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Abstract

This paper gives identification and estimation results for quantile and average effects in nonsep-

arable panel models, when the distribution of period specific disturbances does not vary over

time. Bounds are given for interesting effects with discrete regressors that are strictly exogenous

or predetermined. We allow for location and scale time effects and show how monotonicity can

be used to shrink the bounds. We derive rates at which the bounds tighten as the number T of

time series observations grows and give an empirical illustration.



1 Introduction

This paper gives identification and estimation results for quantile and average effects in nonsep-

arable panel models, when the distribution of period specific disturbances does not vary over

time. Bounds are given for interesting effects with discrete regressors that are strictly exogenous

or predetermined. We allow for location and scale time effects and show how monotonicity can

be used to shrink the bounds. We derive rates at which the bounds tighten as the number T of

time series observations grows and give an empirical illustration.

Nonseparable models are often needed to model important features of economic problems

as discussed by Altonji and Matzkin (2005) and others. Also, Browning and Carro (2007)

showed that economics motivates multiple sources of heterogeneity (not just an additive effect),

and showed their importance in an application. Recently Hoderlein and White (2009) have

considered a nonseparable panel data model that is close to the one we study.

Much of the work on nonseparable models in panel data (and other settings) has relied on

control variables that arise from restricting the correlation between regressors and individual

effects. Control variables are functions of observables such that the regressors and individual

effects are independent conditional on those variables. Results on control variables for panel data

are given by Chamberlain (1984), Altonji and Matzkin (2005), and Bester and Hansen (2009).

We consider a different source of potential identification, time homogeneity. Similar conditions

have been used for identification by Chamberlain (1982), Manski (1987), Honore (1992), Hahn

(2001), Wooldridge (2005), Chernozhukov, Fernandez-Val, Hahn, and Newey (2007), Graham

and Powell (2008), and Hoderlein and White (2009), among others.

This paper is the first to consider identification of the quantile structural function (QSF)

of Imbens and Newey (2009) and the average structural function (ASF) of Blundell and Powell

(2003) under time homogeneity. We find that it is not possible to identify the QSF and ASF in

panel data with discrete regressors though certain conditional effects may be identified. We give

easily computed bounds for the QSF and ASF. We show that these bounds can be quite tight and

can shrink exponentially fast as T −→∞, making the bounds potentially important in practice.
We also allow for location and scale time effects or dynamics, and show how monotonicity can be

used to tighten the bounds. The empirical illustration is based on Chamberlain’s (1982) union

wage effects application.

This paper is different than Honoré and Tamer (2006) and Chernozhukov, Hahn, and Newey

(2004). Those papers derived bounds in semiparametric panel models where only individual

location effects are present. This paper allows for slope effects also and considers nonparametric

models.

In Section 2 we give the nonseparable models we consider and describe the QSF and ASF.
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Section 3 derives bounds for the static case, with regressors that are strictly exogenous con-

ditional on an individual effect. Section 4 shows how location and scale time effects may be

included. Section 5 gives bounds for the dynamic case with predetermined regressors. Section 6

gives bounds under monotonicity. Section 7 considers consistency and rates as T grows. Section

8 gives the empirical example.

2 The Model and Effects

The data consist of n observations Yi = (Yi1, ..., YiT )0 and Xi = [Xi1, ...,XiT ]
0, for a dependent

variable Yit and a vector of regressorsXit. We will assume throughout that (Yi,Xi), (i = 1, ..., n),

are independent and identically distributed observations.

We consider a nonseparable model of the form

Yit = g0(Xit, αi, εit), (i = 1, ..., n; t = 1, ..., T ), (1)

where αi and εit are unobserved disturbances that can have any dimension. The αi is a vector

of time invariant individual effects that often represents individual heterogeneity. The εit is a

vector of period specific disturbances. Altonji and Matzkin (2005) considered this model.

We consider identification in static and dynamic models under time homogeneity of the

conditional distribution of εit. Time homogeneity in the static model is

εit|Xi, αi
d
= εi1|Xi, αi, for all t. (2)

This condition states that the conditional distribution of εit given Xi and αi does not depend

on t. This condition imposes conditional stationarity of the distribution of εit but allows for

dependence of εit over time.

An equivalent condition is ε̃it|Xi
d
= ε̃i1|Xi for ε̃it = (αi, εit). The time invariant αi has no

distinct role in this model. The condition is just that whatever the disturbances are, their

conditional distribution given Xi does not depend on t. This seems a basic "ceteris paribus"

assumption for panel data that amounts to the time period being "randomly assigned." In a

linear model this condition is observationally equivalent to a more standard one involving an

individual effect. Suppose that

Yit = X 0
itβ + αi + εit = X 0

itβ + ε̃it.

A linear model version of the time homogeneity condition is E∗(ε̃it|Xi) = E∗(ε̃i1|Xi) for all t,

where E∗(·|Xi) denotes linear projection on Xi. Then

E∗(Yit|Xi) = X 0
itβ +E∗(ε̃it|Xi) = X 0

itβ +E∗(ε̃i1|Xi)

= X 0
itβ + α̃i, α̃i = E∗(ε̃i1|Xi).
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This is same multivariate regression (Chamberlain, 1982) implied by an additive individual

effect. Thus, in the linear model the time homogeneity condition is observationally equivalent

to an additive individual effect.

The dynamic time homogeneity condition we impose is

εit|Xit, ...,Xi1, αi
d
= εi1|Xi1, αi, for all t. (3)

Here we restrict the distribution of εit conditional on current and past Xit and αi, requiring

that it only depends on Xi1 and αi. In this model conditioning on αi does play an important

role, making εit independent of the regressor observations except for the first time period. This

condition allows for dynamic feedback between εit and futureXis (i.e. with s > t). An important

example is a dynamic binary choice model where Yit is binary and Xit = Yi,t−1.

We are here interested in two effects (functions) of Xit on the outcome, the average structural

function (ASF) of Blundell and Powell (2003) and the quantile structural function (QSF) of

Imbens and Newey (2009). The ASF is

μ(x) = E[g0(x, αi, εit)] =

Z
g0(x, α, ε)F (dα, dε).

This object is useful for quantifying the effect of x on the mean of the outcome Yit. In the

treatment effects literature the average treatment effect of changing x from x̄ to x̃ is

μ(x̃)− μ(x̄).

The QSF is the λth quantile of g(x, αi, εit) as a function of x (and λ). To describe it, define

the CDF of g0(x,αi, εit) to be

G(y, x) = E[1(g0(x, αi, εit) ≤ y)].

Note that the time homogeneity assumptions imply that this function does not depend on t.

The QSF is the inverse of this function

q(λ, x) = G−1(λ, x).

In the treatment effects literature the λth quantile treatment effect of changing x from x̄ to x̃ is

q(λ, x̃)− q(λ, x̄),

as in Lehmann (1974).

A condition that is implicit in these objects is that the distribution of (εit, αi) does not vary

over time. This condition clearly holds in the static model and is implied by the dynamic one.

Note that the conditional distribution of εit given Xi1, αi does not vary with t, implying the

marginal distribution of (εit, αi) also does not vary with t.
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Chamberlain (1982), Hahn (2001), Wooldridge (2005), and Chernozhukov et. al (2007) have

considered nonseparable conditional mean models where the object of interest is an average

partial effect. The nonseparable models given here imply those models with average treatment

effect equal to the average partial effect.

Theorem 1: Suppose that equation (1) is satisfied, E[|Yit|] <∞, and E[|g0(x, αi, εit)|] <∞
for all x. If equation (2) is satisfied then for α̃ = X and m0(x, α̃) =

R
g0(x, α, ε)F (dα, dε|α̃).

E[Yit|Xi, α̃i] = m0(Xit, α̃i), μ(x) =

Z
m0(x, α̃)F (dα̃).

If equation (3) is satisfied then for α̃ = (α,X1) and m0(x, α̃) =
R
g0(x, α, ε)F (dε|α̃),

E[Yit|Xit, ...,Xi1, α̃i] = m0(Xit, α̃i), μ(x) =

Z
m0(x, α̃)F (dα̃).

Proof of Theorem 1: Under equation (2), for α̃ = X,

E[Yit|Xi, α̃i] = E[g0(Xit, αi, εit)|Xi] =

Z
g0(Xit, α, ε)F (dα, dε|α̃i) = m0(Xit, α̃i),Z

m0(x, α̃)F (dα̃) =

Z
g0(x, α, ε)F (dα, dε|α̃)F (dα̃) = μ(x).

Similarly, under equation (3), for α̃i = (αi,X1i),

E[Yit|Xit, ...,Xi1, α̃i] =

Z
g0(Xit, αi, ε)F (dε|Xit, ...,Xi1, αi)

=

Z
g0(Xit, αi, ε)F (dε|α̃i) = m0(Xit, α̃i),Z

m0(x, α̃)F (dα̃) =

Z
g0(x,α, ε)F (dε|α,X1)F (dα, dX1)

=

Z
g0(x,α, ε)F (dε, dα, dX1) = μ(x).

Q.E.D.

A consequence of this is that the marginal effect, or average partial effect in the conditional

mean sense, is the same as the average treatment effect, i.e.Z
[m0(x̃, α)−m0(x̄, α)]F (dα) = μ(x̃)− μ(x̄).

Through the rest of the paper we assume that the support of Xi is finite (so Xit is discrete).

A useful example is binary Xit, where Xit ∈ {0, 1}. With discrete Xit the model can also be

written as a linear model with random coefficients. Suppose that Xit takes on the same J values

{x1, ..., xJ} for each t and let Dit be a vector of dummy variables, Ditj = 1(Xit = xj). Let

βj(αi, εit) = g(xj , αi, εit) and β(αi, εit) = (β1(αi, εit), ..., βJ(αi, εit))
0. Then equation (1) can

also be written as

Yit = D0
itβ(αi, εit).
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3 Bounds in the Static Model

In the static model there is a simple, fundamental result that provides information about the

ASF. Let the support of Xi be {X1, ...,XK}. For all Xk such that Xk
tk
= x for some tk, we have

E[Yi,tk |Xi = Xk] = E[g0(Xitk , αi, εitk)|Xi = Xk] = E[g0(x, αi, εi1)|Xi = Xk],

where the last equality follows by the time homogeneity conditions. That is, the ASF conditional

on Xi = Xk is equal to the expectation of Yit for any t with Xit = x. This result generally does

not suffice to identify the ASF because not all support points Xk have a time period with the

regressor equal to x. When g0(x, αi, εit) is bounded this does lead to bounds that can be quite

tight even for small T . Also, under quite general conditions the probability of x not being a

component of Xi shrinks to zero, leading to identification as T −→∞.
To describe the bounds, let K(x) = {k : Xk

tk
= x for some tk}, K̄(x) be the complement in

{1, ...,K}, and Pk = Pr(Xi = Xk). Define P̄(x) =
P

k∈K̄(x) Pk to be the probability that x does

not appear in any time period for Xi.

Theorem 2: If equations (1) and (2) are satisfied and Bc ≤ g0(x,αi, εit) ≤ Bu for constants

Bc and Bu and all x, then

μc(x) ≤ μ(x) ≤ μu(x),

where

μc(x) =
X

k∈K(x)
PkE[Yi,tk |Xi = Xk] +BcP̄(x), μu(x) = μc(x) + P̄(x)(Bu −Bc).

Proof of Theorem 2: For k ∈ K(x) we have Xk
tk
= x, so that

E[Yi,tk |Xi = Xk] = E[g0(X
k
tk
, αi, εitk)|Xi = Xk] = E[g0(x, αi, εi1)|Xi = Xk].

For k ∈ K̄(x) we have
Bc ≤ E[g0(x, αi, εi1)|Xi = Xk] ≤ Bu.

Multiplying by Pk and then adding over k gives the result. Q.E.D.

Corresponding bounds on treatment effect are then given by

μc(x̃)− μu(x̄) ≤ μ(x̃)− μ(x̄) ≤ μu(x̃)− μc(x̄).

These bounds may be sharpened by imposing restrictions, such as monotonicity of treatment

effects, as shown in Section 6.
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These bounds are the same as those derived for the marginal effect in a conditional mean

model by Chernozhukov, Fernandez-Val, Hahn, and Newey (2007). Here we show that these

bounds have a different interpretation as bounds on the ASF in the nonseparable model.

The bounds depend on the probability that none of the components of Xi is equal to x.

For example, consider Xit ∈ {0, 1}. Suppose that T = 2. The support of Xi is {X1, ...,X4},
X1 = (0, 0)0, X2 = (0, 1)0, X3 = (1, 0)0, X4 = (1, 1)0. Let x = 1, so that K(1) = {2, 3, 4},
t2 = 2, t3 = 1, and t4 = 1 (or t4 = 2). Also, K̄(1) = {1}, P̄(1) = Pr(Xi = (0, 0)0), μc(1) =P4

k=2PkE[Yi,tk |Xi = Xk] + P1Bc and μu(1) = μc(1) + P1(Bu − Bc). Then the width of the

bounds is P1(Bu − Bc). For general T, the width is Pr(Xi = (0, ..., 0)0)(Bu − Bc) that may

decrease quickly as T grows.

Similarly to the treatment effects literature, we may be interested in the average structural

function, or the average treatment effect, conditional on certain Xi values. For example, if Xit ∈
{0, 1} represents treatment then we might be interested on the effect of treatment conditional
on ever treated, i.e. conditional on Xi 6= (0, ..., 0)0. Tighter bounds for such effect can be formed
and in some cases the effects may be identified.

The QSF bounds are obtained by replacing Yit by 1(Yit ≤ y) in the ASF bounds, that is

bounded below by 0 and above by 1, and inverting as a function of y. The bounds are based on

the fundamental identification result that for any k ∈ K(x),

E[1(g0(x, αi, εi1) ≤ y)|Xi = Xk] = E[1(Yi,tk ≤ y)|Xi = Xk].

Bounds on the CDF G(y, x) that are similar to Theorem 2 are

Gc(y, x) =
X

k∈K(x)
PkE[1(Yi,tk ≤ y)|Xi = Xk], Gu(y, x) = Gc(y, x) + P̄(x).

These can be inverted to give bounds on the QSF.

Theorem 3: If equations (1) and (2) are satisfied then

qc(λ, x) ≤ q(λ, x) ≤ qu(λ, x)

where

qc(λ, x) =

(
−∞, λ ≤ P̄(x),

G−1u (λ, x), λ > P̄(x).
, qu(λ, x) =

(
G−1c (λ, x), λ < 1− P̄(x),
+∞, λ ≥ 1− P̄(x).

.

Proof of Theorem 3: For k ∈ K(x) we have Xk
tk
= x, so that

E[1(Yi,tk ≤ y)|Xi = Xk] = E[1(g0(X
k
t , αi, εitk) ≤ y)|Xi = Xk] = E[1(g0(x, αi, εi1) ≤ y)|Xi = Xk].
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For k ∈ K̄(x) we have
0 ≤ E[1(g0(x, αi, εi1) ≤ y)|Xi = Xk] ≤ 1.

Multiplying by Pk and adding up then gives

Gc(y, x) =
X

k∈K(x)
PkE[1(Yi,tk ≤ y)|Xi = Xk] =

X
k∈K(x)

PkE[1(g0(x, αi, εi1) ≤ y)|Xi = Xk]

≤
X
k

PkE[1(g0(x,αi, εi1) ≤ y)|Xi = Xk] = G(y, x) ≤ Gc(y, x) + P̄(x) = Gu(y, x).

The conclusion then follows by inverting. Q.E.D.

Bounds for quantile treatment effects can then be formed in the usual way as

qc(λ, x̃)− qu(λ, x̄) ≤ q(λ, x̃)− q(λ, x̄) ≤ qu(λ, x̃)− qc(λ, x̄).

Estimation is straightforward. We can replace expectations by sample averages and the

indicator function in the QSF bounds by a smoothed version, as in Yu and Jones (1998). When

Xit = x for multiple t we just average over the available time periods. This is not efficient

but minimum distance would be difficult with small cells that will tend to happen when we

are conditioning on every possible realization of Xi = (Xi1, ...,XiT )
0. Confidence intervals for

the identified set can then be formed as in Chernozhukov, Hong, and Tamer (2007) or as in

Beresteanu and Molinari (2008) based on joint asymptotic normality of the upper and lower

bounds.

4 Time Effects in Static Models

In static models it is possible to relax the time homogeneity of g0(x, α, ε) to allow for additive

location and multiplicative scale time effects. These effects can even be allowed to depend on x,

though we focus here on the case where they do not.

Consider a model where

Yit = gt0(Xit, αi, εit), gt0(x, α, ε) = τ t + σtg0(x, α, ε), τ1 = 0, σ1 = 1, (4)

and τ t and σt are period specific location and scale effects. We impose the restriction that the

location effect is zero and the scale effect is one in the first time period. We continue to maintain

the time homogeneity assumption of equation (2). Now the ASF and QSF depend on t and are

given by

μt(x) = τ t + σt

Z
g0(x, α, ε)F (dε, dα), (5)

qt(λ, x) = λth quantile of τ t + σtg0(x, αi, εit)

= τ t + σt · λth quantile of g0(x, αi, εit).

7



We use the fact that E[g0(x,αi, εit)|Xi] does not depend on t to identify location and scale

effects. Different time periods with the same x provide identifying information for time effects.

In particular, if Xk
t = x and Xk

1 = x then

E[Yit|Xi = Xk] = τ t + σtE[g0(x, αi, εit)|Xi = X]

= τ t + σtE[g0(x,αi, εi1)|Xi = Xk] = τ t + σtE[Yi1|Xi = Xk].

Using two different Xk, or sets of Xk, then leads to identification of τ t and σt. For example,

consider the T = 2 model and binary x, where x ∈ {0, 1}. Then for Xk ∈ {(0, 0)0, (1, 1)0},

E[Yi2|Xi = (0, 0)] = τ2 + σ2E[Yi1|Xi = (0, 0)],

E[Yi2|Xi = (1, 1)] = τ2 + σ2E[Yi1|Xi = (1, 1)].

This two equation system can be solved for the two unknowns τ2 and σ2 as long as E[Yi1|Xi =

(1, 1)] 6= E[Yi1|Xi = (0, 0)].

In general, let

X̄t = {X : X1 = Xt}; t = 2, ..., T,

and partition X̄t into two disjoint sets X̄ 1t and X̄ 2t . Then, similar to the previous example,

E[Yit|Xi ∈ X̄ 1t ] = τ t + σtE[Yi1|Xi ∈ X̄ 1t ],
E[Yit|Xi ∈ X̄ 2t ] = τ t + σtE[Yi1|Xi ∈ X̄ 2t ].

The location and scale effects are identified by solving these two equations for each t.

Theorem 4: If equations (2) and (4) are satisfied, E[|Yit|] < ∞ for all t, and Pr(Xi ∈
X̄ j
t ) > 0 and E[Yi1|Xi ∈ X̄ 1t ] 6= E[Yi1|Xi ∈ X̄ 2t ], for each t = 2, ..., T ; j = 1, 2, then

σt =
E[Yit|Xi ∈ X̄ 2t ]−E[Yit|Xi ∈ X̄ 1t ]
E[Yi1|Xi ∈ X̄ 2t ]−E[Yi1|Xi ∈ X̄ 1t ]

, τ t = E[Yit|Xi ∈ X̄ 2t ]− σtE[Yi1|Xi ∈ X̄ 2t ].

This result gives a very simple way to identify the time effects. In general, there may be

multiple partitions X̄ 1t and X̄ 2t that work. In that case τ t and σt may be overidentified. For

efficiency it would be desireable to estimate using optimal minimum distance. However, the

small sample properties of this are likely to be poor because some data cells may have few

observations, and so we focus on the simple partition into two sets.

The time varying ASF and QSF can be recovered by removing the identified location and

scale effects in the bounds and then adding them back at each time period.

Theorem 5: If equations (2) and (4) are satisfied, E[|Yit|] <∞ for all t, Pr(Xi ∈ X̄ j
t ) > 0

and E[Yi1|Xi ∈ X̄ 1t ] 6= E[Yi1|Xi ∈ X̄ 2t ] for each t = 2, ..., T ; j = 1, 2, and Bc ≤ g0(x, αi, εit) ≤ Bu

for constants Bc and Bu and all x, then

μtc(x) ≤ μt(x) ≤ μtu(x).
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where

μtc(x) = τ t + σt

⎡⎣ X
k∈K(x)

PkE[
Yi,tk − τ tk

σtk
|Xi = Xk] +BcP̄(x)

⎤⎦ ,
μtu(x) = μtc(x) + σtP̄(x)(Bu −Bc).

Proof of Theorem 5: For k ∈ K(x) we have Xk
tk
= x, so that similarly to the proof of Theorem

3,

E[
Yi,tk − τ tk

σtk
|Xi = Xk] = E[g0(X

k
tk
, αi, εitk)|Xi = Xk] = E[g0(x, αi, εi1)|Xi = Xk].

For k ∈ K̄(x) we have
Bc ≤ E[g0(x, αi, εi1)|Xi = Xk] ≤ Bu.

The conclusion then follows by multiplying by Pk, adding over k, multiplying by σt, and adding

τ t. Q.E.D.

To describe the quantile bounds redefine Gc(y, x) as

Gc(y, x) =
X

k∈K(x)
PkE[1(

Yi,tk − τ tk
σtk

≤ y)|Xi = Xk], Gu(y, x) = Gc(y, x) + P̄(x).

Theorem 6: If equations, (2), and (4) are satisfied, Pr(Xi ∈ X̄ j
t ) > 0 and E[Yi1|Xi ∈ X̄ 1t ] 6=

E[Yi1|Xi ∈ X̄ 2t ] for each t = 2, ..., T ; j = 1, 2, T, then

qtc(λ, x) ≤ qt(λ, x) ≤ qtu(λ, x)

where

qtc(λ, x) =

(
−∞, λ ≤ P̄(x),

τ t + σtG
−1
u (λ, x), λ > P̄(x).

, qtu(λ, x) =

(
τ t + σtG

−1
c (λ, x), λ < 1− P̄(x),

+∞, λ ≥ 1− P̄(x).
.

Proof of Theorem 6: For k ∈ K(x) we have Xk
tk
= x, so that

E[1(
Yi,tk − τ tk

σtk
≤ y)|Xi = Xk] = E[1(g0(X

k
tk
, αi, εitk) ≤ y)|Xi = Xk]

= E[1(g0(x, αi, εi1) ≤ y)|Xi = Xk].

For k ∈ K̄(x) we have
0 ≤ E[1(g0(x, αi, εi1) ≤ y)|Xi = Xk] ≤ 1.

9



Multiplying by Pk and adding up then gives

Gc(y, x) =
X

k∈K(x)
PkE[1(

Yi,tk − τ tk
σtk

≤ y)|Xi = Xk]

=
X

k∈K(x)
PkE[1(g0(x, αi, εi1) ≤ y)|Xi = Xk]

≤ G(y, x) ≤ Gu(y, x) + P̄(x).

The conclusion then follows by inverting, multiplying by σt, and adding τ t. Q.E.D.

The QSF bounds are unusual in that the quantile time effects are identified from expectations.

This approach depends crucially on τ t and σt being constant (i.e. nonrandom). The ASF bounds

will also apply when τ t and σt are random and independent of the data, but the QSF bounds

will not.

We can generalize this to the case where τ t and σt may depend on x. In this case the model

is

Yit = gt0(Xit, αi, εit), gt0(x,α, ε) = τ t(x) + σt(x)g0(x, α, ε), τ1(x) = 0, σ1(x) = 1. (6)

The objects of interest will be the same as in equation (5), with an x argument included for

τ t(x) and σt(x). Let

X̄t(x) = {X : X1 = Xt = x}; t = 2, ..., T,

and partition X̄t(x) into two disjoint sets X̄ 1t (x) and X̄ 2t (x). Such a partition may be possible
except when T = 2. Then similarly to the constant case,

σt(x) =
E[Yit|Xi ∈ X̄ 2t (x)]−E[Yit|Xi ∈ X̄ 1t (x)]
E[Yi1|Xi ∈ X̄ 2t (x)]−E[Yi1|Xi ∈ X̄ 1t (x)]

,

τ t(x) = E[Yit|Xi ∈ X̄ 2t (x)]− σt(x)E[Yi1|Xi ∈ X̄ 2t (x)].

Thus τ t(x) and σt(x) are identified as in the conclusion of Theorem 4. Also, corresponding

results to Theorem 5 and 6 follow, with τ t(x) and σt(x) replacing τ t and σt respectively.

Estimation of τ t(x) and σt(x) depending on x will require that many data cells (corresponding

to different values of Xi) have positive probability when x takes on several values and T is large.

Practically speaking, it may be hard to identify such effects in data typically encountered in

economics. For this reason we have focused on constant time effects here. Graham and Powell

(2008) did consider a linear random coefficients model with location effects that depend on x.

Even if τ t(x) and σt(x) are allowed to depend on x there may be overidentifying restrictions

implied by the model with strict exogeneity. A characterization of all these restrictions is left

to future research.
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5 Bounds in the Dynamic Model

In static models we developed bounds by conditioning on the entire Xi vector. The dynamic

model only imposes independence from lagged Xit, so we will condition only on lagged Xit.

Specifically, we partition of the support of Xi into sets where the first occurrence of x is at time

t and the set where x never occurs. This partition is given by

Xt(x) = {X : Xt = x, Xs 6= x ∀s < t}, t = 1, ..., T ; X̄ (x) = {X : Xt 6= x ∀t}.

There is a fundamental result that provides partial identification using this partition. Define

At = {Xi ∈ Xt(x)).

Note that At only restricts Xit, ...,Xi1. Let 1(At) be the indicator function for At. For all t,

E[1(At)g0(x, αi, εiT )] = E[1(At)E[g0(x, αi, εiT )|XiT , ...,Xi1, αi]] (7)

= E[1(At)E[g0(x, αi, εit)|Xit, ...,Xi1, αi]]

= E[1(At)g0(x, αi, εit)] = E[1(At)Yit]

where the second equality follows by equation (3) and the last equality by Xit = x for all

Xi ∈ At. Combining this result with the fact that the distribution of (αi, εit) does not vary with

t (also implied by equation (3)) leads to the following bounds:

Theorem 7: If equations (1) and (3) are satisfied and for all x, and Bc ≤ g0(x, αi, εit) ≤ Bu

for constants Bc and Bu and all x, then

μc(x) ≤ μ(x) ≤ μu(x),

where

μc(x) =
TX
t=1

E[1(At)Yit] +BcP̄(x), μu(x) = μc(x) + P̄(x)(Bu −Bc).

Proof of Theorem 7: Equation (3) implies that εit is independent of Xit, ...,Xi2 conditional

on (αi,Xi1), since the conditional distribution of εit given (Xit, ...,Xi1, αi) does not depend on

Xit, ...,Xi2. It also implies that this distribution is the same for all t, being equal to that for

t = 1. It follows that the distribution of (αi, εit) does not vary with t. Also by the sets being a

partition we have 1(Xi ∈ X̄ (x)) +
P

t 1(At) = 1. Therefore, by eq. (7)

μ(x) = E[g0(x, αi, εiT )] =
TX
t=1

E[1(At)g0(x, αi, εiT )] +E[1(Xi ∈ X̄ (x))g0(x,αi, εiT )]

=
TX
t=1

E[1(At)Yit] +E[1(Xi ∈ X̄ (x))g0(x, αi, εiT )].
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We also have

BcP̄(x) ≤ E[1(Xi ∈ X̄ (x))g0(x, αi, εiT )] ≤ BuP̄(x).

Replacing E[1(Xi ∈ X̄ (x))g0(x, αi, εiT )] in these inequalities with μ(x)−
P

t=1E[1(At)Yit] from

the previous equation and adding
P

t=1E[1(At)Yit] to both inequalities gives the bounds. Q.E.D.

An important example is the binary Yit ∈ {0, 1} case where Xit = Yi,t−1. In this case Bc = 0,

Bu = 1. Here P̄(0) = Pr(Xi = (1, ..., 1)
0) and P̄(1) = Pr(Xi = (0, ..., 0)

0). The bounds for μ(0)

and μ(1) will be

TX
t=1

E[1(Xi ∈ Xt(0))Yit] = μc(0) ≤ μ(0) ≤ μu(0) = μc(0) + P̄(0),

TX
t=1

E[1(Xi ∈ Xt(1))Yit] = μc(1) ≤ μ(1) ≤ μu(1) = μc(1) + P̄(1).

Then for δ =
PT

t=1E[{1(Xi ∈ Xt(1))− 1(Xi ∈ Xt(0))}Yit] we have

δ − P̄(1) ≤ μ(1)− μ(0) ≤ δ + P̄(0).

The width of the bounds is Pr(Xi = (1, ..., 1)
0) + Pr(Xi = (0, ..., 0)

0), that will tend to be large

in short panels but more informative in long ones. This is a bounds solution to the problem

of identifying state dependence in the presence of unobserved heterogeneity (Feller, 1943, and

Heckman, 1981). Note that

μ(1)− μ(0) =

Z
[Pr(Yit = 1|Yi,t−1 = 1, α)− Pr(Yit = 1|Yi,t−1 = 0, α)]F (dα)

is the effect of lagged Yit, holding αi fixed, averaged over αi. The conditional distribution

of Yit is completely characterized by the two random variables Pr(Yit = 1|Yi,t−1 = 1, α) and

Pr(Yit = 1|Yi,t−1 = 0, α), so that we can think of αi as two dimensional, being equal to these two
random variables. Our results put no restrictions on the joint distribution of these conditional

probabilities.

For bounds for the QSF define

G̃c(y, x) =
TX
t=1

E[1(At)1(Yit ≤ y)], G̃u(y, x) = G̃c(y, x) + P̄(x).

Theorem 8: If equations (1) and (3) are satisfied then

qc(λ, x) ≤ q(λ, x) ≤ qu(λ, x)

where

qc(λ, x) =

(
−∞, λ ≤ P̄(x),

G̃−1u (λ, x), λ > P̄(x).
, qu(λ, x) =

(
G̃−1c (λ, x), λ < 1− P̄(x),
+∞, λ ≥ 1− P̄(x).

.
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Proof of Theorem 8: Replacing g0(x, αi, εiT ) by 1(g0(x,αi, εiT ) ≤ y) in eq. (7) gives

E[1(At)1(g0(x,αi, εiT ) ≤ y)] = E[1(At)1(Yit ≤ y)].

Then proceding as in the proof of Theorem 7,

G(y, x) = E[1(g0(x, αi, εiT ) ≤ y)]

=
X
t=1

E[1(At)1(Yit ≤ y)] +E[1(Xi ∈ X̄ (x))1(g0(x,αi, εiT ) ≤ y)].

We also have

0 ≤ E[1(Xi ∈ X̄ (x))1(g0(x, αi, εiT ) ≤ y)] ≤ P̄(x),

implying the bounds on G(y, x). Inverting those bounds, e.g. similarly to Imbens and Newey

(2009), gives the result. Q.E.D.

The bounds for the dynamic model also apply to the static model but there are advantages

to using the static bounds when they apply. One advantage is that the bounds for the static

model use more time periods, which should help reduce sampling variability in estimators.

6 Bounds under Monotonicity

When properties of g0 are known it should be possible to tighten the bounds. We consider here

the case of monotonicity, where it is known that for some x̃ and x̄,

g0(x̃, αi, εit) ≥ g0(x̄, αi, εit). (8)

This condition leads to tighter bounds for the ASF, QSF, and for treatment effects in the static

and dynamic cases. To describe the bounds, recall that K̄(x) = {k : Xk
t 6= x∀t}, and let

P̄(x̄, x̃) = Pr(K̄(x̃) ∩ K̄(x̄)). For k ∈ K(x̃) ∩ K(x̄), let t̃k and t̄k be time periods such that

Xk
t̃k
= x̃ and Xt̄k = x̄.

Theorem 9: Suppose that E[|g0(x, αi, εit)|] <∞ for x ∈ {x̃, x̄} and equations (1), (2), and
(8) are satisfied. Let Ak = {Xi = Xk}. Then

μ(x̃)− μ(x̄) ≥
X

k∈K(x̃)∩K(x̄)
E[1(Ak){Yit̃k − Yit̄k}].

If g0(x̃, αi, εit) ≥ Bc then

μ(x̃) ≥
X

k∈K(x̃)
E[1(Ak)Yit̃k ] +

X
k∈K̄(x̃)∩K(x̄)

E[1(Ak)Yit̄k ] + P̄(x̄, x̃)Bc.
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If g0(x̄, αi, εit) ≤ Bu then

μ(x̄) ≤
X

k∈K(x̄)
E[1(Ak)Yit̄k ] +

X
k∈K̄(x̄)∩K(x̃)

E[1(Ak)Yit̃k ] + P̄(x̄, x̃)Bu.

Proof of Theorem 9: By the monotonicity condition,

μ(x̃) =
X
k

E[1(Ak)g0(x̃, αi, εit)]

≥
X

k∈K(x̃)
E[1(Ak)Yit̃k ] +

X
k∈K̄(x̃)∩K(x̄)

E[1(Ak)Yit̄k ] +
X

k∈K̄(x̃)∩K̄(x̄)
E[1(Ak)g0(x̃, αi, εit)]

≥
X

k∈K(x̃)
E[1(Ak)Yit̃k ] +

X
k∈K̄(x̃)∩K(x̄)

E[1(Ak)Yit̄k ] + P̄(x̄, x̃)Bc.

The last inequality gives the second conclusion. We also have

μ(x̄) =
X
k

E[1(Ak)g0(x̄, αi, εit)]

≤
X

k∈K(x̄)
E[1(Ak)Yit̄k ] +

X
k∈K̄(x̄)∩K(x̃)

E[1(Ak)Yit̃k ] +
X

k∈K̄(x̃)∩K̄(x̄)
E[1(Ak)g0(x̄, αi, εit)]

≤
X

k∈K(x̄)
E[1(Ak)Yit̄k ] +

X
k∈K̄(x̄)∩K(x̃)

E[1(Ak)Yit̃k ] + P̄(x̄, x̃)Bu.

The last inequality gives the second conclusion. To obtain the first conclusion, subtract the

second inequality here from the previous second inequality, to obtain

μ(x̃)− μ(x̄) ≥
X

k∈K(x̃)∩K(x̄)
E[1(Ak){Yit̃k − Yit̄k}]

+
X

k∈K̄(x̃)∩K̄(x̄)
E[1(Ak){g0(x̃, αi, εit)− g0(x̄, αi, εit)}]

≥
X

k∈K(x̃)∩K(x̄)
E[1(Ak){Yit̃k − Yit̄k}].Q.E.D.

A symmetric argument for the case g0(x̄, αi, �it) ≥ g0(x̃, αi, �it) gives an upper bound:

μu(x̃)− μc(x̄) =
X

k∈K(x̃)∩K(x̄)
E[1(Ak)(Yit̃k − Yit̄k)].

These bounds are the same as the bounds for the average partial effect under monotonicity in

Chernozhukov et al. (2007).

Consider now the QSF. Define

G∗u(y, x̃) =
X

k∈K(x̃)
E[1(Ak)1(Yit̃k ≤ y)] +

X
k∈K̄(x̃)∩K(x̄)

E[1(Ak)1(Yit̄k ≤ y)] + P̄(x̄, x̃),

G∗c(y, x̄) =
X

k∈K(x̄)
E[1(Ak)1(Yit̄k ≤ y)] +

X
k∈K̄(x̄)∩K(x̃)

E[1(Ak)1(Yit̃k ≤ y)],
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q∗c (x̃, λ) =

(
−∞, λ ≤ P̄(x̄, x̃),

(G∗u)
−1(λ, x̃), P̄(x̄, x̃) < λ.

, q∗u(λ, x̄) =

(
(G∗c)

−1(λ, x), 0 < λ < 1− P̄(x̄, x̃),
+∞, λ ≥ 1− P̄(x̄, x̃).

.

Theorem 10: If equations(1), (2), and (8) are satisfied then

q(λ, x̃) ≥ q∗c (λ, x̃), q(λ, x̄) ≤ q∗u(λ, x̄).

Proof of Theorem 10: Note that monotonicity implies that

1(g(x̃, αi, εit) ≤ y) ≤ 1(g(x̄, αi, εit) ≤ y).

It then follows similarly to the proof of Theorem 9 that

G(y, x̃) =
X
k

E[1(Ak)1(g(x̃, αi, εit) ≤ y)] ≤ G∗u(y, x̃),

G(y, x̄) =
X
k

E[1(Ak)1(g(x̄, αi, εit) ≤ y)] ≥ G∗c(x̄, y).

The conclusion follows by inverting.Q.E.D.

Turning now to the dynamic model, to sharpen the bounds for the monotonic case we use

a different partition than in Section 5. Define Xt(x̃, x̄) = Xt(x̃) ∪ (X̄ (x̃) ∩Xt(x̄)). The partition
we use here to derive a lower bound for μ(x̃) is is

{X1(x̃, x̄), ...,XT (x̃, x̄), X̄ (x̃) ∩ X̄ (x̄)}.

The partition we use to derive an upper bound for μ(x̄) is the same with x̃ and x̄ interchanged.

They are finer partitions than the one given above. The fundamental identification result of

Section 5 and monotonicity imply that

E[1(Xi ∈ X̄t(x̃, x̄))g0(x̃, αi, εiT )]

= E[1(Xi ∈ Xt(x̃))g0(x̃, αi, εiT )] +E[1(Xi ∈ X̄ (x̃) ∩ Xt(x̄))g0(x̃, αi, εiT )]

≥ E[1(Xi ∈ Xt(x̃))Yit] +E[1(Xi ∈ X̄ (x̃) ∩ Xt(x̄))g0(x̄, αi, εiT )]

= E[1(Xi ∈ X̄t(x̃, x̄))Yit].

This inequality leads to a sharper lower bound for μ(x̃) and one that interchanges x̃ and x̄ leads

to an upper bound for μ(x̄).

Theorem 11: Suppose that E[|g0(x, αi, εit)|] < ∞ for x ∈ {x̃, x̄} and equations (1), (3),
and (8) are satisfied. Then

μ(x̃)− μ(x̄) ≥
TX
t=1

E[{1(Xi ∈ X̄t(x̃, x̄))− 1(Xi ∈ X̄t(x̄, x̃))}Yit].
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If g0(x̃, αi, εit) ≥ Bc then

μ(x̃) ≥
TX
t=1

E[{1(Xi ∈ X̄t(x̃, x̄))Yit] + P̄(x̄, x̃)Bc.

If g0(x̄, αi, εit) ≤ Bu then

μ(x̄) ≤
TX
t=1

E[{1(Xi ∈ X̄t(x̃, x̄))Yit] + P̄(x̄, x̃)Bu.

Proof of Theorem 11: By the equation preceding Theorem 11 and monotonicity we have

E[g0(x̃, αi, εiT )] =
TX
t=1

E[1(Xi ∈ X̄t(x̃, x̄))g0(x̃, αi, εiT )] +E[1(Xi ∈ X̄ (x̃) ∩ X̄ (x̄))g0(x̃, αi, εiT )]

≥
TX
t=1

E[1(Xi ∈ X̄t(x̃, x̄))Yit] +E[1(Xi ∈ X̄ (x̃) ∩ X̄ (x̄))g0(x̄, αi, εiT )].

By the analogous equation with x̄ and x̃ interchanged,

E[g0(x̄, αi, εiT )] =
TX
t=1

E[1(Xi ∈ X̄t(x̄, x̃))g0(x̄, αi, εiT )] +E[1(Xi ∈ X̄ (x̃) ∩ X̄ (x̄))g0(x̄, αi, εiT )]

≤
TX
t=1

E[1(Xi ∈ X̄t(x̄, x̃))Yit] +E[1(Xi ∈ X̄ (x̃) ∩ X̄ (x̄))g0(x̄, αi, εiT )].

Subtracting these two inequalities gives the first conclusion. The second and third conclusions

then follow as in the proof of Theorem 9. Q.E.D.

For quantile bounds with monotonicity in the dynamic case, let

G∗u(y, x̃) =
TX
t=1

E[1(Xi ∈ Xt(x̃, x̄))1(Yit ≤ y)]+P̄(x̄, x̃),G∗c(y, x̄) =
TX
t=1

E[1(Xi ∈ Xt(x̄, x̃))1(Yit ≤ y)],

q∗c (x̃, λ) =

(
−∞, λ ≤ P̄(x̄, x̃),

(G∗u)
−1(λ, x̃), P̄(x̄, x̃) < λ.

.q∗u(λ, x̄) =

(
(G∗c)

−1(λ, x), 0 < λ < 1− P̄(x̄, x̃),
+∞, λ ≥ 1− P̄(x̄, x̃).

.

Theorem 12: If equations (1), (3), and (8) are satisfied then

q(λ, x̃) ≥ q∗c (λ, x̃), q(λ, x̄) ≤ q∗u(λ, x̄).

Proof of Theorem 12: By monotonicity it follows similarly to the proof of Theorem 11 that

G(y, x̃) =
TX
t=1

E[1(Xi ∈ X̄t(x̃, x̄))1(g0(x̃, αi, εiT ) ≤ y)]

+E[1(Xi ∈ X̄ (x̃) ∩ X̄ (x̄))1(g0(x̃, αi, εiT ) ≤ y)]

≤ G∗u(y, x̃), G(y, x̄) ≥ G∗c(x̄, y).
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The conclusion follows by inverting. Q.E.D.

If the regressor is binary, Xit ∈ {0, 1}, x̃ = 1 and x̄ = 0, then P̄(x̄, x̃) = 0. When the regressor
takes on more than two values we can get tighter bounds if a monotonicity restriction holds for

every possible pair of values. For example, if x were a scalar and g0(x̃, αi, �it) ≥ g0(x̄, αi, �it) for

every x̃ and x̄ with x̃ > x then we could obtain improved bounds on the ASF and QSF.

7 Identification and Rates as T −→∞

The size of the bounds all depend on P̄(x), the probability that x does not appear for any time
period. Identification will be attained as T −→ ∞ if P̄(x) −→ 0. This convergence will occur

under fairly weak conditions.

Theorem 13: Suppose that equations (1) and (3) are satisfied,
−→
X i = (Xi1,Xi2, ...) is sta-

tionary and, conditional on αi, the support of each Xit is the marginal support of Xit and
−→
X i is

ergodic. If Bc ≤ g0(x,αi, εit) ≤ Bu for constants Bc and Bu and all x, then μc(x) −→ μ(x) and

μu(x) −→ μ0(x) as T −→∞. If 0 < λ < 1 and G(y, x) is continuous and strictly monotonic in

y on {y : 0 < G(y, x) < 1} then qc(λ, x) −→ q(λ, x) and qu(λ, x) −→ q(λ, x) as T −→∞.

Proof of Theorem 13: Let ZiT =
PT

t=1 1(Xit = x)/T Note that if ZiT > 0 then 1(AiT ) = 1

for the event AiT that there exists t̃ such that Xit̃ = x. By the ergodic theorem, conditional on

αi we have ZiT
as−→ Pr(Xit = x | αi) > 0 by the conditional support being equal to the marginal

support. Therefore Pr(AiT | αi) ≥ Pr(ZiT > 0 | αi) −→ 1 for almost all αi. It then follows by

the dominated convergence theorem that

Pr(AiT ) = E[Pr(AiT | αi)] −→ 1.

Also note that Pr(AiT ) = 1− P̄(x), so that

P̄(x) −→ 0.

The first conclusion then follows by Theorem 7.

Next, for notational convenience, suppress the x argument. It follows as previously with

1(g0(x, αi, εit) ≤ y) replacing Yit that for all y, as T −→∞

Gu(y)−Gc(y) ≤ P̄ −→ 0.

Consider any 0 < λ < 1. Let T be large enough so that λ < 1 − P̄. Then qu(λ) is finite and

Gc(qu(λ)) = λ = G(q(λ)). It follows by qu(λ) ≥ q(λ) that

0 ≤ G(qu(λ))−G(q(λ)) = G(qu(λ))−Gc(qu(λ)) ≤ P̄ −→ 0.
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Since G(y) is strictly monotonic in a neighborhood of q(λ) and qu(λ) ≥ q(λ), it follows that

qu(λ) −→ q(λ). An analogous argument shows that qc(λ) −→ q(λ).Q.E.D.

This result gives conditions for identification as T grows, generalizing a result of Chamberlain

(1982) for binary Xit. In addition, it shows that the bounds derived above shrink to the average

and quantile effects as T grows. To explain when this identification would not hold it is helpful

to consider a simple example where Xi is i.i.d. conditional on αi. In that case

P̄(x) = E[Pr(Xit 6= x|αi)T ].

This will not go to zero if and only if Pr(Xit 6= x|αi) = 1 with positive probability, that

is Pr(Xit = x|αi) = 0 with positive probability. The marginal support being equal to the

conditional support is the hypothesis that rules this out.

The rate at which the bounds converge in the general model is a complicated question. We

can give a simple result if the conditional probability for Xit = x is bounded away from zero.

Theorem 14: Suppose that equations (1) and (3) are satisfied,
−→
Xi is stationary and Markov

of order J conditional on αi, and for some ε > 0,

Pr(Xit = x|Xi,t−1, ...,Xi,t−J , αi) ≥ ε.

Then if Bc ≤ g0(x, αi, εit) ≤ Bu,

μu(x)− μc(x) ≤ (Bu −Bc)(1− ε)T−J .

Also, if 0 < λ < 1 and G(y, x) is continuously differentiable on a neighborhood of y = q(λ, x)

with a derivative bounded below by Dx > 0, then for a large enough T

qu(λ, x)− qc(λ, x) ≤ 2D−1x (1− ε)T−J .

Proof of Theorem 14: Let ΠTt=11(Xit 6= x) be the indicator function for the event that none

of the elements of Xi is equal to x so that P̄(x) = E[ΠTt=11(Xit 6= x)]. By iterated expectations,

for T > J ,

P̄(x) = E[E[ΠTt=11(Xit 6= x)] = E[ΠT−1t=1 1(Xit 6= x)E[1(XiT 6= x|Xi,T−1, ...,Xi1, αi]]

= E[{ΠT−1t=1 1(Xit 6= x)}Pr(XiT 6= x|Xi,T−1, ...,Xi,T−J , αi)] ≤ (1− ε)E[ΠT−1t=1 1(Xit 6= x)].

Repeating the argument for T − 1, ..., J gives

P̄(x) ≤ (1− ε)T−JE[ΠJ−1t=1 1(Xit 6= x)] ≤ (1− ε)T−J .

The first conclusion then follows by Theorem 7.
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Next suppress the x argument and proceed as in the proof of Theorem 13. Note that

G0(y) > Dx for all y in a neighborhood of q(λ) and that G(qu(λ)) − G(q(λ)) ≤ P̄ for large

enough T. Using these and previous bounds and a mean value expansion gives

(1− ε)T−J ≥ P̄ ≥ G(qu(λ))−G(q(λ)) = G0(q̄(λ))[qu(λ)− q(λ)] ≥ Dx[qu(λ)− q(λ)] ≥ 0,

where q̄(λ) lies between qu(λ) and q(λ). Dividing by Dx then gives

D−1x (1− ε)T−J ≥ qu(λ)− q(λ) ≥ 0.

An analogous argument gives D−1x (1− ε)T−J ≥ q(λ)− qc(λ), so adding these inequalities gives

the second conclusion. Q.E.D.

This result shows that the rate of convergence of the bounds will be exponential when the

conditional probability that Xit = x is bounded away from zero. The i.i.d. example can be used

to illustrate what other kinds of results might occur. As discussed above, P̄(x) = E[Pr(Xit 6=
x|αi)T ], so the rate of shrinkage depends on the thickness of the tails of the distribution of
Pr(Xit 6= x|αi). If too much weight is put on conditional probabilities near one then the

convergence may be slow. For example, suppose Xit = 1(αi − vit > 0), αi ∼ N(0, 1), vit ∼
N(0, 1). Then

P̄(0) = E[Φ(αi)
T ] =

Z
Φ(α)Tφ(α)dα =

Φ(α)T+1

T + 1

¯̄̄̄+∞
−∞

=
1

T + 1
,

which shrinks slower than exponentially. On the other hand, if αi has any distribution with a

compact support, Theorem 14 implies that the bounds shrink exponentially fast in T .

8 An Empirical Example

In this section we revisit the empirical question of how unions impact the wage structure us-

ing panel data. Our major contribution here is to estimate the effect without imposing the

assumption that unobserved heterogeneity is some additive term that can be simply differenced

out. In our model unobserved heterogeneity can have an almost unrestricted impact on the

structural/causal response functions, with the time homogeneity serving as the only restriction.

In our view, this constitutes a major step forward in answering this empirical question.

The effect of unions on wage structure is a longstanding question in labor economics — see

Freeman (1984), Lewis (1986), Robinson (1989), Green (1991), and Card, Lemieux, and Rid-

dell (2004) for surveys and additional references. Most previous empirical studies recognize the

presence of unobserved differences between union and nonunion workers. For instance, in an in-

fluential study, Chamberlain (1982) finds strong evidence of heterogeneity bias in the estimation
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of the union effect by comparing estimates of cross- section models and panel data models with

additive heterogeneity. This finding demonstrates the important need of controlling for unob-

served heterogeneity. On the other hand, Angrist and Newey (1991) reject the hypothesis that

the unobserved heterogeneity acts solely in an additive fashion. Thus, this finding demonstrates

the important need of controlling for unobserved heterogeneity acting non-additively. Our tools

and our study address precisely both of these needs.

We use data from the National Longitudinal Survey (Youth Sample). The sample consists

of full-time young working males, 20 to 29 year-old in 1986, followed over the period 1986 to

1993. We exclude individuals who failed to provide sufficient information for each year, were in

the active army forces or students any year, or reported too high (more than $500 per hour)

or too low (less than $1 per hour) wages. The final sample includes 2,065 men. We use the

union membership and the log hourly wage rate in 1980 dollars as the covariate and the outcome

variables. The union membership variable reflects whether or not the individual had his wage

set in collective bargaining agreement. We report results for panels with 2, 4, 6, and 8 years, all

starting in 1986.

In our analysis, we focus on estimating the union effect for the subpopulation of workers

that became ever unionized within the sample. For this subpopulation, the union effect is not

point-identified, since there are 13% of the workers that stayed always unionized between 1986

and 1993. However, we hope to construct informative bounds on the union effect. We consider

both a static model that allows for the union membership decisions to be strictly exogenous with

respect to wage setting decisions, and a dynamic model that allows for the union membership

decisions to be only predetermined with respect to wage setting decisions. We shall also report

the estimates of the union effect for the subpopulation of workers who change the union status

at least once within the sample. For this subpopulation, the effect is point-identified, that is,

the bounds on the union effect collapse to a point. Finally, we shall not estimate the union effect

for the entire population of workers, since the bounds are completely uninformative in this case.

This happens because a substantial fraction of workers never changes the union status within

the sample (see Table 1).

We begin by presenting the estimates of the union effect for the subpopulation of workers

who change the union status at least once within the sample. In Figure 1 we compare our panel

data estimates of quantile effects with the pooled cross-section estimates. In the cross-section

estimates, we see that the quantile effect of union is positive but declines sharply at the upper

end of the distribution, which agrees with previous cross section findings (Chamberlain, 1994).

A common explanation for this phenomenon is that the high-skill workers at the lower end of the

earning distribution tend to join the union, whereas the high-skill workers at the high end of the

earning distribution tend not to join the union. The estimated quantile effect in the cross-section
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therefore captures this selection effect of unobserved skills. In the panel data estimates, which

control for the unobserved skills, we see that the quantile effects of union become very flat across

the quantile indices. Thus, by controlling for individual heterogeneity, we have eliminated the

selection effect. Finally, our estimates of quantile effects are higher in the dynamic model than

in the static model indicating a possible dynamic feedback between the wage setting and union

membership decisions.

We next present estimated bounds on the union effect for the subpopulation of workers that

became ever unionized within the sample. In Figures 2 and 3 we show these bounds for both

static and dynamic models and for panels of lengths T ∈ {2, 4, 6, 8} . In both cases, the size of
the bounds decreases substantially with T . The bounds for T = 8 are informative, and show that

the effect is positive for most of the quantile indices. In Figures 2 and 3, we also show bounds

obtained using the assumption of monotonic and positive union effect on earnings. These bounds

are also informative, and in fact are substantially tighter than the bounds obtained without the

assumption of monotonicity.

Figure 4 plots 90% uniform confidence bands for the identified union effect and quantile

union effect on ever unionized workers in the static and dynamic models. They are constructed

by bootstrap with 500 repetitions. These bands allow us to make visual simultaneous inference

on the entire quantile functions. For example, we cannot reject that the identified union effect

is constant and positive for all the quantiles. For the ever unionized, the quantile union effect is

positive for a large range of quantiles. The bands are narrower in the static model because this

model uses more observations in the estimation of the quantile functions.
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Ever unionized

Never unionized Always unionized Always unionized

T = 2 0.69 0.13 0.42

T = 4 0.61 0.08 0.22

T = 6 0.56 0.07 0.16

T = 8 0.53 0.06 0.13

Source: NLSY79 1986-1993, 2,065 men. All the panels start in 1986

Full sample

Table 1: Empirical probabilities of union sequences
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Figure 1: Identified quantile union effect. Estimates based on the entire panel 1986–1993.
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Figure 2: Bounds for quantile union effect on ever unionized. Static model.
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Figure 3: Bounds for quantile union effect on ever unionized. Dynamic model.
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Figure 4: 90% bootstrap uniform confidence bands for the identified union effect and union

effect on ever unionized (dashed lines). Estimates based on the entire panel 1986–1993.
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