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UNIFORM CONFIDENCE BANDS FOR FUNCTIONS
ESTIMATED NONPARAMETRICALLY WITH
INSTRUMENTAL VARIABLES

JOEL L. HOROWITZ AND SOKBAE LEE

ABSTRACT. This paper is concerned with developing uniform con-
fidence bands for functions estimated nonparametrically with in-
strumental variables. We show that a sieve nonparametric instru-
mental variables estimator is pointwise asymptotically normally
distributed. The asymptotic normality result holds in both mildly
and severely ill-posed cases. We present an interpolation method
to obtain a uniform confidence band and show that the bootstrap
can be used to obtain the required critical values. Monte Carlo ex-
periments illustrate the finite-sample performance of the uniform
confidence band.

JEL Classification Codes: C13, C14.

Key words: Bootstrap, instrumental variables, sieve estimator, uni-
form confidence band.

1. INTRODUCTION

This paper is concerned with developing a uniform confidence band
for the unknown function g in the model

(1.1) Y =g(X)+U; E(UW =w)=0 for almost every w,

where Y is a scalar dependent variable, X € RY is a continuously
distributed explanatory variable that may be endogenous (that is, we
allow the possibility that E(U|X = z) # 0), W € R? is a continu-
ously distributed instrument for X, and U is an unobserved random
variable. The unknown function ¢ is nonparametric. It is assumed
to satisfy mild regularity conditions but does not belong to a known,
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2 JOEL L. HOROWITZ AND SOKBAE LEE

finite-dimensional parametric family. The data are an independent
random sample {(Y;, X;,W;) : i = 1,...,n} from the distribution of
(Y, X, W).

Nonparametric estimators of g in (1)) have been developed by Newey
and Powell (2003); Hall and Horowitz (2005); Darolles, Florens, and
Renault (2006); and Blundell, Chen, and Kristensen (2007). Horowitz
(2007) gave conditions for asymptotic normality of the kernel estimator
of Hall and Horowitz (2005). Newey, Powell, and Vella (1999) presented
a control function approach to estimating ¢ in a model that is differ-
ent from (L)) but allows endogeneity of X and achieves identification
through an instrument. The control function model is non-nested with
(LI) and is not discussed further in this paper. Chernozhukov, Im-
bens, and Newey (2007); Horowitz and Lee (2007); and Chernozhukov,
Gagliardini, and Scaillet (2008) have developed methods for estimating
a quantile-regression version of model (IL]). In the quantile regression,
the condition E(U|W = w) = 0 is replaced by

(1.2) PU <0|W =w) =a for some a € (0,1).

Chen and Pouzo (2008, 2009) developed a method for estimating a
large class of nonparametric and semiparametric conditional moment
models with possibly non-smooth moments. This class includes (L2).

This paper obtains asymptotic uniform confidence bands for ¢ in
(CLI) by using a modified version of the sieve estimator of Blundell,
Chen, and Kristensen (2007). Sieve estimators of ¢ are easier to com-
pute than kernel-based estimators such as those of Darolles, Florens,
and Renault (2006) and Hall and Horowitz (2005). Moreover, sieve
estimators achieve the fastest possible rate of convergence under con-
ditions that are weaker in important ways than those required by exist-
ing kernel-based estimators. The sieve estimator used in this paper was
proposed by Horowitz (2009) in connection with a specification test for
model (LI]). Here, we show that this estimator is pointwise asymptoti-
cally normal and that the bootstrap can be used to obtain simultaneous
pointwise confidence intervals for g(z1),...,g(x) on almost every fi-
nite grid of points z,...,x;. We obtain a uniform confidence band
by using properties of g such as smoothness or monotonicity to in-
terpolate between the grid points. Hall and Titterington (1988) used
interpolation to obtain uniform confidence bands for nonparametrically
estimated probability density and conditional mean functions.

A seemingly natural approach to constructing a uniform confidence
band is to obtain the asymptotic distribution of a suitably scaled ver-
sion of sup, |g(z) — g(z)|, where g is the estimator of g. However,
when ¢ is a sieve estimator, this is a difficult problem that has been
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solved only for special cases in which ¢ is a conditional mean func-
tion and certain restrictive conditions hold (Zhou, Shen, and Wolfe
1998; Wang and Yang 2009). Our interpolation approach avoids this
problem. The resulting uniform confidence band is not asymptotically
exact; its true and nominal coverage probabilities are not necessarily
equal even asymptotically. But the confidence band can be made arbi-
trarily accurate (that is, the difference between the true and nominal
asymptotic coverage probabilities can be made arbitrarily small) by
making the grid zq, ...,z sufficiently fine. In practice, a confidence
band can be computed at only finitely many points, so it makes lit-
tle practical difference whether the confidence interval at each point
is based on a finite-dimensional distribution or the distribution of a
scaled version of sup, |g(z) — g(x)].

The remainder of the paper is organized as follows. Section 2 presents
the sieve nonparametric IV estimator. Section [3] gives conditions under
which the estimators of g(z1),...,¢g(x.) are asymptotically multivari-
ate normally distributed when X and W are scalar random variables.
Section [ uses the results of Section [3] to obtain a uniform confidence
band for g when X and W are scalars. Section[f]establishes consistency
of the bootstrap for estimating the confidence band. Section [@] extends
the results of Sections to the case in which X and W are random
vectors. Section [ reports the results of a Monte Carlo investigation
of the finite-sample coverage probabilities of the uniform confidence
bands, and concluding comments are given in Section [§l The proofs of
theorems are in the appendix.

2. THE SIEVE NONPARAMETRIC ESTIMATOR

This section describes Horowitz’s (2009) sieve estimator of g when
X and W are scalar random variables. Let fy, denote the probability
density function of W, fxu denote the probability density function of
(X, W), and

m(w) = E(Y|W =w) fyw(w).

Assume, without loss of generality, that the supports of X and W are
[0,1]. This assumption can always be satisfied, if necessary, carrying
out monotone transformations of X and W. Define the operator A by

(Av)(w) ::/0 v(x) fxw(z,w)d.

Then ¢ in ([LT]) satisfies
Ag =m.
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For a function v : [0, 1] — R and integer [ > 0, define

o (x)
O

Dy(z) :=

whenever the derivative exists, with the convention Dgv(z) = v(x).
Given an integer s > 0, define the Sobolev norm

s 1 1/2
vl == {Z/O [Dlv(x)]zdx}

and the function space
Hs:={v:[0,1]] = R: ||, <Cy},

where Cy < oo is a constant. Assume that g € H, for some s > 0 and
that [lg]/, < C.

The estimator of g is defined in terms of series expansions of g, m, and
A. Let {1; : j =1,2,...} be a complete, orthonormal basis for L,[0, 1]
(the space of square integrable functions on [0, 1]). The expansions are

oo

g(r) = ij% (z),
(2.1) m(w) = Zakwk(w)a
fxw(z,w) = ciptj(x)vn(w),

where

en= | Frwla,w)y (@ (w)dwda.

[0,1]2
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To estimate g, we need to estimate ay, m, cji, and fxw. The estimators
are

g =n"">  Yab(W,
i=1
Jn
(2.2) =" a;,
j=1

e =n"" Y (Xa)b(W7),
1=1

and

o Jn
Fxw (@, w) ZZCJM/JJ (w),
=1 k=1

respectively, where J, < oo is the series truncation point. Define the
operator A, that estimates A by

(2.3) (Ayv)(w) := /0 v(z) fxw(z, w)de.

Define the subset of H,:

JIn
Hns = {U = Z/ijj : H/U”s < Cg} :
j=1

The sieve estimator of g is defined as

(2.4) Gn i=arg min, ., (A, —m

Y

where ||-|| is the norm on Ls[0, 1]. Under the assumptions of Section [3]
AT_L ! exists with probability approaching 1 as n — oo and P(Angn =
m) — 1 as n — oo. Therefore,

(2.5) Gn = AV

with probability approaching 1 as n — oo.

When n is small, g, in (Z3) may be numerically unstable. Blundell,
Chen, and Kristensen (2007) propose stabilizing g, by replacing (2.4))
with the solution to a penalized least-squares problem. Blundell, Chen,
and Kristensen (2007) provide an analytic, easily computed solution to
this problem and present the results of numerical experiments on the
penalization method’s ability to stabilize g, in small samples. We do
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not pursue this approach here, because it does not affect our theoret-
ical results and we have not encountered numerical instability in our
simulations.

3. ASYMPTOTIC NORMALITY

This section gives conditions under which g, (z) is asymptotically
normally distributed. Proving asymptotic normality of an estimator
usually requires assumptions that are stronger than those needed for
consistency or convergence at the asymptotically optimal rate. The as-
sumptions made here are stronger than those used by Blundell, Chen,
and Kristensen (2007) and Horowitz (2009) to prove that their estima-
tors are consistent with the optimal rate of convergence.

Define A* to be the adjoint operator of A and

._ |17

o P iz A A) PRI

Blundell, Chen, and Kristensen (2007) call p,, the sieve measure of ill-
posedness and discuss its relation to the eigenvalues of A*A. Under
suitable conditions, p, = O(J]) if the eigenvalues, sorted in decreasing
order, converge to zero at the rate J, %" (mildly ill-posed case). If the
eigenvalues converge exponentially fast (severely ill-posed case), then
pn is proportional to exp(cJ,) for some finite ¢ > 0.

Assumption 3.1. (1) The supports of X and W are [0,1]. (2) g € Hq
and ||g||, < Cy for some integer s > 0 and finite constant C,. (3) The
operator A is nonsingular. (4) (X, W) has a probability density func-
tion fxw with respect to Lebesque measure. In addition, fxw hasr > s
bounded derivatives with respect to any combination of its arguments.
(5) The conditional density of X given W and the marginal density of
W, denoted by fxyw(z|w) and fw(w), respectively, are bounded. (6)
SUp,epo.1] E(Y? W =w) < Cy for some Cy < oo.
Assumption 3.2. (1) The set of functions {1; : j =1,2,...} is a com-
plete, orthonormal basis for Ly[0,1]. (2) Hg - Z;‘]:1 bjij =0 (J7%).
(3) |A, — Al = O(J,") if r < oo and ||A, — Al = Olexp(—cJ,)] for
some ¢ > 0 if r = oco.

Among other things, Assumptions Bl and B.2] ensure that fxy is at
least as smooth as g. Moreover, A and A* map L[0, 1] into Hs. When
Assumptions B.J] (2) and (4) hold, Assumptions (2) and (3)

are satisfied by a variety of bases including trigonometric functions,
orthogonal polynomials, and splines.
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Let A, be the operator on Ly[0, 1] whose kernel is

Jn  JIn

an (7, w) = Z Z i () (w).

j=1 k=1
Let A’ denote the adjoint operator of A,.

Assumption 3.3. The ranges of A, and A} are contained in H,s for
all sufficiently large n. Moreover,

(A = B

n

(3.2) Pn  SUp
hetnsilnl2o |7l
Assumption ensures that A, is a “sufficiently accurate” approx-
imation to A on H,s. This assumption complements Assumption
(3), which specifies the accuracy of A, as an approximation to A on
the larger set H,. Condition (B.2) can be interpreted as a smoothness
restriction on fxw or as a restriction on the sizes of the values of cjj
for j # k. Condition ([3.2) is satisfied automatically if c¢;, = ¢;j;0,x,
where 0, is the Kronecker delta. Hall and Horowitz (2005) used a sim-
ilar diagonality condition in their nonparametric instrumental variables
estimator.

Assumption 3.4. (1) J* = o [pa(Ju/n)"?]. (2) (pndy)/n'/? — 0.

Assumption B4l (1) requires g, to be undersmoothed. That is, as
n — oo, J, increases at a rate that is faster than the asymptotically
optimal rate. As with other nonparametric estimators, undersmoothing
ensures that the asymptotic bias of g, is negligible. Assumption 3.4
(2) ensures that the asymptotic variance of g, converges to zero.

Remark 1. (1) If p, = O(J}) for some finite r > 0, then we can set
Jn X 0, where 5 < 1) < 5l
(2) If pp, = exp(cJ,) for some finite ¢ > 0, Assumption B.4is satisfied

if

logn  2sag+1
2 2c
for some g satisfying 0 < ap < 1. The rate of increase must be
logarithmic, and the constant multiplying logn must be 1/(2¢). If the
constant is larger, the integrated variance of g, — g does not converge
to 0. If the constant is smaller, the bias dominates the variance. The
higher order component of J, is important. If it is 0 or too small,
the integrated variance does not converge to 0. These requirements
illustrate the delicacy of estimation in the severely ill-posed case.

I log logn
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Remark 2. Finding a theory-based method for choosing J,, is a difficult
and important problem whose solution is beyond the scope of this pa-
per. Pending a solution, we suggest using the following heuristic, which
has worked well in Monte Carlo experimentation. The integrated vari-
ance of g, is E||gn — Egn||* = Z}IZ1 o3, where 07 = Var(g,, ;) and
(+,+) denotes the inner product in L[0,1]. The variance components
0]2- can be estimated by using the standard formulae of GMM estima-
tion. Chen and Pouzo (2008) and Horowitz (2009) have found through
Monte Carlo experiments that as J,, increases from 1, E ||, — EgnH2
changes little at first but increases by a factor of 10 or more when J,
crosses a “critical value.” This suggests the following heuristic proce-
dure for choosing J, in applications: First, find the largest value of J,
that does not produce a very large increase in the estimated value of
E g — Egn|*. Call this value J,o. Then achieve undersmoothng by
choosing J,, = J], for some v > 1.

Now define
In
(3.3) (2, Y, X, W) =Y — g(X)] Z[(A;%)(x)]wj(vv).
Also, define
(3.4) o2(x) := n"'Var [y,(z,Y, X, W)].

Define ¢, =< d,, for any positive sequences of constants ¢, and d, to
mean that ¢,/d, is bounded away from 0 and oo.

Assumption 3.5. For any x € [0,1], 0,(x) < ||o,| except, possibly,
if x belongs to a set of Lebesgue measure (.

This condition is similar to Assumption 6 of Horowitz (2007). It
rules out a form of superefficiency in which g, (z) — g(z) converges to
0 more rapidly than ||g, — g||.

Assumption 3.6. (1) sup,cq E(|UPP|W = w) < Cy for some
Cy < oo and for some § > 0. (2) E|v;(W)|** is bounded uniformly

over j. (3) n02Jn % 0.

Assumption ensures that we can establish the asymptotic nor-
mality of the sieve estimator. Conditions (1) and (2) impose some
moment restrictions on U and ;(W). Condition (3) holds for the
mildly ill-posed case if J,, « n as in Remark 1 (1), n < 4/(2+ ) and

1 ) 1
2r+2s+1 = 240 = 2r +2°
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It holds in the severely ill-posed case for any § > 0 since in this case,
J, diverges at a logarithmic rate.

Let {z1,...,2.} denote a set of L points in [0, 1]. The following the-
orem establishes the joint asymptotic normality of the sieve estimator
of gn(xl)a te 7gn(l‘L)'

Theorem 3.1. Let Assumptions[3.IH3.8 hold. Then as n — oo,

G e [l —e@)] e e} o
g(l‘la 71'[/) { O'n(l'l) ) ) O'n(l'L) d ( ) )7
except, possibly, if x1,...,x belong to a set of Lebesque measure 0 in
[0, 1]%, where I is the L-dimensional identity matriz and Vy(x1, ..., xr)
is the L x L matriz whose (j, k) element is
Vi = E Vo2, Y, X, W)y (2, YV, X, W)
e ( Var [’Yn(xja Y, X, W)]>1/2( Var [’Yn(xkv Y, X, W)]>1/2

3.1. Estimation of ¢Z(z). To make use of the asymptotic results ob-
tained in Theorem B it is necessary to estimate o2(z). To do this,
let

(35) @V X W) = [V — 5] S k(W) (As ) (2).

Then o2(x) can be estimated consistently by

(3.6) )= (6,2 ¥, X, W) (5n(:c)}2,

where

(3.7)

=%
3
—~

&
~

Il

nt Y du(a, Y, Xi, W),
i=1
We now state the consistency of s2(x).
Theorem 3.2. Let Assumptions[ZIHI 8 hold. Then as n — oo,
Sn ()

n —, 1.
o2(z) *

4. UNIFORM CONFIDENCE BAND

The results in Section [B make it possible to form joint confidence
intervals and, by interpolation, a uniform confidence band for g over
[a,b] for constants a and b such that 0 < a < b < 1. To form joint
confidence intervals, let {xq,..., 2.} be points sampled from uniform
distributions on the intervals [a,a+ (b—a)/L),[a+ (b—a)/L,a+2(b—
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a)/L),...,la+ (L—1)(b—a)/L,b]. Random sampling this way avoids
exceptional sets of Lebesgue measure 0 in Theorem Bl Let z, satisfy

P [ sup |Z;| > Za:| = q,

1<I<L

where Z; is the [-th component of Z ~ N[0, V,(x1,...,2zy)]. Then
(4.1) (1) = zasn(z1) < g(21) < §(11) + 2080 (1)

are joint asymptotic 100(1—«)% confidence intervals for g(z1), ..., g(z1),
l=1,...,L. We now describe two ways of obtaining a uniform con-
fidence band for ¢ by interpolating the joint confidence intervals. A
method for estimating z, is described in Section

4.1. A Uniform Confidence Band under Monotonicity. In this
subsection, we develop a uniform confidence band when ¢ is monotonic
on [a,b]. The monotonicity assumption is common in economics. For
example, market demand is a monotone decreasing function of price.
Many functions of interest in economics (e.g., production functions,
cost functions, among many others) are monotonic.

Let

7 = argmax{ g, (r;) + 2aSn (%)), Gn(1i1) + 2aSn(zi41) }s

and

x; = argmin{ g, (1) — 2a5n (1), 9n(T111) — ZaSn(T111)}

Then by the assumed monotonicity of g,

gn(zy) — Zasn(ﬂ) < 9(x) < 9n(®1) + 2as0(T1)

uniformly over z € [x;,2;.4], | = 1,...,L — 1. Putting these inter-
vals together gives a uniform confidence band for g over [a,b]. The
asymptotic coverage probability is at least 1 — a and it can be made
arbitrarily close to 1 — o by making L sufficiently large.

Remark 3. Our result does not require g, to be monotonic. It is pos-
sible that an estimator of g that has been made monotonic through
rearrangement would yield a confidence band that is narrower than
ours is, at least in finite samples (Chernozhukov, Fernandez-Val, and
Galichon, 2009). Investigation of this issue is left to future research.
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4.2. A Uniform Confidence Band under Lipschitz Continuity.
In this subsection, we assume that g is Lipschitz continuous. That is,

lg(z) — g(y)| < CLlz —y|

for some constant C;, and any z,y € [a,b][] For any z € [a + (b —
a)/L,a+ (L —1)(b— a)/L], choose [ such that |x — ;| is minimized.
First note that (A1) is equivalent to

gn(xl) - Zasn(xl> + [g(l‘) - g(xlﬂ

< 9(x) < gnlwr) + Zasn(@) + [g(2) — g(20)].

Then (42]) implies

gn(1) = zasn(@) — CLlr — o] < g(x) < Gu(m1) + 2asn(x1) + Crlz — 2],
so that

(4.2)

Cr

(43)  gnl) — asalon) = - < 9(0) < gulin) + zasnln) + -

uniformly over = € [z, — 1/L,z; + 1/L]. Putting these intervals in
([L3) together gives a uniform confidence band for g over [a,b]. Again
the asymptotic coverage probability exceeds 1 — a but can be made
arbitrarily close to 1 — a by making L sufficiently large.

In applications, C, is unknown. Replacing C, in (L3 with an esti-
mator such as C} = maXzefa,p |Jr, ()] is undesirable because C, — Oy
converges to 0 more slowly than g, —g does. If one is willing to place an
a priori upper bound on Cp, this upper bound can be used in place of
Cp in ([@3). Putting an upper bound on C}, can be viewed as limiting
the amount of wiggliness that is allowed for g. This is often reasonable
in economic applications since many functions of interest such as Engel
curves and earnings functions are unlikely to be very wiggly.

5. BOOTSTRAP ESTIMATION OF z,

This section shows that the bootstrap consistently estimates the
joint asymptotic distribution of [g,(x1) — g(x1)]/sn(21),,[Gn(2L) —
g(xp)]/sp(xr). Tt follows that the bootstrap consistently estimates the
critical value z, in (d.J).

It is shown in the proof of theorem [B.I] that the leading term of the
asymptotic expansion of g,(z) — g(x) is

Su(x) =0~ 0u(x, i, Xi, Wy),
=1

1 Lipschitz continuity requires strengthening Assumption 311 (2) slightly to make
the first derivative uniformly bounded, not just bounded in the Sobolev norm.
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where
(5.1)
Jn
b, Y, X, W) :=Z{[m . Zb [y (X >—cjk]}<A;1wk><as>.

Therefore, it suffices to show that the bootstrap consistently estimates
the asymptotic distribution of ¢,,(z1), ..., t,(x 1), where t,,(x) := S, (x)/sp(x).
Define g, () := Z;’ll bjij(x) for any x € [0,1]. Define

(5.2) Sp(z) :==n"t Zgn(xa Y;, Xi, W),
i=1
where
(5.3) (2, Y, X, W) =Y — gn(X Zwk AL ) ().

Then S, (z) can be rewritten as
Sn(z) = Sy(z) — ES,(z).
Hence, t,(z) = [S,(z) — ES,()]/sx(z). We now describe a bootstrap

procedure that consistently estimates the asymptotic distribution of
tn(l'l), t (IL‘L)

Let {(Y* X, W) ri=1,...,n} denote a bootstrap sample that is
obtained by samphng the data {(Yi,Xi, W;) »i=1,...,n} randomly
with replacement. The bootstrap version of S,,(x) is

=n" Z(S (x, Y, X[, W),

where 8, (z,Y, X, W) is defined in 33). A bootstrap version of ¢, ()

(5.4) (@) = [Sil@) = 0ul@)| /su(a),

where 6, (z) is defined in (7). The a-level bootstrap critical value, 2,
estimates z, in ([AJ]) and can be obtained as the solution to

P s ) > 2] =
1<I<L

where P* denotes the probability measure induced by bootstrap sam-

pling conditional on the data {(Y;, X;,W;) : i = 1,...,n}. One nice

feature of the bootstrap procedure is that it is unnecessary to estimate

‘/!J(xla s 73:[/)'
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An alternative bootstrap version of t,(x) is

(5.5) (@) = [S(@) = 8a(@)] /s (@),

where s} (z) is the bootstrap analog of s,(x). Specifically,

" EE
(56) ()= [WZ (b vy X2 W0) — i)} ] ,

i=1
where A; and ¢, respectively, are the same as A, and gn in (Z3)) and
(Z4), but with the bootstrap sample {(Y;*, X}, W) :7=1,...,n} in
place of the estimation data,

JIn
(5.7) on(, Yy X7 W) o= [V = gn(X] D (W) [(An) ™" ().
k=1
and
(5.8) Onlw) =m0, Y X W),
i=1

Let £*(...) denote the conditional distribution L(... [{(Y:, X;, W) :
i = 1,...,n}) and let dy(Hy, Hy) denote the Kolmogorov distance,
that is the sup norm of the difference between two distribution functions
H; and H,. The following theorem establishes the consistency of the
bootstrap and implies that z? is a consistent estimator of z,.

Theorem 5.1. Let Assumptions[3IH3. 0 hold. Then as n — oo,

(5.9)
doo (L7 (21), ... 0 (xL)}, N[O, Vy(z1,...,21)]) = 0 in probability,

and

(5.10)
doo (Lt (1), ..., 2" () }, N[0, Vy (21, ..., z)]) = 0 in probability.

6. MULTIVARIATE MODEL

This section extends the results of Sections to a multivariate
model in which X and W are ¢-dimensional random vectors. Assume
that the support of (X, W) is contained in [0,1]%%. Let {¢; : j =
1,2,...} be a complete, orthonormal basis for Ls[0,1]?. Define the
operator A by

(Av)(w) ::/[om v(z) fxw(z, w)dz.
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As in Section 2 the estimator of ¢ is defined in terms of series expan-
sions of g, m, and A. The expansions are like those in (ZI]) with the
following generalized Fourier coefficients:

bj = (z)d

o= [ s

ay = /[071](1 m(w)y;(w)dw,

Cik :/ Fxw (2, w)Y;(x) g (w)dwdz.
[0,1]2¢

The estimators of ag, m, cji, and fxw are the same as in (2.2), but

with the basis functions for Ls[0, 1]7. Also, define the operator A, that
estimates A by

(6.1) (A)(w) == /[O . v(z) fxw (@, w)dz.

The sieve estimator of ¢ is as in (24]), where ||-|| is now the norm on
L5[0,1]7. Then the asymptotic normality result of Section [ can be
extended to the multivariate model with minor modifications 3

As in Section H, it is possible to form joint confidence set for g in
the multivariate model. However, it is difficult to display joint con-
fidence intervals or a uniform confidence set when X is multidimen-
sional. Therefore, we consider a one-dimensional projection of a joint
confidence set for g.

Assume without loss of generality that the first component of X
is the direction of interest. Let {x1,...,21.} be points sampled from
uniform distributions on the intervals [a, a+(b—a)/L), [a+(b—a)/L, a+
2(b—a)/L),...,la+(L—1)(b—a)/L,b]. Let 02(z) denote a multivariate
version of ([B.4) and s?(z) denote a consistent estimator of o2 (z) as in
B4). For a fixed value, say z_1, of remaining components of X,

(6.2)

9(x1, 1) — 2aSn(T1,221) < gz, 221) < g2, v-1) + 2aSn (21, 2-1)

2 If there are more instruments than covariates, we need to replace the ba-
sis {¢;(w)} with a higher-dimensional basis. This complicates the notation but
changes nothing of importance in the theory. In applications, a high-dimensional
instrument increases the number of Fourier coefficients of fxy that must be es-
timated, thereby creating a curse-of-dimensionality effect and reducing estimation
precision.
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are joint asymptotic 100(1 — a)% confidence intervals for {g(zy;) : [ =
1,..., L} over [a,b], where

P [ sup |Z;| > za} = q,

1<I<L

and Z; is the [-th component of Z. Here, Z is the L-dimensional mean-
zero normal vector whose covariance matrix is the asymptotic covari-
ance matrix of

{ [9n (211, 21) — g1, 71)] [9n (210, 1) — g(211, 7 1)) }
O'n(l'll,l',l) T O'n(l'lL,l',l) '

We can construct the uniform confidence band from (6.2)) as in Section
[ by assuming monotonicity or Lipschitz continuity. As in Section [,
the critical value z, can be obtained by the bootstrap.

7. MONTE CARLO EXPERIMENTS

This section reports the results of a Monte Carlo investigation of
the coverage probabilities of the joint confidence intervals and uniform
confidence bands using the bootstrap-based critical values of Section [

As in Horowitz (2007), realizations of (Y, X, W) were generated from
the model

Fxw (@, w) = Cp Y (=1)1 7 sin(jmz) sin(jrw),
j=1
g(z) = 2.2z,

Y = Elg(X)[W]+V,

where U is a normalization constant chosen so that the integral of the
joint density of (X, W) equals one and V' ~ N(0,0.01). Experiments
were carried out with a = 1.2 and a = 10. The sample size is n = 200.
There are 1000 Monte Carlo replications in each experiment.

The grid (x1, ..., z1) used to form joint confidence intervals and uni-
form confidence bands consists of 100 points. The Monte Carlo results
are not sensitive to variations in the value of L over the range 25 to 100.
The basis functions are Legendre polynomials that have had their sup-
ports shifted and have been normalized to make them orthonormal on
[0, 1]. The critical values are obtained by using the two bootstrap meth-
ods of Section [l with 1000 bootstrap replications. The confidence bands
were computed by using the piecewise monotonicity method of Section
L1l The joint confidence intervals are for (z1,...,x1) € [a,b] and the
uniform confidence band is for any = € [a,b] = [0.2,0.8], [0.1,0.9] or
[0.01,0.99].
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The results of the experiments are shown in Tables [H2l In each
table, columns 3-5 show the empirical coverage probabilities of the
joint confidence intervals, and columns 6-8 show the empirical coverage
probabilities of the uniform confidence bands. We show the results
of experiments with J, = 3,4,5, and 6. The results show that the
differences between the nominal and empirical coverage probabilities
are small when the critical value is based on t:*(z) and J,, = 3 or 4.

8. CONCLUSIONS

This paper has given conditions under which a sieve nonparametric
IV estimator is pointwise asymptotically normally distributed. The as-
ymptotic normality result holds in both mildly and severely ill-posed
cases. We have also shown that joint pointwise confidence intervals
can be interpolated to obtain a uniform confidence band for the esti-
mated function. The bootstrap can be used to estimate the critical
values needed to form confidence intervals and bands. The results of
Monte Carlo experiments show that the differences between nominal
and empirical coverage probabilities are small when the critical values
are obtained by using a suitable version of the bootstrap.

APPENDIX A. PROOFS

Throughout the proofs, ||-|| is the Ly norm if (-) is a function and
the Ly operator norm if (-) is an operator, e.g. [|Al| = sup, =, [[AR].

We begin with the proof of Theorem Bl Because g, = Aglfn with
probability approaching 1, it suffices to establish the asymptotic dis-

tribution of h = A, 7.

Define
Jn
my ‘= Zakwk
k=1
Then
Anh+ (A, — Ay)h =,
so that
h=AYi— AN (A, — A)h
(A.1) A X R
= T—le - A:Ll(An - An)g - A:Ll(An - An)(h - g)

Recall that g, = Z}]L bj1p;. Write

(A.2) A;lm —g= A;l(m —my) + (A;lmn —gn) + (g0 — 9)-
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Combining (A1) with (A2) yields h — g = S,, + R,,, where
(A.3) S = AN (1 —my) — AN (AL — An)g
and R, := R,1 + R,2 + R,3 with

Ry = _A;Ll(/in - An)(ﬁ - g)a

Rn2 = Aglmn — Gn,
Rn3 =0n —G.

Now using the series expansions, we have that

JIn

(AL (e —ma)](x) = Y (ax — ar) (A i) (@)

k=1

n Jn
=n ! Z Z [Yithr (W3) — ax] (A, ) ()

i=1 k=1

and
ATA, - ZZ ) (A (@)
j=1 k=1
Y S ) — el (A7) (2)

Therefore, it follows from (A3) that

So(x) =n""> 0u(x, i, Xi, Wy),

i=1

where 6, (x,Y, X, W) is defined in (5.1)). Recall that S,,(z) and 6, (z, Y, X, W)
are defined in (5.2) and (B.3)) in Section Bl Then

So(z) = S,(x) — ES,(x).

Observe that

JIn
@ =3 ")
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where ¢/* is the (j, k) element of the inverse of the J,, x J,, matrix [c;z].
Therefore,

S G AT @) = 305 (W) e(2)
k=1 =1 k=1

= U@l w0,

where * denotes the adjoint operator. Recall that U =Y —¢(X). Then

Gl ¥, X, W) = Y = ga(X)] 3 (A1) 0, ](07)
= Uy @A) sl 0)

= [g2(X) — g(X)] zn: by () (A1) ;] (W)
=Yz, Y, X, W) + (2, Y, X, W).
Therefore, since Ev,(z,Y, X, W) =0,
Sn(z) = Sp(z) — ES,(z)

= nil Z’yn(l'a Y;,Xi, WZ) + nil Z {’Nyn(xa Y%aXia WZ) - E:Y"(x’ Y’ X’ W>}

i—1 i=1
=T,(z) + T, (2).
We now prove five lemmas that are useful to prove Theorem Bl
Lemma A.1. We have that
A = pall + O, ).

Proof of Lemma[A 1 First note that by Assumption B3, the eigen-
functions of Ay A, are in H, for all sufficiently large n. Hence, since
the dimension of A} A, is J,, we have that the eigenfunctions of A% A,
are in H, as well.

Now ||Agl||2 is the largest eigenvalue of (A ')*A 1 = (A4,A4%)7!,
which is the inverse of the smallest eigenvalue of A, A* or, equivalently,
the inverse of the smallest eigenvalue of Ay A,. Since the smallest
eigenvalue of A* A, minimizes ||A,|*, it suffices to the find the inverse
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of
. Rl
heMusinl20 ||R]]
But
R |AR _ o A (A= Ak
heHns:|[h|#0 ||R||  heHns:|h]#0 12
- [Anh]l + [[(A = An)hl|
= heHps: R0 Il
Ayh
M o g0y

 heHnsillnl£0 |||
by ([B.2]). Therefore,
we LA
heHas: R0 || Al

+0(p, " ,") = p, L+ O(J,)],
which implies that

14} < o[+ O(7;7)]
Also, note that since || A, h + (A — A,)h|| > ||Anh| — (A, — A)R||,

S ARl _ [Anh + (A = An)h]|
" heHns|hlI#0 ||B||  h€Hns:|hl£0 Rl
T h€Hnsi|[h]|£0 | Al
[ AnR|

= in +O0(p T ¢
heHns:|hlI#0 || Al % )

by ([B2). Therefore,
N W
heHas:|hl#0 || Al

+0(p, ' ") = p [1+ O(J;7)],
which implies that

1421 = pall + O(17))
Therefore, we have proved the lemma. 0
Lemma A.2. We have that

1Rl = O [p(Ju/n)] -
Proof of LemmalA.2 By Horowitz (2009),

5= o] =0, [ + oty
= Op [pn(Jn/n)l/Q} )
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where the last equality follows from undersmoothing (See Assumption
B4 (1)). Horowitz (2009) proves that ||A, — A,|| = O,[(Jn/n)"?].
Therefore, by Lemma [A.T],

IRall < [[4:1] || (A = Aa)(h = g)

< 0t [~ | =
= Olpn) Oyl(Ju/m)"?] || = o).
which proves the lemma. 0
Lemma A.3. We have that
[ Rnzll = O(J, ).

Proof of LemmalA.3 Note that by Lemma [AT]
Rzl < || A1 lmn = Angall < O(pn) llmn — Angall -
Also, note that
m=Ag=>Y > bicyth,
j=1 k=1

and

oo Jn

my, = Z Z bjcjk;d)k'

j=1 k=1

Moreover, A,g, = Z;.]ll S bjejpth. Therefore,

00 JIn
my — Angn - Z Z bjcjkwkr

j=Jn+1 k=1

In addition,

0 JIn o] [e'e)
(A — An)g = Z Z bjcjkwk’ + Z Z bjcjkwk-

j=Jn+1 k=1 j=1 k=Jn+1
Therefore,
o0 o0 2
2 2
H(A - An)gH = ||mn - AngnH + Z <Z bjcjk) ’
k=Jn+1 \j=1

which implies that
Pn Hmn — Angnll < pn H(A - An)gH .



UNIFORM CONFIDENCE BAND 21

Now note that Assumption implies that
(A.4) pr SUD (A = Ahl| = O(J,7).

n
ns

Furthermore,

(A5)  pul[(A=A0)(g = gu)ll < pu A= Al llg — gull = O(J,7)

by Assumptions B2 (2) and (3). Therefore, using (A.4) and (A.3), we
have that

P [[(A = An)gll < pn [[(A = An)gnll + pn [[(A = An)(g = ga)
=0(J,”°).
Therefore, we have proved the lemma. O
Lemma A.4. We have that
lowll = O [pu(Jn/n)'?] .

Proof. To show the lemma, write

1 1
/ o2 (v)dx = n_lE/ Vo, Y, X, W)]*dz
0 0

N 3 a0 |

where of (w) := E[U?*|W = w] is bounded uniformly over w because of
Assumption B0l (1).
Now [[(A1)*]| = ||A; Y. Therefore, by Lemmal[A T and the fact that

fw is bounded, [|(A;1) ;]| = O(p2) and E{[(AY) ¢} (W)} = O(p2)

uniformly over j. It follows that
(A.6) 0 E |ll” = O (05 Ju/n) -
Hence, we have proved the lemma. 0

Lemma A.5. We have that

( —2s+1 2/”)

Proof. Note that

2 L o
Lol =n E”’Yn_E’YnH

<n L E ||,

=n"'E

E{lgn(X) )W Z{ W)}
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Then by Assumption B11 (5) and B2 (2),
Elgn(X) = g (X)W = w] < sup Fiw () llgn ~ gl
= O(J, ).

Combining this with the fact that E{[(4,")*¥;](W)}? = O(p?) uni-
formly over j, we have that

(A7) n B |l” = 0, /n)E ;{[(An1)*%](‘4/')}2

— O( —2s+1 2 /n)
Therefore, we have proved the lemma. O

Proof of Theorem[31. Note that by AssumptionB.2(2), ||R.s]| = O(J,, ).

This is asymptotically negligible because of undersmoothing (Assump-

tion B4 (1)). Therefore, by Lemmas [A.2] and [A.3] with the conditions
on J, in Assumption B.4]

(A.8) 1Rall = 0p [pn(Ja/n)!?] .

Define

= Y;, Xi, Wi)
Tn — 71/2 /Yn(l'a 79 19 7 )
@)=Y oY, X WP

Since

T, Y, X, W) = US04 4] 00)

= U3 I(A; ) @0V,

the Lyapunov condition here is that

I 2+46
By =n """ (Varly, (2, Y, X, W)))"C2E U Y [(A ) (@)l (W) =0

j=1

as n — o0.
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Since || A, 1] = pu[1+0(J,,*)] by LemmalAT] we have that (A, 1¢;)(x)
O(py) for almost every x. Hence, for almost every z,

BJUS Il 0| < O |3 A7 ) @) )

JIn 244§
<O0(p2*)E ij(w]
j=1

JIn

< O(p2*)

=0 [(padn)*™],

where the first inequality follows from Assumption (1), the second
inequality is due to the observation that (A, *;)(z) = O(p,) for almost
every x, the third inequality is by the generalized Minkowski’s inequal-
ity, and the fourth equality is from Lemma [A.T] and Assumption
(2). Also, we have that o, (z) < p,(J,/n)"? and Var[y, (z,Y, X, W)] <
p2J, by Lemma [A4 and Assumption Then it follows that

B, =0 (n 7 J}"%) = o(1),

where the last equality comes from Assumption (3). Therefore, we
have shown that the Lyapunov condition is satisfied.

Then a triangular-array version of the Lindeberg-Levy central theo-
rem yields the result that

Now let {z1,...,2.} be a set of L points in [0, 1]. Then, the Cramér-
Wold device yields the result that

{ Su(z1)  Sulzr)

on(r)’ onlrr)

} —d N[O,V;(l’l, C. ,I'L)].

Under the assumption that o,(x) =< ||o,||, the theorem now follows
from Lemmas [A.4] and [A.5] 4

We will first prove Theorem [B.1] and then Theorem B.2
Proof of Theorem [51l. Define

A, X, W) 1= = [3u(X) — ga(3)] S (W) (A7 00 (2)

Z {EWJ(W) \2+5}1/(2+5)]
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and
Ap(z) i=n"t i/\n(x, X, Wy).
Also, define 7
(A.9) S (2, Y, X, W) = [V — gu(X Zwk A M) ().
Now write

5 (2, Y, X, W) = 0, Y, X, W) 4+ Az, X, W).
Define A, := A, — A,. Then using the fact that
(A.10) A=A = [T+ AN -T1] A,

n

we have that

Sea(@) =n"" [T+ A7 A) T = 11> [An(e, X7, W) = Ay ()] -
i=1
First, S*,(z) is a bootstrap analog of S,,, so consistency of the boot-

strap distribution of S¥,(x)/s,(z) for that of S, /s,(x) follows imme-
diately from Theorem "1.1 of Mammen (1992). Similarly, the boot-

strap distribution of S>7 %Sk (x;)/sn(x;) is consistent for that of

SF L %S n(21)/sn(21) for any real constants y1,...,7rL.
Now consider S*,. Note that

(A.11) HA:LlAnH < HA’:LlH AL =0, [pn(‘]n/n)l/z} = op(1).



UNIFORM CONFIDENCE BAND 25

Therefore,
(A.12) (1 + A A =1 = 0p(1).
Since
Sk () = (I + A A, =1 S* (x),
(A.12) implies that
|52 = 000

Now consider 523 and S*,. We have that
Spal@) = [(I + A7 A,) 71 = 1] S75(2).
Therefore, again (A.12)) implies that
) = 0p(1) )

It now suffices to show that 323 is asymptotically negligible. To do
this, define

QO
Sn2

nl

QO QO
Sn4 Sn3

I/n(X) = gn(X) - gn(X)a

1) =S (W) (A7 ) ().

n n

Sia(@) =071y (X)) Zo(Wis2) =07t Y wn(X0) Za(Wi, ).

i=1 i=1
Let V* and E*, respectively, denote the variance and expectation rela-

tive to the distribution induced by bootstrap sampling. Then £* 57’;3@) =
0. Define V*(z) := V*[S’;(x)]. Now note that

1) < E'n 2 ui(X0Z (W7 x)?
i=1

—71221/; V2ZH (W, 1)2.

But, v,(X))?> = O(|lgn — gul®) = O(lgn — g|*) with probability 1.
Therefore,

Vi(2) <n720(ga = 9l*) Y Zn(Wi,)?
1=1
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with probability 1. Now,
Jn 2
S 2 W =S [z ww»wwkm]
=1 =1 k=1
R(x).

But, [|4; k]l = O(pn), 50 (A7')(x) = Olpn) for almost every .
Therefore,

)

by Markov’s inequality for almost every x. Under Assumption B4 (2),
R, (x) = 0,(1) for almost every . It follows that for almost every x,

Vi (@) = 0p(Il3n — 9II").

This combined with the fact that E*S%;(z) = 0 implies that S’,(z) is
asymptotically negligible for almost every x under sampling from the
bootstrap distribution.

Now note that the estimator s,(z) is consistent for o, (z) by Theo-
rem B2l Therefore, the first conclusion (B.9) of Theorem [B] follows
from consistency of the bootstrap distribution of the bootstrap distri-
bution of "7 75%, (1) /sn(x;) for that of 31, %S, (1) /sn(2;) and
the Cramér-Wold device.

Similarly, the second conclusion (5.I0) of Theorem [B.1] follows if we
show that s*(z) is consistent for o, (z), which is proved in Lemma [A.G]
below. t

Proof of Theorem[32. Note that we can write s2(x) as

s2(x) =n"? i {gn(x, Y, X, VVZ)}2 —n! [571(:16)}2 )

i=1

By the arguments used for S:;Q in the proof of Theorem [E.1], replacing
A, with A,, creates an asymptotically negligible error for almost every
x, it suffices to prove the consistency of

n_2 Z {5;($, )/;7 Xia WZ)}2 - n_l [S;(xﬂ i ’

i=1
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where 0 is defined in (A.9) and
§i(z) =n"" Z o (x, Yy, X5, W5).
i=1

Now
(A.13) O Y, X, W) = 0,(,Y, X, W) + Az, X, W).

Then the second term on the right-hand side of (A.13) is asymptotically
negligible for almost every x by the arguments used with S}, in the
proof of Theorem 5.1l Furthermore, recall that

(A.14) on(, Y, X, W) = (2, Y, X, W) + 7, (x,Y, X, W).
Again, the second term on the right-hand side of (A.14) is asymptot-
ically negligible for almost every x using the arguments used in the
proof of Theorem Bl Therefore, it suffices to show that

(A.15)

n 2

0’772('%.) nizz[fyn(xa}/;aXiaI/I/i)]Q _nil nilz’yn(xaifiaXZ’aVVvi)
i=1 i=1
We have shown that the Lyapunov condition is satisfied in the proof of

Theorem Bl Therefore, (AI5) follows from a triangular-array version
of the weak law of large numbers, e.g. Lemmas 11.4.2 and 11.4.3 of

Lehmann and Romano (2005). O
Lemma A.6. Let Assumptions[Z U3 0 hold. Then as n — oo,
[s),(@)]”
=, 1
op(x) "
conditional on the original observations {(Y;, X;, W;):i=1,...,n}.

Proof of Lemma[Ad. The estimator [s(x)]* differs from s?(z) by re-

n

placing g, with §%, A-' with (A*)~!, and {Y;, X;, W;} with {Y;*, X7, W

Define AY := A¥ — A,,. Then
(A.16) (A1 - A1 = [(I FAIAR) - 1] At
Now using ([A.T0]), write
AL = AN+ A - AYA,
= AN [T+ AA) T - TJATAY
Thus, by (AI2),
(A.17) HA;lA;

< [1+o0,(1)] |4 A

—p L
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Now as in (A1),
(A18)  [[ATAL < AT IAL = O [palJa/n) %] = 0p:(1),
where p* denotes bootstrap probability. It follows from (A.16)-([AIS)
that
(A.19) 1Az = A190]| = o (1) || 421
for any h € Ly[0, 1].

Now define m* = 37 iy, where af = n~ 'S0 Yy (W}). Set

g = ()t

Note that this is not the same as (2Z4]) with the bootstrap sample.
Recall that h = A 'm is asymptotically equivalent to g,. Then

Gy, —

= (A7 = A+ (A7) = A )+ A — ).

Therefore, it follows from (AT9) and the fact that [|/i* — 1| = O, [(J,./n)*/?]
that

(A.20) G = ]| = Oprlpal/m) ).
Consequently, it follows from that (AJ9) and (A20) that s*(z)?* is

asymptotically equivalent to

" _ 2
w23 b X W) = G}
i=1
where 6, (z,Y, X, W) and 8, (z) are defined in (3H) and (B, respec-
tively. Then the lemma follows from the consistency of the bootstrap
estimator of a sample average. O
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TABLE 1. Results of Monte Carlo experiments with
bootstrap critical values (a = 1.2)

Range Joint Confidence Intervals Uniform Confidence Band
of x: Nominal Probabilities Nominal Probabilities
[a, b] J, 090 0.95 0.99 0.90 0.95 0.99

Bootstrap Critical Values I

(0.2,0.8) 3 0.866 0.923 0.962 0.872 0.926 0.962
4 0913 0.953 0.986 0.920 0.957 0.986

5 0.929 0.962 0.987 0.935 0.965 0.989

6 0.933 0.966 0.989 0.938 0.970 0.990

(0.1,0.9) 3 0.851 0.893 0.944 0.859 0.904 0.948
4 0.826 0.883 0.926 0.838 0.886 0.931

5 0.874 0.914 0.963 0.883 0.921 0.964

6 0.896 0.940 0.975 0.903 0.947 0.979

(0.01,0.99) 3 0.848 0.896 0.945 0.862 0.906 0.952
4 0.808 0.864 0.921 0.830 0.870 0.929

5 0.790 0.856 0.919 0.817 0.874 0.934

6 0.788 0.849 0.916 0.825 0.873 0.937

Bootstrap Critical Values 11

(0.2,0.8) 3 0.911 0.951 0.981 0.914 0.951 0.981
4 0.929 0.968 0.992 0.935 0.971 0.992

5 0.948 0.981 0.997 0.953 0.984 0.997

6 0.955 0.987 0.997 0.959 0.989 0.997

(0.1,0.9) 3 0.907 0.946 0.989 0.912 0.949 0.991
4 0.904 0.938 0.986 0.907 0.940 0.988

5 0.926 0.966 0.991 0.932 0.967 0.991

6 0.949 0.980 0.997 0.956 0.982 0.997

(0.01,0.99) 3 0.905 0.946 0.989 0.911 0.955 0.993
4 0.895 0.949 0.992 0.910 0.957 0.993

5 0.922 0.964 0.995 0.931 0.973 0.997

6 0.943 0.976 0.996 0.957 0.984 0.997

Note: This table shows coverage probabilities of the joint confidence
intervals and uniform confidence band for g(x). Two types of bootstrap
critical values are considered: t!(z) in (4] (bootstrap critical value I)
and t*(z) in (B3) (bootstrap critical value II).
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TABLE 2. Results of Monte Carlo experiments with
bootstrap critical values (a = 10)

Range Joint Confidence Intervals Uniform Confidence Band
of x: Nominal Probabilities Nominal Probabilities
[a, b] J, 090 0.95 0.99 0.90 0.95 0.99

Bootstrap Critical Values I

(0.2,0.8) 3 0.656 0.701 0.768 0.659 0.702 0.770
4 0.727 0.770 0.846 0.738 0.778 0.848

5 0.745 0.793 0.871 0.749 0.800 0.877

6 0.776 0.821 0.890 0.789 0.831 0.897

(0.1,0.9) 3 0.652 0.699 0.765 0.660 0.702 0.768
4 0.695 0.736 0.812 0.702 0.743 0.820

5 0.699 0.755 0.829 0.710 0.765 0.843

6 0.742 0.790 0.867 0.766 0.808 0.875

(0.01,0.99) 3 0.649 0.700 0.765 0.661 0.704 0.768
4 0.692 0.732 0.811 0.708 0.745 0.819

5 0.699 0.749 0.831 0.720 0.765 0.846

6 0.745 0.793 0.865 0.773 0.820 0.882

Bootstrap Critical Values 11

(0.2,0.8) 3 0.891 0.938 0.975 0.894 0.939 0.976
4 0915 0.948 0.983 0.915 0.950 0.983

5 0.930 0.970 0.991 0.931 0.970 0.991

6 0.960 0.977 0.995 0.961 0.980 0.995

(0.1,0.9) 3 0.892 0.940 0.979 0.893 0.940 0.979
4 0915 0.954 0.986 0.917 0.955 0.986

5 0.936 0.970 0.991 0.937 0.971 0.991

6 0.955 0.979 0.996 0.956 0.979 0.996

(0.01,0.99) 3 0.892 0.942 0.979 0.894 0.944 0.979
4 0.917 0.959 0.986 0.923 0.960 0.986

5 0.940 0.973 0.993 0.943 0.973 0.993

6 0.962 0.984 1.000 0.965 0.984 1.000

Note: This table shows coverage probabilities of the joint confidence
intervals and uniform confidence band for g(x). Two types of bootstrap
critical values are considered: t!(z) in (4] (bootstrap critical value I)
and t*(z) in (B3) (bootstrap critical value II).
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