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Abstract

Nonparametric regression with spatial, or spatio-temporal, data is con-
sidered. The conditional mean of a dependent variable, given explanatory
ones, is a nonparametric function, while the conditional covariance re�ects
spatial correlation. Conditional heteroscedasticity is also allowed, as well
as non-identically distributed observations. Instead of mixing conditions,
a (possibly non-stationary) linear process is assumed for disturbances, al-
lowing for long range, as well as short-range, dependence, while decay in
dependence in explanatory variables is described using a measure based on
the departure of the joint density from the product of marginal densities.
A basic triangular array setting is employed, with the aim of covering var-
ious patterns of spatial observation. Su¢ cient conditions are established
for consistency and asymptotic normality of kernel regression estimates.
When the cross-sectional dependence is su¢ ciently mild, the asymptotic
variance in the central limit theorem is the same as when observations
are independent; otherwise, the rate of convergence is slower. We discuss
application of our conditions to spatial autoregressive models, and models
de�ned on a regular lattice.
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1 Introduction

A distinctive challenge facing analysts of spatial econometric data is the possi-
bility of spatial dependence. Typically, dependence is modelled as a function of
spatial distance, whether the distance be geographic or economic, say, analogous
to the modelling of dependence in time series data. However, unlike with time
series, there is usually no natural ordering to spatial data. Moreover, forms of
irregular spacing of data are more common with spatial than time series data,
and this considerably complicates modelling and developing rules of statistical
inference.
Often, as with cross-sectional and time series data, some (parametric or non-

parametric) regression relation or conditional moment restriction is of interest
in the modelling of spatial data. If the spatial dependence in the left-hand-side
variable is entirely explained by the regressors, such that the disturbances are
independent, matters are considerably simpli�ed, and the development of rules
of large sample statistical inference is, generally speaking, not very much harder
than if the actual observations were independent. In parametric regression mod-
els, ordinary least squares can then typically deliver e¢ cient inference (in an
asymptotic Gauss-Markov sense, at least). Andrews (2005) has developed the
theory to allow for arbitrarily strong forms of dependence in the disturbances,
but with the data then generated by random sampling, an assumption that is
not necessarily plausible in practice.
Substantial activity has taken place in the modelling of spatial dependence,

and consequent statistical inference, and this is relevant to handling dependence
in disturbances. In the statistical literature, lattice data have frequently been
discussed. Here, there is equally-spaced sampling in each of d � 2 dimensions,
to extend the equally-spaced time series setting (d = 1). Familiar time series
models, such as autoregressive-moving-averages, have been extended to lattices
(see e.g. Whittle, 1954). In parametric modelling there are greater problems of
identi�ability than in time series, and the "edge e¤ect" complicates statistical
inference (see Guyon, 1982, Dahlhaus and Künsch, 1987, Robinson and Vidal-
Sanz, 2006, Yao and Brockwell, 2006). Nevertheless there is a strong sense in
which results from time series can be extended.
Unfortunately economic data typically are not recorded on a lattice. If the

observation locations are irregularly-spaced points in geographic space, it is
possible to consider, say, Gaussian maximum likelihood estimation based on a
parametric model for dependence de�ned continuously over the space, though
a satisfactory asymptotic statistical theory has not yet been developed. How-
ever, even if we feel able to assign a (relative) value to the distance between
each pair of data points, we may not have the information to plot the data
in, say, 2-dimensional space. Partly as a result, "spatial autoregressive" (SAR)
models of Cli¤ and Ord (1981) have become popular. Here, n spatial observa-
tions (or disturbances) are modelled as a linear transformation of n indepen-
dent and identically distributed (iid) unobservable random variables, the n� n
transformation matrix being usually known apart from �nitely many unknown
parameters (often only a single such parameter). While we use the description
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"autoregressive", forms of the model can be analogous to time series moving av-
erage, or autoregressive-moving-average, models, not just autoregressive ones,
see (2.9) below. While a relatively ad hoc form of model, the �exibility of SAR
has led to considerable applications (see e.g. Arbia, 2006).
SAR, and other structures, have been used to model disturbances, princi-

pally in parametric, in particular linear, regression models (see e.g. Kelejian
and Prucha, 1999, Lee, 2002). On the other hand, nonparametric regression has
become a standard tool of econometrics, at least in large cross-sectional data
sets, due to a recognition that there can be little con�dence that the functional
form is linear, or of a speci�c nonlinear type. Estimates of the nonparametric re-
gression function are typically obtained at several �xed points by some method
of smoothing. In a spatial context, nonparametric regression has been discussed
by, for example, Tran and Yakowitz (1993), Hallin, Lu and Tran (2004a). The
most commonly used kind of smoothed nonparametric regression estimate in
econometrics is still the Nadaraya-Watson kernel estimate. While originally mo-
tivated by iid observations, its asymptotic statistical behaviour has long been
studied in the presence of stationary time series dependence. Under forms of
weak dependence, it has been found that not only does the Nadaraya-Watson
estimate retain its basic consistency property, but more surprisingly it has the
same limit distribution as under independence (see, e.g. Roussas, 1969, Rosen-
blatt,1 971, Robinson,1983). The latter �nding is due to the "local" character of
the estimate, and contrasts with experience with parametric regression models,
where dependence in disturbances generally changes the limit distribution, and
entails e¢ ciency loss.
The present paper establishes consistency and asymptotic distribution the-

ory for the Nadaraya-Watson estimate in a framework designed to apply to
various kinds of spatial data. It would be possible to describe a theory that
mimics fairly closely that for the time series case. In particular, strong mix-
ing time series were assumed by Robinson (1983) in asymptotic theory for the
Nadaraya-Watson estimate, and various mixing concepts have been generalised
to d � 2 dimensions in the random �elds literature, where they have been em-
ployed in asymptotic theory for various parametric, nonparametric and semi-
parametric estimates computed from spatial data; a less global condition, in a
similar spirit, was employed by Pinkse, Shen and Slade (2007). We prefer to
assume, in the case of the disturbances in our nonparametric regression, a linear
(in independent random variables) structure, that explicitly covers both lattice
linear autoregressive-moving-average and SAR models (with a scale factor per-
mitting conditional or unconditional heteroscedasticity). Our framework also
allows for a form of strong dependence (analogous to that found in long memory
time series), a property ruled out by the mixing conditions usually assumed in
asymptotic distribution theory. In this respect, it seems we also �ll some gap in
the time series literature because we allow our regressors to be stochastic, unlike
in the �xed-design nonparametric regressions with long memory disturbances
covered by Hall and Hart (1990), Robinson (1997). As a further, if secondary,
innovation, while we have to assume some (mild) falling o¤ of dependence in the
regressors as their distance increases, we do not require these to be identically
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distributed across observations (as in Andrews, 1995). It should be added that
our asymptotic theory is of the �increasing domain�variety. �In�ll asymptot-
ics�, on a bounded domain, is popular in some research on spatial statistics and
could be employed here, but is likely to yield less useful results. For example
it has been found in some settings that under in�ll asymptotics estimates are
inconsistent, by virtue of converging to a nondegenerate probability limit.
The following section describes our basic model and setting. Section 3 in-

troduces the Nadaraya-Watson kernel estimate. Detailed regularity conditions
are presented in Sections 4 and 5 for consistency and asymptotic distribution
theory, respectively, the proofs resting heavily on a sequence of lemmas, which
are stated and proved in appendices. Section 6 discusses implications of our
conditions and of our results in particular spatial settings.

2 Nonparametric regression in a spatial setting

We consider the conditional expectation of a scalar observable Y given a d-
dimensional vector observable X. We have n observations on (Y;X). It is
convenient to treat these as triangular arrays, that is, we observe the scalar
Yin and the d � 1 vector Xin, for 1 � i � n, where statistical theory will be
developed with n increasing without bound.
The triangular array structure of Y is partly a consequence of allowing a

triangular array structure for the disturbances (the di¤erence between Y and
its conditional expectation) in the model, to cover in particular a common spec-
i�cation of the SAR model. But there is a more fundamental reason for it, and
for treating the X observations as a triangular array also. We can identify each
of the indices i = 1; :::; n with a location in space. In regularly-observed time
series settings, these indices correspond to equi-distant points on the real line,
and it is evident what we usually mean by letting n increase. However there is
ambiguity when these are points in space. For example, consider n points on a
2-dimensional regularly-spaced lattice, where both the number (n1) of rows and
the number (n2) of columns increases with n = n1.n2: If we choose to list these
points in lexiographic order (say �rst row left ! right, then second row etc.)
then as n increases there would have to be some re-labelling, as the triangular
array permits. Another consequence of this listing is that dependence between
locations i and j is not always naturally expressed as a function of the di¤erence
i�j, even if the process is stationary (unlike in a time series). For example, this
is so if the dependence is isotropic. Of course in this lattice case we can naturally
label the locations by a bivariate index, and model dependence relative to this.
However, there is still ambiguity in how n1 and/or n2 increase as n increases,
and in any case we do not wish to restrict to 2-dimensional lattice data; we could
have a higher-dimensional lattice (as with spatio-temporal data, for example)
or irregularly-spaced data, or else data modelled using a SAR model, in which
only some measures of distance between each pair of observations are employed.
As a result our conditions tend to be of a "global" nature, in the sense that all
n locations are involved, with n increasing, and thus are also relatively unprim-
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itive, sometimes requiring a good deal of work to check in individual cases, but
this seems inevitable in order to potentially cover many kinds of spatial data.
As a consequence of the triangular array structure many quantities in the

paper deserve an n subscript. To avoid burdening the reader with excessive
notational detail we will however tend to suppress the n subscript, while re-
minding the reader from time to time of the underlying n�dependence. Thus,
for example, we write Xi for Xin and Yi for Yin:
We consider a basic conditional moment restriction of the form

E (Yi jXi ) = g(Xi); 1 � i � n; n = 1; 2; :::; (2.1)

where g(x) : Rd ! R is a smooth, nonparametric function. We wish to estimate
g(x) at �xed points x. Note that g is constant over i (and n). However (antici-
pating Nadaraya-Watson estimation, which entails density cancellation asymp-
totically) we will assume that the Xi have probability densities, fi(x) = fin(x),
that are unusually allowed to vary across i, though unsurprisingly, given the need
to obtain a useful asymptotic theory, they do have to satisfy some homogeneity
restrictions, and the familiar identically-distributed case a¤ords simpli�cation.
The Xi are also not assumed independent across i, but to satisfy "global" as-
sumptions requiring some falling-o¤ in dependence (see e.g. Assumption A6
below).
A key role is played by an assumption on the disturbances

Ui = Uin = Yi � g (Xi) ; 1 � i � n; n = 1; 2; :::: (2.2)

We assume
Ui = �i (Xi)Vi; 1 � i � n; n = 1; 2; :::; (2.3)

where �i(x) = �in(x) and Vi = Vin are both scalars; as desired the �rst, and
also second, moment of �i (Xi) exists; and, for all n = 1; 2; :::; fVi; 1 � i � ng
is independent of fXi; 1 � i � ng : We assume that

E (Vi) = 0; 1 � i � n; n = 1; 2; :::; (2.4)

implying immediately the conditional moment restriction E fUi jXi g = 0; 1 �
i � n; n = 1; 2; :::: As the �2i (x) are unknown functions, if Vi has �nite
variance, with no loss of generality we �x

V ar fVig � 1; (2.5)

whence

V ar fYi jXi g = V ar fUi jXi g = �2i (Xi); 1 � i � n; n = 1; 2; :::; (2.6)

so conditional heteroscedasticity is permitted. We do not assume the �2i (x) are
constant across i, thus allowing unconditional heteroscedasticity also, though
again homogeneity restrictions will be imposed.
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Dependence across i is principally modelled via the Vi. For many, though
not all, of our results we assume

Vi =
1X
j=1

aij"j ; 1 � i � n; n = 1; 2; :::; (2.7)

where for each n, the "j , j � 1, are independent random variables with zero
mean, and the nonstochastic weights aij = aijn are at least square-summable
over j; whence with no loss of generality we �x

1X
j=1

a2ij � 1; 1 � i � n; n = 1; 2; :::: (2.8)

When the "j have �nite variance we �x V ar f"ig = 1; implying (2.5). An
alternative to the linear dependence structure (2.7) is some form of mixing con-
dition, which indeed could cover some heterogeneity as well as dependence. In
fact mixing could be applied directly to the Xi and Ui, avoiding the requirement
of independence between fVig and fXig, or simply to the observable fYi; Xig :
Mixing conditions, when applied to our triangular array, would require a notion
of falling o¤ of dependence as ji� jj increases, which, as previously indicated,
is not relevant to all spatial situations of interest. Moreover, we allow for a
stronger form of dependence than mixing; we usually do not require, for ex-
ample, that the aij are summable with respect to j, and thence cover forms of
long-range dependence analogous to those familiar in time series analysis.
The linear structure (2.7) obviously covers equally-spaced stationary time

series, where aij is of the form ai�j , and lattice extensions, where the in�nite
series is required not only to model long range dependence but also �nite-degree
autoregressive structure in Vi. Condition (2.7) also provides an extension of SAR
models. These typically imply

Vi =
nX
j=1

aij"i; 1 � i � n; n = 1; 2; :::; (2.9)

so there is a mapping from n independent innovations "i to the n possibly
dependent Vi. In particular, we may commence from a parametric structure

(In � !1W1 � :::� !m1Wm1)U = (In � !m1+1Wm1+1 � :::� !m1+m2Wm1+m2)�";
(2.10)

where the integers m1; m2 are given, In is the n � n identity matrix, U =
(U1; :::; Un)

0, " = ("1; :::; "n)
0, the !i are unknown scalars, � is an unknown scale

factor, and the Wi =Win are given n� n "weight" matrices (satisfying further
conditions in order to guarantee identi�ability of the !i), and such that matrix
on the left hand side multiplying U is nonsingular. Of course (2.10) is similar
to autoregressive-moving-average structure for stationary time series, but that
is generated from an in�nite sequence of innovations, not only n such (though
of course n will increase in the asymptotic theory). There seems no compelling
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reason to limit the number of innovations to n in spatial modelling, and (2.9)
cannot cover forms of long-range dependence, unless somehow the sums �nj=1aij
are permitted to increase in n without bound, which is typically ruled out in
the SAR literature.

3 Kernel regression estimate

We introduce a kernel function K(u) : Rd ) R, satisfying at leastZ
Rd
K(u)du = 1: (3.1)

The Nadaraya-Watson kernel estimate of g(x), for a given x 2 Rd, is

ĝ(x) = ĝn(x) =
v̂(x)bf(x) ; (3.2)

where

bf(x) = bfn(x) = 1

nhd

nX
i=1

Ki(x); v̂(x) = v̂n(x) =
1

nhd

nX
i=1

YiKi(x); (3.3)

with

Ki(x) = Kin(x) = K

�
x�Xi

h

�
; (3.4)

and h = hn is a scalar, positive bandwidth sequence, such that h! 0 as n!1.
Classically, the literature is concerned with a sequence Xi of identically

distributed variables, having probability density f(x); with Xi observed at
i = 1; :::; n; so fi(x) � f(x), In this case bf(x) estimates f(x); and v̂(x) es-
timates g(x)f(x); so that ĝ(x) estimates g(x): The last conclusion results also
in our possibly non-identically distributed, triangular array setting, because un-
der suitable additional conditions,bf(x)� f(x) !p 0; (3.5)

v̂(x)� g(x)f(x) !p 0; (3.6)

where

f(x) = fn(x) =
1

n

nX
i=1

fi(x): (3.7)

It follows from (3.5) and (3.6) and Slutsky�s theorem, that

ĝ(x)!p g(x); (3.8)

so long as limn!1f(x) > 0. In fact though we establish (3.5), we do not
employ this result in establishing (3.8), but instead a more subtle argument
(that avoids continuity of f(x)): The consistency results are presented in the
following section, with Section 5 then establishing a central limit theorem for
ĝ(x).
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4 Consistency of kernel regression estimate

We introduce �rst some conditons of a standard nature on the kernel function
K (u) :

Assumption A1: K (u) is an even function, and

sup
u2Rd

jK (u)j+
Z
Rd
jK (u)j du <1: (4.1)

Assumption A2(�) : As kuk ! 1;

K (u) = O(kuk��): (4.2)

For � > d; A2(�) plus the �rst part of A1 implies the second part of A1.
Note for future use that, for " > 0;

sup
kuk�"=h

jK (u)j = O(h�): (4.3)

Assumption A3:
K(u) � 0; u 2 Rd: (4.4)

Assumption A3 excludes higher-order kernels, but can be avoided if condi-
tions on the Xin are slightly strengthened.

The following condition on the bandwidth h is also standard.

Assumption A4: As n!1;

h+ (nhd)�1 ! 0: (4.5)

For " > 0 de�ne

�(x; ") = �n(x; ") = sup
kwk<"

f(x� w): (4.6)

Assumption A5(x) : For some " > 0;

lim
n!1

�(x; ") <1: (4.7)

Assumption A6(x; y): The joint density of Xi and Xj ; fij(x; y) = fijn(x; y);
exists for all i; j; and for some " > 0;

lim
n!1

�(x; y; ") = 0; (4.8)

where
�(u; v; ") = �n(u; v; ") = sup

kwk<"
jm(u� w; v � w)j ; (4.9)
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m(u; v) = mn(u; v) =
1

n2

nX
i;j=1
i 6=j

ffij(u; v)� fi(u)fj(v)g : (4.10)

Assumption A7(x): For some " > 0;

lim
n!1

inf
kuk<"

f(x� u) > 0 (4.11)

Assumption A8: g is continuous at x; and

lim
n!1

1

n

nX
i=1

E jg(Xi)j <1: (4.12)

De�ne �i(u) = �in(u) = �2i (u)fi(u); �ij(u; v) = �ijn(u; v) = �i(u)�j(v)fij(u; v):

Assumption A9(x; y): For some " > 0;

lim
n!1

max
1�i�n

sup
kuk<"

�i(x� u) <1 (4.13)

and
lim
n!1

max
1�i;j�n

sup
kuk<";kvk<"

j�ij(x� u; y � v)j <1; (4.14)

also
lim
n!1

max
1�i�n

E
�
�2i (Xi)

	
<1: (4.15)

Assumption A10: For n = 1; 2; :::; fXi; 1 � i � ng is independent of
fVi; 1 � i � n; g ; (2.4) and (2.5) hold, and the covariances

ij = ijn = Cov fVi; Vjg ; 1 � i; j � n; n = 1; 2; :::; (4.16)

satisfy

lim
n!1

1

n2

nX
i;j=1;i 6=j

��ij��= 0 : (4.17)

Theorem 1: Let Assumptions A1, A2( �) for � > 2d; A3, A4, A5(x),
A6 (x; x); A7, A8, A9(x; x) and A10 hold. Then

bg(x )! p g(x ); as n !1: (4.18)

Proof For any � > 0

P (jbg(x)� g(x)j > �) � P

 �����(nhd)�1
nX
i=1

fYi � g(x)gKi(x)

����� > �2

!
+P ( bf(x) < �) (4.19)
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Using Lemmas 1 and 2, for � > � ,

P ( bf(x) < �) � P (
��� bf(x)� Ef bf(x)g��� > � � �) � V ar

n bf(x)o =(� � �)2 ! 0:

(4.20)
It remains to show that the �rst probability on the right of (4.19) is negligible.
But

1

nhd

nX
i=1

fYn � g(x)gKi(x) = br1(x) + br2(x); (4.21)

where br1(x) = br1n(x) = 1

nhd

nX
i=1

UiKi(x); (4.22)

br2(x) = br2n(x) = 1

nhdn

nX
i=1

fg(Xi)� g(x)gKi(x); (4.23)

whence it remains only to apply Lemmas 3 and 4. �
The linear representation (2.7) (or (2.9)) is not imposed in Theorem 1. To

provide also a consistency result that avoids �nite variance of Vi , while on the
other hand strengthening dependence, we employ (2.7). In this setting, �i(Xi)
no longer repreents a standard deviation, but simply a scale factor. For D > 0;
de�ne "0i = "0in = "i1(j"ij � D); "

00

i = "
00

in = "i � "0in:

Assumption A11: (2.7) holds, where, for all n � 1; fXi; 1 � i � ng is
independent of f"i; i � 1g ; the "i are independent random variables with zero
mean and

lim
D!1

sup
n�1

sup
i�1

E
���"00i ��� = 0; (4.24)

sup
n�1

sup
j�1

1X
i=1

jaij j +sup
n�1

max
1�i�n

1X
j=1

jaij j <1: (4.25)

Notice that if the "i do in fact have �nite variance (taken to be 1);

ij =
1X
k=1

aikajk (4.26)

so (cf (4.17)) under (4.25)

lim
n!1

1

n

nX
i;j=1

��ij�� <1: (4.27)

Theorem 2: Let Assumptions A1, A2( �) for � > 2d; A3, A4, A5(x),
A6(x; x); A7, A8, A9(x; x) and A11 hold. Thenbg(x )! p g(x ); as n !1: (4.28)

Proof Identical to that of Theorem 2, but Lemma 5 is used in place of
Lemma 4. �
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5 Asymptotic normality of kernel regression es-
timate

De�ne

s = sn =
h�d

n2

nX
i=1

ii =
�
nhd

��1
; (5.1)

t = tn =

�������
1

n2

nX
i;j=1
i6=j

ij

������� ; (5.2)

the third equality in (5.1) using (2.8). Note that as n ! 1; s ! 0 under
Assumption A4 and t ! 0 under Assumption A10. In the present section we
establish a central limit theorem for w�1=2 fbg(x)� g(x)g ; where w = wn = s if
t = O(s) and w = t if s = o(t); as n ! 1. Under our conditions, s decays at
the standard rate

�
nhd

��1
; whereas t is zero when the Vi are uncorrelated, and

decays faster than s when Vi is short-range dependent, but slower when Vi is
long-range dependent: The modulus operator in t is to ensure non-negativity;
however, because

nX
i=1

ii +

nX
i;j=1;i 6=j

ij = V ar

(
nX
i=1

Vi

)
� 0; (5.3)

the second term on the left cannot be negative when s = o(t); so when the t
normalization applies the modulus operator is unnecessary.
We have

bg(x)� g(x) = bv(x)� g(x) bf(x)bf(x) =
br1(x)bf(x) + br2(x)bf(x) ; (5.4)

where br1(x); br2(x) are given in (4.22), (4.23). There is a basic di¤erence in
our method of proof from that in, say, Robinson (1983). There (where the as-

sumptions imply that bg(x) is �nhd�1=2�consistent) the delta method was used,
after establishing asymptotic joint normality of

�
nhd

�1=2 n bf(x)� f(x)o and�
nhd

�1=2 �bv(x)� g(x)f(x)	 ; which in turn follows from asymptotic joint nor-

mality of
�
nhd

�1=2 h bf(x)� E n bf(x)oi and �nhd�1=2 [bv(x)� E fbv(x)g] ; and the
properties E

n bf(x)o�f(x) = o
��
nhd

��1=2�
; E fbv(x)g�g(x)f(x) = o

��
nhd

��1=2�
:

We, however, proceed from the rightmost expression in (5.4) by establishing as-
ymptotic normality of w�1=2br1(x) ; along with E fjbr2(x)jg = o(w1=2) ) andbf(x)� f(x)!p 0:

We begin by showing the latter result, or rather bf(xi) � f(xi) !p 0 for
any �nitely many distinct points x1; :::; xp in Rd; because our goal in fact is to
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establish asymptotic joint normality of the appropriately normed vector bGn�G;
where

G = fg(x1); :::; g(xp)g0 ; bG = bGn = fbgn(x1); :::; bgn(xp)g0 : (5.5)

We introduce a condition on

�(x; ") = �n(x; ") = sup
kwk<"

��f(x� w)� f(x)�� : (5.6)

Assumption B1(x): For all � > 0 there exists " > 0 such that for all
su¢ ciently large n

�(x; ") < �: (5.7)

Theorem 3: Let Assumptions A1, A2( �) for � > 2d; A4, A6 (xi; xi) and
B1(xi) hold, i = 1; :::; p. Then

bf(xi)� f(xi) !p 0; i = 1; :::; p: (5.8)

Proof : Follows from Lemmas 1 and 6. �

Assumption B2(x): g satis�es a Lipschitz condition of degree � 2 (0; 1] in
a neighbourhood of x:

Assumption B3: For the same � as in Assumption B2(u); h2�=w ! 0 as
n!1:

Assumption B4: (2.7) and (2.8) hold, where for all n; fXi; 1 � i � ng
is independent of f"i; i � 1g ; :and the "i are independent random variables with
zero mean, unit variance, and

lim
D!1

sup
n�1

sup
i�1

E
n
"
002
i

o
= 0; (5.9)

where "
00

i is as de�ned before Assumption A11.

De�ne

b = bn = sup
j�1

 
nX
i=1

jaij j
!2

=

1X
j=1

 
nX
i=1

jaij j
!2

: (5.10)

Assumption B5:

lim
n!1

sup
j�1

nX
i=1

a2ij <1; (5.11)

and
lim
n!1

b! 0: (5.12)

12



Assumption B6: When s = o(t);

nX
i;j;k=1

ijik = o(n3t); as n!1: (5.13)

Assumption B7: The densities fi of Xi (1 � i � n); fi1i2 of Xi1 ; Xi2

(1 � i1 < i2 � n); fi1i2i3 of Xi1 ; Xi2 ; Xi3 (1 � i1 < i2 < i3 � n) ; and fi1i2i31i4
of Xi1 ; Xi2 ; Xi3 ; Xi4 (1 � i1 < i2 < i3 < i4 � n) are bounded uniformly in large
n in neghbourhoods of all combinations of arguments x1; :::; xp:

Assumption B8(x; y): For all � > 0 there exists " > 0 such that for all
su¢ ciently large n

max
1�i�n

sup
kwk<"

jfi(x� w)� fi(x)j < �: (5.14)

max
1�i�n

sup
kwk<"

���2i (x� w)� �2i (x)�� < � (5.15)

max
1�i<j�n

sup
kwk<";kzk<"

jfij(x� w; y � z)� fij(x; y)j < �: (5.16)

Assumption B9(x): For some " > 0;

lim
n!1

max
1�i�n

"
sup
jusj<"

j�is(x� us)j+ E
�
�4i (Xi)

	#
<1: (5.17)

Write

�i1i2(u1; u2; ") = �i1i2n(u1; u2; ") = sup
jvsj<"
s=1;2

jfi1i2(u1 � v1; u2 � v2)

�fi1(u1 � v1)fi2(u2 � v2)j ; (5.18)

�i1i2i3(u1; u2; u3; ") = �i1i2i3n(u1; u2; u3; ") = sup
jvsj<"
s=1;2;3

jfi1i2i3(u1 � v1; u2 � v2; u3 � v3)

�fi1(u1 � v1)fi2i3(u2 � v2; u3 � v3)j ; (5.19)

�i1i2i3i4(u1; u2; u3; u4; ") = �i1i2i3i4n(u1; u2; u3; u4; ")

= sup
jvsj<"
s=1;:::;4

jfi1i2i31i4(u1 � v1; u2 � v2; u3 � v3; u4 � v4)

�fi1i2(u1 � v1; u2 � v2)fi3i4(u3 � v3; u4 � v4)j : (5.20)

Assumption B10 For (u1; u2; u3; u4) = xi1 ; xi2 ; xi3 ; xi4 ; is = 1; :::; p;
s = 1; :::; 4,

lim
n!1

1

n2

nX
is=1
s=1;2

0�i1i2(u1; u2; "): = 0; (5.21)
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lim
n!1

1

n2t

nX
is=1
s=1;2;3

0
���

i2i3

��� �i1i2i3(u1; u2; u3; ") = 0; (5.22)

lim
n!1

1

n4t2

nX
is=1

s=1;:::;4

0
���

i1i2

i3i4

��� �i1i2i3i4(u1; u2; u3; u4; ") = 0; (5.23)

where each primed sum omits terms with any equalities between the relevant is:

Assumption B11:

lim
n!1

1X
k=1

nX
i;j=1;i 6=j

jaikajkj =
1X
k=1

nX
i;j=1;i 6=j

aikajk <1: (5.24)

Assumption B12: There exists a function �(x); x 2 Rdsuch that

f(x) � �(x); as n!1: (5.25)

When t = O(s) there exists a function �(x); x 2 Rd; such that

1

n

nX
i=1

�i(x) � �(x); as n!1: (5.26)

When s = O(t) there exists a function  (x; y); x; y 2 Rd; such that
nX

i;j=1;i 6=j
ij�ij(x; y)

nX
i;j=1;i 6=j

ij

�  (x; y); as n!1: (5.27)

Denote � = diag f�(x1); :::; �(xp)g ;� = diag f�(x1); :::; �(xp)g ; and 	 the
p� p matrix with (i; j)th element  (xi; yj):

Assumption B13(q): rank f	g = q 2 [1; p] :

The reason for allowing q < p is discussed in the following section. De�ne
by J (q) any q � p matrix formed from q rows of Ip; for given q there are

�
p
q

�
of

these; but we do not distinguish between them in our notation. De�ne also

� =

Z
Rd
K2 (u) du; (5.28)
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which is �nite under Assumption A1.

Theorem 4: Let Assumptions A1, A2( �) for � > 4d; A4, A7 (xi), A8,
A9(xi; xj); A10, B1 (xi), B2 (xi); B3, B4, B5, B7, B8(xi; xj); B9(xi);B10-B12
and B13 (q) hold, i; j = 1; :::; p:

(i) If also t = o(s);

s�1=2
� bG�G�! d N (0 ; ���1���1); as n !1; (5.29)

(ii) if also t � �s;

s�1=2
� bG�G�! d N (0 ;��1(�� + �	)��1); as n !1; (5.30)

(iii) if also s = o(t); for any J (q)

t�1=2J (q)
� bG�G�! d N (0 ; J (q)�

�1
	��1J (q)

0
); as n !1: (5.31)

Proof: From (5.4),

w�1=2 (bg � g) = bf�1w�1=2 (br1 + br2) ; (5.32)

wherebf = bfn = diag
n bf(x1); :::; bf(xp)o ; bri = brin = f bri(x1); :::; bri(xp)g0 ; i = 1; 2:

(5.33)
We deduce bq !p � from Lemmas 1 and 6 and br2 = op

�
w1=2

�
from Lemma 7

and Assumptions B2 (xi); i = 1; :::; p and B3. De�ne

� = ��; if t = o(s);

= 	; if s = o(t);

= (�� + �	); if t � �s: (5.34)

We have now to allow for the possibility that 	 is singular, i.e. q < p: This
only a¤ects part (iii) of the Theorem but no generality is lost by giving a single

proof for all three cases for J (q)
� bG�G� : Thus de�ne �(q) = J (q)�J (q)

0
;br(q)1 = J (q)br1:

It remains to prove

w�1=2br(q)1 !d N (0;�(q)): (5.35)

We can write

br(q)1 =

1X
j=1

Z
(q)
j "j ; Z

(q)
j = Z

(q)
jn =

1

nhd

nX
i=1

J (q)Ki�i(Xi)aij ; (5.36)
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where
Ki = fKi(x1); :::;Ki(xp)g0 : (5.37)

For positive integer N = Nn; increasing with n; de�ne

br(q)�1 = br(q)�1n =
NX
j=1

Z
(q)
j "j ; br(q)#1 = br(q)#1n = br(q)1 � br(q)�1 : (5.38)

By Lemma 9, there exists an N sequence such that br(q)#1 = op(w
�1=2):

For such N; consider

T = Tn = E
nbr(q)�1 r

(q)�0
1

��� Xg = NX
j=1

Z
(q)
j Z

(q)0
j (5.39)

and introduce a q� q matrix P = Pn such that T = PP 0: For n large enough T
is positive de�nite under our conditions. For a q�1 vector � ; such that � 0� = 1;
write

c� = c�n = � 0P�1br(q)�1 ; (5.40)

so E
�
c�2
	
= 1: We show that, conditionally on fX; all n � 1g ;

c� !d N (0; 1); (5.41)

whence by the Cramer-Wold device,

P�1br(q)�1 !d N (0; Iq); (5.42)

which implies unconditional convergence, Then for a q � q matrix � such that
�(q) = ��0 it follows that

w�1=2��1br(q)�1 !d N (0; Iq) (5.43)

if w�1=2��1P converges in probability to an orthogonal matrix; which is implied
if w�1��1PP 0��1

0 !p Iq, i.e. if

w�1T !p �
(q): (5.44)

But

E fTg = E
nbr(q)�1 r

(q)�0
1

o
+ E

nbr(q)#1 br(q)#0

1 � br(q)1 br(q)#0

1 � br(q)#1 br(q)01

o
; (5.45)

and the norm of the �nal expectation is o(w) by the Schwarz inequality and

Lemmas 8 and 9, while w�1E
nbr(q)1 br(q)01

o
! �(q) from Lemma 8. Lemma 10

completes the proof of (5.44).
To prove (5.41), write

c� =
NX
j=1

z
(q)
j "j ; z

(q)
j = z

(q)
jn = � 0P�1Z

(q)
j : (5.46)

16



Since z(q)j "j is a martingale di¤erence sequence, and

NX
j=1

z
(q)2
j = 1; (5.47)

(5.41) follows, from e.g. Scott (1973), if, for any � > 0

NX
j=1

E
n
z
(q)2
j "2j1(

���z(q)j "j

��� > �
��� X1; :::; Xng !p 0; (5.48)

as n!1: Now for any r > 0
n���z(q)j "j

��� > �
o
�
�
"2j > �r

	
[
n
z
(q)2
j > �=r

o
; so

by independence of the "j and X1; :::; Xn the left side is bounded by

NX
j=1

z
(q)2
j E

�
"2j1("

2
j > �=r)

	
+

NX
j=1

z
(q)2
j 1(z

(q)2
j > �r) (5.49)

which, from (5.47), is bounded by

max
j�1

E
�
"2j1("

2
j > �=r)

	
+
1

�r

NX
j=1

z
(q)4
j : (5.50)

The �rst term can be made arbitrarily small for small enough r; while the second
is op(1) by Lemma 11. �

6 Discussion

Under conditions motivated by spatial or spatio-temporal settings, we have es-
tablished consistency of the Nadaraya-Watson estimate under relatively broad
conditions, and asymptotic normality under stronger conditions. Our discus-
sion focusses on the relevance of some of the conditions, and some implications
of these results.

1. Assumption A5(x) is implied by lim
n!1

max1�i�n supkwk<" fi(x � w) <

1; and with identically distributed Xi, both requirements are equivalent to
boundedness of f in a neghbourhood of x: Other conditions on Xi likewise
simplify. In case of a regularly-spaced stationary time series fXig ; we have
fij(x; y) = fji�jj(x; y); so

m(x; y) =
2

n

n�1X
j=1

(1� j

n
) ffj(x; y)� f(x)f(y)g : (6.1)

In this setting, with d = 1; Castellana and Leadbetter (1986) established point-
wise consistency of kernel probability density estimates for regularly-spaced time
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series under the assumption

lim
n!1

sup
u;v2Rd

1

n

n�1X
j=1

jfj(x; y)� f(x)f(y)j = 0: (6.2)

Even after adding stationarity to our conditions, Assumption A6(x; y); used for
consistency of density (Theorem 3) as well regression (Theorems 1 and 2) es-
timates, is milder than (6.2), both because in (6.2) the modulus is inside the
summation and because the supremum is over all x; y 2 Rd: Castellana and
Leadbetter (1986) showed that (6.2) holds in case of a scalar Gaussian process
fXig with lag-j autocovariance tending to zero as j ! 1; and thus covers ar-
birarily strong long range dependence. These observations extend to the vector
case d > 1;whence Assumption A6(x; y) is satis�ed also. Moreover, (5.21)-(5.23)
of Assumption B10 are of a similar character, because all involve convergence to
zero, with no rate, of weighted averages of density-based measures of dependence
(though suprema are now inside the summations). If we employed instead an
asymptotic normality proof for the bf(xi) in proving Theorem 4, a possibility
mentioned in Secton 5, density-based conditions on Xi would, however, have to
entail rates, as indeed would mixing conditions. (Castellana and Leadbetter
(1986), like other authors, used mixing conditions in their cental limit theorem
for density estimates from stationary time series.)

2. With respect to the conditions on Vi; the requirement A10 for consistency
in Theorem 1 implies an arbitrarily slow decay in contributions from ij as, say,
ji� jj diverges, and under stationarity is satis�ed by arbitrarily strong long
range dependence. On the other hand avoiding a second moment in Theorem
2 rules out long range dependence, while easily covering conventional forms of
weak dependence. Asymptotic normality in Theorem 4 also permits general
long range dependence, though the actual strength of this in part determines
the precise outcome, including convergence rate, see parts (i)-(iii). Assumption
B11 means that changing the sign of any negative aij would not make t decay
slower, and could be satis�ed more generally if the aij are eventually positive as
j increases. The Lindeberg condition (5.12) was checked for linear time series
with arbitrarily strong dependence in the central limit theorem for the sample
mean by Ibragimov and Linnik (1971), and for �xed-design nonparametric time
series regression by Robinson (1997) (where, incidentally, the kind of trichotomy
observed in parts (i)-(iii) of Theorem 4 in our stochastic design setting does not
occur). Assumption B6 is a very mild additional decay restriction on the ij :

3. While overall our conditions on fVig and fXig are neither stronger
nor weaker than those employed under a mixing framework, in some respects
ours provide a more precise tool. Theorem 4 indicates exactly when the usual
kind of result with (nhd)1=2 convergence ceases to apply, whereas a mixing rate
can usually only be interpreted as su¢ cient. On the other hand the linear-
ity of Vi plays an important role in the achievement of asymptotic normality
throughout Theorem 4, despite possible long range dependence. Extending
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the nonlinear-functions-of-Gaussian-processes conditions employed in the long
range dependent time series literature would sometimes yield non-normal limits,
especially given our allowance for strong dependence in Xi:

4. It is important to stress that the question of which of parts (i)-(iii) of
Theorem 4 is relevant depends on h; as well as the strength of dependence in Vi:
More precisely, under the weak dependence condition

Xn

i;j=1;i 6=j
ij = O(n);

part (i) is relevant however we choose h; subject to Assumptions A4 and B3,
but not otherwise. Putting the conditions together, (5.29) occurs when

1

nhd
+

hd
nX

i;j=1;i 6=j
ij

n
+ nhd+2� ! 0; as n!1; (6.3)

(5.30) occurs when

h �

0BBBB@ �n
nX

i;j=1;i 6=j
ij

1CCCCA
1=d

; � > 0;

nX
i;j=1;i 6=j

ij

n2
+

n2(1+�=d)

nX
i;j=1;i 6=j

ij

! 0; as n!1;

(6.4)
and (5.31) occurs when

nX
i;j=1;i 6=j

ij

n2
+

n

hd
nX

i;j=1;i 6=j
ij

+
n2h2�

nX
i;j=1;i 6=j

ij

! 0; as n!1: (6.5)

These conditions also re�ect the dimension d of Xi; and the curse of dimen-
sionality is always of concern with smoothed nonparametric estimation; Gao,
Lu and Tjostheim (2006), Lu, Lundervold, Tjostheim and Yao (2007) consider
semiparametric and additive models, respectively, in di¤erent spatial settings
from ours.

5. Our results do not directly address the issue of bandwidth choice, which
is always of practical concern in smoothed nonparametric estimation, though
they have some implications for it. By adding a bias calculation under twice
di¤erentiability of g to the variance implications of part (i) of Theorem 4 we can
reproduce the usual minimum-mean-squared error optimal rate for h of n4=5: As
our results stand, we do not exploit this degree of smoothness (see Assumptions
B2 and B3), and to do so would require a stronger restriction on the dependence
in Xi; similar to that mentioned in the penultimate sentence of point 1 above.
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However the condition t � �s for part (ii) of Theorem 4 prescribes a rate for h
which ignores bias, while the part (iii) convergence rate does not directly depend
on h; so cannot contribute to an optimal bandwidth calculation.

6. Part (i) of Theorem 4 reproduces the classical asymptotic independence
across distinct �xed points familiar from the settings of independent observa-
tions and mixing time series. Since t = o(s) entails

Xn

i;j=1
ij = o(n=h); the

result nevertheless also holds under some degree of long range dependence in
Vi; while, at least in the Gaussian case, strong versions of long range depen-
dence in Xi are permitted: The allowance for non-stationarity in both processes
leads to a more complicated form of asymptotic variance, the ith diagonal el-
ement of ���1���1 reducing to the familiar ��2(xi)=f(xi) under identity of
distribution. To carry out inference, such as set con�dence regions, we need to
consistently estimate the diagonal elements; the extent to which this possible in
our more general setting would require discussion that goes beyond the scope
of the present paper.

7. Consistent variance estimation is an even more challenging proposition in
(ii) and (iii) of Theorem 4, in part due to the di¢ culty with estimating t: This
in turn stems in part from the possible non-stationarity of Vi; and estimating t
would require imposing some additional structure to limit this. It also stems
from the implied long range dependence in Vi in both parts (ii) and (iii); note
that t is analogous to quantities arising in the "HAC" literature of econometrics,
which extends earlier statistical literature (see e.g. Hannan, 1956, Eicker, 1963),
but there weak dependence is typically assumed, in which case we are back to
part (i). However, at least for stationary Vi; proposals of Robinson (2005) in
the long range dependent time series case may be extendable. The results
in parts (ii) and (iii) are much less attractive for practical use due to the non-
diagonality of 	; and even less so than immediately meets the eye. Notice
that if the Xi are iid, 	 has unit rank for all p; so estimates are undesirably
perfectly correlated. The same kind of outcome was observed by Robinson
(1991) in kernel probability density estimates from long range dependent time
series data. Unit rank could result more generally: under similar conditions on
Xi to those in Assumption B10 the numerator of the left side of (5.26) di¤ers
from

nX
i;j=1;i 6=j

ij�i(x)�j(y)fi(x)fj(y) (6.6)

by o
�Xn

i;j=1
ij

�
: Then 	 has unit rank for all p if the Xi are identically

distributed, and is possibly not well conditioned more generally. Nevertheless it
is of interest that here non-identity of distribution has the potential to desirably
increase rank.

8. Consider some implications of our setting for data observed on a rectan-
gular lattice. For simplicity we focus on a 2-dimensional lattice, where observa-
tions are recorded at points (t1; t2); for t1 = 1; :::; n1; t2 = 1; :::; n2; so n = n1n2
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(though interval of observation can di¤er across dimensions): We can regard
either or both of n1; n2 as increasing with n: The (t1; t2)th observation can be
indexed by i = n2(t1 � 1) + t2; say, in our triangular array setting. With this
correspondence, consider a process; such that Vin = v(t1; t2): We might de�ne
v(t1; t2) for t1; t2 = 0;�1; :::, and take it to be stationary. Then under broad
conditions, v(t1; t2) has a "half-plane" linear representation in terms of orthog-
onal, homoscedastic innovations, analogous to the Wold representation for time
series (see e.g. Whittle, 1954). However, for Theorems 2 and 4, we require
a linear representation for Vin in independent innovations, so for non-Gaussian
v(t1; t2) a general, multilateral representation, would be preferred, namely

v(t1; t2) =
1X

j1;j2=�1
b(t1 � j1; t2 � j2)e(j1; j2) (6.7)

with independent e(j1; j2) and square-summable b(j1; j2) : To produce a cor-
respondence with (2.7) we might read o¤ the j1; j2 in a kind of spiral fashion:
taking j = 1 when (j1; j2) = (0; 0); then j = 2; :::; 9; correspond to the points
(�1;�1); (�1; 0); :::; going clockwise around the square with vertices (�1;�1);
with j = 10; :::; 25 generated analogously from the square with vertices (�2;�2);
and so on. If a "half-plane" representation is desired we simply omit the rel-
evant points on each square. A correspondence between the aijn and moving
average weights b(t1� j1; t2� j2) then follows. Now the b(t1� j1; t2� j2) might
be chosen to be the moving average weights in unilateral or multilateral spatial
analogues of autoregressive moving averages (see e.g. Whittle, 1954, Guyon,
1982, Robinson and Vidal-Sanz, 2006). These models have the weak depen-
dence to place them �rmly in the setting of part (i) of Theorem 4. But (6.7)
can also describe long range dependence, in either or both dimensions, so parts
(ii) and (iii) of Theorem 4 can also be relevant. Notice that

Xn

i;j=1;i 6=j
ij

=
Xni�1

ji=1�ni;i=1;2
Cov fv(0; 0); v(j1; j2)g : Tran (1990), Hallin, Lu, and Tran

(2001, 2004b), for example, established consistency results for kernel density
estimates with lattice spatial data, under di¤erent conditions from those in
Theorem 3.

9. Data that are irregularly-observed in space and/or time pose far greater
problems in both computation and deriving asymptotic theory for many statis-
tical procedures. Describing a model for irregularly-spaced observations from
an underlying continuous model can be di¢ cult even in the time series case;
from a �rst-order stochastic di¤erential equation, Robinson (1977) derived a
(time-varying autoregressive) model but this kind of outcome is di¢ cult to ex-
tend to higher-order models, or spatial processes. Nonparametric regression, on
the other hand, is readily applied, though detailed checking of our conditions
would be far more di¢ cult than in the regularly-spaced circumstances just de-
scribed, especially as observation locations might be regarded as stochastically
rather than deterministically generated. However, at least some formal cor-
respondence wih our triangular array setting can be constructed. Suppose we
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have an underlying Gaussian process, where again for simplicity we consider 2
dimensions only, and denote it v(t1; t2); though now t1 and t2 might be real-
valued. Then with some ordering the n v(t1; t2) become the n Vi: Moreover,
(conditionally on the locations when these are stochastic) the Vi are Gaussian.
Denote by � the covariance matrix of the vector V = (V1; :::; Vn)

0. In a general
irregularly-spaced framework � has little structure to exploit. However, we can
write � = AA0; where, for positive de�nite � the n�n matrix A is uniquely de-
�ned only up to premultiplication by an orthogonal matrix. Due to Gaussianity
we can write V = A�; where � � N(0; In). We deduce (2.7), indeed (2.9), by
taking aij to be the (i; j)th element of A and " = �:

10. Processes in the SAR class (2.10) are more directly placed in our frame-
work. Consider the special case m1 = 1; m2 = 0 of (2.10), i.e:

(In � !W )U = �"; 0 < j!j < 1; (6.8)

with nonstochastic n�n W =Wn having row sums normalized to 1: Note that
(6.8) generally implies unconditional heteroscedasticity in the Ui; as can be
covered by our �i(Xi) = �i: As noted by Lee (2002), it follows that S = Sn =
In � !W is non-singular, and thus we have a solution to (6.8) of form Ui =Xn

j=1
bij"j ; with V ar fUig =

Xn

j=1
b2ij = �2i . Thus on taking aij = bij=�i we

have (2.9) with (2.8) : Moreover, because
Xn

i;j=1
ij = �21

0
S�1S�1

0
1; where

1 = 1n is the n � 1 vector of 10s, it follows that if S�1 has uniformly bounded
column sums (for which a condition is given in Lemma 1 of Lee, 2002), thenXn

i;j=1
ij = O(n); so "weak dependence" is implied, and part (i) of Theorem

4 applies.

7 Appendix A: Technical Lemmas for Section 4

Lemma 1: Let Assumptions A1, A2( �) for � > 2d; A4, A5(x), and A6 (x; x)
hold. Then as n!1; for some " > 0

Varfq̂(x )g = O((nhd)�1�(x ; ") + n�1h2(��d)+�(x ; x ; ") + h��2d)! 0 : (A.1)

Proof. We have

Varfq̂(x )g = 1

(nhd)2

24 nX
i=1

V arfKi(x)g+
nX

i;j=1;i 6=j
CovfKi(x);Kj(x)g

35 : (A.2)
The �rst term in the square brackets is bounded by
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n

Z
Rd
K2

�
x� w
h

�
f(w)dw = nhd

Z
Rd
K2 (u) f(x� hu)du

= nhd

(Z
khuk<"

K2 (u) f(x� hu)du

+

Z
khuk�"

K2 (u) f(x� hu)du
)
; (A.3)

for any " > 0: The �rst term in the braces is bounded by ��(x; "); where,
throughout, C denotes an arbitrarily large generic constant. The second term
in the braces is bounded by

sup
kuk�"=h

K (u)
2
Z
Rd
f(x� hu)du = O(h2��d); (A.4)

so
1

(nhd)2

nX
i=1

V arfKi(x)g = O((nhd)�1�(x; ") + n�1h2(��d)): (A.5)

The second term in the square brackets in (A.2) is

(nhd)2

(Z
J1(")

K (u)K (v)m(x� hu; x� hv)dudv + 2
Z
J2(")

K (u)K (v)m(x� hu; x� hv)dudv

+

Z
J3(")

K (u)K (v)m(x� hu; x� hv)dudv
)
; (A.6)

where J1(") = J1n(") = fu; v : khuk < "; khvk < "g ; J2(") = J2n(") = fu; v : khuk < "; khvk � "g ;
J3(") = J3n(") = fu; v : khuk � "; khvk � "g : The �rst integral in the braces is
bounded by

�(x; x; ")

�Z
Rd
jK (u)j du

�2
: (A.7)

The second integral is bounded by

2

Z
u2Rd;khvk�"

jK (u)K (v)j jm(x� hu; x� hv)j dudv

� 2 sup
u2Rd

jK (u)j sup
kvk�"=h

jK (v)j

�
Z
R2d

1

n2

nX
i;j=1;i 6=j

ffij(x� hu; x� hv) + fi(x� hu)fj(x� hv)g dudv

= O(h��2d): (A.8)
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The third integral is bounded byZ
khuk�";khvk�"

jK (u)K (v)j jm(x� hu; x� hv)j dudv

� sup
kuk�"=h

K (u)
2

�
Z
R2d

1

n2

nX
i;j=1;i 6=j

ffij(x� hu; x� hv) + fi(x� hu)fj(x� hv)g dudv

= O(h2��2d): (A.9)

Thus

1

(nhd)2

nX
i;j=1;i 6=j

CovfKi(x);Kj(x)g = O(�(x; x; ") + h��2d): (A.10)

�

Lemma 2: Let Assumptions A1, A2( �) for � > d; A3, A4 and A7 (x)
hold. Then

lim
n!1

Ef bf(x)g > 0: (A.11)

Proof: We have

Ef bf(x)g �
Z
kuk<"=h

K (u) f(x� hu)du�
�����
Z
kuk�"=h

K (u) f(x� hu)du
����� ;

� inf
kuk<"

f(x� u)
Z
kuk<"=h

K (u) du� sup
kuk�"=h

jK (u)j =hd

� 1

2
inf

kuk<"
f(x� u)�O(h��d) > � (A.12)

for n su¢ ciently large and some � > 0; by Assumption A7(x). �

Lemma 3: Let Assumptions A1, A2( �) for � > d; A4, A5(x), and A8
hold. Then

E jbr2(x)j ! 0; as n!1: (A.13)

Proof: We have
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E

�����
nX
i=1

fg(Xi)� g(x)gKi(x)

����� � nhd
Z
Rd
jK (u)j jg(x� hu)� g(x)j f(x� hu)du

� nhd sup
kuk�"

jg(x� u)� g(x)j sup
kuk�"

f(x� u)
Z
Rd
jK (u)j du

+nhd sup
kuk�"=h

jK (u)j
�Z

Rd
jg(x� hu)j f(x� hu)du

+ jg(x)j
Z
Rd
f(x� hu)du

�
� �nhd + Cnh�

(
1

n

nX
i=1

E jg(Xi)j+ jg(x)j
)

(A.14)

for any � > 0; to complete the proof. �

Lemma 4: Let Assumptions A1, A2( �) for � > 2d; A4, A9, and A10 hold.
Then

E
�br1(x)2	! 0; as n!1: (A.15)

Proof: The left side of (A.15) is

1

(nhd)2

24 nX
i=1

Ef�2i (Xi)K
2
i (x)g+

nX
i;j=1;i 6=j

ijEf�i(Xi)�j(Xj)Ki(x)Kj(x)g

35 :
(A.16)

recalling that ii = V ar fVig = 1: The �rst expectation is

hd

(Z
khuk<"

K2 (u)�i(x� hu)du+
Z
khuk�"

K2 (u)�i(x� hu)du
)
: (A.17)

The �rst term in braces is bounded by

C sup
kuk<"

�i(x� u): (A.18)

The second term is bounded by

sup
kuk�"=h

K (u)
2
Z
Rd
�i(x� hu)du � Ch2��dE�2i (Xi): (A.19)

The second expectation in (A.16) isZ
R2d

K

�
x� w
h

�
K

�
x� z
h

�
�ij(w; z)dwdz

= h2df
 Z

J1(")

+ 2

Z
J2(")

+

Z
J3(")

!
K (u)K (v) �ij(x� hu; x� hv)dudv:

(A.20)
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Proceeding as in the proof of Lemma 1, this is bounded by

Ch2d sup
kuk<";kvk<"

j�ij(x� u; x� v)j

+h2d

8<:2 sup
kuk�"=h

jK (u)j sup
v2Rd

jK (v)j+
 

sup
kuk�"=h

jK (u)j
!29=;

�
Z
R2d
j�ij(x� hnu; x� hnv)j dudv; (A.21)

whose last term is bounded by Ch�E j�i(Xi)�j(Xi)j � Ch�Ef�2i (Xi)g1=2Ef�2j (Xj)g1=2 =
O(h�) uniformly in i; j: Thus (A.16) is

O

0@ 1

(nhd)2

8<:n(hd + h2��d) + (h2d + h�)
nX

i;j=1;i 6=j

��ij��
9=;
1A = O

0@ 1

nhd
+
1

n2

nX
i;j=1;i 6=j

��ij��
1A! 0:

(A.22)
�

Introduce

V 0i = V 0in =

1X
j=1

aij"
0
j ; U

0
i = U 0in = �i (Xi) fV 0i � E (V 0i )g ;

V
00

i = V
00

in =
1X
j=1

aij"
00

j ; U
00

i = U
00

in = �i (Xi)
n
V

00

i � E
�
V

00

i

�o
: (A.23)

Lemma 5: Let Assumptions A1, A2( �) for � > 2d; A4, A9(x; x) and A11
hold. Then

E jbr1(x)j ! 0; as n!1: (A.24)

Proof:

1

nhd

nX
i=1

U 0iKi(x) =
1

nhd

nX
i=1

�i (Xi)Ki(x)
1X
j=1

aij("
0
j � E

�
"0j
	
) (A.25)

has mean zero and variance

1

(nhd)
2

nX
i=1

Ef�2i (Xi)K
2
i (x)g

1X
k=1

a2ikV arf"0kg

+
1

(nhd)
2

nX
i;j=1;i 6=j

Ef�i(Xi)�j(Xj)Ki(x)Kj(x)g

�
1X
k=1

aikajkV arf"0kg: (A.26)
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From the proof of Lemma 4, this is bounded by

C

nhd

1X
k=1

a2ik+
C

n2hd

nX
i;j=1

1X
k=1

jaikj jajkj �
C

nhd
(1+ max

1�i�n

1X
k=1

jaikjmax
k�1

nX
j=1

jajkj)! 0

(A.27)
as n!1: On the other hand

E

����� 1nhd
nX
i=1

U
00

i Ki(x)

����� � 2

nhd

nX
i=1

E j�i (Xi)Ki(x)j
1X
j=1

jaij jE
���"00j ��� : (A.28)

In a similar way as before, E j�i (Xi)Ki(x)j � Chd; whence (A.28) is bounded
by

Cmax
n�1

max
1�j�n

E
���"00j ���max

i�1

1X
j=1

jaij j ! 0 (A.29)

as D !1: �

8 Appendix B: Technical Lemmas for Section 5

Lemma 6: Let Assumptions A1, A2( �) for � > d; A4 and B1(x) hold. Then
for all � > 0 there exists " > 0 such that���Ef bf(x)g � f(x)��� � C(�(x; ") + h��d) < �; (B.1)

for all su¢ ciently large n:

Proof: We have

Ef bf(x)g � f(x) =

Z
Rd
K (u) ff(x� hu)� f(x)gdu

=

Z
khuk<"

K (u) ff(x� hu)� f(x)gdu

+

Z
khuk�"

K (u) ff(x� hu)� f(x)gdu; (B.2)

for " > 0: The �rst term is bounded by

�(x; ")

Z
Rd
jK (u)j du: (B.3)

The second term is bounded by

sup
kuk�"=h

jK (u)j
Z
Rd
f(x� hu)du+ f(x)

Z
kuk�"=h

jK (u)j du = O(h��d): (B.4)
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�

Lemma 7: Let Assumptions A1, A2( �) for � > d+ �; A4, A5(x), A8 and
B2( x) hold. Then

E kbr2(x)k = O(h�n); as n!1: (B.5)

Proof: This is very similar to the proof of Lemma 3, and thus omitted. �

Lemma 8 Let Assumptions A1, A2( �) for � > 2d; A4, A9(x; y), B4,
B8(x; y); B10 and B11 hold. Then

Cov fbr1(x); br1(y)g � ��(x)s; if x = y and t = o (s) ;

= o (s) ; if x 6= y and tn = o (s) ;

�  (x; y)t; if s = o (t) ; (B.6)

� f��(x) + � (x; y)g s; if t � �s; � 2 (0;1):

Proof: Proceeding as in the proof of Lemma 4, Cov fbr1(x); br1(y)g is
1

(nhd)2

nX
i=1

Ef�2i (Xi)Ki(x)Ki(y)g (B.7)

+
1

(nhd)2

nX
i;j=1;i 6=j

ijEf�i(Xi)�j(Xj)Ki(x)Kj(y)g: (B.8)

When x = y; from (A.17) (B.7) equals

h�d

n2

nX
i=1

Z
Rd
K2 (u)�i(x� hu))du: (B.9)

The di¤erence between the integral and ��2i (x)fi(x) isZ
Rd
K2 (u)

�
�2i (x� hu)� �2i (x)

	
fi(x� hu)du

+�2i (x)

Z
Rd
K2 (u) ffi(x� hu)� fi(x)g du: (B.10)

The �rst term is bounded by

� max
1�i�n

sup
kuk<"

���2i (x� u)� �2i (x)�� sup
kuk<"

fi(x� hu)

+ max
1�i�n

sup
khuk�"

K2 (u)

Z
Rd

�
�2i (x� hu) + �2i (x)

	
fi(x� hu)du

= o(1) +O(h2��d); (B.11)
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uniformly in i; proceeding as in the proof of Lemma 4. The second term is
bounded by

� max
1�i�n

�2i (x) sup
khuk<"

jfi(x� hu)� fi(x)j

+ max
1�i�n

�2i (x) sup
kuk�"=h

K2 (u)

Z
Rd
fi(x� hu)du

+ max
1�i�n

fi(x)

Z
kuk�"=h

K2 (u) du

= o(1) +O(h2��d): (B.12)

uniformly in i: Thus, when x = y; there is a sequence � = �n ! 0 such that

(B:7) � �
h�d

n2

nX
i=1

f�i(x) + �g � ��(x)s: (B.13)

When x 6= y; (B.7) equals

h�d

n2

nX
i=1

Z
Rd
K (u)K

�
u+

y � x
h

�
�i(x� hu)du: (B.14)

The di¤erence between the integral and

�i(x)

Z
Rd
K (u)K

�
u+

y � x
h

�
du (B.15)

is, by essentially the same proof, o(1) + O(h2��d) uniformly in i: Splitting the
range of integration into the sets kuk > kx� yk =2h and kuk � kx� yk =2h; and
noting that the latter inequality implies that ku+ (y � x)=hk � kx� yk =2h; the
integral in (B.15) is bounded by

2

(
sup

kuk>kx�yk=2h
jK (u)j

)Z
Rd
jK (u)j du � Ch��d: (B.16)

Thus when x 6= y; for � as before,

(B:7) =
h�d

n2

nX
i=1

�i(x)� = o(s); (B.17)

As in (A.20), (B.8) is

1

n2

nX
i;j=1;i 6=j

ij

Z
R2d

K (u)K (v) �ij(x� hu; y � hv)dudv: (B.18)

Now �ij(x� u; y � v)� �ij(x; y) can be written

f�i(x� u)� �i(x)g�j(y � v)fij(x� u; y � v) + �i(x) f�j(y � v)� �j(y)g fij(x� u; y � v)
+�i(x)�j(y) ffij(x� u; y � v)� fij(x; y)g : (B.19)
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By proceeding much as before with each of these three terms, it may thus be
seen that

(B:18) � 1

n2

nX
i;j=1;i 6=j

ij f�ij(x; y) + �g �  (x; y)t: (B.20)

�

Lemma 9 Let Assumptions A1, A2( �) for � > 2d; A4, A9(xi; xj), B4,
B8(xi; xj); i; j = 1; :::; p; B10 and B11 hold. Then there exists a sequence
N = Nn; increasing with n; such that

E
 br#1 2 = o(w); as n!1: (B.21)

Proof: We have

E
 br#1 2 = 1

(nhd)
2

nX
i;j=1

E fK 0
iKj�i(Xi)�j(Xj)g

1X
k=N+1

aikajk (B.22)

From the proof of Lemma 8 the expectation is

�hd

(
pX
k=1

�i(xk)

)
1(i = j)(1 + o(1)) + tr(Dij)1(i 6= j)(1 + o(1)) (B.23)

uniformly in i:j; where 1(:) denotes the indicator function and Dij is the p� p
matrix with (k; l)th element h2d�ij(xk; xl): Thus for large enough n (B.22) is
bounded by

Ch2d

(nhd)
2

nX
i;j=1

�����
1X

k=N+1

aikajk

����� : (B.24)

First suppose t = O(s): By the Cauchy inequality (B.24) is bounded by

C

n2

8<:
nX
i=1

 1X
k=N+1

a2ik

!1=29=;
2

: (B.24)

In view of (2.8),

lim
N!1

max
1�i�n

1X
k=N+1

a2ik ! 0: (B.25)

Thus E
br#1 2 ! 0 as n!1:

Now suppose s = o(t): We have

nX
i;j=1;i 6=j

�����
1X

k=N+1

aikajk

����� �
1X

k=N+1

nX
i;j=1;i 6=j

jaikajkj : (B.26)
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Now
1P
k=1

bk � 1; (B.27)

where

bk = bkn =
nX

i;j=1;i 6=j
jaikajkj =

1X
k=1

nX
i;j=1;i 6=j

jaikajkj : (B.28)

Thus
1X

k=N+1

bk ! 0 as n!1; (B.29)

and from (5.26),

E
 br#1 2 = h2d

(nhd)
2

nX
i;j=1

1X
k=N+1

jaikajkj ! 0 as n!1: (B.30)

�

Lemma 10 Let Assumptions A1, A2( �) for � > 4d; A4, A9(xi; xj), B4,
B6, B7, B9(xi) and B10 hold, i ; j = 1 ; :::; p:Then

E kT � E fTgk2 = o(w2); as n!1: (B.31)

Proof: It su¢ ces to check (B.31) in case p = 1; so we put x1 = x:We have

E fT � E fTgg2 =
NX

j;k=1

�
E
�
Z2jZ

2
k

	
� E

�
Z2j
	
E
�
Z2k
	�
: (B.32)

The summand is

1

(nhd)
4E

8<:
 

nX
i=1

Ki(x)�i(Xi)aij

nX
i=1

Ki(x)�i(Xi)aik

!29=;
�E

8<:
 

nX
i=1

Ki(x)�i(Xi)aij

!29=;E

8<:
 

nX
i=1

Ki(x)�i(Xi)aik

!29=;
=

1

(nhd)
4

nX
is=1

s=1;:::;4

ai1jai2jai3kai4k

�
E

�
4Q
s=1

Kis(x)�is(Xis)

�

�E
�

2Q
s=1

Kis(x)�is(Xis)

�
E

�
4Q
s=3

Kis(x)�is(Xis)

��
: (B.33)

The quadruple sum yields terms of seven kinds, depending on the nature of
equalities, if any, between the is; and bearing in mind the fact that i1; i2 are
linked with j; and i3; i4 are linked with k: Symbolically, denote such a term
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hA;B;C;Di � hA;Bi hC;Di ; when all is are unequal, and repeat the corre-
sponding letters in case of any equalities. The other six kinds of term are
thus

hA;A;A;Bi � hA;Ai hA;Bi ; hA;A;A;Ai � hA;Ai hA;Ai :

hA;A;B;Ci � hA;Ai hB;Ci ; hA;B;A;Ci � hA;Bi hA;Ci ;

hA;B;A;Bi � hA;Bi hA;Bi ; hA;A;B;Bi � hA;Ai hB;Bi ; (B.34)

For an hA;B;C;Di � hA;Bi hC;Di term, the quantity in square brackets in
(B.33) is

h4dn

Z
R4d
ffi1i2i31i4(x� hu1; x� hu2; x� hu3; x� hu4)

�fi1i2(x� hu1; x� hu2)fi3i4(x� hu3; x� hu4)g

�
4Q
s=1

fK (us)�is(x� hus)dusg : (B.35)

By arguments similar to those in Lemma 4 the contribution to (B.32) is thus
bounded by

C

n4

nX
is=1

s=1;:::;4

0
���

i1i2

i3i4

��� �i1i2i3i4(x; x; x; x; ") (B.36)

for some " > 0: This is o(t2); and thus o(s2) if t = O(s):
In a similar way, the contribution of an hA;A;B;Ci � hA;Ai hB;Ci term is

bounded by

Ch�d

n3

nX
is=1
s=1;2;3

0
���

i2i3n

��� �i1i2i3(x; x; x; "): (B.37)

This is o(st); which is o(s2) if t = O(s); and o(t2) if s = o(t): Likewise the
contribution of an hA;A;B;Bi � hA;Ai hB;Bi term is bounded by

Ch�2d

n2
�i1i2(x; x; "): (B.38)

This is o(s2); and thus o(t2) if s = o(t):
The remaining terms in (B.34) are handled by showing that the individual

components of each di¤erence are o(w2): The hA;B;A;Ci contribution is (using
Assumption B6) bounded by

Ch�d

n4

nX
is=1
s=1;2;3

���
i1i2

��� ���
i1i3

��� sup
jusj<"
s=1;2;3

fi1i2i3(x� u1; x� u2; x� u3) = o(st); (B.39)
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the hA;Bi hA;Ci one by

C

n4

nX
is=1
s=1;2;3

���
i1i2

��� ���
i1i3

��� sup
jusj<"
s=1;2

fi1i2(x�u1; x�u2) sup
jusj<"
s=1;3

fi1i3(x�u1; x�u3) = o(st);

(B.40)
the hA;B;A;Bi one by

Ch�2d

n4

nX
is=1
s=1;2

2
i1i2

sup
jusj<"
s=1;2

fi1i2(x� u1; x� u2) = O(s2t); (B.41)

the hA;Bi hA;Bi one by

C

n4

nX
is=1
s=1;2

2
i1i2

sup
jusj<"
s=1;2

f2i1i2(x� u1; x� u2) = o(s2t); (B.42)

the hA;A;A;Bi one by

Ch�2d

n4

nX
is=1
s=1;2

���
i1i2

��� sup
jusj<"
s=1;2

fi1i2(x� u1; x� u2) = O(s2t); (B.43)

the hA;Ai hA;Bi one by

Ch�d

n4

nX
is=1
s=1;2

���
i1i2

��� sup
juj<"

fi1(x� u) sup
jusj<"
s=1;2

fi1i2(x� u1; x� u2) = o(s2t); (B.44)

the hA;A;A;Ai one by

Ch�3d

n4

nX
i=1

sup
juj<"

fi(x� u) = O(s3); (B.45)

and the hA;Ai hA;Ai one by

Ch�2d

n4

nX
i=1

sup
juj<"

f2i (x� u) = o(s3): (B.46)

�

Lemma 11 Let Assumptions A1, A2( �) for � > 4d; A4, B4, B5, B7,
B9(xi) and B10 hold, i = 1 ; :::; p: Then

E

8<:
NX
j=1

z
(q)4
j

9=; = O(b+ n�1 + s+ t); as n!1: (B.47)
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:
Proof: Arguing as before and applying (5.44), the left side is bounded by

Cw�2

(nhd)
4

NX
j=1

nX
is=1

s=1;:::;4

jai1jai2jai3jai4j j
�
h4d1(is 6= it; s; t = 1; :::; 4; s 6= t)

+h3d1(i1 = i2 6= i3; i4; i3 6= i4) + h
2d1(i1 = i2 6= i3 = i4) + h

d1(i1 = i2 = i3 = i4)
	

� Cw�2

n4

NX
j=1

8<:
 

nX
i=1

jaij j
!4
+ h�d

 
nX
i=1

jaij j
!2 nX

i=1

a2ij

+h�2d

 
nX
i=1

a2ij

!2
+ h�3d

 
nX
i=1

a4ij

!9=; : (B.48)

We have �rst

NX
j=1

 
nX
i=1

jaij j
!4

� sup
j�1

 
nX
i=1

jaij j
!2 NX

j=1

 
nX
i=1

jaij j
!2

� b

8<:
1X
j=1

 
nX
i=1

jaij j
!29=;

2

(B.49)

Now

1X
j=1

 
nX
i=1

jaij j
!2

�
1X
k=1

0@ nX
i;j=1;i 6=j

jaikajkj+
nX
i=1

a2ik

1A
= O

0@ 1X
k=1

nX
i;j=1;i 6=j

aikajk +

nX
i=1

a2ik

1A
= O

0@ nX
i;j=1

ij

1A ; (B.50)

as n!1; the penutimate bound using Assumption B11. We have

w�2

n4

0@ nX
i;j=1

ij

1A2

� t2s�2 � C if t = O(s);

� t�2t2 � C if s = o(t): (B.51)

Thus the contribution to (B.48) from the �rst expression in its braces is O(b):
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Next

NX
j=1

 
nX
i=1

jaij j
!2 nX

i=1

a2ij � sup
j�1

nX
i=1

a2ij

8<:
NX
j=1

 
nX
i=1

jaij j
!29=;

= O

0@ 1X
j=1

 
nX
i=1

jaij j
!21A

= O

0@ nX
i;j=1

ij

1A ; (B.52)

as n!1; the second and last bounds using Assumption B5 and (B.50). But

h�d
w�2

n4

nX
i;j=1

ij � h�dts�2=n2 � C=n if t = O(s)

� h�dt�1=n2 � C=n if s = O(t) (B.53)

Thus the contribution to (B.48) from the second expression in its braces is
O(n�1): Next

Cw�2h�2d

n4

NX
j=1

 
nX
i=1

a2ij

!2
� Cw�2

n4
nh�2d

 
max
1�j�n

nX
i=1

a2ij

!
nX
i=1

NX
j=1

a2ij

� Cw�2s2=n

� C=n; (B.54)

for both t = O(s) and s = o(t): Finally

Cw�2

n4

NX
j=1

h�3d

 
nX
i=1

a4ij

!
� Cw�2

n4
h�3d

0@ nX
i=1

NX
j=1

a4ij

1A
� Cw�2

n3
h�3d � Cs3s�2 � Cs if t = O(s)

� Cs3t�2 = o(t) if s = o(t); (B.55)

and both tend to zero in view of Assumptions A4 and A10. �
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