 ŷ

j
2iy1i∑n

i=1(ŷ
j
2i)

2
=

∑n
i=1 ŷ

j
2iy1i∑n

i=1 ŷ
j
2iy2i

, (3.3)

where ŷj2i = π̂2jXji, and π̂2j is the least squares estimates obtained from the reduced from regression

of y2i on the single instrument Xji for j = 1, . . . , k. Here, Wnj are scalar weights that satisfy
∑k

j=1Wnj = 1. There is a choice of Wnj that makes θ̂ asymptotically equivalent to the 2SLS

estimator θ̃. The classical minimum distance estimator (generalized indirect least squares) exploits

the relationship between the reduced form coefficients and the structural parameter, i.e., π1j/π2j = θ,

where πℓj = E(yℓiXji)/E(X
2
ji) are the parameters of the reduced form of yℓi on Xji for ℓ = 1, 2 and

j = 1, . . . , k (the estimator is a linear combination of π̂1j/π̂2j , where π̂ℓj are the corresponding reduced

from estimators), see Rothenberg (1973).5

Example 2 (Infinite order regression model)

Now consider the infinite order least squares regression model

Yi =
∞∑

k=1

Xkiβk(θ) + εi, (3.4)

4For this particular linear model, a closely related paper to ours is Lee and Zhou (2011).
5It may be that the moments of θ̂j defined in this way do not exist in finite samples, see e.g., Phillips (1983). To

avoid this issue, one could divide the instruments into groups with two or more members, estimate the individual

2SLS within the group, and then average as before.
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where θ is some finite dimensional parameter and εi is an error term satisfying E(εiXji) = 0,

j = 1, 2, . . .. Consider the special case that βk(θ) = θ for all k. Then, we need at least that

E[(
∑∞

k=1Xki)
2] < ∞ in order for the summation in (3.4) to be well defined; this would be satisfied

if σ2
k = E(Xki)

2 goes to zero at a rate faster than k−1 as k → ∞. The optimal estimator under

homoskedasticity is the OLS estimator of Yi on
∑∞

k=1Xki. If also the regressors are mutually orthog-

onal, i.e., E(XjiXki) = 0 for all j 6= k, the OLS estimators of Yi on Xki are consistent, and so will any

linear combination thereof, and so we can construct estimators of θ by taking linear combinations of

these marginal OLS regressions.6

3.1 Semiparametric Instrumental Variables

We suppose that Z⊤
i = (Y ⊤

i , X
⊤
i ) and that there is a unique θ0 ∈ Θ ⊆ R

p satisfying the conditional

moment conditions

E[ρ(Zi, θ0) |Xi ] = 0 (3.5)

with probability one, where ρ(z, θ) is a scalar residual function. This implies the unconditional

moment conditions

E[A(Xi)ρ(Zi, θ0)] = 0, (3.6)

for any p × 1 measurable vector A(Xi) (for which the expectation exists). The sample version of

(3.6) is the basis of estimation as described in many previous papers, including Amemiya (1974) and

Hansen (1982).

Suppose that E[ρ(Zi, θ0)
2 |Xi ] = σ2

0(Xi) is positive with probability one, and that

D0(Xi) =

(
∂

∂θ
E [ρ(Zi, θ)|Xi]

)

θ=θ0

exists with probability one. In this case, the optimal (instrumental variables) matrix is proportional to

Aoiv(Xi) = D0(Xi)σ
−2
0 (Xi), and the resulting optimal instrumental variables (oiv) –or optimal GMM–

estimator θ̃oiv has asymptotic variance Σoiv = {E[σ−2
0 (Xi)D0(Xi)D0(Xi)

⊤]}−1 - see for example

Hansen (1985), Chamberlain (1987), Newey (1990, 1993) for smooth ρ and Chen and Pouzo (2009)

for non-smooth ρ.

6By changing variables to Xki/σk the parameters become θ · σk in which case the problem is more like the instru-

mental variables regression because the regressors have the same variance but the parameters decline in importance.
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Suppose that the optimal matrix Aoiv(·) is of unknown form, but can be represented, in an L2

sense, by the following series expansion

Aoiv(x) = D0(x)σ
−2
0 (x) =

∞∑

j=1

βj0φj(x),

where φj(·) are known basis functions chosen by the practitioner, while βj0 are unknown coefficients

determined uniquely by the basis. For notational convenience we shall allow φj to be p× 1 vectors;

in general, βj0 depends on θ0 and is a p × p matrix. A common approach here is to estimate the

coefficients βj0 (by say series approximation, see e.g. Newey, 1990) and then to let

Âθ(x) =

τ(n)∑

j=1

β̂j(θ)φj(x),

where τ(n) is some truncation sequence that goes to infinity with sample size but at a slow rate.

Then let θ̃oiv be any sequence that satisfies

1

n

n∑

i=1

Âθ̃oiv
(Xi)ρ(Zi, θ̃oiv) = op(n

−1/2).

In current parlance this would be called a continuously updated oiv estimator. An alternative method

is to use some preliminary consistent estimator of θ0 to first construct a consistent estimator of Aoiv,

and then to solve a similar first order condition with the estimated instrument. Newey (1990, 1993)

showed that such an estimator is asymptotically equivalent to the instrumental variable procedure

based on knowing the optimal instrument function Aoiv and computing solutions θ̃oiv to

1

n

n∑

i=1

Aoiv(Xi)ρ(Zi, θ̃oiv) = op(n
−1/2).

See Newey and McFadden (1994) for discussion. There have been a number of alternative suggestions

made more recently with a view to improving small sample performance, Newey and Smith (2004)

contains an excellent review of this literature.

We take a different approach. Instead of estimating the optimal instrument function Aoiv we

will estimate the optimal way to combine all the estimators defined through the individual moment

restrictions. We consider a sequence of pre-specified generic basis (p × 1 vector-valued) functions

{Aj(·)} (φj(.)) such that E[||Aj(Xi)||2] < ∞; for instance, we may take a uniformly bounded basis

such as the B-spline basis. Then we solve
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1

n

n∑

i=1

Aj(Xi)ρ(Zi, θ̂j) = op(n
−1/2)

for each j and combine as in (2.2).

4 Large Sample Properties

We begin by defining the sample and population first order conditions. For j = 1, 2, . . ., let

Gnj(θ) ≡
1

n

n∑

i=1

gj(Zi, θ) and Gj(θ) ≡ EGnj(θ).

We do not assume that the function Gnj(θ) is differentiable or even continuous, although smoothness

conditions are imposed on the expectation Gj(θ). In this way, we allow also quantile regression

estimators (e.g., Koenker and Bassett, 1978), Huber’s (1967) M-estimators, and simulation-based

estimators (e.g., McFadden, 1989; Pakes and Pollard, 1989). For some of the arguments we only

require high level conditions on the sample and population first order conditions, and so our results

can apply more generally to any linear combination of estimators that have appropriate expansions.

4.1 Consistency

In this subsection we give our consistency result for the estimator (2.2). We make the following

assumptions.

Assumption A: Let θ0 ∈ Θ satisfy model (3.5).

(A1) The triangular array {Wnj}j∈Jn, n = 1, . . ., satisfies

∑

j∈Jn

Wnj = Ip and sup
n

∑

j∈Jn

‖Wnj‖ <∞ w.p.1. (4.1)

Here, τ(n) satisfies τ(n) → ∞ as n→ ∞.

(A2) For all δ > 0 and n ≥ 1, there is an ǫn(δ) > 0 (with ǫn(δ) → 0 as n→ ∞) such that

min
j∈Jn

inf
‖θ−θ0‖>δ

‖Gj(θ)‖ ≥ ǫn(δ) > 0.
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(A3) For the sequences ǫn(δ), τ(n) defined above, there exists a positive sequence α1n = o(1) with

supn(α1n/ǫn(δ)) <∞ such that

max
j∈Jn

(
‖Gnj(θ̂j)‖ − inf

θ∈Θ
‖Gnj(θ)‖

)
= op(α1n),

(A4) For the sequences ǫn(δ), τ(n) defined above, there exists a positive sequence α2n = o(1) with

supn(α2n/ǫn(δ)) <∞ such that

max
j∈Jn

sup
θ∈Θ

‖Gnj(θ)−Gj(θ)‖ = op(α2n).

The assumptions on the weights are quite weak and are satisfied by many suitable weighting

sequences both random and non-random. For example, equal weighting Wnj = 1/τ(n)Ip satisfies the

assumption A1, where Ip represents a p× p identity matrix. There are no explicit conditions on the

truncation sequence τ(n) here, but the Assumptions A2–A4 may require some restrictions on the rate

at which τ(n) increases with n. Assumption A3 is just a definition of the estimator uniformly over j.

Assumption A2 guarantees that identification is not lost when going from conditional to unconditional

moment restrictions, see Lobato and Dominguez (2004) for example.7 The identification Assumption

A2 takes account of the fact that each additional moment condition is adding less and less information.

The rate at which ǫn(δ) declines is determined by the sequence τ(n) and, in the IV case, by the

sequence Aj, in particular the rate at which ‖E[Aj(X)]‖ decreases. By choosing τ(n) to grow very

slowly we can compensate for a rapid decline in the moments of the instruments.

Our conditions require that each member θ̂j of the class indexed by Jn be consistent. This is,

however, not strictly necessary by the following arguments. Consider the scalar parameter case where

Wnj are also scalars and suppose that the parameter space Θ is compact with Euclidean diameter

∆. Let Jn = J c
n ∪J I

n , where J c
n contains τ c(n) consistent estimators and J I

n contains τ I(n) possibly

inconsistent estimators. Then, by the triangle inequality

|θ̂ − θ0| ≤ ∆
∑

j∈J I
n

|Wnj|+
∑

j∈J c
n

|Wnj |max
j∈J c

n

∣∣∣θ̂j − θ0

∣∣∣ .

Therefore, it suffices that (4.1) holds, that θ̂j are uniformly consistent over the class J c
n , and that

∑
j∈J I

n
|Wnj | → 0. Under equal weighting for example, this latter condition would be implied by

τ I(n)/τ c(n) → 0.

7It is a testable restriction, see e.g. Inoue and Rossi (2011) and Bravo, Escanciano, and Otsu (2011).
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The uniform convergence Assumption A4 is easy to verify, although it requires one to check the

maxj∈Jn factor. This factor costs little extra, as can be verified from the Bonferroni and exponential

inequalities (see below). Since we must have ǫn(δ) of larger order than n−1/2 in the case of i.i.d.

data this puts an upper limit on the rate at which τ(n) can grow, but no lower limit. If τ(n) only

increases very slowly, say like log n, the stated rate is easy to achieve.

Theorem 1 (i) Suppose that Assumptions A1–A4 hold. Then θ̂ − θ0 = op(1).

For the purpose of obtaining
√
n–asymptotic normality of θ̂ in the next subsection, we need to

first establish that θ̂ − θ0 = op(n
−1/4) under the following stronger version of Assumption A:

Assumption A∗: Let θ0 ∈ Θ satisfy model (3.5).

(A∗1) A1 holds.

(A∗2) There is a positive sequence {γj, j ∈ Jn} such that for some δ > 0 and all θ such that

‖θ − θ0‖ < δ and θ ∈ Θ:

‖Gj(θ)‖ ≥ γj ||θ − θ0||

and minj∈Jn γj ≥ ǫn > 0.

(A∗3) For all δn = o(1) and n ≥ 1,

max
j∈Jn

(
‖Gnj(θ̂j)‖ − inf

‖θ−θ0‖≤δn
‖Gnj(θ)‖

)
= op(ǫnn

−1/4).

(A∗4) For all δn = o(1) and n ≥ 1,

max
j∈Jn

sup
‖θ−θ0‖≤δn

‖Gnj(θ)−Gj(θ)‖ = op(ǫnn
−1/4).

Assumption A∗2 is standard as in Pakes and Pollard (1989), except that we require the lower

bounds to decay at a rate under our control. The sequence ǫn depends on the sequence of moment

conditions but also on the set Jn: If this set contains few elements then it is possible to make ǫn decay

very slowly. Assumption A∗3 again defines the estimator, while Assumption A∗4 requires a rate for

the resulting random variable to converge to zero. Both assumptions are similar to those often found

in the estimation literature with non-smooth objective functions, see Newey and McFadden (1994,

Section 7), with the exception that we are taking a maximum over an increasing number of first

order conditions. However, it is likely to be satisfied in most problems. The uniformity across θ is

10



usually satisfied, indeed we can expect in many cases that supθ∈Θ ‖Gnj(θ)−Gj(θ)‖ = Op(1/
√
n) for

any compact parameter set Θ. Below we provide a Lemma that can be used to verify the uniformity

across j condition and may be useful elsewhere.

Theorem 1 (ii) Suppose that Assumptions A∗1–A∗4 hold. Then θ̂ − θ0 = op(n
−1/4).

Of course there are many alternative ways to impose sufficient conditions which lead to conver-

gence rate. We conclude this subsection with a result that is needed in verifying Assumption A∗4

above.

Lemma 1 Let Uji be a triangular array of random variables, i = 1, . . . , n, j = 1, . . . , τ(n), i.i.d.

across i for each j with E(Uji) = 0 and E[|Uji|κ] = cj <∞ for some κ ≥ 2. Let s2nj =
∑n

i=1 var(Uji) =

nσ2
j , where σ

2
j → ∞ as j → ∞, and let

an = (max
j∈Jn

σ2
j ) log τ(n) +

(∑

j∈Jn

c2j
σ2κ
j

)1/κ

. (4.2)

Then we have for δn = an̺n for any increasing sequence ̺n that

max
j∈Jn

∣∣∣∣∣
1√
n

n∑

i=1

Uji

∣∣∣∣∣ = op(δn).

For example, if we take κ = 2, then an = (maxj∈Jn σ
2
j ) log τ(n) +

√
τ(n). One application of this

Lemma is when n−1/2
∑n

i=1 Uji is the leading term of the estimator θ̂j , in which case, σ2
j would be

Γ−1
j (under homoskedasticity) as defined in (4.3) below. Therefore, the corresponding an is of order

Γ−1
τ(n) log τ(n)+

√
τ(n). Provided τ(n) does not increase too rapidly, this is less than n1/4 as would be

required by assumption A∗4. Furthermore, it implies that maxj∈Jn ‖θ̂j − θ0‖ goes to zero no slower

in probability than (Γ−1
τ(n) log τ(n) +

√
τ(n))/

√
n.

4.2 Asymptotic Normality

In this subsection we derive the asymptotic distribution of our estimator θ̂, under additional condi-

tions. We strengthen the conditions of Pakes and Pollard (1989) and Newey and McFadden (1994)

to accommodate our more general set-up, but again we do not require smoothness conditions on the

moment conditions gj(Zi, θ). Then Gnj(θ) = n−1
∑n

i=1 gj(Zi, θ) and Gj(θ) = E[gj(Zi, θ)]. We denote

Γj =
∂

∂θ⊤
Gj(θ0) =

∂

∂θ⊤
E[gj(Zi, θ)] |θ=θ0. (4.3)

In the IV example If D0(Xi) = {∂E[ρ(Zi, θ)|Xi]/∂θ}|θ=θ0 exists with probability one, then we have

Γj = E[Aj(Xi)D0(Xi)
⊤].
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Assumption B: Let θ0 ∈ Θ satisfy model (3.5).

(B1) maxj∈Jn(‖Gnj(θ̂j)‖ − inf‖θ−θ0‖≤δn ‖Gnj(θ)‖) = op(1/
√
n) for any δn = o(n−1/4).

(B2) There exists a finite constant C such that for any θ within a shrinking (n−1/4–) neighborhood

of θ0

max
j∈Jn

‖Gj(θ)− Γj(θ − θ0)‖ ≤ C‖θ − θ0‖2,

where Γj is of full (column) rank for each j.

(B3) (a) maxj∈Jn ‖
√
n[Gnj(θ0)−Gj(θ0)]‖ = Op(1).

(b) For any δn = o(n−1/4),

max
j∈Jn

sup
‖θ−θ0‖≤δn

‖[Gnj(θ)−Gj(θ)]− [Gnj(θ0)−Gj(θ0)]‖ = op(1/
√
n).

(B4) There exists a deterministic sequence of matricesW 0
nj satisfying: (a)

∑
j∈Jn

||(Wnj−W 0
nj)Γ

−1
j || =

op(1); (b) lim supn

∑
j∈Jn

∥∥W 0
njΓ

−1
j

∥∥ <∞.

(B5) (a) The matrix Σn =
∑

j∈Jn

∑
l∈Jn

W 0
njVjlW

0⊤
nl has a finite positive definite limit Σ, where for

all j, l ∈ Jn,

Vjl = Γ−1
j E[gj(Zi, θ0)gl(Zi, θ0)

⊤]Γ−1⊤
l

(b) The triangular array of random variables fn(Zi) = n−1/2
∑

j∈Jn
c⊤W 0

njΓ
−1
j gj(Zi, θ0) satisfies

nE|fn(Zi)|2+κ → 0 for ∀c ∈ R
p and some κ > 0.

(B6) θ0 is in the interior of Θ.

(B7) maxj∈Jn ||θ̂j − θ0|| = op(n
−1/4).

Assumption B1 is again just the definition of the estimator. Assumption B2 requires essentially

two uniformly continuous derivatives for the population moment function at θ = θ0 and that the first

derivative matrix be of full rank.

For Assumption B3(b), consider the empirical distribution function as an example, which satisfies

sup
|x−x0|≤a/nα

∣∣√n[Fn(x)− F (x)]−
√
n[Fn(x0)− F (x0)]

∣∣ = Op(n
−α/2)

12



for any α < 1 and constant a.8 The cost of the additional max is typically no more than an additional

factor of order
√
τ(n) as is evidenced in Lemma 1 above.

In B4, we require that if the weights are random that they can be well approximated by some

nonrandom sequence with certain summability properties. This condition entails some restrictions on

the rate of growth of τ, and these restrictions can be as much as requiring that τ 3/n→ 0, see Koenker

and Machado (1999). The restrictions are not so stringent in special cases and really arise out of the

nonlinearity of the estimating equation rather combined with the large number of parameters.

Assumption B5 allows us to apply the Liapunov’s central limit theorem for triangular arrays

to the leading term. This condition is satisfied for a variety of problems, and it implicitly imposes

restrictions on how fast τ(n) could grow with sample size n. Notice that Assumption B5(b) is simply:

for some κ > 0 and for all c,

E



∣∣∣∣∣
∑

j∈Jn

c⊤W 0
njΓ

−1
j gj(Zi, θ0)

∣∣∣∣∣

2+κ

 = o(nκ/2).

For example, suppose we only require that gj(Zi, θ0) have uniformly bounded fourth moments. Define

the positive sequence

ǫn = min
j∈Jn

λmin(Γj).

Then, by the Cauchy-Schwarz inequality

nE[fn(Zi)
4] =

1

n

∑

j,k,l,m∈Jn

E[ϕjiϕkiϕliϕmi] ≤
1

nǫ4n

(
sup
n

∑

j∈Jn

∥∥W 0
nj

∥∥
)4

,

where ϕji = c⊤W 0
njΓ

−1
j gj(Zi, θ0). It suffices in this case that nǫ4n → ∞. Now suppose that in fact, the

scalar gj(Zi, θ0) are normally distributed with mean zero and variance Γj and mutually independent,

and that the weights are equal, i.e., W 0
nj = 1/τ(n)Ip for each j. Then

nE[fn(Zi)
4] =

1

nτ 4

(∑

j∈Jn

3Γ−2
j + 3

∑

j 6=k∈Jn

Γ−1
j Γ−1

k

)
≤ 3

nτ 2ǫ2n
,

which goes to zero provided nτ 2ǫ2n → ∞. These conditions can be weakened considerably in special

cases.

8We are grateful to Benedikt Pötscher for pointing this out to us. This is due to the Hölder continuity of the

limiting Brownian bridge process B(·) of
√
n[Fn(·) − F (·)], i.e., |B(x) − B(x0)| ≤ c · |x − x0|1/2 for some random

variable c with bounded moment. The local uniformity (across i) comes at very little extra cost.

13



Notice that we can replace Assumptions B3(a) and B5 by the condition that {Gnj(θ0)−Gj(θ0) :

j ∈ Jn} is a Donsker class, i.e., it satisfies the uniform central limit theorem. This kind of assumption

has been used in Portnoy (1984) for example.

The condition B7 that maxj∈Jn ||θ̂j − θ0|| = op(n
−1/4) follows from our Theorem 1(ii). It may

be possible to prove our result below without a sup-norm convergence result like this, although we

have not been able to find a proof based on other convergences like Lp. The usual proofs in other

semiparametric estimation problems typically make use of similar results about the convergence of

nuisance parameters.

Theorem 2 Suppose that Assumptions A1 and B1–B7 hold. Then
√
n(θ̂ − θ0) =⇒ N(0,Σ).

The asymptotic variance matrix Σ depends on the weighting scheme and on the class of estimators

considered and, of course, on the underlying distribution of the data. We discuss the nature of the

asymptotic variance more in the next section.

To construct consistent estimates of Σ, we would compute

Σ̂ =
∑

j∈Jn

∑

l∈Jn

WnjV̂jlW
⊤
nl

V̂jl = Γ̂−1
j

1

n

n∑

i=1

gj(Zi, θ̂)gl(Zi, θ̂)
⊤Γ̂−1⊤

l . (4.4)

Note that there is no further need of a bandwidth parameter here since the cardinality of Jn is small

compared with n, . The estimation of Γj is easy when Gnj are differentiable. In this case,

Γ̂j =
1

n

n∑

i=1

∂gj(Zi, θ̂)

∂θ
→p Γj (4.5)

under some mild regularity conditions. When Gnj are not differentiable, as for example in the Least

Absolute Deviation (LAD) case, this method is not feasible. In some cases, one might be able

to estimate directly the quantity Γj. For example, in the LAD case (with errors independent of

covariates), Γj is proportional to the density of the errors evaluated at their median. This quantity

can be estimated by a variety of nonparametric methods. A general strategy for estimating Γj is to

use ‘numerical derivatives’, that is, let

Γ̂j;lk =
1

n

n∑

i=1

gjl(Zi, θ̂ + δek)− gjl(Zi, θ̂)

δ
, (4.6)

14



where ek is a vector of zeros with one in the kth position, while δ is a small constant. If we let δ(n)

go to zero at a certain rate as sample size increases, we can show that Γ̂j;lk →p Γj;lk, see for example

Pakes and Pollard (1989). The actual derivative (4.5) makes δ go to zero before n, but our modified

estimator (4.6) allows δ to go to zero with n and indeed slower than n. Under stronger conditions, we

can obtain maxj∈Jn ‖Γ̂j − Γj‖ →p 0, maxj,l∈Jn ‖V̂jl − Vjl‖ →p 0, and Σ̂ →p Σ to formally justify this

procedure. Provided that τ(n) → ∞ slowly, the additional conditions are not particularly onerous.

Example 2 (cont.)

Suppose that the errors are homoskedastic and the regressors are mutually orthogonal with E(X2
ji) =

σ2
j . A necessary and sufficient condition for the

√
n–rate of convergence is that

lim sup
n→∞

∑

j∈Jn

W 2
njσ

−2
j <∞

with probability one. Since we also require
∑∞

j=1 σ
2
j < ∞, this rules out the equal weighting case.

Nevertheless, a variety of weighting conditions satisfy the requirement. Furthermore, there is no

explicit restriction on τ itself in this case.

5 Optimal Weights

We now discuss the optimal weights in the sense of minimizing asymptotic variance. For simplicity,

we restrict attention to the leading case to the case where Jn = {1, . . . , τ}. We first consider the

case where τ is fixed and then turn to the case where it is increasing.

5.1 Case 1: Fixed τ

We can consider the optimal weights to be those that minimize the asymptotic variance matrix of

Theorem 2 in the special case where τ is fixed, i.e., minimize

Στ =
τ∑

j=1

τ∑

l=1

WnjVjlW
⊤
nl

with respect to p × p matrices Wn1, . . . ,Wnτ subject to the restriction that
∑τ

j=1Wnj = Ip.
9 The

solution to this can be found explicitly, thus, writing (B1, . . . , Bτ ) = (Ip ⊗ iτ )
⊤V −1, where V = (Vj,l)

9This optimization problem can be seen as a multivariate version of the classical portfolio minimum variance choice,

which has an explicit solution, see Campbell, Lo, and Mackinlay (1997, p. 184-185).
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and iτ is a τ by 1 vector of ones, we have

W opt
0j =

(
τ∑

l=1

Bl

)−1

Bj =
(
(Ip ⊗ iτ )

⊤V −1(Ip ⊗ iτ )
)−1 (

(Ip ⊗ iτ )
⊤V −1

)
j
. (5.1)

This results in the asymptotic (as n→ ∞ and τ fixed) variance

Στ
opt =

τ∑

j=1

τ∑

l=1

W opt
0j VjlW

opt⊤
l =

(
(Ip ⊗ iτ )

⊤V −1(Ip ⊗ iτ )
)−1

,

which is the smallest amongst our class of estimators.

We here give another interpretation of this procedure as an optimal minimum distance (omd) esti-

mator described in Rothenberg (1973). This method arrives at the optimal combination of estimators

through an explicit objective function. Let θ̂τomd minimize the criterion function

Qn(θ) =







θ̂1
...

θ̂τ


− θ ⊗ iτ




⊤

V −1







θ̂1
...

θ̂τ


− θ ⊗ iτ


 , (5.2)

where iτ is a τ × 1 vector of ones, and V is the τp× τp asymptotic (as n → ∞ holding τ constant)

variance matrix of the vector (
√
n(θ̂1 − θ0)

⊤, . . . ,
√
n(θ̂τ − θ0)

⊤)⊤, i.e., V = (Vj,l). The first order

condition

(Ip ⊗ iτ )
⊤V −1




θ̂1
...

θ̂τ


 = (Ip ⊗ iτ )

⊤V −1(θ̂ ⊗ iτ )

implies that the optimal minimum distance estimator θ̂τomd is a linear combination of the θ̂j with

θ̂τomd =

τ∑

j=1

W opt
0j θ̂j, (5.3)

where the optimal weights are defind in (5.1).

Example 1 (cont.) Recall the optimal GMM estimator in this model (i.e., under homoskedas-

ticity, etc.) is simply the two stage least squares estimator

θ̃ = (Y ⊤
2 PXY2)

−1Y ⊤
2 PXY1,
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where PX = X(X⊤X)−1X⊤, Y1 = (y11, . . . , y1n)
⊤, Y2 = (y21, . . . , y2n)

⊤, X = (X⊤
1 , . . . , X

⊤
n ), Xi =

(X1i, . . . , Xki)
⊤. Within our class of estimators E , the optimal estimator is

θ̂ =
k∑

j=1

W opt
nj θ̂j = (i⊤k V

−1ik)
−1i⊤k V

−1




θ̂1
...

θ̂k


 ,

where θ̂j = (Y ⊤
2 PjY2)

−1Y ⊤
2 PjY1 for j = 1, . . . , k, where Pj = Xj(X

⊤
j Xj)

−1X⊤
j and V is the k × k

covariance matrix with Vjl =asy. cov(θ̂j , θ̂l). Suppose that the instruments are mutually orthogonal,

then it is easy to see that θ̂ is identically equal to θ̃.10 This gives yet another interpretation to

2SLS as being the optimal combination of exactly identified instrumental variables estimators.11

Furthermore, θ̂ is computationally feasible even when k > n.12

5.1.1 Semiparametric Instrumental Variables

Suppose that we know only that

E [Aj(Xi)ρ(Zi, θ0)] = 0, j = 1, . . . , τ , (5.4)

where τ is fixed, and Aj ∈ R
p. This is a standard unconditional moments estimation problem, and

the optimal estimator (smallest variance) can be arrived at by several routes:

GMM with optimal combination of the moment conditions:

That is, we minimize the quadratic form

Gτ
n(θ)

⊤WnG
τ
n(θ) (5.5)

with respect to θ, where Gτ
n(θ) = n−1

∑n
i=1A

τ (Xi)ρ(Zi, θ) with Aτ = (A⊤
1 , . . . , A

⊤
τ )

⊤ ∈ R
τp (i.e.,

Gτ
n(θ) is the τp × 1 vector containing all the sample moments). The weighting matrix Wn is

such that Wn → Wopt ≡ Ψ−1
τ is the asymptotically optimal (opt) weighting matrix where Ψτ =

E[Gτ
n(θ0)G

τ
n(θ0)

⊤] = E[Aτ (X)σ2
0(X)Aτ (X)⊤] ∈ R

τp×τp.

Optimal instrumental variables:

10We are grateful to Tom Rothenberg for pointing this out to us.
11Interpreting 2SLS in various ways has a long history in econometrics; see Rothenberg (1974) for an early example.
12This problem known as undersized sample problem arises in almost all large macroeconometric models with time

series, because there are usually more pre-determined variables (lags) than time periods of observations (see Klein,

1973 for an early account of alternative methods to solve this problem).

17



The optimal instrument in this case is simply a linear combination of the Aj(Xi), j = 1, . . . , τ . That

is, we solve the equations

Γτ⊤Ψ−1
τ Gτ

n(θ̂) = 0, (5.6)

where Γτ = ∂E[Gτ
n(θ0)]/∂θ = E[Aτ (X)D0(X)⊤] ∈ R

τp×p. These two approaches provide the oiv (op-

timal GMM) estimator θ̃τoiv of θ0 for the model (5.4). Specifically, we have
√
n(θ̃τoiv−θ0)=⇒ N(0,Στ

oiv)

as n → ∞, where the asymptotic variance is given by (see e.g., Hansen (1982) for differentiable ρ,

Newey and McFadden (1994) for non-differentiable ρ):

Στ
oiv =

(
E[Aτ (X)D0(X)⊤]⊤

[
E(Aτ (X)σ2

0(X)Aτ (X)⊤)
]−1

E[Aτ (X)D0(X)⊤]
)−1

(5.7)

=
(
Γτ⊤Ψ−1

τ Γτ
)−1

and the optimal instrument for the model (5.4) is:

Aτ
oiv(x) = Γτ⊤Ψ−1

τ Aτ (x) = E[Aτ (X)D0(X)⊤]⊤
[
E(Aτ (X)σ2

0(X)Aτ (X)⊤)
]−1

Aτ (x).

In this case, we can show the equivalence between the optimal minimum distance estimator, as

defined above, and the optimal instrumental variable estimator in the following proposition:

Proposition 1 For each fixed τ , θ̂τomd is asymptotically efficient for (5.4) with Στ
omd = Στ

oiv. More-

over the optimal weighting is simply

W oiv
0j = −

(
τ∑

j=1

αjΓ
⊤
j

)−1

αjΓ
⊤
j for j = 1, . . . , τ , with (α1, . . . , ατ ) = Γτ⊤Ψ−1

τ .

5.2 Case 2: Increasing τ

Here we consider the more general case where τ increases with sample size. Notice that provided B5(a)

is satisfied, the matrices [(Ip ⊗ iτ )
⊤V −1(Ip ⊗ iτ )]

−1 converge to a positive definite limit limτ→∞Στ .

We next consider the important special case where a semiparametric efficiency standard is known

against which we may compare our procedure.

5.2.1 Semiparametric Instrumental Variables

Let Σoiv be the asymptotic variance of the optimal instrumental variable (oiv) estimator, and let

Σomd be the asymptotic variance as n→ ∞ and τ(n) → ∞ of the optimal minimum distance (omd)

estimator defined above. The next theorem establishes the asymptotic equivalence between Σomd

and Σoiv in the special case of an orthonormal basis.

Assumption C:
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(C1) The matrix D0(Xi) =
(

∂
∂θ′
E[ρ(Zi, θ)|Xi]

)
|θ=θ0 exists with probability one.

(C2) E[σ−2
0 (Xi)D0(Xi)D0(Xi)

⊤] is finite and positive definite.

(C3) D0(Xi) =
∑∞

j=1 βj0φj(Xi)σ
2
0(Xi), where the sequence {φj} is a complete orthonormal basis

satisfying:

E[σ2
0(Xi)φj(Xi)φl(Xi)

⊤] =

{
0p for j 6= l,

Ip for j = l.

Assumptions C1 and C2 are standard in the literature of efficient Instrumental Variable estima-

tion. The first part of Assumption C3 requires that the optimal matrix can be represented, in an L2,

sense by a series expansion, and it has been used elsewhere, see e.g. Carrasco and Florens (2010) and

examples therein. In the univariate case, the second part of this assumption can always be shown

to hold in the homoskedastic case with σ2
0 (Xi) = 1 by letting {ψj} be an orthonormal basis on the

unit interval, and setting φj(x) = ψj(F (x)), where F represents the CDF of X .13

Theorem 3 Suppose that E[ρ(Zi, θ0) |Xi ] = 0 and that Assumptions C1–C3 hold. Then,

Σomd = Σoiv =
(
E[σ−2

0 (Xi)D0(Xi)D0(Xi)
⊤]
)−1

.

The optimal weights in this case are any sequence like

W 0
nj =




τ(n)∑

l=1

V −1
ll




−1

V −1
jj , (5.8)

where Vjj is the asymptotic variance matrix of
√
n(θ̂j − θ0). With such a sequence of weights, θ̂

has the same asymptotic variance as a comparable implementation of θ̃. Note that in the scalar

homoskedastic case, the optimal weights W 0
nj, decrease at the same rate as β2

j0 as j → ∞, while the

weights on the basis terms in the estimation of D0 would decrease like βj0 as j → ∞. This suggests

that one needs to combine fewer estimators than instruments to achieve a specified variance.

6 Estimation of Optimal Weights

In this section, we consider estimation of the optimal weights and construction of a feasible asymp-

totically optimal estimator (in the sense of minimizing asymptotic variance within our class of pro-

cedures). In particular, we shall estimate the optimal weights defined in (5.1). Recall that V is the

13In this case, E[φj(Xi)φ
⊤
l (Xi)] =

∫
φj(x)φ

⊤
l (x)F (dx) =

∫
1

0
φj(F

−1(u))φ⊤
l (F

−1(u))du.
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τp×τp asymptotic (as n→ ∞ with τ fixed) covariance matrix of the vector of estimators θ̂j , j ∈ Jn.

We estimate the optimal weights as follows

Ŵ opt
0j =




τ(n)∑

l=1

B̂l




−1

B̂j = [(Ip ⊗ iτ )
⊤V̂ −1(Ip ⊗ iτ )]

−1[(Ip ⊗ iτ )
⊤V̂ −1]j, (6.1)

where (B̂1, . . . , B̂τ ) = (Ip⊗iτ )⊤V̂ −1, and V̂ has (j, l) sub-matrix calculated using formulae (4.4)–(4.5)

for j, l = 2, . . . , τ based on a preliminary root-n consistent estimator of θ.

We next provide a consistency result for the estimator defined using the estimated weights (6.1).

The strategy is to verify condition B4(a) of Theorem 2 for the estimated weights; we are implicitly

assuming that B4(b) and B5 hold, so that the infeasible optimal weights are well defined. If the other

conditions of Theorem 2 are satisfied, which are about the moment conditions, then the estimator

based on (6.1), is consistent with Theorem 2. We shall restrict attention to the case where gj are all

differentiable. Define for each θ in a neighborhood of θ0,

Γnj(θ) =
1

n

n∑

i=1

∂gj
∂θ

(Zi, θ); Ωnjl(θ) =
1

n

n∑

i=1

gj(Zi, θ)gl(Zi, θ)
⊤,

Γj(θ) = EΓnj(θ) and Ωjl(θ) = EΩnjl(θ). Then Vjl = Γ−1
j (θ0)Ωjl(θ0)Γ

−1
l (θ0)

⊤. We shall assume the

following high level conditions.

Assumption D:

(D1) The matrix V is finite and nonsingular for every τ , and λmin(V ) = o(τ−ρ) for some ρ ≥ 0.

(D2) For some ρ1 ≥ 0, minj∈Jn λmin(Γj) = o(τ−ρ1).

(D3) For some sequence δn → 0 and some η > 0:

max
j∈Jn

sup
‖θ−θ0‖≤δn

√
n

‖Γnj(θ)− Γj(θ)‖ = op(n
−η); max

j,l∈Jn

sup
‖θ−θ0‖≤δn

√
n

‖Ωnjl(θ)− Ωjl(θ)‖ = op(n
−η).

Assumption D1 is easy to verify in the orthonormal case, but is a reasonable assumption to

maintain more generally. It allows the τp × τp matrix V to become asymptotically singular. In

Example 1, when the errors are independent of the instruments, we have

Vjl ∝
cov(xj , xl)

cov(xj , y2)cov(xl, y2)
,
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and there are a variety of schemes for the covariance matrix of (y2, x1, . . . , xτ(n)) that would support

assumption D1. Similar comments apply to D2 in the sense that it is easy to find a variety of

examples consistent with this assumption.

Assumption D3 can be verified under some primitive conditions, along the lines of the discussion

around Theorem 2. If τ(n) = c log n for positive finite c, then the conditions are easy to satisfy. In

this case, V is of relatively small dimension compared with the sample size available for estimation.

Theorem 4 Suppose that Assumptions D hold and that τ(n) = c logn for positive finite c. Then

conditions B4(a) of Theorem 2 hold.

For further issues surrounding estimating the optimal weights for similar problems, we refer the

reader to Newey (1990) and Koenker and Machado (1999).

7 Monte Carlo

We consider two data generating processes (DGPs). The first one is adapted from Newey (1990) who

consider an endogenous dummy variable model with the following specification:

Yi = β10 + β20si + εi;

DGP1: si = 1 (α10 + α20Xi + ηi > 0) ,

Xi ∼ N(0, 1); α10 = α20 = β10 = β20 = 1,

where the errors εi and ηi are generated as

[
εi

ηi

]
∼ N

([
0

0

]
,

[
1 ϕ

ϕ 1

])
, (7.1)

in which ϕ ∈ {0.2, 0.5, 0.8} indicate weak, medium and strong endogeneity respectively. The optimal

instrument for s is π(x) = Pr[s = 1|X = x], which makes D(x) = (1, π(x))⊤.

Figures 1–4 report results for two estimators of β20. The first estimator (Estimator 1) corresponds

to Newey’s (1990) and two versions of the proposed estimators (Estimators 2 and 3) are also included.

To obtain all estimators, we use 4 different basis: Basis 1 corresponds to the Hermite polynomials

computed via the recursion Aj+1 (x) = 2xAj (x)− 2jAj−1 (x), where A1 (x) = 1, A2 = 2x, etc; Basis

2 corresponds to Legendre polynomials obtained via the recursion (j+1)Aj+1 (x) = (2j+1)xAj (x)−
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jAj−1 (x), where A1 = 1, A2 = x, etc; Basis 3 corresponds to Laguerre polynomials obtained via the

recursion Aj+1 (x) = (j + 1)−1 [(2j + 1− x)Aj (x) − jLj−1 (x)], where A1 (x) = 1, A2 (x) = 1 − x,

etc; Basis 4 corresponds to the basis Aj (x) = [x/(1 + |x|)]j−1. For each basis, Estimator 1 becomes

β̃ =

(
β̃10

β̃20

)
=

(
n

∑n
i=1 si∑n

i=1 π̂(Xi)
∑n

i=1 π̂(Xi)si

)−1( ∑n
i=1 Yi∑n

i=1 π̂(Xi)Yi

)
,

π̂(x) =
τ∑

j=1

γ̂jAj(x).

for series-based estimated weights γ̂j. Using the same bases, our estimator becomes

β̂ =
τ∑

j=2

Wnjβ̂j , where (7.2)

β̂j =

(
β̂10; j

β̂20; j

)
=

(
n

∑n
i=1 si∑n

i=1Aj(Xi)
∑n

i=1Aj(Xi)si

)−1( ∑n
i=1 Yi∑n

i=1Aj(Xi)Yi

)
. (7.3)

Estimator 2 is calculated using fixed weights Wnj = (j−3/
∑τ

j=2 j
−3)I2, and Estimator 3 uses a

feasible version of weights defined in (5.8). Results are presented for τ = 2, . . . , 6 and two samples

sizes: n ∈ {250, 1000} and 5000 replications.

Figures 1–4 display the finite sample behaviour of the simulated {β̃(s)}5000s=1 and two versions of

{β̂(s)}5000s=1 as functions of τ in the form of box plots for each of the 4 bases. These figures contrast the

estimators’ different bias and variance behaviour as τ changes. Overall, the results are qualitatively

similar between Estimators 1, 2 and 3 in terms of Monte Carlo bias and dispersion for each τ and

sample size across bases. However, certain features are noteworthy. For example, one can observe

the different behaviour between Newey’s (1990) estimator (Estimator 1) and ours (Estimators 2 and

3) with respect to τ . Estimator 1 shows a tradeoff between bias (larger) and variance (smaller) as τ

increases for both samples sizes and across bases, specially in the strong endogeneity case. On the

other hand, only the variance seems to be affected by the choice of τ . Depending on the basis, the

weights used and degree of endogeneity, τ equal to 2 or 3 would minimize the Monte Carlo mean

square error for n = 250, and between 3 and 4 for n = 1000. Similarly, the proposed estimators

seems to display smaller Monte Carlo dispersion when using Bases 2 and 4. Finally, although both

versions of the proposed estimator perform comparably, its behavior seems to be more robust to the

choice of τ when using fixed weights.

In DGP2 we consider a high-dimensional problem involving a two-equation system with the
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following specification:

Yi = β10 + β20si + εi;

DGP2: si = α0;0 +

k∑

l=1

αl;0Xli + ηi,

Xi ∼ N(0, Ik); α0;0 = α1;0 = . . . = αk;0 = β10 = β20 = 1,

where Xi = (X1i, . . .Xki)
⊤ and (εi, ηi)

⊤ are generated as in (7.1). We set k = 30 and assess the

performance of the ‘optimal’ estimator here in another set of 5000 replications, i.e. weights deter-

mined by (5.8) and τ = k, with undersized samples of n = 15 and 25. Table 1 shows the Monte

Carlo bias (Bias), standard deviations (Std. Dev) and root mean squared error (RMSE). The new

estimator is compared against generic 2SLS. Notice that for these sample sizes generic 2SLS with

as many instruments as the sample size is equivalent to Ordinary Least Squares (OLS).14 The pro-

posed estimator shows small biases and decreasing (with respect to sample size) variances for each

endogeneity parameter value, while the OLS estimator displays considerably larger bias as expected.

However, for a sample size of 50 observations, the variance and RMSE of the proposed estimator are

comparable to that of 2SLS.

For illustration purposes, Figure 5 displays the estimated β̂20; j in (7.3) for j = 1, . . . , 9 using Basis

3 in DGP 1 for a sample size of n = 1000 with ρ = 0.8 against their standard errors (gray points).

The dotted line represents the true value β20 = 1. One can observe the large tradeoff between bias

and variance depending on the instrument being used. The same plot also displays the estimated β̂

in (7.2) for τ = 2, . . . , 9 with weights given by a feasible version of (5.8), against their standard errors

(black points). In this case both bias and variance of the proposed estimator decays when combining

the first 3 estimates, but they increase when adding further elements in the average. Unlike β̂j the

tradeoffs between bias and variance is less dramatic for the combined estimator.

8 Conclusions, Extensions and Practical Considerations

This paper provides a new way of calculating efficient semiparametric instrumental variable estima-

tors by means of constructing linear combinations of an infinite dimensional set of
√
n-consistent but

inefficient estimators, where the cardinality of the linear combination increases with sample size. Our

14Although alternative methods that rely on choosing a subset of instruments are readily available, see e.g. Donald

and Newey (2001) and Kuersteiner and Okui (2010).
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approach has an advantage over the traditional approach to semiparametric instrumental variables

in that one has a ‘distribution’ of estimators of the same quantity and one can view the range of

values that these estimators take. If that range is not great, then it would appear that achieving

efficiency is not going to be worth very much. If the range is considerable, then the efficient estimator

may be very much better than any given estimator but at the same time performance might be very

sensitive to how it is constructed. This information contained in the spread of the different estimators

is similar to but not necessarily the same as the information contained in the standard error of an

efficient estimator.15 Also, the optimal weighting just requires the estimation of HAC matrices, at

least in the orthonormal basis case, about which much has been written in econometrics.

It is quite straightforward to extend our work to produce results for the range16

Rn = max
j∈Jn

θ̂j − min
j∈Jn

θ̂j

using the theory of extreme values for Gaussian processes (as in Bickel and Breiman, 1983, for

example). This statistic can be used as another way of measuring whether the observed range is

consistent with the underlying model assumptions, i.e. as a model specification test.

Recently, Lobato and Dominguez (2004) has pointed out that global identification of models

defined by conditional moment restrictions can be lost when using a set of unconditional moments

(even when constructed with the optimal instruments). The proposed methodology can potentially be

used to recover both global identification (by means of using a set of inefficient but valid instruments)

as well as efficiency (via an optimal combination as discussed above).

Practical Choice of Weights, Jn and τ

We have shown how to compute an optimal estimator for a given choice of Jn. The theoretical

analysis of methods for determining Jn is quite complex and would justify a separate paper, since

it involves a higher order theory. In theory, the larger is Jn the better in terms of variance, but in

practice there is a tradeoff. Let θ̂(Jn) be the feasible optimal estimator as computed in the previous

section, and let Σ̂opt(Jn) be a consistent estimator of its asymptotic variance. Along the lines of

Politis and Romano (1992), one could choose Jn to be the place where the standard errors (a scalar

15Actually, if the estimators themselves are mutually independent with the same limiting distribution, then the

95% confidence interval of a single estimator is approximately the same as the inter hemi-decile range, that is the

interval [θ̂0.025·τ , θ̂0.975·τ ] of the ordered estimators. In fact, it is not possible that the estimators come from the same

asymptotic distribution (since the variances must diverge along some trajectory), and so the two intervals do not

coincide. Nevertheless, the connection exists.
16In the multivariate case, we take the coordinate-wise ranges.
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function of the covariance matrix) are relatively stable and do not vary wildly as Jn varies close

by. In practice, we have found it useful to plot the input estimators against their marginal standard

errors as an informal device to select reasonable estimators, see e.g. Figure 5 in the previous section.

We now conclude by describing how one would select the set Jn in a given application with finite

sample n. There are a number of informal methods a practitioner can use. For example, for given

τ one could compute the t-statistic (in the scalar case, otherwise a chi-squared statistic) for each

estimator and retain only those estimators with the largest τ such values. Alternatively, one could

choose to retain only those estimators with t-statistic, say, that exceeds some predetermined level like

one. Alternatively, if Gnj is continuously differentiable with respect to θ, one could also use results in

Rilstone, Srivastava, and Ullah (1996); Rilstone and Ullah (2005) to estimate Jn and the weights by

means of minimizing an estimate of the proposed estimator’s mean square error, see e.g. Schafgans

and Zinde-Walsh (2010). The theoretical justification of the latter is left for future research.
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Appendix A: Mathematical Proofs

Proof of Lemma 1. We show that

Pr

[
max
j∈Jn

∣∣∣∣∣
n∑

i=1

Uji

∣∣∣∣∣ ≥ λn

]
→ 0

for any λn = δn
√
n. For an array χnj → ∞ as n→ ∞ for each j, write

Uji = Uji1(|Uji| ≤ χnj) + Uji1(|Uji| > χnj) = Ũji +
˜̃
U ji.

We shall assume for simplicity that Uji is symmetric about zero so that E(Ũji) = 0. Therefore, Ũji

are i.i.d. for each j with mean zero and are bounded from above by χnj. By the Bonferroni and

Bernstein inequalities

Pr

[
max
j∈Jn

∣∣∣∣∣
n∑

i=1

Ũji

∣∣∣∣∣ ≥ λn

]
≤
∑

j∈Jn

Pr

[∣∣∣∣∣
n∑

i=1

Ũji

∣∣∣∣∣ ≥ λn

]

≤
∑

j∈Jn

exp

( −λ2n
s2nj + 2λnχnj

)
. (A-1)

We shall choose λn and χnj below to make this term vanish.
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By the Bonferroni and Markov inequalities

Pr

[
max
j∈Jn

∣∣∣∣∣
n∑

i=1

˜̃
U ji

∣∣∣∣∣ ≥ λn

]
≤
∑

j∈Jn

Pr

[∣∣∣∣∣
n∑

i=1

˜̃
U ji

∣∣∣∣∣ ≥ λn

]

≤
∑

j∈Jn

E

(∣∣∣∣
∑n

i=1
˜̃
U ji

∣∣∣∣
κ)

λκn

≤
∑

j∈Jn

nκE (|Uji|κ) Pr [|Uji| > χnj]

λκn

≤
∑

j∈Jn

nκ[E (|Uji|κ)]2
λκnχ

κ
nj

= o(1)

provided
∑

j∈Jn
nκχ−κ

nj λ
−κ
n c2j → 0.

Letting λn = δn
√
n and χnj = σ2

j

√
n we need to show that:

∑

j∈Jn

exp

(−δn
σ2
j

)
→ 0 and

1

δκn

∑

j∈Jn

c2j
σ2κ
j

→ 0.

For the first condition it suffices that

δn
maxj∈Jn σ

2
j log τ(n)

→ ∞.

For the second condition it certainly suffices if

δn(∑
j∈Jn

c2jσ
−2κ
j

)1/κ → ∞.

Proof of Theorem 1 (i). From A2, if maxj∈Jn ||θ̂j − θ0|| > δ, then ‖Gj(θ̂j)‖ ≥ ǫn(δ) for some j.

Consequently

Pr

(
max
j∈Jn

||θ̂j − θ0|| > δ

)
≤ Pr

(
max
j∈Jn

‖Gj(θ̂j)‖ ≥ ǫn(δ)

)
, (A-2)

and it is sufficient to prove that for the given ǫn(δ) > 0, the latter probability goes to zero. But

30



max
j∈Jn

‖Gj(θ̂j)‖ ≤ max
j∈Jn

‖Gj(θ̂j)−Gnj(θ̂j)‖+max
j∈Jn

‖Gnj(θ̂j)‖ by the Triangle Inequality,

≤ max
j∈Jn

sup
θ∈Θ

‖Gj(θ)−Gnj(θ)‖+max
j∈Jn

‖Gnj(θ̂j)‖ by set inclusion,

= op(α2n) + max
j∈Jn

‖Gnj(θ̂j)‖ by A4,

≤ op(α2n) + max
j∈Jn

(
‖Gnj(θ̂j)‖ − inf

θ∈Θ
‖Gnj(θ)‖

)
+max

j∈Jn

inf
θ∈Θ

‖Gnj(θ)‖,

≤ op(α2n) + max
j∈Jn

(
‖Gnj(θ̂j)‖ − inf

θ∈Θ
‖Gnj(θ)‖

)
+max

j∈Jn

‖Gnj(θ0)‖,

= op(α2n) + op(α1n) = op(ǫn(δ))

by A3, A4 and the definition of θ0. We conclude that maxj∈Jn ||θ̂j − θ0|| = op(1). Finally,

||θ̂ − θ0|| ≤
∑

j∈Jn

‖Wnj‖ ×max
j∈Jn

||θ̂j − θ0|| = op(1)

by A1.

Proof of Theorem 1 (ii). Consistency Theorem 1 (i) implies that for every ǫ > 0 there exists a

sequence {δn} with δn → 0, and an N such that for all n ≥ N , Pr{maxj∈Jn ||θ̂j − θ0|| > δn} ≤ ǫ.

Using the same proof as that of Theorem 1 (i), we have under our stronger assumption A∗4 that

with probability approaching 1 (wpa1)

max
j∈Jn

‖Gj(θ̂j)‖ ≤ max
j∈Jn

‖Gj(θ̂j)−Gnj(θ̂j)‖+max
j∈Jn

‖Gnj(θ̂j)‖

≤ max
j∈Jn

sup
‖θ−θ0‖≤δn

‖Gj(θ)−Gnj(θ)‖+max
j∈Jn

‖Gnj(θ̂j)‖

= op(ǫnn
−1/4) + max

j∈Jn

‖Gnj(θ̂j)‖ by A∗4,

= op(ǫnn
−1/4) by A∗3, A∗4 and the definition of θ0.

Therefore, by A∗2

max
j∈Jn

||θ̂j − θ0|| ≤
1

minj∈Jn γj
max
j∈Jn

‖Gj(θ̂j)‖ = o(n−1/4).

Hence

max
j∈Jn

||θ̂j − θ0|| = op(n
−1/4),
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which implies that

||θ̂ − θ0|| ≤
∑

j∈Jn

‖Wnj‖ ×max
j∈Jn

||θ̂j − θ0|| = op(n
−1/4)

as required, since
∑

j∈Jn
‖Wnj‖ is uniformly bounded by A1.

Proof of Theorem 2. Let

Lnj(θ) = Gnj(θ0) + Γj(θ − θ0)

for each j = 1, 2, . . . Then define θ∗j as the minimizer of ‖Lnj(θ)‖ over θ ∈ Rp (Note that θ∗j minimizes

over Rp, and not over Θ. We ignore this difference below because θ∗jwill eventually be in Θ w.p.1.).

The solution satisfies

√
n(θ∗j − θ0) = −Γ−1

j

√
nGnj(θ0) (A-3)

for each j. Therefore,

√
n
∑

j∈Jn

Wnj(θ
∗
j − θ0) =

√
n
∑

j∈Jn

W 0
nj(θ

∗
j − θ0) +

√
n
∑

j∈Jn

(Wnj −W 0
nj)(θ

∗
j − θ0)

=
n∑

i=1

Tin +Rn,

where Rn =
√
n
∑

j∈Jn
(Wnj −W 0

nj)(θ
∗
j − θ0) and Tin = −1√

n

∑
j∈Jn

W 0
njΓ

−1
j gj(Zi, θ0).

The result follows after we establish:

(i)
∑n

i=1 c
⊤Tin =⇒ N(0, c⊤Σc) for any c ∈ Rp with ||c|| = 1;

(ii) The remainder term Rn = op(1);

(iii)
√
n
∑

j∈Jn
Wnj(θ

∗
j − θ̂j) = op(1).

For (i), the triangular array of random variables c⊤Tin is mean zero and independent across i for

each n. By B5(a) we have:

n∑

i=1

E[c⊤Tin]
2 = E



(∑

j∈Jn

c⊤W 0
njΓ

−1
j gj(Zi, θ0)

)2



=
∑

j∈Jn

∑

l∈Jn

c⊤W 0
njΓ

−1
j E

[
gj(Zi, θ0)gl(Zi, θ0)

⊤]Γ−1⊤
l W 0⊤

nl c

→ c⊤Σc .
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Similarly, by B5(b) we have for some κ > 0,

n∑

i=1

E|c⊤Tin|2+κ → 0.

Hence we obtain (i) by applying the Liapunov’s triangular array central limit theorem.

For (ii), notice that Assumption B3(a) and (A-3) imply that maxj∈Jn ‖Γj

√
n(θ∗j − θ0)‖ = Op(1).

This together with Assumption B4(a) imply (ii) because

∥∥∥∥∥
√
n
∑

j∈Jn

(Wnj −W 0
nj)(θ

∗
j − θ0)

∥∥∥∥∥ ≤
√
nmax

j∈Jn

∥∥Γj(θ
∗
j − θ0)

∥∥∑

j∈Jn

∥∥(Wnj −W 0
nj)Γ

−1
j

∥∥

= Op(1)× op(1).

For (iii), by the n1/4–consistency result, there exists a positive sequence ηn → 0 such that

Pr[n1/4||θ̂ − θ0|| > ηn] → 0. For each j we have

Gnj(θ) = Gnj(θ0) +Gj(θ) +Gnj(θ)−Gj(θ)−Gnj(θ0)

= Lnj(θ) +O(||θ − θ0||2) + [Gnj(θ)−Gj(θ)]−Gnj(θ0) by B2.

Therefore, for the above ηn and constants a and C we have

max
j∈Jn

sup
||θ−θ0||≤aηn/n1/4

√
n‖Gnj(θ)− Lnj(θ)‖

≤ C × η2na
2
+max

j∈Jn

sup
||θ−θ0||≤aηn/n1/4

√
n‖[Gnj(θ)−Gj(θ)]−Gnj(θ0)‖

= Op(η
2
n) + op(1) = op(1) by B3(b).

Therefore,

max
j∈Jn

‖
√
n[Lnj(θ

∗
j )−Gnj(θ

∗
j )]‖ = op(1), and max

j∈Jn

‖
√
n[Lnj(θ̂j)−Gnj(θ̂j)]‖ = op(1)

because θ∗j is
√
n–consistent and θ̂j is o(n−1/4)-consistent. It now follows from the definition of θ∗j

and Assumption B1 and the triangular inequality that

max
j∈Jn

∣∣∣
√
n‖Lnj(θ

∗
j )‖ −

√
n‖Lnj(θ̂j)‖

∣∣∣ = op(1). (A-4)

33



This implies that maxj∈Jn ‖Γj

√
n(θ∗j − θ̂j)‖ = op(1), because of the properties of least squares

residuals. Then we have

√
n
∑

j∈Jn

Wnj(θ
∗
j − θ̂j) ≤

∑

j∈Jn

∥∥WnjΓ
−1
j

∥∥×max
j∈Jn

‖Γj

√
n(θ∗j − θ̂j)‖

≤ Op(1)× op(1) = op(1),

where the last inequality is due to Assumption B4(a) and (b) since

∑

j∈Jn

∥∥WnjΓ
−1
j

∥∥ ≤
∑

j∈Jn

∥∥W 0
njΓ

−1
j

∥∥+
∑

j∈Jn

∥∥(Wnj −W 0
nj)Γ

−1
j

∥∥

= O(1) + op(1) = Op(1),

the result (iii) follows.

Proof of Proposition 1. On the one-hand, by the results in Hansen (1982), the optimal GMM

(oiv) estimator is asymptotically efficient among all regular
√
n–asymptotic normal estimators for

the moment restrictions (5.4), hence Στ
oiv ≤ Στ

omd in the positive semi-definite matrix sense. On the

other hand, we notice that the oiv (optimal GMM) estimator has the expansion

√
n(θ̃τoiv − θ0) = −(Γτ⊤Ψ−1

τ Γτ )−1Γτ⊤Ψ−1
τ

√
nGτ

n(θ0) + op(1),

which can be rewritten as

√
n(θ̃τoiv − θ0) = −

(
τ∑

j=1

αjΓ
⊤
j

)−1 τ∑

j=1

αj

√
nGnj(θ0) + op(1), (A-5)

where Γτ⊤Ψ−1
τ = (α1, . . . , ατ ) with αj ∈ Rp×p, and Γτ = (Γ⊤

1 , . . . ,Γ
⊤
τ )

⊤ with Γj = E[Aj(X)D0(X)⊤],

and Gnj(θ) =
1
n

∑n
i=1Aj(Xi)ρ(Zi, θ) for j = 1, . . . , τ . That is, the optimal GMM (oiv) estimator θ̃τoiv

belongs to the class of linear combinations of the θ̂j , j = 1, . . . , τ with

θ̃τoiv =
τ∑

j=1

W oiv
0j θ̂j + op(n

−1/2),

and

W oiv
0j = −

(
τ∑

j=1

αjΓ
⊤
j

)−1

αjΓ
⊤
j for j = 1, . . . , τ .

However, by the results in Rothenberg (1973), θ̂τomd =
∑τ

j=1W
opt
0j θ̂j is asymptotically efficient among

the regular class of estimators of the form
∑τ

j=1W0j θ̂j with
∑τ

j=1W0j = Ip, hence Στ
omd ≤ Στ

oiv in

the positive semi-definite matrix sense. Therefore Στ
omd = Στ

oiv in (5.7).
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Proof of Theorem 3. Assumption C3 implies that βj0 = E[D0(Xi)φj(Xi)
⊤]. We have:

Σoiv =
(
E[σ−2

0 (Xi)D0(Xi)D0(Xi)
⊤]
)−1

=

(
E

[ ∞∑

j=1

βj0φj(Xi)σ
2
0(Xi)σ

−2
0 (Xi)D0(Xi)

⊤

])−1

=

( ∞∑

j=1

βj0E
[
φj(Xi)D0(Xi)

⊤]
)−1

=

( ∞∑

j=1

βj0β
⊤
j0

)−1

=

( ∞∑

j=1

E[D0(Xi)
⊤φj(Xi)

⊤]E [φj(Xi)D0(Xi)]

)−1

.

Assumptions C2 and C3 imply that 0 <
∑∞

j=1 βj0β
⊤
j0 <∞.

By Assumptions C1–C3, we have Vjj = {Γ⊤
j Γj}−1 = {E[φj(Xi)D0(Xi)]

⊤E[φj(Xi)D0(Xi)]}−1 and

Vjl = 0 for all j 6= l. Therefore

Σomd = lim
τ→∞

[(Ip ⊗ iτ )
⊤V −1(Ip ⊗ iτ )]

−1

= lim
τ→∞

(
τ∑

j=1

V −1
jj

)−1

= lim
τ→∞

(
τ∑

j=1

{E[φj(Xi)D0(Xi)]
⊤E[φj(Xi)D0(Xi)]}

)−1

=

( ∞∑

j=1

βj0β
⊤
j0

)−1

.

Proof of Theorem 4. We have

∑

j∈Jn

||(Ŵ opt
0j −W opt

0j )Γ−1
j || ≤ τ(n)1+ρ1 max

j∈Jn

||(Ŵ opt
0j −W opt

0j )||,

where

Ŵ opt
0j −W opt

0j = [(Ip ⊗ iτ )
⊤V̂ −1(Ip ⊗ iτ )]

−1B̂j − [(Ip ⊗ iτ )
⊤V −1(Ip ⊗ iτ )]

−1Bj

= [(Ip ⊗ iτ )
⊤V −1(Ip ⊗ iτ )]

−1[B̂j −Bj ]

+
{
[(Ip ⊗ iτ )

⊤V̂ −1(Ip ⊗ iτ )]
−1 − [(Ip ⊗ iτ )

⊤V −1(Ip ⊗ iτ )]
−1
}
Bj

+
{
[(Ip ⊗ iτ )

⊤V̂ −1(Ip ⊗ iτ )]
−1 − [(Ip ⊗ iτ )

⊤V −1(Ip ⊗ iτ )]
−1
}
[B̂j −Bj ].
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Therefore, It suffices to prove that ‖ V̂ −1 − V −1 ‖ = op(n
−γ), for some γ > 0. Since the preliminary

estimator is
√
n–consistent we can restrict our attention to the set {θ : ‖θ − θ0‖ ≤ δn

√
n} for some

sequence δn → 0. It follows that

max
j,l∈Jn

∥∥∥V̂jl − Vjl

∥∥∥ ≤
(
max
j,l∈Jn

∥∥∥Ω̂jl − Ωjl

∥∥∥+max
j∈Jn

∥∥∥Γ̂j − Γj

∥∥∥
)(

min
j∈Jn

λmin(Γj)

)−2

= Op(n
−ητ 2ρ1)

by D3.

We have by standard matrix inequalities that

∥∥∥V̂ −1 − V −1
∥∥∥ ≤ λmax(V̂

−1 − V −1)

≤ λmax(V̂ − V )λmax (V
−1)

1− λmax(V −1(V̂ − V ))

≤ τ(n) max
j,l∈Jn

∥∥∥V̂jl − Vjl

∥∥∥× 1

λmin(V )
× 1

1− τλ−1
min(V )maxj,l∈Jn

∥∥∥V̂jl − Vjl

∥∥∥

= op(n
−(η−ǫ)),

for any strictly positive ǫ < η.
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Figure 1: DGP 1 – Basis 1
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with weights Wj = (j−3/
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−3)I2 and with weights given by a feasible version of (5.8) respectively for

τ = 2, . . . , 6.



Figure 2: DGP 1 – Basis 2
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with weights Wj = (j−3/
∑τ

j=2 j
−3)I2 and with weights given by a feasible version of (5.8) respectively for

τ = 2, . . . , 6.



Figure 3: DGP 1 – Basis 3
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−3)I2 and with weights given by a feasible version of (5.8) respectively for

τ = 2, . . . , 6.



Figure 4: DGP1 – Basis 4

0.0

0.5

1.0

1.5

2.0

n=250 Estimator 1

ϕ=0.2

n=250

ϕ=0.5

n=250

ϕ=0.8

0.0

0.5

1.0

1.5

2.0

n=250 Estimator 2 n=250 n=250

0.0

0.5

1.0

1.5

2.0

τ2 3 4 5 6
n=250 Estimator 3

τ2 3 4 5 6
n=250

τ2 3 4 5 6
n=250

0.4
0.6
0.8
1.0
1.2
1.4

n=1000 Estimator 1 n=1000 n=1000

0.4
0.6
0.8
1.0
1.2
1.4

n=1000 Estimator 2 n=1000 n=1000

0.4
0.6
0.8
1.0
1.2
1.4

τ2 3 4 5 6
n=1000 Estimator 3

τ2 3 4 5 6
n=1000

τ2 3 4 5 6
n=1000

Note: Box plots of 5000 replications of Estimator 1 (Newey, 1990), and the proposed Estimators 2 and 3

with weights Wj = (j−3/
∑τ

j=2 j
−3)I2 and with weights given by a feasible version of (5.8) respectively for

τ = 2, . . . , 6.



Figure 5: A Monte Carlo Realization for DGP 1
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Note: Gray dots represent a Monte Carlo realization of estimator (7.3) of β20; j for j = 1, . . . , 9 using Basis

3 with ρ = 0.8 and n = 1000 against their standard errors (s.e.). Black dots correspond to the proposed
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Table 1: DGP2: High-Dimensional Inference

β10 β20

n Bias Std. Dev. RMSE Bias Std. Dev. RMSE

ϕ = 0.2

15 0.009 0.272 0.272 0.008 0.056 0.057

-0.013∗ 0.287∗ 0.288∗ 0.007∗ 0.052∗ 0.053∗

25 0.002 0.211 0.211 0.004 0.042 0.042

-0.012∗ 0.207∗ 0.207∗ 0.006∗ 0.037∗ 0.037∗

50 0.000 0.146 0.146 0.004 0.029 0.029

-0.006∗∗ 0.145∗∗ 0.145∗∗ 0.005∗∗ 0.026∗∗ 0.026∗∗

ϕ = 0.5

15 -0.003 0.264 0.264 0.013 0.055 0.057

-0.010∗ 0.276∗ 0.276∗ 0.016∗ 0.051∗ 0.054∗

25 -0.002 0.204 0.204 0.011 0.043 0.044

-0.027∗ 0.212∗ 0.213∗ 0.015∗ 0.038∗ 0.040∗

50 -0.006 0.144 0.144 0.007 0.030 0.031

-0.016∗∗ 0.144∗∗ 0.145∗∗ 0.009∗∗ 0.027∗∗ 0.028∗∗

ϕ = 0.8

15 -0.016 0.276 0.276 0.020 0.054 0.058

-0.028∗ 0.269∗ 0.270∗ 0.026∗ 0.053∗ 0.059∗

25 -0.016 0.205 0.205 0.018 0.042 0.046

-0.022∗ 0.192∗ 0.193∗ 0.027∗ 0.039∗ 0.047∗

50 -0.012 0.144 0.145 0.015 0.029 0.032

-0.013∗∗ 0.144∗∗ 0.145∗∗ 0.016∗∗ 0.027∗∗ 0.031∗∗

Notes: Number of replications = 5000. (*)=OLS estimator. (**)= 2SLS estimator.
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