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INTERSECTION BOUNDS: ESTIMATION AND INFERENCE

VICTOR CHERNOZHUKOV, SOKBAE LEE, AND ADAM M. ROSEN

Abstract. We develop a practical and novel method for inference on intersection bounds,

namely bounds defined by either the infimum or supremum of a parametric or nonparamet-

ric function, or equivalently, the value of a linear programming problem with a potentially

infinite constraint set. Our approach is especially convenient for models comprised of a

continuum of inequalities that are separable in parameters, and also applies to models with

inequalities that are non-separable in parameters. Since analog estimators for intersection

bounds can be severely biased in finite samples, routinely underestimating the size of the

identified set, we also offer a median-bias-corrected estimator of such bounds as a natural

by-product of our inferential procedures. We develop theory for large sample inference

based on the strong approximation of a sequence of series or kernel-based empirical pro-

cesses by a sequence of “penultimate” Gaussian processes. These penultimate processes are

generally not weakly convergent, and thus non-Donsker. Our theoretical results establish

that we can nonetheless perform asymptotically valid inference based on these processes.

Our construction also provides new adaptive inequality/moment selection methods. We

provide conditions for the use of nonparametric kernel and series estimators, including a

novel result that establishes strong approximation for any general series estimator admit-

ting linearization, which may be of independent interest.
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1. Introduction

This paper develops a practical and novel method for estimation and inference on inter-

section bounds. Such bounds arise in settings where the parameter of interest, denoted θ∗,
is known to lie within the bounds

[
θl (v) , θu (v)

]
for each v in some set V ⊆ Rd, which may

be uncountably infinite. The identification region for θ∗ is then

ΘI = ∩v∈V
[
θl (v) , θu (v)

]
=

[
supv∈V θl (v) , infv∈V θu (v)

]
. (1.1)

Intersection bounds stem naturally from exclusion restrictions (Manski (2003)) and appear

in numerous applied and theoretical examples.1 A leading case is that where the bound-

ing functions are conditional expectations with continuous conditioning variables, yielding

conditional moment inequalities. More generally, the methods of this paper apply to any

estimator for the value of a linear programming problem with an infinite dimensional con-

straint set.

This paper covers both parametric and non-parametric estimators of bounding functions

θl (·) and θu (·). We provide formal justification for parametric, series, and kernel-type esti-

mators via asymptotic theory based on the strong approximation of a sequence of empirical

processes by a sequence of Gaussian processes. This includes an important new result on

strong approximation for series estimators that applies to any estimator that admits a linear

approximation, essentially providing a functional central limit theorem for series estimators

for the first time in the literature. For each of these estimation methods, the paper provides

(i) confidence regions that achieve a desired asymptotic level,

(ii) novel adaptive inequality selection (AIS) needed to construct sharp critical values,

which in some cases result in confidence regions with exact asymptotic size,2

(iii) convergence rates for the boundary points of these regions,

(iv) a characterization of local alternatives against which the associated tests have non-

trivial power,

(v) half-median-unbiased estimators of the intersection bounds.

1Examples include monotone instrumental variables and the returns to schooling (Manski and Pepper
(2000)), English auctions (Haile and Tamer (2003)), the returns to language skills (Gonzalez (2005)), set
identification with Tobin regressors (Chernozhukov, Rigobon, and Stoker (2010)), endogeneity with discrete
outcomes (Chesher (2010)), changes in the distribution of wages (Blundell, Gosling, Ichimura, and Meghir
(2007)), the study of disability and employment (Kreider and Pepper (2007)), estimation of income poverty
measures (Nicoletti, Foliano, and Peracchi (2011)), unemployment compensation reform (Lee and Wilke
(2009)), and set identification with imperfect instruments (Nevo and Rosen (2010)).
2 The previous literature, e.g. Chernozhukov, Hong, and Tamer (2007) and contemporaneous papers, such
as Andrews and Shi (2009), use “non-adaptive” cutoffs such as C

√
log n. Ideally C should depend on the

problem at hand and so careful calibration might be required in practice. Our new AIS procedure provides
data-driven, adaptive cutoffs, which do not require calibration.
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Moreover, our paper also extends inferential theory based on empirical processes in Donsker

settings to non-Donsker cases. The empirical processes arising in our problems do not

converge weakly to a Gaussian process, but can be strongly approximated by a sequence of

“penultimate” Gaussian processes, which we use directly for inference without resorting to

further approximations, such as extreme value approximations as in Bickel and Rosenblatt

(1973). These new methods may be of independent interest for a variety of other problems.

Our results also apply to settings where a parameter of interest, say µ, is characterized

by intersection bounds of the form (1.1) on an auxiliary function θ (µ). Then the bounding

functions have the representation

θl (v) := θl (v; µ) and θu (v) := θu (v; µ) , (1.2)

and thus inference statements for θ∗ := θ(µ) bounded by θl (·) and θu (·) can be translated to

inference statements for the parameter µ. This includes cases where the bounding functions

are a collection of conditional moment functions indexed by µ. When the auxiliary function

is additively separable in µ, the relation between the two is simply a location shift. When

the auxiliary function is nonseparable in µ inference statements on θ∗ still translate to

inference statements on µ, though the functional relation between the two is more complex.

This paper overcomes significant complications for estimation of and inference on inter-

section bounds. First, because the bound estimates are suprema and infima of parametric

or nonparametric estimators, closed-form characterization of their asymptotic distributions

are typically unavailable or difficult to establish. As a consequence, researchers have often

used the canonical bootstrap for inference, yet the recent literature indicates that the canon-

ical bootstrap is not generally consistent in such settings, see e.g. Andrews and Han (2009),

Bugni (2010), and Canay (2010).3 Second, since sample analogs of the bounds of ΘI are the

suprema and infima of estimated bounding functions, they have substantial finite sample

bias, and estimated bounds tend to be much tighter than the population bounds. This has

been noted by Manski and Pepper (2000, 2009), and some heuristic bias adjustments have

been proposed by Haile and Tamer (2003) and Kreider and Pepper (2007).

We solve the problem of estimation and inference for intersection bounds by proposing

bias-corrected estimators of the upper and lower bounds, as well as confidence intervals.

Specifically, our approach employs a precision-correction to the estimated bounding func-

tions v 7→ θ̂l (v) and v 7→ θ̂u (v) before applying the supremum and infimum operators.

3The recent papers Andrews and Shi (2009) and Kim (2009) provide justification for subsampling procedures
for the statistics they employ for inference with conditional moment inequalities. We discuss these papers
further in our literature review below.
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We adjust the estimated bounding functions for their precision by adding to each of them

an appropriate critical value times their pointwise standard error. Then, depending on

the choice of the critical value, the intersection of these precision-adjusted bounds provides

(i) confidence sets for either the identified set ΘI or the true parameter value θ∗, or (ii)

bias-corrected estimators for the lower and upper bounds. Our bias-corrected estimators

are half-median-unbiased in the sense that the upper bound estimator θ̂u exceeds θu and

the lower bound estimator θ̂l falls below θl each with probability at least one half asymp-

totically. Note that achieving full unbiasedness is impossible in general, as shown by Hirano

and Porter (2009), which motivates the half-unbiasedness property. Bound estimators with

this property are also proposed by Andrews and Shi (2009), henceforth AS. An attractive

feature of our approach is that the only difference in the construction of our estimators and

confidence intervals is the choice of a critical value. Thus, practitioners need not implement

two entirely different methods to construct estimators and confidence bands with desirable

properties.

This paper contributes to a growing literature on inference on set-identified parameters

bounded by inequality restrictions. The prior literature has focused primarily on mod-

els with a finite number of unconditional inequality restrictions. Some examples include

Andrews and Jia (2008), Andrews and Guggenberger (2009), Andrews and Soares (2010),

Beresteanu and Molinari (2008), Bugni (2010), Canay (2010), Chernozhukov, Hong, and

Tamer (2007), Galichon and Henry (2009), Romano and Shaikh (2008), Romano and Shaikh

(2010), and Rosen (2008), among others. We contribute to this literature by considering

inference with a continuum of inequalities. Contemporaneous and independently written

research on conditional moment inequalities includes AS, Kim (2009), and Menzel (2009).

Our approach differs from all of these. Whereas we treat the problem with fundamentally

nonparametric methods, AS provide inferential statistics that transform the model’s condi-

tional restrictions to unconditional ones through the use of instrument functions. Thus our

approach is similar in spirit to that of Haerdle and Mammen (1993) while the approach of

AS parallels that of Bierens (1982) for testing a parametric specification against a nonpara-

metric alternative. As such, these approaches are complementary, each with their relative

merits, as we describe in further detail below. In sum, AS provide results on the uniform

asymptotic coverage properties of their confidence sets, asymptotic power properties, and

half-median-unbiased estimation of parameter bounds. Kim (2009) proposes an inferential

method related to that of AS, but where data dependent indicator functions play the role

of instrument functions. Menzel (2009) considers problems where the number of moment
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inequalities defining the identified set is large relative to the sample size. He provides re-

sults on the use of a subset of such restrictions in any finite sample, where the number of

restrictions employed grows with the sample size, and examines the sensitivity of estimation

and inference methods to the rate with which the number of moments used grows with the

sample size.

The classes of models to which our approach and others in the recent literature apply have

considerable overlap, most notably in models comprised of conditional moment inequalities,

equivalently models whose bounding functions are conditional moment functions. Relative

to other approaches, our approach is especially convenient for inference in parametric and

non-parametric models with a continuum of inequalities that are separable in parameters.

Our explicit use of nonparametric estimation of bounding functions renders our method

applicable in settings where the bounding functions depend on exogenous covariates in

addition to the variable V , i.e. where the function θ(x) at a point x is the object of interest,

with

supv∈V θl (x, v) ≤ θ(x) ≤ infv∈V θu (x, v) .

When the functions θl (x, v) and θu (x, v) are nonparametrically specified, these can be

estimated by either the series or kernel-type estimators we study in Section 4. At present

most other approaches do not appear to immediately apply when we are interested in θ(x)

at a point x, when covariates X are continuously distributed, with the exception of the

recent work by Fan and Park (2011) in the context of IV and MIV bounds.4

To better understand the comparison between our point and interval estimators and those

of AS when both are applicable, consider as a simple example the case where θ∗ ≤ E[Y |V ]

almost surely, so that the upper bound on θ∗ is given by θ0 = minv∈V E[Y |V = v] over some

region V. The upper bound θ0 is a nonparametric functional and can in general only be es-

timated at a nonparametric rate. That is, one can not construct point or interval estimators

that converge to θ0 at superefficient rates, i.e. rates that exceed the optimal nonparametric

rate for estimating θ(v) := θu(v) = E[Y |V = v].5 Our procedure delivers point and interval

estimators that can converge to θ0 at this rate, up to an undersmoothing factor. However,

there exist point and interval estimators that can achieve faster (superefficient) convergence

4The complication is that inclusion of additional covariates in a nonparametric framework requires a method
for localization of the bounding function around the point x. With some non-trivial work and under appro-
priate conditions, the other approaches can likely be adapted to this context.
5Suppose for example that V0 = arg minv∈V θ(v) is singleton, with θ0 = θ(v) for some v ∈ V. Then θ0 is
a nonparametric function evaluated at a single point, which cannot be estimated faster than the optimal
nonparametric rate. Lower bounds on the rates of convergence in nonparametric models are characterized
e.g. by Stone (1982) and Tsybakov (2009). Having a uniformly super-efficient procedure would contradict
these lower bounds.
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rates at some values of the nuisance parameter θ(·). In particular, if the bounding function

θ(·) happens to be flat on the contact set V0 = {v ∈ V : θ(v) = θ0}, meaning that V0 is a set

of positive Lebesgue measure, then the point and interval estimator of AS can achieve the

convergence rate of n−1/2. As a consequence, their procedure for testing θna ≤ θ0 against

θna > θ0, where θna = θ0 + C/
√

n for C > 0, has non-trivial asymptotic power, while our

procedure does not. If, however, θ(·) is not flat on V0, then the testing procedure of AS no

longer has power against the aforementioned n−1/2 alternatives, and results in point and

interval estimators that converge to θ0 at a sub-optimal rate.6 In contrast, our procedure

delivers point and interval estimators that can converge at nearly the optimal rate, and

hence can provide better power in these cases. Note that in applications both flat and non-

flat cases are important.7 Therefore, we believe that both testing procedures are useful. For

further comparisons, we refer the reader to our Monte-Carlo section and to Supplemental

Appendices J and K, which confirm these points both analytically and numerically.

There have also been some more recent additions to the literature on conditional moment

inequalities. Armstrong (2011b) and Chetverikov (2011) both propose interesting and im-

portant approaches to estimation and inference based on conditional moment inequalities,

respectively. The proposals can be seen as introducing full studentization in the procedure

of AS, which fundamentally changes its behavior. The resulting procedures use a collection

of fully studentized nonparametric estimators for inference, which brings them much closer

to the approach of the present paper. In Armstrong (2011b) and Chetverikov (2011) the

implicit nonparametric estimators are locally constant, with an adaptively chosen band-

width. In contrast, our approach does not rely on locally constant estimators, allowing

for the use of local polynomials, higher-order kernels, and series. Thus our approach is

specifically geared towards smooth cases, where θu(·) and θl(·) are continuously differen-

tiable of order s ≥ 1. In these cases it results in more precise estimates of the bounding

functions and hence higher power. On the other hand, in non-smooth cases, 0 < s ≤ 1, the

procedures of Armstrong (2011b) and Chetverikov (2011) automatically adapt to deliver op-

timal estimation and testing procedures, respectively, and so can perform somewhat better

6With regard to confidence intervals/interval estimators, we mean here that the upper bound of the confi-
dence interval does not converge at this rate.
7Note also that the latter case can be justified as generic if e.g. one takes θ(·) as a random draw from the
Sobolev ball equipped with the Gaussian (Wiener) measure.
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than our approach.8 Other recent papers include those of Armstrong (2011a) and Pono-

mareva (2010). To compare to their approaches in the context of the previous one-sided

example with θ0 = minv∈V E[Y |V = v], suppose that the bounding function is uniquely

minimized at a single point V0 and is locally quadratic. In such cases these papers pro-

pose to employ the usual extremum approach for inference, and the resulting inference is

asymptotically exact. Armstrong (2011a) also considers a more general case where the con-

tact set V0 = arg minv∈V E[Y |V = v] is finite. Note that when V0 is singleton or a finite

set, our simulation-based approach will automatically achieve asymptotic exactness under

some regularity conditions on smoothing parameters and is in fact first-order equivalent

to the extremum approach when V0 is singleton. However, our approach does not rely on

the bounding function being uniquely minimized and locally quadratic, or finite V0 for its

validity.

Plan of the Paper. We organize the paper as follows. In section 2, we motivate the

analysis with examples and provide an informal overview of our results. In section 3 we

provide a formal treatment of our method under high level conditions. In section 4 we

provide conditions and theorems for validity for both parametric and nonparametric es-

timators. We provide several examples demonstrating the use of primitive conditions for

parametric, series, and kernel estimators to verify the conditions of section 3. This includes

sufficient conditions for the application of each of these estimators to models comprised of

conditional moment inequalities. In section 5 we illustrate the performance of our method

in Monte Carlo experiments, which we compare to that of AS in terms of coverage fre-

quency and power. Our method performs well in these experiments, and we find that our

approach and that of AS perform favorably in different models, depending on the shape of

the bounding function. Section 6 concludes. In Appendix A we provide a step-by-step

implementation guide for our method. In Appendices B - F we provide proofs and establish

strong approximation results for both series and kernel estimators. An on-line supplement

contains five additional appendices. The first of these, Appendix G provides proofs omitted

from the main text in order to abide by space constraints.9 Appendix H provides additional

details on the use of primitive conditions to verify an asymptotic linear expansion needed

for strong approximation of series estimators and Appendix I gives some detailed arguments

8Note that for locally constant or any sign-preserving estimation of bounding functions, there is no need to
undersmooth, since the approximation bias is conservatively signed. Our inference algorithm still applies to
nonparametric estimates of bounding functions without undersmoothing, although our theory requires some
minor modifications to handle this case. We do not formally pursue this case, and focus on smooth cases,
and so we rely on undersmoothing.
9Specifically, Appendix G contains the proofs of Lemmas 2, 4, 7, and 8, and Theorems 8 and 9.
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omitted from the main text for local polynomial estimation of conditional moment inequal-

ities. Appendix J provides local asymptotic power analysis that supports the findings of

our Monte Carlo experiments. Appendix K provides further Monte Carlo evidence.

Notation. For any two reals a and b, a ∨ b = max{a, b} and a ∧ b = min{a, b}. Qp(X)

denotes the p-th quantile of random variable X. We use wp→ 1 as shorthand for “with

probability approaching one as n → ∞.” To denote probability statements conditional

on observed data, we write statements conditional on Dn. En and Pn denote the sample

mean and empirical measure, respectively. That is, given i.i.d. random vectors X1, . . . , Xn,

we have Enf =
∫

fdPn = n−1
∑n

i=1 f(Xi). In addition, let Gnf =
√

n(En − E)f =

n−1/2
∑n

i=1[f(Xi)−Ef(X)]. The notation an . bn means that an ≤ Cbn for all n; Xn .Pn

cn abbreviates Xn = OPn(cn). Xn →Pn ∞ means that for any constant C > 0, Pn(Xn <

C) → 0. We write diam(V ) to denote the diameter of V in the Euclidian metric. ‖·‖ denotes

the Euclidean norm, and for any two sets A, B in Euclidean space, dH(A,B) denotes the

Hausdorff pseudo-distance between A and B with respect to the Euclidean norm. C stands

for a generic positive constant, which may be different in different places, unless stated

otherwise. For a set V and an element v in Euclidean space, let d(v, V ) := infv′∈V ‖v− v′‖.
For a function p(v), let lip(p) denote the Lipschitz coefficient, that is lip(p) := L such that

‖p(v1)− p(v2)‖ ≤ L‖v1 − v2‖ for all v1 and v2 in the domain of p(v).

2. Motivating Examples and Informal Overview of Results

In this section we briefly describe three examples of intersection bounds from the litera-

ture and provide an informal overview of our results.

Example A: Treatment Effects and Instrumental Variables. In the analysis of treat-

ment response, the ability to uniquely identify the distribution of potential outcomes is

typically lacking without either experimental data or strong assumptions. This owes to

the fact that for each individual unit of observation, only the outcome from the received

treatment is observed; the counterfactual outcome that would have occurred given a differ-

ent treatment is not known. Although we focus here on treatment effects, similar issues

are present in other areas of economics. In the analysis of markets, for example, observed

equilibrium outcomes reveal quantity demanded at the observed price, but do not reveal

what demand would have been at other prices.

Suppose only that the support of the outcome space is known, Y ∈ [0, 1], but no other

assumptions are made regarding the distribution of counterfactual outcomes. Manski
8



(1989, 1990) provide worst-case bounds on mean treatment outcomes for any treatment t

conditional on observables (X,V ) = (x, v),

θl (x, v) ≤ E [Y (t) |X = x, V = v] ≤ θu (x, v) ,

where the bounds are

θl (x, v) := E[Y · 1{Z = t}|X = x, V = v],

θu (x, v) := E[Y · 1{Z = t}+ 1{Z 6= t}|X = x, V = v],

where Z is the observed treatment. If V is an instrument satisfying E [Y (t) |X, V ] =

E [Y (t) |X], then for any fixed x sharp bounds on θ∗ := θ∗(x) := E [Y (t) |X = x] are given

by

supv∈V θl (x, v) ≤ θ∗(x) ≤ infv∈V θu (x, v) ,

for any V ⊆ support(V |X = x), where the subset V will be taken as known for estimation

purposes. Similarly, bounds implied by restrictions such as monotone treatment response,

monotone treatment selection, and monotone instrumental variables, as in Manski (1997)

and Manski and Pepper (2000), also take the form of intersection bounds.

Example B: Bounding Distributions to Account for Selection. Similar analysis

applies to inference on distributions whose observations are censored due to selection. This

approach is used by Blundell, Gosling, Ichimura, and Meghir (2007) to study changes in male

and female wages. The starting point of their analysis is that the cumulative distribution

F (w|x, v) of wages W at any point w, conditional on observables (X,V ) = (x, v) must

satisfy the worst case bounds

θl (x, v) ≤ F (w|x, v) ≤ θu (x, v) , (2.1)

where D is an indicator of employment, and hence observability of W , so that

θl (x, v) := E[D · 1{W ≤ w}|X = x, V = v],

θu (x, v) := E[D · 1{W ≤ w}+ (1−D) |X = x, V = v].

This relation is used to bound quantiles of conditional wage distributions. Additional

restrictions motivated by economic theory are then used to tighten the bounds.

One such restriction is an exclusion restriction of the continuous variable out-of-work

income, V . They consider the use of V as either an excluded or monotone instrument.
9



The former restriction implies bounds on the parameter θ∗ := F (w|x),

supv∈V θl (x, v) ≤ F (w|x) ≤ infv∈V θu (x, v) , (2.2)

for any V ⊆ support(V |X = x), while the weaker monotonicity restriction implies the

following bounds on θ∗ := F (w|x, v0) for any v0 in support(V |X = x),

supv∈Vl
θl (x, v) ≤ F (w|x, v0) ≤ infv∈Vu θu (x, v) , (2.3)

where Vl = {v ∈ V : v ≤ v0} and Vu = {v ∈ V : v ≥ v0}.

Example C: (Conditional) Conditional Moment Inequalities. Our inferential method

can also be used for pointwise inference on parameters restricted by (possibly conditional)

conditional moment inequalities. Such restrictions arise naturally in empirical work in

industrial organization, see for example Pakes, Porter, Ho, and Ishii (2005) and Berry and

Tamer (2007).

To illustrate, consider the restriction

E [mj (X,µ0) |Z = z] ≥ 0 for all j = 1, ..., J and z ∈ Zj . (2.4)

where each mj (·, ·) , j = 1, ..., J is a real-valued function, (X, Z) are observables, and µ0 is

the parameter of interest. Note that this parameter can be dependent on some particular

covariate value. For instance, we may be interested in a subgroup of the population with

Z̃1 = z̃1, where Z̃1 denotes a subvector of Z. In this case, µ0 = µ0(z) depends on z, and

Zj ⊆ support(Z|Z̃1 = z̃1) for j = 1, ..., J. Note also that regions Zj can depend on the

inequality j as in (2.3) of the previous example, and that the previous two examples can in

fact be cast as special cases of this one.

Suppose that we would like to test (2.4) at level α for the conjectured parameter value

µ0 = µ against an unrestricted alternative. To see how our framework can be used to test

this hypothesis, define

v = (z, j), V := {(z, j) : z ∈ Zj , j ∈ {1, ..., J}} and θ (µ, v) := E [mj (X, µ) |Z = z]

and θ̂ (µ, v) a consistent estimator. Under some continuity conditions this is equivalent to

a test of θ0 (µ) := infv∈V θ (µ, v) ≥ 0 against infv∈V θ (µ, v) < 0 . Our method for inference

delivers a statistic

θ̂α(µ) = inf
v∈V

[
θ̂ (µ, v) + k̂ · s (µ, v)

]
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such that limn→∞ P (θ0 (µ) ≥ θ̂α(µ)) ≤ α. Here, s (µ, v) is the standard error of θ̂ (µ, v)

and k̂ is an estimated critical value, as we describe below. If θ̂α(µ) < 0, we reject the null

hypothesis, while if θ̂α(µ) ≥ 0, we do not.

Informal Overview of Results. We now provide an informal description of our method

for estimation and inference. Consider an upper bound θ0 on θ∗ of the form

θ∗ ≤ θ0 := inf
v∈V

θ(v), (2.5)

where v 7→ θ(v) is a bounding function, and V is the set over which the infimum is taken.

We focus on describing our method for the upper bound (2.5), as the lower bound is entirely

symmetric. In fact, any combination of upper and lower bounds can be combined into upper

bounds on an auxiliary function of θ∗ of the form (2.5), and this can used for inference on

θ∗, as we describe in Section A.10

What are good estimators and confidence regions for the bound θ0? A natural idea is to

base estimation and inference on the sample analog: infv∈V θ̂(v). However, this estimator

does not perform well in practice. First, the analog estimator tends to be downward biased in

finite samples. As discussed in the introduction, this will typically result in bound estimates

that are much narrower than those in the population, see e.g. Manski and Pepper (2000) and

Manski and Pepper (2009) for more on this point. Second, inference must appropriately take

account of sampling error of the estimator θ̂(v) across all values of v. Indeed, different levels

of precision of θ̂(v) at different points can severely distort the perception of the minimum

of the bounding function θ(v). Figure 1 illustrates these problems geometrically. The solid

curve is the true bounding function v 7→ θ(v), and the dash-dotted thick curve is its estimate

v 7→ θ̂(v). The remaining dashed curves represent eight additional potential realizations

of the estimator, illustrating its precision. In particular, we see that the precision of the

estimator is much lower on the right side than on the left. A näıve sample analog estimate

for θ0 is provided by the minimum of the dash-dotted curve, but this estimate can in fact be

quite far away from θ0. This large deviation from the true value arises from both the lower

precision of the estimated curve on the right side of the figure and from the downward bias

created by taking the minimum of the estimated curve.

10Alternatively, one can combine one-sided intervals for lower and upper bounds for inference on the identified
set ΘI using Bonferroni’s inequality, or for inference on θ∗ using the method described in Chernozhukov, Lee,
and Rosen (2009) Section 3.7, which is a slight generalization of methods previously developed by Imbens
and Manski (2004) and Stoye (2009).
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To overcome these problems, we propose a precision-corrected estimate of θ0:

θ̂(p) := min
v∈V

[θ̂(v) + k(p) · s(v)], (2.6)

where s(v) is the standard error of θ̂(v), and k(p) is a critical value, the selection of which is

described below. That is, our estimator θ̂(p) minimizes the precision-corrected curve given

by θ̂(v) plus critical value k(p) times the pointwise standard error s(v). Figure 2 shows a

precision-corrected curve as a dashed curve with a particular choice of critical value k. In

this figure, we see that the minimizer of the precision-corrected curve can indeed be much

closer to θ0 than the sample analog infv∈V θ̂(v). Although this illustration is schematic in

nature, it conveys geometrically why our approach can ameliorate the downward bias. In

what follows, we provide both theoretical and Monte-Carlo evidence that further supports

this point.

The main input in the selection of our critical value k(p) for the estimator θ̂(p) in (2.6)

above is the standardized process

Zn(v) =
θ(v)− θ̂(v)

σ(v)
,

where σ(v)/s(v) → 1 uniformly in v. Generally, the finite-sample distribution of the process

Zn is unknown, but we can approximate it uniformly by a sequence of Gaussian processes

Z∗n such that for an appropriate sequence of constants ān

ān sup
v∈V

|Zn(v)− Z∗n(v)| = op(1). (2.7)

For any compact set V , used throughout to denote a generic compact subset of V, we then

approximate the quantiles of supv∈V Z∗n(v) either by analytical methods based on asymptotic

approximations, or by simulation. We then use the p-quantile of this statistic, kn,V (p), in

place of k(p) in (2.6). We show that in general simulated critical values provide sharper

inference, and therefore advocate their use.

The estimated critical value kn,V (p) is monotone in V . For the estimator in (2.6) to

exceed θ0 with probability no less than p asymptotically, we require that wp→ 1 the set V

contains the argmin set

V0 := arg min
v∈V

θ(v).

A simple way to achieve this is to use V = V, which leads to asymptotically valid but

conservative inference. We thus propose the use of a preliminary estimator V̂n for V0 in

the construction of kn,V (p) above, and verify its validity. The estimator V̂n is constructed

using a novel adaptive inequality selection procedure. Note that because the critical value

12



kn,V (p) is monotone in V , this yields a critical value no larger than those based on V = V.

In section 3.5 we provide conditions for consistency and rates of convergence for the set

estimate V̂n, and in section 3.6 we provide conditions whereby simulation-based selection of

the critical value results in asymptotically exact inference.

At an abstract level our method does not distinguish parametric estimators of θ(v) from

nonparametric estimators; however, details of the analysis and regularity conditions are

quite distinct. In all cases, we employ strong approximation analysis to approximate the

quantiles of supv∈V Zn(v), and we verify our conditions separately for each case. The formal

definition of strong approximation is provided in Appendix B.

3. Estimation and Inference Theory under General Conditions

3.1. Basic Framework. In this and subsequent sections we allow the model and the prob-

ability measure to depend on n. Formally, we work with a probability space (A,A, Pn)

throughout. This approach is conventionally used in asymptotic statistics to ensure ro-

bustness of statistical conclusions with respect to perturbations in Pn. It guarantees the

validity of our inference procedure under any sequence of probability laws Pn that obey our

conditions, including the case with fixed P. We thus generalize our notation in this section

to allow model parameters to depend on n.

The basic setting is as follows:

Condition C. 1 (Setting). There is a non-empty compact set V ⊂ K ⊂ Rd, where V can

depend on n, and K is a bounded fixed set, independent of n. There is a continuous real

valued function v 7→ θn(v). There is an estimator v 7→ θ̂n(v) of this function, which is an

a.s. continuous stochastic process. There is a continuous function v 7→ σn(v) representing

non-stochastic normalizing factors bounded by σ̄n := supv∈V σn(v), and there is an estimator

v 7→ sn(v) of these factors, which is an a.s. continuous stochastic process, bounded above

by s̄n := supv∈V sn(v).

We are interested in constructing point estimators and one-sided interval estimators for

θn0 = inf
v∈V

θn(v).

The main input in this construction is the standardized process

Zn(v) =
θn(v)− θ̂n(v)

σn(v)
.

13



In the following we require that this process can be approximated by a standardized Gauss-

ian process in the metric space `∞(V) of bounded functions mapping V to R, which can be

simulated for inference.

Condition C. 2 (Strong Approximation). (a) Zn is strongly approximated by a sequence

of penultimate Gaussian processes Z∗n having zero mean and a.s. continuous sample paths:

sup
v∈V

|Zn(v)− Z∗n(v)| = oPn (δn) ,

where EPn [Z∗n(v)]2 = 1 for each v ∈ V, where δn = o(ā−1
n ) for the sequence of constants ān

defined in Condition C.3 below. (b) Moreover, for simulation purposes, there is a process

Z?
n, whose distribution is zero-mean Gaussian conditional on the data Dn and such that

EPn [Z?
n(v) | Dn]2 = 1 for each v ∈ V, that can approximate an identical copy Z̄∗n of Z∗n,

where Z̄∗n is independent of Dn, namely there is o(δn) term such that

Pn

[
sup
v∈V

|Z̄∗n(v)− Z?
n(v)| > o(δn) | Dn

]
= oPn (1/`n)

for some `n →∞ chosen below.

For convenience we refer to Appendix B, where the definition of strong approximation

is recalled. The penultimate process Z∗n is often called a coupling, and we construct such

couplings for parametric and nonparametric estimators under both high-level and primitive

conditions. It is quite convenient to work with Z∗n, since we can rely on the fine properties

of Gaussian processes. Note that Z∗n depend on n and generally do not converge weakly to

a fixed Gaussian process, and therefore they are not asymptotically Donsker. Nonetheless

we shall perform either analytical or simulation-based inference based on these processes.

Our next condition captures the so-called concentration properties of Gaussian processes:

Condition C. 3 (Concentration). For all n sufficiently large and for any compact, non-

empty V ⊆ V, there is a normalizing factor an(V ) satisfying

1 ≤ an(V ) ≤ an(V) =: ān, an(V ) is increasing in V,

such that

En(V ) := an(V )
(

sup
v∈V

Z∗n(v)− an(V )
)

obeys

Pn[En(V ) ≥ x] ≤ P[E ≥ x], (3.1)

where E is a random variable with continuous distribution function such that P (E > x) ≤
exp(−x/η) for some η > 0.

14



The concentration condition will be verified in our applications by appealing to the

Talagrand-Samorodnitsky inequality for the concentration of the suprema of Gaussian pro-

cesses, which is sharper than the classical concentration inequalities. These concentration

properties play a key role in our analysis, as they determine the uniform speed of con-

vergence ānσ̄n of the estimator θ̂n(p) to θn0. In particular this property implies that for

any compact Vn ⊆ V EPn [supv∈Vn
Z∗n(v)] . ān. As there is concentration, there is an

opposite force, called anti-concentration, which implies that under C.2(a) and C.3 for any

δn = o(1/ān) we have

sup
x∈R

Pn

(
| sup
v∈Vn

Z∗n(v)− x| ≤ δn

)
→ 0. (3.2)

This follows from a generic anti-concentration inequality derived in Chernozhukov and Kato

(2011), quoted in Appendix C for convenience. Anti-concentration simplifies the construc-

tion of our confidence intervals. Finally, the exponential tail property of E plays an impor-

tant role in the construction of our adaptive inequality selector, introduced below, since it

allows us to bound moderate deviations of one-sided estimation noise supv∈V Z∗n(v).

Our next assumption requires uniform consistency as well as suitable estimates of σn:

Condition C. 4 (Uniform Consistency). We have that

(a) ānσ̄n = o (1) and (b) sup
v∈V

∣∣∣∣
sn(v)
σn(v)

− 1
∣∣∣∣ = oPn

(
δn

ān + ``n

)
,

where ``n ↗∞ is a sequence of constants defined below.

In what follows we let

`n := log n, and ``n := log `n,

but it should be noted that `n can be replaced by other slowly increasing sequences.

3.2. The Inference and Estimation Strategy. For any compact subset V ⊆ V and

γ ∈ (0, 1), define:

κn,V (γ) := Qγ

(
sup
v∈V

Z∗n(v)
)

.

Given this notation, the following result is a key observation that helps us set up inference.

Lemma 1 (Inference Concentrates on a Neighborhood Vn of V0). Under C.1-C.4

Pn

(
sup
v∈V

θn0 − θ̂n(v)
sn(v)

≤ x

)
≥ Pn

(
sup
v∈Vn

Z∗n(v) ≤ x

)
− o(1),

uniformly in x ∈ [0,∞), where

Vn := {v ∈ V : θn(v) ≤ θn0 + κnσn(v)} , for κn := κn,V(γ′n), (3.3)
15



where γ′n is any sequence such that γ′n ↗ 1 with κn/(ān + ``n) . 1.

Thus, with probability converging to one, the inferential process concentrates on a neigh-

borhood of V0 given by Vn. The “size” of the neighborhood is determined by κn, a high

quantile of supv∈V Z∗n(v), which summarizes the maximal one-sided estimation error over

V. We use this to construct half-median-unbiased estimators for θn0 as well as one-sided

interval estimators for θn0 with correct asymptotic level, based on analytical and simulation

methods for obtaining critical values proposed below.

Remark 1 (Sharp Concentration of Inference). In general, it is not possible for the

inferential processes to concentrate on smaller subsets than Vn. However, as shown, in

Section 3.6, in some special cases, e.g. when V0 is a well-identified singleton, the inference

process will in fact concentrate on V0. In this case our simulation-based construction will

automatically adapt to deliver median-unbiased estimators for θn0 as well as one-sided

interval estimators for θn0 with correct asymptotic size. Indeed, in the special but extremely

important case of V0 being singleton we can achieve

Pn

(
sup
v∈Vn

Z∗n(v) > x

)
= Pr

(
N(0, 1) > x

)
− o(1),

under some regularity conditions. In this case, our simulation-based procedure will auto-

matically produce a critical value that approaches the p-th quantile of the standard normal,

delivering asymptotically exact inference. ¥

Definition 1 (Generic Interval and Point Estimators). Let p ≥ 1/2, then our interval

estimator takes the form:

θ̂n0(p) = inf
v∈V

[
θ̂n(v) + k

n,V̂n
(p)sn(v)

]
, (3.4)

where the half-median unbiased estimator corresponds to p = 1/2. This construction relies

on the principal critical value k
n,V̂n

(p), which depends on a preliminary set estimator:

V̂n =
{

v ∈ V : θ̂n(v) ≤ min
ṽ∈V

(
θ̂n(ṽ) + kn,V(γn)sn(ṽ)

)
+ 2kn,V(γn)sn(v)

}
, (3.5)

which in turn depends on the auxiliary critical value kn,V(γn), where we set γn := 1−.1/`n ↗
1. These critical values are constructed below using either the analytical or simulation

method.
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The main idea is to construct simulated or analytical critical values so that wp → 1,

k
n,V̂n

(p) ≥ κn,Vn(p− o(1)), (3.6)

kn,V(γn) ≥ κn,V(γ′n), (3.7)

where γ′n = γn − o(1) ↗ 1. As a consequence, we show in Theorems 1 and 2 below that

Pn

{
θn0 ≤ θ̂n0(p)

}
≥ p− o(1), (3.8)

for any fixed 1/2 ≤ p < 1. The construction relies on the new set estimator V̂n, which

we call an adaptive inequality selector (AIS), since it uses the problem-dependent cutoff

kn,V(γn), which is a bound on a high quantile of supv∈V Z∗n(v). The analysis therefore must

take into account the moderate deviations (tail behavior) of the latter.

Before proceeding to the details of its construction, we note that the argument for es-

tablishing the coverage results and analyzing power properties of the procedure depends

crucially on the following result proven in Lemma 2 below:

Pn

{
Vn ⊆ V̂n ⊆ V n

}
→ 1,

where

V n := {v ∈ V : θn(v) ≤ θn0 + κ̄nσn(v)} , for κ̄n := 4(ān + η``n/ān). (3.9)

Thus, the preliminary set estimator V̂n is sandwiched between two deterministic sequences

of sets, facilitating the analysis of its impact on the convergence of θ̂n0(p) to θn0.

3.3. Analytical Method and Its Theory. Our first construction is quite simple and

demonstrates the main – though not the finest – points. This construction uses the ma-

jorizing variable E appearing in C.3.

Definition 2 (Analytical Method for Critical Values). For any compact set V and any

p ∈ (0, 1), we set

kn,V (p) = an(V ) + c(p)/an(V ), (3.10)

where c(p) = Qp(E) is the p-th quantile of the majorizing variable E defined in C.3, where

we require that V 7→ kn,V (p) is monotone in V .

The first main result is as follows.

Theorem 1 (Analytical Inference, Estimation, Power under C.1-C.4). Suppose

C.1-C.4 hold. Consider the interval estimator given in Definition 1 with critical value

function given in Definition 2. Then, for a given p ∈ [1/2, 1),
17



1. The interval estimator has asymptotic level p:

Pn

{
θn0 ≤ θ̂n0(p)

}
≥ p− o(1).

2. The estimation risk is bounded by, wp → 1 under Pn,
∣∣∣θ̂n0(p)− θn0

∣∣∣ ≤ 4σ̄n

(
an(V n) +

OPn(1)
an(V n)

)
.Pn σ̄nān.

3. Hence, any, possibly data-dependent, alternative θna > θn0 such that

θna ≥ θn0 + 4σ̄n

(
an(V n) +

µn

an(V n)

)
, µn →Pn ∞,

is rejected with probability converging to 1 under Pn.

Thus, (−∞, θ̂n0(p)] is a valid one-sided interval estimator for θn0. Moreover, θ̂n0(1/2) is

a half-median-unbiased estimator for θn0 in the sense that

lim
n→∞Pn

[
θn0 ≤ θ̂n0(1/2)

]
≥ 1/2.

The rate of convergence of θ̂n0(p) to θn0 is bounded above by the uniform rate σ̄nān for

estimation of the bounding function v 7→ θn(v). This implies that the test of H0 : θn0 = θna

that rejects if θna > θ̂n0(p) asymptotically rejects all local alternatives that are more

distant than σ̄nān, including fixed alternatives as a special case. In Section 4 below we

show that in parametric cases this results in power against n−1/2 local alternatives. For

kernel-type estimators of bounding functions the rate ānσ̄n is proportional to (log n)c/
√

nhd

where c is some positive constant and h is the bandwidth, assuming some undersmoothing

is done. For example, if the bounding function is s-times differentiable, σn can be made

close to (log n/n)s/(2s+d) apart from some undersmoothing factor by considering a local

polynomial estimator, see Stone (1982). Similarly, for series estimators ānσ̄n is proportional

to (log n)c
√

K/n where c is some positive constant, and K → ∞ is the number of series

terms. For both series and kernel-type estimators we show below that ān can be bounded

by
√

log n.

3.4. Simulation-Based Construction and Its Theory. Our main and preferred ap-

proach is based on the simple idea of simulating quantiles of relevant statistics.

Definition 3 (Simulation Method for Critical Values). For any compact set V ⊆ V, we set

kn,V (p) = Qp

(
sup
v∈V

Z?
n(v) | Dn

)
. (3.11)
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We have the following result for simulation inference, analogous to that obtained for ana-

lytical inference.

Theorem 2 (Simulation Inference, Estimation, Power under C.1-C.4). Suppose

C.1-C.4 hold. Consider the interval estimator given in Definition 1 with the critical value

function specified in Definition 3. Then, for a given p ∈ [1/2, 1),

1. The interval estimator has asymptotic level p:

Pn

{
θn0 ≤ θ̂n0(p)

}
≥ p− o(1).

2. The estimation risk is bounded by, wp → 1 under Pn,
∣∣∣θ̂n0(p)− θn0

∣∣∣ ≤ 4σ̄n

(
an(V n) +

OPn(1)
an(V n)

)
.Pn σ̄nān.

3. Any, possibly data-dependent, alternative θna > θn0 such that

θna ≥ θn0 + 4σ̄n

(
an(V n) +

µn

an(V n)

)
, µn →Pn ∞,

is rejected with probability converging to 1 under Pn.

3.5. Properties of the Set Estimator V̂n. In this section we establish some containment

properties for the estimator V̂n. Moreover, these containment properties imply a useful rate

result under the following condition:

Condition V (Degree of Identifiability for V0). There exist constants ρn > 0 and cn > 0,

possibly dependent on n, and a positive constant δ, independent of n, such that

θn(v)− θn0 ≥ (cnd(v, V0))ρn ∧ δ, ∀v ∈ V. (3.12)

We say (cn, 1/ρn) characterize the degree of identifiability of V0, as these parameters

determine the rate at which V0 can be consistently estimated. Note that if V0 = V, then

this condition holds with cn = ∞ and ρn = 1, where we adopt the convention that 0 ·∞ = 0.

We have the following result, whose first part we use in the proof of Theorems 1 and 2

above, and whose second part we use below in the proof of Theorem 3.

Lemma 2 (Estimation of Vn and V0). Suppose C.1-C.4 hold.

1. (Containment). Then wp → 1, for either analytical or simulation methods,

Vn ⊆ V̂n ⊆ V n,

for Vn defined in (3.3) with γ′n = γn − o(1), and V n defined in (3.9).
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2. (Rate) If also Condition V holds and κ̄nσ̄n → 0, then wp → 1

dH(V̂n, V0) ≤ dH(V̂n, Vn) + dH(Vn, V0)

≤ dH(V n, Vn) + dH(Vn, V0) ≤ rn := 2(κ̄nσ̄n)1/ρn/cn.

3.6. Automatic Sharpness of Simulation Construction. When the penultimate pro-

cess Z∗n does not lose equicontinuity too fast, and V0 is sufficiently well-identified, our

simulation-based inference procedure becomes sharp in the sense of not only achieving the

right level but in fact automatically achieving the right size. In such cases we typically

have some small improvements in the rates of convergence of the estimators. The most

important case covered is that where V0 is singleton11 (or a finite collection of points) and

θn is locally quadratic, i.e. ρn ≥ 2 and cn ≥ c > 0 for all n. These sharp situations occur

when the inferential process concentrates on V0 and not just on the neighborhood Vn, in

the sense described below. For this to happen we impose the following condition.

Condition S (Equicontinuity radii are not smaller than rn). Under Condition V

holding, the scaled penultimate process ānZ∗n has an equicontinuity radius ϕn that is no

smaller than rn := 2(κ̄nσ̄n)1/ρn/cn:

sup
‖v−v′‖≤ϕn

ān|Z∗n(v)− Z∗n(v′)| = oPn(1), rn ≤ ϕn.

When Z∗n is Donsker, i.e. asymptotically equicontinuous, this condition holds automati-

cally, since in this case ān ∝ 1, and for any o(1) term, equicontinuity radii obey ϕn = o(1), so

that consistency rn = o(1) is sufficient. When Z∗n is not Donsker, its finite-sample equicon-

tinuity properties decay as n → ∞, with radii ϕn characterizing the decay. However, as

long as ϕn is not smaller than rn, we have just enough finite-sample equicontinuity left to

achieve the following result.

Lemma 3 (Inference Sometimes Concentrates on V0). Suppose C.1-C.4, S, and V

hold. Then for any γn ↗ 1,

Pn

(
sup
v∈V

θn0 − θ̂n(v)
sn(v)

≤ x

)
= Pn

(
sup
v∈V0

Z∗n(v) ≤ x

)
+ o(1).

Under the stated conditions, our inference and estimation procedures automatically become

sharp in terms of size and rates.

11This case is generic in the sense that if one draws θn(·) from the Sobolev ball equipped with the Wiener
measure, then V0 is singleton with probability one.
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Theorem 3 (Sharpness of Simulation Inference). Suppose C.1-C.4, S, and V hold.

Consider the interval estimator given in Definition 1 with the critical value function specified

in Definition 3. Then, for a given p ∈ [1/2, 1),

1. The interval estimator has asymptotic size p:

Pn

{
θn0 ≤ θ̂n0(p)

}
= p + o(1).

2. Its estimation risk is bounded by, wp → 1 under Pn,
∣∣∣θ̂n0(p)− θn0

∣∣∣ ≤ 4σ̄n

(
an(V0) +

OPn(1)
an(V0)

)
.Pn σ̄nan(V0).

3. Any, possibly data-dependent, alternative θna > θn0 such that

θna ≥ θn0 + 4σ̄n

(
an(V0) +

µn

an(V0)

)
, µn →Pn ∞,

is rejected with probability converging to 1 under Pn.

4. Inference on Intersection Bounds in Leading Cases

4.1. Parametric estimation of bounding function. We now show that the above con-

ditions apply to various parametric estimation methods for v 7→ θn(v). This is an important

practical, and indeed tractable, case. The required conditions are formally stated below, and

cover standard parametric estimators of bounding functions such as least squares, quantile

regression, and other estimators.

Condition P (Finite-Dimensional Bounding Function). We have that (i) θn(v) :=

θn(v, γn), where V × G 7→ θn(v, γ) is a known function parameterized by finite-dimensional

vector γ ∈ G, where V is a compact subset of Rd and G is a subset of Rk, where the sets do

not depend on n. (ii) The function (v, γ) 7→ pn(v, γ) := ∂θn(v, γ)/∂γ is uniformly Lipschitz

with Lipschitz coefficient Ln ≤ L, where L is a finite constant that does not depend on n.

(iii) An estimator γ̂n is available such that

Ω−1/2
n

√
n(γ̂n − γn) = Nk + oPn(1), Nk =d N(0, Ik),

(iv) ‖pn(v, γn)‖ is bounded away from zero, uniformly in v and n. The eigenvalues of Ωn

are bounded from above and away from zero, uniformly in n. (v) There is also a consistent

estimator Ω̂n such that ‖Ω̂n − Ωn‖ = OPn(n−b) for some constant b > 0, independent of n.

Example 1 (A Saturated Model). As a simple, but relevant example we consider the

following model. Suppose that v takes on a finite set of values, denoted 1, ..., k, so that

θn(v, γ) =
∑k

j=1 γj1(v = j). Suppose first that Pn = P is fixed, so that γn = γ0, a fixed value.
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Condition (ii) and the boundedness requirement of (iv) follow from ∂θn(v, γ)/∂γj = 1(v = j)

for each j = 1, . . . , k. Condition (v) applies to many estimators. Then if the estimator γ̂

satisfies Ω−1/2√n(γ̂−γ0) →d N(0, Ik) where Ω is positive definite, the strong approximation

in condition (iii) follows from Skorohod’s Theorem and Lemma 9.12 Suppose next that Pn

and the true value γn = (γn1, . . . , γnk)′ change with n. Then if

Ω−1/2
n

√
n(γ̂n − γn) =

1√
n

n∑

i=1

ui,n + oPn(1),

with {ui,n} i.i.d. with mean zero, for each n, and E‖ui,n‖2+δ bounded uniformly in n for

some δ > 0, then Ω−1/2
n

√
n(γ̂n − γn) →d N(0, Ik), then again condition (iii) follows from

Skorohod’s theorem and Lemma 9. ¥

Lemma 4 (P and V imply C.1-C.4, S). Condition P implies Conditions C.1-C.4 and

S, where, for pn(v, γ) := ∂θn(v,γ)
∂γ ,

Zn(v) =
θn(v)− θ̂n(v)

σn(v)
, Z∗n(v) =

pn(v, γn)′Ω1/2
n

‖pn(v, γn)′Ω1/2
n ‖

Nk, Z?
n(v) =

pn(v, γ̂n)′Ω̂1/2
n

‖pn(v, γ̂n)′Ω̂1/2
n ‖

Nk,

σn(v) = ‖n−1/2pn(v, γn)′Ω1/2
n ‖, sn(v) = ‖n−1/2pn(v, γ̂n)′Ω̂1/2

n ‖, δn = o(1),

ān . 1, σ̄n .
√

1/n, an(V ) =
(

2
√

log{C(1 + C ′Lndiam(V ))d}
)
∨ (1 +

√
d),

for some positive constants C and C ′, and P [E > x] = exp(−x/2). Furthermore, if also

Condition V holds and c−1
n (``n/

√
n)1/ρn = o(1), then Condition S holds.

The following is an immediate consequence of Lemma 4 and Theorems 1, 2, and 3.

Theorem 4 (Estimation and Inference with Parametrically Estimated Bounding

Functions). Suppose Condition P holds and consider the interval estimator θ̂n0(p) given in

Definition 1 with simulation-based critical values specified in Definition 3 for the simulation

process Z?
n specified above. (1) Then (i) Pn[θn0 ≤ θ̂n0(p)] ≥ p − o(1), (ii) |θn0 − θ̂n0(p)| =

OPn(
√

1/n), (iii) Pn(θn0 + µn

√
1/n ≥ θ̂n0(p)) → 1 for any µn →Pn ∞. (2) If Condition

V holds with cn ≥ c > 0 and ρn ≤ ρ < ∞, then Pn[θn0 ≤ θ̂n0(p)] = p + o(1).

The next example generalizes the simple saturated example of Example 1 to a more

substantive example. This example also offers a natural means of transition to the next

section, which deals with series estimation, which could merely be viewed as parametric

estimation with parameters of increasing dimension and vanishing approximation errors.

12See Theorem 1.10.3 of van der Vaart and Wellner (1996) on page 58 and the subsequent historical discussion
attributing the earliest such results to Skorohod (1956), later generalized by Wichura and Dudley.
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Example 2 (Linear Bounding Function). Suppose that θn(v, γn) = pn(v)′γn, where

pn(v)′γ : V × G 7→ R. Suppose that (a) v 7→ pn(v) is Lipschitz with Lipschitz coefficient

Ln ≤ L, for all n, with the first component equal to 1, (b) there is an estimator available

that is asymptotically linear

Ω−1/2
n

√
n(γ̂n − γn) =

1√
n

n∑

i=1

ui,n + oPn(1),

with {ui,n} i.i.d. with mean zero, for each n, and E‖ui,n‖2+δ bounded uniformly in n for

some δ > 0, and (c) Ωn has eigenvalues bounded away from zero and from above. These

conditions imply Condition P(i)-(iv). Indeed, (i),(ii), and (iv) hold immediately, while (iii)

follows from the Lindeberg-Feller CLT, which implies that under Pn

Ω−1/2
n

√
n(γ̂n − γn) →d N(0, Ik),

and the strong approximation follows by the Skorohod representation and Lemma 9 by

suitably enriching the probability space if needed. Note that if θn(v, γn) is the conditional

expectation of Yi given Vi = v, then γ̂n can be obtained by the mean regression of Yi on

pn(Vi), i = 1, ..., n; if θn(v, γn) is the conditional u-quantile of Yi given Vi = v, then γ̂n can

be obtained by the u-quantile regression of Yi on pn(Vi), i = 1, ..., n. Regularity conditions

that imply the ones stated above can be found in e.g. White (1984) and Koenker (2005).

Finally estimators of Ωn depend on the estimator of γn; for mean regression the standard

estimator is the Eicker-Huber-White estimator, and for quantile regression the standard

estimator is Powell’s estimator, see Powell (1984). For brevity we do not restate sufficient

conditions for Condition P(v), but these are readily available for common estimators. ¥

Example 3 (Conditional Moment Inequalities). This is a generalization of the pre-

vious example where now the bounding function is the minimum of J conditional mean

functions. Referring to the conditional moment inequality setting specified in Section 2,

suppose we have an i.i.d. sample of (Xi, Zi), i = 1, ..., n, with support(Zi) = Z ⊆ [0, 1]d.

Let v = (z, j), where j denotes the enumeration index for the conditional moment inequal-

ity, j ∈ {1, ..., J}, and suppose V ⊆ Z × {1, ..., J}. The parameters J and d do not depend

on n. Hence

θn0 = min
v∈V

θn(v) = min
(z,j)∈V

θn(z, j).

Suppose that θn(v) = EPn [m(X, µ, j)|z] = b(z)′γn(j), for b : Z 7→ Rm, denoting some

transformation of z, with m independent of n, and where γn(j) are the population regression

coefficients in the regression of Y (j) := m(X,µ, j) on b(Z), j = 1, ..., J , respectively, under

Pn. Suppose that the first J0/2 pairs correspond to moment inequalities generated from
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moment equalities so that θn(j) = −θn(j − 1), j = 2, 4, ..., J0, and so these functions are

replicas of each other up to sign; also note that γn(j) = −γn(j − 1), j = 2, 4, ..., J0. Then

we can rewrite

θn(v) = EPn [m(X, µ, j)|Z = z] = b(z, j)′γn(j) := pn(v)′βn,

βn = (γn(j)′, j ∈ J ),′ J := {2, 4, ..., J0, J0 + 1, J0 + 2, ..., J}′,

where βn is a vector of regression coefficients, and pn(v) a K = dim(βn)-vector defined by the

relation above, i.e. pn(z, j) = [0′m, ..., 0′m, (−1)j+1b′m(z), 0′m, ..., 0′m]′ with b′m(z) appearing in

the j-th block for 1 ≤ j ≤ J0; pn(z, j) = [0′m, ..., 0′m, b′m(z), 0′m, ..., 0′m]′ with b(z) appearing

in the j-th block for J0 +1 ≤ j ≤ J , where 0m is an m-dimensional vector of zeroes.13 Note

that this removal of duplicated regressions is done to simplify the technical arguments; it is

not needed in practical implementation, where duplication is allowed.

We impose the following conditions:

(a) b(z) includes constant 1, (b) z 7→ b(z) has Lipschitz coefficient bounded

above by L, (c) for Yi = (Yi(j), j ∈ J )′ and for εi := Yi − EPn [Yi|Zi], the

eigenvalues of EPn [εiε
′
i | Zi = z] are bounded away from zero and from above,

uniformly in z ∈ Z and n; (d) Q = EPn [b(Zi)b(Zi)′] has eigenvalues bounded

away from zero and from above, uniformly in n, and (e) EPn‖b(Zi)‖4 and

EPn‖εi‖4 are bounded from above uniformly in n.

Then it follows from e.g. by White (1984) that for γ̂n(j) denoting the ordinary least

square estimator obtained by regressing Yi(j), i = 1, ..., n, on b(Zi), i = 1, ..., n,

√
n(γ̂n(j)− γn(j)) = Q−1 1√

n

n∑

i=1

b(Zi)εi(j) + oPn(1), j ∈ J ,

so that
√

n(β̂n − βn) = (I|J | ⊗Q)−1 1√
n

n∑

i=1

(I|J | ⊗ b(Zi))εi︸ ︷︷ ︸
ui

+oPn(1).

By conditions (c) and (d) EPn [uiu
′
i] and Q have eigenvalues bounded away from zero and

from above, so the same is true of Ωn = (I|J |⊗Q)−1EPn [uiu
′
i](I|J |⊗Q)−1. These conditions

verify condition P(i),(ii),(iv). Application of the Lindeberg-Feller CLT, Skorohod’s theorem,

and Lemma 9 verifies Condition P(iii). By the argument given in Chapter VI of White

13Note the absence of γn(j) for odd j up to J0 in the definition of the coefficient vector βn. This is required
to enable non-singularity of EPn [εiε

′
i | Zi = z]. Imposing non-singularity simplifies the proofs, and is not

needed for practical implementation, as the removal of these indices is not required for estimation and

inference, and the estimated variance matrix Ω̂n can be allowed to be singular.
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(1984), Condition P(v) holds for the standard analog estimator for Ωn:

Ω̂n = (I|J | ⊗ Q̂)−1En[ûiû
′
i](I|J | ⊗ Q̂)−1,

where Q̂ = En[b(Zi)b(Zi)′] and ûi = (I|J | ⊗ b(Zi))ε̂i, with ε̂i(j) = Yi(j) − b(Zi)′γ̂n(j), and

ε̂i = (ε̂i(j), j ∈ J )′. ¥

4.2. Nonparametric Estimation of θn(v) via Series. Series estimation is effectively

like parametric estimation, but the dimension of the estimated parameter tends to infinity

and bias arises due to approximation based on a finite number of basis functions. If we

select the number of terms in the series expansion so that the estimation error is of larger

magnitude than the approximation error, i.e. if we undersmooth, then the analysis closely

mimics the parametric case.

Condition NS. The function v 7→ θn(v) is continuous in v. The series estimator θ̂n(v)

has the form θ̂(v) = pn(v)′β̂n, where pn(v) := (pn,1(v), . . . , pn,Kn(v))′ is a collection of

Kn continuous series functions mapping V ⊂ K ⊂ Rd to RKn, and β̂n is a Kn-vector of

coefficient estimates, and K is a fixed compact set. Furthermore,

NS.1 (a) The estimator satisfies the following linearization and strong approximation con-

dition:
θ̂n(v)− θn(v)

‖pn(v)′Ω1/2
n ‖/√n

=
pn(v)′Ω1/2

n

‖pn(v)′Ω1/2
n ‖

Nn + Rn(v),

where

Nn =d N(0, IKn), sup
v∈V

|Rn(v)| = oPn(1/ log n).

(b) The matrices Ωn are positive definite, with eigenvalues bounded from above and away

from zero, uniformly in n. Moreover, there are sequences of constants ζn and ζ ′n such that

1 ≤ ζ ′n . ‖pn(v)‖ ≤ ζn uniformly for all v ∈ V and
√

ζ2
n log n/n → 0, and ‖pn(v) −

pn(v′)‖/ζ ′n ≤ Ln‖v − v′‖ for all v, v′ ∈ V, where log Ln . log n, uniformly in n.

NS.2 There exists Ω̂n such that ‖Ω̂n − Ωn‖ = OPn(n−b), where b > 0 is a constant.

Condition NS is not primitive, but reflects the function-wise large sample normality of

series estimators. It requires that the studentized nonparametric process is approximated

by a sequence of Gaussian processes, which take a very simple intuitive form, rather than by

a fixed single Gaussian process. Indeed, the latter would be impossible in non-parametric

settings, since the sequence of Gaussian processes is not asymptotically tight. Note also that

the condition implicitly requires that some undersmoothing takes place so that the approx-

imation error is negligible relative to the sampling error. We provide primitive conditions
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that imply condition NS.1 in three examples presented below. In particular, we show that

the asymptotic linearization for β̂n − βn, which is available from the literature on series

regression, e.g. from Andrews (1991) and Newey (1997), and the use of Yurinskii’s cou-

pling Yurinskii (1977) imply condition NS.1. This result could be of independent interest,

although we only provide sufficient conditions for the strong approximation to hold.

Note that under condition NS, the uniform rate of convergence of θ̂n(v) to θn(v) is given

by
√

ζ2
n/n

√
log n → 0, where ζn ∝ √

Kn for standard series terms such as B-splines or

trigonometric series.

Lemma 5 (NS implies C.1-C.4). Condition NS implies Conditions C.1-C.4 with

Zn(v) =
θn(v)− θ̂n(v)

σn(v)
, Z∗n(v) =

pn(v)′Ω1/2
n

‖pn(v)′Ω1/2
n ‖

Nn, Z?
n(v) =

pn(v)′Ω̂1/2
n

‖pn(v)′Ω̂1/2
n ‖

Nn,

σn(v) = ‖n−1/2pn(v)′Ω1/2
n ‖, sn(v) = ‖n−1/2pn(v)′Ω̂1/2

n ‖, δn = 1/ log n,

ān .
√

log n, σ̄n .
√

ζ2
n/n, an(V ) =

(
2
√

log{C(1 + C ′Lndiam(V ))d}
)
∨ (1 +

√
d),

for some constants C and C ′, where diam(V ) denotes the diameter of the set V , and

P [E > x] = exp(−x/2).

Remark 2. Lemma 5 verifies the main conditions C.1-C.4. These conditions enable con-

struction of simulated or analytical critical values. For the latter, the p-th quantile of E is

given by c(p) = −2 log(1− p), so we can set

kn,V (p) = an(V )− 2 log(1− p)/an(V ), (4.1)

where

an(V ) =
(

2
√

log{`n (1 + `nLndiam(V ))d}
)

, (4.2)

is a feasible scaling factor which bounds the scaling factor in the statement of Lemma 5,

at least for all large n. Here, all unknown constants have been replaced by slowly growing

numbers `n such that `n > C ∨C ′ for all large n. Note also that V 7→ kn,V (p) is monotone

in V for all sufficiently large n, as required in the analytical construction given in Definition

2. A sharper analytical approach can be based on Hotelling’s tube method; for details we

refer to Chernozhukov, Lee, and Rosen (2009). That approach is tractable for the case of

d = 1 but does not immediately extend to d > 1. Note that the simulation-based approach is

effectively a numeric version of the exact version of the tube formula, and is less conservative

than using simplified tube formulas. ¥
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Lemma 6 (Condition NS implies S in some cases). Suppose Condition NS holds.

Then,(1) The radius ϕn of equicontinuity of Z∗n obeys:

ϕn ≤ o(1) ·
(

1
Ln
√

log n

)
,

for any o(1) term. (2) If Condition V holds and
(√

ζ2
n

n
log n

)1/ρn

c−1
n = o

(
1

Ln
√

log n

)
, (4.3)

then Condition S holds. (3) If V0 is singleton and (4.3) holds, ρn ≤ 2, and cn ≥ c > 0, for

all n, ζn .
√

Kn and Ln . Kn, we have an(V0) ∝ 1 and this condition reduces to

K5
n log3 n/n → 0.

The following is an immediate consequence of Lemmas 5 and 6 and Theorems 1, 2, and 3.

Theorem 5 (Estimation and Inference with Series-Estimated Bounding Func-

tions). Suppose Condition NS holds and consider the interval estimator θ̂n0(p) given in

Definition 1 with either analytical critical value c(p) = −2 log(1 − p), or simulation-based

critical values from Definition 3 for the simulation process Z?
n above. (1) Then (i) Pn[θn0 ≤

θ̂n0(p)] ≥ p−o(1), (ii) |θn0−θ̂n0(p)| = OPn(
√

log n
√

ζ2
n/n), (iii) Pn(θn0+µn

√
log n

√
ζ2
n/n ≥

θ̂n0(p)) → 1 for any µn →Pn ∞. (2) Moreover, for the simulation-based critical values, if

Condition V and relation (4.3) hold, then (i) Pn[θn0 ≤ θ̂n0(p)] = p−o(1), (ii) |θn0−θ̂n0(p)| =
OPn(

√
ζ2
n/n), (iii) Pn(θn0 + µn

√
ζ2
n/n ≥ θ̂n0(p)) → 1 for any µn →Pn ∞.

We next present some examples with primitive conditions that imply Condition NS.

Example 4 (Bounding Function is Conditional Quantile). Suppose that θn(v) :=

QYi|Vi
[τ |v] is the τ -th conditional quantile of Yi given Vi under Pn, assumed to be a con-

tinuous function in v. Suppose we estimate θn(v) with a series estimator. There is an i.i.d.

sample (Yi, Vi), i = 1, ..., n, with support(Vi) ⊆ [0, 1]d for each n, defined on a probabil-

ity space equipped with probability measure Pn. Suppose that the intersection region of

interest is V ⊆ support(Vi). Here the index d does not depend on n, but all other param-

eters, unless stated otherwise, can depend on n. Then θn(v) = pn(v)′βn + an(v), where

pn : [0, 1]d 7→ RKn are the series functions, βn is the quantile regression coefficient in the

population, an(v) is the approximation error, and Kn is the number of series terms that

depends on n. Let C be a positive constant.

We impose the following technical conditions to verify NS.1 and NS.2:
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Uniformly in n, (i) pn are either b-splines of a fixed order or trigonometric

series terms or any other terms pn = (pn1, . . . , pnKn) with ‖pn(v)‖ . ζn =√
Kn and max1≤l≤Kn |pnl(v)| ≤ C for all v ∈ support(Vi), ‖pn(v)‖ & ζ ′n ≥ 1

for all v ∈ V, and log lip(pn) . log Kn, (ii) the mapping v 7→ θn(v) is

sufficiently smooth, namely supv∈V |an(v)| . K−s
n , for some s > 0, (iii)

limn→∞(log n)cK−s+1
n = 0 and limn→∞(log n)c√nKn/ζ ′n = 0, for each c > 0,

(iv) eigenvalues of Qn = EPn [pn(Vi)pn(Vi)′] are bounded away from zero and

from above,(v) fYi|Vi
(θn(v)|v) is bounded uniformly over v ∈ V away from

zero and from above, (vi) limn→∞K5
n(log n)c/n = 0 for each c > 0, and

(vii) the restriction on the bandwidth sequence in Powell’s estimator Ĵn of

Jn = EPn [fYi|Vi
(θn(Vi)|Vi)pn(Vi)pn(Vi)′] specified in Belloni, Chernozhukov,

and Fernandez-Val (2011) holds.

Suppose that we use the standard quantile regression estimator

β̂n = arg min
b∈RKn

En[ρτ (Yi − pn(Vi)′b)],

so that θ̂n(v) = pn(v)′β̂ for ρτ (u) = (τ − 1(u < 0))u. Then by Belloni, Chernozhukov,

and Fernandez-Val (2011), under conditions (i)-(vi), the following asymptotically linear

representation holds:

√
n(β̂n − βn) = J−1

n

1√
n

n∑

i=1

pn(Zi)εi︸ ︷︷ ︸
ui

+oPn

(
1

log n

)
,

for εi = (τ − 1(wi ≤ τ)), where (wi, i = 1, ..., n) are i.i.d. uniform, independent of

(Vi, i = 1, ..., n), and Jn = EPn [fYi|Vi
(θn(Vi)|Vi)pn(Vi)pn(Vi)′]. Note that by conditions

(iv) and (v) EPn [uiu
′
i] = τ(1 − τ)Qn, for Qn = EPn [pn(Vi)pn(Vi)′], and Jn have eigenval-

ues bounded away from zero and from above uniformly in n, and so the same is also true

of Ωn = τ(1 − τ)J−1
n QnJ−1

n . Given other restrictions imposed in condition (i), Condition

NS.1(b) is verified. Next using condition (iv) and boundedness of max1≤l≤Kn supv∈V |pnl(v)|
under condition (i) we verify the strong approximation required in NS.1(a) by invoking The-

orem 7, namely its Corollary 2 stated in Appendix E. The latter results are based on Yurin-

skii’s coupling. To verify Condition NS.2, consider the plug-in estimator Ω̂n = Ĵ−1
n Q̂nĴ−1

n ,

where Ĵn is the Powell’s estimator for Jn, and Q̂n = En[pn(Vi)pn(Vi)]. Then by Belloni,

Chernozhukov, and Fernandez-Val (2011) under condition (vii) ‖Ω̂n−Ωn‖ = OPn(1/ log n).

¥

Example 5 (Bounding Function is Conditional Mean). Now suppose that θn(v) =

EPn [Yi|Vi = v], assumed to be a continuous function with respect to v ∈ support(Vi), and
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the intersection region is V ⊆ support(Vi). Suppose we are using the series approach to

approximating and estimating θn(v). There is an i.i.d. sample (Yi, Vi), i = 1, ..., n, with

support(Vi) ⊆ [0, 1]d for each n. Here d does not depend on n, but all other parameters,

unless stated otherwise, can depend on n. Then we have θn(v) = pn(v)′βn + an(v), for

pn : [0, 1]d 7→ RKn representing the series functions; βn is the coefficient of the best least

squares approximation to θn(v) in the population, and an(v) is the approximation error.

The number of series terms Kn depends on n.

We impose the following technical conditions:

Uniformly in n, (i) pn are either b-splines of a fixed order or trigonometric

series terms or any other series terms pn = (pn1, . . . , pnKn) with ‖pn(v)‖ .
ζn =

√
Kn and max1≤l≤Kn |pnl(v)| ≤ C for all v ∈ support(Vi), ‖pn(v)‖ &

ζ ′n ≥ 1 for all v ∈ V, and log lip(pn) . log Kn, (ii) the mapping v 7→ θn(v)

is sufficiently smooth, namely supv∈V |an(v)| . K−s
n , for some s > 0, (iii)

limn→∞(log n)c√nK−s
n = 0 for each c > 0,14 (iv) for εi = Yi − EPn [Yi|Vi],

EPn [ε2i |Vi = v] is bounded away from zero uniformly in v ∈ support(Vi), and

(v) eigenvalues of Qn = EPn [pn(Vi)pn(Vi)′] are bounded away from zero and

from above, and (vi) EPn [|εi|4|Vi = v] is bounded from above uniformly in

v ∈ support(Vi), (vii) limn→∞(log n)cK5
n/n = 0 for each c > 0.

We use the standard least squares estimator

β̂n = En[pn(Vi)pn(Vi)′]−1En[pn(Vi)Yi],

so that θ̂n(v) = pn(v)′βn. Then by Newey (1997), under conditions implied by (i)-(vii), we

have the following asymptotically linear representation:

√
n(β̂n − βn) = Q−1

n

1√
n

n∑

i=1

pn(Zi)εi︸ ︷︷ ︸
ui

+oPn(1/ log n).

For details, see Supplementary Appendix H. Note that EPn(uiu
′
i) and Qn have eigenvalues

bounded away from zero and from above uniformly in n, and so the same is also true of

Ωn = Q−1
n EPn(uiu

′
i)Q

−1
n . Thus, under condition (i), Condition NS.1(a) is verified. Next

under condition (vi) and since max1≤j≤Kn supv |pnj(v)| is bounded by condition (i), the

strong approximation condition NS.1(a) now follows from invoking Theorem 7 in Appendix

E. Finally, Newey (1997) verifies that NS.2 holds for the standard analog estimator Ω̂n =

14This condition, which is based on Newey (1997) can be relaxed to (log n)cK−s+1
n → 0 and

(log n)c√nK−s
n /ζ′n → 0, using the recent results of Belloni, Chen, and Chernozhukov (2010) for least squares

series estimators.
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Q̂−1
n En(ûiû

′
i)Q̂

−1
n for ûi = pn(Vi)(Yi − θ̂n(Vi)) and Q̂n = En[pn(Vi)pn(Vi)] under conditions

that are implied by those above.

Finally, note that if we had εi ∼ N(0, σ2(Vi)), conditional on Vi, we could establish

Condition NS.1 with a much weaker growth restriction than (vii). Thus, while our use of

Yurinskii’s coupling provides concrete sufficient conditions for strong approximation, the

function-wise large sample normality is likely to hold even under weaker conditions in many

situations. ¥

Example 6 (Bounding Function from Conditional Moment Inequalities). Consider

now Example C of Section 2, which is in fact a slight generalization of the previous example,

where now the bounding function is the minimum of J conditional mean functions. Suppose

we have an i.i.d. sample of (Xi, Zi), i = 1, ..., n, with support(Zi) = Z ⊆ [0, 1]d, defined

on a probability space equipped with probability measure Pn. Let v = (z, j), where j

denotes the enumeration index for the conditional moment inequality, j ∈ {1, ..., J}, and

V ⊆ Z × {1, ..., J}. The parameters J and d do not depend on n. Hence

θn0 = min
v∈V

θn(v),

for θn(v) = EPn [m(Xi, µ, j)|Zi = z], assumed to be a continuous function with respect to

z ∈ Z. Suppose the we use the series approach to approximate and estimate θn(z, j) for

each j. Then EPn [m(x, µ, j)|z] = bn(z)′γn(j) + an(z, j), for bn : [0, 1]d 7→ Rmn denoting a

mn-vector of series functions; γn(j) is the coefficient of the best least squares approximation

to EPn [m(x, µ, j)|z] in the population, and an(z, j) is the approximation error. Let J be

a subset of {1, ..., J} as defined as in the parametric Example 3 (to handle inequalities

associated with equalities).

We impose the following conditions:

Uniformly in n, (i) bn are either b-splines of a fixed order or trigonometric

series terms or any other terms bn = (bn1, . . . , bnKn) with ‖bn(v)‖ . ζn =√
K and max1≤l≤Kn |bnl(v)| ≤ C for all v ∈ support(Vi), ‖bn(v)‖ & ζ ′n ≥ 1

for all v ∈ V, and log lip pn . log Kn; (ii) the mapping z 7→ θn(z, j) is

sufficiently smooth, namely supz∈Z |an(z, j)| . m−s
n , for some s > 0, for all

j ∈ J ; (iii) limn→∞(log n)c√nm−s
n = 0 for each c > 0;15 (iv) for Y (j) :=

m(x, µ, j) and Yi := (Yi(j), j ∈ J )′ and Ui := Yi−EPn [Yi|Zi], the eigenvalues

of EPn [εiε
′
i | Zi = z] are bounded away from zero, uniformly in z ∈ Z; (v)

eigenvalues of Qn = EPn [bn(Zi)bn(Zi)′] are bounded away from zero and

15See the previous footnote on a possible relaxation of this condition.
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from above; (vi) EPn [‖εi‖4 | Zi = z] is bounded above, uniformly in z ∈ Z;

and (vii) limn→∞m5
n(log n)c/n = 0 for each c > 0.

The above construction implies θn(v) = bn(z)′γn(j) + an(z, j) =: pn(v)′βn + an(v), for

βn = (γ′n(j), j ∈ J )′. Consider the standard least squares estimator β̂n = (γ̂′n(j), j ∈ J )′

consisting of |J | least square estimators, where γ̂n(j) = En[bn(Zi)bn(Zi)′]−1En[bn(Zi)Yi(j)].

Then it follows from Newey (1997) that for Qn = EPn [bn(Zi)bn(Zi)′]−1

√
n(γ̂n(j)− γn(j)) =

1√
n

n∑

i=1

Q−1
n bn(Zi)εi(j) + oPn(1/ log n), j ∈ J ,

so that

√
n(β̂n − βn) = (I|J | ⊗Qn)−1 1√

n

n∑

i=1

(I|J | ⊗ bn(Zi))εi︸ ︷︷ ︸
ui

+oPn(1/ log n).

By conditions (iv), (v), and (vi) EPn [uiu
′
i] and Qn have eigenvalues bounded away from

zero and from above, so the same is true of Ωn = (I|J |⊗Qn)−1EPn [uiu
′
i](I|J |⊗Qn)−1. This

and condition (i) imply that Condition NS.1(b) holds. Application of Theorem 7, based

on Yurinskii’s coupling, verifies Condition NS.1(a). Finally, Condition NS.2 holds for the

standard plug-in estimator for Ωn, by the same argument as given in the proof of Theorem

2 of Newey (1997). ¥

4.3. Nonparametric Estimation of θ(v) via local methods. In this section we provide

conditions under which kernel-type estimators satisfy Conditions C.1-C.4. These conditions

cover both standard kernel estimators as well as local polynomial estimators.

Condition NK. Let v = (z, j) and V ⊆ Z × {1, ..., J}, where Z is a compact convex

set that does not depend on n. The estimator v 7→ θ̂n(v) and the function v 7→ θn(v) are

continuous in v. In what follows, let ej denote the J- vector with jth element one and all

other elements zero. Suppose that (U,Z) is a (J + d)-dimensional random vector, where U

is a generalized residual such that E[U |Z] = 0 a.s. and Z is a covariate; the density fn of

Z is continuous and bounded away from zero and from above on Z, uniformly in n; and the

support of U is bounded uniformly in n. K is a twice continuously differentiable, possibly

higher-order, product kernel function with support on [−1, 1]d,
∫

K(u)du = 1; and hn is a

sequence of bandwidths such that hn → 0 and nhd
n →∞ at a polynomial rate in n.

NK.1 We have that uniformly in v ∈ V,

(nhd
n)1/2(θ̂n(v)− θn(v)) = Bn(gv) + oPn(δn), gv(U,Z) :=

e′jU
(hd

n)1/2fn(z)
K

(
z − Z

hn

)
,
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where Bn is a Pn-Brownian bridge such that v 7→ Bn(gv) has continuous paths over V.

Moreover, the latter process can be approximated via the Gaussian multiplier method, namely

there exists sequences o(δn) and o(1/`n) such that

Pn

(
sup
v∈V

∣∣Go
n(gv)− B̄n(gv)

∣∣ > o(δn)
∣∣∣Dn

)
= oPn(1/`n),

for some independent copy v 7→ B̄n(gv) of the process v 7→ Bn(gv). Here, Go
n(gv) =

1√
n

∑n
i=1 ηigv(Ui, Zi), where ηi are i.i.d. N(0, 1), independent of the data Dn and of {(Ui, Zi)}n

i=1,

which are i.i.d. copies of (U,Z). Covariates {Zi}n
i=1 are part of the data.

NK.2 There exists an estimator z 7→ f̂n(z), having continuous sample paths, such that

supz∈Z |f̂n(z) − fn(z)| = OPn(n−b), and there are estimators Ûi of generalized residuals

such that max1≤i≤n ‖Ûi − Ui‖ = OPn(n−b̃) for some constants b > 0 and b̃ > 0.

Condition NK.1 is a high-level condition that captures the large sample Gaussianity of

the entire estimated function where estimation is done via a kernel or local method. Under

some mild regularity conditions, specifically those stated in Appendix F, NK.1 follows from

the Rio-Massart coupling and from the Bahadur expansion holding uniformly in v ∈ V:

(nhd
n)1/2(θ̂n(v)− θn(v)) = Gn(gv) + oPn(δn).

Uniform Bahadur expansions have been established for a variety of local estimators, see e.g.

Masry (1996) and Kong, Linton, and Xia (2010), including higher-order kernel and local

polynomial estimators. It is possible to use more primitive sufficient conditions stated in the

Appendix F based on the Rio-Massart coupling, but these conditions are merely sufficient

and other primitive conditions may also be adequate. Our general argument, however, relies

only on validity of Condition NK.1.

For simulation purposes, we define

Go
n(ĝv) =

1√
n

n∑

i=1

ηiĝv(Ui, Zi), ηi i.i.d. N(0, 1), independent of the data Dn,

ĝv(Ui, Zi) =
e′jÛi

(hd
n)1/2f̂n(z)

K
(

z − Zi

hn

)
.
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Lemma 7 (Condition NK implies C.1-C.4). Condition NK implies C.1-C.4 with v =

(z, j) ∈ V ⊆ Z × {1, ..., J},

Zn(v) =
θn(v)− θ̂n(v)

σn(v)
, Z∗n(v) =

Bn(gv)√
EPn [g2

v ]
, Z?

n(v) =
Go

n(ĝv)√
En[ĝ2

v ]
,

σ2
n(v) = EPn [g2

v ]/(nhd
n), s2

n(v) = En[ĝ2
v ]/(nhd

n), δn = 1/ log n,

ān .
√

log n, σ̄n .
√

1/(nhd), and

an(V ) =
(

2
√

log{C(1 + C ′(1 + h−1
n )diam(V ))d}

)
∨ (1 +

√
d),

for some constants C and C ′, where diam(V ) denotes the diameter of the set V . Moreover,

P [E > x] = exp(−x/2).

Remark 3. Lemma 7 verifies the main conditions C.1-C.4. These conditions enable con-

struction of either simulated or analytical critical values. For the latter, the p-th quantile

of E is given by c(p) = −2 log(1− p), so we can set

kn,V (p) = an(V )− 2 log(1− p)/an(V ), (4.4)

where

an(V ) =
(

2
√

log{`n

(
1 + `n(1 + h−1

n )diam(V )
)d}

)
, (4.5)

is a feasible version of the scaling factor, in which unknown constants have been replaced

by the slowly growing sequence `n. Note that V 7→ kn,V (p) is monotone in V for large

n, as required in the analytical construction given in Definition 2. A sharper analytical

approach can be based on Hotelling’s tube method or on the use of extreme value theory.

For details of the extreme value approach, we refer the reader to Chernozhukov, Lee, and

Rosen (2009). Note that the simulation-based approach is effectively a numeric version

of the exact version of the tube formula, and is less conservative than using simplified

tube formulas. In Chernozhukov, Lee, and Rosen (2009) we established that inference

based on the extreme value theory achieves the correct asymptotic size, but the asymptotic

approximation is accurate only when sets V are “large”, and does not seem to provide an

accurate approximation when V is small. Moreover, it often requires a very large sample

size for accuracy even in the case where V is large. ¥

Lemma 8 (Condition NK implies S in some cases). Suppose Condition NK holds.

Then (1) The radius ϕn of equicontinuity of Z∗n obeys:

ϕn ≤ o(1) ·
(

hn√
log n

)
,
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for any o(1) term. (2) If Condition V holds and
(√

log n

nhd
log n

)1/ρn

c−1
n = o

(
hn√
log n

)
, (4.6)

then Condition S holds.

The following is an immediate consequence of Lemmas 7 and 8 and Theorems 1, 2, and 3.

Theorem 6 (Estimation and Inference for Bounding Functions Using Local

Methods). Suppose Condition NK holds and consider the interval estimator θ̂n0(p) given

in Definition 1 with either analytical critical values specified in Remark 3 or simulation-

based critical values given in Definition 3 for the simulation process Z?
n specified above. (1)

Then (i) Pn[θn0 ≤ θ̂n0(p)] ≥ p − o(1), (ii) |θn0 − θ̂n0(p)| = OPn

(√
log n/(nhd

n)
)

, (iii)

Pn(θn0 +µn

√
log n/(nhd

n) ≥ θ̂n0(p)) → 1 for any µn →Pn ∞. (2) Moreover, for simulation-

based critical values, if condition V and (4.6) hold, then (i) Pn[θn0 ≤ θ̂n0(p)] = p − o(1),

(ii) |θn0 − θ̂n0(p)| = OPn(
√

1/(nhd
n)), (iii) Pn(θn0 + µn

√
1/(nhd

n) ≥ θ̂n0(p)) → 1 for any

µn →Pn ∞.

We next present a leading example in which Condition NK holds under primitive conditions.

We provide only one example for brevity, but more examples can be covered as in Section

4.2.

Example 7 (Bounding Function from Conditional Moment Inequalities). Suppose

that we have an i.i.d. sample of (Xi, Zi), i = 1, ..., n defined on the probability space

(A,A, P), where we take P fixed in this example. Suppose that support(Zi) = Z ⊆ [0, 1]d,

and

θn0 = min
v∈V

θn(v),

for θn(v) = EP[m(Xi, µ, j)|Zi = z], v = (z, j), where V ⊆ Z × {1, ..., J} be the set of

interest. Suppose the first J0 functions correspond to equalities treated as inequalities,

so that m(Xi, µ, j) = −m(Xi, µ, j + 1), for j ∈ J0 = {1, 3, ..., J0 − 1}. Hence θn(z, j) =

−θn(z, j + 1) for j ∈ J0, and we only need to estimate functions θn(z, j) with the index

j ∈ J := J0 ∪ {J0 + 1, J0 + 2, ..., J}. Suppose we use the local polynomial approach to

approximating and estimating θn(z, j). For u ≡ (u1, . . . , ud), a d-dimensional vector of

nonnegative integers, let [u] = u1 + · · ·+ ud. Let Ap be the set of all d-dimensional vectors

u such that [u] ≤ p for some integer p ≥ 0 and let |Ap| denote the number of elements in
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Ap. For z ∈ Rd with u ∈ Ap, let zu =
∏d

i=1 zui
i . Now define

p(b, z) =
∑

u∈Ap

buzu, (4.7)

where b = (bu)u∈Ap is a vector of dimension |Ap|. For each v = (z, j) and Yi(j) :=

m(Xi, µ, j), define

Sn(b) :=
n∑

i=1

[
Yi(j)− p

(
b,

Zi − z

hn

)]2

Khn(Zi − z),

where Kh(u) := K(u/h), K(·) is a d-dimensional kernel function and hn is a sequence of

bandwidths. The local polynomial estimator θ̂n(v) of the regression function is the first

element of b̂(z, j) := arg minb∈R|Ap| Sn(b).

We impose the following conditions:

(i) for each j ∈ J , θ(z, j) is (p + 1) times continuously differentiable with

respect to z ∈ Z, where Z is convex. (ii) the probability density function

f of Zi is bounded above and bounded below from zero with continuous

derivatives on Z; (iii) for Yi(j) := m(Xi, µ, j), Yi := (Yi(j), j ∈ J )′, and

Ui := Yi − EP[Yi|Zi]; and Ui is a bounded random vector; (iv) for each j,

the conditional on Zi density of Ui exists and is uniformly bounded from

above and below, or, more generally, condition R stated in Appendix F

holds; (v) K(·) has support on [−1, 1]d, is twice continuously differentiable,∫
uK(u)du = 0, and

∫
K(u)du = 1; (vi) hn → 0, nh

d+|J |+1
n → ∞, and

nh
d+2(p+1)
n → 0 at polynomial rates in n.

These conditions are imposed to verify Assumptions A1-A7 in Kong, Linton, and Xia

(2010). Details of verification are given in Supplementary Appendix I. Note that p >

|J |/2− 1 is necessary to satisfy bandwidth conditions in (vi). Conditions (i)-(vi) above are

sufficient conditions to check Assumptions A1-A7 in Kong, Linton, and Xia (2010). The

assumption that Ui is bounded is technical and is made to simplify exposition and proofs.

Let δn = 1/ log n. Then it follows from Corollary 1 and Lemmas 8 and 10 of Kong,

Linton, and Xia (2010) that

θ̂n(z, j)− θ(z, j) =
1

nhd
nf(z)

e′1S
−1
p

n∑

i=1

(e′jUi)Kh(Zi − z)up

(
Zi − z

hn

)
+ Bn(z, j) + Rn(z, j),

(4.8)

where e1 is an |Ap| × 1 vector whose first element is one and all others are zeros, Sp is an

|Ap|× |Ap| matrix such that Sp = {∫ zu(zv)′du : u ∈ Ap, v ∈ Ap}, up(z) is an |Ap|×1 vector
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such that up(z) = {zu : u ∈ Ap},

Bn(z, j) = O(hp+1
n ) and Rn(z, j) = oP

(
δn

(nhd
n)1/2

)
,

uniformly in (z, j) ∈ Z × {1, ..., J}. The exact form of Bn(z, j) is given in equation (12)

of Kong, Linton, and Xia (2010). The result that Bn(z, j) = O(hp+1
n ) uniformly in (z, j)

follows from the standard argument based on Taylor expansion given in Fan and Gijbels

(1996), Kong, Linton, and Xia (2010), or Masry (1996). The condition that nh
d+2(p+1)
n → 0

at a polynomial rate in n corresponds to the undersmoothing condition.

Now set K(z/h) ≡ e′1S
−1
p Kh(z)up(z/h), which is a kernel of order (p + 1) (See section

3.2.2 of Fan and Gijbels (1996)). Let

gv(U,Z) :=
e′jU

(hd
n)1/2f(z)

K
(

Z − z

hn

)
.

Then it follows from (I.1) that uniformly in v ∈ V

(nhd
n)1/2(θ̂n(z, j)− θn(z, j)) = Gn(gv) + oP(δn).

Application of Theorems 8 and 9 in Appendix F, based on the Rio-Massart coupling, verifies

condition NK.1 (a) and NK.1 (b). Finally, Condition NK.2 holds if we take f̂n(z) to be the

standard kernel density estimator with kernel K and let e′jÛi = Yi(j)− θ̂n(z, j). ¥

5. Monte Carlo Experiments

In this section we present the results of some Monte Carlo experiments that illustrate the

finite-sample performance of our method. We consider a Monte Carlo design with bounding

function of the form

θ(v) := Lφ(v), (5.1)

where L is a constant and φ(·) is the standard normal density function. Throughout the

Monte Carlo experiments, the parameter of interest is θ0 = supv∈V θ(v).

5.1. Data-Generating Processes. Here we consider four Monte Carlo designs for the sake

of illustration.16 In the first Monte Carlo design, labeled DGP1, the bounding function is

completely flat so that V0 = V. In the second design, DGP2, the bounding function is non-

flat, but smooth in a neighborhood of its maximizer, which is unique so that V0 is singleton.

In DGP3 and DGP4, the bounding function is also non-flat and smooth in a neighborhood

of its (unique) maximizer, though relatively peaked. Illustrations of the bounding functions

16We consider four additional designs in Section K of the on-line supplement.

36



for all DGPs are provided at the end of our on-line supplement. Of course, in practice the

shape of the bounding function is unknown, and the inference and estimation methods we

consider do not make use of this information. As we describe in more detail below, we

evaluate the finite sample performance of our approach in terms of coverage probability for

the true point θ0 and coverage for a false parameter value θ that is close to but below θ0.

We compare the performance of our approach to that of the Cramer Von-Mises statistic

proposed by AS. DGP1 and DGP2 in particular serve to effectively illustrate the relative

advantages of both procedures as we describe below. Neither approach dominates.

For all DGPs we generated 1000 independent samples from the following model:

Vi ∼ Unif[−2, 2], Ui = min{max{−3, σŨi}, 3}, and Yi = Lφ(Vi) + Ui,

where Ũi ∼ N(0, 1) and L and σ are constants. We set these constants in the following way:

DGP1: L = 0 and σ = 0.1; DGP2: L = 1 and σ = 0.1;

DGP3: L = 5 and σ = 0.1; DGP4: L = 5 and σ = 0.01.

We considered sample sizes n = 500 and n = 1000, and we implemented both series and

kernel-type estimators to estimate the bounding function θ(v) in (K.1). We set V to be an

interval between the 5% and 95% sample quantiles of Vi’s in order to avoid undue influence

of outliers at the boundary of the support of Vi. For both types of estimators, we computed

critical values via simulation as described in Appendix A, and we implemented our method

with both the conservative but simple, non-stochastic choice V̂ = V and the set estimate

V̂ = V̂n described in Section 3.2.

5.2. Series Estimation. For basis functions we use cubic B-splines and polynomials with

knots equally spaced over the sample quantiles of Vi. The number K = Kn of approximating

functions was obtained by the following simple rule-of-thumb:

K = K̂, K̂ := K̂cv × n−1/5 × n2/7, (5.2)

where a is defined as the largest integer that is smaller than or equal to a, and K̂cv is the

minimizer of the leave-one-out least squares cross validation score from the set {5, 6, 7, 8, 9}
for the B-splines and {3, 4, 5, 6} for polynomials. If θ(v) is twice continuously differentiable,

then a cross-validated K has the form K ∝ n1/5 asymptotically. Hence, the multiplicative

factor n−1/5 × n2/7 in (5.2) ensures that the bias is asymptotically negligible from under-

smoothing.
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5.3. Kernel-Type Estimation. We use local linear smoothing since it is known to behave

better at the boundaries of the support than the standard kernel method. We used the kernel

function K(s) = 15
16(1− s2)21(|s| ≤ 1) and the rule of thumb bandwidth:

h = ĥROT × ŝv × n1/5 × n−2/7, (5.3)

where ŝv is the square root of the sample variance of the Vi, and ĥROT is the rule-of-thumb

bandwidth for estimation of θ(v) with studentized V , as prescribed in Section 4.2 of Fan

and Gijbels (1996). The exact form of ĥROT is

ĥROT = 2.036


 σ̃2

∫
w0(v)dv

n−1
∑n

i=1

{
θ̃
(2)
l (Ṽi)

}2
w0(Ṽi)




1/5

n−1/5,

where Ṽi’s are studentized Vi’s, θ̃
(2)
l (·) is the second-order derivative of the global quartic

parametric fit of θl(v) with studentized Vi, σ̃2 is the simple average of squared residuals from

the parametric fit, w0(·) is a uniform weight function that has value 1 for any Ṽi that is

between the 10th and 90th sample quantiles of Ṽi. Again, the factor n1/5×n−2/7 is multiplied

in (5.3) to ensure that the bias is asymptotically negligible due to under-smoothing.

5.4. Simulation Results. To evaluate the relative performance of our inference method,

we also implemented one of the inference methods proposed by AS, specifically their Cramér-

von Mises-type (CvM) statistic with both plug-in asymptotic (PA/Asy) and asymptotic

generalized moment selection (GMS/Asy) critical values. For instrument functions we used

countable hypercubes and the S-function of AS Section 3.17 We set the weight function and

tuning parameters for the CvM statistic exactly as in AS (see AS Section 9). These values

performed well in their simulations, but our Monte Carlo design differs from theirs, and

alternative choices of tuning parameters could perform more or less favorably in our design.

We did not examine sensitivity to the choice of tuning parameters for the CvM statistic.

The coverage probability (CP) of confidence intervals with nominal level 95% is evaluated

for the true lower bound θ0, and false coverage probability (FCP) is reported at θ = θ0−0.02.

There were 1,000 replications for each experiment. Tables 1, 2, and 3 summarize the results.

CLR and AS refer to our inference method and that of AS, respectively.

We first consider the performance of our method for DGP1. In terms of coverage for θ0

both series estimators and the local linear estimator perform reasonably well, with series

estimation via B-splines performing best. The polynomial series and local linear estimators

17All three S-functions in AS Section 3 are equivalent in our design, since there is a single conditional
moment inequality.
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perform somewhat better in terms of false coverage probabilities, which decrease with the

sample size for all estimators. The argmax set V0 is the entire set V, and our set estimator

V̂n detects this. Turning to DGP2 we see that coverage for θ0 is in all cases roughly .98

to .99. There is non-trivial power against the false parameter θ in all cases, with the

series estimators giving the lowest false coverage probabilities. For DGP3 the bounding

function is relatively peaked compared to the smooth but non-flat bounding function of

DGP2. Consequently the average endpoints of the preliminary set estimator V̂n become

more concentrated around 0, the maximizer of the bounding function. Performance in terms

of coverage probabilities improves in nearly all cases, with the series estimators performing

significantly better when n = 1000 and V = V̂n is used. With DGP4 the bounding function

remains as in DGP3, but now with the variance of Yi decreased by a factor of 100, the

same as would occur by increasing the sample size at least by a factor of 100. The result

is that the bounding function is more accurately estimated at every point. Moreover, the

set estimator V̂n is now a much smaller interval around 0. Coverage frequencies for θ0 do

not change much relative to DGP3, but false coverage probabilities drop to 0. Note that in

DGPs 2-4, our method performs better when V0 is estimated in that it makes the coverage

probability more accurate and the false coverage probability smaller. DGPs 3-4 serve to

illustrate the convergence of our set estimator V̂n when the bounding function is peaked

and precisely estimated, respectively.

In Table 2 we report the results of using the CvM statistic of AS to perform inference. For

DGP1 with a flat bounding function the CvM statistic with both the PA/Asy and GMS/Asy

performs well. Coverage frequencies for θ0 were close to the nominal level, closer than our

method using polynomial series or local linear regression, although not quite as close as

when we use B-splines. The CvM statistic has a lower false coverage probability than the

CLR confidence intervals in this case, although at a sample size of 1000 the difference is not

large. For DGP2 the bounding function is non-flat but smooth in a neighborhood of V0 and

the situation is much different. For both PA/Asy and GMS/Asy critical values with the

CvM statistic, coverage frequencies for θ0 were 1. Our confidence intervals also over-covered

in this case, with coverage frequencies of roughly .98 to .99. Moreover, the CvM statistic

has low power against the false parameter θ, with coverage 1 with PA/Asy and coverage

.977 and .933 with sample size 500 and 1000, respectively using GMS/Asy critical values.

For DGP3 and DGP4 both critical values for the CvM statistic gave coverage for θ0 and

the false parameter θ equal to one. Thus under DGPs 2,3, and 4 our confidence intervals

perform better by both measures. However, overall neither approach dominates.
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Thus, in our Monte Carlo experiments the CvM statistic exhibits better power when

the bounding function is flat, while our confidence intervals exhibit better power when the

bounding function is non-flat. AS establish that the CvM statistic has power against some

n−1/2 local alternatives under conditions that are satisfied under DGP1, but that do not hold

when the bounding function has a unique minimum.18 We have established local asymptotic

power for nonparametric estimators of polynomial order less distant than n−1/2 that apply

whether the bounding function is flat or non-flat. Our Monte Carlo results accord with

these findings.19 In the on-line supplement, we present further supporting Monte Carlo

evidence and local asymptotic power analysis to show why our method performs better

than the AS method in non-flat cases.

In Table 4 we report computation times for our Monte Carlo experiments.20 The fastest

performance in terms of total simulation time was achieved with the CvM statistic of AS,

which took 24 minutes to execute a total of 16,000 replications. Simulations using our

approach with B-spline series, polynomial series, and local linear polynomials took roughly

73, 62, and 397 minutes, respectively. Based on these times the table shows for each

statistic the average time for a single test, and the relative performance of each method to

that obtained using the CvM statistic.

In practice one will not perform Monte Carlo experiments but will rather be interested

in computing a single confidence region for the parameter of interest. When the bounding

function is separable our approach offers the advantage that the critical value does not vary

with the parameter value being tested. As a result, we can compute a confidence region in

the same amount of time it takes to compute a single test. On the other hand, to construct

a confidence region based on the CvM statistic, one must compute the statistic and its

associated critical value at a large number of points in the parameter space, where the

number of points required will depend on the size of the parameter space and the degree

of precision desired. If however the bounding function is not separable in the parameter of

interest, then both approaches use parameter-dependent critical values.

18Specifically Assumptions LA3 and LA3’ of AS Theorem 4 do not hold when the sequence of models has a
fixed bounding function with a unique minimum. As they discuss after the statement of Assumptions LA3
and LA3’, in such cases GMS and plug-in asymptotic tests have trivial power against n−1/2 local alternatives.
19We did not do CP-correction in our reported results. Our conclusion will remain valid even with CP-
correction as in AS, since our method performs better in DGP2-DGP4 where we have over-coverage.
20These were computation times based on our implementation. Generally speaking, performance time for
both methods will depend on the choice of tuning parameters and the efficiency of one’s code. More efficient
implementation times for both methods may be possible.
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6. Conclusion

In this paper we provided a novel method for inference on intersection bounds. Bounds of

this form are common in the recent literature, but two issues have posed difficulties for valid

asymptotic inference and bias-corrected estimation. First, the application of the supremum

and infimum operators to boundary estimates results in finite-sample bias. Second, unequal

sampling error of estimated bounding functions complicates inference. We overcame these

difficulties by applying a precision-correction to the estimated bounding functions before

taking their intersection. We employed strong approximation to justify the magnitude

of the correction in order to achieve the correct asymptotic size. As a by-product, we

proposed a bias-corrected estimator for intersection bounds based on an asymptotic median

adjustment. We provided formal conditions that justified our approach in both parametric

and nonparametric settings, the latter using either kernel or series estimators.

At least two of our results may be of independent interest beyond the scope of inference

on intersection bounds. First, our result on the strong approximation of series estimators

is new. This essentially provides a functional central limit theorem for any series estimator

that admits a linear asymptotic expansion, and is applicable quite generally. Second, our

method for inference applies to any value that can be defined as a linear programming

problem with either finite or infinite dimensional constraint set. Estimators of this form

can arise in a variety of contexts, including, but not limited to intersection bounds. We

therefore anticipate that although our motivation lay in inference on intersection bounds,

our results may have further application.

Appendix A. Implementation Algorithms

In this section we lay out steps for implementation. We begin with parametric bounding

functions, and then cover nonparametric cases. While the basic steps are similar, some

adjustments are necessary when moving from parametric to nonparametric cases. The end

goal in each case is to obtain estimators θ̂n0(p) that provide bias-corrected estimates or

the endpoints of confidence intervals depending on the chosen value of p, e.g. p = 1/2 or

p = 1− α. As in the main text, we focus here on the upper bound. If instead θ̂n0(p) were

the lower bound for θ∗, given by the supremum of a bounding function, the same algorithm

could be applied to perform inference on −θ∗, bounded above by the infimum of the negative

of the original bounding function, and then any inference statement for −θ∗ could trivially

be transformed to inference statements for θ∗. Indeed, any set of lower and upper bounds

can be similarly transformed to a collection of upper bounds, and the above algorithm
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applied to perform inference on θ∗, e.g. according to the methods laid out for inference

on parameters bounded by conditional moment inequalities in Section 3.21 Alternatively,

if one wishes to perform inference on the identified set in such circumstance one can use

the intersection of upper and lower one-sided intervals each based on p̃ = (1 + p)/2 as an

asymptotic level-p confidence set for ΘI , which is valid by Bonferroni’s inequality.22

A.1. Parametric Estimators. We start by considering implementation when the bound-

ing function is estimated parametrically, i.e. where Condition P holds. We provide a simple

approach that relies on simulation from the multivariate normal distribution.

Algorithm 1 (Implementation for Parametric Case). (1) Set γ̃n ≡ 1− .1/ log n. Simulate

a large number R of draws from N (0, IK), denoted Z1, ..., ZR, where K = dim(γn) and IK

is the identity matrix, where γn is the parameter of interest. (2) Compute Ω̂n, a consis-

tent estimator for the asymptotic variance of
√

n (γ̂n − γn). (3) For each v ∈ V, compute

ĝ (v) = ∂θn (v, γ̂n) /∂γn · Ω̂1/2
n , and and sn(v) = ‖ĝ (v) ‖/√n. (4) Compute kn,V (γ̃n) =

γn − quantile of {supv∈V
(
ĝ (v)′ Zr/ ‖ĝ (v)‖) , r = 1, ..., R}, and

V̂n = {v ∈ V : θ̂n(v) ≤ min
v∈V

(
θ̂n(v) + kn,V(γ̃n)sn(v)

)
+ 2kn,V(γ̃n)sn(v)},

(5) Compute k
n,V̂n

(p) = p−quantile of
{

sup
v∈V̂n

(
ĝ (v)′ Zr/ ‖ĝ (v)‖) , r = 1, ..., R

}
, and set

θ̂n0(p) = infv∈V
[
θ̂n (v) + k

n,V̂n
(p) ‖ĝ (v)‖ /

√
n
]
.

Remark 4. (1) An important special case is when the support of v is finite, as in Example

1 of Section 4.1, so that V = {1, ..., J}. In this case the algorithm applies with θn (v, γn) =∑J
j=1 1[v = j]γnj , i.e. where for each j, θn (j, γn) = γnj and ĝ (v) = (1 [v = 1] , ..., 1 [v = J ]) ·

Ω̂1/2
n . (2) The above algorithm applies when the bounding function is separable in the

parameter of interest. When the bounding function is non-separable in this parameter, say

µ where θ(v) := θ(µ, v), it can be used to test the hypothesis that any given µ is in the

identified set as described in Example C in Section 2. That is, for any fixed µ and any

chosen α ∈ [1/2, 1) it can be used to produce a critical value θ̂1−α such that for the true

parameter value µ,

Pn{ inf
v∈V

θ(µ, v) ≥ θ̂1−α} ≤ α + o(1).

21For example if we have θl
n (z) ≤ θ∗n ≤ θu

n (z) for all z ∈ Z, then we can equivalently write

minz∈Z minj=1,2 gn (θ∗n, z, j) ≥ 0, where gn (θ∗n, z, 1) = θu
n (z) − θ∗n and gn (θ∗n, z, 2) = θ∗n − θl

n (z). Then
we can apply our method through use of the auxiliary function gn(θn, z, j), in similar fashion as in Example
C with multiple conditional moment inequalities.
22In an earlier version of this paper, Chernozhukov, Lee, and Rosen (2009), we provided a different method
for inference on a parameter with both lower and upper bounding functions, which can also be used for valid
inference on θ∗.
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A confidence set for µ can then be formed by inverting this test. This is done by first

carrying out step (1), computing all components of Ω̂n in step (2) that are not dependent

upon µ, and then performing the rest of step (2) and steps (3)-(5) at every µ in some set

of points approximating the parameter space. For example, in the context of Example 3,

conditional moment inequalities, we had

Ω̂n = (I|J | ⊗ Q̂)−1En[ûiû
′
i](I|J | ⊗ Q̂)−1,

where the matrix Q̂ did not depend on the model parameter, so need not be re-computed for

every iteration of step (2). (3) Note that objective function approaches to inference with set

identification construct confidence sets through the inversion of tests in both non-separable

and separable cases. Similarly to our procedure, in the non-separable case this requires

computing a test statistic and critical value at each of a large grid of points approximating

the parameter space. In the separable case our approach produces a critical value that is

not parameter-dependent, so that the steps above need only be carried out once to produce

the desired confidence set. ¥

A.2. Series Estimators. In practice, implementation with a series estimator does not

substantially differ from the parametric case.

Algorithm 2 (Implementation for Series Case). Perform Steps (1)-(5) as in Algorithm 1,

except now in step (2) compute Ω̂n, a consistent estimate of the large sample variance of√
n(β̂n − βn), and in step (3) ĝ (v) = pn (v)′ Ω̂1/2

n .

Remark 5. (1) If desired one can bypass simulation of the stochastic process by instead

employing the analytical critical value in step 4, kn,V (p) = an(V )− 2 log(1−p)/an(V ) from

Remark 2 in Section 4.2. This is convenient because it does not involve simulation, though

it requires computation of an(V̂n) = 2
√

log{`n(1 + `nLndiam(V̂n))d}. Moreover, it could be

too conservative in some applications. Thus, we recommend using simulation, unless the

computational cost is too high. (2) Note that the algorithm can be used for inference when

the bounding function is non-separable in a parameter of interest exactly as described in the

parametric case. Again, in step (2) computational efficiency can be increased by computing

components of Ω̂n that do not vary across iterations once only. In Example 6 for instance,

conditional moment inequalities, a consistent estimator for Q̂n, a component of Ω̂n, will not

vary across iterations and thus need be computed only once. ¥

A.3. Kernel Estimators. For kernel estimation the steps are also similar.

Algorithm 3 (Implementation for Kernel Case). (1) Set γn ≡ 1− .1/ log n. Simulate R×n

times independent draws from N(0, 1), denoted by {ηir : i = 1, . . . , n, r = 1, . . . , R}, where
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n is the sample size and R is the number of simulation repetitions. (2) For each v ∈ V
and r = 1, . . . , R, compute Go

n(ĝv; r) = 1√
n

∑n
i=1 ηirĝv(Ui, Zi), where ĝv(Ui, Zi) is defined in

Section 4.3, that is

ĝv(Ui, Zi) =
e′jÛi

(hd
n)1/2f̂n(z)

K
(

z − Zi

hn

)
.

Let s2
n(v) = En[ĝ2

v ]/(nhd
n) and En[ĝ2

v ] = n−1
∑n

i=1 ĝ2
v(Ui, Zi). Here, Ûi is the kernel-type

regression residual and f̂n(z) is the kernel density estimator of density of Zi. (3) Com-

pute kn,V (γn) = γn − quantile of
{

supv∈V Go
n(ĝv; r)/

√
En[ĝ2

v ], r = 1, ..., R
}

, and V̂n = {v ∈
V : θ̂n(v) ≤ minv∈V

(
θ̂n(v) + kn,V(γn)sn(v)

)
+ 2kn,V(γn)sn(v)}, (4) Compute k

n,V̂n
(p) =

p − quantile of {sup
v∈V̂n

Go
n(ĝv; r)/

√
En[ĝ2

v ], r = 1, ..., R}, and set θ̂n0(p) = infv∈V [θ̂ (v) +

k
n,V̂n

(p)sn(v)].

Remark 6. (1) The researcher also has the option of employing an analytical approximation

in place of simulation if desired. This can be done by using kn,V (p) = an(V ) − 2 log(1 −
p)/an(V ) from Remark 3, but requires computation of

an(V̂n) = 2
√

log{`n(1 + `n(1 + h−1
n )diam(V̂n)d)}.

This approximation could be too conservative in some applications, and thus we recommend

using simulation, unless the computational cost is too high. (2) In the case where the

bounding function is non-separable in a parameter of interest, but is nonparametrically

estimated, a confidence interval for this parameter can be constructed as described in the

parametric case above, where step(1) is carried out once and steps (2)-(4) are executed

iteratively on a set of parameter values approximating the parameter space. However, the

bandwidth, f̂n(z), and K
(

z−Zi
hn

)
, each Zi, do not vary across iterations and thus only need

to computed once. ¥

Appendix B. Definition of Strong Approximation

The following definitions are used extensively.

Definition 4 (Strong approximation). Suppose that for each n there are random variables

Zn and Z ′n defined on a probability space (A,A,Pn) and taking values in the separable

metric space (S, dS). We say that Zn =d Z ′n + oPn(δn), for δn → 0, if there are identically

distributed copies of Zn and Z ′n, denoted Z̄n and Z̄ ′n, defined on (A,A, Pn) (suitably enriched

if needed), such that

dS(Z̄n, Z̄ ′n) = oPn(δn).
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Note that copies Z̄n and Z̄ ′n can be always defined on (A,A,Pn) by suitably enriching this

space by taking product probability spaces. It turns out that for the Polish spaces, this

definition implies the following stronger, and much more convenient, form.

Lemma 9 (A Convenient Implication for Polish Spaces via Dudley and Philipp). Suppose

that (S, dS) is Polish, i.e. complete, separable metric space, and (A,A,Pn) has been suitably

enriched. Suppose that Definition 4 holds, then there is also an identical copy Z∗n of Z ′n such

that Zn = Z∗n + oPn(δn), that is,

dS(Zn, Z∗n) = oPn(δn)

Proof. We start with the original probability space (A′,A′, P′n) that can carry Zn and

(Z̄n, Z̄ ′n). In order to apply Lemma 2.11 of Dudley and Philipp (1983), we need to carry a

standard uniform random variable U ∼ U(0, 1) that is independent of Zn. To guarantee this

we can always consider U ∼ U(0, 1) on the standard space ([0, 1],F , λ), where F is the Borel

sigma algebra on [0, 1] and λ is the usual Lebesgue measure, and then enrich the original

space (A′,A′, P′n) by creating formally a new space (A,A, Pn) as the product of (A′,A′, P′n)

and ([0, 1],F , λ). Then using Polishness of (S, dS), given the joint law of (Z̄n, Z̄ ′n), we can

apply Lemma 2.11 of Dudley and Philipp (1983) to construct Z∗n such that (Zn, Z∗n) has the

same law as (Z̄n, Z̄ ′n), so that dS(Z̄n, Z̄ ′n) = oPn(δn) implies dS(Zn, Z∗n) = oPn(δn). ¥

Since in all of our cases the relevant metric spaces are either the space of continuous

functions defined on a compact set equipped with the uniform metric or finite-dimensional

Euclidian spaces, which are all Polish spaces, we can use Lemma 9 throughout the paper.

Using this implication of strong approximation makes our proofs slightly simpler.

Appendix C. Proofs for Section 3

C.1. Some Useful Facts and Lemmas. A useful result in our case is the anti-concentration

inequality derived in Chernozhukov and Kato (2011).

Lemma 10 (Anti-Concentration Inequality, Chernozhukov and Kato (2011)). Let

X = (Xt)t∈T be a separable Gaussian process indexed by a semimetric space T such that

EP [Xt] = 0 and EP [X2
t ] = 1 for all t ∈ T . Then

sup
x∈R

P

(∣∣∣ sup
t∈T

Xt − x
∣∣∣ ≤ ε

)
≤ Cε

(
EP

[
sup
t∈T

Xt

]
∨ 1

)
, ∀ε > 0, (C.1)

where C is an absolute constant.

An immediate consequence of this lemma is the following result:
45



Corollary 1 (Anti-concentration for supv∈Vn
Z∗n(v)). Let Vn be any sequence of compact

non-empty subsets in V. Then under condition C.2-C.3, we have that for δn → 0 such that

δn = o(1/ān)

sup
x∈R

Pn

(∣∣∣ sup
v∈Vn

Z∗n(v)− x
∣∣∣ ≤ δn

)
= o(1).

Proof. Continuity in Condition C.2 implies separability of Z∗n. Condition C.4 implies that

EPn [supv∈Vn
Z∗n(v)] ≤ EPn [supv∈V Z∗n(v)] ≤ Kān for some constant K that depends only

on η, so that

sup
x∈R

Pn

(∣∣∣ sup
v∈V

Z∗n(v)− x
∣∣∣ ≤ δn

)
≤ Cδn[Kān ∨ 1] = o(1).

¥

Lemma 11 (Closeness in Conditional Probability Implies Closeness of Condi-

tional Quantiles Unconditionally). Let Xn and Yn be random variables and Dn be a

random vector. Let FXn(x | Dn) and FYn(y | Dn) denote the conditional distribution func-

tions, and F−1
Xn

(p | Dn) and F−1
Yn

(p | Dn) denote the corresponding conditional quantile

functions. If Pn(|Xn − Yn| > ξn | Dn) = oPn(τn) for some sequence τn ↘ 0, then with

unconditional probability Pn converging to one, for some εn = o(τn),

F−1
Xn

(p | Dn) ≤ F−1
Yn

(p−εn | Dn)+ξn and F−1
Yn

(p | Dn) ≤ F−1
Xn

(p−εn | Dn)+ξn, ∀p ∈ (εn, 1−εn).

Proof. We have that for some εn = o(τn), Pn[Pn{|Xn − Yn| > ξn | Dn} ≤ εn] → 1, that

is, there is a set Ωn such that Pn(Ωn) → 1 such that Pn{|Xn − Yn| > ξn | Dn} ≤ εn for all

Dn ∈ Ωn. So, for all Dn ∈ Ωn

FXn(x | Dn) + εn ≥ FYn+ξn(x | Dn) and FYn(x | Dn) + εn ≥ FXn+ξn(x | Dn), ∀x ∈ R,

which implies the inequality stated in the lemma, by definition of the conditional quantile

function and equivariance of quantiles to location shifts. ¥

C.2. Proof of Lemma 1. (Concentration of Inference on Vn.) Step 1. Letting

An := sup
v∈Vn

Zn(v), Bn := sup
v∈V

Zn(v), Rn :=
(

sup
v∈V

|Zn(v)|+ κn

)
sup
v∈V

∣∣∣∣
σn(v)
sn(v)

− 1
∣∣∣∣ ,

A∗n := sup
v∈Vn

Z∗n(v), B∗
n := sup

v∈V
Z∗n(v), R∗

n :=
(

sup
v∈V

|Z∗n(v)|+ κn

)
sup
v∈V

∣∣∣∣
σn(v)
sn(v)

− 1
∣∣∣∣ ,
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we obtain

sup
v∈V

θn0 − θ̂n(v)
sn(v)

= sup
v∈V

{
θn0 − θn(v)

sn(v)
+ Zn(v)

σn(v)
sn(v)

}

= sup
v∈Vn

{
(θn0 − θn(v))

sn(v)
+ Zn(v)

σn(v)
sn(v)

}
∨ sup

v 6∈Vn

{
(θn0 − θn(v))

sn(v)
+ Zn(v)

σn(v)
sn(v)

}

≤(1) sup
v∈Vn

{
Zn(v)

σn(v)
sn(v)

}
∨ sup

v 6∈Vn

{−κnσn(v)
sn(v)

+ Zn(v)
σn(v)
sn(v)

}

≤ An ∨ (Bn − κn) + 2Rn ≤(2) A∗n ∨ (B∗
n − κn) + 2R∗

n + oPn(δn),

where in (1) we used that θn(v) ≥ θn0 and θn0 − θn(v) ≤ −κnσn(v) outside Vn, and in (2)

we used C.2. Next, since we assumed in the statement of the lemma that κn . ān + ``n,

and by C.4: R∗
n = OPn(ān + ān + ``n)oPn(δn/(ān + ``n)) = oPn(δn). Therefore, there is a

deterministic term o(δn) such that Pn(2R∗
n + oPn(δn) > o(δn)) = o(1).23

Hence uniformly in x ∈ [0,∞)

Pn

(
sup
v∈V

(θn0 − θ̂n(v))
sn(v)

> x

)
≤ Pn(A∗n + o(δn) > x) + Pn(B∗

n − κn + o(δn) > 0) + o(1)

≤ Pn(A∗n > x) + Pn(B∗
n − κn > 0) + o(1) ≤ Pn(A∗n > x) + (1− γ′n) + o(1),

where the last two inequalities follow by Corollary 1 and by κn = Qγ′n(B∗
n).

Step 2. To complete the proof, we must show that there is γ′n ↗ 1 such that κn . ān+``n.

Let 1− γ′n ↘ 0 such that 1− γ′n ≥ C/`n. It suffices to show that

κn ≤
(

ān +
c(γ′n)
ān

)
≤

(
ān +

η``n + η log C−1

ān

)
. ān + ``n, (C.2)

where c(γ′n) = Qγ′n(E). To show the first inequality in (C.2) note

Pn

(
sup
v∈V

Z∗n(v) ≤ (ān + c(γ′n)/ān)
)

=(1) Pn

(En(V) ≤ c(γ′n)
) ≥(2) Pn

(E ≤ c(γ′n)
)

= γ′n,

where (1) holds by definition of En(V) and (2) by C.3. To show the second inequality

in (C.2) note that by C.3 P (E > t) ≤ exp
(−tη−1

)
, for some constant η > 0, so that

c(γ′n) ≤ −η log(1− γ′n) ≤ η``n + η log C−1. ¥

23 Throughout the paper we use the elementary fact: If Xn = oPn(∆n), for some ∆n ↘ 0, then there is
o(∆n) term such that Pn{|Xn| > o(∆n)} → 0.
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C.3. Proof of Theorem 1 (Analytical Construction). Part 1.(Level) Observe that

Pn

(
θn0 ≤ θ̂n0(p)

)
= Pn

(
sup
v∈V

θn0 − θ̂n(v)
sn(v)

≤ k
n,V̂n

(p)

)

≥(1) Pn

(
sup
v∈V

θn0 − θ̂n(v)
sn(v)

≤ kn,Vn(p)

)
− Pn

(
Vn 6⊆ V̂n

)

≥(2) Pn

(
sup
v∈Vn

Z∗n(v) ≤ kn,Vn(p)
)
− o(1)

= Pn (En(Vn) ≤ c(p)− o(1))− o(1) ≥(3) Pn (E ≤ c(p)− o(1))− o(1) =(4) p− o(1),

where (1) follows by monotonicity of V 7→ kn,V (p) = an(V ) + c(p)/an(V ) holding by as-

sumption, (2) by Lemma 1, by Pn

(
Vn 6⊆ V̂n

)
= o(1) holding by Lemma 2, and also by the

fact that the critical value kn,Vn(p) ≥ 0 is non-stochastic, and (3) and (4) by the existence

of majorizing rv E with a continuous distribution function (see C.3).

Part 2.(Estimation Risk) We have that under Pn

∣∣∣θ̂n0(p)− θn0

∣∣∣ =
∣∣∣∣ inf
v∈V

[
θ̂n(v) + k

n,V̂n
(p)sn(v)

]
− θn0

∣∣∣∣

=

∣∣∣∣∣sup
v∈V

([
θn0 − θ̂n(v)

sn(v)
+ k

n,V̂n
(p)

]
σn(v)

sn(v)
σn(v)

)∣∣∣∣∣

≤(1)

(∣∣∣∣∣sup
v∈V

θn0 − θ̂n(v)
sn(v)

∣∣∣∣∣ + k
n,V̂n

(p)

)
σ̄n

(
1 + oPn

(
δn

ān + ``n

))

≤(2)

(∣∣∣∣∣sup
v∈V

θn0 − θ̂n(v)
σn(v)

∣∣∣∣∣ + k
n,V̂n

(p)

)
σ̄n

(
1 + oPn

(
δn

ān + ``n

))2

≤(3)

(
sup
v∈Vn

|Z∗n(v)|+ oPn(δn) + k
n,V̂n

(p)
)

σ̄n

(
1 + oPn

(
δn

ān + ``n

))2

wp → 1

≤(4)

(
sup
v∈Vn

|Z∗n(v)|+ oPn(δn) + kn,V n
(p)

)
σ̄n

(
1 + oPn

(
δn

ān + ``n

))2

wp → 1

≤(5) 3
∣∣∣∣an(V n) +

OPn(1)
an(V n)

+ oPn(δn)
∣∣∣∣ σ̄n

(
1 + oPn

(
δn

ān + ``n

))2

wp → 1

≤(6) 4
∣∣∣∣an(V n) +

OPn(1)
an(V n)

∣∣∣∣ σ̄n wp → 1,

where (1) holds by C.4 and the triangle inequality; (2) holds by C.4; (3) follows because wp

→ 1, for some o(δn)

sup
v∈V0

Z∗n(v)− o(δn) ≤(a) sup
v∈V0

Zn(v) ≤(b) sup
v∈V

θn0 − θ̂n(v)
σn(v)

≤(c)

(
sup
v∈Vn

Z∗n(v)
)
∨ 0 + o(δn),
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where (a) is by C.2, (b) by definition of Zn, while (c) by the proof of Lemma 1, so that
∣∣∣∣∣sup
v∈V

θn0 − θ̂n(v)
σn(v)

∣∣∣∣∣ ≤ sup
v∈Vn

|Z∗n(v)|+ oPn(δn);

(4) follows by Lemma 2 which implies Vn ⊆ V̂n ⊆ V n wp → 1, so that

k
n,V̂n

(p) ≤ kn,V n
(p) = an(V n) +

c(p)
an(V n)

,

Condition C.3 gives (5). Inequality (6) follows because an(V n) ≥ 1, ān ≥ 1, and δn = o(1);

this inequality is the claim that we needed to prove.

Part 3. We have that

θna − θn0 ≥ 4σ̄n

(
an(V n) +

µn

an(V n)

)
> θ̂n0(p)− θn0 wp → 1,

with the last inequality occurring by Part 2 since µn →Pn ∞. ¥

C.4. Proof of Theorem 2 (Simulation Construction). Part 1. (Level Consistency)

Let us compare critical values

kn,Vn(p) = Qp

(
sup
v∈Vn

Z?
n(v) | Dn

)
and κn,Vn(p) = Qp

(
sup
v∈Vn

Z̄∗n(v)
)

.

The former is data-dependent while the latter is deterministic. Note that kn,Vn(p) ≥ 0 by

C.2(b) for p ≥ 1/2. By C.2 wp → 1 for some deterministic term o(δn),

Pn

(
| sup
v∈Vn

Z?
n(v)− sup

v∈Vn

Z̄∗n(v)| > o(δn) | Dn

)
= oPn(1),

which implies by Lemma 11 that for some εn ↘ 0, wp → 1

kn,Vn(p) ≥ (κn,Vn(p− εn)− o(δn))+ for all p ∈ [1/2, 1− εn). (C.3)
49



The result follows analogously to the proof in Part 1 of Theorem 1, namely:

Pn

(
θn0 ≤ θ̂n0(p)

)
= Pn

(
sup
v∈V

θn0 − θ̂n(v)
sn(v)

≤ k
n,V̂n

(p)

)

≥(1) Pn

(
sup
v∈V

θn0 − θ̂n(v)
sn(v)

≤ kn,Vn(p)

)
− o(1)

≥(2) Pn

(
sup
v∈V

θn0 − θ̂n(v)
sn(v)

≤ (κn,Vn(p− εn)− o(δn))+

)
− o(1)

≥(3) Pn

(
sup
v∈Vn

Z∗n(v) ≤ (κn,Vn(p− εn)− o(δn))+

)
− o(1)

≥ Pn

(
sup
v∈Vn

Z∗n(v) ≤ κn,Vn(p− εn)− o(δn)
)
− o(1) ≥(4) p− εn − o(1) = p− o(1),

where (1) follows by monotonicity of V 7→ kn,V holding by construction and by Pn

(
Vn 6⊆ V̂n

)
=

o(1) shown in Lemma 2, (2) holds by the comparison of quantiles in equation (C.3), (3) by

Lemma 1. (4) holds by anti-concentration Corollary 1.

Parts 2 & 3.(Estimation Risk and Power) By Lemma 2 wp → 1, V̂n ⊆ V n, so that

k
n,V̂n

(p) ≤ kn,V n
(p). By C.2 for some deterministic term o(δn),

Pn

(
| sup
v∈V n

Z?
n(v)− sup

v∈V n

Z̄∗n(v)| > o(δn)|Dn

)
= oPn(1/`n), (C.4)

which implies by Lemma 11 that for some εn ↘ 0, wp → 1, for all p ∈ (εn, 1− εn)

kn,V n
(p) ≤ κn,V n

(p + εn) + o(δn) (C.5)

where the terms o(δn) are different in different places. By C.3, for any fixed p ∈ (0, 1),

κV n
(p + εn) ≤ an(V n) + c(p + εn)/an(V n) = an(V n) + O(1)/an(V n).

Thus, combining inequalities above and o(δn) = o(ā−1
n ) = o(a−1

n (V n)) by C.2, wp → 1,

k
n,V̂n

(p) ≤ an(V n) + O(1)/an(V n).

Now Parts 2 and 3 follow as in the Proof of Parts 2 and 3 of Theorem 1 using this bound

on the simulated critical value instead of the bound on the analytical critical value. ¥

C.5. Proof of Lemma 3 (Concentration on V0). By S and V

| sup
v∈Vn

Z∗n(v)− sup
v∈V0

Z∗n(v)| ≤ sup
‖v−v′‖≤OPn (rn)

|Z∗n(v)− Z∗n(v′)| = sup
v∈V0

Z∗n(v) + oPn(δn). (C.6)
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Conclude similarly to the proof of Lemma 1, using anti-concentration Corollary 1

Pn

(
sup
v∈V

θn0 − θ̂n(v)
sn(v)

≤ x

)
≥ Pn

(
sup
v∈V0

Z∗n(v) + o(δn) ≤ x

)
− o(1) ≥ Pn

(
sup
v∈V0

Z∗n(v) ≤ x

)
− o(1)

This gives a lower bound. Similarly, using C.3 and C.4 and anti-concentration Corollary 1

Pn

(
sup
v∈V

θn0 − θ̂n(v)
sn(v)

≤ x

)
≤ Pn

(
sup
v∈V0

Zn(v)
σn(v)
sn(v)

≤ x

)

≤ Pn

(
sup
v∈V0

Z∗n(v)− o(δn) ≤ x

)
+ o(1) ≤ Pn

(
sup
v∈V0

Z∗n(v) ≤ x

)
+ o(1)

where o(·) terms above are different in different places, and the first inequality follows from

sup
v∈V

θn0 − θ̂n(v)
sn(v)

≥ sup
v∈V0

θn0 − θ̂n(v)
sn(v)

= sup
v∈V0

Zn(v)
σn(v)
sn(v)

.

This gives the upper bound. ¥

C.6. Proof of Theorem 3 (When Simulation Inference Becomes Sharp). Part 1.

(Size) By Lemma 2 wp → 1, V̂n ⊆ V n, so that k
n,V̂n

(p) ≤ kn,V n
(p) wp → 1. So let us

compare critical values

kn,V n
(p) = Qp

(
sup

v∈V n

Z?
n(v) | Dn

)
and κn,V0(p) = Qp

(
sup
v∈V0

Z̄∗n(v)
)

.

The former is data-dependent while the latter is deterministic. Recall that by C.2 wp → 1

we have (C.4). By V dH(V n, V0) ≤ rn, and so by S, we have for some o(δn),

Pn

(
| sup
v∈V n

Z̄∗n(v)− sup
v∈V0

Z̄∗n(v)| > o(δn) | Dn

)
= oPn(1).

Combining (C.4) and this relation, we obtain that for some o(δn),

Pn

(
| sup
v∈V n

Z?
n(v)− sup

v∈V0

Z̄∗n(v)| > o(δn) | Dn

)
= oPn(1).

This implies by Lemma 11 that for some εn ↘ 0, and any p ∈ (εn, 1− εn), wp → 1,

k
n,V̂n

(p) ≤ kn,V n
(p) ≤ κn,V0(p + εn) + o(δn). (C.7)
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Hence, for any fixed p,

Pn

(
θn0 ≤ θ̂n0(p)

)
= Pn

(
sup
v∈V

θn0 − θ̂n(v)
sn(v)

≤ k
n,V̂n

(p)

)

≤(1) Pn

(
sup
v∈V

θn0 − θ̂n(v)
sn(v)

≤ κn,V0(p + εn) + o(δn)

)
+ o(1)

≤(2) Pn

(
sup
v∈V0

Z∗n(v) ≤ κn,V0(p + εn) + o(δn)
)

+ o(1) ≤(3) p + εn + o(1) = p + o(1),

where (1) is by the quantile comparison (C.7), (2) is by Lemma 3, and (3) is by anti-

concentration Corollary 1. Combining this with the lower bound of Theorem 2, we have

the result.

Parts 2 & 3.(Estimation Risk and Power) We have that by C.3

κn,V0(p + εn) ≤ an(V0) + c(p + εn)/an(V0) = an(V0) + O(1)/an(V0).

Hence combining this with equation (C.7) we have wp → 1

k
n,V̂n

(p) ≤ an(V0) + O(1)/an(V0) + o(ā−1
n ) = an(V0) + O(1)/an(V0),

where o(δn) = o(ā−1
n ) = o(a−1

n (V0)) by C.2. Then Parts 2 and 3 follow identically to the

Proof of Parts 2 and 3 of Theorem 1 using this bound on the simulated critical value instead

of the bound on the analytical critical value. ¥

Appendix D. Proofs for Section 4

D.1. Tools and Auxiliary Lemmas. We shall heavily rely on the Talagrand-Samorodnitsky

Inequality, which was obtained by Talagrand sharpening earlier results by Samorodnitsky.

Here it is restated from van der Vaart and Wellner (1996) Proposition A.2.7, page 442:

Talagrand-Samorodnitsky Inequality: Let X be a separable zero-mean Gaussian pro-

cess indexed by a set T . Suppose that for some Γ > σ(X) = supt∈T σ(Xt), 0 < ε0 ≤ σ(X),

N(ε, T, ρ) ≤
(

Γ
ε

)ν

, for 0 < ε < ε0,

where N(ε, T, ρ) is the covering number of T by ε-balls w.r.t. the standard deviation metric

ρ(t, t′) = σ(Xt − Xt′). Then there exists an universal constant D such that for every

λ ≥ σ2(X)(1 +
√

ν)/ε0 we have

P

(
sup
t∈T

Xt > λ

)
≤

(
DΓλ√
νσ2(X)

)v

(1− Φ(λ/σ(X))), (D.1)

where Φ(·) denotes the standard normal cumulative distribution function.
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The following lemma is an application of this inequality that we use:

Lemma 12 (Concentration Inequality via Talagrand-Samorodnitsky). Let Zn be

a separable zero-mean Gaussian process indexed by a set V such that supv∈V σ(Zn(v)) = 1.

Suppose that for some Γn(V ) > 1, and d ≥ 1

N(ε, V, ρ) ≤
(

Γn(V )
ε

)d

, for 0 < ε < 1,

where N(ε, V, ρ) is the covering number of V by ε-balls w.r.t. the standard deviation metric

ρ(v, v′) = σ(Zn(v)− Zn(v′)). Then for

an(V ) = (2
√

log Ln(V )) ∨ (1 +
√

d), Ln(V ) := C ′
n

(
Γn(V )√

d

)d

,

where for D denoting Talagrand’s constant in (D.1), and C ′
n such that

C ′
n ≥ DdCd

1√
2π

, Cd := max
λ≥0

λd−1e−λ2/4,

we have for z ≥ 0

P

(
an(V )

(
sup
v∈V

Zn(v)− an(V )
)

> z

)
≤ exp

(
−z

2
− z2

4a2
n(V )

)
≤ exp(−z/2).

Proof. We apply the TS inequality by setting t = v, X = Z, σ(X) = 1, ε0 = 1, ν = d,

with λ ≥ (1 +
√

d), so that

P

(
sup
v∈V

Zn(v) > λ

)
≤

(
Dκn(V )λ√

d

)d

(1− Φ(λ))

≤
(

DΓn(V )λ√
d

)d 1√
2π

1
λ

e−λ2/2 ≤ Ln(V )e−λ2/4.

Setting for z ≥ 0, λ = z
an(V ) + an(V ) ≥ (1 +

√
d), we obtain

Ln(V ) exp
(
−λ2

4

)
≤ exp

(
−z

2
− z2

4a2
n(V )

)
.

¥

The following lemma is an immediate consequence of Corollary 2.2.8 of van der Vaart

and Wellner (1996).

Lemma 13 (Maximal Inequality for a Gaussian Process). Let X be a separable

zero-mean Gaussian process indexed by a set T . Then for every δ > 0

E sup
ρ(s,t)≤δ

|Xs−Xt| .
∫ δ

0

√
log N(ε, T, ρ)dε, E sup

t∈T
|Xt| ≤ σ(X)+

∫ 2σ(X)

0

√
log N(ε, T, ρ)dε,
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where σ(X) = supt∈T σ(Xt), and N(ε, T, ρ) is the covering number of T with respect to the

semi-metric ρ(s, t) = σ(Xs −Xt).

Proof. The first conclusion follows from Corollary 2.2.8 of van der Vaart and Wellner (1996)

since covering and packing numbers are related by N(ε, T, ρ) ≤ D(ε, T, ρ) ≤ N(ε/2, T, ρ).

The second conclusion follows from the special case of the first conclusion: for any t0 ∈ T ,

E supt∈T |Xt| ≤ E|Xt0 |+
∫ diam(T )
0

√
log N(ε, T, ρ)dε ≤ σ(X) +

∫ 2σ(X)
0

√
log N(ε, T, ρ)dε. ¥

D.2. Proof of Lemma 5. Step 1. Verification of C.1. This condition holds by inspection,

in view of continuity of v 7→ pn(v) and by Ωn and Ω̂n being positive definite.

Step 2. Verification of C.2 Set δn = 1/ log n. Condition NS.1 directly assumes C.2(a).

In order to show C.2(b), we employ the maximal inequality stated in Lemma 13. Set

Xt = Z∗n(v)−Z?
n(v), t = v, T = V and note that for some absolute constant C, conditional

on Dn,

N(ε, T, ρ) ≤
(

1 + CΥndiam(T )
ε

)d

, 0 < ε < 1,

since σ(Xt − Xt′) . Υn‖t − t′‖, T ⊂ Rd, where Υn is an upper bound on the Lipschitz

constant of the function

v 7→ pn(v)′Ω1/2
n

‖pn(v)′Ω1/2
n ‖

− pn(v)′Ω̂1/2
n

‖pn(v)′Ω̂1/2
n ‖

,

where diam(T ) is the diameter of set T under the Euclidian metric. Using inequality (G.6)

we can bound

Υn ≤ 2Ln
λmax(Ω

1/2
n )

λmin(Ω
1/2
n )

+ 2Ln
λmax(Ω̂

1/2
n )

λmin(Ω̂
1/2
n )

= OPn(Ln),

where Ln is the constant defined in NS.1, and by assumption log Ln . log n. Here we use

the fact the eigenvalues of Ωn and Ω̂n are bounded away from zero and from above by NS.1

and NS.2. Therefore, log N(ε, T, ρ) . log n + log(1/ε).

Using (G.6) again,

σ(X) . sup
v∈V

∥∥∥∥∥
pn(v)′Ω1/2

n

‖pn(v)′Ω1/2
n ‖

− pn(v)′Ω̂1/2
n

‖pn(v)′Ω̂1/2
n ‖

∥∥∥∥∥

≤ sup
v∈V

2
‖pn(v)′(Ω̂1/2

n − Ω1/2
n )‖

‖pn(v)′Ω1/2
n ‖

≤ sup
v∈V

2
‖pn(v)′Ω1/2

n (Ω1/2
n Ω̂−1/2

n − I)‖
‖pn(v)′Ω1/2

n ‖
≤ ‖Ω1/2

n Ω̂−1/2
n − I‖ ≤ ‖Ω−1/2

n ‖‖Ω̂1/2
n − Ω1/2

n ‖ = OPn(n−b)
54



for some constant b > 0, where we have used that the eigenvalues of Ωn and Ω̂n are bounded

away from zero and from above under NS.1 and NS.2, and the assumption ‖Ω̂n − Ωn‖ =

OPn(n−b). Hence

E

(
sup
t∈T

|Xt| | Dn

)
. σ(X) +

∫ 2σ(X)

0

√
log(n/ε)dε = OPn(n−b

√
log n).

Hence for each C > 0

Pn

(
sup
v∈V

|Z∗n(v)− Z?
n(v)| > Cδn | Dn

)
. 1

Cδn
OPn(n−b

√
log n) = oPn(1/`n),

which verifies C.2(b).

Step 3. Verification of C.3. We shall employ Lemma 12, which has the required notation

in place. We only need to compute an upper bound on the covering numbers N(ε, V, ρ) for

the process Z∗n. We have that

σ(Z∗n(v)− Z∗n(ṽ)) ≤
∥∥∥∥∥

pn(v)′Ω1/2
n

‖pn(v)′Ω1/2
n ‖

− pn(ṽ)′Ω1/2
n

‖pn(ṽ)′Ω1/2
n ‖

∥∥∥∥∥ ≤ 2

∥∥∥∥∥
(pn(v)− pn(ṽ))′Ω1/2

n

‖pn(v)′Ω1/2
n ‖

∥∥∥∥∥

≤ 2Ln
λmax(Ω

1/2
n )

λmin(Ω
1/2
n )

‖v − ṽ‖ ≤ CLn‖v − ṽ‖,

where C is some constant that does not depend on n, by the eigenvalues of Ωn bounded

away from zero and from above. Hence it follows that

N(ε, V, ρ) ≤
(

1 + CLndiam(V )
ε

)d

, 0 < ε < 1,

where the diameter of V is measured by the Euclidian metric. Condition C.3 now follow

by Lemma 12, with an(V ) = (2
√

log Ln(V ))∨ (1 +
√

d), Ln(V ) = C ′ (1 + CLndiam(V ))d .

where C ′ is a constant from Lemma 12.

Step 4. Verification of C.4. Under Condition NS, we have that

an(V ) ≤ ān := an(V) .
√

log `n + log n .
√

log n,

so that C.4(a) follows if
√

log n
√

ξ2(K)/n → 0.
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To verify C.4(b) note that uniformly in v ∈ V,
∣∣∣∣∣
‖pn(v)′Ω̂1/2

n ‖
‖pn(v)′Ω1/2

n ‖
− 1

∣∣∣∣∣ ≤
∣∣∣∣∣
‖pn(v)′Ω̂1/2

n ‖ − ‖pn(v)′Ω1/2
n ‖

‖pn(v)′Ω1/2
n ‖

∣∣∣∣∣

≤ ‖pn(v)′(Ω̂1/2
n − Ω1/2

n )‖
‖pn(v)′Ω1/2

n ‖
≤ ‖pn(v)′Ω1/2(Ω1/2

n Ω̂−1/2
n − I)‖

‖pn(v)′Ω1/2
n ‖

≤ ‖Ω1/2
n Ω̂−1/2

n − I‖ ≤ ‖Ω−1/2
n ‖‖Ω̂1/2

n − Ω1/2
n ‖ = oPn(δn/ān),

by ‖Ω̂1/2 − Ω1/2
n ‖ = OPn(n−b) and ‖Ω−1/2

n ‖ bounded, both implied by the assumptions. ¥

D.3. Proof of Lemma 6. To show claim (1), we need to establish that for ϕn = o(1) ·(
1

Ln
√

log n

)
, with any o(1) term, we have that sup‖v−ṽ‖≤ϕn

|Z∗n(v)− Z∗n(ṽ)| = oPn(1).

Consider the stochastic process X = {Zn(v), v ∈ V}. We shall use the standard maximal

inequality stated in Lemma 13. From the proof of Lemma 5 we have σ(Z∗n(v) − Z∗n(ṽ)) ≤
CLn‖v − ṽ‖, where C is some constant that does not depend on n, and log N(ε, V, ρ) .
log n + log(1/ε). Since ‖v − ṽ‖ ≤ ϕn =⇒ σ(Z∗n(v)− Z∗n(ṽ)) ≤ C o(1)√

log n
we have

E sup
‖v−ṽ‖≤ϕn

|Xs −Xt| .
∫ C

o(1)√
log n

0

√
log(n/ε)dε . o(1)√

log n

√
log n = o(1).

Hence the conclusion follows from Markov’s Inequality.

Under Condition V by Lemma 2 rn .
(√

log n ξ2(K)
n

)1/ρn

c−1
n , so rn = o(ϕn) if

(√
log n

ξ2(K)
n

)1/ρn

c−1
n = o

(
1

Ln
√

log n

)
. (D.2)

Thus, Condition S holds. The remainder of the lemma follows by direct calculation. ¥

Appendix E. Strong Approximation for Asymptotically Linear Series

Estimators

Here we establish strong approximation for series estimators considered in Section 4.2.

Theorem 7 (Strong Approximation For Asymptotically Linear Series Estimators). Let

(A,A, Pn) be the probability space for each n, and let n → ∞. Let δn → 0 be a sequence

of constants converging to 0 at no faster than a polynomial rate in n. Assume (a) the

series estimator has the form θ̂n(v) = pn(v)′β̂n, where pn(v) := (pn,1(v), . . . , pn,Kn(v)) is a

collection of Kn-dimensional approximating functions such that Kn →∞ and β̂n is a Kn-

vector of estimates; (b) The estimator β̂n satisfies an asymptotically linear representation
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around some Kn-dimensional vector βn

Ω−1/2
n

√
n(β̂n − βn) = n−1/2

n∑

i=1

ui,n + rn, ‖rn‖ = oPn(δn), (E.1)

ui,n, i = 1, ..., n are independent with EPn [ui,n] = 0, EPn [ui,nu′i,n] = IKn , and (E.2)

∆n =
n∑

i=1

E‖ui,n‖3/n3/2 such that Kn∆n/δ3
n → 0, (E.3)

where Ωn is a sequence of Kn × Kn invertible matrices. (c) The function θn(v) admits

the approximation θn(v) = pn(v)′βn + An(v), where the approximation error An(v) satisfies

supv∈V
√

n|An(v)|/‖gn(v)‖ = o(δn), for gn(v) := pn(v)′Ω1/2
n . Then we can find a random

normal vector Nn =d N (0, IKn) such that ‖Ω−1/2
n

√
n(β̂n − βn)−Nn‖ = oPn(δn) and

sup
v∈V

∣∣∣∣∣
√

n(θ̂n(v)− θn(v))
‖gn(v)‖ − gn(v)

‖gn(v)‖Nn

∣∣∣∣∣ = oPn(δn).

The following corollary is used in examples in the main text.

Corollary 2 (A Leading Case of Influence Function). Suppose the conditions of The-

orem 7 hold with ui,n := Ω−1/2
n Q−1

n pn(Vi)εi, where (Vi, εi) are i.i.d. with EPn [εipn(Vi)] = 0,

Sn := EPn [ε2i pn(Vi)pn(Vi)′] , and Ωn := Q−1
n Sn(Q−1

n )′, where Q−1
n is some non-random

invertible matrix, not necessarily symmetric, and eigenvalues of S−1
n are bounded above by

τn; EPn [|εi|3] is bounded. Then, the key growth restriction on the number of series terms

Kn∆n/δ3
n → 0 holds if for Cn := supv∈V maxj |pnj(v)|

τ3
nC6

nKn
5/(nδ6

n) → 0,

or, more generally, if τ
3/2
n δ−3

n Kn
3/2 maxv∈V

∑Kn
j=1 |pnj(v)|3/n1/2 → 0.

Remark 7 (Applicability). In the paper δn = 1/ log n. Sufficient conditions for linear

approximation (b) follow from results in the literature on series estimation, e.g. Andrews

(1991), Newey (1995), and Newey (1997), and Belloni, Chernozhukov, and Fernandez-Val

(2011). See also Chen (2007) and references therein for a general overview of sieve estimation

and recent developments. The main text provides several examples, including mean and

quantile regression, with primitive conditions that provide sufficient conditions for the linear

approximation. ¥

E.1. Proof of Theorem 7 and Corollary 2. The first step of our proof uses Yurinskii’s

(1977) coupling. For completeness we now state the formal result from Pollard (2002),

page 244.
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Yurinskii’s Coupling: Consider a sufficiently rich probability space (A,A, P). Let ξ1, ..., ξn

be independent Kn-vectors with Eξi = 0 for each i, and ∆ :=
∑

i E‖ξi‖3 finite. Let

S = ξ1 + ... + ξn. For each δ > 0 there exists a random vector T with N(0, var (S))

distribution such that

P{‖S − T‖ > 3δ} ≤ C0B

(
1 +

| log(1/B)|
Kn

)
where B := ∆Knδ−3,

for some universal constant C0.

The proof has two steps: in the first, we couple the estimator
√

n(β̂n − βn) with the

normal vector; in the second, we establish the strong approximation.

Step 1. In order to apply the coupling, consider
n∑

i=1

ξi, ξi = ui,n/
√

n ∼ (0, IKn/n),

Then we have that
∑n

i=1 E‖ξi‖3 = ∆n. Therefore, by Yurinskii’s coupling,

Pn

{∥∥∥∥∥
n∑

i=1

ξi −Nn

∥∥∥∥∥ ≥ 3δn

}
. Kn∆n/δ3

n → 0,

Combining this with the assumption on the linearization error rn, we obtain

‖Ω−1/2
n

√
n(β̂n − βn)−Nn‖ ≤ ‖

n∑

i=1

ξi −Nn‖+ ‖Ω−1/2
n

√
n(β̂n − βn)−

n∑

i=1

ξi‖

= oPn(δn) + rn = oPn(δn).

Step 2. Using the result of Step 1 and that
√

npn(v)′(β̂n − βn)
‖gn(v)‖ =

√
ngn(v)′Ω−1/2

n (β̂n − βn)
‖gn(v)‖ ,

we conclude that

|Sn(v)| :=
∣∣∣
√

ngn(v)′Ω−1/2
n (β̂n − βn)

‖gn(v)‖ − gn(v)′Nn

‖gn(v)‖
∣∣∣

≤
∥∥∥√nΩ−1/2

n (β̂n − βn)−Nn

∥∥∥ = oPn(δn),

(E.4)
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uniformly in v ∈ V. Finally,

sup
v∈V

∣∣∣
√

n(θ̂n(v)− θn(v))
‖gn(v)‖ − gn(v)′Nn

‖gn(v)‖
∣∣∣

≤ sup
v∈V

∣∣∣
√

n(θ̂n(v)− θn(v))
‖gn(v)‖ −

√
ngn(v)′Ω−1/2

n (β̂n − βn)
‖gn(v)‖

∣∣∣

+sup
v∈V

∣∣∣
√

ngn(v)′Ω−1/2
n (β̂n − βn)

‖gn(v)‖ − gn(v)′Nn

‖gn(v)‖
∣∣∣

= sup
v∈V

|√nAn(v)/‖gn(v)‖|+ sup
v∈V

|Sn(v)| = o(δn) + oPn(δn),

using the assumption on the approximation error An(v) = θ(v)− pn(v)′βn and (E.4). This

proves the theorem.

Step 3. To show the corollary note that

EPn‖ui,n‖3 ≤ maxeig (S−1
n )3/2 · EPn‖pn(Vi)εi‖3 = τ3/2

n ·K3/2
n EPn


ε2i

1
Kn

Kn∑

j=1

pnj(Vi)2




3/2

≤ τ3/2
n ·K3/2

n max
v∈V

1
Kn

Kn∑

j=1

|pnj(v)|3EPn |εi|3

≤ τ3/2
n ·K3/2

n max
j

sup
v∈V

|pnj(v)|3EPn |εi|3 . τ3/2
n K3/2

n C3
n,

using the boundedness assumptions stated in the corollary. More generally, we have that

EPn‖ui,n‖3 . τ
3/2
n K

3/2
n maxv∈V 1

Kn

∑Kn
j=1 |pnj(v)|3EPn |εi|3. This implies the corollary. ¥

Appendix F. Strong Approximation for Local Methods

In establishing strong approximation for kernel-type estimators we use the following re-

sult, Theorem 1.1 in Rio (1994), which builds on the earlier results of Massart (1989). The

proofs for all subsequent results in this section, which are novel to this paper, are provided

in Appendix G of the supplementary material.

F.1. Rio-Massart Coupling. Consider a sufficiently rich probability space (A,A, P). If

not, then we can always enrich the original space by taking the product with [0, 1] equipped

with the uniform measure over Borel sets of [0, 1]. Consider a suitably measurable, namely

image admissible Suslin, function class F containing functions f : Id → I for I = (−1, 1).

A function class F is of uniformly bounded variation of at most K(F) if

TV (F) := sup
f∈F

sup
g∈Dc(Id)

(∫

Rd

f(x)divg(x)/‖g‖∞dx

)
≤ K(F),
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where Dc(Id) is the space of C∞ functions taking values in Rd with compact support

included in Id, and where divg(x) is the divergence of g(x). Suppose the function class F
obeys the following uniform L1 covering condition

sup
Q

N(ε,F , L1(Q)) ≤ C(F)εd(F),

where sup is taken over probability measures with finite support, and N(ε,F , L1(Q)) is the

covering number under the L1(Q) norm on F . Let X1, ..., Xn be an i.i.d. sample on the

probability space (A,A, P ) from density fX with support on Id, bounded from above and

away from zero. Let PX be the measure induced by fX . Then there exists a PX -Brownian

Bridge Bn with a.s. continuous paths with respect to the L1(PX) metric such that for any

positive t ≥ C log n,

P

(
√

n sup
f∈F

|Gn(f)− Bn(f)| ≥ C

√
tn

d−1
d K(F) + Ct

√
log n

)
≤ e−t,

where constant C depends only on d, C(F), and d(F).

F.2. Strong Approximation for Kernel-Type Estimators. We shall use the following

technical condition in what follows.

Condition R. The random (J + d)-vector (Ui, Zi) obeys Ui = (Ui,1, ..., Ui,J) = ϕn(Xi,1),

and Zi = ϕ̃n(X2i), where Xi = (X ′
1i, X

′
2i)
′ is a (d1 + d)-vector with 1 ≤ d1 ≤ J , which

has density bounded away from zero by f and above by f̄ on the support Id1+d, where

ϕn : Id1 7→ IJ and
∑d1

l=1

∫
Id1 |Dx1l

ϕn(x1)|dx1 ≤ B, where Dx1l
ϕn(x1) denotes the weak

derivative with respect to the l-th component of x1, and ϕ̃n : Id 7→ Id is continuously

differentiable such that maxk≤d supx2
|∂ϕ̃n(x2)/∂x2k| ≤ B and | det ∂ϕ̃n(x2)/∂x2| ≥ c > 0,

where ∂ϕ̃n(x2)/∂x2k denotes the partial derivative with respect to the k-th component of x2.

The constants J,B, f , f̄ , c and vector dimensions do not depend on n. (| · | denotes `1

norm.)

A simple example of (Ui, Zi) satisfying this condition is given in Corollary 3 below.

Theorem 8 (Strong Approximation for Local Estimators). Consider a suitably enriched

probability space (A,A, Pn) for each n. Let n → ∞. Assume the following conditions hold

for each n: (a) There are n i.i.d. (J + d)-dimensional random vectors of the form (Ui, Zi)

that obey Condition R, and the density fn of Z is bounded from above and away from zero

on the set Z, uniformly in n. (b) Let v = (z, j) and V = Z × {1, ..., J}, where Z ⊆ Id.

The kernel estimator v 7→ θ̂n(v) of some target function v 7→ θn(v) has an asymptotic linear
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expansion uniformly in v ∈ V

(nhd
n)1/2(θ̂n(v)− θn(v)) = Gn(gv) + oPn(δn), gv(Ui, Zi) :=

1
(hd

n)1/2fn(z)
e′jUiK

(
z − Zi

hn

)
,

where e′jUi ≡ Uij, K is twice continuously differentiable product kernel function with support

on Id,
∫

K(u)du = 1, and hn is a sequence of bandwidths that converges to zero, (c) for a

given δn ↘ 0, the bandwidth sequence obeys:
(
n−1/(d+d1)h−1

n log n
)1/2

+(nhd
n)−1/2 log3/2 n =

o(δn). Then there exists a sequence of centered Pn-Gaussian Bridges Bn such that

sup
v∈V

|(nhd
n)1/2(θ̂n(v)− θn(v))− Bn(gv)| = oPn(δn).

Moreover, the paths of v 7→ Bn(gv) can be chosen to be continuous a.s.

Remark 8. Conditions (a) and (b) cover standard conditions in the literature, imposing

a uniform Bahadur expansion for kernel-type estimators, which have been shown in Masry

(1996) and Kong, Linton, and Xia (2010) for kernel mean regression estimators and also lo-

cal polynomial estimators under fairly general conditions. Implicit in the expansion above

is that the asymptotic bias is negligible, which can be achieved by the standard proce-

dure of undersmoothing, i.e. choosing the bandwidth to be smaller than the rate-optimal

bandwidths.

Corollary 3 (A Simple Leading Case for Moment Inequalities Application). Sup-

pose that (Ui, Zi) has bounded support, which we then take to be a subset of IJ+d without

loss of generality. Suppose that Ui = (Uij , j = 1, ..., J) where for the first J0/2 pairs of

terms, we have Uij = −Uij+1, j = 1, 3, ..., J0− 1. Let J = {1, 3, ..., J0− 1, J0 +1, J0 +2, ...}.
Suppose that (Uij , Zi, j ∈ J ) have joint density bounded from above and below by some

constants f̄ and f . Suppose these constants and d, J , and d1 = |J | do not depend on n.

Then Condition R holds, and the conclusions of Theorem 8 then hold under the additional

conditions imposed in the theorem.

Note that Condition R allows for much more general error terms and regressors. For

example, it allows error terms Ui not to have a density at all, and Zi need only have density

bounded from above.

The next theorem shows that the Brownian bridge Bn(gv) can be approximately simulated

via the Gaussian multiplier method. That is, consider the following symmetrized process

Go
n(gv) =

1√
n

n∑

i=1

ξigv(Ui, Zi) = Gn(ξgv), (F.1)
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where ξ1, ..., ξn are i.i.d N(0, 1), independent of the data Dn and of {(Ui, Zi)}n
i=1, which are

i.i.d. copies of (U,Z). Conditional on the data this is a Gaussian process with a covariance

function which is a consistent estimate of the covariance function of v 7→ Bn(gv). The

theorem below shows that the uniform distance between Bn(gv) and Go
n(gv) is small with

an explicit probability bound. Note that if the function class {gv, v ∈ V} were Donsker,

then such a result would follow from the multiplier functional central limit theorem. In our

case, this function class is not Donsker, so we require a different argument.

Theorem 9 (Multiplier Method for Kernel Processes). Consider a suitably enriched prob-

ability space (A,A, Pn) for each n. Let n → ∞. Assume the following conditions hold for

each n: (a) There are n i.i.d. (J + d)-dimensional random vectors of the form (Ui, Zi) that

obey Condition R, and the density fn of Z is bounded from above and away from zero on

the set Z, uniformly in n. (b) Let v = (z, j) and V = Z × {1, ..., J}, where Z ⊆ Id. Let

gv(Ui, Zi) :=
1

(hd
n)1/2fn(z)

e′jUiK
(

z − Zi

hn

)
,

where e′jUi ≡ Uij, K is a twice continuously differentiable product kernel function with

support on Id,
∫

K(u)du = 1, and hn is a sequence of bandwidths that converges to zero,

(c) for a given δn ↘ 0, the following holds: log n(n
−1

(d+d1+1) h−1
n )1/2 + (nhd

n)−1/2 log2 n =

o(δn). Then there is an independent copy of B̄n of the Pn-Gaussian Bridge Bn appearing in

Theorem 8 such that

Pn

(
sup
v∈V

|B̄n(gv)−Go
n(gv)| ≥ o(δn)

)
. 1/n,

for some o(δn) term.
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Figure 1. This figure illustrates how variation in the precision of the analog
estimator at different points may impede inference. The solid curve is the
true bounding function θ(v), while the dash-dot curve is a single realization
of its estimator, θ̂(v). The lighter dashed curves depict eight additional rep-
resentative realizations of the estimator, illustrating its precision at different
values of v. The minimum of the estimator θ̂(v) is indeed quite far from the
minimum of θ(v), making the empirical upper bound unduly tight.
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Figure 2. This figure depicts a precision-corrected curve (dashed curve)
that adjusts the boundary estimate θ̂(v) (dotted curve) by an amount pro-
portional to its point-wise standard error. The minimum of the precision-
corrected curve is closer to the minimum of the true curve (solid) than the
minimum of θ̂(v), removing the downward bias.
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Table 1. Results for Monte Carlo Experiments (Series Estimation using B-splines)

DGP Sample Critical Ave. Smoothing Cov. False Cov. Ave. Argmax Set
Size Value Parameter Prob. Prob. Min. Max.

CLR with Series Estimation using B-splines
Estimating Vn?

1 500 No 8.872 0.954 0.150 -1.800 1.792
1 500 Yes 8.872 0.954 0.150 -1.800 1.792
1 1000 No 9.692 0.951 0.013 -1.801 1.797
1 1000 Yes 9.692 0.951 0.013 -1.801 1.797

2 500 No 8.963 0.993 0.774 -1.800 1.792
2 500 Yes 8.963 0.984 0.658 -0.744 0.743
2 1000 No 9.778 0.997 0.609 -1.801 1.797
2 1000 Yes 9.778 0.982 0.458 -0.656 0.659

3 500 No 10.516 0.995 0.897 -1.800 1.792
3 500 Yes 10.516 0.982 0.756 -0.335 0.336
3 1000 No 12.187 0.994 0.682 -1.801 1.797
3 1000 Yes 12.187 0.973 0.454 -0.282 0.282

4 500 No 14.872 0.996 0.000 -1.800 1.792
4 500 Yes 14.872 0.970 0.000 -0.104 0.104
4 1000 No 15.994 0.998 0.000 -1.801 1.797
4 1000 Yes 15.994 0.977 0.000 -0.089 0.089

Table 2. Results for Monte Carlo Experiments (AS)

DGP Sample Size Critical Value Cov. Prob. False Cov. Prob.

AS with CvM (Cramér-von Mises-type statistic)
1 500 PA/Asy 0.959 0.007
1 500 GMS/Asy 0.955 0.007
1 1000 PA/Asy 0.958 0.000
1 1000 GMS/Asy 0.954 0.000

2 500 PA/Asy 1.000 1.000
2 500 GMS/Asy 1.000 0.977
2 1000 PA/Asy 1.000 1.000
2 1000 GMS/Asy 1.000 0.933

3 500 PA/Asy 1.000 1.000
3 500 GMS/Asy 1.000 1.000
3 1000 PA/Asy 1.000 1.000
3 1000 GMS/Asy 1.000 1.000

4 500 PA/Asy 1.000 1.000
4 500 GMS/Asy 1.000 1.000
4 1000 PA/Asy 1.000 1.000
4 1000 GMS/Asy 1.000 1.000
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Table 3. Results for Monte Carlo Experiments (Other Estimation Methods)

DGP Sample Critical Ave. Smoothing Cov. False Cov. Ave. Argmax Set
Size Value Parameter Prob. Prob. Min. Max.

CLR with Series Estimation using Polynomials
Estimating Vn?

1 500 No 5.524 0.954 0.086 -1.800 1.792
1 500 Yes 5.524 0.954 0.086 -1.800 1.792
1 1000 No 5.646 0.937 0.003 -1.801 1.797
1 1000 Yes 5.646 0.937 0.003 -1.801 1.797

2 500 No 8.340 0.995 0.744 -1.800 1.792
2 500 Yes 8.340 0.989 0.602 -0.724 0.724
2 1000 No 9.161 0.996 0.527 -1.801 1.797
2 1000 Yes 9.161 0.977 0.378 -0.619 0.620

3 500 No 8.350 0.998 0.809 -1.800 1.792
3 500 Yes 8.350 0.989 0.612 -0.300 0.301
3 1000 No 9.155 0.996 0.560 -1.801 1.797
3 1000 Yes 9.155 0.959 0.299 -0.253 0.252

4 500 No 8.254 1.000 0.000 -1.800 1.792
4 500 Yes 8.254 0.999 0.000 -0.081 0.081
4 1000 No 9.167 0.998 0.000 -1.801 1.797
4 1000 Yes 9.167 0.981 0.000 -0.069 0.069

CLR with Local Linear Estimation
Estimating Vn?

1 500 No 0.606 0.923 0.064 -1.799 1.792
1 500 Yes 0.606 0.923 0.064 -1.799 1.792
1 1000 No 0.576 0.936 0.003 -1.801 1.796
1 1000 Yes 0.576 0.936 0.003 -1.801 1.796

2 500 No 0.264 0.995 0.871 -1.799 1.792
2 500 Yes 0.264 0.989 0.808 -0.890 0.892
2 1000 No 0.218 0.996 0.779 -1.801 1.796
2 1000 Yes 0.218 0.990 0.675 -0.776 0.776

3 500 No 0.140 0.995 0.943 -1.799 1.792
3 500 Yes 0.140 0.986 0.876 -0.426 0.424
3 1000 No 0.116 0.992 0.907 -1.801 1.796
3 1000 Yes 0.116 0.986 0.816 -0.380 0.377

4 500 No 0.078 0.991 0.000 -1.799 1.792
4 500 Yes 0.078 0.981 0.000 -0.142 0.142
4 1000 No 0.064 0.997 0.000 -1.801 1.796
4 1000 Yes 0.064 0.991 0.000 -0.127 0.127

Table 4. Computation Times of Monte Carlo Experiments

AS Series (B-splines) Series (Polynomials) Local Linear

Total minutes for simulations 24.00 73.17 61.93 396.95
Average seconds for each test 0.09 0.27 0.23 1.49
Relative Ratio relative to AS 1.00 3.05 2.58 16.54
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Appendix G. Proofs Omitted From the Main Text.

G.1. Proof of Lemma 2 (Estimation of Vn). There is a single proof for both analytical

and simulation methods, but it is convenient for clarity to split the first step of the proof

into separate cases. There are four steps in total.

Step 1a. (Bounds on kn,V(γn) in Analytical Case) We have that for some constant η > 0

kn,V(γn) :=
(

ān +
c(γn)
ān

)
,

κn := κn(γ′n) := Qγ′n

(
sup
v∈V

Z∗n(v)
)

, κ̄n := 4
(

ān +
η``n

ān

)
.

The claim of this step is that given the sequence γn we have for all large n:

kn,V(γn) ≥ κn(γn) (G.1)

3kn,V(γn) < κ̄n (G.2)

Inequality (G.2) follows from (C.2) in step 2 of the proof of Lemma 1; (G.1) follows imme-

diately from Condition C.3 (with γn in place of γ′n).

Step 1b. (Bounds on κn,V(γn) in Simulation Case) We have

kn,V(γn) := Qγn

(
sup
v∈V

Z?
n(v) | Dn

)
,

κn = κn(γ′n) := Qγ′n

(
sup
v∈V

Z̄∗n(v)
)

, κ̄n := 4
(

ān +
η``n

ān

)
.

The claim of this step is that given γn there is γ′n = γn − o(1) such that, wp → 1

kn,V(γn) ≥ κn(γ′n) (G.3)

3kn,V(γn) < κ̄n (G.4)

To show inequality (G.3), note that by C.2 and Lemma 11 wp → 1

κn,V(γn + o(1/`n)) + o(δn) ≥ kn,V(γn) ≥ κn,V(γn − o(1/`n))− o(δn). (G.5)

Hence (G.3) follows from

Pn

(
sup
v∈V

Z̄∗n(v) ≤ x

) ∣∣∣
x=kn,V (γn)

≥(1) Pn

(
sup
v∈V

Z̄∗n(v) ≤ κn,V(γn − o(1/`n))− o(δn)
)
− o(1) wp → 1

≥(2) Pn

(
sup
v∈V

Z̄∗n(v) ≤ κn,V(γn − o(1/`n))
)
− o(1) = γn − o(1/`n)− o(1) =: γ′n,
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where (1) holds by (G.5) and by C.2 (b) and (2) holds by anti-concentration Corollary 1.

To show inequality (G.4) note that by C.2(b) and Lemma 11 we have wp → 1

κn,V(γn + o(1/`n)) + o(δn) ≤ ān +
c(γn + o(1/`n))

ān
+ o(δn) ≤ ān +

η``n + η log 10
ān

+ o(δn),

where the last inequality relies on

c(γn + o(1/`n)) ≤ −η log((1− γn − o(1/`n)) = ηo(``n) + η log 10,

holding for large n by C.3. From this we deduce (G.4).

Step 2. (Lower Containment) We have that for all v ∈ Vn,

An(v) := θ̂n(v)− θn0 − inf
v∈V

(
θ̂n(v) + kn,Vsn(v)

)

≤ −Zn(v)σn(v) + κnσn(v) + sup
v∈V

{θn0 − θ̂n(v)− kn,V(γn)sn(v)} := Bn(v)

since θn(v) ≤ θn0 + κnσn(v), ∀v ∈ Vn and θ̂n(v)− θn(v) = −Zn(v)σn(v). Therefore,

Pn{Vn ⊆ V̂n} = Pn{An(v) ≤ 2kn,V(γn)sn(v),∀v ∈ Vn}
≥ Pn{Bn(v) ≤ 2kn,V(γn)sn(v), ∀v ∈ Vn}
≥ Pn{−Zn(v)σn(v) ≤ 2kn,V(γn)sn(v)− κnσn(v),∀v ∈ Vn}

− Pn{sup
v∈V

θn0 − θ̂n(v)
sn(v)

≥ kn,V(γn)}

:= a− b = γ′n − o(1) = 1− o(1),

where b = o(1) follows similarly to the proof of Theorems 1 (analytical case) and Theorem

2 (simulation case), using the observation that kn,V(γn) ≥ kn,Vn(γn), and a = o(1) follows

from the following argument:

a ≥(1) Pn

(
sup
v∈Vn

−Zn(v) ≤ 2kn,V(γn)[1− oPn(δn/(ān + ``n))]− κn

)

≥(2) Pn

(
sup
v∈Vn

−Z∗n(v) ≤ 2kn,V(γn)− κn − oPn(δn)
)
− o(1)

≥(3) Pn

(
sup
v∈Vn

−Z∗n(v) ≤ κn − oPn(δn)
)
− o(1)

≥(4) Pn

(
sup
v∈Vn

−Z∗n(v) ≤ κn,Vn(γ′n)− o(δn)
)
− o(1)

≥(5) γ′n − o(1) = 1− o(1),
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where terms o(δn) are different in different places; where (1) follows by C.4, (2) is by C.2

and by Step 1, namely by kn,V(γ′n) ≤ κ̄n . ān + ``n wp → 1, (3) follows by Step 1, (4)

follows by monotonicity of V 7→ κn,V (γ′n) and Vn ⊆ V, (5) follows by the anti-concentration

Corollary 1.

Step 3. (Upper Containment). We have that for all v 6∈ V n,

An(v) := θ̂n(v)− θn0 − inf
v∈V

(
θ̂n(v) + kn,Vsn(v)

)

> −Zn(v)σn(v) + κ̄nσn(v) + sup
v∈V

{θn0 − θ̂n(v)− kn,V(γn)sn(v)} := Cn(v),

since θn(v) > θn0 + κ̄nσn(v), ∀v 6∈ V n, θ̂n(v)− θn(v) = −Zn(v)σn(v). Hence

Pn

(
V̂n 6⊆ V n

)
= Pn{An(v) ≤ 2kn,V(γn)sn(v),∃v 6∈ V n}
≤ Pn{Cn(v) ≤ 2kn,V(γn)sn(v), ∃v 6∈ V n}
≤ Pn{−Zn(v)σn(v) < 2kn,V(γn)sn(v)− κ̄nσn(v),∃v 6∈ V n}

+ Pn{sup
v∈V

θn0 − θ̂n(v)
sn(v)

≥ kn,V(γn), ∃v 6∈ V n}

=: c− b ≤ (1− γ′n) + o(1) = o(1),

where b = o(1) from the Step 2, and c ≤ (1− γ′n) + o(1) follows from the following:

c ≤(1) Pn (−Zn(v) < 2kn,V(γn)[1 + oPn(δn/(ān + ``n))]− κ̄n, ∃v ∈ V)

≤(2) Pn (−Z∗n(v) < 2kn,V(γn)− κ̄n + o(δn), ∃v ∈ V) + o(1)

≤(3) Pn

(
sup
v∈V

Z∗n(v) > kn,V(γn)− o(δn)
)

+ o(1)

≤(4) Pn

(
sup
v∈V

Z∗n(v) > κn − o(δn)
)

+ o(1) ≤(5) (1− γ′n) + o(1),

where (1) follows by C.4, (2) follows by C.2 and Step 1, namely by kn,V(γ′n) ≤ κ̄n . ān +``n

wp → 1, (3) follows by Step 1, (4) holds by Step 1, (5) holds by the definition of κn and

the anti-concentration Corollary 1.

Step 4. (Rate). We have that wp → 1

dH(V̂n, V0) ≤(1) dH(V̂n, Vn) + dH(Vn, V0) ≤(2) 2dH(V n, V0) ≤(3) (σ̄nκ̄n)1/ρn/cn

where (1) holds by the triangle inequality, (2) follows by the containment V0 ⊆ Vn ⊆ V̂n ⊆ V̄n

holding wp → 1, and (3) follows from κ̄nσ̄n → 0 holding by assumption, and from the
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following relation holding by Condition V:

dH(V̄n, V0) = sup
v∈Vn

d(v, V0) ≤ sup{d(v, V0) : θn(v)− θn0 ≤ κ̄nσn(v)}

≤ sup{d(v, V0) : (cnd(v, V0))ρn ∧ δ ≤ κ̄nσ̄n}
≤ sup{t : (cnt)ρn ∧ δ ≤ κ̄nσ̄n} ≤ c−1

n (κ̄nσ̄n)1/ρn for all 0 ≤ κ̄nσ̄n ≤ δ.

¥

G.2. Proof of Lemma 4. Step 1. Verification of C.1. This condition holds by inspection

in view of continuity of v 7→ pn(v, γn) and v 7→ pn(v, γ̂) implied by Condition P(ii) and by

Ωn and Ω̂n being positive definite.

Step 2. Verification of C.2. Part (a). By Condition P, uniformly in v ∈ V,

Zn(v) =
pn(v, γ∗n(v))′

‖pn(v, γn)′Ω1/2
n ‖

√
n(γ̂n − γn)

=
pn(v, γn)′

‖pn(v, γn)′Ω1/2
n ‖

√
n(γ̂n − γn) +

Ln
√

n‖γ̂n − γn‖2

minv∈V ‖pn(v, γn)‖
λmax(Ω

1/2
n )

λmin(Ω
1/2
n )

=
pn(v, γn)′Ω1/2

n

‖pn(v, γn)′Ω1/2
n ‖

Nk + oPn(δ′n) + OPn(n−1/2).

Part (b). First note using the inequality
∥∥∥∥

a

‖a‖ −
b

‖b‖

∥∥∥∥ ≤
(

2
‖a− b‖
‖a‖

)
∧

(
2
‖a− b‖
‖b‖

)
, (G.6)

we have

Mn =

∥∥∥∥∥
pn(v, γn)′Ω1/2

n

‖pn(v, γn)′Ω1/2
n ‖

− pn(v, γ̂n)′Ω̂1/2
n

‖pn(v, γ̂n)′Ω̂1/2
n ‖

∥∥∥∥∥ ≤ 2
‖pn(v, γn)′Ω1/2

n − pn(v, γ̂n)′Ω̂1/2
n ‖

‖pn(v, γn)′Ω1/2
n ‖

≤ 2
‖pn(v, γn)′Ω1/2

n (I − Ω−1/2
n Ω̂1/2

n )‖
‖pn(v, γn)′Ω1/2

n ‖
+ 2

Ln‖γ̂n − γn‖
minv∈V ‖pn(v, γn)‖

λmax(Ω
1/2
n )

λmin(Ω
1/2
n )

≤ 2‖Ω−1/2
n ‖‖Ω̂1/2

n − Ω1/2
n ‖+ OPn(n−1/2) ≤ OPn(n−b) + OPn(n−1/2) = OPn(n−b),

for some b > 0. We have that

EPn

(
sup
v∈V

|Z∗n(v)− Z?
n(v)| | Dn

)
≤ MnEPn‖Nk‖ ≤ Mn

√
k.
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Hence for any δ′′n ∝ n−b′ with a constant 0 < b′ < b, we have by Markov’s Inequality that

Pn

(
sup
v∈V

|Z∗n(v)− Z?
n(v)| > δn`n | Dn

)
≤ OPn(n−b)

δ′′n`n
= oPn(1/`n).

Now select δn = δ′n ∨ δ′′n.

Step 3. Verification of C.3. We shall employ Lemma 12, which has the required notation

in place. We only need to compute an upper bound on the covering numbers N(ε, V, ρ) for

the process Zn. We have that

σ(Z∗n(v)− Z∗n(ṽ)) ≤
∥∥∥∥ pn(v,γn)′Ω1/2

n

‖pn(v,γn)′Ω1/2
n ‖ −

pn(ṽ,γn)′Ω1/2
n

‖pn(ṽ,γn)′Ω1/2
n ‖

∥∥∥∥

≤ 2
∥∥∥∥ (pn(v,γn)−pn(ṽ,γn))′Ω1/2

n

‖pn(v,γn)′Ω1/2
n ‖

∥∥∥∥ ≤ 2 Ln
minv∈V ‖pn(v,γn)‖

λmax(Ω
1/2
n )

λmin(Ω
1/2
n )

‖v − ṽ‖ ≤ CL‖v − ṽ‖,

where C is some constant that does not depend on n, by the eigenvalues of Ωn bounded

away from zero and from above. Hence by the standard volumetric argument

N(ε, V, ρ) ≤
(

1 + CLdiam(V )
ε

)d

, 0 < ε < 1,

where the diameter of V is measured by the Euclidian metric. Condition C.3 now follows

by Lemma 12, with an(V ) = (2
√

log Ln(V )) ∨ (1 +
√

d), Ln(V ) = C ′ (1 + CLdiam(V ))d ,

where C ′ is a constant from Lemma 12.

Step 4. Verification of C.4. Under Condition P, we have that 1 ≤ an(V ) ≤ ān := an(V) .
1, so that C.4(a) follows since by Condition P

σ̄n =
√

max
v∈V

‖pn(v, γn)Ω1/2
n ‖/n ≤

√
max
v∈V

‖pn(v, γn)‖‖Ω1/2
n ‖/n .

√
1/n

To verify C.4(b) note that uniformly in v ∈ V,
∣∣∣∣∣
‖pn(v, γn)′Ω̂1/2

n ‖
‖pn(v, γn)′Ω1/2

n ‖
− 1

∣∣∣∣∣ ≤
∣∣∣∣∣
‖pn(v, γn)′Ω̂1/2

n ‖ − ‖pn(v, γn)′Ω1/2
n ‖

‖pn(v, γn)′Ω1/2
n ‖

∣∣∣∣∣

≤ ‖pn(v, γn)′(Ω̂1/2
n − Ω1/2

n )‖
‖pn(v, γn)′Ω1/2

n ‖
≤ ‖pn(v, γn)′Ω1/2(Ω̂1/2

n Ω−1/2
n − I)‖

‖pn(v, γn)′Ω1/2
n ‖

≤ ‖Ω̂1/2
n Ω−1/2

n − I‖ ≤ ‖Ω−1/2
n ‖‖Ω̂1/2

n − Ω1/2
n ‖ = oPn(δn),

since ‖Ω̂1/2
n − Ω1/2

n ‖ = OPn(n−b) for some b > 0, and since ‖Ω−1/2
n ‖ is uniformly bounded,

both implied by the assumptions.

Step 5. Verification of S. Then, since under Condition V with for large enough n, rn .
c−1
n (1/

√
n)`n/ρn = o(1), we have that rn ≤ ϕn for large n for some ϕn = o(1). S then follows

6



by noting that for any positive o(1) term, sup‖v−ṽ‖≤o(1) |Zn(v) − Zn(ṽ)| ≤ Υo(1)‖Nk‖ =

oPn(1). ¥

G.3. Proof of Lemma 7. There are six steps, with the first four verifying conditions

C.1-C.4, and the last two providing auxiliary calculations. Let Uij ≡ e′jUi.

Step 1. Verification of C.1 and C.2. Condition C.1 holds by inspection, in view of

continuity of v 7→ θ̂n(v), v 7→ θn(v), v 7→ σn(v), and v 7→ sn(v). Condition C.2 is assumed

directly.

Step 2. Verification of C.3. Note that

gv(Ui, Zi)

σn(v)
√

nhd
n

=
1

h
d/2
n

K
(

z−Zi
hn

)
Uij

∥∥∥ 1

h
d/2
n

K
(

z−Zi
hn

)
Uij

∥∥∥
Pn,2

We shall employ Lemma 12, which has the required notation in place. We only need

to compute an upper bound on the covering numbers N(ε, V, ρ) of V under the metric

ρ(v, v̄) = σ(Z∗n(v)− Z∗n(v̄)). We have that for v = (z, j) and v̄ = (z̄, j)

σ(Z∗n(v)− Z∗n(v̄)) ≤ Υn‖z − z̄‖,

Υn := sup
v∈V,1≤k≤d

∥∥∥∥∥∥∥
∇zk

1

h
d/2
n

K
(

z−Zi
hn

)
Uij

∥∥∥ 1

h
d/2
n

K
(

z−Zi
hn

)
Uij

∥∥∥
Pn,2

∥∥∥∥∥∥∥
Pn,2

.

We have that

Υn ≤ sup
v∈V,1≤k≤d

∥∥∥∇zk
1

h
d/2
n

K
(

z−Zi
hn

)
Uij

∥∥∥
Pn,2∥∥∥ 1

h
d/2
n

K
(

z−Zi
hn

)
Uij

∥∥∥
Pn,2

+

∣∣∣∣∇zk

∥∥∥ 1

h
d/2
n

K
(

z−Zi
hn

)
Uij

∥∥∥
Pn,2

∣∣∣∣
∥∥∥ 1

h
d/2
n

K
(

z−Zi
hn

)
Uij

∥∥∥
Pn,2

,

which is bounded by C(1 + h−1
n ) for large n by Step 6. Since J is finite, it follows that for

all large n > n0 for all non-empty subsets of V ⊆ V,

N(ε, V, ρ) ≤
(

J1/d(1 + C(1 + h−1
n )diam(V ))

ε

)d

, 0 < ε < 1.

Condition C.3 now follows for all n > n0 by Lemma 12, with

an(V ) = (2
√

log Ln(V )) ∨ (1 +
√

d), Ln(V ) = C ′ (1 + C(1 + h−1
n )diam(V )

)d
,

where C ′ is a constant from Lemma 12.
7



Step 3. Verification of C.4. Under Condition NK, we have that

an(V ) ≤ ān := an(V) .
√

log `n + log n .
√

log n,

so that C.4(a) follows if
√

log n/(nhd
n) → 0.

To verify C.4(b) note that

∣∣∣∣
sn(v)
σn(v)

− 1
∣∣∣∣ =

∣∣∣∣∣

(
fn(z)

f̂n(z)

)

︸ ︷︷ ︸
a

( ∥∥∥ 1

h
d/2
n

K
(

z−Zi
hn

)
Ûij

∥∥∥
Pn,2∥∥∥ 1

h
d/2
n

K
(

z−Zi
hn

)
Uij

∥∥∥
Pn,2︸ ︷︷ ︸

b/c

)
− 1

∣∣∣∣∣.

Since |a(b/c) − 1| ≤ 2|a − 1| + |(b − c)/c| when |(b − c)/c| ≤ 1, the result follows from

|a− 1| = OPn(n−b) = op(δn/ān) holding by NK.2 for some b > 0 and from

|(b− c)/c| ≤ max
1≤i≤n

‖Ûi − Ui‖

∥∥∥ 1

h
d/2
n

K
(

z−Zi
hn

)∥∥∥
Pn,2∥∥∥ 1

h
d/2
n

K
(

z−Zi
hn

)
Uij

∥∥∥
Pn,2

+
∣∣∣∣

∥∥∥ 1

h
d/2
n

K
(

z−Zi
hn

)
Uij

∥∥∥
Pn,2∥∥∥ 1

h
d/2
n

K
(

z−Zi
hn

)
Uij

∥∥∥
Pn,2

− 1
∣∣∣∣,

≤ OPn(n−b)OPn(1) + OPn

(√
log n

nhd

)
= OPn(n−b) = oPn(δn/ān)

for some b > 0 where we used NK.2, the results of Step 6, and the condition that nhd
n →∞

at a polynomial rate.

Step 4. Verification of C.2. By NK.1 and 1 . EPn [g2
v ] . 1 uniformly in v ∈ V holding by

Step 6 give

sup
v∈V

∣∣∣∣
Gn(gv)
EPn [g2

v ]
− Bn(gv)

EPn [g2
v ]

∣∣∣∣ = OPn(δn),

where v 7→ Bn(gv) is zero-mean Pn-Brownian bridge, with a.s. continuous sample paths.

This and the condition on the remainder term in NK.1 in turn imply C.2(a).

To show C.2(b) we need to show that for any C > 0

Pn

(
sup
v∈V

∣∣∣∣
Go

n(ĝv)
En[ĝ2

v ]
− B̄n(gv)

EPn [g2
v ]

∣∣∣∣ > Cδn | Dn

)
= oPn(1/`n),

where B̄n is a copy of Bn, which is independent of the data. First, Condition NK.1 with

the fact that 1 . EPn [g2
v ] . 1 uniformly in v ∈ V implies that

Pn

(
sup
v∈V

∣∣∣∣
Go

n(gv)
EPn [g2

v ]
− B̄n(gv)

EPn [g2
v ]

∣∣∣∣ > Cδn | Dn

)
= oPn(1/`n).

8



Therefore, in view of the triangle inequality and the union bound, it remains to show that

Pn

(
sup
v∈V

∣∣∣∣
Go

n(ĝv)
En[ĝ2

v ]
− Go

n(gv)
EPn [g2

v ]

∣∣∣∣ > Cδn | Dn

)
= oPn(1/`n). (G.7)

We have that

sup
v∈V

∣∣∣∣
Go

n(ĝv)
En[ĝ2

v ]
− Go

n(gv)
EPn [g2

v ]

∣∣∣∣ ≤ sup
v∈V

∣∣∣∣
Go

n(ĝv − gv)
EPn [g2

v ]

∣∣∣∣ + sup
v∈V

∣∣∣∣
Go

n(gv)
EPn [g2

v ]

∣∣∣∣ sup
v∈V

∣∣∣∣
σn(v)
sn(v)

− 1
∣∣∣∣ .

We observe that

EPn

(
sup
v∈V

∣∣∣∣
Go

n(gv)
EPn [g2

v ]

∣∣∣∣ sup
v∈V

∣∣∣∣
σn(v)
sn(v)

− 1
∣∣∣∣ | Dn

)

= EPn

(
sup
v∈V

∣∣∣∣
Go

n(gv)
EPn [g2

v ]

∣∣∣∣ | Dn

)
sup
v∈V

∣∣∣∣
σn(v)
sn(v)

− 1
∣∣∣∣ = OPn

(√
log nn−b

)
= OPn(1/`n),

where the last equality follows from Steps 5 and Step 3. Also we note that

EPn

(
sup
v∈V

∣∣∣∣
Go

n(ĝv − gv)
EPn [g2

v ]

∣∣∣∣ | Dn

)

≤(1) OPn(
√

log n) sup
v∈V

∥∥∥
(

Uij

fn(z) −
Ûij

f̂n(z)

)
1

h
d/2
n

K
(

z−Zi
hn

)∥∥∥
Pn,2

1
fn(z)

∥∥∥ 1

h
d/2
n

K
(

z−Zi
hn

)
Uij

∥∥∥
Pn,2

.(2) OPn(
√

log n) sup
v∈V

∥∥∥‖ 1

h
d/2
n

K
(

z−Zi
hn

)
(1 + |Uij |)

∥∥∥
Pn,2∥∥∥ 1

h
d/2
n

K
(

z−Zi
hn

)
Uij

∥∥∥
Pn,2

(∣∣∣∣∣
fn(z)

f̂n(z)
− 1

∣∣∣∣∣ ∨ max
1≤i≤n

‖Ûi − Ui‖
)

≤(3) OPn(
√

log n)OPn(1)OPn(n−b) = oPn(1/`n),

where (1) follows from Step 5, (2) by elementary inequalities, and (3) by Step 6 and NK.2.

It follows that (G.7) holds by Markov’s Inequality.

Step 5. This step shows that

EPn

(
sup
v∈V

∣∣∣∣
Go

n(gv)
EPn [g2

v ]

∣∣∣∣ | Dn

)
= OPn

(√
log n

)
(G.8)

EPn

(
sup
v∈V

∣∣∣∣
Go

n(ĝv − gv)
EPn [g2

v ]

∣∣∣∣ | Dn

)
≤ OPn(

√
log n)×

× sup
v∈V

∥∥∥
(

Uij

fn(z) −
Ûij

f̂n(z)

)
1

h
d/2
n

K
(

z−Zi
hn

)∥∥∥
Pn,2

1
fn(z)

∥∥∥ 1

h
d/2
n

K
(

z−Zi
hn

)
Uij

∥∥∥
Pn,2

. (G.9)
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To show (G.8) we use Lemma 13 applied to Xv = Go
n(gv)

EPn [g2
v]

conditional on Dn. First, we

compute

σ(X) = sup
v∈V

EPn(X2
v |Dn) = sup

v∈V

∥∥∥ 1

h
d/2
n

K
(

z−Zi
hn

)
Uij

∥∥∥
Pn,2∥∥∥ 1

h
d/2
n

K
(

z−Zi
hn

)
Uij

∥∥∥
Pn,2

= 1 + oPn(1),

where the last equality holds by Step 6. Second, we observe that for v = (z, j) and v̄ = (z̄, j)

σ(Xv −Xv̄) ≤ Υn‖z − z̄‖, Υn := sup
v∈V,1≤k≤d

∥∥∥∥∥∥∥
∇zk

1

h
d/2
n

K
(

z−Zi
hn

)
Uij

∥∥∥ 1

h
d/2
n

K
(

z−Zi
hn

)
Uij

∥∥∥
Pn,2

∥∥∥∥∥∥∥
Pn,2

.

We have that

Υn ≤ sup
v∈V,1≤k≤d

∥∥∥∇zk
1

h
d/2
n

K
(

z−Zi
hn

)
Uij

∥∥∥
Pn,2∥∥∥ 1

h
d/2
n

K
(

z−Zi
hn

)
Uij

∥∥∥
Pn,2

+

∥∥∥ 1

h
d/2
n

K
(

z−Zi
hn

)
Uij

∥∥∥
Pn,2∥∥∥ 1

h
d/2
n

K
(

z−Zi
hn

)
Uij

∥∥∥
Pn,2

·

∣∣∣∣∇zk

∥∥∥ 1

h
d/2
n

K
(

z−Zi
hn

)
Uij

∥∥∥
Pn,2

∣∣∣∣
∥∥∥ 1

h
d/2
n

K
(

z−Zi
hn

)
Uij

∥∥∥
Pn,2

.

which is bounded with probability converging to one by C(h−1
n + 1) for large n by Step 6

and NK.2. Since J is finite, it follows that for all large n > n0, the covering number for V
under ρ(v, v̄) = σ(Xv −Xv̄) obeys with probability converging to 1,

N(ε,V, ρ) ≤
(

J1/d(1 + C(1 + h−1
n )diam(V))

ε

)d

, 0 < ε < σ(X),

Hence log N(ε,V, ρ) . log n + log(1/ε). Hence by Lemma 13, we have that

EPn

(
sup
v∈V

|Xv| | Dn

)
≤ σ(X) +

∫ 2σ(X)

0

√
log(n/ε)dε = OPn(

√
log n).

To show (G.9) we use Lemma 13 applied to Xv = Go
n(ĝv−gv)
EPn [g2

v ]
conditional on Dn. First, we

compute

σ(X) = sup
v∈V

EPn(X2
v |Dn) = sup

v∈V

∥∥∥
(

Uij

fn(z) −
Ûij

f̂n(z)

)
1

h
d/2
n

K
(

z−Zi
hn

)∥∥∥
Pn,2

1
fn(z)

∥∥∥ 1

h
d/2
n

K
(

z−Zi
hn

)
Uij

∥∥∥
Pn,2

.

Second, we observe that for v = (z, j) and v̄ = (z̄, j)

σ(Xv −Xv̄) ≤ (Υn + Υ̂n)‖z − z̄‖,
10



where

Υ̂n := sup
v∈V,1≤k≤d

∥∥∥∥∥∥∥
∇zk

1

h
d/2
n

K
(

z−Zi
hn

)
Ûij

∥∥∥ 1

h
d/2
n

K
(

z−Zi
hn

)
Uij

∥∥∥
Pn,2

∥∥∥∥∥∥∥
Pn,2

,

and Υn is the same as defined above.

We have that

Υ̂n ≤ sup
v∈V,1≤k≤d

∥∥∥∇zk
1

h
d/2
n

K
(

z−Zi
hn

)
Ûij

∥∥∥
Pn,2∥∥∥ 1

h
d/2
n

K
(

z−Zi
hn

)
Uij

∥∥∥
Pn,2

+

∥∥∥ 1

h
d/2
n

K
(

z−Zi
hn

)
Ûij

∥∥∥
Pn,2∥∥∥ 1

h
d/2
n

K
(

z−Zi
hn

)
Uij

∥∥∥
Pn,2

·

∣∣∣∣∇zk

∥∥∥ 1

h
d/2
n

K
(

z−Zi
hn

)
Uij

∥∥∥
Pn,2

∣∣∣∣
∥∥∥ 1

h
d/2
n

K
(

z−Zi
hn

)
Uij

∥∥∥
Pn,2

The first term is bounded by

sup
v∈V,1≤k≤d

∥∥∥∇zk
1

h
d/2
n

K
(

z−Zi
hn

)
Uij

∥∥∥
Pn,2∥∥∥ 1

h
d/2
n

K
(

z−Zi
hn

)
Uij

∥∥∥
Pn,2

+ max
1≤i≤n

‖Ûi − Ui‖ sup
v∈V,1≤k≤d

∥∥∥∇zk
1

h
d/2
n

K
(

z−Zi
hn

)∥∥∥
Pn,2∥∥∥ 1

h
d/2
n

K
(

z−Zi
hn

)
Uij

∥∥∥
Pn,2

which is bounded by C(1 + h−1
n ) + OPn(n−b)OPn(1) for large n by Step 6 and NK.2. In the

second term, the left term of the product is bounded by

sup
v∈V,1≤k≤d

∥∥∥ 1

h
d/2
n

K
(

z−Zi
hn

)
Uij

∥∥∥
Pn,2∥∥∥ 1

h
d/2
n

K
(

z−Zi
hn

)
Uij

∥∥∥
Pn,2

+ max
1≤i≤n

‖Ûi − Ui‖ sup
v∈V,1≤k≤d

∥∥∥ 1

h
d/2
n

K
(

z−Zi
hn

)∥∥∥
Pn,2∥∥∥ 1

h
d/2
n

K
(

z−Zi
hn

)
Uij

∥∥∥
Pn,2

which is bounded by C(1 + oPn(1)) + OPn(n−b)OPn(1) for large n by Step 6 and NK.2;

the right term of the product is bounded by C(1 + oPn(1)) by Step 6. Conclude that

Υ̂n ≤ C(1 + h−1
n ) for some constant C > 0 with probability converging to one.

Since J is finite, it follows that for all large n > n0, the covering number for V under

ρ(v, v̄) = σ(Xv −Xv̄) obeys with probability converging to 1,

N(ε,V, ρ) ≤
(

J1/d(1 + C(1 + h−1
n )diam(V))

ε

)d

, 0 < ε < σ(X),

Hence

log N(ε,V, ρ) . log n + log(1/ε).
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Hence by Lemma 13, we have that

EPn

(
sup
v∈V

|Xv| | Dn

)
≤ σ(X) +

∫ 2σ(X)

0

√
log(n/ε)dε = OPn(

√
log n)σ(X).

Step 6. The claim of this step are the following relations: uniformly in v ∈ V, 1 ≤ k ≤ d

1 .
∥∥∥∥∥

1

h
d/2
n

K
(

z − Zi

hn

)
Uij

∥∥∥∥∥
Pn,2

. 1 (G.10)

1 .
∥∥∥∥∥

1

h
d/2
n

K
(

z − Zi

hn

)∥∥∥∥∥
Pn,2

. 1 (G.11)

h−1
n .

∥∥∥∥∥∇zk

1

h
d/2
n

K
(

z − Zi

hn

)
Uij

∥∥∥∥∥
Pn,2

. h−1
n (G.12)

h−1
n .

∥∥∥∥∥∇zk

1

h
d/2
n

K
(

z − Zi

hn

)∥∥∥∥∥
Pn,2

. h−1
n (G.13)

h−1
n .

∣∣∣∣∣∣
∇zk

∥∥∥∥∥
1

h
d/2
n

K
(

z − Zi

hn

)
Uij

∥∥∥∥∥
Pn,2

∣∣∣∣∣∣
. h−1

n (G.14)

and ∥∥∥ 1

h
d/2
n

K
(

z−Zi
hn

)
Uij

∥∥∥
Pn,2∥∥∥ 1

h
d/2
n

K
(

z−Zi
hn

)
Uij

∥∥∥
Pn,2

= 1 + OPn

(√
log n

nhd
n

)
(G.15)

∥∥∥ 1

h
d/2
n

K
(

z−Zi
hn

)∥∥∥
Pn,2∥∥∥ 1

h
d/2
n

K
(

z−Zi
hn

)∥∥∥
Pn,2

= 1 + OPn

(√
log n

nhd
n

)
(G.16)

∥∥∥∇zk
1

h
d/2
n

K
(

z−Zi
hn

)
Uij

∥∥∥
Pn,2∥∥∥∇zk

1

h
d/2
n

K
(

z−Zi
hn

)
Uij

∥∥∥
Pn,2

= 1 + OPn

(√
log n

nhd
n

)
(G.17)

∥∥∥∇zk
1

h
d/2
n

K
(

z−Zi
hn

)∥∥∥
Pn,2∥∥∥∇zk

1

h
d/2
n

K
(

z−Zi
hn

)∥∥∥
Pn,2

= 1 + OPn

(√
log n

nhd
n

)
(G.18)

The proofs of (G.10)-(G.14) are all similar to one another, as are those of (G.15)-(G.18),

and are standard in the kernel estimator literature. We therefore prove only (G.10) and

12



(G.15) to demonstrate the argument. To establish (G.10) we have
∥∥∥∥∥

1

h
d/2
n

K
(

z − Zi

hn

)
Uij

∥∥∥∥∥
Pn,2

2

=
∫

K2((z − z̄)/hn)E[U2
ij |z̄]fn(z̄)dz̄

≤(1)

∫
K2((z − z̄)/hn)Cdz̄ ≤(2) hd

n

∫
K2(u)C,

for some constant 0 < C < ∞, where in (1) we use the assumption that E[U2
ij |z] and fn(z)

are bounded uniformly from above and in (2) we use the assumption that Z is bounded

away from the boundary of the support of Zi by at least hn. On the other hand,
∥∥∥∥∥

1

h
d/2
n

K
(

z − Zi

hn

)
Uij

∥∥∥∥∥
Pn,2

2

=
∫

K2((z − z̄)/hn)E[U2
ij |z̄]fn(z̄)dz̄

≥(1)

∫
K2((z − z̄)/hn)Cdz̄ ≥(2) hd

n

∫
K2(u)C,

for some constant 0 < C < ∞, where in (1) we use the assumption that E[U2
ij |z] and fn(z)

are bounded away from zero uniformly in n, and in (2) we use the assumption that Z is

bounded away from the boundary of the support of Zi by at least hn.

Moving to (G.15), it suffices to show that uniformly in v ∈ V,

En




(
1

h
d/2
n

K
(

z − Zi

hn

))2

U2
ij


−EPn




(
1

h
d/2
n

K
(

z − Zi

hn

))2

U2
ij


 = OPn

(√
log n

nhd
n

)
,

or equivalently

En

(
K2

(
z − Zi

hn

)
U2

ij

)
− EPn

(
K2

(
z − Zi

hn

)
U2

ij

)
= OPn

(√
hd

n log n

n

)
. (G.19)

Given the boundedness of Uij imposed by Condition R, this is in fact a standard result on

local empirical processes, using Pollard’s empirical process methods. Specifically, (G.19)

follows by the application of Theorem 37 in chapter II of Pollard (1984). ¥

G.4. Proof of Lemma 8. To show claim (1), we need to establish that for

ϕn = o(1) ·
(

hn√
log n

)
,

for any o(1) term, we have that

sup
‖v−v′‖≤ϕn

|Z∗n(v)− Z∗n(v′)| = oPn(1).

13



Consider the stochastic process X = {Zn(v), v ∈ V}. We shall use the standard maximal

inequality stated in Lemma 13. From the proof of Lemma 7 we have that for v = (z, j) and

v′ = (z′, j), σ(Z∗n(v) − Z∗n(v′)) ≤ C(1 + h−1
n )‖z − z′‖, where C is some constant that does

not depend on n, and log N(ε, V, ρ) . log n + log(1/ε). Since

‖v − v′‖ ≤ ϕn =⇒ σ(Z∗n(v)− Z∗n(v′)) ≤ C
o(1)√
log n

,

we have

E sup
‖v−v′‖≤ϕn

|Xs −Xt| .
∫ C

o(1)√
log n

0

√
log(n/ε)dε . o(1)√

log n

√
log n = o(1).

Hence the conclusion follows from Markov’s Inequality.

Under Condition V by lemma 2

rn .
(√

log n

nhd
n

log n

)1/ρn

c−1
n ,

so rn = o(ϕn) if (√
log n

nhd
n

log n

)1/ρn

c−1
n = o

(
hn√
log n

)
.

Thus, Condition S is satisfied. ¥

G.5. Proof of Theorem 8. To prove this theorem, we use the Rio-Massart coupling. First

we note that

M = {hd/2
n fn(z)gv(Ui, Zi) = e′jUiK((z − Zi)/hn), z ∈ Z, j ∈ {1, ..., J}}

is the product of {e′jUi, j ∈ 1, ..., J} with covering number trivially bounded above by J and

K := {K((z − Zi)/hn), z ∈ Z} obeys supQ N(ε,K, L1(Q)) . ε−ν for some finite constant ν;

see Lemma 4.1 of Rio (1994). Therefore, By Lemma A.1 in Ghosal, Sen, and van der Vaart

(2000), we have that

sup
Q

N(ε,M, L1(Q)) . J(ε/2)−ν . ε−ν . (G.20)
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Next we bound, for Kl(u) = ∂K(u)/∂ul

TV (M) ≤ sup
f∈M

∫
|D(x′1,x′2)′f(x1, x2)|dx1dx2

≤ sup
v∈V

∫

Id

∫

Id1

(
d1∑

l=1

|e′jDx1l
ϕn(x1)K((z − ϕ̃n(x2))/hn)|

+
d∑

k=1

|e′jϕn(x1)∇K((z − ϕ̃n(x2))/hn)h−1
n ∂ϕ̃(x2)/∂x2k|

)
dx1dx2

≤ C sup
v∈V

∫

Id

(
|K((z − ϕ̃n(x2))/hn)|+ h−1

n |Kl((z − ϕ̃n(x2))/hn)|B
)

dx2

≤ Chd
n + Ch−1

n hd
n ≤ Chd−1

n =: K(M)

where C is a generic constant, possibly different in different places, and where we rely on
∫

Id1

|Dx1l
ϕn(x1)|dx1 ≤ B, sup

x1

|e′jϕn(x1)| ≤ 1, sup
x2

|∂ϕ̃(x2)/∂x2k| ≤ B

as well as on
∫

Id

|K((z − ϕ̃n(x2))/hn)|dx2 ≤ Chd,

∫

Id

|Kl((z − ϕ̃n(x2))/hn)|dx2 ≤ Chd.

To see how the latter relationships holds, note that Y = ϕ̃n(v) when v ∼ U(Id) has a

density bounded uniformly from above: fY (y) . 1/| det ∂ϕ̃n(v)/∂v| . 1/c. Moreover, the

functions |K((z−y)/hn)| and |Kl((z−y)/hn)| are bounded above by some constant K̄ and

are non-zero only over a y belonging to cube centered at z of volume (2h)d. Hence
∫

Id

|K((z − ϕ̃n(x2))/hn)|dx2 ≤
∫

Id

|K((z − y)/hn)|fY (y)dy ≤ K̄(2h)d(1/c) ≤ Chd,

and similarly for the second term.

By the Rio-Massart coupling we have that for some constant C and t ≥ C log n:

Pn

(
√

n sup
f∈M

|Gn(f)− Bn(f)| ≥ C

√
tn

d+d1−1
d+d1 K(M) + Ct

√
log n

)
≤ e−t,

which implies that

Pn

(
sup
v∈V

|Gn(gv)− Bn(gv)| ≥ n−1/2C

√
tn

d+d1−1
d+d1 hd−1

n h−d/2
n + n−1/2h−d/2

n Ct
√

log n

)
≤ e−t,

which upon inserting t = C log n gives

Pn

(
sup
v∈V

|Gn(gv)− Bn(gv)| ≥ C
[
n−1/2(d+d1)

(
h−1

n log n
)1/2 + (nhd

n)−1/2 log3/2 n
])

. 1/n.
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This implies the required conclusion. Note that gv 7→ Bn(gv) is continuous under the L1(fX)

metric by the Rio-Massart coupling, which implies continuity of v 7→ Bn(gv), since v−v′ → 0

implies gv − gv′ → 0 in the L1(fX) metric. ¥

G.6. Proof of Theorem 9. In what follows it is useful to keep in mind (F.1).

Step 1. Let M =
√

4 log n and t = C log n for some C ≥ 1 in what follows. Consider the

truncation mapping from R to R defined by x 7→ TM (x) = max(−M, min(M, x)). Consider

the function class

GM = (TM (ξ)/M)×M,

for M defined in the proof of Theorem 8 and ξ ∼ N(0, 1). Note that ξ = Φ−1([1 + X0]/2)

where X0 ∼ U(−1, 1). Note that GM has envelope 1. Next we bound, for Kl(u) :=

∂K(u)/∂ul,

TV (GM ) ≤ sup
f∈GM

∫
|D(x0,x′1,x′2)′f(x0, x1, x2)|

≤ sup
v∈V

∫

Id

∫

Id1

∫

I

(
|Dx0 [TM (Φ−1([1 + x0]/2))/M ]e′jϕn(x1)K((z − ϕ̃n(x2))/hn)|

+
d1∑

l=1

|[TM (Φ−1([1 + x0]/2))/M ]e′jDx1l
ϕn(x1)K((z − ϕ̃n(x2))/hn)|

+
d∑

k=1

|[TM (Φ−1([1 + x0]/2))/M ]e′jϕn(x1)∇K((z − ϕ̃n(x2))/hn)h−1
n ∂ϕ̃(x2k)/∂x2k|

)
dx0dx1dx2

≤ Chd
n + Ch−1

n hd
n ≤ Chd−1

n =: K(GM )

where C is a generic constant, where we rely on the previous proof, and on
∫

I
|Dx0 [TM (Φ−1(x0))/M ]|dx0 ≤ C, sup

x0

|TM (Φ−1(x0))/M | ≤ 1.

Note that GM is product of a single function (TM (ξ)/M) with function class M, both

having envelope 1. Hence by Lemma A.1 in Ghosal, Sen, and van der Vaart (2000),

supQ N(ε,GM , L1(Q)) . 1·supQ N(ε/2,M, L1(Q)), and from the preceding proof, supQ N(ε,M, L1(Q)) .
ε−ν . Hence supQ N(ε,M∪GM , L1(Q)) . ε−ν .

By the Rio-Massart coupling we have that for t ≥ log n, there exists a Pn-Brownian

Bridge Bn such that for some constant C > 0

Pn

(
√

n sup
f∈M∪GM

|Gn(f)− Bn(f)| ≥ C

√
tn

d+d1
d+d1+1 K(GM ) ∨K(M) + Ct

√
log n

)
≤ e−t,

(G.21)
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or for Rn = CM

(√
tn

d+d1
d+d1+1 K(GM ) ∨K(M) + t

√
log n

)

Pn

(
n1/2 sup

f∈M∪(TM (ξ)×M)
|Gn(f)− Bn(f)| ≥ Rn

)
. 1/n. (G.22)

Note TM (ξ) ×M appears instead of GM , so we are rescaling the function class GM by M ,

and also take into account the impact of this rescaling in the bound Rn. Note that d1 + 1

appears instead of d1, as compared to the previous proof, due to having an extra variable

X0i that generates the multiplier variable ξi.

Step 2. Here we verify that truncation by M has a negligible impact and the result above

holds without truncation.

First, by the union bound and by 1−Φ(u) ≤ φ(u)/u we have that maxi≤n |ξi| ≤ M with

probability at least 1− 2/n, so that

Pn

(
√

n sup
f∈M

|Gn(TM (ξ)f)−Gn(ξf)| 6= 0

)
≤ 2/n. (G.23)

Second, we note that the process Bn can be extended outside M∪(TM (ξ)M) to the class

M∪ξM. The latter class is pre-Gaussian (see Dudley (1999) for definition), as follows from

the entropy bound calculated below, hence Bn can be constructed to have a.s. continuous

paths on M∪ ξM.

Third, we want to show that for some constant C > 0

Pn

(
sup
f∈M

|Bn(TM (ξ)f)− Bn(ξf)| > C log n√
n

)
. 1/n. (G.24)

Define Xf = Bn(TM (ξ)f) − Bn(ξf) = Bn(ξ1(|ξ| > M)f). The covering number for this

process by L2(Pn)-balls of size ε is bounded above by a constant times 1/ε, for all 0 < ε < 1,

since the function is a product of square-integrable function ξ1(|ξ| > M) and uniformly

bounded functions f ∈ M; the bound on covering numbers then follows by Lemma A.1 in

Ghosal, Sen, and van der Vaart (2000) and from log N(ε,M, L2(Pn)) . log(1/ε), established

in the proof of Theorem 8. Hence the class is pre-Gaussian. Moreover,

σ(X) = sup
v∈V

σ(Xv) .
√

M2 exp(−M2/2) .
√

log n/n,

which follows from elementary Gaussian tail bounds and integration by parts. We conclude

by Lemma 13

EPn( sup
f∈M

|Xf |) .
√

log n/n.
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Moreover, by the Borell-Sudakov-Tsyrelson Gaussian concentration inequality

Pn

(
sup
f∈M

|Xf | − EPn( sup
f∈M

|Xf |) >
√

2 log nσ(X)

)
≤ 1/n,

proving the claim (G.24).

Step 3. Putting (G.22)-(G.24) together we conclude that

Pn

(
√

n sup
f∈M∪(ξM)

|Gn(f)− Bn(f)| ≥ R′
n

)
. 1/n,

for R′
n = CM

√
log nn

d+d1
d+d1+1 K(GM ) ∨K(M) + CM log n(log n)1/2 + C log n/

√
n. Rescaling

everything by h
−d/2
n gives the conclusion that with Pn-probability at most C ′/n we have

that

sup
v∈V

|Gn(gv)− Bn(gv)| ≤ n−1/2R′
nh−d/2

n ,
√

n sup
v∈V

|Gn(ξgv)− Bn(ξgv)| ≤ n−1/2R′
nh−d/2

n .

It is easy to check by covariance calculations that the processes {Bn(gv), v ∈ V} and

{B̄n(gv), v ∈ V} := {Bn(ξgv), v ∈ V} are identically distributed and are independent from

each other. Finally note that

n−1/2R′
nh−d/2

n . (log n)n
−1

2(d+d1+1) h−1/2
n + (nhd

n)−1/2 log2 n + (n2hd
n)−1/2(log n) = o(δn)

under the stated conditions on the bandwidth sequence. ¥

Appendix H. Asymptotic Linear Representation for Series Estimator of a

Conditional Mean

In this section we use the primitive conditions set out in Example 5 of the main text

to verify the required asymptotically linear representation for
√

n(β̂n − βn) using Newey

(1997). This representation is also Condition (b) of Theorem 7. We now reproduce the

imposed conditions from the example for clarity. We note that it is also possible to develop

similar conditions for nonlinear estimators, see for example Theorem 1(d) of Horowitz and

Mammen (2004).

We have that θn(v) = EPn [Yi|Vi = v], assumed to be a continuous function. There is an

i.i.d. sample (Yi, Vi), i = 1, ..., n, with V ⊆ support(Vi) ⊆ [0, 1]d for each n. Here d does not

depend on n, but all other parameters, unless stated otherwise, can depend on n. Then we

have θn(v) = pn(v)′βn +an(v), for pn : V 7→ RKn representing the series functions; βn is the

coefficient of the best least squares approximation to θn(v) in the population, and an(v) is

the approximation error. The number of series terms Kn depends on n.
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Recall that we have imposed the following technical conditions in the main text:

Uniformly in n, (i) pn are either b-splines of a fixed order or trigonometric

series terms or any other series terms pn = (pn1, . . . , pnKn) with ‖pn(v)‖ .
ζn =

√
Kn and max1≤l≤Kn |pnl(v)| ≤ C for all v ∈ support(Vi), ‖pn(v)‖ &

ζ ′n ≥ 1 for all v ∈ V, and log lip(pn) . log Kn, (ii) the mapping v 7→ θn(v)

is sufficiently smooth, namely supv∈V |an(v)| . K−s
n , for some s > 0, (iii)

limn→∞(log n)c√nK−s
n = 0 for each c > 0,24 (iv) for εi = Yi − EPn [Yi|Vi],

EPn [ε2i |Vi = v] is bounded away from zero uniformly in v ∈ support(Vi), and

(v) eigenvalues of Qn = EPn [pn(Vi)pn(Vi)′] are bounded away from zero and

from above, and (vi) EPn [|εi|4|Vi = v] is bounded from above uniformly in

v ∈ support(Vi), (vii) limn→∞(log n)cK5
n/n = 0 for each c > 0.

We impose Condition (i) directly through the choice of basis functions. Condition (ii) is a

standard condition on the error of the series approximation, and is the same as Assumption

A3 of Newey (1997), also used by Chen (2007). Condition (v) is Assumption 2(i) of Newey

(1997). The constant s will depend on the choice of basis functions. For example, if splines

or power series are used, then α = s/d, where s is the number of continuous derivatives of

θn (v) and d is the dimension of v. Restrictions on Kn in conditions (iii) and (vii) require

that s > 5d/2. Invoking Corollary 2 to Theorem 7, the constraint on the rate of growth in

the number of series terms is satisfied if Kn is chosen to satisfy

τ3/2
n δ−3

n K3/2
n max

v∈V

Kn∑

j=1

|pnj(v)|3/n1/2 → 0,

which holds under conditions (i) and (vii) in this example.

Define Sn ≡ E[ε2i pn(Vi)pn(Vi)′] and Ωn ≡ Q−1
n SnQ−1

n . Arguments based on Newey (1997)

give the following lemma, which verifies the linear expansion required in condition (b) of

Theorem 7 with δn = 1/ log n.

Lemma 14 (Asymptotically Linear Representation of Series Estimator). Suppose

conditions (i)-(vii) hold. Then we have the following asymptotically linear representation:

Ω−1/2
n

√
n(β̂n − βn) = Ω−1/2

n Q−1
n

1√
n

n∑

i=1

pn(Zi)εi + oPn(1/ log n).

24This condition, which is based on Newey Newey (1997) can be relaxed to (log n)cK−s+1
n → 0 and

(log n)c√nK−s
n /ζ′n → 0, using the recent results of Belloni, Chen, and Chernozhukov (2010) for least squares

series estimators.
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Proof of Lemma 14. As in Newey (1997), we have the following representation: with prob-

ability approaching one,

β̂n − βn = n−1Q̂−1
n

n∑

i=1

pn(Vi)εi + νn, (H.1)

where Q̂n ≡ En[pn(Vi)pn(Vi)′], εi ≡ Yi − EPn [Y |V = Vi], νn ≡ n−1Q̂−1
n

∑n
i=1 pn(Vi)an(Vi),

and an(v) ≡ θn(v) − pn(v)′βn. As shown in the proof of Theorem 1 of Newey (1997), we

have ‖νn‖ = OP(K−α
n ). In addition, write

R̄n :=
[
Q̂−1

n −Q−1
n

]
n−1

n∑

i=1

pn(Vi)εi = Q−1
n

[
Qn − Q̂n

]
n−1Q̂−1

n

n∑

i=1

pn(Vi)εi.

Then it follows from the proof of Theorem 1 of Newey (1997) that

‖R̄n‖ = O (ξ(Kn)Kn/n) ,

where ξ(Kn) ≡ supv ‖pn(v)‖ =
√

Kn by condition (i). Combining the results above gives

β̂n − βn = n−1Q−1
n

n∑

i=1

pn(Vi)εi + Rn, (H.2)

where the remainder term Rn satisfies

‖Rn‖ = O

(
K

3/2
n

n
+ K−α

n

)
.

Note that by condition (iv), eigenvalues of S−1
n are bounded above. In other words, using

the notation used in Corollary 2 in the main text, we have that τn . 1. Then

Ω−1/2
n

√
n(β̂n − βn) = n−1/2

n∑

i=1

ui,n + rn, (H.3)

where

ui,n := Ω−1/2
n Q−1

n pn(Vi)εi, (H.4)

and the new remainder term rn satisfies

‖rn‖ = O
[
n1/2

(
K3/2

n /n + K−α
n

)]
.

Therefore, rn = oPn(1/ log n) if

(log n)n1/2
(
K3/2

n /n + K−α
n

)
→ 0, (H.5)

which is satisfied under conditions (iii) and (vii). Therefore, we have proved the lemma. ¥
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Appendix I. Asymptotic Linear Representation for Local Polynomial

Estimator of a Conditional Mean

In this section we provide details of Example 7 that are omitted in the main text. Recall

that we assume that Pn = P is fixed in this example, and impose the following conditions:

(i) for each j ∈ J , θ(z, j) is (p + 1) times continuously differentiable with

respect to z ∈ Z, where Z is convex. (ii) the probability density function

f of Zi is bounded above and bounded below from zero with continuous

derivatives on Z; (iii) for Yi(j) := m(Xi, µ, j), Yi := (Yi(j), j ∈ J )′, and

Ui := Yi − EP[Yi|Zi]; and Ui is a bounded random vector; (iv) for each j,

the conditional on Zi density of Ui exists and is uniformly bounded from

above and below, or, more generally, condition R stated in Appendix F

holds; (v) K(·) has support on [−1, 1]d, is twice continuously differentiable,∫
uK(u)du = 0, and

∫
K(u)du = 1; (vi) hn → 0, nh

d+|J |+1
n → ∞, and

nh
d+2(p+1)
n → 0 at polynomial rates in n.

Let K(z/h) ≡ e′1S
−1
p Kh(z)up(z/h), and let

gv(U,Z) :=
e′jU

(hd
n)1/2f(z)

K
(

Z − z

hn

)
.

Then results obtained in Kong, Linton, and Xia (2010) give the following lemma, which

verifies the linear expansion required in condition (b) of Theorem 8 with δn = 1/ log n.

Lemma 15 (Asymptotically Linear Representation of Local Polynomial Estima-

tor). Suppose conditions (i)-(vi) hold. Then we have the following asymptotically linear

representation: uniformly in v = (z, j) ∈ V ⊆ Z × J ,

(nhd
n)1/2(θ̂n(v)− θn(v)) = Gn(gv) + oP(1/ log n).

Proof of Lemma 15. We first verify Assumptions A1-A7 in Kong, Linton, and Xia (2010)

(KLX hereafter). In our example, ρ(y; θ) = 1
2(y − θ)2 using the notation in KLX. Then

ϕ(y; θ) in Assumptions A1 and A2 in KLX is ϕ(y; θ) = ϕ(y − θ) = −(y − θ). Then

Assumption A1 is satisfied since the pdf of Ui is bounded and Ui is a bounded random

vector. Assumption A2 is trivially satisfied since ϕ(u) = −u. Assumption A3 follows since

K(·) has compact support and is twice continuous differentiable. Assumption A4 holds

by condition (ii) since Xi and Xj are independent in our example (i 6= j). Assumption

A5 is implied directly by Condition (i). Since we have i.i.d. data, mixing coefficients

(γ[k] using the notation of KLX) are identically zeros for any k ≥ 1. The regression
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error Ui is assumed to be bounded, so that ν1 in KLX can be arbitrary large. Hence,

to verify Assumption A6 of KLX, it suffices to check that for some ν2 > 2, hn → 0,

nhd
n/ log n → ∞, h

d+2(p+1)
n / log n < ∞, and n−1(nhd

n/ log n)ν2/8dn log n/M
(2)
n → ∞, where

dn = (nhd
n/ log n)−1/2 and M

(2)
n = M1/4(nhd

n/ log n)−1/2 for some M > 2, by choosing

λ2 = 1/2 and λ1 = 3/4 on page 1540 in KLX. By choosing a sufficiently large ν2 (at

least greater than 8), the following holds: n−1(nhd
n)ν2/8 →∞. Then condition (vi) implies

Assumption A6. Finally, condition (iv) implies Assumption A7 since we have i.i.d. data.

Thus, we have verified all the conditions in Kong, Linton, and Xia (2010).

Let δn = 1/ log n. Then it follows from Corollary 1 and Lemmas 8 and 10 of Kong,

Linton, and Xia (2010) that

θ̂n(z, j)− θn(z, j) =
1

nhd
nf(z)

e′1S
−1
p

n∑

i=1

(e′jUi)Kh(Zi − z)up

(
Zi − z

hn

)
+ Bn(z, j) + Rn(z, j),

(I.1)

where e1 is a |Ap| × 1 vector whose first element is one and all others are zeros, Sp is a

|Ap| × |Ap| matrix such that Sp = {∫ zu(zv)′du : u ∈ Ap, v ∈ Ap}, up(z) is a |Ap| × 1 vector

such that up(z) = {zu : u ∈ Ap},

Bn(z, j) = O(hp+1
n ) and Rn(z, j) = oP

(
δn

(nhd
n)1/2

)
,

uniformly in (z, j) ∈ V. The exact form of Bn(z, j) is given in equation (12) of Kong,

Linton, and Xia (2010). The result that Bn(z, j) = O(hp+1
n ) uniformly in (z, j) follows

from the standard argument based on Taylor expansion given in Fan and Gijbels (1996),

Kong, Linton, and Xia (2010), or Masry (1996). The condition that nh
d+2(p+1)
n → 0 at a

polynomial rate in n corresponds to the undersmoothing condition. Now the lemma follows

from (I.1) immediately since K(z/h) ≡ e′1S
−1
p Kh(z)up(z/h) is a kernel of order (p+1) (See

section 3.2.2 of Fan and Gijbels (1996)). ¥

Appendix J. Local Asymptotic Power Comparisons

We have shown in the main text that the test of H0 : θna ≤ θn0 of the form

Reject H0 if θna > θ̂n0(p),

can reject all local alternatives θna that are more distant than σ̄nān. We now provide a

couple of examples of local alternatives against which our test has non-trivial power, but for

which the CvM statistic of Andrews and Shi (2009), henceforth AS, does not. It is evident

from the results of AS on local asymptotic power that there are also models for which their
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CvM statistic will have power against some n−1/2 alternatives, where our approach will

not.25 We conclude that neither approach dominates.

We consider two examples in which

Yi = θn (Vi) + Ui,

where Ui are iid with E [Ui|Vi] = 0 and Vi are iid random variables uniformly distributed

on [−1, 1]. Suppose that for all v ∈ [−1, 1] we have

θ∗ ≤ E [Yi|Vi = v] ,

equivalently

θ∗ ≤ θ0 = min
v∈[−1,1]

θn(v).

In the examples below we consider two specifications of the bounding function θn(v), each

with

min
v∈[−1,1]

θn(v) = 0,

and we analyze asymptotic power against a local alternative θna > θ0.

Following AS, consider the CvM test statistic

Tn (θ) :=
∫ [

n1/2 mn (g; θ)
σ̂n(g; θ) ∨ ε

]2

−
dQ (g) , (J.1)

for some ε > 0, where [u]− := −u1(u < 0) and θ is the parameter value being tested. In

the present context we have

mn (g; θ) :=
1
n

n∑

i=1

(Yi − θ) g (Vi) ,

where g ∈ G are instrument functions used to transform the conditional moment inequality

E [Y − θ|V = v] a.e. v ∈ V to unconditional inequalities, and Q (·) is a measure on the space

G of instrument functions as described in AS Section 3.4. σ̂n(g; θ) is a uniformly consistent

estimator for σn(g; θ), the standard deviation of n1/2mn (g; θ).

We can show that Tn(θ) = T̃n(θ) + op (1) , where

T̃n(θ) :=
∫

[βn (θ, g) / (σn(g; θ) ∨ ε) + w (θ, g)]2− dQ (g) ,

25For the formal results, see AS Section 7, Theorem 4. In the examples that follow their Assumption LA3’
is violated, as is also the case in the example covered in their Section 13.5.
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where w (θ, g) is a mean zero Gaussian process, and βn (θ, g) is a deterministic function of

the form

βn (θ, g) ≡ √
nE {[θn (Vi)− θ] g(Vi)} .

For any θ, the testing procedure based on the CvM statistic rejects H0 : θ ≤ θn0 if

Tn(θ) > c(θ, 1− α),

where c(θ, 1− α) is a generalized moment selection (GMS) critical value that satisfies

c(θ, 1− α) = (1− α)-quantile of
(∫

[ϕn (θ, g) / (σn(g; θ) ∨ ε) + w (θ, g)]2− dQ (g)
)

+ op(1).

ϕn (θ, g) is a GMS function that satisfies 0 ≤ ϕn (θ, g) ≤ βn (θ, g) with probability approach-

ing 1 whenever βn (θ, g) ≥ 0, see AS Section 4.4 for further details. Relative to T̃n(θ), in

the integrand of the expression above ϕn (θ, g) is replaced with βn (θ, g). Hence if

sup
g∈G

[βn (θna, g)]− → 0,

for the sequence of local alternatives θna, then

lim inf
n→∞ P (Tn(θna) > c(θna, 1− α)) ≤ α,

since asymptotically c (θna, 1− α)) exceeds the 1 − α quantile of T̃n(θ). It follows that

the CvM test has only trivial power against such a sequence of alternatives. The same

conclusion holds using plug-in asymptotic critical values, since these are no smaller than

GMS critical values.

In the following two examples we now verify that supg∈G [βn (θna, g)]− → 0. We assume

that instrument functions are g are either boxes or cubes, defined in AS Section 3.3, and

hence bounded between zero and one.

J.1. Example J.1 (Unique, well-defined optimum). Let the function θ (·) be specified

as

θn(v) = |v|a ,

for some a ≥ 1.
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Let us now proceed to bound

[βn (θna, g)]− =
√

n [E {[θn(Vi)− θna] g(Vi)}]−
≤ √

n [E [θn(Vi)− θna]]−

≤ √
nE

{
[θn(Vi)− θna]−

}

=
√

n

1∫

−1

(θna − |v|a) 1 {|v|a ≤ θna} dv

= 2
√

n

1∫

0

(θna − va) 1
{

v ≤ θ1/a
na

}
dv

=
2a

a + 1
√

nθ(a+1)/a
na

≡ βn.

Note that

θna = o
(
n−a/[2(a+1)]

)
⇒ βn → 0.

Thus, in this case the asymptotic rejection probability of the CvM test for the local alterna-

tive θna is bounded above by α. On the other hand, by Theorems 1 and 2 of the main text,

our test rejects all local alternatives θna that are more distant than σ̄nān with probably

at least α asymptotically. It suffices to find a sequence of local alternatives θna such that

θna = o
(
n−a/[2(a+1)]

)
but θna À σ̄nān.

For instance, consider the case where a = 2. Then
√

nθ3/2
na → 0 ⇒ βn → 0,

i.e. θna = o
(
n−1/3

) ⇒ βn → 0, so the CvM test has trivial asymptotic power against θna.

In contrast, since this is a very smooth case, our approach can achieve σ̄nān = O(n−δ)

for some δ that can be close to 1/2, for instance by using a series estimator with a slowly

growing number of terms, or a higher-order kernel or local polynomial estimator. Our test

would then be able to reject any θna that converges to zero faster than n−1/3 but more

slowly than n−δ.

J.2. Example J.2 (Deviation with Small Support). Now suppose that the form of

the conditional mean function, θn(v) ≡ E [Yi|Vi = v], is given by

θn (v) := θ̄ (v)− τa
n (φ (v/τn)− φ (0)) ,
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where τn is a sequence of positive constants converging to zero and φ(·) is the standard

normal density function. Let θ̄ (v) be minimized at zero so that

θ0 = min
v∈[−1,1]

θn (v) = min
v∈[−1,1]

θ̄ (v) = 0.

Let the alternative by θ̃na ≡ τa
nφ (0). Again, the behavior of the AS statistic is driven by[

βn

(
θ̃na, g

)]
−
, which we bound from above as follows.

[
βn

(
θ̃na, g

)]
−

=
√

n
[
E

{[
θn (Vi)− θ̃na

]
g (Vi)

}]
−

≤ √
n

[
E

{
θn (Vi)− θ̃na

}]
−

=
√

n
[
E

{
θ̄ (Vi)− τa

nφ (Vi/τn)
}]
−

≤ √
nE {τa

nφ (Vi/τn)}

=
√

n

2

1∫

−1

τa
nφ (v/τn) dv

≤
√

n

2
τa+1
n ≡ βn.

Consider the case a = 2. If τn = o
(
n−1/6

)
then βn → 0, so that again the CvM test has

only trivial asymptotic power. If τn = n−1/6−c/2 for some small positive constant c, then

θ̃na ≡ n−1/3−cφ (0). Note that

f (v) := τ2
nφ (v/τn) ⇒ f ′′ (v) = φ′′ (v/τn) ≤ φ′′ < ∞,

for some constant φ′′. Hence, if θ̄(v) is twice continuously differentiable, we can use a series

or kernel estimator to estimate θn(v) uniformly at the rate of (log n)dn−2/5 for some d > 0,

leading to non-trivial power against alternatives θ̃na for sufficiently small c.

Appendix K. Results of Additional Monte Carlo Experiments

In this section we present the results of some additional Monte Carlo experiments that

illustrate the finite-sample performance of our method. We consider a Monte Carlo design

that is similar to that of Manski and Pepper (2009), discussed briefly in Example B of

the main text. In particular, we consider the lower bound on θ∗ = E[Yi(t)|Vi = v] under

the monotone instrumental variable (MIV) assumption, where t is a treatment, Yi(t) is the

corresponding potential outcome, and Vi is a monotone instrumental variable. The lower
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bound on E[Yi(t)|Vi = v] can be written as

max
u≤v

E [Yi · 1{Zi = t}+ y0 · 1{Zi 6= t}|Vi = u] , (K.1)

where Yi is the observed outcome, Zi is a realized treatment, and y0 is the left end-point of

the support of Yi, see Manski and Pepper (2009). Throughout the Monte Carlo experiments,

the parameter of interest is θ∗ = E[Yi(1)|Vi = 1.5].

K.1. Data-Generating Processes. We consider four cases of data-generating processes

(DGPs). In the first case, which we call DGP5, V0 = V and the MIV assumption has no

identifying power. In other words, the bound-generating function is flat on V, in which

case the bias of the analog estimator is most acute, see Manski and Pepper (2009). In the

second case, which we call DGP6, the MIV assumption has identifying power, and V0 is a

strict subset of V. In the third and fourth cases, which we call DGP7 and DGP8, we set V0

to be a singleton set.

Specifically, for all DGPs we generated 1000 independent samples from the following

model:

Vi ∼ Unif[−2, 2], Zi = 1{ϕ0(Vi) + εi > 0}, and Yi = min{max{−0.5, σ0(Vi)Ui}, 0.5},

where εi ∼ N(0, 1), Ui ∼ N(0, 1), σ0(Vi) = 0.1× |Vi|, and (Vi, Ui) are statistically indepen-

dent (i = 1, . . . , n). The bounding function has the form

θ(v) := E [Yi · 1{Zi = 1}+ y0 · 1{Zi 6= 1}|Vi = v]

= −0.5Φ[−ϕ0(v)],

where Φ(·) is the standard normal cumulative distribution function. For DGP5, we set

ϕ0(v) ≡ 0. In this case, the bounding function is completely flat (θl(v) = −0.25 for each

v ∈ V = [−2, 1.5]). For DGP6, an alternative specification is considered:

ϕ0(v) = v1(v ≤ 1) + 1(v > 1).

In this case, v 7→ θ(v) is strictly increasing on [−2, 1] and is flat on [1, 2], and V0 = [1, 1.5]

is a strict subset of V = [−2, 1.5]. For DGP7, we consider

ϕ0(v) = −2v2.

In this case, v 7→ θl(v) has a unique maximum at v = 0, and thus, V0 = {0} is singleton.

For DGP8, we consider

ϕ0(v) = −10v2.
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In this case, v 7→ θ(v) has a unique maximum at v = 0 and is more peaked than that of

DGP7.

We considered sample sizes n = 250, n = 500, and n = 1000, and we implemented the

series estimator to estimate the bounding function θ(v) in (K.1). For basis functions we

used cubic B-splines with knots equally spaced over the sample quantiles of Vi. Details

of the implementation are the same as in Section 5 of the main text. Figures 1-4 show

realizations of data and the bounding functions for all DGPs, including those considered in

the main text.

K.2. Simulation Results. To evaluate the relative performance of our inference method,

we have also implemented one of the inference methods proposed by AS, specifically their

Cramér-von Mises-type (CvM) statistic with PA/Asy and GMS/Asy critical values. Turning

parameters for CvM were chosen as exactly as in AS (see Section 9).26

The coverage probability (CP) is evaluated at the true lower bound, say θ0 (with the

nominal level of 95%) and the false coverage probability (FCP) is evaluated at a θ value

outside the identified set. For DGP5, we set θ = θ0− 0.03; for DGP6-DGP7, θ = θ0− 0.05;

and for DGP8, θ = θ0 − 0.07. These points are chosen differently across different DGPs

to ensure that the FCPs have similar values. This type of FCP was reported in AS, along

with a so-called “CP-correction” (similar to size correction in testing). We did not do CP-

correction in our reported results. There were 1,000 replications for each experiment. Table

1 summarizes the results of Monte Carlo experiments. CLR and AS refer to our inference

method and that of AS, respectively.

First, we consider Monte Carlo results for DGP5. The discrepancies between nominal

and actual coverage probabilities are not large across all methods, implying that all of them

perform well in finite samples. For DGP5, since the true argmax set V0 is equal to V, an

estimated V0 should be the entire set V. Thus the simulation results are the same whether

or not estimating V0 since for most of simulation draws, V̂n = V. Similar conclusions hold

for AS with CvM between PA/Asy and GMS/Asy critical values. In terms of false coverage

probability, CvM with either critical value performs better than our method.

We now move to DGPs 6-8. In DGP6, the true argmax set V0 is [1, 1.5] and in DGP7 and

DGP8, V0 is a singleton set. In these cases the true argmax set V0 is a strict subset of V.

Hence, we expect that it is important to estimate V0. On average, for DGP6, the estimated

sets were [−0.73, 1.5] when n = 250, [−0.280, 1.5] when n = 500, and [−0.015, 1.5] when

26Our Monte Carlo design differs from that of AS, and alternative choices of tuning parameters could perform
more or less favorably in our design. We did not examine sensitivity to the choice of tuning parameters for
their method.
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n = 1, 000; for DGP7, the estimated sets were [−0.996, 0.984] when n = 250, [−0.837, 0.835]

when n = 500, and [−0.729, 0.728] when n = 1, 000; for DGP8, the estimated sets were

[−0.71, 0.69] when n = 500, [−0.438, 0.436] when n = 500, and [−0.346, 0.346] when n =

1, 000.

Hence, an average estimated set is larger than V0; however, it is still a strict subset of V
and gets smaller as n gets large. For all the methods, the Monte Carlo results are consistent

with asymptotic theory. Unlike in DGP5, the CLR method performs better than the AS

method in terms of false coverage probability. As can be seen from the table, the CLR

method performs better when V0 is estimated in terms of making the coverage probability

less conservative and also of making the false coverage probability smaller. Similar gains are

obtained for the CvM with GMS/Asy critical values, relative to that with PA/Asy critical

values.

The results of this section support the conclusions reached in Section 5 of the main

text. In completely flat cases, the AS method outperforms our method, whereas in non-

flat cases, our method outperforms the AS method. In this section we also considered one

intermediate case, where the bounding function is partly-flat. In this particular case our

method performed favorably, but more generally there is a wide range of intermediate cases

that could be considered, and we would expect the approach of AS to perform favorably

in some cases too. The main conclusions we draw from the Monte Carlo experiments are

that our inference method performs well both in coverage probabilities and false coverage

probabilities and that in terms of a comparison between our approach and that of AS,

neither approach dominates.27

27As in Section 5, this conclusion will remain valid even with CP-correction as in AS, since our method
performs better in DGPs 6-8 where we have over-coverage.
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Table 1. Results for Monte Carlo Experiments

DGP Sample Size Critical Value Cov. Prob. False Cov. Prob.

CLR with Series Estimation
Estimating Vn?

5 250 No 0.924 0.720
5 250 Yes 0.924 0.720
5 500 No 0.942 0.612
5 500 Yes 0.942 0.612
5 1000 No 0.950 0.404
5 1000 Yes 0.950 0.404

6 250 No 0.967 0.689
6 250 Yes 0.956 0.636
6 500 No 0.969 0.535
6 500 Yes 0.945 0.455
6 1000 No 0.979 0.291
6 1000 Yes 0.962 0.195

7 250 No 0.982 0.892
7 250 Yes 0.974 0.851
7 500 No 0.997 0.847
7 500 Yes 0.994 0.741
7 1000 No 0.994 0.597
7 1000 Yes 0.984 0.457

8 250 No 0.994 0.923
8 250 Yes 0.988 0.832
8 500 No 0.994 0.817
8 500 Yes 0.987 0.657
8 1000 No 0.998 0.568
8 1000 Yes 0.986 0.364

AS with CvM (Cramér-von Mises-type statistic)
5 250 PA/Asy 0.951 0.544
5 250 GMS/Asy 0.945 0.537
5 500 PA/Asy 0.949 0.306
5 500 GMS/Asy 0.945 0.305
5 1000 PA/Asy 0.962 0.068
5 1000 GMS/Asy 0.956 0.068

6 250 PA/Asy 1.000 0.941
6 250 GMS/Asy 0.990 0.802
6 500 PA/Asy 1.000 0.908
6 500 GMS/Asy 0.980 0.674
6 1000 PA/Asy 1.000 0.744
6 1000 GMS/Asy 0.980 0.341

7 250 PA/Asy 1.000 1.000
7 250 GMS/Asy 0.997 0.948
7 500 PA/Asy 1.000 0.997
7 500 GMS/Asy 0.997 0.916
7 1000 PA/Asy 1.000 0.993
7 1000 GMS/Asy 0.997 0.823

8 250 PA/Asy 1.000 1.000
8 250 GMS/Asy 1.000 0.988
8 500 PA/Asy 1.000 1.000
8 500 GMS/Asy 0.999 0.972
8 1000 PA/Asy 1.000 1.000
8 1000 GMS/Asy 1.000 0.942

Notes: CLR and AS refer to our inference methods and those of Andrews and Shi (2009),
respectively. There were 1000 replications per experiment.
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Figure 1. Simulated Data and Bounding Functions: DGP1 and DGP2
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Figure 2. Simulated Data and Bounding Functions: DGP3 and DGP4

32



Figure 3. Simulated Data and Bounding Functions: DGP5 and DGP6
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Figure 4. Simulated Data and Bounding Functions: DGP7 and DGP8
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