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ABSTRACT 
 
 We consider estimation of a linear or nonparametric additive model in which a few 
coefficients or additive components are “large” and may be objects of substantive interest, 
whereas others are “small” but not necessarily zero.  The number of small coefficients or additive 
components may exceed the sample size.  It is not known which coefficients or components are 
large and which are small.  The large coefficients or additive components can be estimated with a 
smaller mean-square error or integrated mean-square error if the small ones can be identified and 
the covariates associated with them dropped from the model.  We give conditions under which 
several penalized least squares procedures distinguish correctly between large and small 
coefficients or additive components with probability approaching 1 as the sample size increases.  
The results of Monte Carlo experiments and an empirical example illustrate the benefits of our 
methods. 
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PENALIZED ESTIMATION OF HIGH-DIMENSIONAL MODELS UNDER A 
GENERALIZED SPARSITY CONDITION 

1.  Introduction 

 We consider the mean-regression models 

(1)  
1

; 1,...,
p

i ij j i
j

Y X iβ ε
=

= + =∑ n

n

and 

(2) , 
1

( ) ; 1,...,
p

i j ij i
j

Y f X iε
=

= + =∑

where  is a response variable, the iY ∈ ijX ’s are scalar covariates that are fixed in model (1) 

and random in model (2), and the iε ’s are unobserved mean-zero random variables.  In model 

(1), the jβ ’s are unknown constant coefficients.  In model (2), the jf ’s are unknown functions.  

We assume without loss of generality that the data are centered and the jf ’s are normalized so 

that there is no intercept in either model.  In model (1), we also assume that 1 2
1

1n
iji

n X−
=

=∑  for 

each .  The number of covariates (1,...,j = p p ) may be large, possibly larger than the sample 

size ( ). n

 Motivated by applications in economics and other social sciences, we assume that some 

jβ ’s or jf ’s are “large” in a sense that will be defined and that one or more of the large jβ ’s or 

jf ’s are the objects of substantive interest.  The remaining jβ ’s or jf ’s are small but not 

necessarily zero.  They are not objects of substantive interest, but including them in the model 

reduces the bias of estimates of the large jβ ’s or jf ’s.  Our interest is in estimating the large 

jβ ’s or jf ’s that are of substantive interest.  It turns out that the mean-square estimation errors 

of the large jβ ’s or integrated mean-square estimation errors of the large jf ’s can be reduced by 

identifying and dropping from the model the covariates associated with small jβ ’s or jf ’s.  We 

give conditions under which several penalized least squares procedures distinguish correctly 

between large and small jβ ’s or jf ’s with probability approaching one as .  We also 

show that these methods provide consistent estimators of the large 

n→∞

jβ ’s and jf ’s.  The 

penalization methods we consider include the adaptive LASSO, bridge estimation, and estimation 

with the SCAD or minimax concave (MC) penalty functions. 
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 In model (1), let {1,..., }sA p⊂  denote the set of small coefficients.  These are defined as 

coefficients satisfying the generalized sparsity condition (GSC) 

(3) | |
s

j n
j A

β η
⊂

≤∑ , 

where { }nη  is a sequence of non-negative constants.  In our most general approach, which is the 

adaptive LASSO, .  This condition is weaker than the one commonly used in the 

literature, which is that  

1/ 2(n o nη −= )

(4) | | 0 if j sj Aβ = ∈ . 

Note that (4) is a special case of the GSC.  In practice, the GSC can be a more realistic 

formulation of sparse models than is (4).  Let 0A  denote the complement of sA .  We define the 

elements of 0A  to be large coefficients.  In the adaptive LASSO, we assume that the coefficients 

jβ  in 0A  satisfy | | (log ) /j p nβ .  We define a covariate to be important if its coefficient is in 

0A  and unimportant if its coefficient is in sA .  The other penalization methods that we consider 

require more restrictive definitions of the large and/or small coefficients.  These definitions 

depend on the penalization method and are given in Section 3.2 of this paper. 

 In model (2), let 0 {1,..., }A p⊂  again denote the set of large additive components.  We 

define these to be components that are non-zero in the sense that  and assume that 

the number of such components, q , is fixed as .  Specifically,  

2( ) 0j ijEf X >

n→∞

  2
0 { : ( ) 0}j ijA j Ef X= >

and 0| |A q=  is fixed.  We assume that the remaining additive components are small or zero in the 

sense that 

(5) , 
0

2 2 /(2
:
max ( ) ( )d d

j
x j A

p f x o n− +

∉
= 1)

where  is measures the smoothness of the additive components.  Let d sA  denote the set of small 

additive components.  Condition (5) is weaker than but includes as a special case the condition 

used by Huang, Horowitz, and Wei (2010), which is that ( ) 0jf v =  for all  if v sj A∈ .   

 In model (1), we assume that the number of large coefficients is fixed as .  Thus, 

for example, if 

n→∞

p  is fixed, the small coefficients are smaller than  and the large 

coefficients are larger than  as .  In this case, the mean-square estimation errors 

of the large coefficients are smaller if all the unimportant covariates are excluded from the model 

1/ 2(O n− )

1/ 2( )O n− n→∞
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than if any of the unimportant covariates is included.  Thus, when the objective is to estimate one 

or more large coefficients, it is better to drop the unimportant covariates from the model.   

The assumption that the number of large coefficients is fixed is motivated by applications 

in the social sciences.  In these applications, it is not unusual for survey data to contain hundreds 

or thousands of variables that are arguably related to the dependent variable of interest in the 

sense of having non-zero jβ  coefficients in (1).  However, in typical applications, most of these 

coefficients are thought to be small in the sense of having magnitudes and effects on the 

dependent variable that are smaller than the random sampling errors of their estimates.  The 

“large” coefficients are typically few in number.  For example, in an economic wage equation, the 

dependent variable is the logarithm of an individual’s weekly wage, and the objects of interest are 

the coefficients of a few covariates such as an individual’s years of education, years of labor-

force experience, and labor union membership.  However, widely available data sets for 

estimating wage equations can contain hundreds or even thousands of variables that may be 

weakly related to wages.  It is not clear a priori which of these variables should be included in a 

wage equation, though it is clear that including all of them will result in very imprecise estimates 

of the coefficients of interest.  This illustrates the usefulness of a systematic method for 

discriminating between covariates with large and small coefficients.  We give conditions under 

which certain penalized least squares estimators do this with probability approaching 1 as 

. n→∞

 In model (2), the asymptotic distributions and, therefore, integrated mean-square errors of 

the estimators of the large jf ’s is independent of the number of small jf ’s, provided that this 

number is also fixed as  (Horowitz and Mammen 2004).  We give conditions under which 

a penalized least-squares estimation procedure reduces the number of small 

n→∞

jf ’s to a fixed value 

when the number of covariates associated with small jf ’s is an increasing function of .   n

 Our objectives in this paper differ from those of most of the literature on estimation of 

high-dimensional mean-regression models.  In most of the literature, the large jβ ’s or jf ’s are 

assumed to be bounded away from zero, and the small ones are assumed to be exactly zero.  

Interest centers on identifying and estimating the large jβ ’s or jf ’s (model selection) or 

selecting covariates that yield good predictions of Y .  In this paper, the large jβ ’s are not 

necessarily bounded away from zero as  and the small n→∞ jβ ’s or jf ’s are not necessarily 
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zero.  Moreover, our concern is with estimating a few large jβ ’s or jf ’s , not with model 

selection or predicting Y .  

The remainder of this paper is organized as follows.  Section 2 presents a literature 

review.  Section 3 describes penalized least-squares methods for selecting and estimating the 

large coefficients of model (1).  These include the adaptive LASSO (Zou 2006) and a class of 

penalization methods that includes the bridge, SCAD, and MC penalties as special cases.  Section 

4 deals with model (2).  Section 5 presents the results of a Monte Carlo investigation of the 

numerical performance of the adaptive LASSO.  Section 6 presents an empirical example, and 

Section 7 presents concluding comments.  The proofs of theorems are in the appendix, which is 

Section 8. 

2.  Review of the Literature 

 LASSO-type penalization methods for model selection (Tibshirani 1996) have attracted 

much attention in recent years.  There is also a large literature on the use of LASSO for the 

related problem of prediction (see, e.g., Greenshtein and Ritov (2004) and Bickel, Ritov, and 

Tsybakov 2009).  Meinshausen and Bühlmann (2006) and Zhao and Yu (2006) showed that, 

under a strong irrepresentable condition on the design matrix, the LASSO for model (1) is model-

selection consistent in high-dimensional settings.  Zhang (2009) gave conditions under which the 

LASSO combined with a thresholding procedure consistently distinguishes between coefficients 

that are zero and coefficients whose magnitudes as  exceed n→∞ sn−  for some .  Zou 

(2006) proposed the adaptive LASSO and gave conditions under which it is model-selection 

consistent when the number of covariates is fixed.  Huang, Ma, and Zhang (2008) provided 

conditions under which the adaptive LASSO is model-selection consistent even when the number 

of covariates is as large as  for some 

1/ 2s <

exp( )an (0,1)a∈ .  Huang, Horowitz, and Wei (2010) 

considered model (2) and showed that a form of adaptive group LASSO provides consistent 

model selection in a high-dimensional setting. 

Non-LASSO penalization approaches have also been considered.  Knight and Fu (2001) 

and Huang, Horowitz, and Ma (2008) established model-selection consistency of bridge 

estimators.  Antoniadis and Fan (2001) proposed the SCAD penalty.  Fan and Li (2001); Fan and 

Peng (2004) further investigated the properties of least-squares and penalized likelihood 

estimators with the SCAD penalty.  Zhang (2010) investigated penalized least squares estimation 

with the MC penalty.  Other penalization methods have been investigated by Fan, Peng, and 

Huang (2005); Lv and Fan (2009); and Zou and Zhang (2009).   
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The foregoing model-selection procedures assume that the large jβ ’s in model (1) are 

non-zero and that the small jβ s are exactly zero.  In a recent paper, Zhang and Huang (2008) 

studied the selection properties of the LASSO under the GSC when .  They showed that the 

LASSO selects a model that includes all the covariates with large coefficients and has the right 

order of dimensionality.  However, in general, the LASSO also includes some covariates with 

small coefficients.  Thus, for example, the LASSO tends to select a model that is too large when 

the large coefficients are larger and the small coefficients are smaller than .  Zhang 

(2009) gave conditions under which the LASSO combined with a thresholding procedure 

correctly selects coefficients that are sufficiently far from zero.  However, Zhang’s procedure 

requires a user-selected threshold, and it is not clear how to choose this threshold in applications. 

p n>

1/ 2(O n− )

 In this paper, we give conditions under which with probability approaching one as 

, several penalized least-squares procedures correctly distinguish between large and small 

coefficients or additive components under the GSC.  No user-selected thresholds are needed.   

n→∞

3.  The Linear Model 

 This section describes methods for selecting and estimating the large jβ  coefficients in 

model (1).  Section 3.1 gives conditions under which the adaptive LASSO procedure of Zou 

(2006) distinguishes correctly between large and small jβ ’s as .  Section 3.2 gives 

conditions under which penalized least-squares estimation with a SCAD, MC, or bridge penalty 

function does this.   

n→∞

 3.1  The Adaptive LASSO 

 Define .  Let 1( ,..., )nY Y ′=y 1( ,..., )j j njx x ′=x  denote the vector of values of the j ’th 

covariate, and let 1( ,..., )pX = x x  denote the design matrix.  Let 1( ,..., )pβ β ′=β , and let 0β  

denote the true but unknown value of β .  Let 2⋅  denote the  norm.  The ordinary LASSO 

objective function is 

2

(6) 2
1 1 12

1
( ; ) 0.5 | |

p

j
j

L λ λ β
=

= − + ∑β y Xβ , 

where 1 0λ ≥  is the penalty parameter.  The LASSO estimator is defined as 

1 1( ) arg min ( ; )n L 1β λ λ= β β . 

 The adaptive LASSO objective function is 
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(7) 2
2 1 22

1
( ; ) 0.5 | |

p

j j
j

L wλ λ β
=

= − + ∑β y Xβ , 

where 2 0λ ≥  is the penalty parameter.  The weights  are jw

 , 1| |j njw β −=

where njβ  is the j ’th component of 1( )nβ λ .  The adaptive LASSO estimator is defined as 

2 2
ˆ ( ) arg min ( ; )n L 1β λ = β β λ .  We define jw = ∞  when 0njβ = , and we set 0 0 .   

Minimization of (7) results in 

×∞ =

ˆ 0njβ =  if jw = ∞ .  Thus, if a variable is not selected by the 

LASSO, it is not selected by the adaptive LASSO.  Coefficients that are known to be large a 

priori can be omitted from the penalty term. 

 Under conditions (A1)-(A3) below, the LASSO selects (asymptotically) all coefficients 

that exceed a certain threshold.  However, the LASSO also tends to select coefficients that are 

below the threshold.  The adaptive LASSO is a way to correct LASSO’s over-selection problem.  

 We use the following notation.  For any , let {1,..., }A⊆ p { : }A jX j A= ∈x  and 

.  Define /A A AC X X′= n

 
2

min | | , 1
( ) min min AA m

c m C
ν

ν ν
= =

′= ,     
2

min
| | , 1

( ) max max A
A m

c m C
ν

ν ν
= =

′= , 

where  is the number of elements of .  We say that the covariate matrix | |A A X  satisfies the 

sparse Riesz condition (SRC) with rank q  and spectrum bounds **0 c c< < < ∞  if 

(8) . *  * min max( ) ( ) with | |  and qc c q c q c A A q ν≤ ≤ ≤ ∀ = ∈

Under (8), all the eigenvalues of AC  are contained in the interval  when | . **[ , ]c c |A q≤

 We make the following assumptions. 

(A1) The random variables 1 2, ,...ε ε  are independently and identically distributed with mean 0.  

There are constants  and  such that 0C > 0K > 2(| | ) exp( )iP z K Czε > ≤ −  for all  

and  

0z ≥

1,2,...i =

(A2) There is a finite constant  such that 1 0c > 1 1 /n c q nη λ≤ .  Moreover, q  is fixed, and 

0| |A k q≡ ≤ .   

(A3) The SRC holds. 

 Condition (A1) requires the iε s to have subgaussian tails.  Condition (A2) defines the 

class of small coefficients and states our assumption that the number of large coefficients is fixed.  
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Assumption (A3) holds if the restricted eigenvalue assumption 0( , )RE s c  of Bickel, Ritov, and 

Tsybakov (2009) holds for some / 2s q≥ . 

 Let  be the set of coefficients estimated to be non-zero by the 

LASSO.  The following lemma, which is proved in Zhang and Huang (2008), summarizes 

important properties of  and 

1 1{ : ( ) 0}njA j β λ= ≠

1A njβ . 

Lemma 1:  Let (A1)-(A3) hold, and let 1 ( logO n pλ = ) .  Then there are finite constants 1M  

and 2M  such that 

 (i)  with probability  approaching 1 as . 1 1| |A M q≤ n→∞

 (ii) All covariates with 2 2 *0 2 1 */( )j
2M q c c nβ λ>  are selected with probability 

approaching 1 as . n→∞

 (iii) 
2 2

0 2
( )n pO hβ − =β n , where (log ) /nh p= n . 

 Lemma 1 shows that with high probability, the number of covariates selected by the 

LASSO is a finite multiple of the number of covariates in 0A  (and, therefore, of the number of 

covariates with large coefficients).  Moreover, all covariates exceeding the threshold in (ii) are 

selected with probability approaching 1 as .  In particular, all of the covariates with large 

coefficients are selected with probability approaching 1 if 

n→∞

( (log ) / )n o pη = n  and the large jβ ’s 

are larger than ( (log ) / )O p n

n

.  In addition, the LASSO estimator is estimation consistent.  

However, estimation consistency does not imply model-selection consistency.  

 We now give conditions under which the adaptive LASSO achieves model-selection 

consistency.  Denote the smallest and largest eigenvalues of 
0 0 0

/A A AC X X′=  by 1nτ  and 2nτ , 

respectively.  Make the following additional assumptions.  

(A4) There are constants 1 20 τ τ< ≤ < ∞  such that 1 1 2n n 2τ τ τ τ≤ ≤ ≤  for all sufficiently large 

. n

(A5) Let 
01 0min | |n j Ab jβ∈= .  As , the nonstochastic quantities n→∞ nη , , nh 2λ , and  

satisfy 

1nb

 2
2

1 21

( ) ( ) 0n n n n

nn

h n h
bnb
η η ηλ

λ
+ +

+ + →

|

. 

In our model, 0| A  is fixed as , so it is reasonable to assume in (A4) that the eigenvalues 

of 

n→∞

0AC  are bounded away from  and 0 ∞ .  (A5) restricts nη , 2λ ,and .  It requires , the 1nb 1nb
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smallest of the large coefficients, to be not too small and the  norm of the small coefficients to 

be not too large.  In particular, it requires 

1

1nb nη .  In other words, there must be enough 

separation between the large and small coefficients for the adaptive LASSO to distinguish 

between them. 

 Now define 
0 0

ˆ ˆ{ :nA nj }j Aβ β= ∈  and 
00 0{ :A j j A0}β β= ∈ .  For any vector 

, define 1 2( , ,...)u u u ′= 1 2sgn( ) (sgn( ),sgn( ),...)u u u ′= , where 1sgn( ) 1u = − , 0, or 1 according to 

whether , , or . 1 0u < 1 0u = 1 0u >

Theorem 1:  Let (A1)-(A5) hold.  Then as , n→∞

   and  ˆ( 0 )nj sP j Aβ = ∀ ∈ →1
0 00

ˆ(sgn( ) sgn( )) 1nA AP β β= → . 

 Thus, with probability approaching 1 as , the adaptive LASSO selects all the 

covariates with large coefficients and drops the covariates with small coefficients in the sense that 

it sets the coefficients of those covariates equal to zero. 

n→∞

 If, as often happens in social science applications, the total number of covariates is less 

than the sample size, then we can consider a model in which p  is fixed as , the small 

coefficients satisfy , and the large coefficients satisfy 

n→∞

1/ 2(n o nη −= ) 1 (log ) /nb n nκ≥ n→∞ as  

for some constant .  It follows from Theorem 1 with 0κ > 2 log nλ ∝  that as n , the 

adaptive LASSO estimates of the large coefficients are non-zero and the estimates of the small 

coefficients are zero.  Moreover, a straightforward calculation shows that the mean-square error 

(MSE) of the adaptive LASSO estimator of each large coefficient is never larger and, except in 

special cases, is strictly smaller than the MSE of the ordinary least squares (OLS) estimator that is 

obtained when all covariates are included in (1).  Thus, the adaptive LASSO improves the 

precision of the estimates of the large coefficients. 

→∞

 If p , we can consider a model in which the large coefficients satisfy 

 for some constant 

n>

1/ 2
1 (log ) /nb pκ≥ n 0κ > , and 2 log pλ ∝ .  Then it follows again from 

Theorem 1 that as , the adaptive LASSO estimates of the large coefficients are non-zero 

and the estimates of the small coefficients are zero.  Moreover, the MSE of the adaptive LASSO 

estimator of each large coefficient is no larger and, except in special cases, is strictly smaller than 

MSE of the OLS estimator that is obtained by including in the model any group of up to 

n→∞

1n q− −  

unimportant covariates or linear combinations of unimportant covariates.  In summary, the 

adaptive LASSO estimator reduces the MSE of the estimator of any large coefficient if there is 

sufficient separation between the magnitudes of the large and small coefficients. 
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 3.2  Penalized Least-Squares Estimation with Other Penalty Functions

 We now investigate penalized least-squares estimation of model (1) with a class of 

penalty functions that includes the bridge, SCAD, and MC penalties.  As in Section 3.1, we 

consider a two-step estimation procedure.  The first step is the same as that in Section 3.1.  It 

consists of solving the problem 1 1( ) arg min ( ; )n L 1β λ = β β λ , where  is defined in (6).  Under 

the assumptions of Lemma 1, the number of non-zero components of 

1L

nβ  is fixed as  and 

includes all the large 

n→∞

jβ ’s.  Let X  denote the design submatrix consisting of the columns of X  

corresponding to non-zero components of nβ .  Let 2⋅  denote the  norm.  The second 

estimation step consists of minimizing 

2

 
2

3 1 2
: 0

( ; ) (| |)
n

j

j
j

L pλ
β

λ β
≠

= − + ∑β y Xβ , 

where pλ  is a penalty function and nλ  is the penalty parameter.  Denote the resulting estimator 

by ˆ ( )n nβ λ .   

We assume that the penalty function satisfies the following condition. 

(A6) The penalty function has the form ( ) ( )p v f vλ λ= , where f  is a bounded, non-

decreasing function that may depend on  and n λ  and satisfies 

 (i) ( . 0) 0f =

(ii) One of the following holds: 

(a) There are constants C < ∞  and τ  that may depend on  and n λ  such that 

0 ( )f v C′≤ ≤  for all , and v ( ) 0f v′ = if v τ≥ .  Moreover there are constants 

 and 0b > 0δ >  such that ( )f v δ′ ≥  if /v b nλ≤ .  

(b) There is a  such that C < ∞ 0 ( )f v C′< ≤  for all v ε≥  and some 0ε > .  

Moreover 0 ( )f v Cvγ≤ ≤  for all  and some 0v > γ  such that 0 1γ< < .  

Also, / 0lim [ (| |) (| |)] | |v f v f v c γ
δ δ δ→ + − ≥ . 

In addition, we adopt the following more restrictive definitions of large and small coefficients. 

(A7) If (A6)(ii)(a) holds, then the large coefficients satisfy 1/ 2| | [ (log ) / ]j n p nβ λ τ  for all 

0j A∈ , where { }nλ  is a sequence of positive constants such that  and 

 for some 

1/ 2
nn λ− →∞

0nn θ λ− → 1/ 2θ >  as .  The small coefficients satisfy n→∞

| | (
s

jj A
o n )θβ −

∈
=∑ .  If (A6)(ii)(b) holds, then the large coefficients satisfy | |jβ ε≥  for 
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all 0j A∈  and some 0ε > .  The small coefficients satisfy 1/ 2| | (
s

jj A
o nγβ −

∈
= )∑  for 

the γ  in (A6)(ii)(b). 

The SCAD and MC penalty functions satisfy (A6)(ii)(a).  We write the SCAD penalty 

function as 

 
1

1 1
1

( )( ) [ ( ) ( )]
( 1)n

n
n n

n

an vp v I v n I v n
a nλ

λ
nλ λ λ

λ

−
− −+

−
−′ = ≤ + >

−
, 

where  is the indicator function and  is a constant. The MC penalty function is  I 2a >

 
0

( ) 1
n

v
n

n

nxp v dλ λ
γλ +

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∫ x  

for some 0γ > .  The bridge penalty function satisfies (A6)(ii)(b).  The bridge penalty function is 

 ( ) | |
n np v v γ
λ λ= , 

where γ  is a constant satisfying 0 1γ< < .  The ordinary LASSO penalty function, ( ) | |p v vλ = , 

does not satisfy (A6). 

 Now define .  Assume that /n n′Σ = X X

(A8)  for some nonsingular matrix limn n→∞ Σ = Σ Σ . 

 We now have the following result. 

Theorem 2:  Let (A1)-(A3) and (A5)-(A7) hold.  Let  and  as  if 

(A6)(ii)(a) holds. Let  and  as   if (A6)(ii)(b) holds.  Then 

1/ 2
nn λ− →∞ 0nn θ λ− → n→∞

nn γ λ− →∞ 1/ 2 0nn λ− → n→∞

   and  ˆ( 0 )nj sP j Aβ = ∀ ∈ →1
0 00

ˆ(sgn( ) sgn( )) 1nA AP β β= → . 

Thus, under the conditions of Theorem 2, the second-stage estimator distinguishes correctly 

between large and small coefficients with probability approaching 1 as n . →∞

4.  The Nonparametric Additive Model 

 This section presents a method for selecting and estimating the large additive components 

jf  in model (2).  Horowitz and Mammen (2004) describe a method for estimating the jf ’s that 

is oracle efficient when the dimension of model (2) remains fixed as .  The estimator of 

each 

n→∞

jf  has the same asymptotic distribution that it would have if the other jf ’s were known.  

There is no need to distinguish between large and small jf ’s.  Here, we consider the case in 

which the dimension of the model increases and may exceed  as .  We present a two-n n→∞
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step procedure for selecting and estimating the large jf ’s.  The first step of the procedure 

consists of penalized least-squares estimation of series approximations to the jf ’s using a group 

LASSO penalty function.  Huang, Horowitz, and Wei (2010) showed that this procedure reduces 

the number of jf ’s to a fixed value when 2
jEf  ( 1,...,j p= ) is either zero or bounded away from 

zero.  We show that asymptotically, the same procedure reduces the number of jf ’s to a fixed 

value and retains all jf ’s for which 2
jEf  is large in the sense defined in Section 1.  The second 

step consists of using the estimator of Horowitz and Mammen (2004) to re-estimate the jf ’s that 

are retained in the first step.  Horowitz and Mammen (2004) present the properties of the second-

step estimator.  Therefore, we treat only the first step here.   

 Assume that each jX ⋅  takes values in [ , where , ]a b a b< .  Let { : 1,..., }k nk mφ =  denote 

a normalized B-spline basis for polynomial splines of degree  on [ , where  

and  is the number of spline knots in .  Define the centered B-splines 

1l ≥ , ]a b n nm K= + l

)

nK ( , )a b

 1

1
( ) ( ) (

n

k ij k ij k jX X n Xψ φ φ−

=

= − ∑ ;  1,..., ; 1,...,nk m j p= = . 

Define 

 (ijZ = 1( ( ),..., ( ))
nij m ijX X ′ . ψ ψ

Let , 1( ,..., )j j njZ Z Z ′= 1( ,..., )pZ Z Z=  and 1( ,..., )nY Y Y Y Y ′= − − , where 1
1

n
ii

Y n Y−
=

= ∑ .  The 

first-step estimator of our procedure consists of solving the problem 

2
2 2

1
arg min

p

nj n n jb j
Y Zb bβ λ

=

= − + ∑ ,  

where  is the  vector jb 1nm × 1( ,..., )
nj jmb b ′  and nλ  is the penalty parameter.  This is also the 

problem solved in the first estimation step of Huang, Horowitz, and Wei (2010).   

 Now let k  be a non-negative integer, and let (0,1)α ∈ .  Let 0.5d k α= + > .  Let  be 

the class of functions on [  whose ’th derivative 

F

, ]a b k ( )kf  exists and satisfies a Lipschitz 

condition of order α .  That is, 

 ( ) ( )| ( ) ( ) | | |k kf s f t C s t α− ≤ −  for , [ , ]s t a b∈ . 

Order the jf ’s so that the first q  are large and the rest are small or zero.   

 Make the following assumptions. 
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 (A9) The number of large additive components, , is fixed.  Moreover, there is a 

constant  such that 

q

0fC > 1 2
min j q j ff C≤ ≤ ≥ . 

 (A10) The random variables 1,..., nε ε  are independently and identically distributed with 

( ) 0iE ε = .   Moreover, 2(| | ) exp( )iP x K Cxε > ≤ −  ( 1,...,i n= ) for all , where C  and  are 

finite constants.   

0x ≥ K

 (A11)  and ( ) 0j jEf X ⋅ = jf ∈F  for all 1,...,j p= . 

 (A12) The covariate vector 1( ,..., )jX X⋅ ⋅  has a continuous probability density function 

with respect to Lebesgue measure.  Moreover, there exist constants  and  such that the 

probability density function 

1C 2C

jg  of jX ⋅  satisfies 1 20 ( )jC g x C< ≤ ≤ < ∞  for every [ , ]x a b∈  and 

every . 1,...,j p=

 (A12) Every additive component is either large or small.  The small components satisfy 

equation (5). 

Assumptions (A9)-A(11) are made by Huang, Horowitz, and Wei (2010) and are 

explained there.  Assumption (A12) defines the small additive components. 

 Define 0 2
{ : 0; 1,..., }njA j jβ= ≠ = p  and 

 
1

2

,..., 1 2

arg min ( ) ( )
n

mn

m

nj k k j j jb b k
b X f Xβ ψ ⋅ ⋅

=

= −∑ . 

Also define 

2 1 2
{ : 0}njA A j β= ∪ ≠  

and  

 

2 1 2
{ : 0}njA A j β= ∩ = , 

where A  is the complement of any set .  Let A
2nAβ  and 

2nAβ , respectively, be the vectors 

consisting of the njβ ’s and njβ ’s for which 2j A∈ . 

We now have the following result, which extends Theorem 1 of Huang, Horowitz, and 

Wei (2010) to the case in which some additive components may be small but are not necessarily 

zero. 
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 Theorem 3:  In model (2), let (A9)-(A12) hold.  In addition, let log( )n nC n pmλ ≥  for 

some sufficiently large but finite constant  and let C 1/(2 1)d
nm n +T .  Then 

 (i) With probability approaching 1 as , for some finite 

constant . 

n→∞ 0 1 0 1| | | |A M A M≤ = q

1 1M >

 (ii) If  and  as , then 2 log( ) / 0n nm pm n → 2 2/ 0n nm nλ → n→∞
2

0njβ ≠  with 

probability approaching 1 as  for every n→∞ 0j A∈ .  

 (iii)  

 
2 2

2 22
2 1 22

log( ) 41 1n n n
nA nA p p d

n

m pm mO O O O
n n m n

2
nλβ β −

⎛ ⎞ ⎛ ⎞ ⎛⎛ ⎞− = + + +⎜ ⎟ ⎜ ⎟ ⎜⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝

⎞
⎟⎟
⎠

n

. 

Under the conditions of Theorem 3, the group LASSO selects all of the large additive 

components of model (2) with probability approaching 1 as n .  Moreover, the group 

LASSO selects only a fixed number of additive components.  Part (iii) of the theorem states the 

rate of convergence of the estimated components. 

→∞

5.  Monte Carlo Experiments 

 This section reports the results of a Monte Carlo investigation of the finite-sample 

performance of the LASSO and adaptive LASSO for model (1) when the small coefficients are 

not necessarily zero.   We write model (1) in the form  

 , 
1 1

; 1,...,
pd

i j ij j ij i
j j d

Y X X iβ β ε
= = +

= + + =∑ ∑

where 1,..., dβ β  are large coefficients and the coefficients 1,...,d pβ β+  are small or zero.  The 

random variables iε  are independently distributed as 2(0, )N εσ .  The covariates are fixed in 

repeated samples and are centered and scaled so that 

  1

1
0;

n

ij
i

n X−

=

=∑ 1

1
0; 1,...,

n

ij
i

n X i−

=

= =∑ n

The covariates are generated as follows.  Define 

 
1/ 2

1

1
; 1,..., ; 1,..., / 2

1ij ij i i n j pρξ ζ ν
ρ

⎛ ⎞
= + = =⎜ ⎟−⎝ ⎠

 

 
1/ 2

2

2
; 1,..., ; / 2 1,...,

1ij ij i i n j pρξ ζ ν
ρ

⎛ ⎞
= + = = +⎜ ⎟−⎝ ⎠

p , 
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where the ijζ ’s and iν ’s are independently distributed as  and (0,1)N 1 20 , 1ρ ρ≤ < .  Define 

 1 2 1

1 1
; (

n n

j ij j ij
i i

n s nξ ξ ξ− −

= =

= =∑ ∑ 2)jξ− . 

Then 

 ij j
ij

j
X

s
ξ ξ−

= . 

Moreover,  

 
1

2
1/ 2

1 2

if 1 , / 2
( , ) if / 2 ,

( ) if / 2
ij ik

j k p
corr X X p j k p

j p k p

ρ
ρ

ρ ρ

⎧ ≤ ≤
⎪

= < <⎨
⎪

≤ < ≤⎩

 

In the experiments reported here,  

  
1 if  1
0.05 if  1 / 2
0 / 2 1

j

j d
d j p

p j p
β

≤ ≤⎧
⎪= + ≤ ≤⎨
⎪ + ≤ ≤⎩

In addition, , , , 100n = 50p = 2 10εσ = 1 0.5ρ = , and 2 0.1ρ = .  The coefficient of interest is 1β . 

Experiments are reported with , 4, and 6 and with the LASSO and adaptive LASSO.  The 

penalization parameter is obtained by minimizing the BIC.   

2d =

 Table 1 shows the mean-square errors of the estimates of 1β  obtained from applying OLS 

to the full model and to the model containing only the variables whose coefficients are large (the 

reduced model).  These results are obtained analytically using the algebra of least squares.  They 

show that the mean-square error is smaller when 1β  is estimated from the reduced model than 

when it is estimated from the full model. 

 Table 2 shows the results of estimation using the LASSO and adaptive LASSO. There are 

1000 Monte Carlo replications in each experiment.  Both versions of the LASSO reduce the 

mean-square estimation error by about a factor of two relative to OLS estimation with the full 

model.  Not surprisingly, neither version achieves the mean-square error that is achievable when 

the variables with large coefficients are known.  The model selected by the LASSO has a higher 

probability of containing all the important covariates than does the model selected by the adaptive 

LASSO.   

 If 1β  is the coefficient of interest, it is reasonable to consider versions of the LASSO and 

adaptive LASSO in which 1iX  ( ) is always in the chosen model.  This can be achieved 

by leaving 

1,,.,i = n

1β  out of the penalty function.  Table 3 shows the results of LASSO and adaptive 
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LASSO estimation with 1β  not in the penalty function.  Forcing 1iX  into the model greatly 

reduces the mean-square error of the adaptive LASSO estimator of 1β .  It is essentially the same 

as the mean-square error that is obtained by applying OLS to the model with only the covariates 

with large coefficients. 

6.  An Empirical Example 

 This section presents an empirical example that illustrates the application of the LASSO 

and adaptive LASSO in a setting where many coefficients are plausibly small but non-zero.  The 

application consists of estimating a wage equation for black males aged 40-49 years who reside in 

the northeastern U.S.  The data are from the National Longitudinal Survey of Youth.  There are 

62 observations.  The dependent variable is the logarithm of the hourly wage.  There are 42 

covariates, including scores on 10 sections of the armed forces qualification examination, 

indicators of education level, a variety of personal characteristics, a binary indicator of marital 

status (married or not), and a binary indicator of membership in a labor union.  The variables of 

interest in this example are marital status and union membership.  Their coefficients measure the 

fractional change in the wage associated with being married or belonging to a labor union.  It is 

arguable that all of the covariates affect productivity and, therefore, the hourly wage but that the 

effects of many covariates may be small. 

 Application of the LASSO and adaptive LASSO using the BIC to select the penalty 

parameter resulted in selection of 7 and 4 covariates, respectively.  An asymptotic chi-square test 

does not reject the hypotheses that the coefficients of the variables not selected by the LASSO or 

adaptive LASSO are zero ( ).  This implies that the values of these coefficients are small 

enough to be within random sampling error of zero.  They are not necessarily equal to zero.  

Table 4 shows the estimates and asymptotic standard errors of the two coefficients of interest that 

are obtained from applying ordinary least squares to the full model (all 42 covariates), the model 

selected by the LASSO, and the model selected by the adaptive LASSO.  The three point 

estimates of the coefficient of labor union membership are similar, but the standard error of the 

estimate obtained from the full model is nearly twice as large as the standard errors obtained from 

the models selected by the LASSO and adaptive LASSO.  The estimates of the coefficient of 

marital status obtained from the models selected by the LASSO and adaptive LASSO are nearly 4 

times as large as the estimate obtained from the full model, and the standard errors of the 

estimates obtained from the selected models are about 55% of the standard error obtained with 

the full model. 

0.6p >
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7.  Conclusions 

 In applications of mean regression analysis, it is often the case that there are many 

covariates whose effects on the conditional mean of the dependent variable are thought to be 

small but not necessarily zero and there relatively few covariates that have large effects on the 

conditional mean function.  In such situations, the precision of estimating the large effects can be 

increased by leaving the covariates with small effects out of the model.  However, it is rarely 

known a priori which covariates have large effects and which have small ones.  This paper has 

given conditions under which the adaptive LASSO and several penalized least squares methods 

correctly distinguish between covariates with large and small effects in a linear model and a 

nonparametric additive model.  Specifically, we have shown that with probability approaching 

one as the sample size increases, the adaptive LASSO and penalized least squares correctly 

distinguish between covariates with large and small effects under a generalized sparsity condition 

and other mild regularity conditions.   

8.  Proofs of Theorems 

 Proof of Theorem 1 

Let .  The 2( ) exp( ) 1v vψ = − ψ -Orlicz norm x ψ  of any random variable x  is defined as 

inf{ 0 : (| | / ) 1}x C E x Cψ ψ= > ≤ .  The Orlicz norm is useful for obtaining maximal inequalities 

(Van der Vaart and Wellner 1996). 

 Lemma 2:  Suppose that 1,...,ε ε  are iid random variables with 0iEε =  and 

2( )iVar 2ε σ= .  Suppose that 2(| | ) exp( )iP z K Czε > ≤ −  for 1,...,i n=  and constants C  and .  

Then, for all constants  satisfying 

K

ia 2
1

1n
ii

a
=

=∑ , 

(6) 1/ 2 1/ 2

1
[ (1 ) ]

n

i i
i

a K K C
ψ

ε σ −

=

≤ + +∑ ,  

where  is a constant.  Consequently K

(7) 
2 2
1

2

... 1 1
( ) sup exp( / )

n

n

n i i
a a i

g t P a t tε
+ + = =

⎛ ⎞
≡ > ≤⎜ ⎟⎜ ⎟

⎝ ⎠
∑ M−  

for some constant M  that depends only on  and . K C

 Proof of Theorem 1:  By the Karush-Kuhn-Tucker conditions,  is the 

unique adaptive LASSO estimator if 

1
ˆ ˆ ˆ( ,..., )n n npβ β β ′=
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(8)  
2

2

ˆ ˆ ˆ( ) sgn( )  if  

ˆ ˆ| ( ) |               if 0 

j n j nj nj

j n nj nj

w

w

β λ β β

β λ β

⎧ ′ − = ≠
⎪⎪
⎨
⎪ ′ − ≤ =⎪⎩

x y X

x y X

0

Aand the vectors  are linearly independent.  Let ˆ{ , 0)j njβ ≠x
0 0 0{ sgn( ) : }A j jw jβ= ≡s  and 

0 0 0 0 0

0 0 0 0 0

1
2

1 1
0 0

ˆ ( ) ( - )

(9) ( ),
s

A A A A A

A A A A A A

X X X

n C X X X

β λ

β ε β

−

− −

′ ′=

′ ′= + + −

y s

s
02 Aλ

n
0

 

where .  If 
0 0 0

/A A AC X X′=
0 0

ˆsgn( ) sgn( )A Aβ β= , then (8) holds for , where 
0 0

ˆ ˆ( , )n A Aβ β ′= 0
0A0  

is a vector of zeros with length | |sA .  Let 
0

*
0 0( ,

sA Aβ β )′ ′ ′= 0 .  To prove the theorem, it suffices to 

show that . 
0 00

ˆ[sgn( ) sgn( )] 1A AP β β= →

 Since 
0 0

ˆ
n AX X ˆ

Aβ β=  for this ˆ
nβ  and 0{ : }j j A∈x  are linearly independent, 

(10) 0 0

0 0

0*
0

2 0

ˆsgn( ) sgn( )
ˆsgn( ) sgn( ) if  

ˆ| ( ) |

A A
n

j A A j .X w j A

β β
β β

β λ

⎧ =⎪= ⎨
′ − ≤ ∀ ∉⎪⎩ x y

 

Let  be the projection onto the null of 
0 0 0

1 /n n A A AH I X C X− ′= − n
0AX ′ , where  is the nI n n×  

identity matrix.  From (9), we have 

(11) 
0 0 0 0 0

1 1
2 0

ˆ
s sA A n A A A n AX H n X C H X Aβ ε λ β− −− = + +y s . 

By (10) and (11), *
0

ˆsgn( ) sgn( )nβ β=  if 

(12)  
0 0 0

0 0 0

1 1
2 0 2

ˆsgn( )( ) | |                                        

| ( ) | .
s s

j j nj j

j n A A A n A A j

j A

H n X C H X w j A

β β β β

ε λ β λ− −

⎧ − < ∀ ∈⎪
⎨

′ + + ≤ ∀⎪⎩ x s

0

0∉

Thus, by (9) and (12), for any  0 1κ κ ν< < + <
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0 0

0 0

0 0

*
0

1 1
0 0

1 1
0 0

1 1
2 0 0

2 0

1

ˆ{sgn( ) sgn( )}

{ | | | | / 3  for some 

{ | | | | / 3  for some }

{ | | | | / 3  for some }

{| | / 3 for some }

{

s s

n

j A A A A j

j A A j

j A A j

j n j

P

P n C X X j A

P n C X j A

P n C j A

P H w j A

P n

β β

β β

ε β

λ β

ε λ

− −

− −

− −

−

≠ ≤

′ ′ ≥ ∈

′ ′+ ≥ ∈

′+ ≥ ∈

′+ ≥ ∈

+

e

e

e s

x

0 0 0

1
0

0 2 0

1 2 3 4 5 6

| | / 3  for some }

{| | / 3 for some }

( ) ( ) ( ) ( ) ( ) ( ),

s s

j A A A j

j n A A j

n n n n n n

X C w j A

P H X w j A

P B P B P B P B P B P B

β λ

−′ ≥ ∈

′+ ≥ ∈

≡ + + + + +

x s

x

0}

where  is the unit vector in the direction of the je j ’th coordinate.   

 Consider 1nB .  Because 

 
0 0 0 0

0

1 1 1 1
0 0 22

1/ 2 1/ 2 1/ 2
12

| |

,

s s s sj A A A A j A A A A

A n n n

n C X X n C X X

n C n

β β

η τ η

− − − −

− −

′ ′ ′ ′≤ ⋅

≤ ≤

e e

 

we have  by (A5). 1( )nP B → 0

 Now consider 2nB .  Because 
0 0 0

1 1 1/ 2 1/ 2 1/ 2
12 2

( )j A A A nn C X n C nτ− − − − −′ ′ ≤ ≤e  and 

0 1| |j nbβ ≥  for 0j A∈ , 

  
0 0

1 1
2 0

1/ 2
1 1

( ) ( | | | | / 3

[ ( ) / 3]

n j A A j

n n n

P B P n C X j A

qg b n

ε β

τ

− −′ ′= ≥

≤

e 0 )∀ ∈

with the tail probability ( )ng t  in Lemma 2.  Therefore,  by (A1), Lemma 2, (A4) 

and (A5). 

2( )nP B → 0

 Now 
0

1/ 2
12

[ /(A p nO q nb=s )] .  Therefore, by (A5), 
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 0

0 0

21 1 2 2
2 1

1 1 1
| | (1) (

A
j A A p p n

n n n

qn C O o b
n n b

λ λ
λ

τ τ
− −′ ≤ = =

s
e s )

0

. 

This gives . 3( )nP B →

 For 4nB , we have 1 | | | ( )j nj p nw O h |nβ η− = ≤ + .  Since 1/ 2
j nH n≤x , for large C  

  

1/ 2
4 2

1/ 2
2

( ) {| | (1/ 3) /[ ( )] } (1

{(1/ 3) /[ ( )]}.

n j n n n

n n n n

P B P H Cn h j A o

q g Cn h

ε λ η

λ η

′≤ ≥ + ∀ ∉ +

≤ +

x 0 )

0Therefore, by Lemma 2 and (A5), . 4( )nP B →

 For 5nB  we have  

 

0 0 0

0 0 0

1
1 1

22

1/ 2 1/ 2
2

1 1

| |
| |

[ ( ) ].

j A A A
j A A A nj

j

p n n
n

X C s
n X C s

nw

q O h
b

β

τ η
τ

−
− −

′
′≤ ⋅

≤ +

x
x

 

Therefore,  by (A5). 5( )nP B → 0

 Finally, for 6nB  we have 

 0 02 2
| |

s s s sj n A A j A A nH X X nβ β η′ ≤ ⋅ ≤x x . 

Therefore, 

 0| |
| | [ ( )s sj n A A

n nj n p n n
j

H X
n n O h

w
]

β
η β η η

′
≤ ≤ +

x
. 

Therefore,  by (A5).  This completes the proof.  ■  6( )nP B → 0

Proof of Theorem 2:  The proof takes place in 3 steps. 

 Step 1 consists of proving that 
2 1

0 2
ˆ ( nO n nβ β λ 1)− −− = +  with probability approaching 

1 as n .  Let  denote the (asymptotically fixed) number of covariates at this estimation 

stage.  Denote the covariates by {

→∞ r

: 1,..., ; 1,..., }ijX i n j r= = .  Set 1( ,..., )i i irX X X= .  Define 

 2

1 1
( ) ( ) (| |)

n

n r

n i i
i j

S b Y X b pλ jβ
= =

= − +∑ ∑ . 

Then 0
ˆ( ) ( )n n nS Sβ β≤ .  Therefore, 
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  2 2
0 0

1 1 1 1

ˆ ˆ( ) (| |) ( ) (| |)
n n

n r n r

i i j i i j
i j i j

Y X p Y X pλ λβ β β
= = = =

− + ≤ − +∑ ∑ ∑ ∑ β

and 

 2 2
0 0

1 1 1 1

ˆ ˆ( ) ( ) (| |) (| |)
n n

n n r r

i i i i j j
i i j j

Y X Y X p pλ λβ β β
= = = =

− − − ≤ −∑ ∑ ∑ ∑ β

ˆ
jp

. 

Some algebra shows that this is equivalent to 

 2
0 0 0

1 1 1 1

ˆ ˆ[ ( )] 2 ( ) (| |) (| |)
n n

n n r r

i i i j
i i j j

X X pλ λβ β ε β β β
= = = =

− − − ≤ −∑ ∑ ∑ ∑ β . 

Define 1/ 2 1/ 2
0

ˆ( )n nnδ β β= Σ − , and 1/ 2 1/ 2
n nD n X− −= Σ .  Then 

 

2
0 0

1 1

2 2
2 2

ˆ ˆ[ ( )] 2 ( ) 2( )

.

n n

i i i n n
i i

n n n

X X D

D D

β β ε β β δ δ ε δn

δ ε ε

= =

′ ′ ′− − − = −

′ ′= − −

∑ ∑
 

Therefore, 

(13) 2 2
02 2

1 1

ˆ(| |) (| |)
n n

r r

n n n j j
j j

D D p pλ λδ ε ε β β
= =

′ ′− − ≤ −∑ ∑ . 

Now use the inequality  to get 2 2( ) 0.5b a b a− ≥ − 2

 2 2
2 20.5n n n nD D 2

2δ ε δ′ ′− ≥ − ε . 

Substituting this inequality into (13) and rearranging terms gives 

 2 2
02 2

1 1

ˆ0.5 2 (| |) (| |)
n n

r r

n n j
j j

D p pλ λ jδ ε β
= =

′≤ + −∑ ∑ β . 

Now 2 2
2nE D rε σ′ = , where 2 ( )E 2σ ε= .  Moreover, 2

0 02
ˆ ˆ( ) ( )n nE nEδ β β β β′= − Σ − .  

Therefore, 

(14) . 1 2 1
0 0 0

1

ˆ ˆ( ) ( ) 4 2 [ (| |) (|
n n

r

n j
j

E n r n E pλ λβ β β β σ β β− −

=

′− Σ − ≤ + −∑ ˆ |)]jp

0 |)p

f

In particular, 

 . 1 2 1
0 0

1

ˆ ˆ( ) ( ) 4 2 (|
n

r

n j
j

E n r n λβ β β β σ β− −

=

′− Σ − ≤ + ∑

But pλ λ=  by (A6), so, 
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1 2 1
0 0

1

1 1

ˆ ˆ( ) ( ) 2 2 (|

( ).

r

n n
j

n

E n r n

O n n

β β β β σ λ β

λ

− −

=

− −

′− Σ − ≤ +

= +

∑ 0 |)jf

It follows that 

 
2

0 2

1ˆ nE O
n
λ

β β
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In addition, it follows from Markov’s inequality, that for each 0ε >  there is an  such 

that 

Mε < ∞

 
2

0 2
ˆ 1

1 n

nP Mεβ β ε
λ

⎡ ⎤⎛ ⎞
− ≤ ≥ −⎢ ⎥⎜ ⎟+⎢ ⎥⎝ ⎠⎣ ⎦

. 

 Step 2 of the proof consists of refining the result of step 1 to show that ˆ
jβ  is -

consistent for 

1/ 2n−

0 jβ .  Let .   * { : ; lim | | 0}s s n jA j j A p β→∞= ∈ ≠

Now 

 . 0 0
ˆ ˆ(| |) (| |) [ (| |) (| |)]

n nj j n jp p f fλ λβ β λ β β− = − j

If (A7)(ii)(a) holds and 0j A∈ , then it follows from step 1 that with probability approaching 1 as 

 n→∞

 . 0
ˆ| (| |) (| |) |

n nj jp pλ λβ β− = 0

If (A7)(ii)(b) holds and 0j A∈ , then  

 0 0
ˆ ˆ| (| |) (| |) | |

n n
|j j n jp p Cλ λ jβ β λ β β− ≤ − . 

Therefore, if (A7)(ii)(a) holds,  
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with probability approaching 1.  If (A7)(ii)(b) holds, then  
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if (A7)(ii)(b) holds.  The Cauchy-Schwarz inequality gives 
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with probability approaching 1 if (A7)((ii)(a) holds, and  

 1/ 2 1/ 2
0 0 2

1

ˆ ˆ[ (| |) (| |)] (
n n

r
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if (A7)(ii)(b) holds.  Substituting these inequalities into (14) yields 

 1 2 1
0 0

ˆ ˆ( ) ( ) 4 (n nE n r )o n θβ β β β σ λ− − −′− Σ − ≤ +  

for all sufficiently large  if (A7)(ii)(a) holds and  n

 1 2 1 1/ 2 3/ 2
0 0 0 2

ˆ ˆ ˆ( ) ( ) 2 (n n j jE n r Cn rβ β β β σ λ β β λ− − −′− Σ − ≤ + − + )no n  

if (A7)(ii)(b) holds.  Now 
1/ 22

0 02 2
ˆ ˆE Eβ β β β⎛− ≤ −⎜

⎝ ⎠
⎞
⎟  by the Cauchy-Schwarz inequality.  

This combined with non-singularity of Σ  implies that 

 
2

0 0 2
ˆ ˆ ˆ( ) ( )nE c 0Eβ β β β β β′− Σ − ≥ −  

for some constant .  Therefore, 0c >

(15a) 
2 1 1

0 2
ˆ ( )nE Cn o n θβ β λ− −− ≤ + −  

for all sufficiently large  and some  n C < ∞  if (A7)(ii)(a) holds and 

(15b) 
2 1 1 3/

0 02 2
ˆ ˆ ( )n j j nE Cn Cn o nβ β λ β β λ− − −− ≤ + − + 2  

if (A7)(ii)(a) holds.  Inequalities (15a) and (15b) imply that  

 1/ 2
0

ˆ ( )E O nβ β −− = . 

 The third step of the proof consists of showing that with probability approaching 

1 as , all the large n→∞ jβ ’s and none of the small ones are selected.  Let 1 2
ˆ ˆ ˆ( , )β β β′ ′ ′= , where 

1̂β  is the second-stage estimator of the large coefficients and 2β̂  is the second stage estimator of 

the small ones.  We have 1/ 2
0

ˆ n Cεβ β −− ≤  with probability at least 1 ε−  for any 0ε >  and all 

sufficiently large Cε .  Let  and , where 1/ 2
1 01n n uβ β −= + 1 2

1/ 2
2 02n n uβ β −= + 01β  and 02β  are 

the true values of the large and small coefficients, respectively, and 2 2 2 2
1 2u u u Cε= + ≤ .  

Define 

 1 2 1 2 01( , ) ( , ) ( ,0)n n n n nV u u S Sβ β β= − . 

Then  minimizes  over 1 2
ˆ ˆ( ,n nβ β′ ′ ) 1 2( , )nV u u u Cε≤  with probability at least 1 ε− .  Define 

1/ 2
20 02u n β= − .  It follows from  consistency of the 1/ 2n− ˆ

jβ ’s that all the large 'j sβ  are chosen 

with probability approaching 1 as .  Therefore, it suffices to show that n→∞

  1 2 1( , ) ( ,0) 0n nV u u V u− ≥
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with probability at least 1 ε−  if 2 0u ≠ .  Write ( , )x w z= , where  corresponds to covariates 

with large coefficients and  corresponds to covariates with small ones.  Then 

w
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As in Huang, Horowitz, and Ma (2008), 1 2n nR R C+ ≥ −  for some constant , and 

.  Therefore, 
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for all sufficiently large  under (A6)(ii)(a), and n
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under (A6)(ii)(b), where  is a constant.  The right-hand sides if (15a) and (15b) increase 

without bound as .   

1C

n→∞ ■

Proof of Theorem 3: 

 The proofs of Theorem 3(i) and 3(ii) are identical to the proof of Theorem 1(i) and 1(ii) 

in Huang, Horowitz, and Wei (2010).  To prove Theorem 3(iii), define nη  to be the  vector 

whose ’th component is 

1n×

i i i iY Z nη β= − , where nβ  is the 1npm ×  vector of stacked njβ ’s.  

Define 
2 2
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f X Z, ′ β

∈∑ , and 
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∈
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Proceed as in the proof of Theorem 1(iii) of Huang, Horowitz, and Wei (2010) to obtain  
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Now proceed as in Huang, Horowitz, and Wei (2010) to obtain 
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The last term on the right-hand side is asymptotically negligible if , which gives 

part (iii) of the theorem.  ■  

1/(2 1)d
nm n +T
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1TABLE 1:  Mean Square Errors of OLS Estimates of β from Full and Reduced Models 
 
 
            Mean-Square Error of  Estimate of 1
   d   Full Model Reduced Model 
           __   _________________           ___  ____________ 

β  

 
   2       0.67        0.22 
   4       0.67        0.19 
   6       0.67        0.16 
 



 

 
 

TABLE 2:  Results of LASSO and Adaptive LASSO Estimation 
 
         Prob. that Selected 
      Average Size of    Model Contains 

d ˆ    MSE of 1β  Selected Model    Large Variables Average λ  
          __   ________________                                         _           ___  ____                         ______ 
 
            LASSO 
 
  2       0.31        9.7           0.84       4.57 
  4       0.34        12.3           0.75       4.52 
  6       0.29        15.0           0.67       4.48 
 
           ADAPTIVE LASSO 
 
  2       0.31        6.5           0.67       3.10 
  4       0.30        8.8           0.56       3.29 
  6       0.32        10.8           0.39       3.44 
 
 
 

29 
 



 

 
 

TABLE 3:  Results of LASSO and Adaptive LASSO Estimation with 1β  Not in the Penalty Function 
 
         Prob. that Selected 
      Average Size of    Model Contains 

d ˆ    MSE of 1β  Selected Model    Large Variables Average λ  
           __   ________________                                         _           ___  ____                         ______ 
            LASSO 
 
  2       0.27          7.9           0.88       4.66 
  4       0.29        10.6           0.81       4.64 
  6       0.40        13.3           0.67       4.58 
 
           ADAPTIVE LASSO 
 
  2       0.19        5.8           0.67       2.83 
  4       0.17        8.0           0.64       3.13 
  6       0.19       10.2           0.43       3.23 
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TABLE 4:  Results of Estimating Effects of Union Membership and Marital Status on Wages 
 
             Coefficient (Standard Error) Obtained from 
  Variable OLS  LASSO   Adaptive LASSO 
 
  Union  0.21     0.21           0.22 
  Member           (0.17)  (0.096)         (0.094) 
 
  Marital  0.051     0.19           0.20 
  Status             (0.19)    (0.11)          (0.11) 
 

31 
 


