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Abstract

This paper contributes to the understanding of the source of identification in panel

data models. Recent research has established that few time periods suffice to identify

interesting structural effects in nonseparable panel data models even in the presence of

complex correlated unobservables, provided these unobservables are time invariant. A

communality of all of these approaches is that they point identify effects only for subpop-

ulations. In this paper we focus on average partial derivatives and continuous explanatory

variables. We elaborate on the parallel between time in panels and instrumental variables

in cross sections and establish that point identification is generically only possible in spe-

cific subpopulations, for finite T . Moreover, for general subpopulations, we provide sharp

bounds. Finally, we show that these bounds converge to point identification as T tends

to infinity only. We systematize this behavior by comparing it to increasing the number

of support points of an instrument. Finally, we apply all of these concepts to the semi-

parametric panel binary choice model and establish that these issues determine the rates

of convergence of estimators for the slope coefficient.
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1 Introduction

What is the role of time in panel data? The fact that certain individual traits like preferences

can often assumed to be time invariant together with the fact that individuals are observed

repeatedly opens up the way for a powerful identification principle, whose driving force is akin

to the exogenous variation provided by instruments in a cross section. The recent literature

has pointed out that only few time periods are necessary to exploit this fact and point identify

interesting structural effects among subpopulations (e.g., Honore and Kyriazidou (2000), Altonji

and Matzkin (2005), Arellano and Bonhomme (2010), Graham and Powell (2010), Hoderlein

and White (2010), Chernozhukov, Fernandez Val, Hahn and Newey (2010, henceforth CFHN)),

or partially separable structural functions (Evdokimov, 2010). The question then becomes:

what do we gain from observing individuals more often across time?

This paper contributes to the understanding of the role of time in panels with continuous

explanatory variables. It develops the notion that repeated observations provide exogenous

variation that parallels identification through instrumental variables. From this perspective,

few time periods correspond to few support points of the instrument. In cross sectional models

with discrete support, point identification is available for structural effects in subpopulations

(e.g., “compliers” in the LATE framework) only, and not more than bounds are available for

structural effects in the entire population (Chesher (2005), Shaik and Vytlacil (2010)). This

point identification for subpopulations only is paralleled by the recent results in panel data

models mentioned earlier: Hoderlein and White (2010) concentrate on the effects for “stayers”,

i.e., the subpopulation for which X1 = X2 = x, while Arellano and Bonhomme (2010) and

Graham and Powell (2010) focus on the population for which (at least) X1 ̸= X2.

In this paper, we establish that these parallels are not accidental. Consider the nonseparable

structural panel data model:

Yt = ϕ(Xt, A, Ut) t ∈ T (T ) := {1, . . . , T} (1.1)

where Yt is an outcome, Xt is an endogenous regressor, A is an individual fixed effect and Ut is

an idiosyncratic shock. As econometricians, we observe the joint distribution FY1···YTX1···XT
of

outcomes and explanatory variables across time. With the notation β(x, a, u) = ∂
∂x
ϕ(x, a, u),
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the object of interest for identification is the local average response (LAR)

E [β(Xt, A, Ut)|Xt = x] , (1.2)

which is the mean partial effect among the (arbitrary) subpopulation of individuals who chose

Xt = x at time t. Since the marginal distribution FXt of Xt is observable, integration of this

object with respect to FXt will yield the population average partial effect (APE – Chamberlain,

1984; Blundell and Powell, 2003; Wooldridge, 2005) as a byproduct. This parameter is also

closely related to Graham and Powell’s (2010) correlated random coefficient models, who restrict

the model to be linear in Xt. In contrast to this and some of the panel data work mentioned

above (e.g., Hoderlein and White (2010)), our conditioning set in (1.2) can encompass the entire

population by varying x, provided individuals change their ranks in the Xt distribution over

time.

Our parameter (1.2) exactly resembles that of Altonji and Matzkin (2005, AM), and is

hence also related to Bester and Hansen (2008), who employ an index restriction closely related

in spirit to AM’s exclusion (control function) restriction1. While the parameter is similar to

the one considered by AM, our analysis however shows some marked differences: While AM

impose an exchangeability restriction to construct control variables from observed data, we

avoid such an assumption at the expense of an alternative assumption that allows to make

inter-temporal comparisons, and essentially amounts to a weak joint stationarity requirement

on the distribution of correlated unobservables and ranks FXt . Both assumptions serve the

purpose to facilitate inter-temporal comparisons across conditioning sets; since our assumption

is different and in tendency weaker, in contrast to AM we obtain only bounds, as well as

“irregular” identification.

Our contributions to the literature are as follows: We establish that for finite T , average

structural marginal effects like (1.2) are only set identified, and we provide sharp bounds for

this effects for an arbitrary subpopulation as well as the entire population. We moreover

show that for finite T, point identification happens generically only on a set of zero measure,

1Using the notation X = (X1, · · · , XT ) , Bester and Hansen (2009) focus on E
[

∂
∂xt

E[Yt | A,X]
∣∣∣X]

, which

is rather different from what we consider.
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which explains that the results obtained in the literature focused on subpopulations. Third,

we describe the process by which partial identification asymptotes to point identification of the

effect of interest across the entire population as the number of time periods increases. Finally,

we discuss the analogy between panel data models and IV models, and argue in which sense

these two apparently different setups can be considered as a single unified paradigm.

While concentrating on a different object, this paper complements also CFHN’s (2010) re-

cent seminal developments in nonlinear nonseparable panel data models. While CFHN focus on

the effect of discrete explanatory variables, this paper focuses on continuous variables. More-

over, CFHN consider the average effect of a discrete difference (e.g., a classical binary treatment

effect), while we consider the LAR given in (1.2), which is more akin to an average random

coefficient (see also Hoderlein and Sasaki (2010) for a detailed discussion of this parameter in

the cross section case, and Graham and Powell (2010)). However, similarly in spirit to CFHN,

we establish that we only obtain partial identification of the effect of interest with fixed T in

general, and that the effect of interest becomes point identified as T → ∞.

But do we have to wait until T becomes really infinite to obtain point-identification? While

the answer is generally affirmative for finite T , we show that (1.2) is point-identified for some

specific points Xt = x∗ even in finite T . These (special, but not necessarily large) values x∗

are observable from data, hence we can tell which locality admits point identification in finite

time. Moreover, the number of such points x∗ exhibiting point-identification is increasing in T

under certain conditions, illustrating the passage from partial to point identification in another

fashion. This passage from partial to point identification as T increases resembles a similar

passage observed by Chesher (2005) in the transition from discrete to continuous instrument

in the context of cross section data. Indeed, we will provide an unified view on these two

paradigms by representing panel data models in a form analogous to two-stage cross section

models.

The aforementioned identification principle can be translated into semiparametric binary

choice models as a special case. The fact that point-identification is achieved at some specific

points Xt = x∗ even under finite T leads to identification of the coefficient in a semiparametric

binary choice models based on information from a population of measure zero. On the other
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hand, as T → ∞, we obtain point-identification of semiparametric binary choice models based

on information from a population with positive measure. The former implies a nonparamet-

ric (i.e., slower than
√
n) rate with finite T , whereas the latter implies a parametric rate of

convergence as T → ∞.

This paper is organized as follows: In the following section, we provide the main identifica-

tion results. We establish partial identification of (1.2) for arbitrary subpopulations, provide

sharp bounds, and establish the behavior of these bounds as T → ∞. Moreover, we show point

identification for special subpopulations characterized by FXs(Xs) = FXt(Xt). In the third sub-

section, we provide a numerical analysis that illustrates these points, not least the behavior as

T → ∞, graphically. In the fourth subsection, we discuss the relationship between panels and

instruments in the general case, while we discuss extensions, as well as the leading special case,

the semiparametric binary choice model, in the fifth section. Finally, an outlook concludes.

2 Main Identification Results

In this section, we discuss the main identification results. To this end, we first discuss and

introduce a set of assumptions which are mostly standard for this literature. We then provide

the main results on partial identification, point identification of a set of measure zero, and

identification as T → ∞. All of these results are followed by a discussion.

All the identification results of this paper are derived through the single device, the time-

variant rank of Xt, defined by

Vt := FXt(Xt) t ∈ T (T ).

As its expression implies, it plays the role of a control variable. We start out by stating the

assumptions on which our identification results are based:

Assumption 1. Basic Restrictions:

(ID) Ut is identically distributed across t ∈ T (T ).

(IND) Us ⊥⊥ (Xt, A) for all s, t ∈ T (T ).
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(ACC) The distribution of Xt is absolutely continuous with a convex support.

(IJD) (A, Vs)
Law
= (A, Vt) for all s, t ∈ T (T ).

Remarks: Assumption ID (Identical Distribution) states that idiosyncratic errors are iden-

tically distributed across time. This assumption is standard in this literature and appears in

CFHN, Graham and Powell (2010), Hoderlein and White (2010), among others. The indepen-

dence assumption IND (Independence) defines the period specific error to be fully independent

across time, which given the nonseparable framework employed is a straightforward generaliza-

tion of the notion of strict exogeneity provided in the literature. The assumption ACC (Absolute

Continuity & Convex support) specifies Xt to be continuously distributed; this guarantees that

the distribution function FXt is bijective on its support.

Assumption IJD (Invariant Joint Distribution) states that the joint distribution of individual

fixed effects A and the rank Vt = FXt(Xt) remains invariant over time. Note that both the

marginals of A and Vt are stationary (the latter is always U [0, 1]), this assumption only restricts

the correlation structure of the joint distribution to be time invariant. While individuals may

change their ranks in the Xt distribution over time, the population covariance between fixed

effects and ranks is required to be time invariant.

This is a rather weak assumption. In particular, it does not require rank invariance, and

allows for a dynamic relationship of the rank process, e.g., the process

Vt+1 = µa + ρ(a)(Vt − µa) +Wt Wt | A = a ∼ NID(0, s2a)

where |ρ(a)| < 1 for a.e. a ∈ supp(A) and V1 | A = a ∼ N(µa, σ
2
a) will satisfy assumption IJD.

Note that the initial V1 or the dynamic perturbationWt need not be independent of unobserved

fixed effect A in this AR example. More generally, any stationary process (such as the ARMA

with certain coefficient restrictions) of Vt conditional on A = a for a.e. a satisfies IJD.

Rank invariance across time Vt = Vs = V is a special case of the assumption IJD; this special

case may be plausible in certain economic applications, e.g., the ordering of various individual

specific income processes may be the same across time, while the individual processes diverge.

In order to further motivate the IJD assumption, we consider a structure that encompasses a

wide array of economic model:
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Example 1 (Economic Models Satisfying the IJD). Suppose the choice of quantity Xit by agent

i at time t takes the form

Xit = ψ(Wt, ι(Ai, Bit)) (2.1)

for Borel-measurable functions ψ and ι, where ψ is strictly increasing in the second argument.

None of Ai, Bit, or Wt is observable to the econometrician. If (Ai, Bis)
Law≡ (Ai, Bit) for all s, t,

then the process {Xit}t satisfies the Assumption IJD. To see this, denote Cit := ι(Ai, Bit). Then,

(Ai, Vis) = (Ai, FXis
(Xis)) = (Ai, FCis

(Cis))
Law≡ (Ai, FCit

(Cit)) = (Ai, FXit
(Xit)) = (Ai, Vit).

To give an economic example for such a choice relationship, suppose that Xit is chosen by

agent i according to the following decision rule:

xit = argmax
x

[∫
v(x, ai, uit)dFUt|Bt(uit | bit)− p(wt) · x

]
(2.2)

where v is an utility function, FUt|Bt is distribution of period specific error uit given agents

beliefs bit, and p(wt) is a time-varying unit cost of treatment choice xit. To fix ideas, think

of the integral as the expected benefit of choosing x which depends on the individual “taste”

fixed effect ai, and think of p(wt) · x as the costs that depend on the price p(wt) which in turn

depends on the macroeconomic environment wt. To derive an explicit solution, suppose that the

objective function v takes the form v(x, a, u) := x1−cφ(a, u)/(1 − c) with c ∈ (0, 1). Then, we

deduce that

xit = p(wt)
−1/c ·

[∫
φ(ai, uit)dFUt|Bt(uit | bit)

]1/c
︸ ︷︷ ︸

ι(ai,bit)

,

which satisfies the expression (2.1).

While this example is related in spirit to one in Imbens and Newey (2009) in the cross

section case, it highlights some communalities and differences between cross sections and panels:

First, unlike in cross sections, (Ai, Bis)
Law≡ (Ai, Bit) is assumed, i.e., the joint distribution of

preferences and beliefs is time invariant. In contrast, the distribution of Wt is allowed to

vary over time. The source of time variation Wt, e.g., the macroeconomic environment, enters

the decision rule (2.2) as an exogenous “cost-shifter.” Observe that in cross-section models,

exogenous cost-shifters are usually instruments. This highlights a parallel between the role of
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time in panel data models and the role of instrumental variables in cross section models. This

analogy will be more formally discussed in Section 4.

Armed with these assumptions, we can now proceed to the formal analysis. An important

component in the subsequent analysis is introduced through the following short-hand notation:

∆(s, t, x) :=
E
[
Ys | Xs = F−1

Xs
◦ FXt(x)

]
− E [Yt | Xt = x]

F−1
Xs

◦ FXt(x)− x
(2.3)

Note that this object is identified from observed data. It in turn identifies a structural feature

as stated in the following lemma.

Lemma 1. Suppose that Assumption 1 holds. Then

E

[
ϕ(F−1

Xs
◦ FXt(x), A, Ut)− ϕ(x,A, Ut)

F−1
Xs

◦ FXt(x)− x

∣∣∣∣∣Xt = x

]
= ∆(s, t, x)

holds for all x ∈ supp(Xt) for all s, t ∈ T (T ) such that FXs(x) ̸= FXt(x).

This lemma states that the local average difference quotient (left hand side) can be identified

by ∆(s, t, x), which is observable from data. This intermediate result will be used in proving all

the main identification results of this paper, i.e., partial identification under T <∞ (Theorem

1), local point identification under T < ∞ (Theorem 2), and point identification as T → ∞

(Theorem 3). Due the condition FXs(x) ̸= FXt(x) of the lemma, we require a nontrivial

time-variation in the marginal distributions of Xt as an empirically testable restriction. Note

that if there is horizontal shift in cdfs over time - as would for instance be implied if there is

proportional income growth - the condition FXs(x) ̸= FXt(x) holds across the entire population.

While we think of this as rather the rule than the exception, it rules out time invariant or

stationary Xt.

2.1 Partial Identification under T <∞.

The first theorem of this paper shows that ∆(s, t, x) can be used to bound on the local average

response (LAR) of ϕ. To this end, we define, for x ∈ supp(Xt) and t ∈ T (T ), two time indices

τ(T, t, x) := arg max
s∈T (T )

{F−1
Xs

◦ FXt(x) | F−1
Xs

◦ FXt(x) < x}

τ(T, t, x) := arg min
s∈T (T )

{F−1
Xs

◦ FXt(x) | F−1
Xs

◦ FXt(x) > x}
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These time indices specify the time s for which (2.3) forms sharp bounds of (1.2). If we were

to identify an individual characterized by Xt = x′ with its rank FXt(x
′) then it would provide

the smallest movement across X between any two periods s, t of an individual with Xt = x,

both to the left and to the right of x. For these quantities to be well defined there have to

be enough time periods, i.e., at any given point x at least one below, and one above. This

structure provides the vehicle to employ the following assumption.

Assumption 2. (Local Curvature):

There exists an interval I containing x, F−1
Xτ(T,t,x)

◦ FXt(x), and F
−1
Xτ(T,t,x)

◦ FXt(x) such that the

sign of ∂2

∂x2ϕ(x
′, a, u) is invariant for all x′ ∈ I and [PAUt ]-a.s. (a, u).

Assumption 2 requires that, given x and a time t ∈ T (T ), the two “closest” time periods

τ(T, t, x) to the left and τ(T, t, x) to the right in terms of the X-distributions are indeed close

enough so that the sign of the second derivative of the structural function remains the same

within this proximity. There are three special cases that are sufficient for Assumption 2 to hold

on the interval I : 1. (Locally) Non-increasing returns/concavity, 2. a (local) linear structure,

and, 3. (locally) non-decreasing returns/convexity. These sufficient conditions are often globally

implied by economic theory in certain applications (e.g., in inter-temporal consumer choice,

Carroll and Kimball (1996)), while we only need them to hold in the neighborhood I of smallest

changes. Note moreover that it suffices if any of these conditions are satisfied locally.

The bounds which arise in this setup are analyzed in the following theorem:

Theorem 1 (Partial Identification for T <∞). Let x ∈ supp(Xt) for some t ∈ T (T ). Suppose

that Assumptions 1 and 2 hold in (1.1). Then we obtain that

L(T, t, x) 6 E [β(x,A, Ut)|Xt = x] 6 U(T, t, x)

i.e., the local average response (LAR) is set identified with sharp bounds given by

L(T, t, x) := min {∆(τ(T, t, x), t, x),∆(τ(T, t, x), t, x)} and

U(T, t, x) := max {∆(τ(T, t, x), t, x),∆(τ(T, t, x), t, x)} .
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Figure 1 graphically illustrates the mechanism of Theorem 1. The bottom figure shows

that F−1
X2

◦ FX1(x) and F
−1
X3

◦ FX1(x) serve as left- and right-counterfactual choice of X1 = x,

respectively. Project these left- and right-counterfactual choices of x up onto the top figure

to illustrate the counterfactual outcomes ϕ(F−1
X2

◦ FX1(x), a, u) and ϕ(F−1
X3

◦ FX1(x), a, u), re-

spectively. Under a negative sign for Assumption 2, the left and right difference quotients of

ϕ constitute upper and lower bounds of β(x, a), respectively. Upper and lower bounds would

switch under a positive sign of the second derivative.

If the sign in Assumption 2 is strictly positive or strictly negative, then the inequalities in

Theorem 1 are strict, too. On the other hand, if Assumption 2 holds with the second derivative

being zero on I = R, then the inequalities in Theorem 1 hold with equalities. In particular,

the following point identification result for linear models follows immediately from Lemma 1.

Corollary 1 (Linear Models). If the structural function is a linear random coefficient model,

ϕ(Xt, A, Ut) = α(A,Ut) + β(A,Ut)Xt for all t ∈ T (T ),

with correlated random coefficients, then Theorem 1 implies point identification, i.e.,

E [β(x,A, Ut)|Xt = x] = E [β(A,Ut)|Xt = x] = ∆(s, t, x)

for all x ∈ supp(Xt) for all s, t ∈ T (T ) such that FXs(x) ̸= FXt(x).

This result parallels the main identification result of Graham and Powell (2010, GP). In

this special case, the LAR is an average random coefficient. An important difference is that

GP’s identification is based on “movers” that consist of agents with Xt ̸= Xs for some s, t ∈

T (T ), while Corollary 1 is based on “distributional movers” in the sense of FXs(x) ̸= FXt(x).

Frequently, average effects are of interest, in particular the APE of Chamberlain (1984). In

the case of continuously distributed Xt, GP’s identified parameter is the LAR conditional on

pairs (Xt, Xs) with Xt ̸= Xs. Put differently, in finite samples GP have to exclude observations

for which Xt
∼= Xs, which may be a significant part of the population. In contrast, we can

in principle use the entire population, provided FXs(x) = FXt(x) holds only on a set of [PXt ]-

measure zero. Conversely, it may also be the case that FXt is stationary over time while
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6

-

FX1

FX2

FX3

xF−1
X2

◦ FX1 (x) F−1
X3

◦ FX1 (x)

6

-

ϕ( · , a, u)

xF−1
X2

◦ FX1 (x) F−1
X3

◦ FX1 (x)

ϕ(F−1
X2

◦FX1
(x),a,u)−ϕ(x,a,u)

F−1
X2

◦FX1
(x)−x

β(x, a, u)

ϕ(F−1
X3

◦FX1
(x),a,u)−ϕ(x,a,u)

F−1
X3

◦FX1
(x)−x

Figure 1: Partial identification under T <∞: difference quotients form bounds of β(x, a, u).
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Xit ̸= Xis for a large set of individuals, in which case GP’s analysis should be preferred. Which

method is more useful in this special case hence depends on the specific data configuration,

however, our method does apply to any model, not just linear ones.

2.2 Local Point Identification under T <∞.

The last section shows that we can at least partially identify conditional partial effects for

T <∞. This section shows that point identification is achieved locally for some x, even if T is

finite. However, such a set of points has measure zero. To make this point precise, we require

the following assumption:

Assumption 3. Local Counterfactual: There exist s, t ∈ T (T ) and x∗ such that FXt(x
∗) =

FXs(x
∗) and x∗ is in the closure of the set {x | FXt(x) ̸= FXs(x)}.

This assumption states that the cdfs of Xs and Xt non-tangentially intersect at x∗. Intu-

itively, x∗ is associated with identical rank in times s and t, but there are points x arbitrarily

close to x∗ at which ranks are not identical between time periods s and t. With smooth (e.g.,

real analytic) cdfs, a cluster point of a set of such points x∗ satisfying Assumption 3 under

T < ∞ does not exist, hence only a set of measure zero admits Assumption 3. This obser-

vation is important for understanding fundamental limitations in the identification of certain

semiparametric panel data models like the fixed effects binary choice model, and the associated

impact on the rate of convergence of estimators in these models, cf. Section 5.3.

Next, we invoke a set of regularity conditions:

Assumption 4. Regularity:

(i) [ϕ(x̃, a, u)− ϕ(x, a, u)]/(x̃− x) → β(x∗, a, u) as x, x̃→ x∗ uniformly across (a, u).

(ii) β(x, a, u) is bounded uniformly across (a, u) and across x in a neighborhood of x∗.

(iii) For t, fA|Xt(a | x∗ + δ) → fA|Xt(a | x∗) as δ → 0 uniformly across a.

With these sets of assumptions in place, we are now in the position to state our second main

theorem:
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Theorem 2 (Local Point Identification under T < ∞). Suppose that Assumptions 1 and 4

hold in (1.1). Then, for s, t ∈ T (T ) and x∗ that satisfy Assumption 3, we have

lim
x→x∗

∆(s, t, x) = E [β(x∗, A, Ut)|Xt = x∗] .

Figure 2 graphically illustrates the mechanism of Theorem 2. Assumption 3 is satisfied at x∗

with time periods 1 and 3, as FX1 and FX3 intersect at x
∗, but differ in its deleted neighborhood.

The bottom figure depicts three elements x′, x′′, and x′′′ of a convergent sequence x→ x∗. The

discrepancy between FX1 and FX3 in the deleted neighborhood of x∗ (i.e., excluding x∗), as

implied by Assumption 3 allows x ̸= F−1
X3

◦FX1(x) for each of x = x′, x′′, and x′′′, as illustrated

in the bottom figure. This in turn allows well-defined difference quotients for each of x′, x′′,

and x′′′ in the top figure. These difference quotient asymptote to the partial effect at x∗.

Just as Corollary 1 paralleled the result of Graham and Powell (2010), this Theorem 2

parallels the main identification result of Hoderlein and White (2010). Their identification is

based on ‘stayers’ that consist of agents with Xt = Xs for some s, t ∈ T (T ). Similarly, Theorem

2 is based on “distributional stayers” in the sense of FXs(x
∗) = FXt(x

∗) as in Assumption 3.

While the results are similar, the identified parameters are different. Our identified parameter

is the LAR conditional on a single Xt = x∗ that allows for movers, whereas Hoderlein and

White’s identified parameter is the LAR for any Xt = x, but conditional on the subpopulation

of stayers Xt = Xs.

Also related to our Assumption 32 is the identification approach of Evdokimov (2010). He

exploits information about the distributions for a partially separable structure conditionally on

X1 = X2 = x, i.e., the stayers. He then point identifies structural functions by the quantile rep-

resentation of the identified distribution. As we do not assume his partial separability, we reach

point identification only at the specific points x∗ satisfying Assumption 3, the “distributional

stayers.”

While point identification under T < ∞ is certainly superior to partial identification, it is

achieved only at those points x∗ satisfying Assumption 3, hence not globally. An interesting

2Although the context is different, the idea of using the points x∗ satisfying Assumption 3 is also related to

the identification approach of Torgovitsky (2010).
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Figure 2: Local point identification under T <∞: difference quotients converge to β(x∗, a, u).
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aspect is that the number of points x∗ satisfying Assumption 3 is clearly increasing in T . That

is, as time increases, point identification is achieved at a larger number of locations. Under some

assumptions, this insight can be used to characterize the process by which partial identification

‘converges’ to point identification as T → ∞; it is more formally studied in the following

subsection.

2.3 From Partial to Point Identification as T → ∞.

The previous analysis assumed that T (T ) = {1, . . . , T} where T < ∞ is fixed. We will now

turn to an analysis where T → ∞, which allows us to obtain point identification on a wider

range of values. To this end, we invoke the following assumption:

Assumption 5. Limit Point: Given t, x is a limit point of the sequence
{
F−1
Xs

◦ FXt(x)
}∞
s=1

.

This assumption intuitively means the following. Suppose that an agent with some unob-

served ranks Vs = v chooses Xt = x at some point t in time. Then, a choice of X arbitrarily

close to (but not exactly) x will eventually be taken by an agent with similar unobserved char-

acteristics Vs ≈ v over the infinite horizon. Assumption 5 can be satisfied for x over a set

of positive measure unlike Assumption 3, since the separability of R allows the set of all the

intersection points of {FXt}t to constitute a dense subset of a continuum. This property is

useful since identification over a set of positive measure enables parametric rate of convergence

of estimators in certain applications, cf. Section 5.3.

Assumption 6. Regularity:

(i) Given x, [ϕ(x+ δ, a, u)− ϕ(x, a, u)]/δ → β(x, a, u) as δ → 0 uniformly across (a, u).

(ii) Given x, β(x, a, u) is bounded uniformly across (a, u).

Under this regularity assumption, an application of integration theory yields the following

auxiliary property.

Lemma 2. Suppose that Assumption 6 holds. If xj → x, then

E
[
ϕ(xj, A, Ut)− ϕ(x,A, Ut)

xj − x

∣∣∣∣Xt = x

]
→ E [β(x,A, Ut)|Xt = x] .
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Armed with this lemma, it remains to find a sequence xj → x across time in order to obtain

T -asymptotic point identification of the LAR. The first part of the following theorem states that

we can indeed find such a convergent sequence, whose existence is guaranteed by Assumption

5. Once we find such a sequence, Lemmata 1 and 2 together yield the T -asymptotic point

identification result. Moreover, the sequence that T -asymptotically point-identify the LAR will

turn out to be exactly the sequence of bounds from Theorem 1.

Theorem 3 (Point Identification as T → ∞). Suppose that Assumptions 1, 5, and 6 hold in

(1.1). Given x ∈ supp(Xt) for some t, at least one of the following two results holds:

(I) F−1
Xτ(T,t,x)

◦ FXt(x) → x as T → ∞ and/or

(II) F−1
Xτ(T,t,x)

◦ FXt(x) → x as T → ∞.

If (I) is the case, then ∆(τ(T, t, x), t, x) → E [β(x,A, Ut)|Xt = x] as T → ∞.

If (II) is the case, then ∆(τ(T, t, x), t, x) → E [β(x,A, Ut)|Xt = x] as T → ∞.

Recall that ∆(τ(T, t, x), t, x) and ∆(τ(T, t, x), t, x) are the objects that constitute the sharp

bounds of the LAR for T < ∞ in Theorem 1. Now, this Theorem 3 states that at least one

of them converges to the LAR as T → ∞. Moreover, we know which of them will do so since

we can observe in the data which of (I) or (II) holds. Figure 3 illustrates the mechanism of

this Theorem 3 graphically. As time accumulates, more choices of counter-factual x become

available in an infinitesimal neighborhood (bottom figure), hence providing increasingly precise

difference quotients (top figure).

Assumption 5 states that a point x will be revisited by an agent with a similar unobserved

characteristics over the infinite horizon. Theorem 3 shows T -asymptotic convergence of the

bound(s) to the LAR at such points x. This is analogous to one of the results of CFHN where

they used the ergodicity assumption to show T -asymptotic convergence of their bounds to their

parameters. Table 1 summarizes the required assumptions, advantages, and disadvantages of

the three identification theorems.
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Figure 3: Point identification as T → ∞: left/right difference quotients converge to β(x, a, u).
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Time Identification Locality Assumptions

Theorem 1 T <∞ Partial
1 – Basic Restrictions

2 – Sufficient Proximity

Theorem 2 T <∞ Point Only at x∗

1 – Basic Restrictions

3 – Local Counterfactual

4 – Regularity

Theorem 3 T → ∞ Point

1 – Basic Restrictions

5 – Limit Point

6 – Regularity

Table 1: Summary of identification results for local mean partial effects.

3 Numerical Illustration

In this simulation study we illustrate some of the above results numerically and graphically. A

surprising but reappearing fact in this literature is that the bounds become tight very quickly,

implying that for our “large T” results to hold we in fact require only few time periods. As

such, this simulation study underscores that the results obtained are relevant for applications

of even moderate time dimension.

Consider the following data generating process that is compatible with Assumption 1.

V ∼ Unif(0, 1), A ∼ Normal(V, 1), Ut ∼ Normal(0, 1),

Xt := F−1
Xt

(V ), Yt := ϕ(Xt, A, Ut) for each t

Define a nonlinear nonseparable structural function (1.1) by

ϕ(x, a, u) :=
√
xea+u,

which satisfies Assumption 2 globally. A sequence {FXt}∞t=1 consists of the cdf’s for uniform

distributions with time-varying limits of support. For simplicity, FXt is the cdf of the law

Unif(xt, xt) for some random process {xt, xt}∞t=1 with 0 < xt < xt.

In this setting, we can numerically calculate the LAR

D(t, x) := E [β(x,A, Ut)|Xt = x]
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and its bounds (cf. Theorem 1):

L(T, t, x) := min {∆(τ(T, t, x), t, x),∆(τ(T, t, x), t, x)}

U(T, t, x) := max {∆(τ(T, t, x), t, x),∆(τ(T, t, x), t, x)}

In particular, we will study

D(1, x) = E [β(x,A, Ut)|X1 = x] ,

which is the LAR at x among the subpopulation of individuals who chose Xt = x at time t = 1.

By Theorem 1, its lower and upper bounds from T -period panel data are

L(T, 1, x) = min {∆(τ(T, 1, x), 1, x),∆(τ(T, 1, x), 1, x)}

U(T, 1, x) = max {∆(τ(T, 1, x), 1, x),∆(τ(T, 1, x), 1, x)}

respectively. The identification as T → ∞ is investigated numerically and illustrated in Figure

4.

The top left graph in the figure illustrates the true D(1, x) across x ∈ (0, 1). It is decreasing

near x = 0, reflecting strong diminishing returns of ϕ. On the other hand, it is increasing near

x = 1, reflecting positively endogenous choice of x dominating relatively flattened marginal

returns of ϕ. The rest of the graphs in the figure illustrates a relationship between the true

D(1, x) and its bounds L(T, 1, x) and U(T, 1, x) as T rises. The bounds L(T, 1, x) and U(T, 1, x)

are missing for values of x at which T −(T, 1, x) = ∅ or T +(T, t, x) = ∅. Note that L(T, 1, x)

indeed appears below D(1, x) and U(T, 1, x) indeed appears above D(1, x), thus numerically

illustrating Theorem 1. Moreover, for some points x∗, both bounds, L(T, 1, x) and U(T, 1, x),

coincide with the true D(1, x) as early as at T = 4. In other words, local point identification is

achieved under T <∞, which numerically illustrates Theorem 2. Lastly, the bounds point-wise

converge to D(1, x) as T rises, hence numerically illustrating Theorem 3.

4 IV and Panels: Similarities and Differences

Our results on the passage from partial to point identification of panel data models as T → ∞

parallel the analogous passage in cross-sectional IV models as the support of instrumental
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Bounds at T = 4 Bounds at T = 32

Bounds at T = 8 Bounds at T = 64

Figure 4: Numerical illustration of transition of identifiability as T rises.
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variable becomes richer. Structural functions in IV models are point identified if the support of

the instrumental variable is rich, while partial identification prevails otherwise (Chesher, 2005;

Sec. 2.6). A richer support of the instrument allows for a finer resolution of the counterfactual

variation in the endogenous variable. Similarly, in panel data, a large number of points x∗ of

non-tangential intersection of FXt , as characterized in Assumption 3, provides fine resolution

of counterfactual variations in x in a neighborhood of x∗. As time increases, under appropriate

assumptions the number of such points x∗ increases, hence allowing for a better approximation

of structural features at an increasing number of locations.

To make a connection with the existing literature on cross-sectional IV models, consider the

triangular system with instrumental variable Z, for which we introduce the following nonstan-

dard notation: Yz = η(Xz, A)

Xz = ψ(z, V )

where X is continuous, but Z can be discrete and is fixed at the value z. To make the con-

nection to the IV case transparent, we adopt for the following argumentation the assumption

that the structural model of the outcome equation contains a scalar unobservable which en-

ters monotonically. In this setup, Chesher (2005; Sec. 2.6) showed that F−1
Y |XZ (a | x, z′) and

F−1
Y |XZ (a | x, z′′) form bounds of ϕ

(
x, F−1

A|V (a | v)
)
, where FX|Z(x | z′) ≤ v ≤ FX|Z(x | z′′). He

further shows that as the support of Z becomes richer, more values of z become available to

eventually allow to equate FX|Z(x | z) = v for some z ∈ supp(Z), which in turn allows point

identification of ϕ
(
x, F−1

A|V (a | v)
)
by F−1

Y |XZ (a | x, z).

Replacing z by time t yields a “restrictive panel data model”Yt = η(Xt, A)

Xt = ψ(t, V )

(4.1)

which does not contain Ut, the transitory component3. In the model 4.1, exogeneity of time t,

3This could either be the model from the outset, or it could arise out of a modelȲt = ϕ(Xt, A, Ut)

Xt = ψ(t, V )

,
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i.e., invariance of the two unobservables A and V to changes in t, of course yields exactly the

same passage from partial to point identification, except that the label t replaces the label z.

That is, F−1
Yt|Xt

(a | x) and F−1
Ys|Xs

(a | x) form bounds of η
(
x, F−1

A|V (a | v)
)
, where FXt(x) ≤ v ≤

FXs(x). As T → ∞, more values of t become available to eventually achieve FXt(x)
∼= v for

some t ∈ T (T ), hence allowing point identification of η
(
x, F−1

A|V (a | v)
)
by F−1

Yt|Xt
(a | x) with

such t.

However, this naive translation from the cross-sectional IV model is too restrictive. In

contrast to instruments, panel data allow us to observe (Yt, Xt) for any t. Hence, we do not

have to assume that the first stage function ψ entails rank-invariance of Xt across time t, we can

allow for a time dependent error in both the outcome and the first stage equation. In particular,

instead of Xt = ψ(t, V ), we can allow for the relationship Xt = ψ(t, Vt), i.e., individuals can

have a different rank across time. Thus, including the previous two models, we can distinguish

the following three first-stage models:

Model First Stage Control Variable

(I) Cross-Sectional IV Models Xz = ψ(z, V ) FX|Z(Xz, z) = V

(II) Restrictive Panel Data with Rank Invariance Xt = ψ(t, V ) FXt(Xt) = V

(III) General Panel Data with Rank Mobility Xt = ψ(t, Vt) FXt(Xt) = Vt

where ψ is strictly monotone in the second argument, and the distributions of Vt and V are

absolutely continuous. If we normalize w.l.o.g. Vt and V to be U(0, 1), the associated control

variables follow as shown in the last column in the above table. In the models (I) and (II)

that are mutually equivalent except for the labels t and z, the control variable is the z- or

t-invariant rank V of X. On the other hand, in the most general panel data model (III), the

control variable is the time-varying rank Vt of X.

The strong assumption of first-stage rank invariance as in the naive panel data model (II)

is not necessary, and the weaker restriction of Assumption 1 (IJD) compatible with model (III)

suffices for our identification results. This Assumption 1 (IJD) states that (A, Vt)
Law
= (A, Vs)

by integrating over Ut given Xt, A, i.e., η(ξ, a) = EUt [ϕ(ξ, a, Ut)] (hence the exogeneity of the period-specific

error Ut, and time invariance of its distribution. For the following argument it does not matter whether we have

the original observations Ȳt or Yt = E[Ȳt|Xt, A]) because we integrate over the unobservables anyway.
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for all s, t ∈ T (T ), hence guaranteeing t-invariance of the conditional distribution FA|Vt , i.e.,

we can write FA|Vt = FA|V for all t ∈ T (T ). Because of this restriction we can use both period

s and t information, and

F−1
Yt|Xt

(a | x) and F−1
Ys|Xs

(a | x) form bounds for ϕ
(
x, F−1

A|Vt
(a | v)

)
in model (III)

where FXt(x) ≤ v ≤ FXs(x).
4 Similarly, large T point identification holds for (III) as well

as it holds for (II) under Assumption 1 (IJD). Since our parameter of interest is the average

partial effect under a non-monotonic outcome equation, we use a different approach of partial

identification than Chesher (2005) in this paper; however, the bounds retain the logic to control

A | Vt = v as presented here.

In summary, we have the following observations about similarity and differences between

panel data and IV models. The intermediate model (II) bridges the two important models (I)

and (III). The models (I) and (II) are essentially the same in structure, except for the different

labels t and z. Model (II) is quite restrictive as a panel data model, whereas model (III)

admits more general panel data structures. By the rank similarity restriction postulated as

Assumption 1 (IJD), however, the model (III) is shown to have the partial and T -asymptotic

point identification results equivalent to those in model (II), which in turn is equivalent to the

traditional IV models of type (I).

5 Extensions

In this section, we extend the main identification results of Section 2 to models with covariates

and semiparametric binary choice models.

4Also,

F−1
Yt|Xt

(a | x) and F−1
Ys|Xs

(a | x) form bounds for ϕ
(
x, F−1

A|V (a | v)
)

in model (II)

where FXt(x) ≤ v ≤ FXs(x).

23



5.1 Extension I: Covariates

While we have suppressed covariates in our analysis in Section 2, similar conclusions carry over

even if we had covariates in the structure. Suppose that the structural function ϕ contains a

covariate Zt as an additional argument

Yt = ϕ(Xt, Zt, A, Ut) t ∈ T (T ) := {1, . . . , T} (5.1)

The object of interest is the conditional mean of the partial effects βx := ∂
∂x
ϕ. With the

notation Vt := FXtZt(Xt, Zt), consider the following adaptation of the basic restrictions to the

new scenario:

Assumption 7. Basic Restrictions with Endogenous Covariates:

(ID) Ut is identically distributed across t ∈ T (T ).

(IND′) Us ⊥⊥ (Xt, Zt, A) for all s, t ∈ T (T ).

(ACC′) The distribution of Xt | Zt = z is absolutely continuous with a convex support.

(IJD′) (A, Vs, Zs)
Law
= (A, Vt, Zt) for all s, t ∈ T (T ).

Note that this set of assumptions is largely comparable to the previous ones. With respect to

Zt, however, the assumptions leave the distribution largely unspecified (i.e., Zt could be discrete

or continuous, time invariant or varying), and also do not restrict the correlation structure with

A (other than the mild IJD’ assumption). Define a slight extension of ∆ as follows.

∆̄(s, t, x, z) :=
E
[
Ys | Xs = F−1

XsZs
(·, z) ◦ FXtZt(x, z), Zs = z

]
− E [Yt | Xt = x, Zt = z]

F−1
XsZs

(·, z) ◦ FXtZt(x, z)− x

With this device, we obtain the following lemma, which is analogous to Lemma 1, except that

Zt now appears as an additional conditioning variable

Lemma 3. Suppose that Assumption 7 holds. Then

E

[
ϕ(F−1

XsZs
(·, z) ◦ FXtZt(x, z), z, A, Ut)− ϕ(x, z, A, Ut)

F−1
XsZs

(·, z) ◦ FXtZt(x, z)− x

∣∣∣∣∣Xt = x, Zt = z

]
= ∆̄(s, t, x, z)

holds for all (x, z) ∈ supp(Xt, Zt) for all s, t ∈ T (T ) such that FXsZs(x, z) ̸= FXtZt(x, z).
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Applying this lemma yields three results analogous to the main identification theorems.

First ∆̄(s, t, x, z) partially identifies the conditional average partial effect E[βx(x, z, A, Ut) |

Xt = x, Zt = z] under T < ∞ similarly to Theorem 1. Second, ∆̄(s, t, x, z) locally point-

identify E[βx(x, z, A, Ut) | Xt = x, Zt = z] under T < ∞ similarly to Theorem 2. Third,

∆̄(s, t, x, z) point-identify E[βx(x, z, A, Ut) | Xt = x, Zt = z] as T → ∞ similarly to Theorem 3.

5.2 Extension II: Gradients of Multivariate Regressors

Consider again the structural function (5.1) with (Xt, Zt) as bivariate regressors. In Section

5.1, the only object of interest was the conditional mean of the partial effects βx := ∂
∂x
ϕ. Now,

suppose that we are interested in the conditional mean of the gradient (βx, βz)
′, where βz :=

∂
∂z
ϕ.

Identification of this gradient will require time variation of the marginal distributions of Zt as

well as Xt. Hence, the (IJD
′) in Assumption 7 is no longer a feasible restriction. We therefore,

alter Assumption 7 as follows.

Assumption 8. Basic Restrictions with Endogenous Covariates:

(ID) Ut is identically distributed across t ∈ T (T ).

(IND′) Us ⊥⊥ (Xt, Zt, A) and A ⊥⊥ (Xt, Zt) | Vt for all s, t ∈ T (T ).

(ACC′) The distribution of (Xt, Zt) is absolutely continuous with a convex support.

(IJD′′) (A, Vs)
Law
= (A, Vt) for all s, t ∈ T (T ).

Two changes are noticeable: First, the relaxation in IJD′′, to allow time variation of FZt .

Second, the new independence restriction A ⊥⊥ (Xt, Zt) | Vt, which is not assumed prior to

this subsection. While this is an index sufficiency type of restriction, it is different from the

assumption in Altonji and Matzkin (2005), as it restricts the contemporaneous correlations

between the regressors and A, and not the correlation between the regressors at different points

in time and A. As such, it has more the flavor of a dimension reduction device, and is also used

in this purpose, as the following arguments illustrate.
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Define a slight extension of ∆ as follows.

∆̃x(s, t, x, z) : =
E
[
Ys | Xs = F−1

XsZs
(·, z) ◦ FXtZt(x, z), Zs = z

]
− E [Yt | Xt = x, Zt = z]

F−1
XsZs

(·, z) ◦ FXtZt(x, z)− x

∆̃z(s, t, x, z) : =
E
[
Ys | Xs = x, Zs = F−1

XsZs
(x, ·) ◦ FXtZt(x, z)

]
− E [Yt | Xt = x, Zt = z]

F−1
XsZs

(x, ·) ◦ FXtZt(x, z)− z

With this object, we obtain a lemma which is quite analogous to Lemma 3, except that As-

sumption 8 replaces Assumption 7.

Lemma 4. Suppose that Assumption 8 holds. Then

E

[
ϕ(F−1

XsZs
(·, z) ◦ FXtZt(x, z), z, A, Ut)− ϕ(x, z, A, Ut)

F−1
XsZs

(·, z) ◦ FXtZt(x, z)− x

∣∣∣∣∣Xt = x, Zt = z

]
= ∆̃x(s, t, x, z)

E

[
ϕ(x, F−1

XsZs
(x, ·) ◦ FXtZt(x, z), A, Ut)− ϕ(x, z, A, Ut)

F−1
XsZs

(x, ·) ◦ FXtZt(x, z)− z

∣∣∣∣∣Xt = x, Zt = z

]
= ∆̃z(s, t, x, z)

hold for all (x, z) ∈ supp(Xt, Zt) for all s, t ∈ T (T ) such that FXsZs(x, z) ̸= FXtZt(x, z).

Because of the relaxed IJD′ assumption, the identification results hold for both X and Z

symmetrically. The partial identification result uses the following notations and assumptions.

τx(T, t, x, z) := arg max
s∈T (T )

{F−1
XsZs

(·, z) ◦ FXtZt(x, z) | F−1
XsZs

(·, z) ◦ FXtZt(x, z) < x}

τx(T, t, x, z) := arg min
s∈T (T )

{F−1
XsZs

(·, z) ◦ FXtZt(x, z) | F−1
XsZs

(·, z) ◦ FXtZt(x, z) > x}

Assumption 9. Local Curvature:

There exists an interval I containing elements x, F−1
Xτx(T,t,x,z)Zτx(T,t,x,z)

(·, z) ◦ FXtZt(x, z), and

F−1
Xτx(T,t,x,z)Zτx(T,t,x,z)

(·, z) ◦ FXtZt(x, z) such that the sign of ∂2

∂x2ϕ(x
′, z, a, u) is invariant for all

x′ ∈ I and [PAUt ]-a.s. (a, u).

Theorem 4 (Partial Identification for T < ∞). Let (x, z) ∈ supp(Xt, Zt) for some t ∈ T (T ).

Suppose that Assumptions 8 and 9 hold. Then we obtain that

Lx(T, t, x, z) 6 E [βx(x, z, A, Ut)|Xt = x, Zt = z] 6 Ux(T, t, x, z)

i.e., the LAR is set identified with sharp bounds given by

Lx(T, t, x, z) := min
{
∆̃(τx(T, t, x, z), t, x, z), ∆̃(τx(T, t, x, z), t, x, z)

}
and

Ux(T, t, x, z) := max
{
∆̃(τx(T, t, x, z), t, x, z), ∆̃(τx(T, t, x, z), t, x, z)

}
.
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Symmetrically exchanging the roles of x and z yields sharp bounds for the LAR with respect to

z, which is E [βz(x, z, A, Ut)|Xt = x, Zt = z].

The local point identification under finite T uses the following straightforward adaptation

of assumptions.

Assumption 10. Local Counterfactual: There exist two time indices s, t ∈ T (T ) and (x∗, z∗)

such that FXtZt(x
∗, z∗) = FXsZs(x

∗, z∗), x∗ is in the closure of the set {x | FXtZt(x, z
∗) ̸=

FXsZs(x, z
∗)}, and z∗ is in the closure of the set {z | FXtZt(x

∗, z) ̸= FXsZs(x
∗, z)}.

Assumption 11. Regularity:

(i) [ϕ(x̃, z∗, a, u)−ϕ(x, z∗, a, u)]/(x̃−x) → βx(x
∗, z∗, a, u) as x, x̃→ x∗ uniformly across (a, u).

(ii) β(x, z∗, a, u) is bounded uniformly across (a, u) and across x in a neighborhood of x∗.

(iii) For t, fA|XtZt(a | x∗ + δ, z∗) → fA|XtZt(a | x∗, z∗) as δ → 0 uniformly across a.

Theorem 5 (Local Point Identification under T < ∞). Suppose that Assumptions 8 and 11

hold. Then, for s, t ∈ T (T ) and (x∗, z∗) that satisfy Assumption 10, we have

lim
x→x∗

∆̃x(s, t, x, z
∗) = E [βx(x

∗, z∗, A, Ut)|Xt = x∗, Zt = z∗] .

Symmetrically exchanging the roles of x and z yields local point identification of the LAR,

E [βz(x, z, A, Ut)|Xt = x, Zt = z].

The T -asymptotic point identification uses the following modified assumptions.

Assumption 12. Limit Point:

Given t and z, x is a limit point of the sequence
{
F−1
XsZs

(·, z) ◦ FXtZt(x, z)
}∞
s=1

.

Assumption 13. Regularity: Given (x, z), the following hold.

(i) [ϕ(x+ δ, z, a, u)− ϕ(x, z, a, u)]/δ → βx(x, z, a, u) as δ → 0 uniformly across (a, u).

(ii) βx(x, z, a, u) is bounded uniformly across (a, u).

Theorem 6 (Point Identification as T → ∞). Suppose that Assumptions 8, 12, and 13 hold.

Given (x, z) ∈ supp(Xt, Zt) for some t, at least one of the following two results holds:

(I) F−1
Xτx(T,t,x,z)Zτx(T,t,x,z)

(·, z) ◦ FXtZt(x, z) → x as T → ∞ and/or

(II) F−1
Xτx(T,t,x,z)Zτx(T,t,x,z)

(·, z) ◦ FXtZt(x, z) → x as T → ∞.
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If (I) is the case, then ∆(τx(T, t, x, z), t, x, z) → E [βx(x, z, A, Ut)|Xt = x, Zt = z] as T → ∞.

If (II) is the case, then ∆(τx(T, t, x, z), t, x, z) → E [βx(x, z, A, Ut)|Xt = x, Zt = z] as T → ∞.

Symmetrically exchanging the roles of x and z yields T -asymptotic point identification of the

LAR, E [βz(x, z, A, Ut)|Xt = x, Zt = z].

Theorems 4, 5, and 6 are multivariate extensions of Theorems 1, 2, and 3 for the univariate

case, respectively. All results extend straightforwardly, taking into account the modification

required due to the fact that we are no looking at the gradient, and hence have to invoke

modified independence conditions that allow to interpret the changes in the denominator of the

local difference quotient in a symmetric fashion. These results will be applied in Section 5.3 in

order to identify the semiparametric binary choice models, which is also a model that requires

identification of a gradient.

5.3 Extension III: Semiparametric Binary Choice Models

In this section, we consider the semiparametric binary choice panel data model

Yt = 1{Xtβ + Ztγ + A+ U∗
t > 0} t ∈ T (T ) := {1, . . . , T} (5.2)

with endogenous regressors (Xt, Zt) and individual fixed effects A. U∗
t denotes idiosyncratic

errors at time t. Assuming γ ̸= 0, the objective is to identify the parameter vector (β, γ) up to

scale, i.e., to identify β/γ, which is the identifiable part of the vector of coefficients. As it turns

out, we will require a ratio of derivatives, which means we have to use the gradient of effects.

This implies that we cannot use the less restrictive extension put forward in Section 5.1, and

have to employ stronger assumptions, akin to those of Section 5.2. The basic notations carry

also over from Section 5.2:

Assumption 14. Basic Restrictions for Semiparametric Binary Choice Models:

(IND′) U∗
s ⊥⊥ (Xt, Zt, A) and A ⊥⊥ (Xt, Zt) | Vt for all s, t ∈ T (T ).

(ACC) The distribution of (Xt, Zt) is absolutely continuous with a convex support.

(IJD) (A, Vs)
Law
= (A, Vt) for all s, t ∈ T (T ).
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As in the standard semiparametric binary choice models, we write

E[Yt | Xt, Zt, A] = ψ(Xtβ, Ztγ,A)

where ψ(a, b, c) := F−U∗
t
(a+ b+ c). Moreover, defining the residual as

Ut := Yt − E[Yt | Xt, Zt, A],

allows us to construct the panel data model

Yt ≡ ϕ(Xt, Zt, A, Ut) := ψ(Xtβ, Ztγ,A) + Ut t ∈ T (T ) := {1, . . . , T}. (5.3)

With this transformation, Assumption 14 implies Assumption 8, except that a counterpart of

(ID) is missing. In the current setting (5.3) in which Ut is additively separable, we do not

require a counterpart of (ID),5 hence obtaining the same conclusion as Theorems 4–6 and from

Section 5.2, as far as the associated additional assumptions are satisfied.

Theorem 4 implies that ∆̃x(τx(T, t, x, z), t, x, z) and ∆̃x(τx(T, t, x, z), t, x, z) form bounds of

E
[
∂

∂x
ϕ(x, z, A, Ut)

∣∣∣∣Xt = x, Zt = z

]
= E

[
f−U∗

t
(xβ + zγ + A)

∣∣Xt = x, Zt = z
]
· β (5.4)

Theorem 6 implies that at least one of these bounds converges as T → ∞. Similarly, Theorem

4 implies that ∆̃z(τ z(T, t, x, z), t, x, z) and ∆̃z(τ z(T, t, x, z), t, x, z) form bounds of

E
[
∂

∂z
ϕ(x, z, A, Ut)

∣∣∣∣Xt = x, Zt = z

]
= E

[
f−U∗

t
(xβ + zγ + A)

∣∣Xt = x, Zt = z
]
· γ (5.5)

Since taking the ratio of (5.4) to (5.5) yields

E
[

∂
∂x
ϕ(x, z, A, Ut)

∣∣Xt = x, Zt = z
]

E
[

∂
∂z
ϕ(x, z, A, Ut)

∣∣Xt = x, Zt = z
] =

β

γ
,

one may heuristically conjecture that the ratio ∆̃x(τx, t, x, z)/∆̃z(τz, t, x, z) yields some infor-

mation about β/γ, in particular that the ratio may allow to somehow bound the ratio β/γ.

5The whole point of Assumption 8 (ID) was to make FUt time invariant (see proof of Lemma 4 in the

appendix). However, under the current Ut-separable structure (5.3), Ut can be integrated out in the definition

of ∆̃x, hence we do not require a counterpart of (ID).
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However, closer inspection of the proofs reveal that an unsurmountable obstacle to partial iden-

tification of β/γ with finite T is that Theorem 4 requires generally Assumption 9 for ψ. This

would in turn imply that the cdf F−U∗
t
has no nearby inflection point, and assumption that is

difficult to maintain for most cdfs and data configurations. Hence we can unfortunately not

provide bounds for β/γ.

However, point identification results do carry over from Theorems 5 and 6 to the current

setup since they do not rely on Assumption 9. Identification of β/γ with finite T is formally

stated as Corollary 2, and follows from Theorem 5. This result is based only on a population

of measure zero, consisting of a null set of the points x∗ at which Assumption 10 is satisfied

as remarked in Section 2.2. As in Hoderlein and White (2010), even under the stronger set of

assumptions invoked in this paper we thus only obtain a nonparametric rate of convergence.

Identification of β/γ as T → ∞ using possibly a population of positive measure is stated as

Corollary 3, and follows from Theorem 6. We think of this result as transporting the essence

of why “bias correction” of
√
n consistent estimators works for T → ∞. Specifically, the

underlying Assumption 12 can be satisfied for x over a set of positive measure since it is

feasible that the set of all the intersection points of the cdfs constitute a dense subset of a

continuum (as discussed in Section 2.3). Identification over a set of positive measure enables

then a parametric rate of convergence for the corresponding estimators.

To state these results formally, we invoke the following assumptions.

Assumption 15. Regularity:

(i) [F−U∗
t
(ẽ)− F−U∗

t
(e)]/(ẽ− e) → f−U∗

t
(e∗) as e, ẽ→ e∗.

(ii) f−U∗
t
is uniformly bounded.

(iii) For t, fA|Xt(a | x∗ + δ) → fA|Xt(a | x∗) and fA|Zt(a | z∗ + δ) → fA|Xt(a | z∗) as δ → 0

uniformly across a.

This Assumption 15 implies Assumption 11 with ϕ replaced by ψ. The next local point

identification result of β/γ under T <∞ thus follows from Theorem 5.

Corollary 2 (Local Point Identification under T <∞). Suppose that Assumptions 10, 14, and
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15 hold in (1.1) with γ ̸= 0. Then, for s, t ∈ T (T ) and (x∗, z∗) that satisfy Assumption 10,

limx→x∗ ∆̃x(s, t, x, z
∗)

limz→z∗ ∆̃z(s, t, x∗, z)
=
β

γ
.

Assumption 16. Regularity:

(i) [F−U∗
t
(e+ δ)− F−U∗

t
(e)]/δ → f−U∗

t
(e) as δ → 0 uniformly across e.

(ii) f−U∗
t
is uniformly bounded.

This Assumption 16 implies Assumption 13 with ϕ replaced by ψ. The next point identifi-

cation result of β/γ as T → ∞ thus follows from Theorem 6.

Corollary 3 (Point Identification as T → ∞). Suppose that Assumptions 12, 14, and 16 hold

in (5.2) with γ ̸= 0. Then, the parameter ratio β/γ is point-identified in the limit as T → ∞.

Specifically, for (x, z) ∈ supp(Xt, Zt) for some t, at least one of the following four results holds:

(I)
(
F−1
Xτx(T,t,x,z)Zτx(T,t,x,z)

(·, z) ◦ FXtZt(x, z), F
−1
Xτz(T,t,x,z)Zτz(T,t,x,z)

(x, ·) ◦ FXtZt(x, z)
)
→ (x, z)

(II)
(
F−1
Xτx(T,t,x,z)Zτx(T,t,x,z)

(·, z) ◦ FXtZt(x, z), F
−1
Xτz(T,t,x,z)Zτz(T,t,x,z)

(x, ·) ◦ FXtZt(x, z)
)
→ (x, z)

(III)
(
F−1
Xτx(T,t,x,z)Zτx(T,t,x,z)

(·, z) ◦ FXtZt(x, z), F
−1
Xτz(T,t,x,z)Zτz(T,t,x,z)

(x, ·) ◦ FXtZt(x, z)
)
→ (x, z)

(IV )
(
F−1
Xτx(T,t,x,z)Zτx(T,t,x,z)

(·, z) ◦ FXtZt(x, z), F
−1
Xτz(T,t,x,z)Zτz(T,t,x,z)

(x, ·) ◦ FXtZt(x, z)
)
→ (x, z)

as T → ∞.

If (I) is the case, then ∆̃x(τx(T, t, x, z), t, x, z)/∆̃z(τ z(T, t, x, z), t, x, z) → β/γ as T → ∞.

If (II) is the case, then ∆̃x(τx(T, t, x, z), t, x, z)/∆̃z(τ z(T, t, x, z), t, x, z) → β/γ as T → ∞.

If (III) is the case, then ∆̃x(τx(T, t, x, z), t, x, z)/∆̃z(τ z(T, t, x, z), t, x, z) → β/γ as T → ∞.

If (IV) is the case, then ∆̃x(τx(T, t, x, z), t, x, z)/∆̃z(τ z(T, t, x, z), t, x, z) → β/γ as T → ∞.

Table 2 summarizes trade-offs concerning time requirement, assumptions, and population

of information for point-identification of the semiparametric binary choice model (5.2). With

the information from the set of points x∗ satisfying Assumption 10, Corollary 2 yields point

identification for fixed T < ∞ as in Manski (1987), but without requiring unbounded support

of regressors. The fact that this identification result generally fails to utilize a population of

positive measure under T <∞ is not surprising, given the well-known findings of Chamberlain
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Time Assumptions Identification Population of Information

Corollary 2 T <∞ 10, 14, 15 Point Measure Zero

Corollary 3 T → ∞ 12, 14, 16 Point Positive Measure

Table 2: Summary of time requirement, assumptions, identifiability, and population of infor-

mation for the semiparametric binary choice model.

(2010), who shows that
√
n-consistent estimation of the binary choice model is generically

infeasible, and only possible if the distribution of Ut is logistic (see also Lee, 1999; Arellano and

Hahn, 2006), in which case a subpopulation of positive measure is available. Availability of only

a population of measure zero means that the convergence rate of a sample-analog estimator

falls short of
√
n, which parallels Chamberlain’s impossibility result in our slightly different

setup. As stressed before, Corollary 3 implies that the passage T → ∞ may allow an estimator

to utilize information from a population of positive measure under semiparametric conditions.

6 Estimation and Applicability

This paper is largely concerned with identification. In particular, the main results in this paper

aim at making the role of time in a panel transparent. As such, the paper contributes to the

understanding of the fundamentals of the model. However, both the results on bounds as well as

the results on point identification at special x can easily be applied to data. In fact, compared

to some results that require regressors from several time periods (e.g., Hoderlein and White

(2010), Graham and Powell (2010), CFHN (2010)), since we only use contemporaneous X,

i.e., always regress Yt on Xt only, we actually face less of a “curse of dimensionality” problem.

Also, the methods required can be taken from straightforward applications of standard non-

parametric procedures, e.g., local polynomials or splines to estimate the respective regressions;

for confidence intervals in the partially identified case methods can be taken from the rapidly

expanding literature on partial identification. Hence, for the purpose of a concise exposition,

we desist from elaborating at great length on the obvious, and focus in this paper on the main

innovation. Nevertheless, we would like to emphasize that we think of many of the results we

32



obtain as particularly useful for applications precisely because of the comparably low dimen-

sionality and straightforward structure of all objects involved. This remarks apply in particular

to the semiparametric binary choice case, which is a workhorse model of econometrics.

7 Conclusions

Time provides exogenous variation in a panel that allows to estimate structural models of inter-

est, even in the presence of correlation between unobservables and regressors of interest. In our

opinion, the key for understanding the role of time lies in the fact that the correlated unobserv-

able is persistent, while the regressor of interest is time varying. If we assume stationarity of

the distribution of transitory errors, the model effectively becomes very similar to a triangular

IV model. Consequently, we may compare time to an instrument with discrete support.

In this paper, interest centers on marginal effects of a continuous explanatory variable. It

is well known in a class of more restrictive models than we consider that discrete instruments

provide only partial identification, and that partial identification “asymptotes” to point identifi-

cation as the number of support points tend to infinity. This paper argues that we should think

of time in the very same sense; as time accumulates, bounds shrink until we finally obtain point

identification with many time periods. Also, with discrete instruments, only structural effects

on subpopulations are identified. The same happens with time: the recent point identification

results on subpopulations, e.g., Honore and Kyriazidou (2000), Arellano and Bonhomme (2010),

Evdokimov (2010), Graham and Powell (2010), Hoderlein and White (2010), Chernozhukov,

Fernandez Val, Hahn and Newey (2010) are in this sense not an accident. As we argue in this

paper, when interest centers on local average responses or (average) random coefficients, point

identification in subpopulations is generic for finite T . Discrete time hence indeed provides ex-

ogenous identifying information, but like a discrete instrument usually not enough to identify

structural effects across the entire population. Translated to the semiparametric binary choice

model, these issues manifest in different rates of convergence for the slope coefficient. As such,

our paper complements the impossibility results of Chamberlain (2010), and provides further

insight into the nature of identification of this important class of models. We hope this research
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spurns further interest in the important issue of understanding time in panels.

A Proofs of Auxiliary Lemmata

A.1 Proof of Lemma 1

Proof. First, note that

E[ϕ(x,A, Ut) | Xt = x] = E[Yt | Xt = x]

holds for all x ∈ supp(Xt) for all t ∈ T (T ). In order to prove the lemma, it remains to claim

that

E[ϕ(F−1
Xs

◦ FXt(x), A, Ut) | Xt = x] = E[Ys | Xs = F−1
Xs

◦ FXt(x)]

holds for all x ∈ supp(Xt) for all s, t ∈ T (T ). We use the notation Vt := FXt(Xt) for all

t ∈ T (T ). But then, Assumption 1 (IJD) implies (A, Vs)
Law
= (A, Vt) for all s, t ∈ T (T ). With

Assumption 1, we obtain

E[ϕ(x′, A, Ut) | Xt = x] =

∫ ∫
ϕ(x′, a, u)fAUt|Xt(a, u | x)dadu

(IND)
=

∫ ∫
ϕ(x′, a, u)fA|Xt(a | x)fUt(u)dadu

(ACC)
=

∫ ∫
ϕ(x′, a, u)fA|Vt(a | FXt(x))fUt(u)dadu

(IJD)
=

∫ ∫
ϕ(x′, a, u)fA|Vs(a | FXt(x))fUt(u)dadu

(ACC)
=

∫ ∫
ϕ(x′, a, u)fA|Xs(a | F−1

Xs
◦ FXt(x))fUt(u)dadu

(ID)
=

∫ ∫
ϕ(x′, a, u)fA|Xs(a | F−1

Xs
◦ FXt(x))fUs(u)dadu

(IND)
=

∫ ∫
ϕ(x′, a, u)fAUs|Xs(a, u | F−1

Xs
◦ FXt(x))dadu

= E
[
ϕ(x′, A, Us) | Xs = F−1

Xs
◦ FXt(x)

]
Now, substitute x′ := F−1

Xs
◦ FXt(x) to obtain

E[ϕ(F−1
Xs

◦ FXt(x), A, Ut) | Xt = x] = E[Ys | Xs = F−1
Xs

◦ FXt(x)].

34



Thus, we have

E[ϕ(F−1
Xs

◦ FXt(x), A, Ut)− ϕ(x,A, Ut) | Xt = x] = E[Ys | Xs = F−1
Xs

◦ FXt(x)]− E[Yt | Xt = x].

If FXs(x) ̸= FXt(x), then Assumption 1 (ACC) guarantees F−1
Xs

◦FXt(x)−x ̸= 0. Dividing both

sides of the above equation by F−1
Xs

◦ FXt(x)− x yields the desired result.

A.2 Proof of Lemma 2

Proof. By Assumption 6 (i), there exists a function λ such that∥∥∥∥ϕ(xj, ·, ·)− ϕ(x, ·, ·)
xj − x

− ∂

∂x
ϕ(x, ·, ·)

∥∥∥∥
∞

6 λ(xj − x)

where ∥·∥∞ is the uniform norm over (a, u), and λ(xj − x) → 0 as xj → x. Moreover, by

Assumption 6 (ii), there exists a positive constant η <∞ such that∥∥∥∥ ∂

∂x
ϕ(x, ·, ·)

∥∥∥∥
∞

6 η

Therefore, ∥∥∥∥ϕ(xj, ·, ·)− ϕ(x, ·, ·)
xj − x

∥∥∥∥
∞

6 λ(xj − x) + η

Moreover, by Hölder’s inequality, we have∥∥∥∥ϕ(xj, ·, ·)− ϕ(x, ·, ·)
xj − x

fAU |Xt(·, · | x)
∥∥∥∥
1

6
∥∥∥∥ϕ(xj, ·, ·)− ϕ(x, ·, ·)

xj − x

∥∥∥∥
∞

∥∥fAU |Xt(·, · | x)
∥∥
1

6 λ(xj − x) + η

where ∥·∥1 is the L1-norm (with respect to the Lebesgue measure). Since λ(xj − x) → 0 as

j → ∞, this implies that there is an L1 dominating function for the sequence{
ϕ(xj, ·, ·)− ϕ(x, ·, ·)

xj − x
fAU |Xt(·, · | x)

}
j

for large enough j. Therefore, by the Lebesgue Dominated Convergence Theorem, we have

E
[
ϕ(xj, A, Ut)− ϕ(x,A, Ut)

xj − x

∣∣∣∣Xt = x

]
=

∫ ∫
ϕ(xj, a, u)− ϕ(x, a, u)

xj − x
fAU |Xt(a, u | x)dadu

→
∫ ∫

∂

∂x
ϕ(x, a, u)fAU |Xt(a, u | x)dadu

= E
[
∂

∂x
ϕ(x,A, Ut)

∣∣∣∣Xt = x

]
.

as xj → x.
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A.3 Proof of Lemma 3

Proof. First, note that E[ϕ(x, z, A, Ut) | Xt = x, Zt = z] = E[Yt | Xt = x, Zt = z] holds for all

(x, z) ∈ supp(Xt, Zt) for all t ∈ T (T ). In order to prove the lemma, it remains to claim that

E[ϕ(F−1
XsZs

(·, z) ◦ FXtZt(x, z), z, A, Ut) | Xt = x, Zt = z]

= E[Ys | Xs = F−1
XsZs

(·, z) ◦ FXtZt(x, z), Zt = z]

holds for all (x, z) ∈ supp(Xt, Zt) for all s, t ∈ T (T ). We use the notation Vt := FXtZt(Xt, Zt)

for all t ∈ T (T ). But then, Assumption 8 (IJD′) implies (A, Vs, Zs)
Law
= (A, Vt, Zt) for all

s, t ∈ T (T ). With Assumption 8, we obtain

E[ϕ(x′, z, A, Ut) | Xt = x, Zt = z]

=

∫ ∫
ϕ(x′, z, a, u)fAUt|XtZt(a, u | x, z)dadu

(IND′)
=

∫ ∫
ϕ(x′, z, a, u)fA|XtZt(a | x, z)fUt(u)dadu

(ACC′)
=

∫ ∫
ϕ(x′, z, a, u)fA|VtZt(a | FXtZt(x, z), z)fUt(u)dadu

(IJD′)
=

∫ ∫
ϕ(x′, z, a, u)fA|VsZs(a | FXtZt(x, z), z)fUt(u)dadu

(ACC′)
=

∫ ∫
ϕ(x′, z, a, u)fA|XsZs(a | F−1

XsZs
(·, z) ◦ FXtZt(x, z), z)fUt(u)dadu

(ID)
=

∫ ∫
ϕ(x′, z, a, u)fA|XsZs(a | F−1

XsZs
(·, z) ◦ FXtZt(x, z), z)fUs(u)dadu

(IND′)
=

∫ ∫
ϕ(x′, a, u)fAUs|XsZs(a, u | F−1

XsZs
(·, z) ◦ FXtZt(x, z), z)dadu

= E
[
ϕ(x′, A, Us) | Xs = F−1

XsZs
(·, z) ◦ FXtZt(x, z), Zs = z

]
Now, substitute x′ := F−1

XsZs
(·, z) ◦ FXtZt(x, z) to obtain

E[ϕ(F−1
XsZs

(·, z) ◦ FXtZt(x, z), z, A, Ut) | Xt = x, Zt = z]

= E[Ys | Xs = F−1
XsZs

(·, z) ◦ FXtZt(x, z), Zt = z].

Thus, we have

E[ϕ(F−1
XsZs

(·, z) ◦ FXtZt(x, z), z, A, Ut)− ϕ(x, z, A, Ut) | Xt = x, Zt = z]

= E[Ys | Xs = F−1
XsZs

(·, z) ◦ FXtZt(x, z), Zs = z]− E[Yt | Xt = x, Zt = z].

36



If FXsZs(x, z) ̸= FXtXt(x, z), then Assumption 8 (ACC′) guarantees F−1
XsZs

(·, z)◦FXtZt(x, z)−x ̸=

0. Dividing both sides of the above equation by F−1
XsZs

(·, z) ◦ FXtZt(x, z)− x yields the desired

result.

A.4 Proof of Lemma 4

Proof. First, note that E[ϕ(x, z, A, Ut) | Xt = x, Zt = z] = E[Yt | Xt = x, Zt = z] holds for all

(x, z) ∈ supp(Xt, Zt) for all t ∈ T (T ). In order to prove the lemma, it remains to claim that

E[ϕ(F−1
XsZs

(·, z) ◦ FXtZt(x, z), z, A, Ut) | Xt = x, Zt = z]

= E[Ys | Xs = F−1
XsZs

(·, z) ◦ FXtZt(x, z), Zt = z]

holds for all (x, z) ∈ supp(Xt, Zt) for all s, t ∈ T (T ). We use the notation Vt := FXtZt(Xt, Zt)

for all t ∈ T (T ). But then, Assumption 8 (IJD′) implies (A, Vs, Zs)
Law
= (A, Vt, Zt) for all

s, t ∈ T (T ). With Assumption 8, we obtain

E[ϕ(x′, z, A, Ut) | Xt = x, Zt = z]

=

∫ ∫
ϕ(x′, z, a, u)fAUt|XtZt(a, u | x, z)dadu

(IND′)
=

∫ ∫
ϕ(x′, z, a, u)fA|XtZt(a | x, z)fUt(u)dadu

(ACC′)
=

∫ ∫
ϕ(x′, z, a, u)fA|VtZt(a | FXtZt(x, z), z)fUt(u)dadu

(IND′)
=

∫ ∫
ϕ(x′, z, a, u)fA|Vt(a | FXtZt(x, z))fUt(u)dadu

(IJD′)
=

∫ ∫
ϕ(x′, z, a, u)fA|Vs(a | FXtZt(x, z))fUt(u)dadu

(IND′)
=

∫ ∫
ϕ(x′, z, a, u)fA|VsZs(a | FXtZt(x, z), z)fUt(u)dadu

(ACC′)
=

∫ ∫
ϕ(x′, z, a, u)fA|XsZs(a | F−1

XsZs
(·, z) ◦ FXtZt(x, z), z)fUt(u)dadu

(ID)
=

∫ ∫
ϕ(x′, z, a, u)fA|XsZs(a | F−1

XsZs
(·, z) ◦ FXtZt(x, z), z)fUs(u)dadu

(IND′)
=

∫ ∫
ϕ(x′, a, u)fAUs|XsZs(a, u | F−1

XsZs
(·, z) ◦ FXtZt(x, z), z)dadu

= E
[
ϕ(x′, A, Us) | Xs = F−1

XsZs
(·, z) ◦ FXtZt(x, z), Zs = z

]
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Now, substitute x′ := F−1
XsZs

(·, z) ◦ FXtZt(x, z) to obtain

E[ϕ(F−1
XsZs

(·, z) ◦ FXtZt(x, z), z, A, Ut) | Xt = x, Zt = z]

= E[Ys | Xs = F−1
XsZs

(·, z) ◦ FXtZt(x, z), Zt = z].

Thus, we have

E[ϕ(F−1
XsZs

(·, z) ◦ FXtZt(x, z), z, A, Ut)− ϕ(x, z, A, Ut) | Xt = x, Zt = z]

= E[Ys | Xs = F−1
XsZs

(·, z) ◦ FXtZt(x, z), Zs = z]− E[Yt | Xt = x, Zt = z].

If FXsZs(x, z) ̸= FXtXt(x, z), then Assumption 8 (ACC′) guarantees F−1
XsZs

(·, z)◦FXtZt(x, z)−x ̸=

0. Dividing both sides of the above equation by F−1
XsZs

(·, z) ◦ FXtZt(x, z)− x yields the desired

result.

B Proofs of Main Results

B.1 Proof of Theorem 1

Proof. First, suppose that Assumption 2 holds with negative sign for x ∈ supp(Xt). For

notational convenience, we define the two sets of time indices

T −(T, t, x) :=
{
s ∈ T (T )

∣∣F−1
Xs

◦ FXt(x) < x, F−1
Xs

◦ FXt(x) ∈ I
}

T +(T, t, x) :=
{
s ∈ T (T )

∣∣x < F−1
Xs

◦ FXt(x), F
−1
Xs

◦ FXt(x) ∈ I
}

Given these notations, the time indices τ(T, t, x) and τ(T, t, x) are defined as

τ(T, t, x) := arg max
s∈T −(T,t,x)

F−1
Xs

◦ FXt(x)

τ(T, t, x) := arg min
s∈T +(T,t,x)

F−1
Xs

◦ FXt(x)

By Assumption 2 with negative sign,

ϕ(F−1
Xs

◦ FXt(x), A, Ut)− ϕ(x,A, Ut)

F−1
Xs

◦ FXt(x)− x
6 ∂

∂x
ϕ(x,A, Ut)
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holds a.s. for all s ∈ T +(T, t, x). Taking E[· | Xt = x] yields

E

[
ϕ(F−1

Xs
◦ FXt(x), A, Ut)− ϕ(x,A, Ut)

F−1
Xs

◦ FXt(x)− x

∣∣∣∣∣Xt = x

]

6 E
[
∂

∂x
ϕ(x,A, Ut)

∣∣∣∣Xt = x

]
= E

[
∂

∂x
ϕ(x,A, Ut)

∣∣∣∣Xt = x

]
for all s ∈ T +(T, t, x). But by Lemma 1 and Equation (2.3), it follows that

∆(s, t, x) 6 E
[
∂

∂x
ϕ(x,A, Ut)

∣∣∣∣Xt = x

]
holds for all s ∈ T +(T, t, x). Similarly, we can show that

E
[
∂

∂x
ϕ(x,A, Ut)

∣∣∣∣Xt = x

]
6 ∆(s, t, x)

holds for all s ∈ T −(T, t, x). The intersection of all these identified regions yields the sharp

interval

max
s∈T +(T,t,x)

∆(s, t, x) 6 E
[
∂

∂x
ϕ(x,A, Ut)

∣∣∣∣Xt = x

]
6 min

s∈T −(T,t,x)
∆(s, t, x) (B.1)

under Assumption 2 with negative sign.

Moreover, under Assumption 2 with negative sign, we have

ϕ(F−1
Xs

◦ FXt(x), A, Ut)− ϕ(x,A, Ut)

F−1
Xs

◦ FXt(x)− x
6
ϕ(F−1

Xτ(T,t,x)
◦ FXt(x), A, Ut)− ϕ(x,A, Ut)

F−1
Xτ(T,t,x)

◦ FXt(x)− x

a.s. for all s ∈ T +(T, t, x). Taking E[· | Xt = x] and using Lemma 1 and Equation (2.3), we

obtain

∆(s, t, x) 6 ∆(τ(T, t, x), t, x)

for all s ∈ T +(T, t, x), thus

max
s∈T +(T,t,x)

∆(s, t, x) = ∆(τ(T, t, x), t, x).

Similarly, we can derive

min
s∈T −(T,t,x)

∆(s, t, x) = ∆(τ(T, t, x), t, x).

Therefore, the sharp interval (B.1) reduces to

∆(τ(T, t, x), t, x) 6 E
[
∂

∂x
ϕ(x,A, Ut)

∣∣∣∣Xt = x

]
6 ∆(τ(T, t, x), t, x)
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under Assumption 2 with negative sign.

Now, suppose on the other hand that Assumption 2 holds with positive sign. Then, similar

lines of argument yield sharp interval

∆(τ(T, t, x), t, x) 6 E
[
∂

∂x
ϕ(x,A, Ut)

∣∣∣∣Xt = x

]
6 ∆(τ(T, t, x), t, x)

under Assumption 2 with positive sign.

Treating the two cases of the signs for Assumption 2 together, we obtain the lower bound

L(t, x) := min {∆(τ(T, t, x), t, x),∆(τ(T, t, x), t, x)}

and upper bound

U(t, x) := max {∆(τ(T, t, x), t, x),∆(τ(T, t, x), t, x)}

such that

L(t, x) 6 E
[
∂

∂x
ϕ(x,A, Ut)

∣∣∣∣Xt = x

]
6 U(t, x)

under both cases of the signs for Assumption 2.

B.2 Proof of Theorem 2

Proof. First, we consider consequences of the regularity conditions in Assumption 4. Observe∫ ∫ ∣∣∣∣∣ϕ(F−1
Xs

◦ FXt(x), a, u)− ϕ(x, a, u)

F−1
Xs

◦ FXt(x)− x

(
fAU |Xt(a, u | x)− fAU |Xt(a, u | x∗)

)∣∣∣∣∣ dadu
A.1 (IND)

=

∫ ∫ ∣∣∣∣∣ϕ(F−1
Xs

◦ FXt(x), a, u)− ϕ(x, a, u)

F−1
Xs

◦ FXt(x)− x

(
fA|Xt(a | x)− fA|Xt(a | x∗)

)
fU(u)

∣∣∣∣∣ dadu
Hölder

6
∥∥∥∥∥ϕ(F−1

Xs
◦ FXt(x), ·, ·)− ϕ(x, ·, ·)
F−1
Xs

◦ FXt(x)− x

∥∥∥∥∥
∞

·
∥∥fA|Xt(a | x)− fA|Xt(a | x∗)

∥∥
∞ · ∥fU∥1

A.4(i)(ii)
= C

∥∥fA|Xt(a | x)− fA|Xt(a | x∗)
∥∥
∞

A.4(iii)−→ 0

as x→ x∗. This implies that∫ ∫
ϕ(F−1

Xs
◦ FXt(x), a, u)− ϕ(x, a, u)

F−1
Xs

◦ FXt(x)− x

(
fAU |Xt(a, u | x)− fAU |Xt(a, u | x∗)

)
dadu

=: R(s, t, x, x∗) −→ 0 as x∗ → x (B.2)
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Moreover, Assumption 4 yields∥∥∥∥∥ϕ(F−1
Xs

◦ FXt(x), ·, ·)− ϕ(x, ·, ·)
F−1
Xs

◦ FXt(x)− x
fAU |Xt(·, · | x∗)

∥∥∥∥∥
1

Hölder

6
∥∥∥∥∥ϕ(F−1

Xs
◦ FXt(x), ·, ·)− ϕ(x, ·, ·)
F−1
Xs

◦ FXt(x)− x

∥∥∥∥∥
∞

·
∥∥fAU |Xt(·, · | x∗)

∥∥
1

A.4(i)(ii)
< ∞,

hence satisfying the condition of the Lebesgue Dominated Convergence Theorem to yield

E

[
ϕ(F−1

Xs
◦ FXt(x), A, Ut)− ϕ(x,A, Ut)

F−1
Xs

◦ FXt(x)− x

∣∣∣∣∣Xt = x∗

]
−→ E

[
∂

∂x
ϕ(x∗, A, Ut)

∣∣∣∣Xt = x∗
]

(B.3)

as x→ x∗.

By Assumptions 1 (ACC) and 3, we have a sequence xj → x∗ such that F−1
Xs

◦FXt(xj)−xj ̸= 0

for all j, but F−1
Xs

◦ FXt(xj)− xj → 0 as xj → x∗. Therefore

∆(s, t, xj)
(2.3)
=

E
[
Ys | Xs = F−1

Xs
◦ FXt(xj)

]
− E [Yt | Xt = xj]

F−1
Xs

◦ FXt(xj)− xj

Lemma 1
= E

[
ϕ(F−1

Xs
◦ FXt(xj), A, Ut)− ϕ(xj, A, Ut)

F−1
Xs

◦ FXt(xj)− xj

∣∣∣∣∣Xt = xj

]

= E

[
ϕ(F−1

Xs
◦ FXt(xj), A, Ut)− ϕ(xj, A, Ut)

F−1
Xs

◦ FXt(xj)− xj

∣∣∣∣∣Xt = x∗

]
+R(s, t, xj, x

∗)

(B.2) (B.3)→ E
[
∂

∂x
ϕ(x∗, A, Ut)

∣∣∣∣Xt = x∗
]

as xj → x∗.

B.3 Proof of Theorem 3

Proof. As in the proof of Theorem 1, we use the notations

T −(T, t, x) :=
{
s ∈ T (T )

∣∣F−1
Xs

◦ FXt(x) < x
}

T +(T, t, x) :=
{
s ∈ T (T )

∣∣x < F−1
Xs

◦ FXt(x)
}

Given these notations, the time indices τ(T, t, x) and τ(T, t, x) are defined as

τ(T, t, x) := arg max
s∈T −(T,t,x)

F−1
Xs

◦ FXt(x)

τ(T, t, x) := arg min
s∈T +(T,t,x)

F−1
Xs

◦ FXt(x)
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Note that the ‘max’ and ‘min’ are defined since T −(T, t, x) and T +(T, t, x) are finite for T <∞.

By Assumption 5, there exists a subsequence {tj}∞j=1 ⊂ T (∞) such that F−1
Xtj

◦ FXt(x) ̸= x

for all j and F−1
Xtj

◦ FXt(x) → x as j → ∞. By the first property (F−1
Xtj

◦ FXt(x) ̸= x for all j),

we have {tj}∞j=1 ⊂ T −(∞, t, x) ∪ T +(∞, t, x). This implies that at least one of the following

two cardinal equalities is true:

(I ′)
∣∣{tj}∞j=1 ∩ T −(∞, t, x)

∣∣ = ∞ and/or

(II ′)
∣∣{tj}∞j=1 ∩ T +(∞, t, x)

∣∣ = ∞.

If (I′) is the case, then consider the set S−(T, t, x) := {tj}∞j=1∩T −(T, t, x). Since S−(∞, t, x)

is a sub-subsequence of the subsequence {tj}∞j=1, the fact that F−1
Xtj

◦ FXt(x) → x as j → ∞

implies that F−1
Xs

◦ FXt(x) → x as S−(∞, t, x) ∋ s→ ∞. This in turn implies that

max
s∈S−(T,t,x)

F−1
Xs

◦ FXt(x) → x as T → ∞.

But by definitions of τ(T, t, x), S−(T, t, x), and T −(T, t, x), we have

max
s∈S−(T,t,x)

F−1
Xs

◦ FXt(x) 6 F−1
Xτ(T,t,x)

◦ FXt(x) 6 x

for all T . Thus, it follows from the Squeeze Theorem that

(I) F−1
Xτ(T,t,x)

◦ FXt(x) → x as T → ∞.

If, on the other hand (II′), is the case, then similar lines of argument will show

(II) F−1
Xτ(T,t,x)

◦ FXt(x) → x as T → ∞.

The rest of the proof follows from Lemmata 1 and 2. Specifically, if (I) is the case, then

∆(τ(T, t, x), t, x)
(2.3)
=

E
[
Yτ(T,t,x) | Xτ(T,t,x) = F−1

Xτ(T,t,x)
◦ FXt(x)

]
− E [Yt | Xt = x]

F−1
Xτ(T,t,x)

◦ FXt(x)− x

Lemma 1
= E

[
ϕ(F−1

Xτ(T,t,x)
◦ FXt(x), A, Ut)− ϕ(x,A, Ut)

F−1
Xτ(T,t,x)

◦ FXt(x)− x

∣∣∣∣∣Xt = x

]
Lemma 2→ E

[
∂

∂x
ϕ(x,A, Ut)

∣∣∣∣Xt = x

]
as T → ∞.
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Similarly, if (II) is the case, then

∆(τ(T, t, x), t, x) → E
[
∂

∂x
ϕ(x,A, Ut)

∣∣∣∣Xt = x

]
as T → ∞.

by analogous steps.

B.4 Proofs of Theorems 4, 5, and 6

Proof. Theorems 4, 5, and 6 can be proven by adapting the proofs of of Theorems 1, 2, and 3,

respectively, by using Lemma 4 instead of Lemma 1.

B.5 Proof of Corollary 1

Proof. Under the linear random coefficient model

ϕ(Xt, A, Ut) = α(A,Ut) + β(A,Ut)Xt,

Lemma 1 obviously reduces to

∆(s, t, x) = E

[
ϕ(F−1

Xs
◦ FXt(x), A, Ut)− ϕ(x,A, Ut)

F−1
Xs

◦ FXt(x)− x

∣∣∣∣∣Xt = x

]
= E [β(A,Ut)|Xt = x]

for all x ∈ supp(Xt) for all s, t ∈ T (T ) such that FXs(x) ̸= FXt(x).

B.6 Proof of Corollary 2

Proof. Under the equation (5.3), Assumption 14 implies Assumption 8, and Assumption 15

implies Assumption 11 with ϕ replaced by ψ. Therefore, by Theorem 5, we have

lim
x→x∗

∆̃x(s, t, x, z
∗) = E

[
∂

∂x
ϕ(x∗, z∗, A, Ut)

∣∣∣∣Xt = x∗, Zt = z∗
]

= E
[
f−U∗

t
(x∗β + z∗γ + A)

∣∣Xt = x∗, Zt = z∗
]
· β

and

lim
z→z∗

∆̃z(s, t, x
∗, z) = E

[
∂

∂z
ϕ(x∗, z∗, A, Ut)

∣∣∣∣Xt = x∗, Zt = z∗
]

= E
[
f−U∗

t
(x∗β + z∗γ + A)

∣∣Xt = x∗, Zt = z∗
]
· γ.
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Taking the ratio of these two equalities yields

limx→x∗ ∆̃x(s, t, x, z
∗)

limz→z∗ ∆̃z(s, t, x∗, z)
=
β

γ
.

B.7 Proof of Corollary 3

Proof. Under the equation (5.3), Assumption 14 implies Assumption 8, and Assumption 16

implies Assumption 13 with ϕ replaced by ψ. Therefore, by Theorem 6, at least one of

F−1
Xτx(T,t,x,z)Zτx(T,t,x,z)

(·, z) ◦ FXtZt(x, z) or F−1
Xτx(T,t,x,z)Zτx(T,t,x,z)

(·, z) ◦ FXtZt(x, z)

converges to x as T → ∞. Similarly, at least one of

−1
Xτz(T,t,x,z)Zτz(T,t,x,z)

(x, ·) ◦ FXtZt(x, z) or F−1
Xτz(T,t,x,z)Zτz(T,t,x,z)

(x, ·) ◦ FXtZt(x, z)

converges to z as T → ∞. Therefore, at least one of the cases (I)–(IV) holds. If case (I) holds,

then by Theorem 6, we have

∆̃x(τx(T, t, x, z), t, x, z) → E
[
∂

∂x
ϕ(x, z, A, Ut)

∣∣∣∣Xt = x, Zt = z

]
= E

[
f−U∗

t
(xβ + zγ + A)

∣∣Xt = x, Zt = z
]
· β

and

∆̃z(τ z(T, t, x, z), t, x, z) → E
[
∂

∂z
ϕ(x, z, A, Ut)

∣∣∣∣Xt = x, Zt = z

]
= E

[
f−U∗

t
(xβ + zγ + A)

∣∣Xt = x, Zt = z
]
· γ.

Taking the ratio of these convergence results, we obtain

∆̃x(τx(T, t, x, z), t, x, z)/∆̃z(τ z(T, t, x, z), t, x, z) → β/γ

as T → ∞. Similar arguments show the conclusions for cases (II)–(IV).
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