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Abstract

Consider testing the null hypothesis that a single structural equation has specified
coefficients. The alternative hypothesis is that the relevant part of the reduced form
matrix has proper rank, that is, that the equation is identified. The usual linear
model with normal disturbances is invariant with respect to linear transformations
of the endogenous and of the exogenous variables. When the disturbance covariance
matrix is known, it can be set to the identity, and the invariance of the endogenous
variables is with respect to orthogonal transformations. The likelihood ratio test
is invariant with respect to these transformations and is the best invariant test.
Furthermore it is admissible in the class of all tests. Any other test has lower power
and/or higher significance level.
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1. Introduction

There is a considerable literature on statistical inference concerning a single

structural equation in a simultaneous equation model. A predominance of the lit-

eratures concerns estimation of the coefficients of the single equation. Anderson

and Rubin (1949) developed the Limited Information Maximum Likelihood (LIML)

estimator on the basis of normality of the disturbances. When the disturbance co-

variance matrix was known, the corresponding estimator was known as LIMLK.

They also suggested a test of the null hypothesis, say, H0, the vector of coefficients

of the endogenous variables, say, β, is a specified vector, say, β0; the alternative hy-

pothesis, say H2, β was unrestricted. When the single equation was over-identified

(a term defined later), the test was inefficient in the sense that the power was not

optimum against the alternative. Moreira (2003) derived an alternative test called

the conditional likelihood ratio test. Anderson and Kunitomo (2007) derived an

equivalent test by testing H0 against H1 : the equation is identified. This likelihood

ratio criterion is the ratio of the likelihood ratio criterion for testing H0 vs H2 to the

likelihood ratio criterion for testing H1 vs H2. (These two likelihood ratio criteria

were given in Anderson and Rubin (1949).)

The current paper treats the testing problem when the disturbances matrix is

known and is assumed to be proportional to I. Further, the number of endogenous

variables in the single equation is restricted to two. In this case it is convenient to

use polar coordinates for the vector β.

The likelihood ratio criterion for testing H0 against H1 is developed in polar

coordinates. The criterion has an intuitively appealing interpretation and some

invariance properties; that is, the criterion is invariant to rotations of the coordinate

system.

We show that the likelihood ratio test is the best invariant test by showing that

it is a Bayes solution. It follows that it is admissible among the class of all tests.

This means that there is no test with better significance level and better power.

(The precise definition of admissibility will be given later.) The result is one of few
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properties of tests in the field that is not approximate or asymptotic. Chamberlain

(2007) has also considered these problems in polar coordinates.

Anderson (1976) pointed out that a structural equation in a simultaneous equa-

tion model is the same as a linear functional relationship in the statistical literature.

Lindley (1953) and Creasy (1956) considered the likelihood ratio test of the slope

parameter in this model.

Anderson, Stein and Zaman (1985) showed that the LIMLK estimator is admis-

sible for a loss function to be defined later. They first showed that the LIMLK

estimator was the best invariant estimator and then deduced that it was adnissible

in the class of all estimators.

2. A simultaneous equation model

The observed data consists of a T ×G matrix of endogenous or dependent vari-

ables Y and a T × K matrix of exogenous or independent variables Z. A linear

model (the reduced form) is

(2.1) Y = ZΠ+V ,

where Π is a K ×G matrix of parameters and V is a T ×G matrix of unobservable

disturbances. The rows of V are assumed independent; each row has a normal

distribution N(0,Ω).

The coefficient matrix Π can be estimated by the sample regression

(2.2) P = (Z
′
Z)−1Z

′
Y .

The covariance matrix Ω can be estimated by (1/T )H, where

(2.3) H = (Y − ZP)
′
(Y − ZP) = Y

′
Y −P

′
AP

and A = Z
′
Z. The matrices P and H consititute sufficient statistics for the model.

A structural or behavioral equation may involve a T ×G1 subset of the endoge-

nous variables Y1, a T × K1 subset of the exogenous variables Z1, and a T × G1
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subset of disturbances V1. The structural equation of interest is

(2.4) Y1β1 = Z1γ1 + u ,

where u = V1β1 and V = (V1,V2). A conponent of u has the normal distribution

N(0, σ2), where σ2 = β
′

1Ω11β1 and Ω11 is the G1 ×G1 upper-left submatrix of

(2.5) Ω =

 Ω11 Ω12

Ω21 Ω22

 .

When Y,Z,V and Π are partitioned similarly, the reduced form (2.1) can be written

(2.6) (Y1,Y2) = (Z1,Z2)

 Π11 Π12

Π21 Π22

+ (V1,V2) ,

where (Y1,Y2) is a T × (G1 +G2) matrix. The relation between the reduced form

and the structural equation is

(2.7)

 γ1

0

 =

 Π11 Π12

Π21 Π22

 β1

0

 =

 Π11β1

Π21β1

 .

The second submatrix of (2.7),

(2.8) Π21β1 = 0 ,

defines β1 except for a multiplicative constant if and only if the rank ofΠ21 is G1−1.

In that case the structural equation is said to be identified.

In this paper we derive the likelihood ratio test of the null hypothesis

H0 : β1 = β0

against the alternative

H1 : β1 is identified .

The goal of this paper is to show that this test is admissible. Roughly speaking, it

means that there is no other test that can have better power. In developing this
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thesis it will be convenient to carry out the detail when γ1 is vacuous, that isK1 = 0.

Furthermore, we set G2 = 0 so that G = G1. Then the structural equation is

(2.9) Yβ = u .

Later the results will be generalized.

3. Invariance and normalization

The model (2.1), Ω, (2.8), and H0 : β = β0 is invariant with respect to linear

transformations of the exogenous variables

(3.1) Z+ = ZC , Π = C−1Π

for C being nonsingular. Then

(3.2) Π+Z+ = ΠZ ,A+ = C
′
A+C , P+ = C−1P , P+′

A+P+ = P
′
AP ,

and

(3.3) H+ = Y
′
Y −P+′

AP+ = H .

If the rank of Π is G− 1 (≤ K), the equation Πβ = 0 determines β except for

a multiplicative constant. The ”natural normalization” is

(3.4) β
′
Ωβ = 1 ,

which determines the constant except for sign. The model (2.1),(2.8) and (3.4) is

invariant with respect to transformations :

Y∗ = YΦ , Π∗ = ΠΦ , β∗ = Φ−1β , V∗ = VΦ ,(3.5)

and

(3.6) Ω∗ = Φ
′
ΩΦ , β∗

0 = Φ−1β0 ,

where Φ is nonsingular. Then

P∗ = PΦ , P∗′AP∗ = Φ
′
P

′
APΦ , H∗′ = Φ

′
HΦ(3.7)
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and

(3.8) Π∗β∗ = Πβ = 0 , β∗′Ωβ∗ = 1 .

We also consider the model (2.1) and (2.8) when Ω (the covariance matrix of a

row of V) is known. In this case we can make a transformation (3.5) and (3.6) so

Ω = I. In that case the first equation in (3.6) is

(3.9) I = O
′
O ,

that is, the invariance with respect to transformations is with respect to orthogonal

transformations. We shall use O to indicate an orthogonal transformation. We can

write (3.5) and (3.6) as

(3.10) Y∗ = YO , Π∗ = ΠO , β∗ = O
′
β , β∗

0 = O
′
β0 , β

′
β = 1 .

4. A Canonical form for G = 2 and polar coordinates

The main part of this paper concerns the model for Ω = I2 and

(4.1) G1 = G = 2, G2 = 0, K1 = 0, K2 = K ≥ 2 .

Then the vector β with natural parametrization satisfies

(4.2) Πβ = 0 , β
′
β = 1 .

We can parametrize β as

(4.3) β =

 cos θ

sin θ

 = βθ ,−π ≤ θ ≤ π .

This is the polar or angular representation of the coefficient.

The K × 2 matrix Π of rank 1 can be parametrized as

(4.4) Π = πα
′

θ ,
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where π is a K × 1 vector and

(4.5) αθ =

 − sin θ

cos θ

 .

Note that

(4.6) (βθ,αθ) =

 cos θ − sin θ

sin θ cos θ

 = Oθ

is an orthogonal matrix.

Since Ω is known, the sufficient statistic in the model is P.

Now make a transformation (3.1) so A+ = IK , P
+ = Q,

(4.7) Π+ = πα
′

θ , P
′
AP = Q

′
Q , V

′
ZA−1Z

′
V = W

′
W ,

(4.8) Q = πα
′

θ +W .

Here W = (w1,w2), E(W) = O,

(4.9) E(w1w
′

1) = E(w2w
′

2) = IK , E(w1w
′

2) = 0 .

5. The density of Q

The density of Q is

1

(2π)K
e−

1
2
trW

′
W =

1

(2π)K
e
− 1

2
tr
(
Q

′
Q+ππ′−2αθπ

′
Q
)

(5.1)

=
1

(2π)K
e−

1
2
tr(Q

′
Q)− 1

2
π′π+π′

Qαθ .

Let

(5.2) π
′
π = λ2 , π = λη ,

where η
′
η = 1. Then the density of Q is

(5.3)
1

(2π)2
e−

1
2
tr(Q

′
Q)− 1

2
λ2+λη′

Qαθ .
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We shall find the best test of θ = θ0 that is invariant with respect to the group of

transformations

(5.4) αθ → Oaαθ , αθ0 → Oaαθ0 , ηθ → Obηθ .

An explicit expression for the polar coordinates in K dimensions is given in Problem

7.1 of Anderson (2003).

6. Reduction to G

First we show that a function of Q that is invariant with respect to transforma-

tions (5.4) is a function of Q
′
Q = G.

Lemma 1 : A function of Q that is invariant with respect to

(6.1) Q → OaQ , Q → QOb ,

is a function of G = Q
′
Q.

Proof : G is a function of Q that is invariant. If there are Q1 and Q2 such that

(6.2) Q
′

1Q1 = Q
′

2Q2 ,

then there exists an orthogonal matrix Oc such that Q1 = QcQ2. Q.E.D.

Invariant tests of H0 : θ = θ0 can be based on G = Q
′
Q.

7. Density of G.

The matrix G has the noncentral Wishart distribution with K degrees of free-

dom, covariance I2, and noncentrality matrix

(7.1) (ληϕα
′
θ)

′(ληϕα
′
θ) = λ2αθα

′
θ

See Anderson and Girshick (1944): ”Some extensions of the Wishart distribu-

tion,” Annals of Mathematical Statistics.
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The density or likelihood of G is

(7.2)
e−

1
2
λ2− 1

2
trG|G| 12 (K−3)

2
1
2
K+1π

1
2Γ

[
1
2
(K − 1)

]I∗1
2
(K−2)

(λ2α′
θGαθ) ,

where

(7.3) I∗ν(z
2) =

∞∑
j=0

(
z2

4

)j
1

j!Γ(ν + j + 1)

and (z/2)νI∗ν(z
2) = Iν(z) is the modified Bessel function of order ν (Abramowitz and

Stigun ).

Let G = OtRO′
t, where

R =

 r1 0

0 r2

 ,(7.4)

Ot =

 cos t − sin t

sin t cos t

 = (βt,αt) .(7.5)

The diagonal elements of R are the eigenvalues of G (0 ≤ r1 ≤ r2 < ∞), and βt

and αt are the corresponding eigenvectors; that is,

(7.6) G(βt,αt) = (βt,αt)R .

Transform G (2× 2) to (r1, r2, t), The Jacobian of the transformation is r2− r1. See

Appendix 1.

The density of r1, r2 and t (−π ≤ t ≤ π) is

(7.7)
(r2 − r1)e

− 1
2
λ2− 1

2
(r1+r2)(r1r2)

1
2
(K−3)

2
1
2
K+1π

1
2Γ

[
1
2
(K − 1)

] I∗1
2
(K−2)

(λ2c2) ,

where

c2 = α′
θOtRO

′
tαθ = α′

t−θRαt−θ(7.8)

= r1 sin
2(t− θ) + r2 cos

2(t− θ) .

Let

(7.9) n(r1, r2) =
(r2 − r1)(r1r2)

1
2
(K−3)e−(r1+r2)/2

2
1
2
K+1π

1
2Γ

[
1
2
(K − 1)

] .
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Then the density of r1, r2, and t is

(7.10) h(r1, r2, t|θ, λ) = n(r1, r2)e
− 1

2
λ2

Γ2
1
2
(K−2)(λ

2c2) .

Since we have c2 = α
′

t−θRαt−θ is the Lower Right Hand (LRH) corner ofO
′

t−θROt−θ,

I∗1
2
(K−2)

(λ2r2) =
∞∑
j=0

(
λ2c2

4

)j
1

j!Γ[j + 1 + 1
2
(K − 2)]

= LRH

[
∞∑
j=0

(
λ2

4

)j
1

j!Γ[j + 1 + 1
2
(K − 2)]

(O
′

t−θROt−θ)
j

]
(7.11)

= LRH

[
∞∑
j=0

(
λ2

4

)j
1

j!Γ[j + 1 + 1
2
(K − 2)]

O
′

t−θR
jOt−θ

]

= LRH

[
O

′

t−θ

∞∑
j=0

(
λ2

4

)j
1

j!Γ[j + 1 + 1
2
(K − 2)]

RjOt−θ

]

= LRH

O′

t−θ

 I∗1
2
(K−2)

(λ2r1) 0

0 I∗1
2
(K−2)

(λ2r2)

Ot−θ


= I∗1

2
(K−2)

(λ2r1) sin
2(t− θ) + I∗1

2
(K−2)

(λ2r2) cos
2(t− θ) .

The density of r1, r2, t is

h(r1, r2, t|θ, λ)(7.12)

= n(r1, r2)e
−λ2/2

[
I∗1
2
(K−2)

(λ2r1) sin
2(t− θ) + I∗1

2
(K−2)

(λ2r2) cos
2(t− θ)

]
,

0 ≤ r1 ≤ r2 < ∞ , −π ≤ t ≤ π .

The (marginal) density of r1 and r2 is

(7.13) h(r1, r2|λ) =
1

2
n(r1, r2)e

−λ2/2
[
I∗1
2
(K−2)

(λ2r1) + I∗1
2
(K−2)

(λ2r2)
]
.
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8. Likelihood ratio criterion

The density (i.e. likelihood) is maximized for

(8.1) H0 : θ = θ0

at θ̂ = θ0 since I∗ν(λ
2c2) is an increasing function of c2. Then

max
H0

Lhd(8.2)

= n(r1, r2)e
−λ2/2I∗1

2
(K−2)

(λ2c20)

= n(r1, r2)e
−λ2/2

[
I∗1
2
(K−2)

(λ2r1) sin
2(t− θ0) + I∗1

2
(K−2)

(λ2r2) cos
2(t− θ0)

]
,

where

(8.3) c20 = r1 sin
2(t− θ0) + r2 cos

2(t− θ0) .

The likelihood is maximized for

(8.4) H1 : −π ≤ θ ≤ π

at θ̂ = t. Then

(8.5) max
H1

Lhd = n(r1, r2)e
−λ2/2I 1

2
(K−2)(λ

2r2) .

The likelihood ratio criterion for testing H0 : θ = θ0 against the alternative H1 :

−π ≤ θ ≤ π is

LRC =
maxH0 Lhd

maxH1 Lhd
=

I∗1
2
(K−2)

(λ2c20)

I∗1
2
(K−2)

(λ2r2)
(8.6)

=
I∗1
2
(K−2)

{λ2
[
r2 − (r2 − r1) sin

2(t− θ0)
]
}

I∗1
2
(K−2)

(λ2r2)
.

=
I∗1
2
(K−2)

(λ2r1) sin
2(t− θ0) + I∗1

2
(K−2)

(λ2r2) cos
2(t− θ0)

Γ∗
1
2
(K−2)(λ

2r2)
.
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The maximum likelihood estimator of θ is θ̂ = t ; the maximum likelihood estimator

of β is β̂ = βθ̂. The LR test is to reject the null hypothesis if the LRC is less than

a constant. The null hypothesis is accepted if sin2(t− θ0) is sufficiently small.

9. Bayes Test

Consider the prior probability structure for the parameter θ consisting of a prob-

ability of H0 of Pr{θ = θ0} and a uniform density on H1

(9.1)
1

2π
[1− Pr{θ = θ0}] ,−π ≤ θ ≤ π .

Let the loss structure be

parameter \ action accept H0 reject H0

H0 0 1

H1 1 0

Then the average risk is

(9.2) Pr{θ = θ0}Pr{Reject H0|θ0}+ [1− Pr{θ = θ0}]
∫ π

−π

1

2π
Pr{Accept H0|θ}dθ .

The Bayes aqcceptance region is

(9.3)
h(r1, r2, t|θ0, λ)

1
2π

∫ π

−π
h(r1, r2, t|θ0, λ)dθ

≥ aconstant .

The ratio (9.3) is

I∗1
2
(K−2)

(λ2r1) sin
2(t− θ0) + I∗1

2
(K−2)

(λ2r2) cos
2(t− θ0)

1
2π

∫ π

−π

[
I∗1
2
(K−2)

(λ2r1) sin
2(t− θ) + I∗1

2
(K−2)

(λ2r2) cos2(t− θ)
]
dθ

(9.4)

=
2
[
I∗1
2
(K−2)

(λ2r1) sin
2(t− θ0) + I∗1

2
(K−2)

(λ2r2) cos
2(t− θ0)

]
I∗1
2
(K−2)

(λ2r1) + I∗1
2
(K−2)

(λ2r2)

=
2{I∗1

2
(K−2)

(λ2r2)−
[
I∗1
2
(K−2)

(λ2r2)− I∗1
2
(K−2)

(λ2r1)
]
sin2(t− θ0)}

I∗1
2
(K−2)

(λ2r1) + I∗1
2
(K−2)

(λ2r2)
.
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We have used

(9.5)
1

2π

∫ π

−π

sin2 θdθ =
1

2π

∫ π

−π

cos2 θdθ =
1

2
.

The left-hand side of (9.4) is a factor times the Likelihood Ratio Criterion.

Theorem 1 : The likelihood ratio test of H0 is the Bayes solution for a prior

alternative of a uniform distribution of θ.

10. Admissibility

Consider a family of densities f(y|θ) defined over a sample space Y and a param-

eter space Ω. The parameter space is partitioned into disjoint sets Ω0 representing

the null hypothesis and Ω1 representing the alternative. A set A in the sample space

represents the acceptance of the null hypothesis.

Definition 1: A is as good as B if

Pr(A|ω) ≥ Pr(B|ω), ω ∈ Ω0 ,(10.1)

Pr(A|ω) ≤ Pr(B|ω) , ω ∈ Ω1 .(10.2)

Definition 2: A is better than B if the equations above hold with strict inequality

for at least one ω.

Definition 3: A is admissible if there is no B better than A.

A Bayes test is based on a probability distribution Λ0 on Ω0 and Λ1 on Ω1. The

test with acceptance region

(10.3)

∫
f(y|θ)dΛ0(θ)∫
f(y|θ)dΛ1(θ)

> constant

is admissible for testing Ω0 vs. Ω1. (See Anderson (2003), p.199, for example.)

The Bayes test (9.4) is of the form of (10.3). Thus we have established a main

result.
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Figure 1: Finite Example

Theorem 2 : The test with acceptance region (9.4) is an admissible invariant test

of H0 : θ = θ0.

11. Admissibility over all tests

Now we consider admissibility with respect to all tests. We want to show that

the best invariant test of θ = θ0 is admissible within the class of all tests. As an

example, consider the model in which θ can take on a finite number of values.

Finite example : The possible parameter values are

(11.1) θ = 0,
1

N
2π,

2

N
2π, · · · , N − 1

N
2π .

Consider the group of transformations

(11.2) θ −→ θ +
j

N
2π , t −→ t+

j

N
2π , j = 0, 1, · · · , N − 1.

Let these values of θ be labelled as θ∗0, θ
∗
1, · · · , θ∗N−1. Each of them corresponds

to a null hpothesis. Define a test of the hypothesis θ = θ∗k by the acceptance region

14



A∗
k = A∗

k(t, r1, r2) in the space of t, r1, r2. The set of tests is an invariant set if

(11.3) A∗
k(t− θ∗k, r1, r2) = A∗

j(t− θ∗k, r1, r2)

for k, j = 0, 1, · · · , N − 1.

The LR test of the hypothesis θ = θ∗i against the alternative θ = θ∗j for some j =

0, 1, · · · , N − 1 is the Bayes solution for the hypothesis θ = θ∗i for prior probabilities

(11.4) Pr{θ = θ∗j} =
1

N
, j = 0, 1, · · · , N − 1.

Non-invariant tests. Suppose the set of tests are not necessarily invariant; that

is, (11.3) does not necessarily hold. We can randomize these N tests by defining an

invariant randomized test.

The acceptance region A∗
k(t, r1, r2) can be adapted to test θ = θ∗i by subtracting

θ∗k from A∗
k(t, r1, r2) and adding θ∗i , which is the region A∗

k(t − θ∗k + θ∗i , r1, r2). A

randomized test for the null hypothesis θ = θ∗i has acceptance region

(11.5)
1

N

N−1∑
k=0

A∗
k(t− θ∗k + θ∗i , r1, r2) .

The set of such tests for θ∗i , i = 0, 1, · · · , N − 1 is an invariant set.

Lemma 2 : If a test with an invariant family of acceptance regionsA0, A1, · · · , AN−1

is admissible in the set of invariannt tests, it is admissible in the set of all tests.

Proof by contradiction. Suppose Ā0, · · · , ĀN−1 is a family of better tests (not

necessarily invariant). Then the invariant randomized tests based on Ā0, · · · , ĀN−1

is better than the family of A0, · · · , AN−1. But this contradicts the assumption that

A0, · · · , AN−1 is admissible in the set of invariant tests.

Lemma 2 is a special case of so-called Hunt-Stein theorem to the effect that the

best invariant test is admissible in the class of all tests if the group transformations

defining invariance is finite or compact. See Zaman (1996), Section 7.9, or Lehmann

(1986), Theorem 7 of Chapter 3. The proofs of such theorems are based on the
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argument that the randomization of the noninvariant tests yields an invariant test

that is as good as the noninvariant test.

On the model

(11.6) Q = ληα
′
+W

for fixed λ, each parameter vector η and α take values in closed sets η
′
η = 1 and

α
′
α = 1, which are therefore compact and satisfy the Hunt-Stein conditions.

Theorem 3 : The LR test of θ = θ0 is admissible in the set of all tests.

12. Conclusions

12.1 Estimation

Anderson, Stein, and Zaman (1985) considered the estimation of η and α in the

model Q = ληα
′
, where η

′
η = 1 and α

′
α = 1. The loss of estimating α by α̂ was

(12.1) L(α, α̂) = 1− (α
′
α̂)2 = sin2(θ̂ − θ)

and θ̂− θ is the angle between the vector α and an estimator α̂. When G = 2, this

is the model treated in the paper. The estimator t of θ is the LIMLK estimator.

Corollary 1 of Anderson, Stein, and Zaman (1985) states that the LIMLK estimator

is admissible for the loss function (13.1) and every fixed λ and hence for all λ.

The risk of an estimator is E sin2(θ̂ − θ) which is a function of λ,η, and α.

Admissibility of the LIMLK estimator means that there is no estimator for which

E sin2(θ̂ − θ) is as small or smaller for all λ,η, and α.

12.2 Testing

We consider testing H0 : β = β0 = βθ0 on the basis of G = OtRO
′
t. The risk of

a test may depend on θ0 and θ. Let

(12.2) γ(θ, θ0) = Pr{AcceptH0|θ, θ0} .
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In this notation the significance level of a test is γ(θ0, θ0) and the power of a test is

1−γ(θ, θ0). The admissibility of the LR test is that for any other test the significance

level is greater or the power is not as great or both.

12.3 A more general model.

Instead of (2.9) consider (2.4) with the hypothesis H0 : β1 = β0, where β1

satisfies (2.8). Let

(12.3) Z2.1 = Z2 − Z1A
−1
11 A12 ,

where A has been partitioned into K1 and K2 rows and columns. Then the relevant

part of the reduced form (2.6) can be written

(12.4) Y1 = Z1

(
Π11 +A−1

11 A12Π21

)
+ Z2.1Π21 +V1 .

The sufficient statistics are A−1
11 Z

′
1Y1 and P2 = A−1

22.1Z
′
2.1Y1, where

(12.5) A22.1 = Z
′

2.1Z2.1 = A22 −A21A
−1
11 A12 ,

and they are independent. The developments above proceed with Z replaced by

Z2.1, Y by Y1, etc.
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Appendix A. Jacobian

The representation of G = OtRO
′
t in components is

(A.1)

 g11 g12

g21 g22

 =

 r1 cos
2 t+ r2 sin

2 t (r1 − r2) cos t sin t

(r1 − r2) cos t sin t r1 sin
2 t+ r2 cos

2 t

 .

The matrix of partial derivatives of g11, g22, g12 with respect to r1, r2 and t is

(A.2)


cos2 t sin2 t −2(r1 − r2) cos t sin t

sin2 t cos2 t (r1 − r2) cos t sin t

cos t sin t − cos t sin t (r1 − r2)(cos
2 t− sin2 t)

 .

The Jacobian of the transformation is the absolute value of the determinant of (A.2)

which is r2 − r1.
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