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Abstract

We provide a tractable characterization of the sharp identification region of the parameters θ
in a broad class of incomplete econometric models. Models in this class have set-valued predictions
that yield a convex set of conditional or unconditional moments for the model variables. In short,
we call these models with convex predictions. Examples include static, simultaneous move finite
games of complete information in the presence of multiple mixed strategy Nash equilibria; random
utility models of multinomial choice in the presence of interval regressors data; and best linear
predictors with interval outcome and covariate data. Given a candidate value for θ, we establish
that the convex set of moments yielded by the model predictions can be represented as the Aumann
expectation of a properly defined random set. The sharp identification region of θ, denoted ΘI ,
can then be obtained as the set of minimizers of the distance from a properly specified vector of
moments of random variables to this Aumann expectation. We show that algorithms in convex
programming can be exploited to efficiently verify whether a candidate θ is in ΘI .We use examples
analyzed in the literature to illustrate the gains in identification and computational tractability
afforded by our method.
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1 Introduction

This paper belongs to the literature on identification in incomplete econometric models. Examples of

such models may arise when the data are incomplete or when the model asserts that the relationship

between the outcome variable and the exogenous variables is a correspondence rather than a function.

When the econometric model is incomplete, the sampling process and the maintained assumptions

may be consistent with a set of parameter vectors or functionals, rather than a single one. In this

case, the model is partially identified (Manski (2003)).

Our main contribution is to provide a simple, novel, and computationally feasible procedure to

determine the sharp identification region of the parameters θ characterizing a broad class of incomplete

econometric models. Models in this class have set-valued predictions which yield a convex set of

conditional or unconditional moments for the model variables. In short, throughout the entirety of

the paper, we call these models with convex predictions. Our use of the term “model” encompasses

econometric frameworks ranging from structural parametric models, to nonparametric best predictors

under square loss. In the interest of clarity of exposition, in this paper we focus on the parametric

case. We consider incomplete structural parametric models, as well as parametric approximations to

best predictors in the presence of incomplete data.

Structural parametric models with convex predictions can be described as follows. For a given value

of the parameter vector θ and realization of the exogenous variables, the economic model predicts a set

of values for the outcome variable of interest; these are the model (not necessarily convex) set-valued

predictions. No restriction is placed on the manner in which a specific model predicted outcome is

selected from this set. Hence, once the unobservable exogenous variables are “integrated out,” the

researcher obtains a convex set of conditional probability distributions for the outcome variable given

regressors, rather than a single one. This is the convex set of conditional moments for the model

variables, which we refer to as the convex set of model predictions. The identification problem arises

because, apart from the regressors, the researcher only observes a single realized outcome, rather than

the entire set of model predicted outcome values. When the economic model is correctly specified, the

observed outcome is a realization of a random variable which follows a conditional distribution given

regressors selected from the convex set of model predictions. Hence, one may find many values for the

parameter vector θ which, when coupled with specific distributions selected from its associated convex

set of model predictions, generate the same distribution of outcome and regressors as the one observed

in the data. Specific examples of structural parametric models with convex predictions include: static,

simultaneous move finite games of complete information in the presence of multiple mixed strategy

Nash equilibria; and random utility models of multinomial choice in the presence of interval regressors
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data.

Nonparametric best predictors under square loss amount to conditional expectations of outcome

variables given covariates. We consider the case that the researcher wishes to obtain a best linear ap-

proximation to the conditional expectation, that is, wishes to obtain the best linear predictor (BLP)

of the outcome variable given the covariates, but these variables are only known to lie in observable

random intervals.1 When thinking about best linear prediction, no “model” is assumed in any sub-

stantive sense. However, with some abuse of terminology, for a given value of the BLP parameter

vector θ, we refer to the set of prediction errors associated with each logically possible outcome and

covariate variables in the observable random intervals, as the “model set-valued predictions.” The rel-

evant (unconditional) moments for each prediction error in this set are given by the prediction error’s

expectation, and its covariance with each of the covariates associated with that specific prediction

error. The collection of such moments is convex, and we refer to this set as the “convex set of model

predictions.” If the data were complete this set would be a singleton, and under standard regularity

conditions, there would be only one parameter vector θ determining a prediction error with expecta-

tion and covariance with each covariate equal to zero. However, due to the incompleteness of the data,

one may find many values for the parameter vector θ which, when coupled with random variables in

the observable intervals, yield prediction errors with these moments equal to zero.

Although previous literature has provided tractable characterizations of the sharp identification

region for certain models with convex predictions (see, e.g. the analysis of nonparametric best predic-

tors under square loss with interval outcome data), there exist many important problems, including

the examples listed above, in which such a characterization is difficult to obtain. The analyses of

Horowitz, Manski, Ponomareva, and Stoye (2003), Ciliberto and Tamer (2004), and Andrews, Berry,

and Jia (2004) are examples of research studying the identified features of best linear predictors with

missing outcome and covariates data, and finite games with multiple pure strategy equilibria, in which

the regions of parameter values proposed are either infeasible to compute, or not sharp.

Establishing whether a conjectured region for the identified features of an incomplete econometric

model is sharp is a key question in identification analysis. Given the joint distribution of the observed

variables, a researcher asks herself what parameters θ are consistent with this distribution. The sharp

identification region is the collection of parameter values that could generate the same distribution of

observables as the one in the data, for some data generation process consistent with the maintained

assumptions. Examples of sharp identification regions for parameters of incomplete models are given

1Beresteanu and Molinari (2006, 2008) provide a computationally tractable characterization of the sharp identification
region for the BLP parameters in the case that only the outcome variable is interval measured. Here we significantly
extend their identification results by allowing also for interval valued covariates.
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in Manski (1989, 2003), Manski and Tamer (2002), and Molinari (2008), among others. In some cases

researchers are only able to characterize a region in the parameter space that includes all the parameter

values that may have generated the observables, but may include other (infeasible) parameter values

as well. These larger regions are called outer regions. The inclusion in the outer regions of parameter

values which are infeasible may weaken the researcher’s ability to make useful predictions, and to test

for model misspecification.

Using the theory of random sets (Molchanov (2005)), we provide a general methodology that allows

us to characterize the sharp identification region for the parameters of models with convex predictions

in a computationally tractable manner. Our main insight is that for a given candidate value of θ,

the (conditional or unconditional) Aumann expectation of a properly defined θ-dependent random

closed set coincides with the convex set of model predictions.2 That is, this Aumann expectation

gives the set, implied by the candidate θ, of moments for the relevant variables which are consistent

with all the model’s implications. This is a crucial advancement compared to the related literature,

where researchers are often unable to fully exploit the information provided by the model that they

are studying, and work with just a subset of model’s implications. In turn, this advancement allows

us to characterize the sharp identification region of θ, denoted ΘI , through a simple necessary and

sufficient condition. We explain this condition focusing on the case of structural models; a similar

condition applies in the case of best linear prediction, see Section 5. Assume the model is correctly

specified. Then θ is in ΘI if and only if for all values of the covariates (except possibly a set of

measure zero), the conditional Aumann expectation of the properly defined random set associated

with θ contains the probability distribution of outcomes given covariates observed in the data. This

is because when such condition is satisfied, there exists a probability distribution of outcomes given

covariates associated with θ that is consistent with all the implications of the model, and coincides

with the distribution observed in the data. The methodology that we propose allows us to verify

this condition by determining whether a point (the distribution observed in the data) belongs to

a θ-dependent convex set (the Aumann expectation). We show that this can be accomplished by

minimizing a sublinear, hence convex, function over a convex set, and checking whether the resulting

objective value is equal to zero. Computationally this is a very simple task, which can be carried out

efficiently using algorithms in convex programming (e.g., Boyd and Vandenberghe (2004)).

It is natural to wonder which model with set-valued predictions may not belong to the class of

models to which our methodology applies. If the model is not augmented with restrictions on the

manner in which a specific outcome3 is selected from the set-valued predictions, then these set-valued

2We formally define the notions of both random closed set and Aumann expectation in Section 3.
3Prediction error in the case of BLP with incomplete data.
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predictions yield a convex set of moments for the model variables. This is because the unrestricted

process of outcome selection convexifies the set-valued predictions of the model, yielding a convex

set of moments. Therefore, our methodology applies. However, if restrictions are imposed on the

selection process, non-convex sets of moments may result. We are chiefly interested in the case that

no untestable assumptions are imposed on the selection process, and therefore exploring identification

in models with non-convex predictions is beyond the scope of this paper.

There are no precedents to our general characterization of the sharp identification region of models

with convex predictions. However, there is one precedent to the use of the Aumann expectation as

a key tool to describe fundamental features of partially identified models. This is given by the work

of Beresteanu and Molinari (2006, 2008), who were the first to illustrate the benefits of using ele-

ments of random sets theory to conduct identification analysis and statistical inference for incomplete

econometric models in the space of sets, in a manner which is the exact analog of how these tasks are

commonly performed for point identified models in the space of vectors.4

While our contribution lies in the identification analysis that we carry out, our characterization of

the sharp identification region leads to an obvious sample analog counterpart which can be used when

the researcher is confronted with a finite sample of observations. This sample analog is given by the

set of minimizers of a criterion function, so that the recent contributions of Chernozhukov, Hong, and

Tamer (2004, 2007), Andrews and Guggenberger (2007), Andrews and Soares (2007), Canay (2008),

Galichon and Henry (2006), Pakes, Porter, Ho, and Ishii (2006), Romano and Shaikh (2006), and

Rosen (2008), among others, can be applied for estimation and statistical inference.

1.1 Overview for the Case of Finite Games with Multiple Equilibria

While our approach is general and applies to the entire class of models with convex predictions, in the

interest of clarity of exposition we focus this section and the first part of the paper on identification

analysis in static, simultaneous move finite games of complete information in the presence of multiple

mixed strategy Nash equilibria. Our choice of finite games with multiple equilibria as the main example

of our methodology is based on two considerations. First, the problem of identification for parameters

characterizing these models has received a large amount of attention in the literature. See Section

2.2 for many references. Yet, unless untestable and often not credible assumptions are imposed to

obtain point identification of the model’s parameters, none of the methodologies developed in this

vast literature provide a tractable characterization of ΘI . Second, when players may randomize across

their actions, a number of technical challenges arise for identification analysis. Certain features of our

4Beresteanu and Molinari (2006, 2008) study a class of partially identified models in which the sharp identification
region of θ can itself be written as a transformation of the Aumann expectation of a properly defined random set.
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approach allow us to overcome these challenges. Once these features are clearly explained, it becomes

fairly simple to apply our methodology to other models with convex predictions. We illustrate this by

analyzing random utility models of multinomial choice in the presence of interval regressors data, and

best linear predictors with interval outcome and covariate data, arguably two of the most widely used

tools in applied microeconomics.

We first explain why finite games with multiple equilibria are a special case of the broad class

of models with convex predictions. Suppose that players follow Nash behavior and that their profits

depend on their own actions, the actions of their opponents, payoff shifters x which are observable by

the players and the econometrician, and payoff shifters ε that are unobservable by the econometrician,

but observable by the players (the game is one of complete information). Parametrize the payoff

functions of the game, and fix a given value of the parameter vector θ. Each realization of x and ε

implies a (necessarily non-empty) set of mixed strategy Nash equilibria, which we denote by Sθ (x, ε) .

These equilibria are the model set-valued predictions. Each of the equilibria in Sθ (x, ε) determines a

probability distribution over the game’s outcomes conditional on the realization of x and ε. Let the

random closed set of probability distributions over the game’s outcomes implied by Sθ (x, ε) be denoted

Q (Sθ (x, ε)). In Section 3 we establish that the collection of probability distributions over outcomes

of the game conditional on x which are consistent with the model (i.e., with all its implications) is

given by the Aumann expectation of Q (Sθ (x, ε)) conditional on x, denoted E (Q (Sθ (x, ε))|x) , which
is a closed convex set. This is the convex set of model predictions. The researcher only observes an

outcome of the game, denoted y, and payoff shifters x. While data on y and x identify the distribution

of y conditional on x, denoted P (y|x), the observed outcome is determined by a mixed strategy
equilibrium selected from the set of model predicted mixed strategy equilibria. Hence, it is just the

realization of a random mixing draw from that equilibrium mixed strategy profile.

Framing the set of the model’s predicted probability distributions in terms of an Aumann ex-

pectation is extremely useful for determining ΘI . A candidate value for the parameter vector may

have generated the observed conditional distribution P (y|x) if and only if P (y|x) belongs to the
conditional Aumann expectation associated with that parameter vector. Hence, ΘI is given by the

collection of θ’s yielding a conditional Aumann expectation E (Q (Sθ (x, ε))|x) that contains P (y|x)
for x− a.s. This is our fundamental identification result.

Given a candidate value for θ, one can verify whether it belongs to ΘI by checking whether the

support function of P (y|x) is dominated by the support function of E (Q (Sθ (x, ε))|x).5 The latter
5“The support function [of a nonempty closed convex set B in direction u] h (B,u) is the signed distance of the

support plane to B with exterior normal vector u from the origin; the distance is negative if and only if u points into
the open half space containing the origin,” Schneider (1993, page 37). See Rockafellar (1970, Chapter 13) or Schneider
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can be evaluated exactly or approximated by simulation, depending on the complexity of the game.

Showing that this dominance holds amounts to checking whether the difference between the support

function of E (Q (Sθ (x, ε))|x) and the support function of P (y|x) in a direction given by a vector u
attains a minimum of zero as u ranges in the unit ball of appropriate dimension. Because the support

function of E (Q (Sθ (x, ε))|x) is a sublinear (hence convex) function and the support function of the
vector P (y|x) is a linear function, this amounts to minimizing a sublinear function over a convex set,
a task which can be carried out efficiently using algorithms in convex programming.

A further simplification is possible in the special case where one assumes that players do not

randomize across their actions. We show that the support function of P (y|x) is dominated by the
support function of E (Q (Sθ (x, ε))|x) as long as this dominance condition holds for a finite number of
directions u. This is because when players are only allowed to play pure strategies, E (Q (Sθ (x, ε))|x)
is a closed convex polytope, fully characterized by a finite number of supporting hyperplanes, i.e., by

its support function evaluated at a finite number of directions in the unit ball. These directions are

trivial to determine. While the number of inequalities to be checked in order to obtain ΘI is finite,

in some applications it may be quite large. However, we show that in many cases this number can be

substantially reduced by exploiting basic notions of set algebra. Moreover, obtaining ΘI by solving

the minimization problem described above remains feasible.

1.2 Structure of the Paper

In Sections 2 and 3 we analyze in great detail the identification problem in static, simultaneous move

finite games of complete information in the presence of multiple mixed strategy Nash equilibria. In

Section 2 we introduce notation and assumptions, and present the identification problem. In order to

clearly connect our work to the related literature, we present the definition of the sharp identification

region provided by Berry and Tamer (2007), which however is infeasible to compute. In Section 3 we

give our computationally feasible characterization of ΘI . We first construct the convex set of model

predictions (Section 3.1), and then use this set to obtain ΘI in the case that players are allowed

to use mixed strategies (Section 3.2). In Section 3.3 we compare our methodology to the earlier

contributions of Andrews, Berry, and Jia (2004) and Ciliberto and Tamer (2004), and clarify why

our approach leads to the sharp identification region, while theirs to outer regions. In Section 3.4 we

specialize our results for the case that players are restricted to use pure strategies only. We illustrate

the gains in identification afforded by our methodology through the simple examples of a two player

entry game with mixed strategies (Section 3.3.1), and a four player, two type entry game with pure

(1993, Section 1.7) for a thorough discussion of the support function of a closed convex set, and its properties.
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strategies only (Section 3.4.1). In Section 3.5 we address the computational issues associated with our

methodology.

In Section 4 we provide a computationally tractable characterization of the sharp identification

region of the parameters of random utility models of multinomial choice in the presence of interval re-

gressors data, by building on our treatment of finite games with multiple pure strategy Nash equilibria.

In Section 5 we provide a computationally tractable characterization of the sharp identification region

of the parameters of a best linear predictor with interval outcome and covariate data, by building on

our treatment of finite games with multiple mixed strategy Nash equilibria. Section 6 concludes. While

throughout Sections 2-3 we assume that players follow Nash behavior, our analysis of finite games with

multiple equilibria does not depend on this assumption, but easily extends to other solution concepts

for the game. In Appendix A we illustrate this by looking at games where rationality of level-1 is the

solution concept (a problem first studied by Aradillas-Lopez and Tamer (2008)), and by looking at

games where correlated equilibrium is the solution concept.6 Appendix B gives a dual representation

of the sharp identification region in the special case that only pure strategies are played, and provides

further insights on how to reduce the number of inequalities to be checked in order to compute it.7

2 Set-up of the Problem in Finite Games with Multiple Equilibria

2.1 Notation and Assumptions

Throughout the paper, we use capital Latin letters to denote sets and random sets. We use lower

case Latin letters for random vectors. We denote parameter vectors and sets of parameter vectors,

respectively by θ and Θ. For a given finite set W, we denote by κW its cardinality. Given two non-

empty sets B,C ⊂ <d, we denote the directed Hausdorff distance from C to B, the Hausdorff distance

6Yang (2008) exploits the fact that all Nash equilibria are correlated equilibria to provide simple-to-compute outer
regions for the model parameters when Nash equilibrium is the solution concept.

7 In particular, in Appendix B we show that in the very special case that players are restricted to playing pure
strategies (and only in this case) our characterization of the sharp identification region based on the support function of
E (Q (Sθ (x, ε))|x) is dual to a characterization based on the capacity functional (i.e., the “probability distribution”) of
the random set of pure strategy equilibrium outcomes, by exploiting a result due to Artstein (1983). Galichon and Henry
(2006) also use the notion of capacity functional of a properly defined random set and the results of Artstein (1983), to
provide a specification test for partially identified structural models, thereby extending the Kolmogorov-Smirnov test of
correct model specification to partially identified models. The analysis in Galichon and Henry (2006) does not treat the
broad class of problems considered in this paper, nor does it relate the treatment of the identification problem in finite
games with multiple pure strategy Nash equilibria based on the tools of random sets theory to the analysis in Berry
and Tamer (2007), Ciliberto and Tamer (2004), and Andrews, Berry, and Jia (2004). For the very special case of finite
games with multiple pure strategy Nash equilibria, Galichon and Henry (2008) address these questions. Their paper is
subsequent to ours.

7



between C and B, and the Hausdorff norm of B, respectively, by

dH (C,B) = sup
c∈C

inf
b∈B

kc− bk ,

ρH (C,B) = max {dH (C,B) , dH (B,C)} ,

kBkH = sup
b∈B

kbk .

We focus on simultaneous-move games of complete information (normal form games) in which each

player has a finite set of actions (pure strategies) Aj , j = 1, . . . , J, with J the number of players. We

denote by a = (a1, . . . , aJ) ∈ A a generic vector specifying an action for each player (a pure strategy

profile), with A = ×J
j=1Aj . We denote by πj (aj , a−j , xj , εj , θ) the payoff function for player j, where

a−j is the vector of player j’s opponents’ actions, xj ∈ X is a vector of observable payoff shifters, εj

is a payoff shifter observed by the players but unobserved by the econometrician, and θ ∈ Θ ⊂ <p is a

vector of parameters of interest, with Θ the parameter space. We denote by σj : Aj → [0, 1] the mixed

strategy for player j that assigns to each action aj ∈ Aj a probability σj (aj) ≥ 0 that it is played,
with

P
aj∈Aj

σj (aj) = 1 for each j = 1, . . . , J. We let ∆ (Aj) denote the mixed extension of Aj , and

∆ (A) = ×J
j=1∆ (Aj) . With the usual slight abuse of notation, we denote by πj (σj , σ−j , xj , εj , θ) the

expected payoff associated with the mixed strategy profile σ = (σ1, . . . , σJ) . We denote by y ∈ Y the
vector of outcomes of the game; this vector is observable by the econometrician. In the remainder of

this section, we formalize our assumptions on the games and sampling processes.

Assumption 1 (i) The set A of pure strategy profiles and the set Y of potential outcomes of the game
are finite. Each player has κAj ≥ 2 pure strategies to choose from. The number of players is J ≥ 2.
(ii) Players follow Nash behavior. They move simultaneously and only once.

(iii) The strategy profiles determine the outcomes observable by the econometrician through a mapping

g : A→ Y, the “outcome rule”. This outcome rule is known by the econometrician.
(iv) The parametric form of the payoff functions πj (aj , a−j , xj , εj , θ) , j = 1, . . . , J, is known, and for

a known action ā it is normalized to πj (āj , ā−j , xj , εj , θ) = 0 for each j. The payoff functions are

continuous in the observable and unobservable payoff shifters. The parameter space Θ is compact.

Assumption 1-(i) assures that there is a finite set of strategies for each player, and a finite set of

possible outcomes of the game. Part (ii) of the assumption requires that players follow Nash behavior,

so that for given payoff shifters xj and εj , the mixed strategy profile σ constitutes a Nash equilibrium

if each player’s mixed strategy is a best response. These assumptions restrict attention to normal

(strategic) form games. Part (iii) of the assumption requires that the outcome rule is known to the

econometrician. Part (iv) of the assumption requires continuity of the payoff functions in xj and εj .
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This condition is needed to establish measurability and closedness of certain sets. Assumption 1-(iv)

also provides a location normalization. Such normalization is implicit in entry models, where players

are commonly assumed to earn zero payoffs if they do not enter the market (regardless of the action

chosen by their opponents).

In many normal form games, such as the ones analyzed by Andrews, Berry, and Jia (2004, ABJ

henceforth), Ciliberto and Tamer (2004, CT henceforth), Berry and Tamer (2007), and Bajari, Hong,

and Ryan (2007), players’ actions and the outcomes observable by the econometrician coincide. We

simplify the exposition in all that follows, by restricting attention to games satisfying this condition:

Assumption 2 The outcome rule g (·) is the identity mapping, so that y = a.

Our results, however, apply to the more general case stated in Assumption 1-(iii), as we illustrate in

Section 3.4.1 with a simple example.

Assumption 3 The econometrician observes data that identify P (y|x) . The observed matrix of pay-
off shifters x is comprised of the non-redundant elements of xj , j = 1, . . . , J. The unobserved random

vector ε = (ε1, . . . , εJ) has a distribution function F that is known up to a finite dimensional parameter

that is part of θ. The random vectors (y, x, ε) are defined on a non-atomic probability space (Ω,F,P) .

Assumption 3 requires that the researcher can identifyP (y|x) , the population distribution of observed
equilibrium outcomes given covariates. Since our focus in this paper is identification, we treat identified

distributions as population distributions. The requirement that the probability space is non-atomic is

fairly weak and facilitates some of the technical details below.

2.2 The Identification Problem

It is well known that the games and sampling processes satisfying Assumptions 1-3 may lead to multiple

Nash equilibria. Multiplicity implies that there are regions of values of the exogenous variables where

the econometric model predicts more than one outcome. Therefore, the relationship between the

outcome variable of interest and the exogenous variables is a correspondence rather than a function.

Hence, the parameters of the payoff functions may not be point identified unless more assumptions

are added to the model, see for example Berry and Tamer (2007) for a thorough discussion of this

problem. Bjorn and Vuong (1985), Bresnahan and Reiss (1988, 1990, 1991), Berry (1992), Mazzeo

(2002), Tamer (2003), and Bajari, Hong, and Ryan (2007), among others, add restrictions to some

of the models treated here to guarantee point identification of the payoff parameters.8 Examples of
8Tamer (2003) also suggests an approach to partially identify the model’s parameters when no additional assumptions

are imposed.
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such restrictions include assumptions on the nature of competition, heterogeneity of firms, availability

of covariates with sufficiently large support and/or instrumental variables, and restrictions on the

mechanism which, in the data generating process, determines the equilibrium played in the regions of

multiplicity.

In the absence of additional assumptions of this kind, the payoff parameters can be partially

identified given knowledge of P (y|x) for all x. In particular, their identification region is given by the
set of parameter vectors which are consistent with the sampling process and the maintained modeling

assumptions, and therefore may have generated the distribution of observables. If the conjectured

region for the parameters of interest contains all its observationally equivalent feasible values and no

other, the region is sharp. Berry and Tamer (2007, equation (2.21), page 67) provide an abstract

formulation for the sharp identification region in a two player entry model. Here we report their

formulation, modified to allow for games with more than two players and two actions. This formulation,

however, is based on the concept of “selection mechanism.” An admissible selection mechanism, in its

most general definition, is a random vector whose entries almost surely have nonnegative realizations

that sum up to one. The selection mechanism determines the probability with which each equilibrium,

in the regions of the sample space where the model admits multiple equilibria, is played. By definition,

the sharp identification region includes all the parameter values for which one can find an admissible

selection mechanism, such that the model augmented with this selection mechanism generates the joint

distribution of the observed variables. If no assumptions are placed on it, the selection mechanism

may represent an infinite dimensional nuisance parameter. One may consider the use of sieves to

approximate such a nuisance parameter. While the sieve approach might be theoretically possible

(though no results are available to establish its validity in this context), in practice it will result in

extremely demanding (if not unfeasible) computational challenges. Given these difficulties, Berry and

Tamer (2007, page 68) have suggested to give up on obtaining sharp identification regions. Rather,

they suggest focusing on outer regions for the model parameters that do not exploit all the information

contained in the model, but are practically appealing because they are defined by a finite number of

moment inequalities, see, e.g., Andrews, Berry, and Jia (2004) and Ciliberto and Tamer (2004). These

moment inequalities have to hold for x− a.s.

In Section 3 we show that contrary to what was indicated in the previous literature, the sharp

identification region can in fact be characterized in a computationally feasible manner. We provide

such a characterization, avoiding the need to deal with infinite dimensional nuisance parameters. Our

approach does not impose any assumption on the selection mechanism, on the nature of competition,

or on the form of heterogeneity across players. It does not require availability of covariates with large
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support or instruments, but fully exploits their identifying power if they are present.

Before moving on to the presentation of our results, for comparison purposes we give the (extension)

of the abstract formulation of the sharp identification region provided by Berry and Tamer (2007,

equation (2.21), page 67). We start with some additional notation. As in Section 1.1, let Sθ (x, ε)

denote the set of mixed strategy Nash equilibria associated with a specific realization of the payoff

shifters x and ε (this set is defined formally in equation (3.1) below). Let ψ (·;x, ε) : Sθ (x, ε) →
∆κSθ(x,ε)−1 denote a selection mechanism giving the probability that an equilibrium σ ∈ Sθ (x, ε) is

selected, with ∆κSθ(x,ε)−1 denoting the unit simplex in the space of dimension κSθ(x,ε). Observe that

for this selection mechanism to be admissible it is required that ψ (σ;x, ε) ≥ 0 for all σ ∈ Sθ (x, ε),

and that
P

σ∈Sθ(x,ε) ψ (σ;x, ε) = 1. Under simple regularity conditions (e.g., sufficient assumptions on

x, ε to guarantee continuity of the distribution of the payoffs), this summation is well defined because

except on a set of x, ε realizations of measure zero, the set Sθ (x, ε) contains a finite number of equilibria

(Wilson (1971)). Notice that the equilibrium selection mechanism ψ is left unspecified and can depend

on market unobservables even after conditioning on market observables. Then we have the following

definition.

Definition 1 In a game which satisfies Assumptions 1-3, the sharp identification region for the para-

meter vector θ ∈ Θ is given by:

(2.1) ΘB
I =

⎧⎪⎨⎪⎩θ ∈ Θ :
∃ ψ such that ∀ t ∈ Y,

P (y = t|x) =
Z Ã P

σ∈Sθ(x,ε)
ψ (σ;x, ε)

JQ
j=1

σj (tj)

!
dF (ε|x) x− a.s.

⎫⎪⎬⎪⎭
where ψ is an admissible equilibrium selection mechanism as described above.

Let P (y|x; θ, ψ) denote the integral on the right hand side of the second line of equation (2.1) above.
Berry and Tamer explain this formulation and the practical difficulties involved in computing the set

ΘB
I as follows (page 68):

“The set ΘB
I is the sharp identified set, i.e., the set of parameters θ that are consistent

with the data and the model. Heuristically, a θ ∈ ΘB
I if and only if there exists a (proper)

selection mechanism ψ (...) such that the induced probability distribution P (y|x; θ, ψ)
matches the choice probabilities P (y|x) for all x almost everywhere. So, the presence of
multiple equilibria introduces nuisance parameters that are not specified and hence makes
it harder to identify the parameter θ. (...) Inference on the set ΘB

I based on definition
(2.1) [(2.21) in the original] though theoretically attractive is not practically feasible since
one needs to deal with infinite dimensional nuisance parameters (the ψ’s). A practical
approach to inference in this class of models follows the approach in Ciliberto and Tamer
(2004) by exploiting the fact that the selection mechanism ψ is a probability and hence
bounded between zero and one. Although this approach does not provide a sharp set, it is
practically attractive.”
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3 The Sharp Identification Region in Finite Games with Multiple
Equilibria

This section develops the characterization of the sharp identification region which constitutes the main

contribution of our paper in the analysis of finite games with multiple equilibria. For given θ ∈ Θ
and realization of (x, ε) , in Section 3.1 we derive the set of (mixing) probability distributions over

outcome profiles which are consistent with the modeling assumptions. Then we show how one can

properly “integrate out” ε conditional on x, hence obtaining the set of predicted choice probabilities

consistent with the modeling assumptions, i.e. with all the implications of the model. This step is

crucial, because it gives the set of probability distributions to which, if the model is correctly specified,

P (y|x) belongs x − a.s. for each observationally equivalent θ ∈ Θ. In Section 3.2 we formalize this
intuition, and give the characterization of the set of parameters θ ∈ Θ which are consistent both

with the modeling assumptions and the data — this is the sharp identification region of θ. In Section

3.3 we relate our methodology to the earlier contributions of ABJ and CT, and clarify the profound

difference in our approaches. This difference leads to the sharp region in our case, and to outer regions

in the cases of ABJ and CT. In Section 3.3.1 we illustrate the gains in identification afforded by our

methodology through a simple two player entry game.

3.1 Construction of the Convex Set of Model Predictions

We assume that players in each market follow Nash behavior. For a given realization of x and ε, the

mixed strategy profile σ = (σ1, . . . , σJ) constitutes a Nash equilibrium if

πj (σj , σ−j , xj , εj , θ) ≥ πj (σ̃j , σ−j , xj , εj , θ) ∀σ̃j ∈ ∆ (Aj) ∀j.

Hence, we define the following θ-dependent set:

(3.1) Sθ (x, ε) = {σ ∈ ∆ (A) : πj (σj , σ−j , xj , εj , θ) ≥ πj (σ̃j , σ−j , xj , εj , θ) ∀σ̃j ∈ ∆ (Aj) ∀j} .

For a given value of θ and realization of (x, ε) , this is the set of mixed strategy Nash equilibrium

profiles.

Example 1 Consider a simple two player entry game similar to the one in Tamer (2003), omit the

covariates, assume that players’ payoffs are given by πj = aj (a−jθj + εj) , where aj ∈ {0, 1} and
θj < 0, j = 1, 2. Let σj ∈ [0, 1] denote the probability that player j enters the market, with 1 − σj

the probability that he does not. Figure 1-(a) plots the set of mixed strategy equilibrium profiles Sθ (ε)
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resulting from the possible realizations of ε1, ε2. Formally,

Sθ (ε) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

{(0, 0)} if ε ∈ E(0,0)θ ≡ (−∞, 0]× (−∞, 0] ,

{(1, 0)} if ε ∈ E(1,0)θ ≡ [−θ1,+∞)× (−∞,−θ2] ∪ [0,−θ1]× (−∞, 0] ,

{(0, 1)} if ε ∈ E(0,1)θ ≡ (−∞, 0]× [0,+∞) ∪ [0,−θ1]× [−θ2,+∞) ,
{(1, 1)} if ε ∈ E(1,1)θ ≡ [−θ1,+∞)× [−θ2,+∞) ,n

(0, 1) ,
³

ε2
−θ2 ,

ε1
−θ1

´
, (1, 0)

o
if ε ∈ EMθ ≡ [0,−θ1]× [0,−θ2] ,

where in the above expressions E(·,·)θ denotes a region of values for ε such that the game admits the

pair in the superscript as a unique equilibrium, and EMθ denotes the region of values for ε such that

the game has multiple equilibria. In all of Section 3, whenever revisiting this example, we use the

notations E(·,·)θ and EMθ without repeating their definition. ¤

For ease of notation we write the set Sθ (x, ε) and its realizations, respectively, as Sθ and Sθ (ω) ≡
Sθ (x (ω) , ε (ω)) , ω ∈ Ω, omitting the explicit reference to x and ε. Given Assumption 1, Sθ is a

random closed set in ∆ (A).

Definition 2 Denoting by F the family of closed subsets of a topological space F, a map Z : Ω→ F is
called a random closed set, also known as a closed set valued random variable, if for every compact

set K in F, Z−1 (K) = {ω ∈ Ω : Z (ω) ∩K 6= ∅} ∈ F.

The fact that the set Sθ satisfies the conditions in Definition 2 can be shown by writing the set Sθ as

follows:

Sθ =
JT
j=1

{σ ∈ ∆ (A) : πj (σj , σ−j , xj , εj , θ) ≥ π̃j (σ−j , xj , εj , θ)} ,

where π̃j (σ−j , xj , εj , θ) = supσ̃j∈∆(Aj) πj (σ̃j , σ−j , xj , εj , θ) . Since πj (σj , σ−j , xj , εj , θ) is a continuous

function of σ, xj , εj , its supremum π̃j (σ−j , xj , εj , θ) is a continuous function.9 Therefore Sθ is the

finite intersection of sets defined as solutions of inequalities for continuous (random) functions. Thus,

Sθ is a random closed set, see Molchanov (2005, Section 1.1).

For a given θ ∈ Θ and ω ∈ Ω, each element σ (ω) ≡ (σ1 (ω) , . . . , σJ (ω)) ∈ Sθ (ω) is one of the

admissible mixed strategy Nash equilibrium profiles associated with the realizations x (ω) and ε (ω) ,

and it takes values in ∆ (A1)× · · · ×∆ (AJ) . The resulting random elements σ = {σ (ω) , ω ∈ Ω} are
the selections of Sθ:

9Continuity in xj , εj follows from Assumption 1-(iv). Continuity in σ follows because by definition

πj (σ, xj , εj , θ) ≡
a∈A

J

k=1

σk (ak) πj (a, xj , εj , θ) .
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Definition 3 Let Z be a random closed set in a topological space F. A random element z with values

in F is called a (measurable) selection of Z if z(ω) ∈ Z (ω) for almost all ω ∈ Ω. The family of all
selections of Z is denoted by Sel (Z) .

Example 1 (Cont.) Consider again the simple two player entry game in Example 1, with the set Sθ

plotted in Figure 1-(a). Let ΩM =
©
ω ∈ Ω : ε (ω) ∈ EMθ

ª
. Then for ω /∈ ΩM the set Sθ has only one

selection, since the equilibrium is unique. For ω ∈ ΩM , Sθ contains a rich set of selections, which can

be obtained as

σ (ω) = (σ1 (ω) , σ2 (ω)) =

⎧⎪⎨⎪⎩
(1, 0) if ω ∈ ΩM1 ,³

ε2(ω)
−θ2 ,

ε1(ω)
−θ1

´
if ω ∈ ΩM2 ,

(0, 1) if ω ∈ ΩM3 ,

for all measurable ΩMi ⊂ ΩM , i = 1, 2, 3, such that ΩM1 ∪ΩM2 ∪ΩM3 = ΩM . ¤

By definition of a mixed strategy profile, for each j = 1, . . . , J, σj (ω) : Aj → [0, 1] assigns to

each action aj ∈ Aj a probability σj (ω, aj) ≥ 0 that it is played, with
P

aj∈Aj
σj (ω, aj) = 1. Recall

that by Assumption 2, the realizations of y coincide with the actions a taken with positive probability

and Y = A. Index the set Y in some (arbitrary) way, such that Y =
©
t1, . . . , tκY

ª
. Then for a given

parameter value θ ∈ Θ and realization σ (ω) , ω ∈ Ω, of a selection σ ∈ Sel (Sθ) , the implied probability
that y is equal to tk ≡

¡
tk1, . . . , t

k
J

¢
, k = 1, . . . , κY , is given by

QJ
j=1 σj

³
ω, tkj

´
. Hence, we can use a

selection σ ∈ Sel (Sθ) to define a random point q (σ) whose realizations have coordinates

(3.2) [q (σ (ω))]k =
JY
j=1

σj

³
ω, tkj

´
, k = 1, . . . , κY .

The random point q (σ) lies in a space of dimension equals to κY and is such that for ω ∈ Ω,
[q (σ (ω))]k ≥ 0 for each k = 1, . . . , κY and

PκY
k=1 [q (σ (ω))]k = 1. Hence, it is an element of the

unit simplex in <κY , denoted ∆κY−1. Because Sθ is a random closed set in ∆ (A) , the set resulting
from repeating the above construction for each σ ∈ Sel (Sθ) and given by

(3.3) Q (Sθ) = {([q (σ)]k , k = 1, . . . , κY) : σ ∈ Sel (Sθ)} ,

is a closed random set in ∆κY−1

Example 1 (Cont.) Consider again the simple two player entry game in Example 1, with the set Sθ

plotted in Figure 1-(a). Index the set Y so that Y = {(0, 0) , (1, 0) , (0, 1) , (1, 1)} . Then

Q (Sθ) =

⎧⎪⎪⎨⎪⎪⎩q (σ) =

⎡⎢⎢⎣
(1− σ1) (1− σ2)
σ1 (1− σ2)
(1− σ1)σ2
σ1σ2

⎤⎥⎥⎦ : σ ∈ Sel (Sθ)
⎫⎪⎪⎬⎪⎪⎭ .

Figure 1-(b) plots the set Q (Sθ) resulting from the possible realizations of ε1, ε2. ¤
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For given ω ∈ Ω, each vector ([q (σ (ω))]k , k = 1, . . . , κY) ∈ Q (Sθ (ω)) gives the probability with

which each outcome (a J-tuple of actions under Assumption 2) of the game is observed under the

mixed strategy equilibrium σ (ω) when the realization of (x, ε) is (x (ω) , ε (ω)) .

Notice that each q (σ) , σ ∈ Sel (Sθ) , can be obtained by choosing an admissible selection mechanism
ψ (·;x, ε) which, for each (x, ε) , picks the specific σ ∈ Sθ (x, ε) with probability one, and constructing

the implied probability distribution over action profiles. However, it is clear from the discussion in

Section 2.2 that an admissible selection mechanism also gives mixtures of the probability distributions

over action profiles associated with the mixed strategy Nash equilibria. All such mixtures can be

obtained by considering the convex hull of the set Q (Sθ) , denoted co [Q (Sθ)]. In fact, each realization

of co [Q (Sθ)] gives the entire set of probability distributions over action profiles associated with the

corresponding realization of (x, ε) which are consistent with the maintained modeling assumptions.

The task left is then to integrate such probability distributions against the distribution of ε given x,

that is, to “integrate out” ε for each selection of co [Q (Sθ)].

Observe that every realization of q ∈ Sel (Q (Sθ)) is contained in ∆κY−1, and therefore Q (Sθ) is

an integrably bounded random closed set, i.e., E (kQ (Sθ)kH) < ∞, see Molchanov (2005, Definition

2.1.11). This implies that all its selections are integrable. Hence we can define the conditional Aumann

expectation10 of Q (Sθ) as

E (Q (Sθ)|x) = {E (q|x) : q ∈ Sel (Q (Sθ))}

= {(E ( [q (σ)]k|x) , k = 1, . . . , κY) : σ ∈ Sel (Sθ)} ,

where the notation E ( ·|x) denotes the conditional Aumann expectation of the random set in paren-

theses, while we reserve the notation E ( ·|x) for the conditional expectation of a random vector.

By Theorem 2.1.46 in Molchanov (2005) the conditional Aumann expectation exists and is unique.

Because by Assumption 3 the probability space is non-atomic, and because the random set Q (Sθ)

takes its realizations in a subset of the finite dimensional space <κY , it follows from Theorem 2.1.15

and Theorem 2.1.24 of Molchanov (2005) that E (Q (Sθ)|x) is a closed convex set for x − a.s., and

E (Q (Sθ)|x) = E (co [Q (Sθ)]|x).

Example 1 (Cont.) Consider again the simple two player entry game in Example 1, with the set

Q (Sθ) plotted in Figure 1-(b). Let ΩM =
©
ω ∈ Ω : ε (ω) ∈ EMθ

ª
. Suppose for simplicity that ε has a

discrete distribution on EMθ , with ε = eθ1 ≡
³
−θ1
3 ,−

θ2
3

´
with probability 1

2 , and ε = eθ2 ≡
³
−2θ13 ,−2θ23

´
with probability 1

2 . Then for ω ∈ ΩM such that ε (ω) = eθ1 the set Q (Sθ) contains three points:

[0 1 0 0]0 ,
£
4
9

2
9

2
9

1
9

¤0
, and [0 0 1 0]0 . Hence, conditional on ε = eθ1, the expectations of the

10Aumann (1965) introduces the notion of integrals for set valued functions that we use here.
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selections of Q (Sθ) are given by

E
³
q|ΩM , ε = eθ1

´
=
£
4
9p2 p1 +

2
9p2

2
9p2 + p3

1
9p2
¤0
,

where pi = P
¡
ΩMi

¯̄
ΩM , ε = eθ1

¢
, i = 1, 2, 3, for all measurable ΩMi ⊂ {ω ∈ ΩM : ε (ω) = eθ1},

i = 1, 2, 3, such that ΩM1 ∪ΩM2 ∪ΩM3 = {ω ∈ ΩM : ε (ω) = eθ1}. Notice that the range of expectations of
selections depends on the atomic structure of the underlying probability space. If the probability space

has no atoms, then the possible values for pi, i = 1, 2, 3, fill in the whole two dimensional unit simplex.

Hence, E
¡
Q (Sθ)|ΩM , ε = eθ1

¢
is a triangle in ∆3 with extreme points [0 1 0 0]0 ,

£
4
9

2
9

2
9

1
9

¤0
, and

[0 0 1 0]0 . A similar result holds for E
¡
Q (Sθ)|ΩM , ε = eθ2

¢
, so that E

¡
Q (Sθ)|ω ∈ ΩM

¢
is given by

a Minkowski average of two triangles with weights 12 each.
11 Hence,

E
¡
Q (Sθ)|ω ∈ ΩM

¢
= co

n
[0 1 0 0]0 ,

£
0 1

2
1
2 0

¤0
,
£
4
18

11
18

2
18

1
18

¤0
,
£
4
18

2
18

11
18

1
18

¤0
,£

1
18

11
18

2
18

4
18

¤0
,
£
1
18

2
18

11
18

4
18

¤0
,
£
5
18

4
18

4
18

5
18

¤0
, [0 0 1 0]0

o
is a three dimensional polytope in ∆3. Given that for ω /∈ ΩM the set Q (Sθ) is a singleton, a simi-

lar conclusion holds for E (Q (Sθ)). If the distribution of ε on EMθ is continuous, one can show that

E (Q (Sθ)) is a convex body in ∆3 with infinitely many extreme points. ¤

The set E (Q (Sθ) |x) collects vectors of probabilities with which each outcome of the game can be
observed. It is a conditional Aumann expectation obtained by integrating the probability distribution

over outcomes of the game implied by each mixed strategy equilibrium σ given x and ε, that is, by

integrating each element of Sel (Q (Sθ)) , against the probability measure of ε|x. We emphasize that
in case of multiplicity, a different mixed strategy equilibrium σ (ω) ∈ Sθ (ω) may be selected (with

different probability) for each ω. By construction, E (Q (Sθ) |x) is the set of probability distributions
over action profiles conditional on x which are consistent with the maintained modeling assumptions,

i.e., with all the model’s implications. Hence, it is the convex set of model predictions.

3.2 Characterization of the Sharp Identification Region

If the model is correctly specified, there exists at least one value of θ ∈ Θ such that the observed

conditional distribution of y given x, P (y|x) , is a point in the set E (Q (Sθ)|x) for x− a.s.12 Hence,

the set of observationally equivalent parameter values which form the sharp identification region is

given by

(3.4) ΘI = {θ ∈ Θ : P (y|x) ∈ E (Q (Sθ)|x) x− a.s.} ,
11The Minkowski sum of two sets B and C in <d is given by B ⊕ C = r ∈ <d : r = b+ c, b ∈ B, c ∈ C .
12By the definition of E (Q (Sθ)|x) , P (y|x) ∈ E (Q (Sθ)|x) if and only if ∃ q ∈ Sel (Q (Sθ)) : E (q|x) = P (y|x) .
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where P (y|x) ≡
£
P
¡
y = tk

¯̄
x
¢
, k = 1, . . . , κY

¤
. While this is the fundamental identification result in

this paper, as written in equation (3.4) the set ΘI may remain computationally challenging to obtain

in certain cases. However, a dramatic simplification is possible if one uses a representation of the set

ΘI obtained through the notion of support function of a set.

Let the support function of a non-empty compact convex set B ∈ <κY be denoted h (B, ·) , with

h (B, u) = max
b∈B

u0b, u ∈ <κY .

It is well known (e.g., Rockafellar (1970, Chapter 13), Schneider (1993, Section 1.7)) that the support

function of a non-empty compact convex set B ∈ <κY is a continuous convex sublinear function.13

Standard arguments in convex analysis (e.g., Rockafellar (1970, Theorem 13.1)) give that P (y|x) ∈
E (Q (Sθ)|x) if and only if

u0P (y|x) ≤ h (E (Q (Sθ)|x) , u) ∀ u ∈ <κY .

Theorem 2.1.47-(iv) in Molchanov (2005), a fundamental result in random sets theory, assures that

h (E (Q (Sθ)|x) , u) = E [h (Q (Sθ) , u)|x] ∀ u ∈ <κY , and therefore

(3.5) P (y|x) ∈ E (Q (Sθ)|x)⇔ u0P (y|x) ≤ E [h (Q (Sθ) , u)|x] ∀ u ∈ <κY .

For our purposes, this further simplifies the problem, because h (Q (Sθ) , u) is a continuous valued

random variable whose expectation is simple to compute.

Example 1 (Cont.) Consider again the simple two player entry game in Example 1, with the set Sθ

plotted in Figure 1-(a) and the set Q (Sθ) plotted in Figure 1-(b). Pick a direction u ≡ [u1 u2 u3 u4]0 ∈
<4. Then, for ω ∈ Ω such that ε (ω) ∈ E(0,0)θ , we have Q (Sθ (ω)) =

©
[1 0 0 0]0

ª
, and h (Q (Sθ (ω)) , u) =

u1. For ω ∈ Ω such that ε (ω) ∈ EMθ , we have Q (Sθ (ω)) =
©
[0 1 0 0]0 , q

³
ε2(ω)
−θ2 ,

ε1(ω)
−θ1

´
, [0 0 1 0]0

ª
,

and therefore h (Q (Sθ (ω)) , u) = max
³
u2, u

0q
³
ε2(ω)
−θ2 ,

ε1(ω)
−θ1

´
, u3

´
, where

q

µ
ε2 (ω)

−θ2
,
ε1 (ω)

−θ1

¶
=
h³
1 + ε2(ω)

θ2

´³
1 + ε1(ω)

θ1

´
− ε2(ω)

θ2

³
1 + ε1(ω)

θ1

´
−
³
1 + ε2(ω)

θ2

´
ε1(ω)
θ1

ε2(ω)
θ2

ε1(ω)
θ1

i0
.

Figure 1-(c) plots the support function h (Q (Sθ (ω)) , u) resulting from the possible realizations of ε1, ε2.

¤

Because the support function is positively homogeneous, condition (3.5) is equivalent to

(3.6) P (y|x) ∈ E (Q (Sθ)|x)⇔ u0P (y|x) ≤ E [h (Q (Sθ) , u)|x] ∀ u ∈ B,

13 In particular, h (B,u+ v) ≤ h (B, u) + h (B, v) for all u, v ∈ <κY and h (B, cu) = ch (B,u) for all c > 0 and for all
u ∈ <κY . Additionally, one can show that the support function of a bounded set B ∈ <d is Lipschitz with Lipschitz
constant kBkH , see Molchanov (2005, Theorem F.1).

17



where B = {u ∈ <κY : kuk ≤ 1} denotes the unit ball in <κY . By standard arguments, the inequality

in condition (3.6) can be rewritten as

(3.7) dH (P (y|x) ,E (Q (Sθ)|x)) = max
u∈B

¡
u0P (y|x)−E [h (Q (Sθ) , u)|x]

¢
= 0.

The key result of this paper is the following:

Theorem 3.1 Let Assumptions 1-3 be satisfied, and no other information be available. Then

(3.8) ΘI =

½
θ ∈ Θ : min

u∈B

¡
E [h (Q (Sθ) , u)|x]− u0P (y|x)

¢
= 0 x− a.s.

¾
is the sharp identification region for the parameter vector θ ∈ Θ.

Proof. In order to establish sharpness, it suffices to show that ΘI = Θ
B
I , with Θ

B
I defined in

equation (2.1). Take θ ∈ ΘI . Then ∃ σ̃ ∈ Sel (Sθ) : E (q (σ̃)|x) = P (y|x). Note that σ̃ specifies
which equilibrium is chosen for each ω ∈ Ω, i.e. for each realization of (x, ε) . Hence one can build
a selection mechanism such that P (ψ (σ̃;x, ε) = 1) = 1, and this selection mechanism is admissible

because for each realization of (x, ε) it selects the corresponding realization of σ̃ with probability 1.

Hence θ ∈ ΘB
I . Conversely, take θ ∈ ΘB

I . Then for each realization of (x, ε) there exists an admissible

selection mechanism ψ (·;x, ε), which gives the probability of picking an equilibrium in each region of

multiplicity associated with the specific realization of (x, ε) , such that P (y|x) = P (y|x; θ, ψ) x−a.s.
Let q̃ denote the random variable which for each realization of (x, ε) takes on a realization equal to

a mixture of the points in Q (Sθ (x, ε)) , with mixing coefficients ψ. Then q̃ ∈ Sel (co [Q (Sθ)]) and by
construction P (y|x) = P (y|x; θ, ψ) = E ( q̃|x) x − a.s. Hence θ ∈ ΘI . The representation of ΘI in

equation (3.8) follows from equations (3.5)-(3.7).

The result in equation (3.8) gives a computationally very attractive characterization of the sharp

identification region, because for each candidate θ ∈ Θ it requires to minimize a sublinear, hence con-
vex, function over a convex set, and check if the resulting objective value is equal to zero. This problem

is computationally tractable and several efficient algorithms in convex programming are available to

solve it, see for example Boyd and Vandenberghe (2004).14

Equation (3.8) yields a straightforward criterion function which is maximized by every parameter

in the identification region:

(3.9) w (θ) =

Z
min
u∈B

¡
E [h (Q (Sθ) , u)|x]− u0P (y|x)

¢
dFx =

Z
−dH (P (y|x) ,E (Q (Sθ)|x)) dFx,

14While the support function of a convex set may not be differentiable at a countable number of points u ∈ B (see,
e.g., Schneider (1993, Theorem 1.5.2)), any support function can be approximated arbitrarily accurately by a support
function of class C∞. In particular, Schneider (1993, Theorem 3.3.1) gives a detailed convolution-based regularization
process to implement this approximation. Hence, in principle one may use the gradient method to approximately solve
the minimization problem in equation (3.8). However, given the recent developments in convex programming, this is not
necessary, as convex programming algorithms are extremely efficient.
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where Fx denotes the joint distribution of x. Clearly, because the expression in parentheses vanishes

for u = 0 ∈ B, w (θ) ≤ 0 for all θ ∈ Θ, and w (θ) = 0 if and only if θ ∈ ΘI .

3.3 Comparison with the Outer Regions of ABJ and CT

While ABJ and CT discuss only the case that players are restricted to use pure strategies, it is clear

and explained in Berry and Tamer (2007, pp. 65-70) that their insights can be extended to the case

that players are allowed to randomize over their strategies. Here we discuss the relationship between

such extensions, and the methodology that we propose.

In the presence of multiple equilibria, ABJ observe that an implication of the model is that for a

given k = 1, ..., κY , P
¡
y = tk

¯̄
x
¢
cannot be larger than the probability that tk is a possible equilibrium

outcome of the game. This is because for given θ ∈ Θ and realization of (x, ε) such that tk is a possible
equilibrium outcome of the game, there can be another outcome tk

0 ∈ Y which is also a possible

equilibrium outcome of the game, and when both are possible tk is selected only part of the time.

While P
¡
y = tk

¯̄
x
¢
can be learned from the data, the probability that tk is a possible equilibrium

depends on the parameters of the model, and therefore these inequalities place restrictions on the

values that the parameters can take. Using our notation, one can write the outer region proposed by

ABJ as

(3.10)

ΘABJ
O =

n
θ ∈ Θ : P

³
y = tk

¯̄̄
x
´
≤ max

¡R
[q (σ)]k dF (ε|x) : σ ∈ Sel (Sθ)

¢
, for k = 1, ..., κY , x− a.s.

o
.

In the above expression, P
¡
y = tk

¯̄
x
¢
is the probability that tk is the equilibrium outcome of the

game in the data. The expression max
¡R
[q (σ)]k dF (ε|x) : σ ∈ Sel (Sθ)

¢
gives the probability that

tk is a possible equilibrium outcome of the game according to the model. It is obtained by selecting

with probability one, in each region of multiplicity, the mixed strategy profile which yields the highest

probability that tk is the outcome of the game.

Example 1 (Cont.) Consider again the simple two player entry game in Example 1, with the set Sθ

plotted in Figure 1-(a). In this case, the expression for ΘABJ
O in equation (3.10) simplifies to

(3.11) ΘABJ
O =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
θ ∈ Θ :

P (y = (0, 0)) ≤ P
³
ε ∈ E(0,0)θ

´
+
R
EMθ

³
1 + ε2

θ2

´³
1 + ε1

θ1

´
dF (ε)

P (y = (1, 0)) ≤ P
³
ε ∈ E(1,0)θ

´
+P

¡
ε ∈ EMθ

¢
P (y = (0, 1)) ≤ P

³
ε ∈ E(0,1)θ

´
+P

¡
ε ∈ EMθ

¢
P (y = (1, 1)) ≤ P

³
ε ∈ E(1,1)θ

´
+
R
EMθ

ε2
θ2

ε1
θ1
dF (ε)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
.
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To see how this simplification occurs, take for example t2 = (1, 0) . Then we need to maximize the

expectation of [q (σ)]2 = σ1(1 − σ2) over all selections σ ∈ Sel (Sθ). For ε ∈ E(1,0)θ , the only selection

is (1, 0), and correspondingly [q (σ)]2 = 1. For ε ∈ EMθ , the set Sθ consists of three points and (1, 0)

is among them, so that the expectation of [q (σ)]2 is maximized by the selection σ = (1, 0) ∈ Sel (Sθ)
which yields [q (σ)]2 = 1. For ε in any of the other regions, [q(σ)]2 = 0. Thus, the maximum of the

expectation of [q (σ)]2 is the probability that (1, 0) is a selection of Sθ, that is

max
¡R
[q (σ)]2 dF (ε) : σ ∈ Sel (Sθ)

¢
=

R
E(1,0)θ

dF (ε|x) + max

⎛⎝ R
EMθ

dF (ε) ,
R
EMθ

− ε2
θ2

µ
1 +

ε1
θ1

¶
dF (ε) , 0

⎞⎠
= P

³
ε ∈ E(1,0)θ

´
+P

¡
ε ∈ EMθ

¢
.

This corresponds to the expression on the right hand side of the second inequality in (3.11). ¤

Comparing the expression for ΘABJ
O with that for ΘI , one can see that ΘABJ

O can be obtained by

applying inequality (3.5) for u equal to the canonical basis vectors in <κY . In fact, take the vector

uk ∈ <κY to have all entries equal to zero except entry k which is equal to one, k = 1, ..., κY . Then

P
³
y = tk

¯̄̄
x
´
= uk0P (y|x) ≤ h

³
E (Q (Sθ)|x) , uk

´
= max (E ( [q (σ)]k|x) : σ ∈ Sel (Sθ)) .

Ciliberto and Tamer (2006) point out that additional information can be learned from the model.

In particular, P
¡
y = tk

¯̄
x
¢
cannot be smaller than the probability that tk is the unique equilibrium

outcome of the game. This is because tk is certainly realized whenever it is the only possible equilibrium

outcome, but it can additionally be realized when it belongs to a set of multiple equilibrium outcomes.

The probability that tk is the unique equilibrium of the game also depends on the parameters of the

model, and so the additional inequality further restricts the values that these parameters can take.

Using our notation and applying the same logic as above, one can write the outer region proposed by

CT as

(3.12) ΘCT
O =

½
θ ∈ Θ : min

¡R
[q (σ)]k dF (ε|x) : σ ∈ Sel (Sθ)

¢
≤ P

¡
y = tk

¯̄
x
¢
≤

max
¡R
[q (σ)]k dF (ε|x) : σ ∈ Sel (Sθ)

¢
, for k = 1, ..., κY , x− a.s.

¾
.

The expression min
¡R
[q (σ)]k dF (ε|x) : σ ∈ Sel (Sθ)

¢
gives the probability that tk is the unique equi-

librium outcome of the game according to the model. It is obtained by selecting with probability one,

in each region of multiplicity, the mixed strategy profile which yields the lowest probability that tk is

the outcome of the game.
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Example 1 (Cont.) Consider again the simple two player entry game in Example 1, with the set Sθ

plotted in Figure 1-(a). In this case, the expression for ΘCT
O in equation (3.12) simplifies to

(3.13)

ΘCT
O =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
θ ∈ Θ :

P
³
ε ∈ E(0,0)θ

´
≤ P (y = (0, 0)) ≤ P

³
ε ∈ E(0,0)θ

´
+
R
EMθ

³
1 + ε2

θ2

´³
1 + ε1

θ1

´
dF (ε)

P
³
ε ∈ E(1,0)θ

´
≤ P (y = (1, 0)) ≤ P

³
ε ∈ E(1,0)θ

´
+P

¡
ε ∈ EMθ

¢
P
³
ε ∈ E(0,1)θ

´
≤ P (y = (0, 1)) ≤ P

³
ε ∈ E(0,1)θ

´
+P

¡
ε ∈ EMθ

¢
P
³
ε ∈ E(1,1)θ

´
≤ P (y = (1, 1)) ≤ P

³
ε ∈ E(1,1)θ

´
+
R
EMθ

ε2
θ2

ε1
θ1
dF (ε)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

To see how this simplification occurs, take for example t2 = (1, 0) . Then the upper bound follows

from the same reasoning as above. For the lower bound, we need to minimize the expectation of

[q (σ)]2 = σ1(1 − σ2) over all selections σ ∈ Sel (Sθ). For ε ∈ E(1,0)θ , the only selection is (1, 0), and

correspondingly [q (σ)]2 = 1. For ε ∈ EMθ , the set Sθ consists of three points and (0, 1) is among them,

so that the expectation of [q (σ)]2 is minimized by the selection σ = (0, 1) ∈ Sel (Sθ) which yields
[q (σ)]2 = 0. For ε in any of the other regions, [q(σ)]2 = 0. Thus, the minimum of the expectation of

[q (σ)]2 is the probability that (1, 0) is the unique selection of Sθ, that is

min
¡R
[q (σ)]2 dF (ε) : σ ∈ Sel (Sθ)

¢
=

R
E(1,0)θ

dF (ε|x) +min

⎛⎝ R
EMθ

dF (ε) ,
R
EMθ

− ε2
θ2

µ
1 +

ε1
θ1

¶
dF (ε) , 0

⎞⎠
= P

³
ε ∈ E(1,0)θ

´
.

This corresponds to the expression on the left hand side of the second inequality in (3.13). ¤

Comparing the expression for ΘCT
O with that for ΘI , one can see that ΘCT

O can be obtained by applying

inequality (3.5) for u equal to the canonical basis vectors in <κY and each of these vectors multiplied

by −1. The statement for the upper bound follows by the argument given above when considering
ΘABJ
O . To verify the statement for the lower bound, take the vector −uk ∈ <κY to have all entries

equal to zero except entry k which is equal to minus one, k = 1, ..., κY . Then15

−P
³
y = tk

¯̄̄
x
´
= −uk0P (y|x)

≤ h
³
E (Q (Sθ)|x) ,

³
−uk

´´
= h

³
−E (Q (Sθ)|x) , uk

´
= −min

¡R
[q (σ)]k dF (ε|x) : σ ∈ Sel (Sθ)

¢
.

15Equivalently, taking u to be a vector with each entry equal to 1, except entry k which is set to 0, one has that

1−P y = tk x = u0P (y|x) ≤ h (E (Q (Sθ)|x) , u) = max i6=k [q (σ)]i dF (ε|x) : σ ∈ Sel (Sθ)

= max 1− [q (σ)]k dF (ε|x) : σ ∈ Sel (Sθ) = 1−min [q (σ)]k dF (ε|x) : σ ∈ Sel (Sθ) .
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Hence, the approaches of ABJ and CT can be interpreted on the base of our analysis as follows.

For each θ ∈ Θ, ABJ’s inequalities give the smallest hypercube with sides that include the positive
part of the axes, which contains E (Q (Sθ)|x). The outer region ΘABJ

O is the collection of θ’s such

that P (y|x) is contained in such hypercube x − a.s. CT use a more refined approach, and for each

θ ∈ Θ their inequalities give the smallest hypercube containing E (Q (Sθ)|x). The outer region ΘCT
O is

the collection of θ’s such that P (y|x) is contained in such hypercube x− a.s. The more E (Q (Sθ)|x)
differs from the hypercubes used by ABJ and CT, the more likely it is that a candidate value θ belongs

to ΘABJ
O and ΘCT

O , but not to ΘI . In order to provide a graphical intuition for this relationship, Figure

2 plots a projection into <2 of: ∆κY−1; P (y|x) — given by the white dot; E (Q (Sθ)|x) — given by
the black ellipsoid; the hypercube used by CT — given by the red square, on which is superimposed

E (Q (Sθ)|x); and the hypercube used by ABJ — given by the yellow square, on which are superimposed
the hypercube used by CT and E (Q (Sθ)|x). The intersection of ABJ’s hypercube with ∆κY−1 gives

the collection of probability distributions over outcome profiles (choice probabilities) consistent with

the subset of model implications used by ABJ, namely the necessary conditions for each single outcome

of the game to be a possible Nash equilibrium outcome. The intersection of CT’s hypercube with

∆κY−1 gives the collection of probability distributions over outcome profiles consistent with the subset

of model implications used by CT, namely the necessary conditions for each single outcome of the

game to be a possible Nash equilibrium outcome, and the sufficient conditions for each single outcome

of the game to be the unique Nash equilibrium outcome. The closed convex set E (Q (Sθ)|x) gives
the collection of choice probabilities consistent with all implications of the model. Hence, ΘABJ

O and

ΘCT
O are not sharp because they are based on checking whether the observed distribution of outcome

profiles belongs to a set of choice probabilities which depends on θ, but is not consistent with all the

model’s implications.

3.3.1 A Simple Implementation in the Two Player Entry Game

This section provides a simple implementation of our method, and a numerical illustration of the

identification gains that it affords, in the two player entry game in Example 1. The set Sθ for this

example is plotted in Figure 1-(a). We generate data with (ε1, ε2)
iid∼ N (0, 1) , θB1 = −1.15, θB2 = −1.4,

and using a selection mechanism which, for each ω : ε (ω) ∈ EMθB , picks each of outcome (0, 0) and
(1, 1) for 10% of the cases and each of outcome (1, 0) and (0, 1) for 40% of the cases. Hence, the

observed distribution is P (y) = [0.26572 0.34315 0.36531 0.02582]0. The parameter space is assumed

to be Θ = [−5, 0]2 . Figure 7 and Table 1 report ΘI , Θ
CT
O , and ΘABJ

O . In the figure, ΘABJ
O is given by

the union of the yellow, red, and black areas, and ΘCT
O by the union of the red and black areas. ΘI is

the black region. Our results clearly show that ΘI is substantially smaller than ΘCT
O and ΘABJ

O : ΘI
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has an area which is 43.5% of the area of ΘABJ
O , and 52% of that of ΘCT

O .

The set ΘI is calculated using an extremely simple application of the Nelder-Mead (NM) algorithm.

To initialize the algorithm, we chose the four canonical basis vectors and the zero vector in <4 as the
five starting points (since for points θ ∈ ΘI the minimum of the objective function is achieved at the

origin, choosing the vector zero as one of the starting points may reduce the number of iterations of

the NM algorithm). For each candidate θ ∈ Θ, the value function was computed for the five starting
points of the NM algorithm, and in each iteration of the algorithm the point yielding the worst (i.e.,

the biggest) value function was replaced with a new point following the NM procedure. The search

for the minimum was stopped either if the algorithm encountered a negative value for the objective

function, which guarantees that θ /∈ ΘI without the need to reach full convergence, or if the difference

between the value function for the worse point and for the best point fell below a certain tolerance

value. We computed the set ΘI both using this minimization procedure, and checking inequality

u0P (y|x) ≤ E [h (Q (Sθ) , u)|x] for each u in a fine grid of the unit sphere, as suggested in Beresteanu,
Molchanov, and Molinari (2008, Section 5.2). The minimization procedure was an order of magnitude

faster, while producing the exact same set ΘI . The computation of the set ΘI based on equation

(3.8) took 15 minutes when the program was written in Fortran 90 and was compiled and ran on a

Unix machine with a single processor of 3.2 GHz. The run time for each candidate θ varied widely

depending on whether such point was in ΘI , in which case on average it took about 0.0038 seconds to

verify the condition in equation (3.8), or outside of ΘI , in which case it took about 0.00047 seconds.

Superior results are expected if parallel processing and more advanced platforms are used, and if

efficient convex programming algorithms are employed.

3.4 Pure Strategies Only: A Further Simplification

We now assume that players in each market do not randomize across their actions. In a finite game,

when restricting attention to pure strategies, one necessarily contends with the issue of possible non-

existence of an equilibrium for certain parameter values θ ∈ Θ and realizations of (x, ε) . To deal with
this problem, one can impose Assumption 4 below:

Assumption 4 One of the following holds:

(i) For a subset of values of θ ∈ Θ which include the values of θ that have generated the observed

outcomes y, a pure strategy Nash equilibrium exists (x, ε)− a.s.

(ii) For each θ ∈ Θ and realizations of x, ε such that a pure strategy Nash equilibrium does not exist,

Sθ (x, ε) = vert (∆ (A)) , with vert (·) the vertices of the set in parenthesis.
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Assumption 4-(i) requires an equilibrium always to exist for the values of θ that have generated

the observed outcomes y. If the model is correctly specified and players in fact follow pure strategy

Nash behavior, then this assumption is satisfied. However, the assumption implicitly imposes strong

restrictions on the parameter vector θ, the payoff functions, and the payoff shifters x, ε. On the other

hand, Assumption 4-(ii) posits that if the model does not have an equilibrium for a given θ ∈ Θ and
realization of (x, ε) , then the model has no prediction on what should be the action taken by the

players, and “anything can happen.” In this respect, one may argue that Assumption 4-(ii) is more

conservative than Assumption 4-(i). We do not take a stand here on which solution to the existence

problem the applied researcher should follow. Either way, the approach that we propose delivers the

sharp identification region ΘI , although the set ΘI will differ depending on whether Assumption 4-(i)

or 4-(ii) is imposed. Moreover, one may choose not to impose Assumption 4 at all, and use a different

solution concept. In that case as well, as we illustrate in Appendix A, our approach can be extended

to deliver the sharp identification region.

When players play only pure strategies, the set Sθ takes its realizations as subsets of the vertices

of ∆ (A) , because each pure strategy Nash equilibrium is equivalent to a degenerate mixed strategy

Nash equilibrium placing probability one on a specific pure strategy profile. Hence, the realizations of

the set Q (Sθ) lie in the subsets of the vertices of ∆κY−1.

Example 2 Consider a simple two player entry game similar to the one in Tamer (2003), omit the

covariates, assume that players’ payoffs are given by πj = aj (a−jθj + εj) , where aj ∈ {0, 1} and
θj < 0, j = 1, 2. Assume that players do not randomize across their actions, so that each σj , j = 1, 2,

can take only values 0 and 1. Figure 3 plots the set Sθ resulting from the possible realizations of

ε1, ε2. In this case, Sθ assumes only five values: {(0, 0)} for ε ∈ E(0,0)θ , {(1, 0)} for ε ∈ E(1,0)θ , {(0, 1)}
for ε ∈ E(0,1)θ , {(1, 1)} for ε ∈ E(1,1)θ , and {(0, 1) , (1, 0)} for ε ∈ EMθ . Consequently, also the set

Q (Sθ) assumes only five values, equal respectively to
©
[1 0 0 0]0

ª
,
©
[0 1 0 0]0

ª
,
©
[0 0 1 0]0

ª
,©

[0 0 0 1]0
ª
, and

©
[0 1 0 0]0 , [0 0 1 0]0

ª
. ¤

Hence, the sets Sθ and Q (Sθ) are “simple” random closed sets in ∆ (A) and ∆κY−1, respectively.

Definition 4 Denoting by F the family of closed subsets of a topological space F, a random closed set

Z in F is called simple if it assumes at most a finite number of values, so that there exists a finite

measurable partition Ω1, . . . ,Ωm of Ω and sets K1, ...,Km ∈ F such that Z (ω) = Ki for all ω ∈ Ωi,
1 ≤ i ≤ m.

Because the probability space is non-atomic, the conditional Aumann expectation of Q (Sθ) is a convex

set and is given by the weighted Minkowski sum of the possible realizations of co [Q (Sθ)], see Molchanov
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(2005, Theorem 2.1.21). Each of these realizations is a polytope, and the Minkowski sum of polytopes

is a polytope. Hence, E (Q (Sθ)|x) is a closed convex polytope, fully characterized by a finite number
of supporting hyperplanes.

Example 2 (Cont.) Consider again the simple two player entry game with pure strategies only in

Example 2. Then for ε ∈ EMθ the set Q (Sθ) contains only two points, [0 1 0 0]0 and [0 0 1 0]0 ,

and for ε /∈ EMθ it is a singleton. Therefore, the expectations of the selections of Q (Sθ) are given by

E (q) =
h
P
³
ε ∈ E(0,0)θ

´
P
³
ε ∈ E(1,0)θ

´
P
³
ε ∈ E(0,1)θ

´
P
³
ε ∈ E(1,1)θ

´i0
+[0 p1 1− p1 0]0P

¡
ε ∈ EMθ

¢
where p1 = P

¡
ΩM1

¯̄
ω : ε (ω) ∈ EMθ

¢
, for all measurable ΩM1 ⊂

©
ω : ε (ω) ∈ EMθ

ª
, i = 1, 2. If the

probability space has no atoms, then the possible values for p1 fill in the whole [0, 1] segment. Hence,

E (Q (Sθ)) is a segment in ∆3. ¤

The supporting hyperplanes determining co [Q (Sθ)] can be easily obtained, and similarly for the

supporting hyperplanes determining E (Q (Sθ)|x). Hence, checking whether P (y|x) ∈ E (Q (Sθ)|x)
amounts to checking whether a point belongs to a polytope, i.e. whether a finite number of moment

inequalities hold x − a.s. In Theorem 3.2 we show that these inequalities are obtained by checking

inequality u0P (y|x) ≤ E [h (Q (Sθ) , u)|x] for the 2κY possible u vectors whose entries are either equal
to zero or to one.

Theorem 3.2 Assume that players use only pure strategies, that Assumptions 1-4 are satisfied, and

that no other information is available. Then for x− a.s. these two conditions are equivalent:

1. u0P (y|x) ≤ E [h (Q (Sθ) , u)|x] ∀ u ∈ <κY ,

2. u0P (y|x) ≤ E [h (Q (Sθ) , u)|x] ∀ u ∈
n
u =

£
u1 ... uκY

¤0
: ui ∈ {0, 1} , i = 1, ..., κY

o
.

Proof. It is obvious that condition (1) implies condition (2). To see why condition (2) implies

condition (1), observe that because the set Q (Sθ) and the set co [Q (Sθ)] are simple, one can find a

finite measurable partition Ω1, . . . ,Ωm of Ω and sets K1, ...,Km ∈ ∆κY−1, such that by Theorem 2.1.21

in Molchanov (2005)

E (Q (Sθ)|x) = K1P (Ω1|x)⊕K2P (Ω2|x)⊕ ...⊕KmP (Ωm|x) ,

with Ki the value that co [Q (Sθ (ω))] takes for ω ∈ Ωi, i = 1, ...,m (see Definition 4). By the properties

of the support function, see Schneider (1993, Theorem 1.7.5),

h (E (Q (Sθ)|x) , u) =
mP
i=1
P (Ωi|x)h (Ki, u) .
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Finally, for each i = 1, ...,m, vert (Ki) ⊂ vert
¡
∆κY−1

¢
, with vert (·) the vertices of the set in parenthe-

sis. Hence the supporting hyperplanes of Ki, i = 1, ...,m, are a subset of the supporting hyperplanes

of the simplex ∆κY−1, which in turn are obtained through its support function evaluated in direc-

tions u ∈
n
u =

£
u1 ... uκY

¤0
: ui ∈ {0, 1} , i = 1, ..., κY

o
. Therefore the supporting hyperplanes of

E (Q (Sθ)|x) are a subset of the supporting hyperplanes of ∆κY−1.

In Appendix B we connect this result to a related notion in the theory of random sets, that

of a capacity functional (the “probability distribution” of a random closed set), and we provide an

equivalent characterization of the sharpness result which gives further insights into our approach. In

Section 3.5 and Appendix B we provide results that significantly reduce the number of inequalities to

be checked, by showing that depending on the model under consideration, many of the 2κY inequalities

in Theorem 3.2 are redundant.

To conclude this section, it is important to discuss why the sharp identification region cannot in

general be obtained through a finite number of moment inequalities. When players are not allowed to

randomize over their actions, the family of possible equilibria is finite. Hence, the range of values that

ε takes can be partitioned into areas in which the set of equilibria remains constant, that is, does not

depend on ε any longer. However, when players randomize across their actions, in equilibrium they

must be indifferent among the actions over which they place positive probability. This implies that

there exist regions in the sample space where the equilibrium mixed strategy profiles are a function

of ε directly.16 If ε has a discrete distribution, Q (Sθ) continues to be a simple random set, i.e. a

random set which takes only a finite number of values, and E (Q (Sθ)|x) remains a convex polytope
whose supporting hyperplanes can be characterized exactly, so that the sharp identification region can

be obtained through a finite number of moment inequalities. However, when the distribution of ε is

continuous, Q (Sθ) may take a continuum of values as a function of ε, and E (Q (Sθ)|x) may have
infinitely many extreme points. Therefore, one needs an infinite number of moment inequalities to

determine whether P (y|x) belongs to it. In this case, the most practical approach to obtain the sharp
identification region is by solving the minimization problem that we lay out in equation (3.8).

3.4.1 Example: Two Type, Four Player Entry Game with Pure Strategies Only

Consider a game where in each market there are four potential entrants, two of each type. The two

types differ from each other by their payoff function. This model is an extension of the seminal papers

by Bresnahan and Reiss (1990, 1991). An empirical application of a version of this model appears in

16For example, in the two player entry game in Example 1, for ε ∈ EθM , Sθ = (0, 1) , ε2
−θ2 ,

ε1
−θ1 , (1, 0) . However, if

one restricts players to use pure strategies, then for ε ∈ EθM , Sθ = {(0, 1) , (1, 0)} , with no additional dependence of the
equilibria on ε.
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Ciliberto and Tamer (2004). We adopt the version of this model described in Berry and Tamer (2007,

pages 84-85), and for illustration purposes we simplify it by omitting the observable payoff shifters x

and by setting to zero the constant in the payoff function.

Let ajm ∈ {0, 1} be the strategy of firm j = 1, 2 of type m = 1, 2. Entry is denoted by ajm = 1,

with ajm = 0 denoting staying out. Players j = 1, 2 of type 1 and type 2 have respectively the following

payoff functions:

πj1 (aj1, a−j1, a12, a22, ε1) = aj1 (θ11 (a−j1 + a12 + a22)− ε1) ,(3.14)

πj2 (aj2, a−j2, a11, a21, ε2) = aj2 (θ21 (a11 + a21) + θ22a−j2 − ε2) .(3.15)

We assume that θ11, θ21 and θ22 are strictly negative and that θ22 > θ21. This means that a type

2 firm is worried more about rivals of type 1 than of rivals of its own type. Since firms of a given

type are indistinguishable to the econometrician, the observable outcome is the number of firms of

each type which enter the market. Let y1 = a11 + a21 denote the number of entrants of type 1 and

y2 = a12 + a22 the number of entrants of type 2 that a firm faces, so that ym ∈ {0, 1, 2} , m = 1, 2.

Then there are 9 possible outcomes to this game, ordered as follows: Y = {(0, 0) , (0, 1) , (1, 0) ,
(1, 1) , (2, 0) , (0, 2) , (1, 2) , (2, 1) , (2, 2)}. Notice that here Assumption 1-(iii) rather than Assumption
2 holds. Figure 4 plots the outcomes of the game against the realizations of ε1, ε2. In this case,

Q (Sθ) takes its realizations in the vertices of ∆8. For example, for ω : ε1 (ω) ≥ θ11, ε2 (ω) ≥ θ22,

the game has a unique equilibrium outcome, y = (0, 0) , and Q (Sθ (ω)) = {[1 0 0 0 0 0 0 0 0]0}; for
ω : 2θ11 ≤ ε1 (ω) ≤ θ11, 2θ22 ≤ ε2 (ω) ≤ θ22, the game has two equilibrium outcomes, y = (0, 1) and

y = (1, 0) , and Q (Sθ (ω)) = {[0 1 0 0 0 0 0 0 0]0, [0 0 1 0 0 0 0 0 0]0}; etc.
Because the set Y has cardinality 9, in principle there are 29 = 512 inequality restrictions to

consider, corresponding to each binary vector of length 9. However, the number of inequalities to be

checked is significantly smaller. In particular, by a simple application of the insight in equation (3.17)

below, the sharp identification region that we give is based on 26 inequalities, whereas ΘABJ
O and

ΘCT
O are based, respectively, on 9 and 18 inequalities. Hence, the computational burden is essentially

equivalent.

Figure 8 and Table 2 report ΘI , Θ
CT
O , and ΘABJ

O in a simple example with (ε1, ε2)
iid∼ N (0, 1)

and Θ = [−5, 0]3 . In the figure, ΘABJ
O is given by the union of the yellow, red and black segments,

and ΘCT
O by the union of the red and black segments. ΘI is the black segment. Notice that the

identification regions are segments because the outcomes (0, 0) and (2, 2) can only occur as unique

equilibrium outcomes, and therefore imply two moment equalities which make θ21 and θ22 a function of

θ11.While, strictly speaking, the approach in ABJ does not take into account this fact, as it uses only

upper bounds on the probabilities that each outcome occurs, it is clear (and indicated in their paper)
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that one can incorporate equalities into their method. Hence, we use the equalities on P (y = (0, 0))

and P (y = (2, 2)) also when calculating ΘABJ
O . We generate the data with θB11 = −0.15, θB21 = −0.20,

and θB22 = −0.10 and use a selection mechanism to choose the equilibrium played in the many regions

of multiplicity. The resulting observed distribution is P (y) = [0.3021 0.0335 0.0231 0.0019 0.2601

0.2779 0.0104 0.0158 0.0752]0. Our results clearly show that ΘI is substantially smaller than ΘCT
O and

ΘABJ
O . The width of the bounds on each parameter vector obtained using our method is about 46% of

the width obtained using ABJ’s method, and about 63% of the width obtained using CT’s method.

In order to further illustrate the computational advantages of our characterization of ΘI in equation

(3.8), we also recalculated the sharp identification region for this example without taking advantage of

our knowledge of the structure of the game which reduces the number of inequalities to be checked to 26,

but by simply solving for each candidate θ ∈ Θ the problem minu∈B (E [h (Q (Sθ) , u)|x]− u0P (y|x)) .
We modified the simple Nelder-Mead algorithm described in Section 3.3.1 to apply to a minimization

in <9, wrote it as a program in Fortran 90, and compiled and ran it on a Unix machine with a single

processor of 3.2 GHz. Our recalculation of ΘI yielded exactly the same result as described above, and

checking 106 candidate values for θ ∈ Θ took less than one minute.

3.5 Computational Aspects of the Problem

In order to compute the sharp identification region, we need to calculate the support function of the

random set Q (Sθ) . This is achieved by applying the Method of Simulated Moments, see McFadden

(1989) and Pakes and Pollard (1989). The first step in the procedure requires one to compute the

set of all mixed strategy Nash equilibria for given realizations of the payoff shifters, Sθ (x, ε) . This

is a computationally challenging problem, though a well studied one which can be performed using

the Gambit software described by McKelvey and McLennan (1996).17 Notice that this step has to

be performed regardless of which features of normal form games are identified: whether sufficient

conditions are imposed for point identification of the parameter vector of interest, or this vector is

restricted to lie in an outer region, or its sharp identification region is characterized through the

methodology proposed in this paper.

In our case, for given realizations of x and ε, computation of the set Sθ (x, ε) is needed in order to

obtain by simulation, for each u ∈ B,

E [h (Q (Sθ) , u)|x] = E
∙
max

σ∈Sθ(x,ε)
u0q (σ)

¯̄̄̄
x

¸
=

Z
max

σ∈Sθ(x,ε)
u0q (σ) dF (ε|x) .

17The Gambit software can be freely downloaded at http://gambit.sourceforge.net/. Bajari, Hong, and Ryan (2007)
recommend the use of this software to compute the set of mixed strategy Nash equilibria in finite normal form games.
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One can simulate this integral using the following procedure.18 For any x ∈ X , draw realizations

of ε, denoted εb, b = 1, . . . , B, according to the distribution F ( ·|x) with identity covariance matrix.
These draws stay fixed throughout the remaining steps. Transform the realizations εb, b = 1, . . . , B,

into draws with covariance matrix specified by θ. For each εb, compute the payoffs πj
³
·, xj , εbj , θ

´
for j = 1, . . . , J and obtain the set Sθ

¡
x, εb

¢
. Then compute the set Q

¡
Sθ
¡
x, εb

¢¢
. Pick a u ∈ B,

compute the support function h
¡
Q
¡
Sθ
¡
x, εb

¢¢
, u
¢
, and average it over a large number of draws of εb.

Call the resulting average ÊB [h (Q (Sθ) , u)|x] . The strong law of large numbers for closed random
sets in Molchanov (2005, Theorem 3.1.6) guarantees that as B →∞, i.e., as the number of simulations

increases, ÊB [h (Q (Sθ) , u)|x] converges to E [h (Q (Sθ) , u)|x] almost surely, uniformly in u.

Based on the above simulation procedure, one can rewrite the analog of the criterion function w (θ)

from equation (3.9) as

wB (θ) =

Z
min
u∈B

³
ÊB [h (Q (Sθ) , u)|x]− u0P (y|x)

´
dFx =

Z
−dH

³
P (y|x) , bEB (Q (Sθ)|x)´ dFx,

with bEB (Q (Sθ)|x) denoting the convex body with support function equal to ÊB [h (Q (Sθ) , u)|x] ∀
u ∈ <κY . By triangle inequality19

sup
θ∈Θ

|wB (θ)− w (θ)| ≤ sup
θ∈Θ

Z
max
u∈B

¯̄̄
ÊB [h (Q (Sθ) , u)|x]−E [h (Q (Sθ) , u)|x]

¯̄̄
dFx

≤ sup
θ∈Θ

µ
max
u∈B

¯̄̄
ÊB [h (Q (Sθ) , u)]−E [h (Q (Sθ) , u)]

¯̄̄¶
,(3.16)

where the last inequality in the above expression follows by the properties of the conditional Aumann

expectation, see Molchanov (2005, Theorem 2.1.47-(v)). For each θ ∈ Θ, the process in parentheses in
expression (3.16), when multiplied by

√
B, converges in distribution to the supremum of a Gaussian

process (Molchanov (2005, Theorem 2.2.1)). Hence, the arguments in Manski and Tamer (2002,

Proposition 5), Ciliberto and Tamer (2004), and Chernozhukov, Hong, and Tamer (2007) assure that

an identification region based on the simulated conditional expectation of the support function of

Q (Sθ) delivers an approximation of ΘI which converges to ΘI with respect to the Hausdorff metric

as B →∞.

18The procedure described here is very similar to the one proposed by Ciliberto and Tamer (2004). When the assump-
tions maintained by Bajari, Hong, and Ryan (2007, Section 3) are satisfied, their algorithm can be used to significantly
reduce the computational burden associated with simulating the integral.
19Here we are using the fact that

dH (P (y|x) ,E (Q (Sθ)|x))− dH P (y|x) ,EB (Q (Sθ)|x) ≤ ρH E (Q (Sθ)|x) ,EB (Q (Sθ)|x)

= max
u∈B

ÊB [h (Q (Sθ) , u)|x]−E [h (Q (Sθ) , u)|x] .
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Consider now the general task of computing ΘI when mixed strategy equilibria are allowed for.

Given the simulated values for E [h (Q (Sθ) , u)] , the minimization problems defining ΘI in equation

(3.8) can be solved for each θ ∈ Θ and for each x ∈ X . In small scale problems, such as the two
player entry game in Example 1, even the simple use of the Nelder-Mead algorithm delivers the sharp

identification region very quickly, as discussed in Sections 3.3.1 and 3.4.1. In larger problems, the use

of efficient convex programming algorithms preserves computational feasibility.

Consider now the special case that players play only pure strategies. Then Theorem 3.2 guarantees

that it suffices to evaluate ÊB [h (Q (Sθ) , u)|x] − u0P (y|x) for u equal to each of the 2κY binary

vectors with each entry equal to either 1 or 0. Hence, one can calculate the set ΘI either by finding

the parameter values that satisfy these 2κY inequalities which have to hold for x− a.s., or by solving

the minimization problem in equation (3.8). In the former case, the number of inequalities to check

can be, in practice, very large. However, often many such inequalities are redundant. In particular,

because we are allowing only pure strategy equilibria, the realizations of any σ ∈ Sθ are vectors of

zeros and ones. Hence, ∀ω ∈ Ω, [q (σ (ω))]k = 1 if
QJ

j=1 σj

³
ω, tkj

´
= 1, and zero otherwise. Consider

two equilibria tk, tl ∈ Y, 1 ≤ k 6= l ≤ κY , such that

(3.17)

(
ω :

JQ
j=1

σj

³
ω, tkj

´
= 1

¯̄̄̄
¯x
)
∩
(
ω :

JQ
j=1

σj

³
ω, tlj

´
= 1

¯̄̄̄
¯x
)
= ∅,

that is, the set of ω for which Sθ admits both tk and tl as equilibria has probability zero. Let uk be a

vector with each entry equal to zero, and entry k equal to 1, and similarly for ul. Then the inequality¡
uk + ul

¢0
P (y|x) ≤ E

£
h
¡
Q (Sθ) , u

k + ul
¢¯̄
x
¤
does not add any information beyond that provided

by the inequalities u0P (y|x) ≤ E [h (Q (Sθ) , u)|x] for u = uk and for u = ul. The same reasoning

can be extended to tuples of pure strategy equilibria of size up to κY . Therefore, prior knowledge of

some properties of the game can be very helpful in eliminating unnecessary inequalities. The game

we described in Section 3.4.1 is an example for the possible elimination of redundant inequalities:

κY = 512, but it suffices to consider 26 inequalities to obtain the sharp identification region. By

comparison, the calculation of ΘABJ
O and ΘCT

O requires checking 9 and 18 inequalities respectively, a

task which is computationally equivalent to that required to calculate ΘI , while the gain in size of the

identification region is of the order of 27%− 54%.
Theorems B.2-B.3 in Appendix B provide general results on how to reduce the number of inequal-

ities to be checked. We emphasize, however, that as the example in Section 3.4.1 illustrates, even

when such results do not apply, the minimization problem in equation (3.8) can be solved extremely

efficiently.
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4 Multinomial Choice Models with Interval Regressors Data

This Section of the paper extends the methodology introduced in Section 3 to provide a tractable

characterization of the sharp identification region of the parameters θ characterizing random utility

models of multinomial choice, when only interval information is available on regressors. In doing so,

we extend the seminal contribution of Manski and Tamer (2002), who considered the same inferential

problem in the case of binary choice models. For these models, Manski and Tamer (2002) provided

a tractable characterization of the sharp identification region, and proposed set estimators which

are consistent with respect to the Hausdorff distance. However, their characterization of the sharp

identification region does not easily extend to models in which the agents face more than two choices,

as we illustrate below.

We assume that an agent chooses an alternative y from a finite choice set C = {0, . . . , κC − 1} to
maximize her utility. The agent possesses a vector of socioeconomic characteristics w. Each alternative

k ∈ C is characterized by an observable vector of attributes zk and an attribute εk which is observable
by the agent but not by the econometrician. The vector

³
y,w, {zk, εk}κC−1k=0

´
is defined on a non-

atomic probability space (Ω,F,P) . The agent is assumed to possess a random utility function of

known parametric form.

To simplify the exposition, we assume that the random utility is linear, and that w and zk are scalars

for k = 0, . . . , κC−1; however, all these assumptions can be relaxed and are in no way essential for our
methodology. We let the random utility be π (k;xk, εk, θk) = αk+zkδ+wβk+εk ≡ xkθk+εk, k ∈ C, with
xk = [1 zk w] , and θk = [αk δ βk]

0 . We normalize π (0;x0, ε0, θ0) = ε0. For simplicity, we assume

that εk is independently and identically distributed across choices with a continuous distribution

function F that is known. We let θ =
h
{αk}κC−1k=1 δ {βk}κC−1k=1

i0
∈ Θ be the vector of parameters

of interest, with Θ the parameter space. We denote εk = εk − ε0, k ∈ C, and ε =
h©
εk
ªκC−1
k=1

i
.

Under these assumptions, if the econometrician observes a random sample of choices, socioeconomic

characteristics, and alternatives’ attributes, the parameter vector θ is point identified.

Here we consider the identification problem arising when the econometrician observes only real-

izations of {y, zkL, zkU , w} , but not realizations of zk, k = 1, . . . , κC − 1. Following Manski and Tamer
(2002), we assume that for each k = 1, . . . , κC − 1, P (zkL ≤ zk ≤ zkU ) = 1, and that δ > 0. We let

xkL = [1 zkL w] , xkU = [1 zkU w] , xk = [1 zkL zkU w] , and x = [1 {zkL}κC−1k=1 {zkU}κC−1k=1 w].

Incompleteness of the data on zk, k = 1, . . . , κC − 1, implies that there are regions of values of the
exogenous variables where the econometric model predicts that more than one choice may maximize

utility. Therefore, the relationship between the outcome variable of interest and the exogenous vari-

ables is a correspondence rather than a function. Hence, the parameters of the utility functions may
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not be point identified.

In the case of binary choice, Manski and Tamer (2002) establish that the sharp identification region

for θ is given by

ΘI =
©
θ ∈ Θ : P

¡
x1Lθ + ε1 > 0

¯̄
x
¢
≤ P (y = 1|x) ≤ P

¡
x1Uθ + ε1 > 0

¯̄
x
¢
, x− a.s.

ª
.

This construction is based on the observation that if the agent chooses alternative 1, this implies

that ε1 > −x1θ ≥ −x1Uθ. On the other hand, ε1 > −x1Lθ ≥ −x1θ implies that the agent chooses
alternative 1.20 In the case of more than two choices, one may wish to apply a similar insight as in

the work of Ciliberto and Tamer (2006), and construct the region

(4.1)

ΘO =

⎧⎪⎪⎨⎪⎪⎩
θ ∈ Θ : ∀m ∈ C, x− a.s.,

P
¡
xmθm + εm ≥ xkθk + εk ∀ (xm, xk) ∈ [xmL, xmU ]× [xkL, xkU ] , ∀k ∈ C, k 6= m

¯̄
x
¢

≤ P (y = m|x) ≤
P
¡
∃ xm ∈ [xmL, xmU ] s.t. ∀k ∈ C, k 6= m,∃ xk ∈ [xkL, xkU ] with xmθm + εm ≥ xkθk + εk

¯̄
x
¢
⎫⎪⎪⎬⎪⎪⎭ .

The lower bound on P (y = m|x) in equation (4.1) is given by the probability that ε falls in the regions
where choice m ∈ C is the only optimal alternative. The upper bound is given by the probability that
ε falls in the regions where choice m ∈ C is one of the possible optimal alternatives. Similarly to the
case of ΘCT

O in the finite games analyzed in Section 3, ΘO is just an outer region for θ, and is not

sharp in general. Appendix B provides further insights to explain the lack of sharpness of ΘO.21

We begin our treatment of the identification problem by noticing that, if xk were observed for each

k ∈ C, one would conclude that a choice m ∈ C maximizes utility if

π (m;xm, εm, θm) = xmθm + εm ≥ xkθk + εk = π (k;xk, εk, θk) ∀ k ∈ C, k 6= m.

Hence, for a given θ ∈ Θ and realization of x and ε, we can define the following θ-dependent set:

(4.2)

Mθ (x, ε) =
n
m ∈ C : ∃ xm ∈ [xmL, xmU ] s.t. ∀k ∈ C, k 6= m,∃ xk ∈ [xkL, xkU ] with xmθm + εm ≥ xkθk + εk

o
.

This is the set of choices associated with a specific value of θ and realization of x and ε, which

are optimal for some combination of xk ∈ [xkL, xkU ] , k ∈ C, and therefore form the set of model’s

predictions. As we did in Section 3, we write the set Mθ (x, ε) and its realizations, respectively, as Mθ

and Mθ (ω) ≡ Mθ (x (ω) , ε (ω)) , omitting the explicit reference to x and ε. Because Mθ is a subset

of a discrete space, and any event of the type {m ∈ Mθ} can be represented as a combination of
measurable events determined by εk, k ∈ C, Mθ is a random closed set in C, see Definition 2.
20For −x1Uθ ≤ ε1 ≤ −x1Lθ, the model predicts that either alternative 0 or 1 may maximize the agent’s utility.
21Appendix B focuses on the lack of sharpness of ΘCT

O in finite games with multiple pure strategy Nash equilibria.
The same reasoning applies to the set ΘO in equation (4.1).

32



We now apply to the random closed set Mθ the same logic that we applied to the random closed

set Sθ in Section 3. The treatment which follows is akin to the treatment of static, simultaneous move

finite games of complete information, when players use only pure strategies.

For a given parameter value θ ∈ Θ and realization m (ω) , ω ∈ Ω, of a selection m ∈ Sel (Mθ) , the

individual chooses alternative k = 0, . . . , κC − 1 if and only if m (ω) = k. Hence, we can use a selection

m ∈ Sel (Mθ) to define a random point q (m) whose realizations have coordinates [q (m (ω))]k =

1 (m (ω) = k) , k = 0, . . . , κC − 1, with 1 (·) the indicator function of the event in parenthesis. Clearly,
the random point q (m) is an element of the unit simplex in the space of dimension κC, denoted ∆κC−1.

Because Mθ is a random closed set in C, the set resulting from repeating the above construction for

each m ∈ Sel (Mθ) and given by

Q (Mθ) = {([q (m)]k , k = 0, . . . , κC − 1) : m ∈ Sel (Mθ)} ,

is a closed random set in ∆κC−1. Hence we can define the set

E (Q (Mθ)|x) = {E (q|x) : q ∈ Sel (Q (Mθ))} = {(E ( [q (m)]k|x) , k = 0, . . . , κC − 1) : m ∈ Sel (Mθ)} .

Because the probability space is non-atomic and the random set Q (Mθ) takes its realizations in a

subset of the finite dimensional space <κC , the set E (Q (Mθ)|x) is a closed convex set for x − a.s.

By construction, it is the set of probability distributions over alternatives conditional on x which

are consistent with the maintained modeling assumptions, i.e., with all the model implications. If

the model is correctly specified, there exists at least one value of θ ∈ Θ such that the observed

conditional distribution of y given x, P (y|x) , is a point in the set E (Q (Mθ)|x) for x − a.s., where

P (y|x) ≡ [P (y = k|x) , k = 0, . . . , κC − 1] .
Using the same mathematical tools leading to Theorem 3.1, we obtain that the set of observationally

equivalent parameter values which form the sharp identification region is given by

(4.3) ΘI =

½
θ ∈ Θ : min

u∈B

¡
E [h (Q (Mθ) , u)|x]− u0P (y|x)

¢
= 0 x− a.s.

¾
,

with B the unit ball in <κC .

Notice that the set Q (Mθ) assumes at most a finite number of values, and its realizations lie in

the subsets of the vertices of ∆κC−1. The conditional Aumann expectation of Q (Mθ) is given by the

weighted Minkowski sum of the possible realizations of co [Q (Mθ)]. Each of these realizations is a

polytope, and therefore E (Q (Mθ)|x) is a closed convex polytope. By Theorem 3.2, a candidate θ

belongs to ΘI as defined in equation (4.3) if and only if u0P (y|x) ≤ E [h (Q (Mθ) , u)|x] for each of
the 2κC possible u vectors whose entries are either equal to zero or to one. Hence, ΘI can be obtained

through a finite set of moment inequalities which have to hold for x− a.s.
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5 Best Linear Prediction with Interval Outcome and Covariate Data

Beresteanu and Molinari (2008) study identification and statistical inference for the parameters θ ∈ Θ
of the Best Linear Predictor (BLP) under square loss of a random variable yB conditional on a random

vector xB, when yB is only observed to lie in a random interval. Here we significantly generalize their

identification results, by considering the case that both outcome and covariate data are interval valued.

Earlier on, Horowitz, Manski, Ponomareva, and Stoye (2003) studied the related problem of identifi-

cation of the BLP parameters with missing data on both yB and xB, and provided a characterization

of the identification region of each component of the vector θ. While their characterization is sharp,

the bounds that they provide are obtained as solutions to non-convex mathematical programming

problems for which global optimization techniques are needed. The computational complexity of the

problem in the Horowitz et al.’s (2003) formulation grows with the number of points in the support

of the random variables yB and xB, and becomes essentially unfeasible if these variables are continu-

ous, unless one discretizes their support quite coarsely. Using the same approach as in the previous

part of the paper, we provide a characterization of the sharp identification region of θ which remains

computationally feasible regardless of the support of yB and xB.

To simplify the exposition, we let xB be scalar, though this assumption can be relaxed and is in no

way essential for our methodology. We assume that the researcher does not observe the realizations

of (yB, xB), but rather the realizations of real valued random variables yL, yU , xL, xU such that

P(yL ≤ yB ≤ yU ) = 1 and P(xL ≤ xB ≤ xU ) = 1. We assume that E (|yi|) , E (|xj |) , E (|yixj |) ,
and E

³
x2j

´
are all finite, for each i = L,U and j = L,U , that the vector (yL, yU , xL, xU ) is defined

on a non-atomic probability space (Ω,F,P) , and that Θ is a compact set. We let Y = [yL, yU ],

X = [xL, xU ]; one can easily show that these sets are random closed sets in < (see Definition 2).
When yB and xB are perfectly observed, it is well known that the BLP problem can be expressed

through a linear projection model, where the prediction error associated with the BLP parameters

θB and given by εB = yB − θB1 − θB2x
B by construction satisfies E (εB) = 0 and E (εBxB) = 0. For any

candidate θ ∈ Θ, we extend this construction of the prediction error to the case of interval valued
data, and build the set

Gθ =

½
g =

∙
y − θ1 − θ2x
(y − θ1 − θ2x)x

¸
: (y, x) ∈ Sel(Y ×X)

¾
.

This is the (not necessarily convex) θ-dependent set of prediction errors and prediction errors multiplied

by covariate which are implied by the intervals Y and X. Because Y and X are random closed sets in

<, Gθ is a random closed set in <2. It follows from the restrictions on the moments of yL, yU , xL, xU ,
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that the set Gθ is integrably bounded. Because the probability space is non-atomic and Gθ belongs to

a finite dimensional space, its Aumann expectation E (Gθ) = {E (g) : g ∈ Sel (Gθ)} is a closed convex
set.

When first thinking about the problem that we study in this section, it might not be obvious why

its treatment fits in the general methodology that we develop in the previous part of the paper. Here,

the researcher observes data on yL, yU , xL, xU , which identify the joint distribution of the random

sets Y and X, but are silent about yB, xB beyond providing random intervals to which these variables

belong. However, given the set Gθ, one can relate our approach in the first part of the paper to the

problem that we study here, as follows. For a candidate θ ∈ Θ, each selection (y, x) from the random

intervals Y and X yields a moment for the prediction error ε = y− θ1 − θ2x and its product with the

covariate x. The collection of such moments for all (y, x) ∈ Sel(Y ×X) is a convex set equal to E (Gθ) .

If this (unconditional) Aumann expectation contains the vector [0 0]0 as one of its elements, then the

candidate value of θ is one of the observationally equivalent parameters of the BLP of yB given xB.

This is because if the condition just mentioned is satisfied, then for the candidate θ ∈ Θ there exists
a selection in Sel(Y × X), that is, a pair of admissible random variables y and x, which implies a

prediction error that has mean zero and is uncorrelated with x, hence satisfying the requirements for

the BLP prediction error. This intuition is formalized in Theorem 5.1.

Theorem 5.1 Let o = [0 0]0. The sharp identification region for θ ∈ Θ is given by

ΘI = {θ : o ∈ E (Gθ)}

= {θ : 0 ≤ h (E (Gθ) , u) ∀ u ∈ B}

=

½
θ : min

u∈B
E [h (Gθ, u)] = 0

¾
.

Proof. By definition of the Aumann expectation, o ∈ E (Gθ) if and only if ∃ g ∈ Sel (Gθ) :

E (g) = o. In words, this is equivalent to saying that a candidate θ belongs to ΘI if and only if one can

find a selection (y, x) ∈ Sel(Y ×X) which yields, together with θ, a prediction error ε = y − θ1 − θ2x

such that E (ε) = 0 and E (εx) = 0. Observe that by Theorem 2.1 in Artstein (1983) (see also the

discussion in Molchanov (2005, pp. 34-35)), (y, x) ∈ Sel(Y ×X) if and only if P ((y, x) ∈ K × L) ≤
P ((Y ×X) ∩K × L 6= ∅) = P (yU > infK, yL < supK,xU > inf L, xL < supL) for all compact inter-

vals K,L ⊂ <. Hence, the above condition is equivalent to being able to find a pair of random variables
(y, x) with a joint distribution P (y, x) that belongs to the (sharp) identification region of P (yB, xB)

as defined by Manski (2003, Chapter 3), such that θ = argminϑ∈Θ
R
(y − ϑ1 − ϑ2x)

2dP (y, x) . It then

follows that the set ΘI is equivalent to the sharp identification region characterized by Manski (2003,
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Complement 3B, pp. 56-58). The definition of ΘI in terms of support function follows from our

discussion in Section 3.2.

The support function of Gθ can be easily calculated. In particular, for any u = [u1 u2]
0 ∈ B,

(5.1) h (Gθ, u) = max
g∈Gθ

u0g = max
y∈Y,x∈X

£
u1 (y − θ1 − θ2x) + u2

¡
yx− θ1x− θ2x

2
¢¤
.

For given θ ∈ Θ and u ∈ B, this maximization problem can be solved extremely quickly using the

gradient method, regardless of whether yL, yU , xL, xU , xB, yB, are continuous or discrete random

variables. The support function h (Gθ, u) that results in (5.1) is a continuous-valued convex sublinear

function of u (see, e.g., Molchanov (2005, p. 421)). Hence, membership of a candidate θ to the set ΘI

can be verified extremely easily using convex programming techniques, as discussed in Section 3.

6 Conclusions

This paper introduces a computationally feasible characterization of the sharp identification region of

the parameters of incomplete econometric models with set-valued predictions which yield a convex set

of (conditional or unconditional) moments for the variables characterizing them. Examples of models

in this class include static, simultaneous move finite games of complete information in the presence of

multiple mixed strategy Nash equilibria, multinomial choice models with interval regressors data, and

best linear predictors with interval outcome and covariate data. We summarize our results focusing

on the case of finite games with multiple equilibria. In this context, the methodology that we propose

allows us to bypass the need to directly deal with infinite dimensional nuisance parameters, the selection

mechanisms, a simplification that was considered unattainable in the related literature (e.g., Berry

and Tamer (2007)).

Our approach is based on characterizing, for each θ ∈ Θ, the set of probability distributions of
outcomes given covariates which are consistent with all the model’s implications. If the model is

correctly specified, one can then characterize the set of observationally equivalent parameter values

θ ∈ Θ which are consistent with the data and the modeling assumptions (which we call ΘI), as follows.

A candidate θ is in ΘI if and only if it gives a set of model’s predicted probability distributions of

outcomes given covariates which, for x− a.s., contains the probability distribution of outcomes given

covariates which is observed in the data.

Because in general, for each θ ∈ Θ, the set of probability distributions of outcomes given covariates
may have infinitely many extreme points, characterizing the set ΘI in principle entails checking that

an infinite number of moment inequalities is satisfied for x− a.s. However, we show that this compu-

tational hardship can be avoided, and the sharp identification region can be characterized as the set
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of parameter values for which the minimum of a sublinear (hence convex) function over the unit ball

is equal to zero.

For the case that players are assumed to play only pure strategies (and for the case of multinomial

choice models with interval regressors data) we show that the sharp identification region is given by

a finite number of moment inequalities which have to hold for x − a.s. This is because in this very

special case, for each θ ∈ Θ, the set of probability distributions of outcomes given covariates which
are consistent with all the model’s implications, simplifies to being a polytope whose supporting

hyperplanes are easy to determine. While finite, the number of moment inequalities to be checked can

be very large in certain cases. However, we show that many such inequalities may be redundant, and

we provide a simple condition that allows the researcher to determine a (often significantly) smaller set

of moment inequalities that are sufficient to preserve sharpness. Moreover, the minimization problem

used in the general case of finite games with mixed strategy Nash equilibria remains feasible in this

simpler case, and can be applied when the number of inequalities cannot be reduced a-priori and is

very large

We acknowledge that the method proposed in this paper may be, for some models, computationally

more intensive than existing methods (e.g., Andrews, Berry, and Jia (2004), Ciliberto and Tamer (2004)

in the analysis of finite games with multiple equilibria). However, advanced computational methods

in convex programming made available in recent years, along with the use of parallel processing,

can substantially alleviate this computational burden. On the other hand, the benefits in terms of

identification yielded by our methodology may be substantial, as illustrated in our examples.
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A Extensions to Other Solution Concepts

While in Sections 2-3 of this paper we focus on economic models of games in which Nash Equilibrium is the

solution concept employed, our approach easily extends to other solution concepts. Here we consider the case

that players are assumed to be only level-1 rational, and the case that they are assumed to play correlated

strategies. For simplicity, we exemplify these extensions using a two player simultaneous move static game of

entry with complete information.

A.1 Level-1 Rationality

Suppose that players are only assumed to be level-1 rational. The identification problem under this weaker

solution concept was first studied by Aradillas-Lopez and Tamer (2008, AT henceforth). Let the econometrician

observe players’ actions, so that Assumption 2 is satisfied. A level-1 rational profile is given by a mixed strategy

for each player that is a best response to one of the possible mixed strategies of her opponent. In this case one

can define the θ-dependent set

Rθ (x, ε) =

(
σ ∈ ∆ (A) : ∀j ∃ σ̃−j ∈ ∆ (A−j) s.t.

πj (σj , σ̃−j , xj , εj , θ) ≥ πj
¡
σ0j , σ̃−j , xj , εj , θ

¢
∀σ0j ∈ ∆ (Aj)

)
.

Omitting the explicit reference to its dependence on x and ε, Rθ is the set of level-1 rational strategy profiles of

the game. By similar arguments to what we used above, this is a random closed set in ∆ (A) . Figure 5 plots this
set against the possible realizations of ε1, ε2, in a simple two player simultaneous move, complete information,

static game of entry in which players’ payoffs are given by πj = aj (a−jθj + εj) , aj ∈ {0, 1} , and θ1, θ2 are

assumed to be negative.

The same approach of Section 3 allows us to obtain the sharp identification region for θ as

ΘI = {θ ∈ Θ : u0P (y|x) ≤ E [h (Q (Rθ) , u)|x] ∀ u ∈ B x− a.s.} ,

with

Q (Rθ) = {([q (σ)]k , k = 1, . . . , κY) : σ ∈ Sel (Rθ)} ,

where [q (σ)]k , k = 1, . . . , κY , is defined in equation (3.2).

In our simple example in Figure 5, with omitted covariates, for any ω ∈ Ω such that ε (ω) ∈ [0,−θ1]×[0,−θ2] ,∙
q

µµ
ε2 (ω)

−θ2
,
ε1 (ω)

−θ1

¶¶¸
k

∈ co [{[q (0, 0)]k , [q (1, 0)]k , [q (0, 1)]k , [q (1, 1)]k}] ,

k = 1, . . . , 4, and therefore it follows that E (Q (Rθ)) is equal to E
³
Q
³
R̃θ

´´
, with R̃θ restricted to be the set

of level-1 rational pure strategies. Hence, by Theorem 3.2, ΘI can be obtained by checking a finite number of

moment inequalities.

For the case that ε has a discrete distribution, AT (Section 3.1) suggest to obtain the sharp identification

region as the set of parameter values that return value zero for the objective function of a linear programming

problem. For the general case in which ε may have a continuous distribution, AT apply the same insight of CT

and characterize an outer identification region through eight moment inequalities similar to those in equation

(B.7). One may also extend ABJ’s approach to this problem, and obtain a larger outer region through four
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moment inequalities similar to those in equation (B.6). Our approach, which yields the sharp identification

region, in this simple example requires one to check just 14 inequalities.

As shown in AT (Figure 3), the model with level-1 rationality only places upper bounds on θ1, θ2. Figure 9

plots the upper contours of ΘI , ΘCTO , and ΘABJO in a simple example with (ε1, ε2)
iid∼ N (0, 1) and Θ = [−5, 0]2 .

The data is generated with θB1 = −1.15, θB2 = −1.4, and using a selection mechanism which picks outcome

(0, 0) for 40% of ω : ε (ω) ∈ [0,−θB1] × [0,−θB2] , outcome (1, 1) for 10% of ω : ε (ω) ∈ [0,−θB1] × [0,−θB2], and
each of outcome (1, 0) and (0, 1) for 25% of ω : ε (ω) ∈ [0,−θB1] × [0,−θB2]. Hence, the observed distribution is
P (y) = [0.5048 0.2218 0.1996 0.0738]0. Our methodology allows us to obtain significantly lower upper contours

compared to AT (and CT) and ABJ. The upper bounds on θ1, θ2 resulting from the projections of ΘABJO , ΘCTO
and ΘI are, respectively, (−0.02,−0.02) , (−0.15,−0.26) , and (−0.54,−0.61).

A.2 Objective Correlated Equilibria

Suppose that players play correlated equilibria, a notion introduced by Aumann (1974). A correlated equilibrium

can be interpreted as the distribution of play instructions given by some “trusted authority” to the players. Each

player is given her instruction privately but does not know the instruction received by others. The distribution

of instructions is common knowledge across all players. Then a correlated joint strategy γ ∈ ∆κA−1, where

∆κA−1 denotes the set of probability distributions on A, is an equilibrium if, conditional on knowing that her

own instruction is to play aj , each player j has no incentive to deviate to any other strategy a0j , assuming that

the other players follow their own instructions. In this case one can define the θ-dependent set

Cθ (x, ε) =

⎧⎪⎨⎪⎩γ ∈ ∆κA−1 :

P
a−j∈A−j

γ (aj , a−j)πj (aj , a−j , xj , εj , θ) ≥P
a−j∈A−j

γ (aj , a−j)πj
¡
a0j , a−j , xj , εj , θ

¢
, ∀aj ∈ Aj , ∀a0j ∈ Aj , ∀j

⎫⎪⎬⎪⎭ .

Omitting the explicit reference to its dependence on x and ε, Cθ is the set of correlated equilibrium strategies

of the game. By similar arguments as those used before, it is a random closed set in ∆κA−1. Notice that Cθ

is defined by a finite number of linear inequalities on the set ∆κA−1 of correlated strategies, and therefore it is

a non-empty polytope. Yang (2008) is the first to use this fact, along with the fact that co [Q (Sθ)] ⊂ Cθ, to

develop a computationally easy-to-implement estimator for an outer identification region of θ, when the solution

concept employed is Nash equilibrium. Here we provide a simple characterization of the sharp identification

region ΘI , when the solution concept employed is objective correlated equilibrium. In particular, the same

approach of Section 3 allows us to obtain the sharp identification region for θ as

ΘI = {θ ∈ Θ : u0P (y|x) ≤ E [h (Cθ, u)|x] ∀ u ∈ B x− a.s.} .

In our simple two player simultaneous move, complete information, static game of entry, Aj = {0, 1} ,
j = 1, 2, A = {(0, 0) , (1, 0) , (0, 1) , (1, 1)} . Omitting again the covariates, we assume that players’ payoffs are
given by πj = aj (a−jθj + εj) , where aj ∈ {0, 1} and θj is assumed to be negative (monopoly payoffs are

higher than duopoly payoffs), j = 1, 2. Figure 6 plots the set Cθ against the possible realizations of ε1, ε2, for

this example. Notice that for ω ∈ Ω such that ε (ω) /∈ [0,−θ1] × [0,−θ2] , the game is dominance solvable and
therefore Cθ (ω) is given by the singleton Q (Sθ (ω)) resulting from the unique Nash equilibrium in these regions.

For ω ∈ Ω such that ε (ω) ∈ [0,−θ1]× [0,−θ2] , Cθ (ω) is given by a polytope with five vertices, three of which
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are implied by Nash equilibria, see Calvó-Armengol (2006).22 Also in this case one can extend the approaches

of ABJ and CT to obtain outer regions defined, respectively, by four and eight moment inequalities similar to

those in equations (3.11)-(3.13).

Figure 10 and Table 3 report ΘI , ΘCTO , and ΘABJO in a simple example with (ε1, ε2)
iid∼ N (0, 1) and

Θ = [−5, 0]2 . In the figure, ΘABJO is given by the union of the yellow, red and black areas, and ΘCTO by the

union of the red and black areas. ΘI is the black region. The data is generated with θ
B
1 = −1.15, θB2 = −1.4, and

using a selection mechanism which picks each of outcome (0, 0) and (1, 1) for 10% of ω : ε (ω) ∈ [0,−θB1]×[0,−θB2],
and each of outcome (1, 0) and (0, 1) for 40% of ω : ε (ω) ∈ [0,−θB1]× [0,−θB2]. Hence, the observed distribution
is P (y) = [0.26572 0.34315 0.36531 0.02582]0. Also in this case ΘI is smaller than ΘCTO and ΘABJO , although

the reduction in the size of the identification region is less pronounced than in the case where mixed strategy

Nash equilibrium is the solution concept.

B Dual Characterization of the Sharpness Result in the Pure Strate-
gies Case

For a given realization of (x, ε) and value of θ ∈ Θ, the set of outcomes generated by pure strategy Nash
equilibria23 is

(B.1) Yθ (x, ε) = {y ∈ Y : y = a ∈ A and πj (aj , a−j , xj, εj , θ) ≥ πj (ãj , a−j , xj , εj , θ) ∀ãj ∈ Aj ∀j} .

As we did for Sθ, we omit the explicit reference to this set’s dependence on x and ε. Given Assumption 1, one

can easily show that Yθ is a random closed set in Y (see Definition 2). Because the realizations of Yθ are subsets
of the finite set Y, it suffices that π (·) is a measurable (rather than continuous) function of x and ε in order to

establish that Yθ is a random closed set in Y.
The researcher observes the tuple (y, x), and the random set Yθ is a function of x (and of course ε). Under

Assumptions 1-4, and given the covariates x, the observed outcomes y are consistent with the model if and

only if there exists at least one θ ∈ Θ such that y(ω) ∈ Yθ (ω) x− a.s. (i.e., y is a selection of Yθ x − a.s., see

Definition 3). A necessary and sufficient condition which guarantees that a random vector (y, x) is a selection

of (Yθ, x) is given by the results of Artstein (1983), Norberg (1992) and Molchanov (2005, Theorem 1.2.20 and

22These vertices are

γ0 (ω) = [0 0 1 0]0

γ1 (ω) = 1 − ε2(ω)
θ2+ε2(ω)

− ε1(ω)
θ1+ε1(ω)

0
0
1− ε1(ω)

θ1+ε1(ω)
− ε2(ω)

θ2+ε2(ω)

−1

γ2 (ω) = 1 + ε2(ω)
θ2

1 + ε1(ω)
θ1

− ε2(ω)
θ2

1 + ε1(ω)
θ1

− 1 + ε2(ω)
θ2

ε1(ω)
θ1

ε2(ω)
θ2

ε1(ω)
θ1

0

γ3 (ω) = 0 − ε2(ω)
θ2+ε2(ω)

− ε1(ω)
θ1+ε1(ω)

ε1(ω)
θ1+ε1(ω)

ε2(ω)
θ2+ε2(ω)

0
ε1(ω)

θ1+ε1(ω)
ε2(ω)

θ2+ε2(ω)
− ε1(ω)

θ1+ε1(ω)
− ε2(ω)

θ2+ε2(ω)

−1

γ4 (ω) = [0 1 0 0]0

23Restrict the set Sθ to be a set of pure strategy Nash equilibria. Then under Assumption 2, the outcomes of the game
can be labeled so that Yθ coincides with Sθ. However, under the more general Assumption 1-(iii), these two sets differ,
and

Yθ (x, ε) = {y ∈ Y : y = g (a) , a ∈ A and πj (aj , a−j , xj , εj , θ) ≥ πj (ãj , a−j , xj , εj , θ) ∀ãj ∈ Aj ∀j} .
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Section 1.4.8), and amounts to the following:24

P{(y, x) ∈ K × L} ≤ P{(Yθ, x) ∩K × L 6= ∅} ∀K ⊂ Y, ∀ compact sets L ⊂ X .

This inequality can be written as P (y ∈ K|x ∈ L)P (x ∈ L) ≤ P {Yθ ∩K 6= ∅|x ∈ L}P (x ∈ L) ∀K ⊂ Y, ∀
compact sets L ⊂ X such that P (x ∈ L) > 0, and it is satisfied if and only if

(B.2) P (y ∈ K|x) ≤ P {Yθ ∩K 6= ∅|x} ∀K ⊂ Y x− a.s.

Because Y is finite, all its subsets are compact. The functional P {Yθ ∩K 6= ∅|x} on the right-hand side of
(B.2) is called the capacity functional of Yθ given x. The following definitions formally introduce this functional

and a few related ones:

Definition 5 Let Z be a random closed set in the topological space F, and denote by K the family of compact

subsets of F. The functionals TZ : K→ [0, 1] , CZ : K→ [0, 1] , and IZ : K→ [0, 1] , given by

TZ (K) = P{Z ∩K 6= ∅}, CZ (K) = P{Z ⊂ K}, IZ (K) = P{K ⊂ Z} , K ∈ K,

are said to be, respectively, the capacity functional of Z, the containment functional of Z, and the inclu-
sion functional of Z.

Denoting by Kc the complement of the sets K, the following relationship holds:

(B.3) CZ (K) = 1−TZ (K
c) .

Example 3 Consider again the simple two player entry game in Example 2. Figure 3 plots the set Yθ against
the realizations of ε1, ε2. In this case, TYθ ({(0, 0)}) = P (ε1 ≤ 0, ε2 ≤ 0) , TYθ ({(1, 0)}) = P (ε1 ≥ 0, ε2 ≤ −θ2) ,
TYθ ({(0, 1)}) = P (ε1 ≤ −θ1, ε2 ≥ 0) , TYθ ({(1, 1)}) = P (ε1 ≥ −θ1, ε2 ≥ −θ2) , TYθ ({(1, 0) , (0, 1)}) = TYθ ({(1, 0)})+
TYθ ({(0, 1)})− P (0 ≤ ε1 ≤ −θ1, 0 ≤ ε2 ≤ −θ2) . The capacity functional of the remaining subsets of Y can be
calculated similarly. ¤

Notice that given equation (B.3), inequalities (B.2) can be equivalently written as

(B.4) CYθ|x (K) ≤ P (y ∈ K|x) ≤ TYθ|x (K) ∀K ⊂ Y x− a.s.,

where the subscript Yθ|x denotes that the functional is for the random set Yθ conditional on x. We return to

this representation of inequalities (B.2) when discussing the relationship between our analysis and that of CT.

Clearly, if one considers all K ⊂ Y, the left-hand side inequality in (B.4) is superfluous: when the inequalities
in (B.4) are used, only subsets K ⊂ Y of cardinality up to half of the cardinality of Y are needed.

We can re-define the identified set of parameters θ as

(B.5) ΘI =
©
θ ∈ Θ : P (y ∈ K|x) ≤ TYθ|x (K) ∀K ⊂ Y x− a.s.

ª
.

24Beresteanu and Molinari (2006, 2008, Proposition 4.1) use this result to establish sharpness of the identification
region of the parameters of a best linear predictor with interval outcome data. Galichon and Henry (2006) use it to
define a correctly specified partially identified structural model, and derive a Kolmogorov-Smirnov test for Choquet
capacities.
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For comparison purposes, we reformulate the definition of the outer regions given by ABJ and CT respectively

through the capacity functional and the containment functional:

ΘABJO =
©
θ ∈ Θ : P {y = t|x} ≤ TYθ|x (t) ∀t ∈ Y x− a.s.

ª
,(B.6)

ΘCTO =
©
θ ∈ Θ : CYθ|x (t) ≤ P {y = t|x} ≤ TYθ|x (t) ∀t ∈ Y x− a.s.

ª
.(B.7)

Both ABJ and CT acknowledge that the parameter regions they give are not sharp. Comparing the sets in

equations (B.6)-(B.7) with the set in equation (B.5), one observes that ΘABJO is obtained applying inequality

(B.2) only for K = {t} ∀t ∈ Y. Similarly, ΘCTO is obtained applying inequality (B.4) only for K = {t} (or,
equivalently, applying inequality (B.2) for K = {t} and K = Y\ {t} ∀t ∈ Y). Clearly both ABJ and CT do not
use the information contained in the remaining subsets of Y, while this information is used to obtain ΘI . Two
questions arise: (1) whether ΘI as defined in equation (B.5) yields the sharp identification region of θ; and (2)

if and by how much ΘI differs from ΘABJO and ΘCTO . We answer here the first question. Section 3.4.1 answers

the second question by looking at a simple example.

Theorem B.1 Assume that players use only pure strategies, that Assumptions 1-4 are satisfied, and that no
other information is available. Then for x− a.s. these two conditions are equivalent:

1. u0P (y|x) ≤ E [h (Q (Sθ) , u)|x] ∀ u ∈ <κY ,
2. P (y ∈ K|x) ≤ TYθ|x (K) ∀K ⊂ Y.

Proof. Beresteanu, Molchanov, and Molinari (2008, Theorem 4.1).

As per inequalities (B.2), condition 2 in the above theorem means that y is a selection of Yθ conditionally on

x. As discussed by Galichon and Henry (2008), the distributions of all selections y of a random set Y correspond

to the core of Y , the latter being the family of probability measures that are dominated by the capacity functional

of Y . Galichon and Henry (2008) devote particular attention to the concept of core determining classes, namely

those sub-families of compact sets K such that the dominance condition on the members of this sub-family

guarantees that a candidate probability measure belongs to the core. The core of a random closed set in turn

determines the distribution of the set, and therefore the core determining class is exactly the class such that

the values of the capacity functional on it determine uniquely the distribution of the random closed set. It is

well known in random sets theory that by imposing some restrictions on the family of realizations of a random

set it is possible to arrive at some more economical distribution determining classes, see Molchanov (1984),

later summarized (and corrected) as Molchanov (2005, Theorem 1.7.7), and Norberg (1989). In particular, if

Y (ω1) and Y (ω2) are ordered by inclusion for almost all ω1, ω2 ∈ Ω, then one can always choose intervals as
the sets that determine the distribution of Y, and so the core of it. This rather strong assumption, in the form

of an ordering relation, is imposed in Galichon and Henry (2008) and brings to a reduction in the size of the

core determining class, which exactly corresponds to the setting in the earlier papers by Molchanov (1984) and

Norberg (1989).

B.1 On the Number of Inequalities to Be Checked in the Pure Strategies Case

As discussed in Section 3.5, when it is assumed that players play only pure strategies, often there is no need

to verify the complete set of 2κY inequalities, because many are redundant. Using the insight in Theorem B.1,

one can show that the result in equation (3.17) can be restated using the set Yθ and its capacity functional. In
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particular, if K1 and K2 are two disjoint subsets of Y such that

(B.8) {ω : Yθ (ω) ∩K1 6= ∅|x} ∩ {ω : Yθ (ω) ∩K2 6= ∅|x} = ∅,

that is, the set of ω for which Yθ intersects bothK1 andK2 has probability zero, then the inequalityP {y ∈ K1 ∪K2|x} ≤
P {Yθ ∩ (K1 ∪K2) 6= ∅|x} does not add any information beyond that provided by the inequalitiesP {y ∈ K1|x} ≤
P {Yθ ∩K1 6= ∅|x} and P {y ∈ K2|x} ≤ P {Yθ ∩K2 6= ∅|x}. Therefore, prior knowledge of some properties of
the game can be very helpful in eliminating unnecessary inequalities. For example, in a Bresnahan and Reiss

entry model with 4 players, if the number of entrants is identified, the number of inequalities to be verified

reduces from 65,536 to at most 100. Theorem B.2 below gives a general result which may lead to a dramatic

reduction in the number of inequalities to be checked. While its proof is simple, this result is conceptually and

practically important.

Theorem B.2 Take θ ∈ Θ and let Assumptions 1-4 hold. Consider a partition of Ω into sets Ω1, . . . ,ΩM of

positive probability. Let Yi
Yi = ∪{Yθ(ω) : ω ∈ Ωi}.

denote the range of Yθ(ω) for ω ∈ Ωi. If Y1, . . . ,YM are disjoint, then it suffices to check (B.2) only for all

subsets K such that there is i = 1, . . . ,M for which K ⊆ Yi.

Proof. Beresteanu, Molchanov, and Molinari (2008, Theorem 5.1).

A simple Corollary of Theorem B.2, the proof of which is omitted, is the following:

Corollary B.1 Take θ ∈ Θ and let Assumptions 1-4 hold. Assume that Ω = Ω1 ∪ Ω2 with Ω1 ∩ Ω2 = ∅, such
that Yθ(ω) is a singleton almost surely for ω ∈ Ω1. Let Yi = ∪ω∈ΩiYθ(ω), i = 1, 2, and assume that Y1 ∩Y2 = ∅
and that κY2 ≤ 2. Then inequalities (B.2) hold if

(B.9) P{Yθ = {t}|x} ≤ P{y = t|x} ≤ P{ t ∈ Yθ|x}

x− a.s. for all t ∈ Y.

An implication of this Corollary is that in a static entry game with two players in which only pure strategies

are played, the outer region proposed by CT coincides with ours, and is sharp.25 In this example, Y1 =
{(0, 0) , (1, 1)} , Y2 = {(0, 1) , (1, 0)} , and Ω2 = {ω : Yθ ∩Y2 6= ∅}. An application of equation (3.17) shows that
actually the sharp identification region can be obtained by checking only five inequalities which have to hold

for x − a.s., given by inequalities (B.2) for K = {(0, 0)} , {(1, 0)} , {(0, 1)} , {(1, 1)} , {(1, 0) , (0, 1)} . On the
other hand, the example in Section 3.3.1 above shows that CT’s approach does not yield the sharp identification

region when mixed strategies are allowed for.

When no prior knowledge of the game such as, for example, that required in Theorem B.2 is available, it is

still possible to use the insight in equation (B.8) to determine which inequalities yield the sharp identification

region, by decomposing Y into subsets such that Yθ does not jointly hit any two of them with positive probability.
One may wonder whether in general the set of inequalities yielding the sharp identification region is different

from the set of inequalities used by ABJ or CT. The following result shows that in general the answer to this

question is “yes”.

25A literal application of ABJ’s approach does not take into account the fact that in this game (0, 0) and (1, 1) only
occur as unique equilibria of the game, and therefore does not yield the sharp identification region, as ABJ discuss (see
page 32).
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Theorem B.3 Let Assumptions 1-4 hold. Assume that there exists θ ∈ Θ, with Yθ 6= ∅ P− a.s., such that for

all x ∈ X̃ ⊂ X , with P
³
X̃
´
> 0, there exist t1, t2 ∈ Y with

(B.10) IYθ|x(t
1, t2) > 0.

(a) If P
©©

t1, t2
ª
∩ Yθ 6= ∅

¯̄
x
ª

< 1 for all t1, t2 ∈ Y, then there exists a random vector z which satisfies

inequalities (B.2) for K = {t} ∀t ∈ Y but is not a selection of Yθ.
(b) If

(B.11) P{κYθ > 1|x} > IYθ|x(t1) + IYθ|x(t2)−CYθ|x(t
1)−CYθ|x(t

2),

then there exists a random vector z which satisfies inequalities (B.2) for K = {t} and K = Y\ {t} ∀t ∈ Y but

is not a selection of Yθ.

Proof. Beresteanu, Molchanov, and Molinari (2008, Theorems 5.2 and 5.3)
These results show that the extra inequalities matter in general, compared to those used by ABJ, and CT, to

fully characterize Yθ and determine if y ∈ Sel (Yθ). In fact, the assumptions of Theorem B.3-(a) are satisfied

whenever the model has multiple equilibria with positive probability, which implies that the expected cardinality

of Yθ given x is strictly greater than one, and it has at least three different equilibria. The assumptions of

Theorem B.3-(b) are satisfied whenever (1) there are regions of the unobservables of positive probability where

two different outcomes can result from equilibrium strategy profiles; and (2) the probability that the cardinality

of Yθ is greater than one exceeds the probability that each of these two outcomes is not a unique equilibrium.

It is easy to see that these assumptions are not satisfied in a two player entry game where players are allowed

only to play pure strategies, but they are satisfied in the four player, two type game described in Section 3.4.1.
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Table 1: Projections of ΘABJ
O , ΘCT

O and ΘI , reduction in bounds width (in parentheses), and area
of the identification regions compared to ABJ. Two player entry game with mixed strategy Nash
equilibrium as solution concept.

True Values Projections of:
ΘABJ
O ΘCT

O ΘI

θB1 −1.15 [−2.715,−0.485] [−2.715,−0.585] [−2.205,−0.605]
(4.5%) (28.3%)

θB2 −1.40 [−2.785,−0.625] [−2.785,−0.725] [−2.245,−0.745]
(4.6%) (30.6%)

Approximate Reduction in Total Area Compared to ΘABJ
O (16.4%) (56.5%)

Table 2: Projections of ΘABJ
O , ΘCT

O and ΘI , and reduction in bounds width compared to ABJ. Four
player, two type entry game with pure strategy Nash equilibrium as solution concept.

True Values Projections of:
ΘABJ
O ΘCT

O ΘI

θB11 −0.15 [−0.154,−0.144] [−0.153,−0.146] [−0.152,−0.147]
(27%) (54%)

θB21 −0.20 [−0.206,−0.195] [−0.204,−0.197] [−0.203,−0.198]
(27%) (54%)

θB22 −0.10 [−0.106,−0.096] [−0.104,−0.097] [−0.103,−0.098]
(27%) (54%)

Table 3: Projections of ΘABJ
O , ΘCT

O and ΘI , reduction in bounds width (in parentheses), and area
of the identification regions compared to ABJ. Two player entry game with correlated equilibrium as
solution concept.

True Values Projections of:
ΘABJ
O ΘCT

O ΘI

θB1 −1.15 [−4.475,−0.485] [−4.475,−0.585] [−4.125,−0.595]
(2.5%) (11.5%)

θB2 −1.40 [−4.585,−0.625] [−4.585,−0.725] [−4.425,−0.735]
(2.4%) (6.8%)

Approximate Reduction in Total Area Compared to ΘABJ
O (7.9%) (23.1%)
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Figure 1: Two player entry game. Panel (a): The random set of mixed strategy NE profiles, Sθ, as a
function of ε1,ε2. Panel (b): The random set of probability distributions over outcome profiles implied
by mixed strategy NE, Q (Sθ), as a function of ε1,ε2. Panel (c): The support function in direction
u of the random set of probability distributions over outcome profiles implied by mixed strategy NE,
h (Q (Sθ) , u), as a function of ε1,ε2.
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Figure 2: A comparison between the logic behind the approaches of ABJ, CT, and this paper, obtained
by projecting in <2 : ∆κY−1, E (Q (Sθ)|x) , and the hypercubes used by ABJ and CT. A candidate
θ ∈ Θ is in ΘI if P (y|x), the white dot in the picture, belongs to the black ellipses E (Q (Sθ)|x) ,
which gives the set of probability distributions consistent with all the model’s implications. The same
θ is in ΘCT

O if P (y|x) belongs to the red region or to the black ellipses, which give the set of probability
distributions consistent with the subset of model’s implications used by CT. The same θ is in ΘABJ

O

if P (y|x) belongs to the yellow region or to the red region or to the black ellipses, which give the set
of probability distributions consistent with the subset of model’s implications used by ABJ.
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Figure 3: The random set of pure strategy NE profiles, Sθ, and the random set of pure strategy NE
outcomes, Yθ, as a function of ε1, ε2 in a two player entry game. In this simple example the two sets
coincide.
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Figure 4: The random set of pure strategy NE outcomes as a function of ε1, ε2 in a four player, two
type entry game.
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Figure 5: The random set of level-1 rational profiles as a function of ε1, ε2 in a two player entry game.
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Figure 6: The random set of correlated equilibria as a function of ε1,ε2 in a two player entry game.
The correlated equilibria γ1, γ2, γ3 are defined in Section A.2.
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Figure 7: Identification regions in a two player entry game with mixed strategy Nash equilibrium as
solution concept.

Figure 8: Identification regions in a four player, two type entry game with pure strategy Nash equi-
librium as solution concept.
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Figure 9: Upper contours of the identification regions in a two player entry game with level-1 rationality
as solution concept.

Figure 10: Identification regions in a two player entry game with correlated equilibrium as solution
concept.
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