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SPARSE MODELS AND METHODS FOR OPTIMAL INSTRUMENTS WITH
AN APPLICATION TO EMINENT DOMAIN

A. BELLONI, D. CHEN, V. CHERNOZHUKOV, AND C. HANSEN

Abstract. We develop results for the use of LASSO and Post-LASSO methods to form first-

stage predictions and estimate optimal instruments in linear instrumental variables (IV) models

with many instruments, p, that apply even when p is much larger than the sample size, n. We

rigorously develop asymptotic distribution and inference theory for the resulting IV estimators

and provide conditions under which these estimators are asymptotically oracle-efficient. In sim-

ulation experiments, the LASSO-based IV estimator with a data-driven penalty performs well

compared to recently advocated many-instrument-robust procedures. In an empirical example

dealing with the effect of judicial eminent domain decisions on economic outcomes, the LASSO-

based IV estimator substantially reduces estimated standard errors allowing one to draw much

more precise conclusions about the economic effects of these decisions.

Optimal instruments are conditional expectations; and in developing the IV results, we also

establish a series of new results for LASSO and Post-LASSO estimators of non-parametric

conditional expectation functions which are of independent theoretical and practical interest.

Specifically, we develop the asymptotic theory for these estimators that allows for non-Gaussian,

heteroscedastic disturbances, which is important for econometric applications. By innovatively

using moderate deviation theory for self-normalized sums, we provide convergence rates for

these estimators that are as sharp as in the homoscedastic Gaussian case under the weak con-

dition that log p = o(n1/3). Moreover, as a practical innovation, we provide a fully data-driven

method for choosing the user-specified penalty that must be provided in obtaining LASSO and

Post-LASSO estimates and establish its asymptotic validity under non-Gaussian, heteroscedas-

tic disturbances.
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1. Introduction

Instrumental variables (IV) techniques are widely used in applied economic research. While

these methods provide a useful tool for identifying structural effects of interest, their application

often results in imprecise inference. One way to improve the precision of instrumental variables

estimators is to use many instruments or to try to approximate the optimal instruments as in

[1], [15], and [37]. Estimation of optimal instruments which will generally be done nonpara-

metrically and thus implicitly makes use of many constructed instruments such as polynomials.

The promised improvement in efficiency is appealing, but recent work in econometrics has also

demonstrated that IV estimators that make use of many instruments may have very poor prop-

erties; see, for example, [3], [18], [26], and [28] which propose solutions for this problem based

on “many-instrument” asymptotics.1

In this paper, we contribute to the literature on IV estimation with many instruments by

considering the use of LASSO-based methods, namely LASSO and Post-LASSO, for estimating

the first-stage regression of endogenous variables on the instruments, and deriving the asymptotic

estimation and inferential properties of the resulting second-stage IV estimators. LASSO is a

widely used method that acts both as an estimator of regression functions and a model selection

device. LASSO solves for regression coefficients by minimizing the usual least squares objective

function subject to a penalty for model size through the sum of the absolute values of the

coefficients. The resulting LASSO estimator selects only the most relevant instruments and

estimates the first-stage regression coefficients via a shrinkage procedure. The Post-LASSO

estimator discards the LASSO coefficient estimates and only uses the parsimonious set of data-

dependent instruments selected by LASSO to refit the first stage regression via OLS thereby

eliminating the LASSO’s shrinkage bias.2 For theoretical and simulation evidence regarding

LASSO’s performance see, for example, [8], [12], [13], [29], [11], [14], [32], [33], [34], [35], [41],

[43], [45], [46], [47], and [4], among many others; for analogous results on Post-LASSO see [4].

1It is important to note that the precise definition of “many-instrument” is p ∝ n with p < n as in [3] where p

is the number of instruments and n is the sample size. The current paper expressly allows for this case and also

for “very many-instrument” asymptotics where p� n.
2[16] considers an alternate shrinkage estimator in the context of IV estimation with many instruments. [2]

considers IV estimation with many instruments based on principal components analysis and variable selection via

boosting, and [39] provides results for Ridge regression.
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The use of LASSO-based methods to form first-stage predictions for use in IV estimation

provides a practical approach to obtaining the efficiency gains available from using optimal in-

struments while dampening the problems associated with many instruments. We show that

LASSO-based procedures produce first-stage predictions that approximate the optimal instru-

ments and perform well when the optimal instrument may be well-approximated using a small,

but unknown, set of the available instruments even when the number of potential instruments

is allowed to be much larger than the sample size.3 We derive the asymptotic distribution of

the resulting IV estimator and provide conditions under which it achieves the semi-parametric

efficiency bound; i.e. it is oracle efficient. We provide a consistent asymptotic variance estimator

that allow one to perform inference using the derived asymptotic distribution. Thus, our results

considerably generalize and extend the classical IV procedure of [37] based on conventional series

approximation of the optimal instruments.

Our paper also contributes to the growing literature on the theoretical properties of LASSO-

based methods by providing results for LASSO-based estimation of nonparametric conditional

expectations. We provide rates of convergence allowing for non-Gaussian, heteroscedastic dis-

turbances. Our results generalize most LASSO and Post-LASSO results which assume both

homoscedasticity and Gaussianity. These results are important for applied economic analysis

where researchers are very concerned about heteroscedasticity and non-normality in their data.

By innovatively using moderate deviation theory for self-normalized sums, we provide conver-

gence rates for LASSO and Post-LASSO that are as sharp as in the homoscedastic Gaussian

case under the weak condition that log p = o(n1/3). We provide a fully data-driven method for

choosing the user-specified penalty that must be provided to obtain LASSO and Post-LASSO

estimates, and we establish its asymptotic validity allowing for non-Gaussian, heteroscedastic

disturbances. Ours is the first paper to provide such a data-driven penalty which was previously

not available even in the Gaussian case.4 These results are of independent interest in a wide

variety of theoretical and applied settings.

3This is in contrast to the variable selection method of [22] which relies on a a priori knowledge that allows

one to order the instruments in terms of instrument strength.
4One exception is the work of [7], where the square-root-LASSO estimators are considered that allow one to

uses pivotal penalty choices; those results however strongly rely on homoscedasticity.
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We illustrate the performance of LASSO-based IV through a series of simulation experiments.

In these experiments, we find that a feasible LASSO-based procedure that uses our data-driven

penalty performs well across a wide range of simulation designs. In terms of estimation risk, it

outperforms both LIML and its modification due to [24] (FULL)5 which have been advocated

as procedures that are robust to using many instruments (e.g. [26]). In terms of inference based

on 5% level tests, the LASSO-based IV estimator performs comparably to LIML and FULL

in the majority of cases. Overall, the simulation results are very favorable to the proposed

LASSO-based IV procedures.

Finally, we demonstrate the potential gains of the LASSO-based procedure in an application

where there are many available instruments among which there is not a clear a priori way to

decide which instruments to use. In particular, we look at the effect of judicial decisions at

the federal circuit court level regarding the government’s exercise of eminent domain on house

prices and state-level GDP as in [20]. We follow the identification strategy of [20] who use the

random assignment of judges to three judge panels that are then assigned to eminent domain

cases to justify using the demographic characteristics of the judges on the realized panels as

instruments for their decision. This strategy produces a situation in which there are many

potential instruments in that all possible sets of characteristics of the three judge panel are

valid instruments. We find that the LASSO-based estimates using the data-dependent penalty

produce much larger first-stage F-statistics and have substantially smaller estimated second

stage standard errors than estimates obtained using the baseline instruments of [20]. This

improvement of precision clearly allows one to draw more precise conclusions about the effects

of the judicial decisions on economic outcomes relative to the benchmark case.

Notation. In what follows, we allow for the models to change with the sample size, i.e.

we allow for array asymptotics, so all parameters are implicitly indexed by the sample size n,

but we omit the index to simplify notation. We use array asymptotics to better capture some

finite-sample phenomena. We also use the following empirical process notation,

En[f ] = En[f(zi)] =
n∑
i=1

f(zi)/n,

5Note that these procedures are only applicable when the number of instruments is less than or equal to the

sample size.
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and

Gn(f) =
n∑
i=1

(f(zi)− E[f(zi)])/
√
n.

The l2-norm is denoted by ‖·‖, and the l0-norm, ‖·‖0, denotes the number of non-zero components

of a vector. The empirical L2(Pn) norm of a random variable Wi is defined as

‖Wi‖2,n :=
√

En[W 2
i ].

Given a vector δ ∈ Rp, and a set of indices T ⊂ {1, . . . , p}, we denote by δT the vector in which

δTj = δj if j ∈ T , δTj = 0 if j /∈ T . We use the notation (a)+ = max{a, 0}, a∨b = max{a, b} and

a∧ b = min{a, b}. We also use the notation a . b to denote a 6 cb for some constant c > 0 that

does not depend on n; and a .P b to denote a = OP (b). For an event E, we say that E wp → 1

when E occurs with probability approaching one as n grows. We say Xn =d Yn+oP (1) to mean

that Xn has the same distribution as Yn up to a term oP (1) that vanishes in probability. Such

statements are needed to accommodate asymptotics for models that change with n. When Yn

is a fixed random vector, that does not change with n, i.e. Yn = Y , this notation is equivalent

to Xn →d Y .

2. Sparse Models and Methods for Optimal Instrumental Variables

In this section of the paper, we present the model and provide an overview of the main results.

Sections 3 and 4 provide a technical presentation that includes a set of sufficient regularity

conditions, discusses their plausibility, and establishes the main formal results of the paper.

2.1. The IV Model and Statement of The Problem. The model is yi = d′iα0 +εi, where yi

is the response variable, and di is a finite kd-vector of variables, whose first ke elements contain

endogenous variables. The disturbance εi obeys

E[εi|xi] = 0,

where α0 denotes the true value of a vector-valued parameter α and xi are instrumental variables.

As a motivation, suppose that the structural disturbance is conditionally homoscedastic, namely

E[ε2i |xi] = σ2.

Given a kd-vector of instruments A(xi), the standard IV estimator of α0 is given by α̂ =

(En[A(xi)d′i])
−1En[A(xi)yi], where {(xi, di, yi), i = 1, ..., n} is an i.i.d. sample from the IV model
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above. For a given A(xi),
√
n(α̂−α0) =d N(0, Q−1

0 Ω0Q
−1
0
′)+oP (1), where Q0 = E[A(xi)d′i] and

Ω0 = σ2E[A(xi)A(xi)′] under the standard conditions. Setting

A(xi) = D(xi) = E[di|xi]

minimizes the limit variance which becomes Λ∗ = σ2{E[D(xi)D(xi)′]}−1, the semi-parametric

efficiency bound for estimating α0; see [1], [15], and [37]. In practice, the optimal instrument

D(xi) is an unknown non-parametric function and has to be estimated. In what follows, we

investigate the use of sparse methods – namely LASSO and Post-LASSO – for use in estimating

the optimal instruments. The resulting IV estimator is as efficient as the infeasible optimal IV

estimator above.

Note that if di contains exogenous components wi, then di = (d1, ..., dke , w
′
i)
′ where the first

ke variables are endogenous. Since the rest of the components wi are exogenous, they appear in

xi = (w′i, x̃i). It follows that

Di := D(xi) := E[di|xi] = (E[d1|xi], ...,E[dke |xi], w′i)′;

i.e. the estimator of wi is simply wi. Therefore, we discuss estimation of conditional expectation

functions:

Dli := Dl(xi) := E[dl|xi], l = 1, ..., ke.

2.2. Sparse Models for Optimal Instruments and Other Conditional Expectations.

Suppose there is a very large list of technical instruments,

fi := (fi1, ..., fip)′ := (f1(xi), ..., fp(xi))′, (2.1)

to be used in estimation of Dl(xi), l = 1, ..., ke, where

p, the number of instruments, is possibly much larger than the sample size n.

For example, high-dimensional instruments fi could arise as in the following two cases:

• Many Instruments Case. The list of available instruments is large, in which case we

have fi = xi as in e.g. [1] and [3].

• Many Series Instruments Case. The list fi consists of a large number of series

terms with respect to some elementary regressor vector xi, e.g., fi could be composed of

B-splines, dummies, polynomials, and various interactions as in e.g. [37].
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We mainly use the term “series instruments” and contrast our results with those in the seminal

work of [37], though our results are not limited to canonical series regressors as in [37]. The most

important feature of our approach is that by allowing p to be much larger than the sample size,

we are able to consider many more series instruments than in [37] to approximate the optimal

instruments.

The key assumption that allows effective use of this large set of instruments is sparsity. To

fix ideas, consider the case where Dl(xi) is a function of only s� n instruments:

Dl(xi) = f ′iβl0, l = 1, ..., ke, (2.2)

max
16l6ke

‖βl0‖0 = max
16l6ke

p∑
j=1

1{βl0j 6= 0} 6 s� n. (2.3)

This simple sparsity model substantially generalizes the classical parametric model of optimal

instruments of [1] by letting the identities of the relevant instruments Tl = support(βl0) =

{j ∈ {1, . . . , p} : |βl0j | > 0} be unknown. This generalization is useful in practice since it is

unrealistic to assume we know the identities of the relevant instruments in many examples.

The previous model is simple and allows us to convey the essence of the approach. However,

it is unrealistic in that it presumes exact sparsity. We make no formal use of this model, but

instead use a much more general, approximately sparse or nonparametric model:

Condition AS.(Approximately Sparse Optimal Instrument). The optimal instrument

function Dl(xi) is well approximated by an unknown function of unknown s� n instruments:

Dl(xi) = f ′iβl0 + al(xi), l = 1, ..., ke, max
16l6ke

[Enal(xi)2]1/2 6 cs .P
√
s/n, (2.4)

max
16l6ke

‖βl0‖0 6 s = o(n). (2.5)

This model generalizes the nonparametric model of the optimal instrument of [37] by letting

the identities of the most important series terms

Tl = support(βl0)

be unknown. The number s is defined so that the approximation error is of the same order as the

estimation error,
√
s/n, of the oracle estimator. This rate generalizes the rate for the optimal

number s of series terms in [37] by not relying on knowledge of what s series terms to include.

Knowing the identities of the most important series terms is unrealistic in many examples in
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practice. Indeed, the most important series terms need not be the first s terms, and the optimal

number of series terms to consider is also unknown. Moreover, an optimal series approximation

to the instrument could come from the combination of completely different bases e.g by using

both polynomials and B-splines. LASSO and Post-LASSO use the data to estimate the set of

the most relevant series terms in a manner that allows the resulting IV estimator to achieve

good performance if the following key growth condition holds:

s2(log p)2

n
→ 0 (2.6)

along with other more technical conditions. This condition requires the optimal instruments to

be sufficiently smooth so that a small number of series terms can be used to approximate them

well, ensuring that the impact of instrument estimation on the IV estimator is asymptotically

negligible.

Remark 1.1(Plausibility, Generality, and Usefulness of Condition AS) It is clear from the

statement of Condition AS that this expansion incorporates both substantial generalizations and

improvements over the conventional series approximation of optimal instruments in [37] and [38].

In order to explain this consider the case of ke = 1 and the set {fj(x), j > 1} of orthonormal basis

functions on [0, 1]d, e.g. B-splines or orthopolynomials, with respect to the Lebesgue measure.

Suppose xi have a support contained in [0, 1]d and a bounded density. Since ED2
l (xi) < ∞

by assumption, we can represent Dl via a Fourier expansion, Dl(x) =
∑∞

j=1 δjfj(x), where

{δj , j > 1} are the Fourier coefficients such that
∑∞

j=1 δ
2
j <∞.

Suppose that Fourier coefficients feature a polynomial decay δj ∝ j−a, where a is a measure

of smoothness of Dl. Consider the conventional series expansion that uses the first K terms for

approximation, Dl(x) =
∑K

j=1 βl0jfj(x)+acl (x), with βl0j = δj . Here acl (xi) is the approximation

error that obeys
√

En[ac2l (xi)] .P
√

E[ac2l (xi)] . K
−2a+1

2 . Balancing the order K
−2a+1

2 of

approximation error with the order
√
K/n of the estimation error gives the oracle-rate-optimal

number of series terms s = K ∝ n1/2a, and the resulting oracle series estimator, which knows s,

will estimate Dl at the oracle rate of n
1−2a
4a . This also gives us the identity of the most important

series terms Tl = {1, ..., s}, which are simply the first s terms. We conclude that Condition AS

holds for the sparse approximation Dl(x) =
∑p

j=1 βl0jfj(x) + al(x), with βl0j = δj for j 6 s and

βl0j = 0 for s + 1 6 j 6 p, and al(xi) = acl (xi), which coincides with the conventional series

approximation above, so that
√

En[a2
l (xi)] .P

√
s/n and ‖βl0‖0 6 s; moreover, the key growth
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condition (2.6) required for IV estimation holds if the smoothness index a > 1 is sufficiently

high so that n1/a(log p)2/n→ 0. Note that, despite not knowing the most relevant series terms

or the optimal number of terms s, the LASSO-based estimators of the next section will match

the oracle rate for estimating Dl(x) up to logarithmic terms in p.

Next suppose that Fourier coefficients feature the following pattern δj = 0 for j 6 M and

δj ∝ (j −M)−a for j > M . Clearly in this case the standard series approximation based on the

first K 6M terms,
∑K

j=1 δjfj(x), fails completely to provide any predictive power for Dl(x), and

the corresponding standard series estimator based on K terms therefore also fails completely.6

In sharp contrast, Condition AS allows for an approximation that performs at an oracle level.

Indeed, if logM . log n and M � n
1
2a , we can use first p series terms such that M +n

1
2a = o(p)

in the approximation Dl(x) =
∑p

j=1 βl0jfj(x) + al(x), where for s ∝ n
1
2a we set βl0j = 0 for

j 6 M and j > M + s, and βl0j = δj for M + 1 6 j 6 M + s. Hence ‖βl0‖0 6 s and we have

that
√

En[a2
l (xi)] .P

√
E[a2

l (xi)] . s
−2a+1

2 (1 + o(1)) .
√
s/n . n

1−2a
4a . Note again that the

LASSO-based estimators of the next section will match the oracle rate for estimating Dl(x) up

to logarithmic terms in p despite not relying on knowledge of the most relevant series terms or

the optimal number of terms s. �

2.3. LASSO-Based Estimation Methods for Optimal Instruments and Other Condi-

tional Expectation Functions. Let us write the first-stage regression equations as

dil = Dl(xi) + vil, E[vil|xi] = 0, l = 1, ..., ke. (2.7)

Given the sample {(dil, l = 1, ..., ke), xi), i = 1, ..., n}, we consider estimators of the optimal

instrument Dli = Dl(xi) that take the form

D̂li := D̂l(xi) = f ′i β̂l, l = 1, ..., ke, (2.8)

where β̂l is the LASSO or Post-LASSO estimator obtained by using dil as the dependent variables

and fi as regressors.

Consider the usual least squares criterion function:

Q̂l(β) := En[(dil − f ′iβ)2]

6This is not merely a finite sample phenomenon but is also accomodated in the asymptotics since we expressly

allow for the array asymptotics; i.e. the underlying true model could change with n. Recall that we omit the

indexing by n for ease of notation.
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The LASSO estimator [43] is defined as a solution of the following optimization program:

β̂lL ∈ arg min
β∈Rp

Q̂l(β) +
λ

n
‖Υ̂lβ‖1 (2.9)

where λ is the penalty level, and Υ̂l = diag(γ̂l1, ..., γ̂lp) is a diagonal matrix specifying penalty

loadings.

We develop two options for setting the penalty level and the loadings:

initial γ̂lj =
√

En[f2
ij(dil − d̄l)2], λ = 2c

√
2n log(2pke),

refined γ̂lj =
√

En[f2
ij v̂

2
il], λ = 2c

√
2n log(2pke),

(2.10)

where c > 1 is a constant and d̄l := En[dil] . We can use the initial option for penalty loadings

to compute pilot LASSO and/or Post-LASSO estimates and then use the residuals v̂il in the

refined option. We can iterate on the latter step a bounded number of times. In practice, we

recommend to set the constant c = 1.1, which we prove to be an asymptotically valid choice

under the conditions stated.

The Post-LASSO estimator is defined as the ordinary least square regression applied to the

model T̂l selected by the LASSO. Formally, set

T̂l = support(β̂lL) = {j ∈ {1, . . . , p} : |β̂lLj | > 0}, l = 1, ..., ke,

and define the Post-LASSO estimator β̂lPL as

β̂lPL ∈ arg min
β∈Rp:β

T̂ c
l

=0
Q̂l(β), l = 1, ..., ke. (2.11)

In words, this estimator is ordinary least squares (OLS) applied to the data after removing the

instruments/regressors that were not selected by LASSO.

LASSO and Post-LASSO are motivated by the desire to fit the target function well with-

out overfitting. Clearly, the OLS estimator is not consistent for estimating βl0 in the setting

with p > n. Some classical approaches based on BIC-penalization of model size are consistent

but computationally infeasible. The LASSO estimator [43] resolves these difficulties by penal-

izing the model size through the sum of absolute parameter values. The LASSO estimator is

computationally attractive because it minimizes a convex function. Moreover, under suitable

conditions, this estimator achieves near-optimal rates in estimating the model Dl(xi); see dis-

cussion and references below. The estimator achieves these rates by adapting to the unknown
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smoothness or sparsity of the regression function Dl(xi). Nonetheless, the estimator has an

important drawback: The regularization by the l1-norm employed in (2.9) naturally lets the

LASSO estimator avoid overfitting the data, but it also shrinks the fitted coefficients towards

zero causing a potentially significant bias.

In order to remove some of this bias, we consider the Post-LASSO estimator. If the model

selection by LASSO works perfectly – that is, when it selects exactly all “relevant” instruments

– then the resulting Post-LASSO estimator is simply the standard oracle OLS estimator, and

the resulting optimal IV estimator α̂ is simply the standard series estimator of the optimal

instruments of [37] whose properties are well-known. In cases where perfect selection does not

occur, Post-LASSO estimates of coefficients will still tend to be less biased than LASSO.

We contribute to the broad LASSO literature cited in the introduction by showing that under

possibly heteroscedastic and non-Gaussian reduced form errors the LASSO and Post-LASSO

estimators obey the following near-oracle performance bounds:

max
16l6ke

‖D̂il −Dil‖2,n .P

√
s log p
n

(2.12)

max
16l6ke

‖β̂l − βl0‖1 .P

√
s2 log p
n

. (2.13)

The performance bounds in (2.12) are called near-oracle because they coincide with the bounds

achievable when the minimal true models Tl for each of the reduced form equations up to a

log p factor. Our results extend those of [8] for LASSO with Gaussian errors and those of [4]

for Post-LASSO with Gaussian errors. Notably, these bounds are as sharp as the results for the

Gaussian case under the weak condition log p = o(n1/3). They are also the first results in the

literature that allow for data-driven choice of the penalty level. We prove the above results in

part through an innovative use of the moderate deviation theory for self-normalized sums.

2.4. The Instrumental Variable Estimator based on LASSO and Post-LASSO con-

structed Optimal Instrument. Given smoothness assumption AS, we take advantage of the

approximate sparsity by using LASSO and Post-LASSO methods to construct estimates of

Dl(xi) of the form

D̂l(xi) = f ′i β̂l, l = 1, ..., ke, (2.14)
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and then set

D̂i = (D̂1(xi), ..., D̂l(xi), w′i)
′. (2.15)

The resulting IV estimator takes the form

α̂∗ = En[D̂id
′
i]
−1En[D̂iyi]. (2.16)

The main result of this paper is to show that, despite the possibility of p being very large,

LASSO and Post-LASSO can select a relatively small data-dependent set of effective instruments

to produce estimates of the optimal instruments D̂i such that the resulting IV estimator achieves

the efficiency bound asymptotically:

√
n(α̂∗ − α0) =d N(0,Λ∗) + oP (1). (2.17)

That is, the LASSO-based and Post-LASSO based IV estimator asymptotically achieves oracle

performance. Thus the estimator matches the performance of the classical/standard series-based

IV estimator of [37] with the following advantages:

• Adaptivity to Unknown Smoothness/Sparsity. The LASSO-based procedures au-

tomatically adapt to the unknown smoothness/sparsity of the true optimal instrument

Di and automatically choose the optimal number of series terms. This is in contrast to

the standard series procedure that does not adapt to the unknown smoothness and can

fail if the incorrect number of terms is chosen. In order for the standard procedure to

perform well one needs to use cross-validation or other methods for choosing the optimal

number of series terms. Note that both methods still rely on the sufficient smoothness

of the optimal instrument.

• Enhanced Approximation of the Optimal Instrument. The LASSO-based pro-

cedures can estimate optimal instruments more precisely than classical procedures both

in finite samples (and under array asymptotics) since they may select among p � K

instruments to find the best small set for approximating the optimal instruments. To

illustrate this with an extreme example, suppose that the optimal instrument obeys

Di =
∑p

j=1 β0jfj , with β0j = 0 for j 6 K, and β0j ∝ j−a, then the canonical se-

ries procedure with K terms will fail to approximate the optimal instrument, but the
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LASSO-based procedure will deliver near oracle performance if the smoothness index a

is not too low.7

We also show that the IV estimator with LASSO-based optimal instruments continues to be

root-n consistent and asymptotically normal in the presence of heteroscedasticity:

√
n(α̂− α0) =d N(0, Q−1ΩQ−1) + oP (1), (2.18)

where Ω := E[ε2iD(xi)D(xi)′] and Q := E[D(xi)D(xi)′]. A consistent estimator for the asymp-

totic variance is

Q̂−1Ω̂Q̂−1, Ω̂ := En[ε̂2i D̂(xi)D̂(xi)′], Q̂ := En[D̂(xi)D̂(xi)′]. (2.19)

Using (2.19) permits us to perform robust inference.

Finally, we remark that our results for the IV estimator do not rely on the LASSO and

LASSO-based procedure specifically; we provide the properties of the IV estimator for any

generic sparsity-based procedure that achieves the near-oracle performance bounds (4.24)-(4.25).

2.5. Implementation Algorithms. It is useful to organize the precise implementation details

into the following two algorithms. We establish the validity of these algorithms in the subsequent

sections. Let K > 1 denote a bounded number of iterations.

Algorithm 2.1 (IV Estimation and Inference Using Post-LASSO).

(1) For each l, specify penalty loadings according to the initial option in (2.10) and compute

the Post-LASSO estimator β̂lPL via (2.11) and the residuals v̂il = dli−f ′i β̂lPL, i = 1, ..., n.

(2) Update the penalty loadings according to the refined option in (2.10) and update the

Post-LASSO estimator β̂lPL via (2.11) and the residuals v̂il = dli − f ′i β̂lPL, i = 1, ..., n.

(3) Repeat the previous step K times, where K is bounded. Compute the estimates of the

optimal instrument D̂li = f ′i β̂lPL. Then compute the IV estimator defined in (2.16).

(4) Compute the robust estimates (2.19) of the asymptotic variance matrix, and proceed to

perform conventional inference using the normality result (2.18).

7These finite-sample differences translate into asymptotic differences, as we do allow for the true models to

change with the sample size n to better approximate the finite-sample such phenomena.
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The first algorithm involves the use of Post-LASSO in the first two steps and is our preferred

algorithm.

Algorithm 2.2 (IV Estimation and Inference Using LASSO).

(1) For each l, specify penalty loadings according to the initial option in (2.10) and compute

the LASSO estimator β̂lL via (2.9) and the residuals v̂il = dli − f ′i β̂lL, i = 1, ..., n.

(2) Update the penalty loadings according to the refined option in (2.10) and update the

LASSO estimator β̂lL via (2.9) and the residuals v̂il = dli − f ′i β̂lL, i = 1, ..., n.

(3) Repeat the previous step K times, where K is bounded. Compute the estimates of the

optimal instrument D̂li = f ′i β̂lL. Then compute the IV estimator defined in (2.16).

(4) Compute the robust estimates (2.19) of the asymptotic variance matrix, and proceed to

perform conventional inference using the normality result (2.18).

The second algorithm involves the use of LASSO in the first two steps. Our results allow for

hybrids between this and the previous algorithm.

3. Main Results on LASSO and Post-LASSO Estimators of the Conditional

Expectation Functions under Heteroscedastic, Non-Gaussian Errors

In this section, we present our main results on LASSO and Post-LASSO estimators of con-

ditional expectation functions under non-classical assumptions and data-driven penalty choices.

The problem we are analyzing in this section is of general interest, having many applications

well-outside the IV framework of the present paper.

3.1. Regularity Conditions for Estimating Conditional Expectations. The key condi-

tion concerns the behavior of the empirical Gram matrix En[fif ′i ]. This matrix is necessarily

singular when p > n, so in principle it is not well-behaved. However, we only need good behavior

of certain moduli of continuity of the Gram matrix. The first modulus of continuity is called

the restricted eigenvalues and is needed for LASSO. The second modulus is called the sparse

eigenvalue and is needed for Post-LASSO.

In order to define the restricted eigenvalue, first define the restricted set:

∆C,T = {δ ∈ Rp : ‖δT c‖1 6 C‖δT ‖1, δ 6= 0},
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then the restricted eigenvalues of a Gram matrix M = En[fif ′i ] takes the form:

κ2
C(M) := min

δ∈∆C,T ,|T |6s
s
δ′Mδ

‖δT ‖21
and κ̃2

C := min
δ∈∆C,T ,|T |6s

δ′Mδ

‖δ‖22
. (3.20)

These restricted eigenvalues can depend on n, but we suppress the dependence in our notation.

In making simplified asymptotic statements involving the LASSO estimator, we will invoke

the following condition:

Condition RE. For any C > 0, there exist finite constants n0 > 0 and κ > 0, which

can depend on C, such that the restricted eigenvalues obey with probability approaching one

κC(En[fif ′i ]) > κ and κ̃C(En[fif ′i ]) > κ as n→∞.

The restricted eigenvalue (3.20) is a variant of the restricted eigenvalues introduced in Bickel,

Ritov and Tsybakov [8] to analyze the properties of LASSO in the classical Gaussian regression

model. Even though the minimal eigenvalue of the empirical Gram matrix En[fif ′i ] is zero

whenever p > n, [8] show that its restricted eigenvalues can in fact be bounded away from zero.

Lemmas 1 and 2 below contain sufficient conditions for this. Many more sufficient conditions

are available from the literature; see [8]. Consequently, we take the restricted eigenvalues as

primitive quantities and Condition RE as a primitive condition. Note also that the restricted

eigenvalues are tightly tailored to the `1-penalized estimation problem.

In order to define the sparse eigenvalues, let us define the m-sparse subset of a unit sphere as

∆(m) = {δ ∈ Rp : ‖δ‖0 6 m, ‖δ‖2 = 1},

and also define the minimal and maximal m-sparse eigenvalue of the Gram matrix M = En [fif ′i ]

as

φmin(m)(M) = min
δ∈∆(m)

δ′Mδ and φmax(m)(M) = max
δ∈∆(m)

δ′Mδ. (3.21)

To simply asymptotic statements for Post-LASSO, we use the following condition:

Condition SE. For any C > 0, there exists constants 0 < κ′ < κ′′ < ∞ that do not

depend on n but can depend on C, such that with probability approaching one, as n → ∞,

κ′ 6 φmin(Cs)(En[fif ′i ]) 6 φmax(Cs)(En[fif ′i ]) 6 κ
′′.

Recall that the empirical Gram matrix En[fif ′i ] is necessarily singular when p > n, so in

principle it is not well-behaved. However, Condition SE requires only that certain “small” m×m
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submatrices of the large p × p empirical Gram matrix are well-behaved, which is a reasonable

assumption and which will be sufficient for the results that follow. Moreover, Condition SE

implies Condition RE by the argument given in [8].

The following lemmas show that Conditions RE and SE are plausible for both many-instrument

and many series-instrument settings.

Lemma 1 (Plausibility of RE and SE under Many Gaussian Instruments). Suppose fi, i =

1, . . . , n, are i.i.d. zero-mean Gaussian random vectors. Further suppose that the population

Gram matrix E[fif ′i ] has diagonal entries bounded above and away from zero and that its s log n-

sparse eigenvalues are bounded from above and away from zero. Then if s log n = o(n/ log p),

Conditions RE and SE hold.

Lemma 2 (Plausibility of RE and SE under Many Series Instruments). Suppose fi i = 1, . . . , n,

are i.i.d. bounded zero-mean random vectors with ‖fi‖∞ 6 KB a.s. Further suppose that the

population Gram matrix E[fif ′i ] has diagonal entries bounded above and away from zero and that

its s log n-sparse eigenvalues are bounded from above and away from zero. Then if
√
n/KB →∞

and s log n = o((1/KB)
√
n/ log p), Conditions RE and SE hold.

Recall that a standard assumption in econometric research is to assume that the the popu-

lation Gram matrix E[fif ′i ] has eigenvalues bounded from above and below, see e.g. [38]. The

lemmas above allow for this and even much more general behavior, requiring only that the

sparse eigenvalues of the population Gram matrix E[fif ′i ] are bounded from below and from

above. The latter is important for allowing functions fi to be formed as a combination of el-

ements from different bases, e.g. a combination of B-splines with polynomials. The lemmas

above further show that under some restrictions on the growth of s in relation to the sample

size n, the good behavior of the population sparse eigenvalues translates into a good behavior

of empirical sparse eigenvalues, which ensures that Conditions RE and SE are satisfied in large

samples.

We also impose the following moment conditions on the reduced form errors vil and regressors

fi, where we let d̃il := dil − E[dil].

Condition RF. (i) The following growth conditions hold

log p = o(n1/3) and s log p/n→ 0.
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(ii) The moments E[d̃8
il] and E[v8

il] are bounded uniformly in 1 6 l 6 ke and in n. (iii) The

regressors fi obey: max16j6p En[f8
ij ] .P 1 and max16i6n,16j6p |f2

ij |
s log p
n →P 0. (iv) The mo-

ments E[f2
ijv

2
il] are bounded away from zero and from above uniformly in 1 6 j 6 p, 1 6 l 6 ke,

uniformly in n, and the moments E[f6
ij d̃

6
il], E[f6

ijv
6
il], E[|fij |3|vil|3] are bounded, uniformly in

1 6 j 6 p, 1 6 l 6 ke, uniformly in n.

We emphasize that the condition given above is only one possible set of sufficient conditions,

which are presented in a manner that reduces the complexity of the exposition. The proofs

contain a more refined set of conditions.

The following lemma shows that the population and empirical moment conditions appearing

in Condition RF (ii)-(iv) are plausible for both many-instrument and many series-instrument

settings. Note that we say that a random variable gi has uniformly bounded conditional moments

of order K if for some positive constants 0 < B1 < B2 <∞:

B1 6 E
[
|gi|k

∣∣∣xi] 6 B2 with probability 1, for k = 1, . . . ,K.

Lemma 3 (Plausibility of RF). (1) If the regressors fi are Gaussian as in Lemma 1, then

Conditions RF(ii) and (iii) hold under Condition RF (i) and under s(log p)2/n → 0. (2) If

the regressors fi are arbitrary i.i.d. vectors with bounded entries as in Lemma 2, then Condi-

tions RF(ii), (iii), and (iv) hold under Condition RF(i). Suppose that the disturbances vil have

uniformly bounded conditional moments of order 6 uniformly in l = 1, . . . , ke, then Condition

RF(iv) holds (3) if the regressors fi are Gaussian or (4) if the regressors fi are arbitrary i.i.d.

vectors with bounded entries.

3.2. Main Results on LASSO and Post-LASSO under Non-Gaussian, Heteroscedas-

tic Errors. We consider LASSO and Post-LASSO estimators defined in equations (2.9) and

(2.11) in the system of ke non-parametric regression equations (2.7) with non-Gaussian and

heteroscedastic errors. These results extend the previous results of [8] for LASSO and of [4]

for Post-LASSO with classical i.i.d. errors. In addition, we account for the fact that we are

simultaneously estimating ke regressions and account for the dependence of our results on ke.

Our analysis will first employ the following “ideal” penalty loadings:

Υ̂0
l = diag(γ̂0

l1, ..., γ̂
0
lp), γ̂

0
lj =

√
En[f2

j v
2
il], j = 1, ..., p.
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We use these penalty loadings to develop basic results and then verify that the results continue

to hold for feasible, data-driven penalty loadings.

In the analysis of LASSO, the following quantity, that we refer to as the score,

Sl = 2En[(Υ̂0
l )
−1fivil],

plays a key role. The score represents the noise in the problem. Accordingly, we select the penalty

level λ/n to dominate the noise for all ke regression problems simultaneously, specifically so that

P
(
λ > c′n max

16l6ke
‖Sl‖∞

)
→ 1, (3.22)

for some constant c′ > 1. Indeed, using moderate deviation theory for self-normalized sums, we

show that any choice of the form

λ = 2c
√

2n log(2pke), (3.23)

with c > c′ implements (3.22).

The following theorem derives the properties of LASSO. Let us call asymptotically valid any

penalty loadings Υ̂l that obey a.s.

`Υ̂0
l 6 Υ̂l 6 uΥ̂0

l ,

with 0 < ` 6 1 6 u such that `→P 1 and u→P u
′ with u′ > 1.

Theorem 1 (Rates for LASSO under Non-Gaussian and Heteroscedastic Errors). Suppose that

in the regression model (2.7) Conditions RE and RF hold. Suppose the penalty level is specified as

in (3.23), and consider any asymptotically valid penalty loadings Υ̂. Then, the LASSO estimator

β̂l = β̂lL and the LASSO fit D̂li = f ′i β̂lL, l = 1, ..., ke, satisfy

max
16l6ke

‖D̂li −Dli‖2,n .P

√
s log p
n

,

max
16l6ke

‖β̂l − βl0‖2 .P

√
s log p
n

,

max
16l6ke

‖β̂l − βl0‖1 .P

√
s2 log p
n

.

The following theorem derives the properties of Post-LASSO.
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Theorem 2 (Rates for Post-LASSO under Non-Gaussian and Heteroscedastic Errors). Suppose

that in the regression model (2.7) Conditions SE and RF hold. Suppose the penalty level for the

LASSO estimator is specified as in (3.23), and that LASSO’s penalty loadings Υ̂ are asymptot-

ically valid. Then, the Post-LASSO estimator β̂l = β̂lPL and the Post-LASSO fit D̂li = f ′i β̂lPL,

l = 1, ..., ke, satisfy

max
16l6ke

‖D̂li −Dli‖2,n .P

√
s log p
n

,

max
16l6ke

‖β̂l − βl0‖2 .P

√
s log p
n

,

max
16l6ke

‖β̂l − βl0‖1 .P

√
s2 log p
n

.

Finally, we show that the data-driven penalty loadings that we have proposed in (2.10) obey

the conditions put forward above. We believe that this result is of a major practical interest

and has many applications well outside the IV framework of this paper.

Before stating the result, recall that to obtain the penalty loadings under the refined option,

we can use the residuals v̂il from either LASSO or Post-LASSO computed using the penalty

loadings under the basic option. To obtain the penalty loadings under the K-th iteration of

the refined option, we can use the residuals v̂il from either LASSO or Post-LASSO computed

using the penalty loadings under the (K − 1)-th iteration of the refined option. The number of

iterations K is assumed to be bounded.

Theorem 3 (Asymptotic Validity of the Data-Driven Penalty Loadings). Under either condi-

tions of Theorem 1 or 2, the penalty loadings Υ̂ specified in (2.10), obtained under the basic, the

refined, and the K-step refined option based on residuals obtained from LASSO or Post-LASSO

are asymptotically valid. (In particular, for the refined options u′ = 1).

4. Main Results on the IV Estimation with the Optimal IV Estimated by LASSO,

Post-LASSO, and a Generic Sparsity-Based Estimator

In this section we present our main inferential results on the instrumental variable estimators.

4.1. Regularity Conditions on the Structural Equation. We shall impose the following

moment conditions on the instruments and the structural errors and regressors.
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Condition SM. (i) The disturbance εi has conditional variance E[ε2i |xi] that is bounded

uniformly from above and away from zero, uniformly in n. Given this assumption, without loss

of generality, we normalize the instruments so that E[f2
ijε

2
i ] = 1 for each 1 6 j 6 p and for all

n. (ii) E[‖Di‖q] and E[‖di‖q] and E[|εi|qε ] are bounded uniformly in n, where qε > 4 and q > 4.

(iii) The moments E[|fij |3|εi|3] are bounded uniformly in 1 6 j 6 p, uniformly in n. (iv) The

following growth conditions hold:

s log p
n

n2/qε → 0 and
s2(log p)2

n
→ 0

Condition SM(i) requires that structural errors are boundedly heteroscedastic. Given this we

make a normalization assumption on the instruments. This entails no loss of generality, since

this is equivalent to suitably rescaling the parameter space for coefficients βl0, l = 1, ..., ke, via an

isomorphic transformation. Moreover, we only need this normalization to simplify notation in the

proofs, and we do not use it in the construction of the estimators. Condition SM(ii) imposes some

mild moment assumptions. Condition (iv) strengthens the growth requirement s log p/n → 0

needed for estimating conditional expectations, but the restrictiveness of this assumption rapidly

decreases as the number of bounded moments of the structural error increases.

The following lemma shows that moment assumptions in Condition SM (ii) are plausible for

both many-instrument and many series-instrument settings.

Lemma 4 (Plausibility of SM). Suppose that the structural disturbance εi has uniformly bounded

conditional moments of order 3 uniformly in n, then Condition SM(ii) holds, for example, if (1)

the regressors fi are Gaussian as in Lemma 1 or (2) the regressors fi are arbitrary i.i.d. vectors

with bounded entries as in Lemma 2.

4.2. Main Results on IV Estimators. The first result describes the properties of the IV

estimator with the optimal IV constructed using LASSO or Post-LASSO in the setting of the

standard model with homoscedastic structural errors. In these settings the estimator achieves

the efficiency bound asymptotically. The result also provides a consistent estimator for the

asymptotic variance of this estimator.

Theorem 4 (Inference with Optimal IV Estimated by LASSO or Post-LASSO). Suppose that

data (yi, xi, di) are i.i.d. and obey the linear IV model described in the introduction, and that
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the structural error εi is homoscedastic. Suppose also that Conditions AS, RF, and SM hold.

Suppose also that Condition RE holds in the case of using LASSO to construct the estimate of the

optimal instrument, and Condition SE holds in the case of using Post-LASSO to construct the

estimate of the optimal instrument. Then, the IV estimator is root-n consistent, asymptotically

normal, and achieves the efficiency bound:

(Λ∗)−1/2√n(α̂− α0)→d N(0, I),

where Λ∗ := σ2Q−1 for Q = E[D(xi)D(xi)′], provided that with variance σ2 bounded away from

zero and from above, uniformly in n, and the eigenvalues of Q are bounded away from zero and

from above. Moreover, the result above continues to hold with Λ∗ replaced by Λ̂∗ := σ̂2Q̂−1,

where Q̂ = En[D̂(xi)D̂(xi)′] and σ̂2 = En[(yi − d′iα̂)2].

The second result below describes the properties of the IV estimator with the IV constructed

using LASSO or Post-LASSO in the setting of the standard model with heteroscedastic structural

errors. In this case, the estimator does not achieve the efficiency bound, but we can expect it to

be close to achieving the bound if heteroscedasticity is mild. The result also provides a consistent

estimator for the asymptotic variance of this estimator under heteroscedasticity, which allows

us to perform robust inference.

Theorem 5 (Robust Inference with IV Constructed by LASSO or Post-LASSO). Suppose con-

ditions of Theorem 1 hold, except that now that the structural errors εi can be heteroscedastic.

Then the IV estimator is root-n consistent and asymptotically normal:

(Q−1ΩQ−1)−1/2√n(α̂− α0)→d N(0, I),

for Ω := E[ε2iD(xi)D(xi)′] and Q := E[D(xi)D(xi)′], provided that the eigenvalues of the latter

matrices are bounded away from zero and from above, uniformly in n. Moreover, the result above

continues to hold with Ω replaced by Ω̂ := En[ε̂2i D̂(xi)D̂(xi)′] for ε̂i = yi − d′iα̂, and Q replaced

by Q̂ := En[D̂(xi)D̂(xi)′].

The final result extends the previous the first two results to any IV-estimator with a generic

sparse estimator of the optimal instruments.

Theorem 6 (Inference with IV Constructed by a Generic Sparsity-Based Procedure). Suppose

that conditions AS, RF, SM hold and suppose now that the fitted values D̂i = f ′i β̂l are constructed
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using any estimator β̂l such that

max
16l6ke

‖D̂il −Dil‖2,n .P

√
s log p
n

(4.24)

max
16l6ke

‖β̂l − βl0‖1 .P

√
s2 log p
n

. (4.25)

then the conclusions reached in Theorem 1 or Theorem 2 continue to apply in this case.

This result shows that the previous two theorems continue to apply if the first-stage estimator

attains the near-oracle performance given in (4.24)-(4.25). Examples of other sparse estimators

covered by this theorem are

• Dantzig and Gauss-Dantzig, [14]

•
√

LASSO and post-
√

LASSO, [7] and [6],

• thresholded LASSO and post-thresholded LASSO, [4]

• grouped LASSO and post-grouped LASSO, [29], [34]

• adaptive versions of the above, [29].

Verification of the near-oracle performance can be done on a case by case basis using the best

current and future conditions in the literature.8 Moreover, our results extend to LASSO-type

estimators under alternative forms of regularity conditions that fall outside the framework of

Conditions RE and Conditions SM, for example, permitting potentially highly correlated regres-

sors. As stated above, all that is required is the near-oracle performance of the kind (4.24)-(4.25).

5. Simulation Experiment

The previous sections’ results suggest that using LASSO for fitting first-stage regressions

should result in IV estimators with good estimation and inference properties. In this section,

we provide simulation regarding these properties in a situation where there are many possible

instruments though only a small number are very informative about the endogenous regressor.

We also compare the performance of the developed LASSO-based estimators to many-instrument

robust estimators that are available in the literature.

8Note also that the post-`1-penalized procedures have only been analyzed for the case of LASSO and
√

LASSO,

[4] and [6], but we expect that similar results carry over to other procedures listed above, namely Dantzig and

grouped LASSO.
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Our simulations are based on a simple instrumental variables model:

yi = βxi + ei

xi = z′iΠ + vi
(ei, vi) ∼ N

0,

 σ2
e σev

σev σ2
v

 i.i.d.

where β = 1 is the parameter of interest, and zi = (zi1, zi2, ..., zi100)′ ∼ N(0,ΣZ) is a 100 x

1 vector with E[z2
ih] = σ2

z and Corr(zih, zij) = .5|j−h|. In all simulations, we set σ2
e = 2 and

σ2
z = 0.3.

For the other parameters, we consider various settings. We provide results for sample sizes,

n, of 100, 250, and 500; and we consider three different values for Corr(e, v): 0, .3, and .6.

We also consider three values of σ2
v which are chosen to benchmark three different strengths of

instruments. The three values of σ2
v are found as σ2

v = nΠ′ΣZΠ
F ∗Π′Π for three different values of F ∗:

10, 40, and 160.9 Finally, we use two different settings for the first stage coefficients, Π. The

first sets the first five elements of Π equal to one and the remaining elements equal to zero. We

refer to this design as the “cut-off” design. The second model sets the coefficient on zih = .7h−1

for h = 1, ..., 100. We refer to this design as the “exponential” design. In the cut-off case,

the first-stage has an exact sparse representation, while in the exponential design, the model

is not literally sparse although the majority of explanatory power is contained in the first few

instruments.

For each setting of the simulation parameter values, we report results from five different

estimation procedures. A simple possibility when presented with many instrumental variables

is to just estimate the model using 2SLS and all of the available instruments. It is well-known

that this will result in poor-finite sample properties unless there are many more observations

than instruments; see, for example, [3]. The limited information maximum likelihood estimator

(LIML) and its modification by [24] (FULL)10 are both robust to many instruments as long as

the presence of many instruments is accounted for when constructing standard errors for the

estimators; see [3] and [26] for example. We report results for these estimators in rows labeled

9These values were chosen by roughly benchmarking to the first-stage F-statistics calculated using clustered

standard errors and the instruments used by [20] from the emprical example in Section 6. Using these instruments

yields F’s between 29 and 119. We took 40 as a rough intermediate value and then multiplied and divided by

four to obtain weaker and stronger identification.
10[24] requires a user-specified parameter. We set this parameter equal to one which produces a higher-order

unbiased estimator. See [25] for additional discussion.
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2SLS(100), LIML(100), and FULL(100) respectively.11 In addition, we report estimates based

on the LASSO IV estimator (LASSO) and the Post-LASSO IV estimator (Post-LASSO) using

the refined data-dependent penalty loadings given in (2.10).12 For each estimator, we report

root-mean-squared-error (RMSE), median bias (Med. Bias), mean absolute deviation (MAD),

and rejection frequencies for 5% level tests (rp(.05)). For computing rejection frequencies, we

estimate conventional 2SLS standard errors for 2SLS(100), LASSO, and Post-LASSO, and the

many instrument robust standard errors of [26] for LIML(100) and FULL(100).

Simulation results are presented in Tables 1-6. Tables 1-3 give results for the cut-off design

with n = 100, n = 250, and n = 500 respectively; and Tables 4-6 give results for the exponential

design with n = 100, n = 250, and n = 500 respectively. As expected, 2SLS(100) does extremely

poorly along all dimensions except in the case with no correlation between e and v. In this case,

there is no endogeneity bias and OLS would be the optimal estimator. 2SLS(100) performs well

here since the many instrument bias moves 2SLS toward the OLS estimator and is thus favorable

to the performance of the estimator; see, e.g. [3]. Of course, this bias works against 2SLS(100)

once one moves away from the exogenous case, and we see that the performance of 2SLS(100)

rapidly declines in the strength of the correlation of the errors. It is also not surprising that

the performance of LASSO and post-LASSO are very similar. Given this, we refer only to the

LASSO estimator for simplicity but the discussion is essentially unchanged replacing LASSO

with post-LASSO.

There is interesting variation in the performance of the other estimators across the simulation

parameters. LASSO performs very well in terms of RMSE and MAD, having weakly smaller

RMSE and MAD than any of the other considered estimators in each design with Corr(e, v) 6= 0,

and beating all estimators but 2SLS(100) when the two error terms are independent. LIML(100)

and FULL(100) are only competetive based on these metrics when the instruments are strong

(F ∗ = 160) and the sample is large (n = 500). This result can intuitively be associated to

the “amount of information” available in the instruments relative to the sample size. With

11With n = 100, we randomly select 99 instruments for use in FULL(100) and LIML(100).
12Specifically, we used the initial option to construct loadings and then found a corresponding value of λ for

which LASSO selected only one instrument. We used this instrument to construct an initial set of residuals for

use in defining the refined penalty loadings and reestimated LASSO using these loadings and the value of λ in

(2.10). We then computed another set of residuals and used these residuals to recompute the loadings. We report

results based on this final LASSO-step.
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weak instruments, there is relatively little useful information available for forming the first

stage prediction, and LASSO selects a relatively strong instrument and, by keeping the number

of instruments small, keeps bias small as well.13 LIML(100) and FULL(100) use all of the

instruments, the majority of which contribute little if anything other than noise, and so do not

perform as well as LASSO. On the other hand, there is a substantial “amount of information”

contained in several of the instruments when the first-stage relationship is stronger. LIML(100)

and FULL(100) use this information as well as the noise in the remaining less informative

instruments. When the sample is small, the noise from the additional instruments results in

poor performance of LIML(100) and FULL(100) though it has relatively small impact when the

sample is larger. LASSO, on the other hand, adapts to the “amount of information” available

for forming the first-stage prediction and outperforms the less adaptive procedures across the

designs considered.

Considering next median bias, we see that LIML(100) and FULL(100) perform relatively well

with n = 250 or n = 500 as theory predicts; see, for example, [25]. However, both estimators

have substantial bias with n = 100 in which case there are as many potential instruments as

observations and the many instrument theory provides a poor guide to finite sample performance.

In most cases, the bias of the LASSO IV estimator is quite small, though the bias does increase

more rapidly than that of LIML(100) or FULL(100) as the strength of the correlation between

e and v increases.

Finally, we see that LASSO does quite well in terms of rejection frequencies of 5% level

tests. As with median bias, there is no procedure that is uniformly dominant based on this

metric, though 2SLS(100) performs very poorly except when there is no endogeneity. Using

this metric, LASSO is very competitive with inference based on FULL(100) or LIML(100) with

many-instrument-robust standard errors. Sizes of LASSO based tests are uniformly better in the

cut-off design and are better in the exponential design except when corr(e, v) = .6 and n > 100.

13It is interesting to note that LASSO with the advocated penalty choices may be overly conservative with

weak instruments as it selects no instruments in many cases. For reporting the simulation results, we calculate

RMSE, Med. Bias, and MAD conditional on the number of simulation replications in which LASSO selects

a non-empty set of instruments. For rejection frequencies, we consider the cases where LASSO does not pick

instruments as failures to reject the null hypothesis. The exact numbers of cases for each design where LASSO

selected no instruments may be found in Tables 1-6.
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Whether one would be willing to trade the modest deterioration in testing performance using

LASSO versus FULL(100) or LIML(100) in these scenarios for the improvement in RMSE and

MAD of the estimator will of course depend on the preferences of the researcher.14

Overall, the evidence from the simulations is quite favorable to LASSO-based IV methods.

The LASSO IV estimator dominates the other estimators considered based on RMSE or MAD

and dominates on all metrics considered when p = n. It also produces an estimator with rela-

tively small finite sample bias, though the higher-order unbiased FULL(100) estimator and the

approximately median-unbiased LIML(100) do slightly better based on this metric in the cases

we consider with p < n. Finally, the LASSO-based procedures produce tests with size close to

the nominal level that are not dominated by FULL(100) and LIML(100) with many-instrument

robust standard errors. While the results do not show that the LASSO-based procedures uni-

formly dominate the many-instrument robust procedures in situations with p < n, they do show

that the simple LASSO-based procedures are highly competitive, having uniformly lower risk

(as measured by RMSE and MAD) and not being dominated in terms of testing performance.

6. The Impact of Eminent Domain on Economic Outcomes

As an example of the potential application of LASSO to select instruments, we consider IV es-

timation of the effects of federal appellate court decisions regarding eminent domain on a variety

of economic outcomes. The study of the economic consequences of eminent domain, when the

government “takes” the property rights of one or more individuals, either physically or through

regulation, is important for a variety of reasons. Takings are often justified based on “public use”

arguments such as removing economic blight and/or promoting economic development through

private commercial development. People worried about eminent domain, on the other hand,

express two major concerns. First, wealth from groups with little political power could be redis-

tributed to those with more political power. Second, eminent domain may induce distortions in

the efficient investment of capital. Scholars are of two minds regarding the likely distortions to

investment. Uncertainty in whether the government will appropriate an investment could lead

to underinvestment; see [40]. On the other hand, overinvestment could stem from individuals

trying to deter the government from exercising eminent domain or from individuals anticipating

14Another possibility that we do not consider is to use LASSO coupled with a many-instrument robust proce-

dure such as LIML or FULL or a weak-instrument robust procedure as in [31], for example.
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“just compensation” at full value since full compensation provides full-coverage insurance to the

private investor against the risk of taking with no premium paid; see [9], [36], [30], and [44].

To be concrete about how judicial decisions might impact economic outcomes, consider the

following results of actual eminent domain decisions. 1) The government must pay monetary

compensation for an unlawful taking, even a temporary one. Simply removing the regulation

that justified the taking is not sufficient redress for having property unlawfully taken. 2) In

imposing conditions that must be met by a private developer in order for a development project

(such as a commercial shopping center) to be approved, the government must show that there is

a public burden imposed by the development that is closely linked to the conditions imposed. 3)

The magnitude of a condition imposed on a development project (such as a fee or a mandated

setting aside of part of the development for public use) must be “roughly proportional” to the size

of the public impact that the conditions are intended to mitigate. Each of these judicial decisions

expands the ability of private property owners to seek compensation from the government for

regulations and for conditions imposed on them as a requirement for approval for development

projects. Thus, these decisions could be expected to make it more difficult for the government to

exercise eminent domain. To the extent that the threat of the government’s exercise of eminent

domain influences economic decisions, these judicial decisions should have impacts on economic

quantities such as housing prices or other measures of investment.

Despite the amount of theoretical and doctrinal writings that speculate about the effects of

takings law on economic outcomes, little empirical evidence exists. One notable recent exception

is [20] which provides a careful empirical analysis of the effect of appellate court decisions

regarding takings law on economic outcomes. Understanding five aspects of the US legal system

are important for the development and understanding of [20] as well as our results below. First,

the US has a common law system where American judges not only apply the law but also make

the law. This effective making of law occurs since a judge’s decisions in current cases become

precedent for use in decisions in future cases. Second, there are three layers of courts in the US

judicial system. District courts are the general trial courts. When cases are appealed, they go

to appellate courts, which typically decide issues of new law or look to see if the district court

was in error. A small portion of these cases are appealed again to the Supreme Court. Therefore

appellate courts are quite active in shaping law. They handle the vast majority of cases deciding

issues of new law and provide new interpretations or distinctions of pre-existing precedents or
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statutes. Third, there are 12 appellate (Circuit) courts, each in charge of a geographic region of

the US. Appellate decisions are only binding precedent in the Circuit, meaning that the district

courts with a Circuit and the Circuit court itself must follow the precedent set by prior appellate

decisions with the Circuit. Note that apellate decisions in one circuit do not establish precedent

that other circuits must follow. Fourth, judges are randomly assigned to cases in appellate

courts. Some judges take a reduced caseload but all are randomly assigned by a computer and

are typically not revealed to the litigating parties until after they file their briefs and sometimes

only a few days before the hearing, if there is a hearing. Fifth, appellate courts assign three

judges to a case and a Circuit can have twenty to forty judges in the pool of judges available to be

assigned. Therefore the number of possible combinations of judges or combinations of judicial

demographic characteristics on a panel is very large. Studies have shown that demographic

characteristics of a judge relate to the decisions of the judge and decisions of the panel. These

two facts allow us to construct a natural experiment using random variation in the establishment

of precedent across different regions of the US. The results we provide in this section complement

the analysis of [20] by taking their estimation strategy and augmenting it with the use of LASSO

to choose instruments.

To try to uncover the relationship between takings law and economic outcomes, we estimate

structural models of the form

yict = αc + αt + γct+ β Takings Lawct +W ′ctδ + εict (6.26)

where yict is an economic outcome for area i in circuit c at time t, Takings Law ct represents

the number of pro-plaintiff apellate takings decisions in circuit c and year t; Wct are judicial

pool characteristics,15 a dummy for whether there were no cases in that circuit-year, and the

number of takings appellate decisions; and αc, αt, and γct are respectively circuit-specific effects,

time-specific effects, and circuit-specific time trends. An appellate court decision is coded as pro-

plaintiff if the court ruled that a taking was unlawful, thus overturning the government’s seizure

of the property in favor of the private owner. We construe pro-plaintiff decisions to indicate

a regime that is more protective of individual property rights. The parameter of interest, β,

15The judicial pool characteristics are the probability of a panel being assigned with each set of characteristics

defined by the instruments. For non-metro house prices, there are 42 total probability controls, and there are 44

probability controls for the FHFA and Case-Shiller price indices as well as for GDP.
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thus represents the effect of an additional decision upholding individual property rights on an

economic outcome.

We provide results using four different economic outcomes as dependent variables: the log

of three home-price-indices and log(GDP). The three different home-price-indices we consider

are the quarterly, weighted, repeat-sales FHFA/OFHEO house price index that tracks single-

family house prices at the state level for metro (FHFA) and non-metro (Non-Metro) areas and

the Case-Shiller home price index (Case-Shiller) by month for 20 metropolitan areas based on

repeat-sales residential housing prices. The total sample sizes are 5304, 1920, and 4320 for

FHFA, Non-Metro, and Case-Shiller respectively. We also use state level GDP from the Bureau

of Economic Analysis to form log(GDP). The GDP regressions are based on 1326 observations.

The analysis of the effects of takings law is complicated by the possible endogeneity be-

tween governmental takings and takings law decisions and economic variables. For example, low

property values may make it cheaper for the government to exercise eminent domain and seize

property, while high property values may reveal the viability of a redevelopment or commer-

cial project. Either of these channels may encourage judges to see the public use of a project

and decide in favor of the government’s taking a property, leading to over- or under-estimates

of the unconfounded effect of takings decisions. Endogeneity may also be due to unobserved

factors such as decisions in other areas of law that affect economic outcomes and also influence

judicial decisions related to takings. [20] provide additional discussion of potential sources of

endogeneity that motivate the use of an instrumental variables strategy.

To address the potential endogeneity of takings law, we employ the instrumental variables

strategy based on the identification argument of [19] and [20] that relies on the random assign-

ment of judges to appellate panels that decide federal appellate cases. Since judges are randomly

assigned to three judge panels to decide appellate cases, the exact identity of the judges and,

more importantly, their demographics are randomly assigned conditional on the distribution of

characteristics of federal circuit court judges in a given circuit-year. Thus, once the distribution

of characteristics is controlled for, the realized characteristics of the randomly assigned three

judge panel should be unrelated to other factors besides judicial decisions that may be related

to economic outcomes. There is also substantial evidence that the demographic characteristics
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of judges are related to their judicial decision making.16 Thus, the characteristics of judges on

panels deciding eminent domain cases should provide valid instruments for learning about the

effect of appellate court decisions regarding takings law on economic outcomes.

As noted above, there are many potential characteristics of three judge panels that may be

used as instruments. While the basic identification argument suggests any set of characteristics

of the three judge panel will be uncorrelated with the structural unobservable conditional on the

set of controls in the model, there will clearly be some instruments which are more worthwhile

than others in obtaining precise second-stage estimates. For simplicity, we consider only the

following demographics: gender, race, religion, political affiliation, whether the judge’s bachelor

was obtained in-state, whether the bachelor is from a public university, whether the JD was

obtained from a public university, whether the judge has an LLM or SJD, and whether the

judge was elevated from a district court. We also only consider interactions between gender

and race, gender and religion, race and religion, gender and whether the law degree is from a

public university, race and whether the law degree is from a public university, and religion and

whether a law degree is from a public university. Imposing this set of restrictions gives a total of

44 non-redundant potential instruments (42 in the non-metro data) that we select among using

LASSO. The exact description of the instrument set is available upon request.

Table 7 contains estimation results for β. We report OLS estimates and results based on

two different sets of instruments. The first set of instruments, used in the rows labeled 2SLS,

are the instruments adopted in [20]. We consider this the baseline. [20] used two variables,

whether a panel was assigned an appointee who did not report a public religious affiliation and

whether a panel was assigned an appointee who earned their first law degree from a public

university, as instruments. The choice of these instruments is motivated on intuitive grounds.

[20] note that judges who are strongly affiliated with a religious group are more likely to vote

anti-government (pro-plaintiff) as many religious groups are populated by people who believe in

smaller government and more private agency. They also argue that judges who attended public

institutions to obtain their law degrees are more likely to hold populist positions that would also

lead them to vote pro-plaintiff. Regardless of the intuitive justification, [20] find that these two

variables do predict the number of pro-plaintiff decisions in first-stage regressions. The second

16See, e.g., [10], [17], [23], [19], and [20].
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set of instruments are those selected through LASSO using the refined data-driven penalty.17

The number of instruments selected by LASSO is reported in the row “S”. In all cases, estimated

standard errors are clustered at the circuit level and critical values are adjusted for the small

number of clusters as in [27]. We use the Post-LASSO 2SLS estimator and report these results

in the rows labeled “Post-LASSO”.

There are a number of key patterns that emerge when looking at the results in Table 7.

Consistent with the view that any of the potential instruments are valid, we see that the point

estimates produced using either set of instruments are broadly consistent with each other.18 For

the log-price-indices, the point estimates are all small and positive, suggesting that one more

pro-plaintiff decision in a year is associated with a small increase in house prices. Note that

the average number of pro-plaintiff decisions in a circuit-year is around .15 in the sample. As

a rough benchmark, this number and the Post-LASSO estimates for the Case-Shiller index, for

example, suggest that pro-plaintiff decisions lead to an increase of somewhere between 0.2-0.7%

in the Case-Shiller index in an “average” circuit-year. The estimated effects for log(GDP) are

all very near zero.

The most interesting results are found by comparing first-stage F-statistics and estimated

standard errors across the instrument sets. Interestingly, LASSO selects the same number of

instruments, two, as [20] for three of the dependent variables considered and selects three instru-

ments for the other. However, the LASSO instruments are much better first-stage predictors

as measured by the first-stage F-statistic. In the FHFA and GDP data, using LASSO to select

instruments leads to a five-fold increase in the first-stage F-statistic relative to the benchmark of

the [20] instruments. The increases are also substantial at 35% and 45% in the Case-Shiller and

Non-Metro data respectively. This improved first-stage prediction is, unsurprisingly, associated

with the resulting 2SLS estimator having smaller estimated standard errors than the benchmark

case for each dependent variable. In no case would the decrease in standard errors lead one to

17For GDP and FHFA, LASSO selected whether the panel had three female members and whether there was

at least one appointee who earned their first law degree from a public university. LASSO selected these same

two variables plus whether there were three panel members with a bachelor’s from a public university in the

Case-Shiller data. For non-metro prices, the selected instruments are whether the panel has three democrats and

whether there was at least one appointee who earned their first law degree from a public university.
18The estimated standard error of the difference between β̂2SLS and β̂Post−LASSO is .0157, .0075, .0084, and

.0044 for FHFA, Non-Metro, Case-Shiller, and GDP respectively.
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draw different conclusions about testing the null that β = 0 at the 5% level, but the smaller

standard errors obviously allow one to draw tighter conclusions about the range of plausible

values for β for each dependent variable. For example, one may rule out moderate positive

effects that are within 95% level confidence intervals under the baseline with the more refined

confidence intervals using the selected instruments for each of the house price indices.

In summary, we find evidence that the effect of takings law decisions on contemporaneous

property prices is small but positive while there is little evidence of any appreciable effect on

GDP. The results are consistent with the developed asymptotic theory in that the 2SLS point-

estimates based on each set of instruments are similar while the Post-LASSO estimates are

more precise. In this example, we see that the potential gains to first-stage prediction by using

LASSO variable selection can be large. In each specification considered, first-stage F-statistics

are substantially larger with the variables selected with LASSO than the baseline instruments of

[20]. The LASSO-based IV estimator has standard errors that are 60% of the benchmark in one

case and produces smaller standard across all specifications. Overall, the findings suggest that

there is the potential for LASSO to be fruitfully employed to choose instruments in economic

applications.

7. Conclusion

In this paper, we have considered the use of LASSO and Post-LASSO methods for forming

first-stage predictions in a linear instrumental variables model with potentially many instru-

ments. We note that two leading cases where this might arise are when a researcher has a

small set of many-valued, possibly continuous, instruments and wishes to nonparametrically

estimate the optimal instrument or when the set of potential basic instruments itself is large.

We rigorously develop the theory for the resulting IV estimator and provide conditions under

which the LASSO predictions approximate the optimal instruments. We also contribute to the

LASSO literature by providing results for LASSO model selection allowing for non-Gaussian,

heteroscedastic disturbances. This generalization is very important for applied economic analysis

where researchers routinely have prior beliefs that heteroscedasticity is present and important

and desire to use procedures that are robust to departures from the simple homoscedastic-

Gaussian case.
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We also consider the practical properties of the proposed procedures through simulation ex-

amples and an empirical application. In the simulations, we see that feasible LASSO procedures

that use a data-dependent penalty perform very well across the range of simulation designs we

consider. The LASSO-based IV performs as well as or better than recently advocated many-

instrument robust procedures in the majority of designs and clearly dominates in a scenario

with p = n. This performance suggests that it may be useful to use LASSO-based instrument

selection in conjunction with the many instrument robust procedures, and exploring this may

be an interesting avenue for future research.

In the empirical example, we look at the effect of judicial decisions at the federal circuit court

level regarding the government’s exercise of eminent domain on house prices and state-level

GDP as in [20]. We use the random assignment of judges to three judge panels who decide the

outcomes of the case to justify using the demographic characteristics of the judges on the realized

panels as instruments for their decision. This strategy produces a situation in which there are

many potential instruments in that all possible sets of characteristics of the three judge panel

are valid instruments. The results of the analysis suggest that judicial decisions positively affect

contemporaneous house prices but have small, if any, impact on contemporaneous GDP. Relative

to a baseline obtained by using the instruments of [20], we see that the LASSO-based results using

the data-dependent penalty substantially reduce estimated standard errors and consequently

allow one to draw more precise conclusions about the effects of the judicial decisions. Overall, the

simulation and empirical example clearly demonstrate the potential benefits from using LASSO

in conjunction with instrumental variables models, and we conjecture that this potential gain

will also be realized for other sensible dimension reduction techniques.

Appendix A. Tools: Moderate Deviations for Self-Normalized Sums

We shall be using the following result – Theorem 7.4 in [21].

Let X1, ..., Xn be independent, mean-zero variables, and

Sn =
n∑
i=1

Xi, V 2
n =

n∑
i=1

X2
i .



34 BELLONI CHEN CHERNOZHUKOV HANSEN

For 0 < δ 6 1 set

B2
n =

n∑
i=1

EX2
i , Ln,δ =

n∑
i=1

E|Xi|2+δ, dn,δ = Bn/L
1/(2+δ)
n,δ .

Then for uniformly in 0 6 x 6 dn,δ,

P(Sn/Vn > x)
Φ̄(x)

= 1 +O(1)
(

1 + x

dn,δ

)2+δ

,

P(Sn/Vn 6 −x)
Φ(−x)

= 1 +O(1)
(

1 + x

dn,δ

)2+δ

,

where the terms O(1) are bounded in absolute value by a universal constant A, and Φ̄ := 1−Φ.

Application of this result gives the following lemma:

Lemma 5 (Moderate Deviations for Self-Normalized Sums). Let X1,n, ..., Xn,n be the triangular

array of i.i.d, zero-mean random variables. Suppose that

Mn =
(EX2

1,n)1/2

(E|X1,n|3)1/3
> 0

and that for some `n →∞

n1/6Mn/`n > 1.

Then uniformly on 0 6 x 6 n1/6Mn/`n − 1, the quantities

Sn,n =
n∑
i=1

Xi,n, V 2
n,n =

n∑
i=1

X2
i,n.

obey ∣∣∣∣P(|Sn,n/Vn,n| > x)
2Φ̄(x)

− 1
∣∣∣∣ 6 A

`3n
→ 0.

Proof. This follows by the application of the quoted theorem to the i.i.d. case with δ = 1

and dn,1 = n1/6Mn. The calculated error bound follows from the triangular inequalities and

conditions on `n and Mn. �

Appendix B. Proof of Theorem 1

The proof of Theorem 1 has four steps. The most important steps are the Steps 1-3. One half

of Step 1 for bounding ‖ · ‖2,n-rate follows the strategy of [8], but accommodates data-driven

penalty loadings. Another half of Step 1 for bounding the ‖ · ‖1-rate is completely new for the

non-parametric case and does not follow any prior reference. Steps 2 and 3 innovatively use the
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moderate deviation theory for self-normalized sums which allows us to obtain very sharp results

for non-Gaussian and heteroscedastic errors as well as handle data-driven penalty loadings.

These steps also do not follow any prior reference. Step 4 puts the results together to make

conclusions.

Step 1. For C > 0 and each l = 1, . . . , ke, consider the following quantity

κlC = min
δ∈Rp: ‖Υ̂0

l δTcl
‖16C‖Υ̂0

l δTl‖1,‖δ‖6=0

‖f ′iδ‖2,n
‖Υ̂0

l δTl‖1
.

This quantity controls the modulus of continuity between the prediction norm and the l1-norm

within a restricted region that depends on l = 1, . . . , ke. Note that if

a 6 min
16l6ke

min
16j6p

Υ̂0
lj 6 max

16l6ke
‖Υ̂0

l ‖∞ 6 b,

for every C > 0 we have

min
16l6ke

κlC > (1/b)κ(bC/a)

where the latter is the restricted eigenvalue defined in (3.20). By condition RF and by Step

3 of Appendix B below, we have a bounded away from zero and b bounded from above with

probability approaching one as n increases. Therefore, bC/a .P C, b .P 1, and, by condition

RE, we have that 1/[(1/b)κ(bC/a)] .P 1.

The main result of this step is the following lemma:

Lemma 6. If λ/n > c‖Sl‖∞, then

‖f ′i(β̂l − βl0)‖2,n 6
(
u+

1
c

)
λ
√
s

nκlc0
+ 2cs,

‖Υ̂0
l (β̂l − βl0)‖1 6 3c0

√
s

κl2c0

(
(u+ [1/c])

λ
√
s

nκlc0
+ 2cs

)
+

3c0n

λ
c2
s,

where c0 = (uc+ 1)/(`c− 1).

Proof of Lemma 6. Let δl := β̂l − βl0. By optimality of β̂l we have

Q̂l(β̂l)− Q̂l(βl0) 6
λ

n

(
‖Υ̂lβl0‖1 − ‖Υ̂lβ̂l‖1

)
,

and we also have∣∣∣ Q̂l(β̂l)− Q̂l(βl0)− ‖f ′iδl‖22,n
∣∣∣ 6 ‖Sl‖∞‖Υ̂0

l δl‖1 + 2cs‖f ′iδl‖2,n (B.27)
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so that from λ > cn‖Sl‖∞

‖f ′iδl‖22,n 6
λ

n

(
‖Υ̂lδlTl‖1 − ‖Υ̂lδlT cl ‖1

)
+ ‖Sl‖∞‖Υ̂0

l δl‖1 + 2cs‖f ′iδl‖2,n

6

(
u+

1
c

)
λ

n
‖Υ̂0

l δlTl‖1 −
(
`− 1

c

)
λ

n
‖Υ̂0

l δlT cl ‖1 + 2cs‖f ′iδl‖2,n.

(B.28)

To show the first statement we can assume ‖f ′iδl‖2,n > 2cs, otherwise we are done. This

condition together with relation (B.28) implies that for c0 = (uc+ 1)/(`c− 1) we have

‖Υ̂0
l δlT cl ‖1 6 c0‖Υ̂0

l δlTl‖1.

Therefore, by definition of the restricted eigenvalue, we have

‖Υ̂0
l δlTl‖1 6

√
s‖f ′iδl‖2,n/κlc0 .

Thus, relation (B.28) implies

‖f ′iδl‖22,n 6
(
u+

1
c

)
λ
√
s

nκlc0
‖f ′iδl‖2,n + 2cs‖f ′iδl‖2,n

and the result follows.

To establish the second statement, we consider two cases. First, assume

‖Υ̂0
l δlT cl ‖1 6 2c0‖Υ̂0

l δlTl‖1.

In this case, by definition of the restricted eigenvalue, we have

‖Υ̂0
l δl‖1 6 (1 + 2c0)‖Υ̂0

l δlT ‖1 6 (1 + 2c0)
√
s‖f ′iδl‖2,n/κl2c0

and the result follows by applying the first bound to ‖f ′iδl‖2,n.

On the other hand, consider the case that

‖Υ̂0
l δlT cl ‖1 > 2c0‖Υ̂0

l δlTl‖1

which would already imply ‖f ′iδl‖2,n 6 2cs by (B.28). Moreover, (B.28) implies that

‖Υ̂0
l δlT cl ‖1 6 c0‖Υ̂0

l δlTl‖1 + c
`c−1

n
λ‖f

′
iδl‖2,n(2cs − ‖f ′iδl‖2,n)

6 c0‖Υ̂0
l δlTl‖1 + c

`c−1
n
λc

2
s

6 1
2‖Υ̂

0
l δlT cl ‖1 + c

`c−1
n
λc

2
s
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Thus,

‖Υ̂0
l δl‖1 6

(
1 +

1
2c0

)
‖Υ̂0

l δlT cl ‖1 6
(

1 +
1

2c0

)
2c

`c− 1
n

λ
c2
s,

and the result follows from c/(`c− 1) 6 c0. �

Step 2. In this step we prove a lemma about the quantiles of the maximum of the scores

Sl = 2En[(Υ̂0
l )
−1fivli],

and use it to pin down the level of the penalty.

Lemma 7. For c > c′ and λ = 2c
√

2n log(2pke), we have that as n→∞ and p→∞

P
(
c′ max

16l6ke
n‖Sl‖∞ > λ

)
6

(1 + o(1))
(2pke)c/c

′−1
= o(1),

provided that for some bn →∞ slowly

c22 log(2pke) 6
n1/3

bn
min

16j6p,16l6ke
M2
jl, Mjl :=

E[f2
ijv

2
il]

1/2

E[|fij |3|vil|3]1/3
.

Note that the last conditions is satisfied under our conditions for large n for some bn → ∞,

since ke is fixed, log p = o(n1/3), and min16j6p,16l6keM
2
jl is bounded away from zero.

Proof of Lemma 7. The lemma follows from the following bound: as n→∞

P
(

max
16l6ke

√
n‖Sl‖∞ > 2

√
2 log(2pke/a)

)
6 a(1 + o(1)), (B.29)

uniformly for all 0 < a 6 1 and p and ke such that

2 log(2pke/a) 6
n1/3

bn
min

16j6p,16l6ke
M2
jl.

To prove the bound, note that

P
(

max
16l6ke

√
n‖Sl‖∞ > 2

√
2 log(2pke/a)

)

6(1) pke max
16j6p,16l6ke

P

 |Gn(fijvil)|√
En[f2

ijv
2
il]
>
√

2 log(2pke/a)


6(2) pke2Φ̄(

√
2 log(2pke/a))(1 + o(1)) 6(3) a(1 + o(1)),

uniformly over the region specified above. The bound (1) follows by the union bound; (2) follows

by the moderate deviation theory for self-normalized sums, specifically Lemma 5; and and (3)

by Φ(t) 6 φ(t)/t. Finally, boundedness of Mjl from below is immediate from Condition RF. �
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Step 3. The main result of this step is the following: Let

Υ0
l := diag

(√
E[f2

i1v
2
il], ...,

√
E[f2

ipv
2
il]
)
,

where the entries of Υ0
l are bounded away from zero and from above uniformly in n by Condition

RF. Then we have

max
16l6ke

‖Υ̂0
l −Υ0

l ‖∞ →P 0,

since

∆ := max
16l6ke,16j6p

|En[f2
ijv

2
il]−E[f2

ijv
2
il]| .P max

16l6ke,16j6p

√
En[f4

ijv
4
il]

√
log(pke)

n
.P

√
log p
n
→P 0.

Indeed, application of Lemma 5, gives us that

P
(

∆ > max
16l6ke,16j6p

√
En[f4

ijv
4
il]
√

log(2pke/a)
)

6 pke max
16l6ke,16j6p

P

 |Gn[f2
ijv

2
il]|√

En[f4
ijv

4
il]
>
√

log(2pke/a)


6 pke2Φ̄(

√
log(2pke/a))(1 + o(1)) = a(1 + o(1)),

uniformly in 0 < a < 1 and p and ke on the region where for some bn →∞ slowly

log(2pke/a) 6
n1/3

bn
min

16j6p,16l6ke
W 2
jl, Wjl :=

E[f4
ijv

4
il]

1/2

E[f6
ijv

6
il]

1/3
.

Note that under our assumption on moments in Condition RF and Lyapunov moment inequality,

the term min16j6p,16l6keW
2
jl is bounded away from zero, so the growth conditions holds for some

a→ 0 and bn →∞ under our condition log p = o(n1/3). Moreover,

max
16l6ke,16j6p

En[f4
ijv

4
il] 6 max

16j6p

√
En[f8

ij ] max
16l6ke

√
En[v8

il] .P 1,

where max16j6p

√
En[f8

ij ] .P 1 by assumption and max16l6ke

√
En[v8

il] .P 1 by the bounded

ke, Markov inequality, and the assumption that E[vqil] are uniformly bounded in n and l for

q > 8.

Step 4. Combining the results of all the steps above, we have that given λ specified in the

statement of the theorem and the penalty loadings specified in the statement of the theorem,

and using the bound cs .P
√
s/n, we obtain the conclusion that

‖f ′i(β̂l − βl0)‖2,n .P

√
s log p
n

+
√
s

n
,
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which gives by the triangular inequality and by ‖Di − f ′iβl0‖2,n 6 cs .P
√
s/n the following

‖D̂i −Di‖2,n .P

√
s log p
n

,

Finally, we also obtain

‖β̂l − βl0‖1 6 ‖(Υ̂0
l )
−1‖∞

(
√
s

(√
s log p
n

+
√
s

n

)
+

1√
log p

s√
n

)
.P

(√
s2 log p
n

)
,

which gives the result. �

Appendix C. Proof of Theorem 2

The proof proceeds in three steps. The general strategy of Step 1 follows [5, 4], but a major

difference is the use of moderate deviation theory for self-normalized sums which allows us to

obtain the results for non-Gaussian and and heteroscedastic errors as well as handle data-driven

penalty loadings. The sparsity proofs are motivated by [4] but adjusted for the data-driven

penalty loadings that contain self-normalizing factors. The proof is divided in several steps.

Step 1. Here we derive a general performance bound for Post-LASSO, that actually contains

more information than the statement of the theorem.

Lemma 8 (Performance of the Post-LASSO Estimator). Let T̂l denote the selected support by

β̂l = β̂lL, m̂l = |T̂l \Tl|, β̂lPL be the Post-LASSO estimator, and λ/n > c‖Sl‖∞ in the first stage

for LASSO for every l = 1, . . . , ke. Then we have

max
16l6ke

‖f ′i(β̂lPL − βl0)‖2,n .P
‖Υ̂0

l ‖∞√
φmin(m̂l + s)

(√
ke ∧ log(ske)

√
s

n
+

√
m̂l log(pke)

n

)
+ 2cs+

+1{Tl 6⊆ T̂l}

(
2sλ2

n2(κl(u/`))
2

+
2cs
√
sλ

nκl(u/`)

)1/2

max
16l6ke

‖Υ̂l(β̂lPL − βl0)‖1 6
(
‖Υ̂0

l ‖∞ + ‖Υ̂l − Υ̂0
l ‖∞

) √
m̂l + s√

φmin(m̂l + s)
‖f ′i(β̂lPL − βl0)‖2,n

Proof. Let δl := β̂lPL−βl0. By definition of the Post-LASSO estimator, it follows that Q̂l(β̂lPL) 6

Q̂l(β̂lL) and Q̂l(β̂lPL) 6 Q̂l(βl0T̂l). Thus,

Q̂l(β̂lPL)− Q̂l(βl0) 6
(
Q̂l(β̂lPL)− Q̂l(βl0)

)
∧
(
Q̂l(β0T̂

)− Q̂l(βl0)
)

=: Bl,n ∧ Cl,n.
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Next note that the least squares criterion function satisfies

|Q̂l(β̂lPL)− Q̂l(βl0)− ‖f ′iδl‖22,n| 6 |S′lΥ̂0
l δl|+ 2cs‖f ′iδl‖2,n

6 |S′lTlΥ̂
0
l δl|+ |S′lT cl Υ̂0

l δl|+ 2cs‖f ′iδl‖2,n
6 ‖SlTl‖‖Υ̂0

l δl‖+ ‖SlT cl ‖∞‖Υ̂
0
l δlT cl ‖1 + 2cs‖f ′iδl‖2,n

6
‖Υ̂0

l ‖∞‖f ′iδl‖2,n√
φmin(m̂l + s)

(
‖SlTl‖+

√
m̂l‖SlT cl ‖∞

)
+ 2cs‖f ′iδl‖2,n.

By taking the maximum over l = 1, . . . , ke on each side we need to bound the quantities

max16l6ke ‖SlT cl ‖∞ and max16l6ke ‖SlTl‖.

By Lemma7, we have

‖SlT cl ‖∞ 6 max
16l6ke

‖Sl‖∞ .P
√

log(pke)/
√
n

provided log p = o(n1/3).

Next, note that for any j ∈ Tl we have E[S2
lj ] . 1/n, so that

E[ max
16l6ke

‖SlTl‖] 6

√√√√ ke∑
l=1

E[‖SlTl‖2] .
√
kes/n.

Thus, by Chebyshev inequality, we have max16l6ke ‖SlTl‖ .P
√
kes/n. On the other hand,

max16l6ke ‖Sl‖ 6
√
smax16l6ke ‖SlTl‖∞ .P

√
log(ske)/

√
n by Lemma 7.

Combining these relations and letting An =
√
ke ∧ log(ske), we have

‖f ′iδl‖22,n .P
‖Υ̂0

l ‖∞‖f ′iδl‖2,n√
φmin(m̂l + s)

(
An

√
s

n
+

√
m̂l log p

n

)
+ 2cs‖f ′iδl‖2,n +Bl,n ∧ Cl,n,

solving which we obtain the stated result:

‖f ′iδl‖2,n .P
‖Υ̂0

l ‖∞√
φmin(m̂l + s)

(
An

√
s

n
+

√
m̂l log p

n

)
+ 2cs +

√
(Bl,n)+ ∧ (Cl,n)+.

Next we bound the goodness of fit terms Bl,n and Cl,n. If Tl ⊆ T̂l we directly have Cl,n 6 0.

Otherwise, the definition of β̂lPL implies that

Q̂l(β̂lPL)− Q̂l(βl0) 6 Q̂l(β̂lL)− Q̂l(βl0).
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Thus, letting δlL := β̂lL − βl0, by definition of LASSO and that `Υ̂0
l 6 Υ̂l 6 uΥ̂0

l , we have

Q̂(β̂lL)− Q̂(βl0) 6
λ

n
‖Υ̂lβl0‖1 −

λ

n
‖Υ̂lβ̂lL‖1 6

λ

n

(
‖Υ̂lδlLTl‖1 − ‖Υ̂lδLT cl ‖1

)
6
λ

n

(
u‖Υ̂0

l δlLTl‖1 − `‖Υ̂
0
l δLT cl ‖1

)
.

If ‖Υ̂0
l δlLT cl ‖1 > (u/`)‖Υ̂0

l δlLTl‖1, we have Q̂l(β̂lL) − Q̂l(βl0) 6 0. Otherwise, ‖Υ̂0
l δlLT cl ‖1 6

(u/`)‖Υ̂0
l δlLTl‖1 and we have ‖Υ̂0

l δlLTl‖1 6
√
s‖f ′iδlL‖2,n/κl(u/`) by definition of the restricted

eigenvalue. Then, if λ/n > c‖Sl‖∞, we have by (B.28) that

‖f ′iδlL‖2,n 6 (u+ [1/c])
λ
√
s

nκl(u/`)
+ 2cs

and the result follows. �

Step 2. In this step we provide a sparsity bound for LASSO, which is important for converting

the previous result to a rate result. It relies on the following lemmas.

Lemma 9 (Empirical pre-sparsity for LASSO). In either the parametric model or the nonpara-

metric model, let m̂l = |T̂l \ Tl| and λ/n > c · ‖Sl‖∞. We have√
m̂l 6 2

√
φmax(m̂l)

‖(Υ̂0
l )
−1‖∞
`

c0

[√
s

κlc0
+

3ncs
λ

]
.

Proof of Lemma 9. We have from the optimality conditions that

2En[Υ̂−1
lj xij(yi − x

′
iβ̂l)] = sign(β̂lj)λ/n for each j ∈ T̂l \ Tl.

Therefore, noting that ‖Υ̂−1
l Υ̂0

l ‖∞ 6 1/`, we have for R = (al1, . . . , aln)′

√
m̂lλ = 2‖(Υ̂−1

l X ′(Y −Xβ̂l))T̂l\Tl‖

6 2‖(Υ̂−1
l X ′(Y −R−Xβl0))

T̂l\Tl‖+ 2‖(Υ̂−1
l X ′R)

T̂l\Tl‖+ 2‖(Υ̂−1
l X ′X(βl0 − β̂l))T̂l\Tl‖

6
√
m̂l · n‖Υ̂−1

l Υ̂0
l ‖∞‖Sl‖∞ + 2n

√
φmax(m̂l)‖Υ̂−1

l ‖∞cs + 2n
√
φmax(m̂l)‖Υ̂−1

l ‖∞‖β̂l − βl0‖2,n,

6
√
m̂l · (1/`) · n‖Sl‖∞ + 2n

√
φmax(m̂l)

‖(Υ̂0
l )
−1‖∞
` cs + 2n

√
φmax(m̂l)

‖(Υ̂0
l )
−1‖∞
` ‖β̂l − βl0‖2,n,

where we used that

‖(X ′X(βl0 − β̂l))T̂l\Tl‖ = sup‖α‖06m̂l,‖α‖61 |α′X ′X(βl0 − β̂l)|

6 sup‖α‖06m̂l,‖α‖61 ‖α′X ′‖‖X(βl0 − β̂l)‖

= sup‖α‖06m̂l,‖α‖61

√
|α′X ′Xα|‖X(βl0 − β̂l)‖

6 n
√
φmax(m̂l)‖βl0 − β̂l‖2,n,
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and similarly ‖(X ′R)
T̂l\Tl‖ 6 n

√
φmax(m̂l)cs.

Since λ/c > n‖Sl‖∞, and by Lemma 6, ‖β̂l − βl0‖2,n 6
(
u+ 1

c

) λ√s
nκlc0

+ 2cs we have(
1− 1

c`

)√
m̂l 6 2

√
φmax(m̂l)

‖(Υ̂0
l )
−1‖∞
`

[(
u+

1
c

) √
s

κlc0
+

3ncs
λ

]
.

The result follows by noting that (u+ [1/c])/(1− 1/[`c]) = c0` by definition of c0. �

Lemma 10 (Sub-linearity of maximal sparse eigenvalues). For any integer k > 0 and constant

` > 1 we have φmax(d`ke) 6 d`eφmax(k).

The proof of Lemma 10 can be found in [5].

Lemma 11 (Sparsity bound for LASSO under data-driven penalty). Consider the LASSO

estimator with λ/n > c‖Sl‖∞, and let m̂l := |T̂l \ Tl|. Consider the set M = {m ∈ N : m >

s · 2φmax(m)‖(Υ̂
0
l )
−1‖2∞
`2

[
2c0
κlc0

+ 6c0ncs
λ
√
s

]2
}. Then,

m̂l 6 s ·
(

min
m∈M

φmax(m ∧ n)
)
·
‖(Υ̂0

l )
−1‖2∞
`2

(
2c0

κlc0
+

6c0ncs
λ
√
s

)2

.

Proof of Lemma 11. Rewriting the conclusion in Lemma 9 we have

m̂l 6 φmax(m̂l)
‖(Υ̂0

l )
−1‖2∞
`2

[
2c0

κlc0
+

6c0ncs
λ
√
s

]2

. (C.30)

Note that m̂ 6 n by optimality conditions. Consider any M ∈ M, and suppose m̂ > M .

Therefore by Lemma 10 on sublinearity of sparse eigenvalues

m̂l 6 s ·
⌈
m̂l

M

⌉
φmax(M)

‖(Υ̂0
l )
−1‖2∞
`2

[
2c0

κlc0
+

6c0ncs
λ
√
s

]2

.

Thus, since dke 6 2k for any k > 1 we have

M 6 s · 2φmax(M)
‖(Υ̂0

l )
−1‖2∞
`2

[
2c0

κlc0
+

6c0ncs
λ
√
s

]2

which violates the condition that M ∈M. Therefore, we have m̂ 6M .

In turn, applying (C.30) once more with m̂ 6 (M ∧ n) we obtain

m̂ 6 s · φmax(M ∧ n)
‖(Υ̂0

l )
−1‖2∞
`2

[
2c0

κlc0
+

6c0ncs
λ
√
s

]2

.

The result follows by minimizing the bound over M ∈M. �
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Step 3. Next we combine the previous steps to establish Theorem 5. As in Step 3 of Appendix

B, recall that max16l6ke ‖Υ̂0
l − Υ0

l ‖∞ →P 0, and that 1/κlc0 .P 1 by Step 1 of Appendix B.

Moreover, under conditions RE and SE, as long as λ/n > cmax16l6ke ‖Sl‖∞, by Lemma 11 we

have for every l = 1, . . . , ke that

m̂l .P s

since cs .P
√
s/n leads to ncs/[λ

√
s] .P 1. Therefore, by Lemma 8 we have

max
16l6ke

‖f ′i(β̂lPL − βl0)‖2,n .P

√
s log p
n

+ cs +
λ
√
s

nκl(u/`)
.

By the choice of λ = 2c
√

2n log(2pke), obtained in Lemma 7, and that 1/κl(u/`) .P 1 by Step 1

of Appendix B, we have

‖f ′i(β̂lPL − βl0)‖2,n .P

√
s log p
n

since the event λ/n > c′max16l6ke ‖Sl‖∞ holds with probability 1− o(1). That establishes the

first inequality of Theorem 5. The second follows since the minimum (m̂l+s)-sparse eigenvalues

of En[fif ′i ] are bounded away from zero, and the third inequality follows from the sparsity

bound. �

Appendix D. Proof of Theorem 3

The proof is original and exploits the use of moderate derivation theory for self-normalized

sums. We divide the proof in several steps.

Step 1. Let us define d̃il = dil − Edil. Here we consider the basic option, in which

γ̂2
jl = En[f2

ij(dil − Endil)2].

Let γ̃2
jl = En[f2

ij d̃
2
il] and γ2

jl = E[f2
ij d̃

2
il]. We want to show that

∆1 = max
16l6ke,16j6p

|γ̂2
jl − γ̃2

jl| →P 0, ∆2 = max
16l6ke,16j6p

|γ̃2
jl − γ2

jl| →P 0,

which would imply that maxjl |γ̂2
jl − γ2

jl| →P 0 and then since γjl are uniformly bounded by

Condition RF and bounded below by γ02
jl = E[f2

ijv
2
il] , which are bounded away from zero, the

asymptotic validity of the basic option then follows.
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We have that

∆1 6 max
16l6ke,16j6p

2|En[f2
ij d̃il]En[d̃il]|+ max

16l6ke,16j6p
|En[f2

ij ](End̃il)2| →P 0.

Indeed, we have for the first term that, max16l6ke,16j6p 2|En[f2
ij d̃il]6max16j6p En[f4

ij ] max16l6ke

En[d̃2
il] .P 1 by the assumption on the empirical moments of fij and the Markov inequality and

by Var(dil) being uniformly bounded in n and l by assumption; also recall that ke is fixed.

Moreover, max16l6ke |End̃il| .P
√
ke/
√
n by the Chebyshev inequality and by Var(dil) being

uniformly bounded by Condition RF. Likewise, the second term vanishes by a similar argument.

Furthermore,

∆2 .P max
16l6ke,16j6p

√
En[f4

ij d̃
4
il]

√
log p
n
.P

√
log p
n
→ 0.

Indeed, application of Lemma 5 gives us that

P
(

∆ > max
16l6ke,16j6p

√
En[f4

ij d̃
4
il]
√

log(2pke/a)
)

6 pke max
16l6ke,16j6p

P

 |Gn[f2
ij d̃

2
il]|√

En[f4
ij d̃

4
il]
>
√

log(2pke/a)


6 pke2Φ̄(

√
log(2pke/a))(1 + o(1)) = a(1 + o(1)),

uniformly in 0 < a < 1 and p and ke on the region,

log(2pke/a) 6
n1/3

bn
min

16l6ke,16j6p
W 2
jl, Wjl :=

E[f4
ij d̃

4
il]

1/2

E[f6
ij d̃

6
il]

1/3
,

where for some bn → ∞ slowly. Note that under Condition RF, by Lyapunov inequality, and

since E[d̃2
il|xi] > E[v2

il|xi], we have that

min
16l6ke,16j6p

Wjl > min
16l6ke,16j6p

E[f2
ij d̃

2
il]

E[f6
ij d̃

6
il]

1/3
> min

16l6ke,16j6p

E[f2
ij ṽ

2
il]

E[f6
ij d̃

6
il]

1/3
,

where the last term is bounded away from zero by Condition RF, so the restriction above is

satisfied for some a→ 0 and bn →∞ under our condition log p = o(n1/3). Moreover,

max
16l6ke,16j6p

En[f4
ij d̃

4
il] 6 max

16j6p

√
En[f8

ij ] max
16l6ke

√
En[d̃8

il] .P 1,

where max16j6p

√
En[f8

ij ] .P 1 by assumption and max16l6ke

√
En[d̃8

il] .P 1 by the bounded

ke, Markov inequality, and the assumption that E[d̃qil] uniformly bounded in n for q > 8.
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Step 2. Here we consider the refined option, in which

γ̂2
jl = En[f2

ij v̂
2
jl].

The residual here v̂jl = di − D̂i can be based on any estimator that obeys

‖D̂i −Di‖2,n .P

√
s log p
n

.

Such estimators include the LASSO and Post-LASSO estimators based on the basic option.

Below we establish that the penalty levels, based on the refined option using any estimator

obeying the condition above, are asymptotically valid. Thus by Theorem 4 and 5, the LASSO

and Post-LASSO estimators based on the refined option also obey the condition above. This,

establishes that we can iterate on the refined option a bounded number of times, without affecting

the validity of the approach.

Recall that γ̂02
jl = En[f2

j v
2
jl] and define γ02

jl := E[f2
j v

2
jl], which is bounded away from zero and

from above by assumption. Hence it suffices to show that maxjl |γ̂2
jl − γ02

jl | →P 0. This in turn

follows from

∆1 = max
16l6ke,16j6p

|γ̂2
jl − γ̂02

jl | →P 0, ∆2 = max
16l6ke,16j6p

|γ̂02
jl − γ02

jl |2 →P 0,

which we establish below.

Now note that we have proven ∆2 →P 0 in the proof of Theorem 4. As for ∆1 we note that

∆1 6 2 max
16l6ke,16j6p

|En[f2
ijvjl(D̂il −Dil)|+ max

16l6ke,16j6p
En[f2

ij(D̂il −Dil)2].

The first term is bounded by

max
16j6p

(En[f8
ij ])

1/4 max
16l6ke

(En[v4
il])

1/4 max
16l6ke

‖D̂il −Dil‖2,n .P

√
s log p
n
→ 0.

since max16j6p

√
En[f8

ij ] .P 1 by assumption and max16l6ke

√
En[v4

il] .P 1 by the bounded ke,

Markov inequality, and the assumption that E[v4
il] is bounded uniformly in n. The second term

is bounded by

max
16i6n,16j6p

|f2
ij |
s log p
n
→P 0,

which converges to by assumption on the empirical maximum of the regressors appearing in

Condition RF. �
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Appendix E. Proof of Lemma 1-4

E.1. Proof of Lemma 1. See [5] (Supplement). �

E.2. Proof of Lemma 2. See [5] (Supplement) . �

E.3. Proof of Lemmas 3 and 4. To show part (1), we note that by simple union bounds and

tail properties of Gaussian variable, we have that maxij |f2
ij | .P log p, so we need log p s log p

n → 0.

Applying union bound and Bernstein inequality, it follows that this condition and that (log p)2 =

o(n), implied by this condition, suffice for maxj En[f8
ij ] .P 1. Part (2) holds immediately. Parts

(3) and (4) and Lemma 4 follow immediately from the definition of the conditionally bounded

moments and since for any m > 0, E[|fij |m] is bounded, uniformly in 1 6 j 6 p, uniformly in n,

for both the Gaussian regressors of Lemma 1 and arbitrary bounded regressors of Lemma 2. �

Appendix F. Proof of Theorem 4-6.

The proofs are original and they rely on the consistency of the sparsity-based estimators both

with respect to the ‖ · ‖2,n norm and the `1-norm. These proofs also exploit the use of moderate

deviation theory for self-normalized sums.

Step 0. We have by Theorem 1 and 3 and Condition SM that the LASSO estimator with data-

driven penalty loadings and by Theorem 2 and 3 the Post-LASSO estimator with data-driven

penalty loadings obey:

max
16l6ke

‖D̂il −Dil‖2,n .P

√
s log p
n
→ 0 (F.31)

√
log p‖β̂l − βl0‖1 .P

√
s2 log2 p

n
→ 0 (F.32)

In order to prove Theorem 5 we need also the condition

max
16l6ke

‖D̂il −Dil‖22,nn2/qε .P
s log p
n

n2/qε → 0. (F.33)

Note that Theorem 6 assumes (F.31) -(F.33) as high level conditions.
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Step 1. We have that by E[εi|Di] = 0

√
n(α̂− α0) = En[D̂id

′
i]
−1√nEn[D̂iεi]

= {En[D̂id
′
i]}−1Gn[D̂iεi]

= {E[Did
′
i] + oP (1)}−1 (Gn[Diεi] + oP (1))

where by Steps 2 and 3 below:

a = En[D̂id
′
i] = E[Did

′
i] + oP (1) (F.34)

b = Gn[D̂iεi] = Gn[Diεi] + oP (1) (F.35)

where E[Did
′
i] = E[DiD

′
i] = Q is bounded away from zero and bounded from above in the matrix

sense, uniformly in n. Moreover, V ar(b) = Ω where Ω = σ2E[DiD
′
i] under homoscedasticity and

Ω = E[ε2iDiD
′
i] under heteroscedasticity. In either case we have that Ω is bounded away from

zero and from above in the matrix sense, uniformly in n. (Note that matrices Ω and Q are

implicitly indexed by n, but we omit the index to simplify notations.) Therefore,

√
n(α̂− α0) = Q−1Gn[Diεi] + oP (1),

and Zn = (Q−1ΩQ−1)−1/2√n(α̂ − α0) = Gn[zi,n] + oP (1), where zi,n = (Q−1ΩQ−1)1/2Q−1Diεi

are i.i.d. with mean zero and variance I. We have that for some small enough δ > 0

E‖zi,n‖2+δ . E
[
‖Di‖2+δ|εi|2+δ

]
.
√

E‖Di‖4+2δ

√
E|εi|4+2δ . 1,

This condition verifies the Lyapunov condition, and the application of the Lyapunov’s CLT for

triangular arrays and Cramer-Wold device implies that Zn →d N(0, I).

Step 2. To show (F.34), note that

‖En[(D̂i −Di)d′i]‖ 6 En[‖D̂i −Di‖‖di‖] 6
√

En[‖D̂i −Di‖2]En[‖di‖2]

=

√√√√En

[
ke∑
l=1

‖D̂il −Dil‖2
]

En[‖di‖2]

6
√
ke max

16l6ke
‖D̂il −Dil‖2,n · ‖di‖2,n

.P max
16l6ke

‖D̂il −Dil‖2,n = oP (1).

where ‖di‖2,n .P 1 by E‖di‖2 <∞ and Chebyshev, and the last assertion holds by Step 0.
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Step 3. To show (F.35), note that

max
16l6ke

|bl| = max
16l6ke

|Gn[(D̂il −Dil)εi]

= max
16l6ke

|Gn{f ′i(β̂l − βl)εi}+ Gn{ailεi}|

= max
16l6ke

|
p∑
j=1

Gn{fijεi}′(β̂lj − βlj) + Gn{ailεi}|

6 max
16j6p

∣∣∣∣∣∣ Gn[fijεi]√
En[f2

ijε
2
i ]

∣∣∣∣∣∣ max
16j6p

√
En[f2

ijε
2
i ] max

16l6ke
‖β̂l − βl‖1 + max

16l6ke
|Gn{ailεi}|.

Next we note that for each l = 1, . . . , ke

|Gn{ailεi}| .P [Ena2
il]

1/2 .P
√
s/n→ 0,

by the Condition AS on [Ena2
il]

1/2 and by Chebyshev inequality, since in the homoscedastic case

of Theorem 4:

Var [Gn{ailεi}|x1, ..., xn] 6 σEna2
il,

and in the boundedly heteroscedastic case of Theorem 5:

Var [Gn{ailεi}|x1, ..., xn] . Ena2
il.

Next we note that by the maximal inequality for self-normalized sums:

max
16j6p

∣∣∣∣∣∣ Gn[fijεi]√
En[f2

ijε
2
i ]

∣∣∣∣∣∣ .P √log p

provided that p obeys the growth condition log p = o(n1/3). To prove this, note that

P

max
16j6p

∣∣∣∣∣∣ Gn[fijεi]√
En[f2

ijε
2
i ]

∣∣∣∣∣∣ >√2 log(2p/a)


6(1) p max

16j6p
P

 |Gn(fijεi)|√
En[f2

ijε
2
i ]
>
√

2 log(2p/a)


6(2) p2Φ̄(

√
2 log(2p/a))(1 + o(1)) 6(3) a(1 + o(1)),

uniformly for all 0 6 a 6 1 and p such that

2 log(2p/a) 6
n1/3

bn
min

16j6p
M2
j0, Mj0 :=

E[f2
ijε

2
i ]

1/2

E[|fij |3|εi|3]1/3
. (F.36)
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The bound (1) follows by the union bound; (2) follows by the moderate deviation theory for

self-normalized sums, specifically Lemma 5; and (3) by Φ(t) 6 φ(t)/t. Finally, by Condition SM

min16j6pM
2
j0 is bounded away from zero, so the condition (F.36) is satisfied asymptotically for

some bn →∞ and some a→ 0 provided log p = o(n1/3).

Finally, we have that

max
16j6p

En[f2
ijε

2
i ] 6 max

16j6p

√
En[f4

ij ]
√

En[ε4i ] .P 1,

since max16j6p

√
En[f4

ij ] .P 1 by assumption and En[ε4i ] .P 1 by E[|ε|qε ] uniformly bounded in

n for qε > 4 and Markov inequality.

Thus, combining bounds above with bounds in (F.31)

max
16l6ke

|bl| .P

√
s2 log2 p

n
+
√
s

n
→ 0,

where the conclusion follows by the assumed growth condition on the sparsity index s in Con-

dition SM and by ke bounded.

Step 4. This step establishes consistency of the variance estimator in the homoscedastic case

of Theorem 4.

Since σ2 and Q = E[DiD
′
i] are bounded away from zero and from above uniformly in n, it

suffices to show σ̂2 − σ2 →P 0 and En[D̂iD̂
′
i]− E[DiD

′
i]→P 0.

Indeed, σ̂2 = En[(εi − d′i(α̂ − α))2] = En[ε2i ] + 2En[εid′i(α − α̂)] + En[(d′i(α − α̂))2] so that

En[ε2i ] − σ2 →P 0 by Chebyshev inequality since E|εi|4 is bounded uniformly in n, and the

remaining terms converge to zero in probability since α̂−α→P 0, ‖En[diεi]‖ .P 1 by Markov and

since E‖diεi‖ 6
√

E‖di‖2
√

E|εi|2 is uniformly bounded in n by assumption, and En‖di‖2 .P 1

by Markov and E‖di‖2 bounded uniformly in n. Next, note that

‖En[D̂iD̂
′
i]− En[DiD

′
i]‖ = ‖En[Di(D̂i −Di)′ + (D̂i −Di)D′i] + En[(D̂i −Di)(D̂i −Di)′]‖

which is bounded up to a constant by√
ke max

16l6ke
‖D̂il −Dil‖2,n‖Di‖2,n + ke max

16l6ke
‖D̂il −Dil‖22,n →P 0

by (F.31) and by ‖Di‖2,n .P 1 holding by Markov inequality. Moreover, En[DiD
′
i]−E[DiD

′
i]→P

0 by Rosenthal’s [42] inequality using that E‖Di‖q for q > 2 is bounded uniformly in n.
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Step 5. This step establishes consistency of the variance estimator in the boundedly het-

eroscedastic case of Theorem 5.

Recall that Ω̂ := En[ε̂2i D̂(xi)D̂(xi)′] and Ω := E[ε2iD(xi)D(xi)′], where the latter is bounded

away from zero and from above uniformly in n. Also, Q = E[DiD
′
i] is bounded away from

zero and from above uniformly in n. Therefore, it suffices to show Ω̂ − Ω →P 0 and that

En[D̂iD̂
′
i]− E[DiD

′
i]→P 0. The latter has been show in the previous step, and we only need to

show the former.

First, we note

‖En[(ε̂2i − ε2i )D̂iD̂
′
i]‖ 6 ‖En[{d′i(α̂− α0)}2D̂iD̂

′
i]‖+ 2‖En[εid′i(α̂− α0)D̂iD̂

′
i]‖

.P max
i6n
‖di‖2n−1‖En[D̂iD̂

′
i]‖+ max

i6n
|εi|‖di‖n−1/2 · ‖En[D̂iD̂

′
i]‖ →P 0,

since ‖α̂ − α‖2 . 1/n, ‖EnD̂iD̂
′
i‖ .P 1 by Step 4, and maxi6n ‖di‖2n−1 →P 0 by En[‖di‖2 −

E‖di‖2] →P 0 occurring by the Rosenthal inequality and by E‖di‖q uniformly bounded in n

for q > 2, and maxi6n[‖di‖|εi|]n−1/2 →P 0 by En[‖di‖2|εi|2 − E[‖di|2|εi|2]]→P 0 holding by the

Rosenthal inequality and by E[‖di‖2+δ|εi|2+δ] 6
√

E[‖di‖4+2δ]
√

E[|εi|4+δ] uniformly bounded in

n by assumption, for small enough δ > 0. Next we note that

‖En[ε2i D̂iD̂
′
i]−En[ε2iDiD

′
i]‖ = ‖En[ε2iDi(D̂i−Di)′+ ε2i (D̂i−Di)D′i] + En[ε2i (D̂i−Di)(D̂i−Di)′]‖

which is bounded up to a constant by

√
ke max

16l6ke
‖D̂il −Dil‖2,n‖ε2iDi‖2,n + ke max

16l6ke
‖D̂il −Dil‖22,n max

i6n
ε2i →P 0.

The latter occurs because ‖ε2iDi‖2,n 6 ‖ε2i ‖2,n‖‖Di‖2‖2,n .P 1 by E[|εi|q] and E[‖Di‖4] uniformly

bounded in n for q > 4 and by Markov inequality, and

max
16l6ke

‖D̂il −Dil‖22,n max
i6n

ε2i .P
s log p
n

n2/qε → 0,

where the latter step holds by Step 0 and by maxi6n ε2i .P n2/qε by En[|εi|qε ] .P 1 holding by

Markov and by E[|εi|qε ] bounded uniformly in n. Finally, En[ε2iDiD
′
i]− E[ε2iDiD

′
i]→P 0 by the

Rosenthal’s inequality and by E[|εi|2+δ‖Di‖2+δ] bounded uniformly in n for small enough δ > 0,

as shown in the proof of Step 1. We conclude that En[ε̂2i D̂iD̂
′
i]− E[ε2iDiD

′
i]→P 0. �
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Estim
ator

RM
SE

M
ed. Bias

M
A
D

rp(.05)
RM

SE
M
ed. Bias

M
A
D

rp(.05)
RM

SE
M
ed. Bias

M
A
D

rp(.05)

2SLS(100)
0.045

0.000
0.032

0.062
0.117

0.109
0.109

0.704
0.220

0.216
0.216

1.000

LIM
L(100)

19.174
0.013

0.385
0.016

6.334
0.080

0.341
0.116

2.078
0.161

0.336
0.205

FU
LL(100)

3.656
0.013

0.385
0.016

2.253
0.080

0.341
0.114

1.931
0.161

0.336
0.205

LA
SSO

0.081
0.001

0.058
0.030

0.078
0.011

0.052
0.028

0.080
0.038

0.060
0.042

Post‐LA
SSO

0.079
‐0.002

0.057
0.026

0.075
0.009

0.047
0.034

0.076
0.038

0.057
0.048

2SLS(100)
0.064

‐0.004
0.046

0.054
0.132

0.114
0.114

0.428
0.230

0.222
0.222

0.948

LIM
L(100)

12.643
‐0.011

0.374
0.018

21.973
0.052

0.367
0.106

90.998
0.099

0.388
0.136

FU
LL(100)

5.520
‐0.011

0.374
0.018

3.859
0.052

0.367
0.106

3.539
0.099

0.388
0.136

LA
SSO

0.082
‐0.001

0.052
0.066

0.084
0.016

0.057
0.070

0.083
0.026

0.051
0.086

Post‐LA
SSO

0.081
0.000

0.049
0.064

0.082
0.014

0.055
0.068

0.082
0.024

0.048
0.086

2SLS(100)
0.075

‐0.008
0.053

0.054
0.103

0.072
0.077

0.182
0.166

0.141
0.141

0.526

LIM
L(100)

4.165
0.015

0.253
0.034

22.001
0.059

0.253
0.024

1.911
0.017

0.194
0.088

F* = 160

Table 1: 2SLS Sim
ulation Results. Cut‐O

ff D
esign.  N

 = 100
Corr(e,v) = 0

Corr(e,v) = .3
Corr(e,v) = .6

F* = 10

F* = 40

FU
LL(100)

3.854
0.015

0.253
0.034

4.889
0.059

0.253
0.024

1.904
0.017

0.194
0.088

LA
SSO

0.077
‐0.009

0.054
0.048

0.078
0.007

0.052
0.050

0.081
0.004

0.055
0.066

Post‐LA
SSO

0.077
‐0.010

0.055
0.050

0.077
0.008

0.052
0.044

0.081
0.005

0.054
0.066

N
ote:  Results are based on 500 sim

ulation replications and 100 instrum
ents.  The first five first‐stage coefficients w

ere set equal to one and the 
rem

aining 95 to zero in this design.  Corr(e,v) is the correlation betw
een first‐stage and structural errors.  F* m

easures the strength of  the instrum
ents as 

outlined in the text.  2SLS(100), LIM
L(100), and FU

LL(100) are respectively the 2SLS, LIM
L, and Fuller(1) estim

ator using all 100 potential instrum
ents.  

M
any‐instrum

ent robust standard errors are com
puted for LIM

L(100) and FU
LL(100) to obtain testing rejection frequencies. LA

SSO
 and Post‐LA

SSO
 

respectively correspond to IV using LA
SSO

 or Post‐LA
SSO

 w
ith the refined data‐driven penalty.  W

e report root‐m
ean‐square‐error (RM

SE), m
edian bias 

(M
ed. Bias), m

ean absolute deviation (M
A
D
), and rejection frequency for 5%

 level tests (rp(.05)).  In the w
eak instrum

ent design (F* = 10), LA
SSO

 chose 
no instrum

ents in 205, 210, and 221 sim
ulation replications for Corr(e,v) = 0, .3, and .6 respectively.  In these cases, RM

SE, M
ed. Bias, and M

A
D
 use only 

the replications w
here LA

SSO
 selects a non‐em

pty set of instrum
ents, and w

e set the confidence interval eqaul to (‐∞
,∞

) and thus fail to reject.
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Estim
ator

RM
SE

M
ed. Bias

M
A
D

rp(.05)
RM

SE
M
ed. Bias

M
A
D

rp(.05)
RM

SE
M
ed. Bias

M
A
D

rp(.05)

2SLS(100)
0.028

0.001
0.020

0.040
0.073

0.069
0.069

0.708
0.141

0.140
0.140

0.998

LIM
L(100)

0.226
0.001

0.071
0.040

0.266
0.000

0.066
0.046

0.118
‐0.001

0.061
0.066

FU
LL(100)

0.163
0.001

0.070
0.038

0.156
0.001

0.065
0.046

0.110
0.002

0.058
0.066

LA
SSO

0.044
‐0.001

0.030
0.014

0.046
0.017

0.031
0.018

0.053
0.031

0.037
0.052

Post‐LA
SSO

0.043
‐0.003

0.026
0.022

0.044
0.016

0.029
0.018

0.050
0.027

0.035
0.052

2SLS(100)
0.038

0.000
0.028

0.030
0.080

0.070
0.070

0.440
0.142

0.137
0.137

0.956

LIM
L(100)

0.064
0.001

0.043
0.026

0.067
0.003

0.043
0.038

0.064
‐0.002

0.044
0.040

FU
LL(100)

0.064
0.001

0.043
0.026

0.067
0.003

0.042
0.038

0.063
‐0.001

0.044
0.040

LA
SSO

0.047
0.000

0.032
0.034

0.048
0.006

0.032
0.046

0.049
0.012

0.034
0.062

Post‐LA
SSO

0.046
0.001

0.032
0.032

0.047
0.006

0.032
0.048

0.049
0.008

0.034
0.068

2SLS(100)
0.046

0.002
0.030

0.048
0.063

0.043
0.046

0.164
0.104

0.096
0.096

0.564

LIM
L(100)

0.054
0.001

0.035
0.048

0.053
‐0.005

0.033
0.048

0.054
0.002

0.034
0.070

F* = 10

F* = 40

F* = 160

Table 2: 2SLS Sim
ulation Results. Cut‐O

ff D
esign.  N

 = 250
Corr(e,v) = 0

Corr(e,v) = .3
Corr(e,v) = .6

FU
LL(100)

0.054
0.001

0.035
0.048

0.053
‐0.004

0.033
0.048

0.054
0.003

0.035
0.068

LA
SSO

0.049
0.003

0.032
0.046

0.049
0.002

0.034
0.054

0.050
0.007

0.035
0.060

Post‐LA
SSO

0.049
0.003

0.032
0.038

0.048
0.003

0.033
0.058

0.050
0.006

0.034
0.060

N
ote:  Results are based on 500 sim

ulation replications and 100 instrum
ents.  The first five first‐stage coefficients w

ere set equal to one and the 
rem

aining 95 to zero in this design.  Corr(e,v) is the correlation betw
een first‐stage and structural errors.  F* m

easures the strength of the instrum
ents  as 

outlined in the text.  2SLS(100), LIM
L(100), and FU

LL(100) are respectively the 2SLS, LIM
L, and Fuller(1) estim

ator using all 100 potential instrum
ents.  

M
any‐instrum

ent robust standard errors are com
puted for LIM

L(100) and FU
LL(100) to obtain testing rejection frequencies. LA

SSO
 and Post‐LA

SSO
 

respectively correspond to IV using LA
SSO

 or Post‐LA
SSO

 w
ith the refined data‐driven penalty.  W

e report root‐m
ean‐square‐error (RM

SE), m
edian bias 

(M
ed. Bias), m

ean absolute deviation (M
A
D
), and rejection frequency for 5%

 level tests (rp(.05)).  In the w
eak instrum

ent design (F* = 10), LA
SSO

 chose 
no instrum

ents in 250, 258, and 277 sim
ulation replications for Corr(e,v) = 0, .3, and .6 respectively.  In these cases, RM

SE, M
ed. Bias, and M

A
D
 use only 

the replications w
here LA

SSO
 selects a non‐em

pty set of instrum
ents, and w

e set the confidence interval eqaul to (‐∞
,∞

) and thus fail to reject.



56 BELLONI CHEN CHERNOZHUKOV HANSEN

Estim
ator

RM
SE

M
ed. Bias

M
A
D

rp(.05)
RM

SE
M
ed. Bias

M
A
D

rp(.05)
RM

SE
M
ed. Bias

M
A
D

rp(.05)

2SLS(100)
0.020

‐0.001
0.013

0.034
0.052

0.048
0.048

0.720
0.099

0.098
0.098

1.000

LIM
L(100)

0.420
‐0.004

0.046
0.036

0.206
‐0.001

0.043
0.038

0.180
0.004

0.038
0.048

FU
LL(100)

0.098
‐0.004

0.045
0.036

0.080
0.000

0.043
0.038

0.078
0.006

0.037
0.048

LA
SSO

0.033
‐0.002

0.022
0.016

0.036
0.013

0.023
0.030

0.038
0.029

0.031
0.060

Post‐LA
SSO

0.032
‐0.001

0.021
0.018

0.035
0.011

0.021
0.026

0.036
0.027

0.030
0.048

2SLS(100)
0.028

0.000
0.019

0.048
0.053

0.045
0.045

0.368
0.102

0.099
0.099

0.968

LIM
L(100)

0.046
0.001

0.031
0.038

0.046
‐0.002

0.027
0.056

0.042
‐0.001

0.027
0.066

FU
LL(100)

0.045
0.000

0.030
0.034

0.045
‐0.002

0.027
0.056

0.042
0.001

0.027
0.066

LA
SSO

0.035
0.000

0.024
0.034

0.034
0.001

0.023
0.052

0.035
0.011

0.025
0.078

Post‐LA
SSO

0.035
0.000

0.024
0.038

0.034
0.000

0.024
0.050

0.035
0.008

0.025
0.062

2SLS(100)
0.031

0.001
0.021

0.038
0.044

0.032
0.035

0.124
0.073

0.067
0.067

0.568

LIM
L(100)

0.035
0.001

0.023
0.032

0.036
‐0.002

0.024
0.050

0.035
0.000

0.024
0.032

F* = 10

F* = 40

F* = 160

Table 3: 2SLS Sim
ulation Results. Cut‐O

ff D
esign.  N

 = 500
Corr(e,v) = 0

Corr(e,v) = .3
Corr(e,v) = .6

FU
LL(100)

0.035
0.001

0.023
0.032

0.036
‐0.001

0.023
0.050

0.035
0.000

0.024
0.032

LA
SSO

0.032
0.003

0.021
0.036

0.034
0.002

0.022
0.060

0.034
0.003

0.023
0.046

Post‐LA
SSO

0.032
0.003

0.020
0.034

0.034
0.002

0.022
0.058

0.034
0.003

0.023
0.048

N
ote:  Results are based on 500 sim

ulation replications and 100 instrum
ents.  The first five first‐stage coefficients w

ere set equal to one and the 
rem

aining 95 to zero in this design.  Corr(e,v) is the correlation betw
een first‐stage and structural errors.  F* m

easures the strength of the instrum
ents  as 

outlined in the text.  2SLS(100), LIM
L(100), and FU

LL(100) are respectively the 2SLS, LIM
L, and Fuller(1) estim

ator using all 100 potential instrum
ents.  

M
any‐instrum

ent robust standard errors are com
puted for LIM

L(100) and FU
LL(100) to obtain testing rejection frequencies. LA

SSO
 and Post‐LA

SSO
 

respectively correspond to IV using LA
SSO

 or Post‐LA
SSO

 w
ith the refined data‐driven penalty.  W

e report root‐m
ean‐square‐error (RM

SE), m
edian bias 

(M
ed. Bias), m

ean absolute deviation (M
A
D
), and rejection frequency for 5%

 level tests (rp(.05)).  In the w
eak instrum

ent design (F* = 10), LA
SSO

 chose 
no instrum

ents in 315, 317, and 311 sim
ulation replications for Corr(e,v) = 0, .3, and .6 respectively.  In these cases, RM

SE, M
ed. Bias, and M

A
D
 use only 

the replications w
here LA

SSO
 selects a non‐em

pty set of instrum
ents, and w

e set the confidence interval eqaul to (‐∞
,∞

) and thus fail to reject.
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Estim
ator

RM
SE

M
ed. Bias

M
A
D

rp(.05)
RM

SE
M
ed. Bias

M
A
D

rp(.05)
RM

SE
M
ed. Bias

M
A
D

rp(.05)

2SLS(100)
0.068

0.001
0.044

0.058
0.178

0.171
0.171

0.774
0.334

0.329
0.329

1.000

LIM
L(100)

6.511
‐0.080

0.562
0.024

39.280
0.171

0.611
0.114

28.813
0.191

0.511
0.197

FU
LL(100)

4.764
‐0.080

0.562
0.024

5.432
0.171

0.611
0.114

3.664
0.191

0.511
0.197

LA
SSO

0.138
0.018

0.087
0.034

0.147
0.034

0.091
0.070

0.136
0.068

0.094
0.094

Post‐LA
SSO

0.134
0.018

0.088
0.038

0.144
0.038

0.094
0.076

0.137
0.075

0.097
0.112

2SLS(100)
0.097

‐0.006
0.064

0.048
0.211

0.190
0.190

0.540
0.389

0.377
0.377

0.972

LIM
L(100)

79.644
‐0.047

0.547
0.036

32.712
0.072

0.584
0.082

11.476
0.190

0.621
0.160

FU
LL(100)

14.149
‐0.047

0.547
0.036

5.058
0.072

0.584
0.082

8.515
0.190

0.621
0.160

LA
SSO

0.134
‐0.005

0.088
0.048

0.138
0.025

0.091
0.062

0.140
0.026

0.087
0.062

Post‐LA
SSO

0.131
‐0.007

0.087
0.052

0.138
0.026

0.089
0.066

0.138
0.032

0.092
0.084

2SLS(100)
0.118

‐0.007
0.083

0.040
0.187

0.146
0.149

0.234
0.306

0.287
0.287

0.692

LIM
L(100)

26.697
‐0.019

0.467
0.020

64.775
‐0.005

0.517
0.054

8.391
0.057

0.399
0.092

Table 4: 2SLS Sim
ulation Results. Exponential D

esign.  N
 = 100

Corr(e,v) = 0
Corr(e,v) = .3

Corr(e,v) = .6

F* = 10

F* = 40

F* = 160

FU
LL(100)

8.935
‐0.019

0.467
0.020

6.538
‐0.005

0.516
0.054

8.086
0.057

0.399
0.092

LA
SSO

0.128
‐0.001

0.089
0.042

0.134
0.013

0.091
0.046

0.133
0.031

0.092
0.064

Post‐LA
SSO

0.127
‐0.001

0.089
0.044

0.134
0.021

0.089
0.056

0.132
0.039

0.092
0.072

N
ote:  Results are based on 500 sim

ulation replications and 100 instrum
ents.  The first five first‐stage coefficients w

ere set equal to one and the 
rem

aining 95 to zero in this design.  Corr(e,v) is the correlation betw
een first‐stage and structural errors.  F* m

easures the  strength of the instrum
ents as 

outlined in the text.  2SLS(100), LIM
L(100), and FU

LL(100) are respectively the 2SLS, LIM
L, and Fuller(1) estim

ator using all 100 potential instrum
ents.  

M
any‐instrum

ent robust standard errors are com
puted for LIM

L(100) and FU
LL(100) to obtain testing rejection frequencies. LA

SSO
 and Post‐LA

SSO
 

respectively correspond to IV using LA
SSO

 or Post‐LA
SSO

 w
ith the refined data‐driven penalty.  W

e report root‐m
ean‐square‐error (RM

SE), m
edian bias 

(M
ed. Bias), m

ean absolute deviation (M
A
D
), and rejection frequency for 5%

 level tests (rp(.05)).  In the w
eak instrum

ent design (F* = 10), LA
SSO

 chose 
no instrum

ents in 84, 68, and 82 sim
ulation replications for Corr(e,v) = 0, .3, and .6 respectively.  In these cases, RM

SE, M
ed. Bias, and M

A
D
 use only the 

replications w
here LA

SSO
 selects a non‐em

pty set of instrum
ents, and w

e set the confidence interval eqaul to (‐∞
,∞

) and thus fail to reject.
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Estim
ator

RM
SE

M
ed. Bias

M
A
D

rp(.05)
RM

SE
M
ed. Bias

M
A
D

rp(.05)
RM

SE
M
ed. Bias

M
A
D

rp(.05)

2SLS(100)
0.041

‐0.003
0.028

0.050
0.113

0.107
0.107

0.784
0.211

0.209
0.209

1.000

LIM
L(100)

277.357
‐0.015

0.134
0.030

137.311
0.016

0.124
0.054

3.472
‐0.003

0.111
0.062

FU
LL(100)

0.353
‐0.012

0.131
0.030

0.321
0.017

0.121
0.054

0.265
0.005

0.109
0.062

LA
SSO

0.086
0.001

0.057
0.046

0.086
0.023

0.054
0.050

0.089
0.039

0.058
0.098

Post‐LA
SSO

0.084
0.002

0.052
0.040

0.083
0.026

0.051
0.058

0.090
0.046

0.064
0.110

2SLS(100)
0.064

0.004
0.045

0.046
0.137

0.124
0.124

0.522
0.247

0.241
0.241

0.998

LIM
L(100)

0.165
0.009

0.084
0.050

0.133
0.002

0.079
0.056

0.113
0.004

0.080
0.042

FU
LL(100)

0.154
0.010

0.084
0.048

0.132
0.003

0.078
0.056

0.112
0.007

0.079
0.042

LA
SSO

0.083
‐0.002

0.059
0.038

0.086
0.018

0.060
0.064

0.083
0.029

0.054
0.082

Post‐LA
SSO

0.081
0.001

0.058
0.038

0.085
0.017

0.060
0.060

0.083
0.030

0.058
0.084

2SLS(100)
0.075

‐0.001
0.052

0.050
0.117

0.087
0.090

0.224
0.192

0.182
0.182

0.764

LIM
L(100)

0.095
‐0.006

0.065
0.044

0.095
‐0.002

0.060
0.068

0.083
0.007

0.053
0.026

Table 5: 2SLS Sim
ulation Results. Exponential D

esign.  N
 = 250

Corr(e,v) = 0
Corr(e,v) = .3

Corr(e,v) = .6

F* = 10

F* = 40

F* = 160

FU
LL(100)

0.095
‐0.006

0.065
0.044

0.095
‐0.002

0.060
0.066

0.083
0.008

0.053
0.026

LA
SSO

0.084
‐0.005

0.058
0.056

0.085
0.007

0.057
0.054

0.077
0.019

0.053
0.044

Post‐LA
SSO

0.083
‐0.007

0.058
0.056

0.084
0.011

0.057
0.058

0.077
0.023

0.050
0.052

N
ote:  Results are based on 500 sim

ulation replications and 100 instrum
ents.  The first five first‐stage coefficients w

ere set equal to one and the 
rem

aining 95 to zero in this design.  Corr(e,v) is the correlation betw
een first‐stage and structural errors.  F* m

easures the  strength of the instrum
ents as 

outlined in the text.  2SLS(100), LIM
L(100), and FU

LL(100) are respectively the 2SLS, LIM
L, and Fuller(1) estim

ator using all 100 potential instrum
ents.  

M
any‐instrum

ent robust standard errors are com
puted for LIM

L(100) and FU
LL(100) to obtain testing rejection frequencies. LA

SSO
 and Post‐LA

SSO
 

respectively correspond to IV using LA
SSO

 or Post‐LA
SSO

 w
ith the refined data‐driven penalty.  W

e report root‐m
ean‐square‐error (RM

SE), m
edian bias 

(M
ed. Bias), m

ean absolute deviation (M
A
D
), and rejection frequency for 5%

 level tests (rp(.05)).  In the w
eak instrum

ent design (F* = 10), LA
SSO

 chose 
no instrum

ents in 78, 93, and 103 sim
ulation replications for Corr(e,v) = 0, .3, and .6 respectively.  In these cases, RM

SE, M
ed. Bias, and M

A
D
 use only 

the replications w
here LA

SSO
 selects a non‐em

pty set of instrum
ents, and w

e set the confidence interval eqaul to (‐∞
,∞

) and thus fail to reject.
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Estim
ator

RM
SE

M
ed. Bias

M
A
D

rp(.05)
RM

SE
M
ed. Bias

M
A
D

rp(.05)
RM

SE
M
ed. Bias

M
A
D

rp(.05)

2SLS(100)
0.030

‐0.001
0.020

0.060
0.082

0.077
0.077

0.784
0.152

0.148
0.148

1.000

LIM
L(100)

0.370
‐0.012

0.090
0.048

2.605
0.005

0.087
0.064

3.157
0.012

0.070
0.052

FU
LL(100)

0.182
‐0.011

0.088
0.046

0.188
0.007

0.085
0.064

0.147
0.016

0.068
0.052

LA
SSO

0.057
0.001

0.037
0.022

0.060
0.011

0.041
0.052

0.061
0.035

0.046
0.098

Post‐LA
SSO

0.056
0.002

0.037
0.020

0.059
0.013

0.041
0.052

0.061
0.036

0.047
0.122

2SLS(100)
0.046

0.001
0.031

0.062
0.097

0.088
0.088

0.548
0.174

0.169
0.169

0.986

LIM
L(100)

0.087
0.000

0.055
0.060

0.081
0.003

0.050
0.042

0.082
0.002

0.055
0.050

FU
LL(100)

0.087
‐0.001

0.055
0.056

0.080
0.004

0.049
0.042

0.081
0.004

0.054
0.054

LA
SSO

0.058
0.000

0.043
0.034

0.061
0.012

0.041
0.064

0.061
0.017

0.041
0.074

Post‐LA
SSO

0.057
0.001

0.044
0.034

0.060
0.016

0.040
0.062

0.061
0.018

0.041
0.080

2SLS(100)
0.051

0.000
0.035

0.040
0.085

0.066
0.068

0.290
0.136

0.127
0.127

0.700

LIM
L(100)

0.063
0.001

0.042
0.032

0.065
0.006

0.045
0.054

0.063
0.004

0.046
0.044

Corr(e,v) = .3
Corr(e,v) = .6

F* = 10

F* = 40

F* = 160

Table 6: 2SLS Sim
ulation Results. Exponential D

esign.  N
 = 500

Corr(e,v) = 0

FU
LL(100)

0.063
0.001

0.042
0.032

0.065
0.007

0.045
0.054

0.063
0.005

0.046
0.044

LA
SSO

0.055
‐0.001

0.037
0.040

0.059
0.008

0.041
0.062

0.059
0.018

0.043
0.060

Post‐LA
SSO

0.055
‐0.002

0.037
0.042

0.059
0.009

0.040
0.066

0.059
0.020

0.043
0.062

N
ote:  Results are based on 500 sim

ulation replications and 100 instrum
ents.  The first five first‐stage coefficients w

ere set equal to one and the 
rem

aining 95 to zero in this design.  Corr(e,v) is the correlation betw
een first‐stage and structural errors.  F* m

easures the strength of  the instrum
ents as 

outlined in the text.  2SLS(100), LIM
L(100), and FU

LL(100) are respectively the 2SLS, LIM
L, and Fuller(1) estim

ator using all 100 potential instrum
ents.  

M
any‐instrum

ent robust standard errors are com
puted for LIM

L(100) and FU
LL(100) to obtain testing rejection frequencies. LA

SSO
 and Post‐LA

SSO
 

respectively correspond to IV using LA
SSO

 or Post‐LA
SSO

 w
ith the refined data‐driven penalty.  W

e report root‐m
ean‐square‐error (RM

SE), m
edian bias 

(M
ed. Bias), m

ean absolute deviation (M
A
D
), and rejection frequency for 5%

 level tests (rp(.05)).  In the w
eak instrum

ent design (F* = 10), LA
SSO

 chose 
no instrum

ents in 112, 125, and 106 sim
ulation replications for Corr(e,v) = 0, .3, and .6 respectively.  In these cases, RM

SE, M
ed. Bias, and M

A
D
 use only 

the replications w
here LA

SSO
 selects a non‐em

pty set of instrum
ents, and w

e set the confidence interval eqaul to (‐∞
,∞

) and thus fail to reject.
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GDP

log(FHFA) log(Non‐Metro) log(Case‐Shiller) log(GDP)

OLS 0.0097 0.0186 0.0255 0.0050

   s.e. 0.0069 0.0037 0.0065 0.0041

2SLS 0.0100 0.0498 0.0449 ‐0.0025

   s.e. 0.0243 0.0177 0.0082 0.0049

   FS‐F 10.2071 20.1911 88.0849 9.6481

Post‐LASSO 0.0187 0.0356 0.0287 0.0026

   s.e. 0.0151 0.0131 0.0077 0.0048

   FS‐F 52.7035 29.0059 118.9524 49.8172

   S 2 2 3 2

Table 7: Effect of Federal Appellate Takings Law Decisions on Economic Outcomes

Home Prices

Note: This table reports the estimated effect of an additional pro‐plaintiff takings decision, a decision 

that goes against the government and leaves the property in the hands of the private owner, on 

various economic outcomes using two‐stage least squares (2SLS).  The characteristics of randomly 

assigned judges serving on the panel that decides the case are used as instruments for the decision 

variable.  All estimates include circuit effects, circuit‐specific time trends, time effects, controls for 

the number of cases in each circuit‐year, and controls for the demographics of judges available 

within each circuit‐year.  Each column corresponds to a different dependent variable.  log(FHFA), 

log(Non‐Metro), and log(Case‐Shiller) are log‐house‐price‐indexes, and log(GDP) is the log of state‐

level GDP.  OLS are ordinary least squares estimates.  2SLS is the 2SLS estimator with the original 

instruments in Chen and Yeh (2010).  Post‐LASSO provides 2SLS estimates obtained using 

instruments selected by LASSO with the refined data‐dependent penalty choice.  Rows labeled s.e. 

provide the estimated standard errors of the associated estimator.  All standard errors are computed 

with clustering at the circuit level.  Case‐Shiller and Non‐Metro estimates are based on 11 circuits, 

and FHFA and log(GDP) estimates are based on 12 circuits.  The corresponding t‐critical values for t‐

distributions with 10 and 11 degrees of freedom are respectively 2.228 and 2.201 for 5% level two‐

sided tests.  FS‐F is the value of the first‐stage F‐statistic using the selected instrument.  S is the 

number of instruments chosen by LASSO.


