A Service of

ECOMNZTOR pr

Make Your Publications Visible.

Leibniz-Informationszentrum
Wirtschaft

Leibniz Information Centre
for Economics

Kitagawa, Toru

Working Paper

Nonparametric identification in asymmetric second-price

auctions: A new approach

cemmap working paper, No. CWP31/09

Provided in Cooperation with:
The Institute for Fiscal Studies (IFS), London

Suggested Citation: Kitagawa, Toru (2009) : Nonparametric identification in asymmetric second-price
auctions: A new approach, cemmap working paper, No. CWP31/09, Centre for Microdata Methods

and Practice (cemmap), London,
https://doi.org/10.1920/wp.cem.2009.3109

This Version is available at:
https://hdl.handle.net/10419/64659

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dirfen die Dokumente nicht fiir 6ffentliche oder kommerzielle
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewahrten Nutzungsrechte.

WWW.ECONSTOR.EU

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

Mitglied der

Leibniz-Gemeinschaft ;


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1920/wp.cem.2009.3109%0A
https://hdl.handle.net/10419/64659
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

cemmap

cenire for microdata methods and practice

Nonparametric identification
In asymmetric second-price
auctions: a new approach

Tatiana Komarova

The Institute for Fiscal Studies
Department of Economics, UCL

cemmap working paper CWP31/09

An ESRC Research Centre

Institute for Fiscal Studies, 7 Ridgmount Street, London WCIE 7AE Tel: 44 (0)20 72914800 Email:info@cemmap.ac.uk www.cemmap.ac.uk



Nonparametric Identification in Asymmetric

Second-Price Auctions: A New Approach

Tatiana Komarova *

October 6, 2009

Abstract

This paper proposes an approach to proving nonparametric identification for dis-
tributions of bidders’ values in asymmetric second-price auctions. I consider the case
when bidders have independent private values and the only available data pertain
to the winner’s identity and the transaction price. My proof of identification is con-
structive and is based on establishing the existence and uniqueness of a solution to
the system of non-linear differential equations that describes relationships between
unknown distribution functions and observable functions. The proof is conducted in
two logical steps. First, I prove the existence and uniqueness of a local solution. Then
I describe a method that extends this local solution to the whole support.

This paper delivers other interesting results. I show how this approach can be ap-
plied to obtain identification in more general auction settings, for instance, in auc-
tions with stochastic number of bidders or weaker support conditions. Furthermore, I
demonstrate that my results can be extended to generalized competing risks models.
Moreover, contrary to results in classical competing risks (Roy model), I show that
in this generalized class of models it is possible to obtain implications that can be
used to check whether the risks in a model are dependent. Finally, I provide a sieve
minimum distance estimator and show that it consistently estimates the underlying

valuation distribution of interest.
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1 Introduction

In auctions, researchers are often interested in learning models’ economic primitives, par-
ticularly the joint distribution of bidders’ values. Because this underlying distribution is
not known a priori, it must be learned from the data. To obtain credible estimation re-
sults, a researcher must first study the identification question to determine whether the
distribution of interest is identified or whether there are many distributions consistent
with the data. The importance of this issue has generated many methodological papers on
identification in auction models. This paper contributes to that literature.

The paper examines the nonparametric identification of the distributions of bidders’
values in asymmetric second-price auctions. The identification analysis cannot be con-
ducted without (a) imposing conditions on the joint distribution of bidders’ signals and
(b) specifying what data are available from the auctions’ outcomes. This paper assumes
that bidders have private values and that the only available data pertain to the winner’s
identity and the transaction price. Identification in this framework was first considered in
Athey and Haile (2002).

It is well known that in second-price auctions within the private-values framework, a
weakly dominant strategy for bidders entails submitting their true value! I consider an
equilibrium where bidders employ this strategy. In this case, even though the submitted
bids directly reveal bidders’ values, the joint distribution of these values cannot be identified
nonparametrically because not all the bids are observed. This result is established in Athey
and Haile (2002). The identification of the parameter of interest requires strengthening
the model’s assumptions. This paper shows that in our problem, it suffices to assume that
bidders’ values are independent. There are three main issues to address in obtaining this
result. First, the distribution functions must be identified nonparametrically in order to
avoid incorrect assumptions about their form. Second, there is the challenge posed by the
asymmetry of the bidders participating in the auction. Finally, given that the transaction
price is the value of the second-highest bid, the identification proof must be based on the
second-order statistic.

One of the main contributions of this paper is to provide conditions on observable data
sufficient to guarantee point identification. First, I present the conditions on the observ-
ables that are necessary and sufficient for the existence of a solution to the model; thus, we
always know with certainty whether the model has a solution. I then show that these con-
ditions, together with an additional condition on the observables, are sufficient to show the
uniqueness of a solution and therefore to ensure the identification of distribution functions.
The main sufficient identification condition can be formulated in terms of observables as
well as in terms of unobservables. It is interpretable and is weaker than identification

conditions usually assumed in auctions. Another contribution of the paper is to prove that

1See, for example, Vickrey (1961) or Krishna (2002).



when there are only two types of bidders, identification always holds. This result is gener-
alized for the case when there are only two types of the bidders and the joint distribution of
bidders’ values is given by an Archimedean copula. I obtain a condition on the generating
function of a copula that is sufficient for identification. This condition is satisfied for many
classes of Archimedean copulas.

A methodological contribution of this paper is to suggest a new approach to proving
identification in analyzed auction models. The idea behind this method is to establish the
existence and uniqueness of a solution to a system of non-linear differential equations that
relate unknown underlying distribution functions to the observable data. This strategy in-
cludes two major steps. First, I show that the system has a unique solution on a subinterval
of the support; this is what I call a local solution. Second, I demonstrate that this local
solution can be extended to the whole support. This two-step approach is constructive and
enables us to conduct a thorough qualitative analysis of the identification problem.

Furthermore, the techniques developed in the paper allow for two generalizations of
the auction setting. One relaxes the support conditions and permits distributions to have
different upper support points as well as holes in the support. The other considers second-
price auctions in which the set of actual bidders is unknown and varies exogenously. Using
the case of three bidders, I outline the specifics of proving identification in these models.

Athey and Haile (2007) formulate an identification result for second-price auctions with a
reserve price. When there is a reserve price, bidders participate endogenously. The authors
state that if the winner’s identity, the transaction price and the set of the participants are
observed, then the distributions are identified for the values above the reserve price. 1
explain in detail how this result can be proven by using the techniques of the basic case.

Another contribution of this paper is to uncover conditions sufficient to determine
whether the model is stated correctly. These conditions do not pertain to the observable
data and can be verified only after we determine the solution to the system of differential
equations. To address this issue, I present an example of an incorrectly stated model that
proves the possibility of finding well-defined observable functions such that the functions in
the solution corresponding to them are not all monotone — that is, not all of them possess
the properties of distribution functions.

Within the private-values framework, second-price auctions are equivalent to ascending
auctions. For proofs of identification in these two types of auctions, when the data indicate
only the winner’s identity and the winning price, researchers have referred to results in the
statistical literature that examines identification in generalized competing risks models.
Athey and Haile (2002) were first to observe that analyzed auctions can be considered a
special case of these models.

In generalized competing risks models, an object that consists of different components
fails as a result of the cumulative failure of several of its elements, and the only observed

data pertain to the lifetime of the object and the set of components that had failed before



the object’s failure. Though the main identification result for these cases was obtained
by Meilijson (1981), the Meilijson’s proofs lack some essential details, most importantly,
conditions on the observables or on the unknowns that guarantee identification. I show
that my method, on the other hand, provides an exhaustive proof of identification in
generalized models. For any of these models, I provide conditions on the observables and
equivalent to them conditions on the unknowns that guarantee that the model cannot have
more than one solution. I also explain why the existence of a solution cannot be proved
in general and must be assumed. For a special class of generalized competing risks models
(one that encompasses our auction models), I present necessary and sufficient conditions
for existence.

For a thorough overview of nonparametric identification in auctions, see Athey and Haile
(2002, 2006, 2007) and references therein. The authors obtain numerous nonparametric
identification results for various auctions settings, and some of the point identification
results rely on the work of Meilijson (1981). Brendstrup and Paarsch (2006) deal specif-
ically with asymmetric ascending auctions within the independent-private-values frame-
work, considering both single-unit and multi-unit settings. For nonparametric identification
in single-unit auctions, they also refer to Meilijson (1981). Banerji and Meenakshi (2004)
and Meenakshi and Banerji (2005) also consider asymmetric ascending auctions within the
independent-private-values framework by examining wheat markets in India. Similar to
Brendstrup and Paarsch (2006), they cite Meilijson (1981) to show identification.

Another thread of the literature related to this paper applies the techniques of the
theory of differential equations to identification problems. In auctions, examples of such
papers are Campo, Perrigne and Vuong (2003); Guerre, Perrigne and Vuong (2009) and
Lebrun (1999). Campo, Perrigne and Vuong (2003) prove nonparametric identification for
asymmetric first-price auctions with affiliated private values. Guerre, Perrigne and Vuong
(2009) address the nonparametric identification of utility functions for bidders in first-price
auctions, specifically when the bidders are risk averse and have private values. Lebrun
(1999) analyzes first-price auctions with independent private values and characterizes a
Bayesian equilibrium as a solution to a system of non-linear differential equations. He then
refers to results in the theory of differential equations to show that an equilibrium exists
and that in some special models, it is unique. In a related area of classical competing risks,
Buera (2006) uses the theory of partial differential equations to prove identification in a
certain class of Roy models.

Because assuming the independence of bidders’ values may seem dubious in some appli-
cations, it is worthwhile to consider auctions in which private values are not independent.
Though the joint distribution of bidders’ values is not identified, the data are informative
and allow me to derive bounds. More precisely, I obtain bounds on the joint distribution
for any subset of bidders. I show that these bounds continue to hold when the equilibrium

condition is replaced by two weaker assumptions on the bidders’ behavior. These assump-



tions on rationality were introduced in Haile and Tamer (2003). One assumption is that
the bidders do not bid more than they are willing to pay. The other assumption is that
the bidders do not allow an opponent to win at a price they are willing to beat.

In addition, I analyze how the bounds change when we acquire data on other elements
of the auction model. Namely, I consider the case when data on all the identities and the
bids except for the highest bid become available. For simplicity, I only show bounds on
the joint distribution for the set of all bidders and the marginal distributions.

Finally, the paper also proposes a sieve minimum distance estimator to estimating the
underlying distribution functions in the case of independent values. This estimator is shown
to be consistent in the uniform metric.

The rest of this paper is organized as follows. Section 2 reviews second-price auctions,
outlines generalized competing risks models and explains their connection to auctions.
Section 3 states identification results for auctions, discusses incorrect specification and
considers identification in more general auction settings. Section 4 defines a sieve mini-
mum distance estimator of the distribution functions and explores the properties of the
operator that maps these functions into observable data. The continuity of the inverse of
this operator allows proving the consistency of the sieve estimator in the uniform metric.
Section 5 describes generalized competing risks models in detail and provides identifica-
tion results for these models. Section 6 provides results for the auctions in which bidders’
values are not independent. Proofs of propositions, lemmas and theorems are collected in

appendices.

2 Second-price auctions and generalized competing risks

models

In this section, I first review second-price auctions. Next, I describe generalized competing

risks models and show their connection to these auctions.

2.1 Second-price auctions within the private-values framework

A single object is up for sale, and d buyers are bidding on it. The set of all bidders is known.
Bids are submitted in sealed envelopes. The highest bidder wins and pays the value of the
second-highest bid; thus, in these auctions, the second-highest bid is the winning price.
Suppose that the bidders have private values and that they are aware of their value. It is
known that in this setting, a weakly dominant strategy for bidders is to submit their true
value — and this is an equilibrium that I consider later. In this paper, only the winner’s
identity and the winning price are observed in auction’s outcomes.

It is worth mentioning that within the private-values framework, second-price auctions

are equivalent to open ascending auctions. One form of ascending auctions is a "button



"in which bidders hold down a button as the auctioneer raises the price. When

auction,’'
the price gets too high for a bidder, she drops out by releasing the button. The auction
ends when only one bidder remains. This person wins the object and pays the price at

which the auction stopped.

2.2 Generalized competing risks models

Now I turn to a brief description of generalized competing risks models. Consider a machine
that consists of several elements. A special case of these models are classical competing
risks models. The classical models correspond to a situation in which a machine breaks
down as soon as one of its components fails; the data available after the breakdown are the
machine’s lifetime and the element that caused the failure. One example of these models
in economics is duration models. Also, the Roy model is isomorphic to classical competing
risks. In the Roy model, a person chooses from a finite set of occupational alternatives to
obtain the highest income, and the outcomes of the choice (occupation and income) are
observed. In biometrics, the death of an individual because of a particular disease when
that person is also facing several other diseases presents a classical competing risks model,
based on a fundamental assumption that a single cause is behind every death.
Generalized competing risks models relax this assumption and consider cases in which
a machine fails because of the cumulative failure of some of its elements rather than a
single one. A fatal set for the machine is a subset of parts such that the failure of all
the parts in the subset causes the failure of the machine; in other words, it is a set of the
elements that failed before the machine broke down. In this paper, the machine’s failure
provides information only about the fatal set and the machine’s lifetime. More details

about generalized competing risks are given in section 5.

2.3 Second-price auctions as a special case of generalized compet-

ing risks models

Athey and Haile (2002) were among the first ones to notice the connection between second-
price auctions and generalized competing risks models. To clarify the connection, I use the
equivalence of second-price and ascending auctions within the private-values paradigm.
Consider a button auction, as described above, withd bidders. Notice that observing the
identity of the winner is equivalent to observing the identities of the bidders who dropped
out. Compare this auction framework to the following generalized competing risks model.
Assume that a machine consists of d elements and works as long as at least two of its
elements are functioning; in other words, the machine breaks onced — 1 of its elements
are dead. The set of these d — 1 elements is fatal. Clearly, the breakdown of otherd — 1

components would also be fatal. A fatal set in this model is an analog of the set of bidders



that dropped out, and the machine’s lifetime is an analog of the winning price.

3 Identification in second-price auctions

In this section, I formulate identification results and present a mathematical description
of the identification problem. Also, I discuss generalizations of the identification results
and model’s misspecification. The proofs of the theorems, propositions and lemmas of this

section are collected in Appendix A.

3.1 Statement of identification problem

Denote bidders’ private values as X;, ¢ = 1,...,d. Assume that these values are inde-
pendent and have absolutely continuous distributions on a common support [to, 7). Also
assume that bidders’ values at each auction are independent draws from the same joint
distribution. We aim to learn this distribution from the available data. Note that in the
equilibrium, the bids’ joint distribution coincides with the distribution of the bidders’ pri-
vate values. Therefore, if all the bids are observed, then the distribution of values can be
clearly identified. If some of them are not observed, however, then neither the joint nor the
marginal value distributions can be identified, as shown in Athey and Haile (2002). Given
that our knowledge is often limited to the second-highest bid, I show that when the only
available data pertain to the bid and the winner’s identity, the marginal distributions of

bidders’ values can be identified if these values are independent.
Notation

Throughout this paper, I use the following notations. A bid submitted by player: is denoted
as b;. Symbol M'" represents the transpose of matrix M. The distribution function of Xj is
denoted as F;, i = 1,...,d. Function Fj is called positive (negative) if F;(¢t) > 0 (F;(t) < 0)
for t > to. A vector-valued function F' = (Fi, ..., F;)" on [tg, T] is called positive (negative)
if each of its components F; is a positive (negative) function. F' is referred to as strictly

increasing if each Fj is strictly increasing on [to, T').

For simplicity, I first consider the case of three bidders, then generalize the results to
any number of bidders. Because the winner’s identity and the winning price are observed
in an auction’s outcome, then the probability of an event {price < ¢, i wins} is known for
any t € [tg,T] and any i = 1,2, 3. So, for each bidder i, we observe the following function
G, on [to, T':

G;(t) = Pr(price <t, ¢ wins), ¢=1,2,3.

The identification problem is to determine whether there is only one collection of private

values distribution functions Fy, Fy and F3 that rationalize observable functions Gy, Go
and Gjs.



3.2 Necessary conditions on observables

I start by describing the properties of observable functionsG; that follow from the model.
I will say that the model is not stated correctly if at least one of the following conditions
fails to hold: 1) bidders submit their true values; 2) bidders have independent private
values; 3) bidders’ values have absolutely continuous distributions; 4) bidders’ values are
distributed on [tg, T.
The next proposition indicates necessary conditions on observable functions G;

implied by the model.
Proposition 3.1. If the model is stated correctly, then the following conditions hold:

Necessary conditions (I)
1. Gl(to) - 0, 1= 1,2,3
2. G, are absolutely continuous on [ty,T], i =1,2,3

3. G; are strictly increasing on [to, T), i = 1,2, 3

Proof. By assumption, the distributions of private values X; are absolutely continuous.
This implies, in particular, that players submit bids equal toty, with probability 0. Also, ¢y
is the lower support point for all distributions. These two facts give Condition 1. Condition
2 follows from the absolute continuity of the distributions of X;. Condition 3 is true because

the support of each X; is the connected interval [to, T], without any holes in it. O]

Even though these conditions are simple, it is worth indicating them because they are
useful in the proof of identification. As we can see, all the properties of the private val-
ues distributions, except for the assumption of independence and the boundary conditions
Fi(T)=1,i=1,2,3, are used in establishing Proposition 3.1. The independence assump-

tion, combined with necessary conditions (I), allows me to obtain the following result.

Proposition 3.2. Suppose that the model is stated correctly. Let F' be a solution to the
model. Then

F F F.
lim ———(t) =1, lim———() =1, lim———(¢) = 1. (3.1)

tlto /G2G3<> T /Gle() Tt [GiGa
G1 Ga G3

Conditions (3.1) are formulated in terms of both observable and unobservable functions.
They characterize a solution F' to the model only in a neighborhood of ;. To be more
precise, they find the rate of convergence of unknown distribution functions F; at ¢y in
terms of observable functions GG;. These conditions are essential for proving identification.

The properties of G; formulated in the next corollary also play an important role in

identification.

Corollary 3.3. Suppose that the model is stated correctly. Then the following conditions
hold:



Necessary conditions (11)

lim 263 (t) =0, lim .G (t) =0, lim P

tlto Gy tito Go tlito G

(t) = 0, (3.2)

The reasoning behind conditions (II) is that, no matter how different the underlying
distributions are, bidders’ probabilities of winning do not have considerably different rates
of convergence at t,.

Now that I have presented necessary conditions on observables, I turn to describing the
mathematical model of identification and explain how necessary conditions (I) and (II) are

employed in the identification proof.

3.3 Mathematical model of the identification problem

Assuming the independence of bidders’ values, functions G; can be expressed through F;
as follows. Let b;, i = 1,2, 3, indicate the submitted bids. Then

Gl(t> = Pr(maX{bg, bg} < by, max{bg, bg} < t)

t
= P?"(maX{XQ,Xg} < Xl,maX{XQ,Xg} < t) = / (F2F3)I(1 — Fl)dS,
to
where integration is to be understood in the sense of Lebesgue. FunctionsG, and G3 have
similar expressions. Therefore, unknown distribution functionsF; are related to observable

functions G; by means of this system of integral-differential equations:

G (t) = /t(FQFg)’u — F))ds

to

Galt) = / (FEY(1— Fy)ds (3.3)

to

¢

Gg(t) = / (FlFQ) (]_ - Fg)ds.
to

Notice that the left-hand and right-hand sides of the equations in (3.3) are absolutely

continuous functions, allowing us to differentiate them and obtain the following system of

differential equations almost everywhere (a.e.) on[to, T):

/

g = (F2F3) (1 - F) (DE)
Main system g2 = (F\F3) (1 — F)

/

g3 = (F1Fy) (1 — F3),



where g; stands for the a.e. derivative of G;. I will refer to system (DE) as the main system.

Distribution functions F; in this system must satisfy the following initial conditions:
Initial conditions Fi(ty) =0, i=1,2,3. (1C)

I will refer to problem (DE)-(IC') as the main problem. The definition below explains the
meaning of a solution to (DE)-(IC).

Definition 3.1. Function F' = (Fy, F5, F3)" is a solution to problem (DE)-(IC) on an
interval [to,to + al, to+a < T, if F;, i = 1,2,3, are absolutely continuous on [ty,to + al,
satisfy equations (DE) a.e. on [ty, to + a] and satisfy (IC).

The system of differential equations (DFE) is a convenient tool because identifying func-
tions F; is equivalent to proving that problem (DE)-(IC') has a unique positive solution F'
on [to, T).

Notice that I did not mention anything about the monotonicity of the solution. There
are two reasons for that. First, as I will show in section 3.7, functions F; in a solution to
(DE)-(IC) may be non-monotone. Second, it is not clear whether one can find conditions
on G; that guarantee the monotonicity of all F;. Therefore, the monotonicity of a solution
to problem (DE)-(IC') will be assumed.

3.4 Main results

The theorem below formulate the existence result for problem (DE)-(IC).

Theorem 3.4. (Ezistence of a solution) Let observable functions G; satisfy conditions
(I) and (II). Then problem (DE)-(IC) has a positive solution on [ty, T).

Remember that all conditions on G; required in this theorem are necessary conditions
implied by the model. Therefore, conditions (I) and (IT) are both necessary and sufficient
conditions for the existence of a solution to the model. In particular, if even one of the
conditions in (I) and (II) fails to hold, we can immediately conclude that the model is not
stated correctly.

The next theorem describes conditions on G; sufficient to guarantee the identification
of F;.

Theorem 3.5. (Uniqueness of a solution) Let observable functions G; satisfy condi-
tions (I), (II) and
Sufficient condition (III): The function

91 92 | 93 GoG3 \/Gle \/GlGQ
<G1 + Gy + G3) <\/ G, + s + G (3.4)

10




is Lebesque integrable — that is, belongs to the class L' — in a neighborhood of t.
Then problem (DE)-(IC) has a unique positive solution on [ty, T].

Because the function in condition (IIT) is non-negative, Lebesgue integrability means

that the integral of this function is finite.

1 1

F1 = t, F2 =1 F3 = expl_t%

Figure 1. Underlying distribution functions.

1/10

Figure 2. Function in (3.5).

The most important element in obtaining sufficient condition (III) is the result of Propo-
sition 3.2. To acquire a better understanding of this condition, I write it in terms of
distribution functions F;.

Remark. Condition (III) is equivalent to the following condition:
The function

FHOF B
L+ F+ F 3.5
(F1+F2+F3 (Fy + Fy + F3) (3.5)

18 Lebesque integrable in a neighborhood ofty.

Now it is intuitive that the reasoning behind this condition is that the underlying dis-
tribution functions Fi, F» and Fj are not too different around ¢y in a certain sense. For

instance, if the underlying distribution functions are F; = ¢, [, = ¢ and F3 = exp(1 — %)

11



on [0, 1], then the corresponding observable functions G; do not satisfy condition (IIT). Fig-
ure 1 depicts these distribution functions F;. As we can see, the value distribution for the
third bidder has a very small mass around point 0, whereas values for the first and second
bidders are distributed uniformly on [0, 1]. This means that bidder 3 wins very rarely when
all the bidders submit bids close to¢y. Figure 2 shows the function in (3.5). This function
has the same behavior in a neighborhood of point 0 as the observable function in (3.4). It
is non-integrable because in a neighborhood of 0 it behaves as functiont%.

Condition (3.5) is satisfied if all F; behave as power functions around ty:
Fi(t) =0((t —to)*) as t] to,

where a; > 0,72=1,2, 3.

In identification results for the first-price auctions, it is usually assumed that the den-
sities of all the distributions of the bidders’ values are bounded from zero and are finite
on the support. For example, these conditions are imposed in Guerre, Perrigne and Vuong

(2009). Condition (III) is much weaker than these restrictions. Indeed, if the densities
B
ot
which implies that all the rations £ are bounded from above, and hence condition (III) is
J

are bounded from zero and are bounded, then all the ratios = are bounded from above,

F.
obviously satisfied.

3.5 Local and global identification

My identification proof comprises two major steps: establishing the local identification
result and the global identification result. Namely, I first prove that problem DFE)-(IC)
has only one positive solution F' in a small neighborhood of #; this solution is what I call a
local solution. Establishing the existence and the uniqueness of a local solution is the most
challenging part of the identification result because problem (DE)-(IC) has a singularity
at to. Notice that conditions (II) and (IIT) describe the behavior of observable functions
G; only in a neighborhood of .

After I prove the existence and the uniqueness of a local solution to (DE)-(IC), I show
that it can be extended to a positive solution on the entire interval[to, T'], and that such
extension is unique.

To gain intuition, consider Figure 3. The picture on the left shows the local solutionF'
found on some interval [to, to + ¢]. The idea of constructing a global solution is to extend
this solution F' to the right at least to a small interval (¢y + ¢, to + ¢1], ¢1 > ¢, in such a
way that the extended solution solves (DE)-(IC) on [ty,to + ¢1]. The picture on the right
in Figure 3 shows this extended solution. Then this solution is extended even farther to
the right and so on. I show that if we continue this process in a certain way, then we will

reach the upper support point 7', and thus, find the solution on the whole support.
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Vi Vi
) V3
V3 V3
to t0‘+c T to t0‘+c tOJLcl T
F1, Fy, F3 on [tg, to + ] Fy, Fy, F5 on [tg, tg + ¢1]

Figure 3. Solution to the main problem on [tg, %o + ] (left) and extended solution to the main
problem on [tg, tg + ¢1] (right).

3.6 Generalizations

3.6.1 Any number of bidders

In this section, I show how the identification result for auctions with three bidders can be
generalized to auctions with any number of bidders. I state main results and outline their
proofs in Appendix A. The interpretations and intuitiveness of these results are similar to
those in the case of three bidders.

The observable functions are

Gi(t) = Pr(price < t,i wins) = PT(“?;}X b; <t, max by <b;), i=1,...,d.
VED VED
Propositions 3.6 and 3.7 below are the analogs of propositions 3.1 and 3.2. Corollary 3.8
is analogous to Corollary 3.3.

Proposition 3.6. If the model is stated correctly, then the following conditions hold:

Necessary conditions (Id)
1. Gilto) =0,i=1,...,d
2. G, are absolutely continuous on [ty,T], i =1,...,d

3. G; are strictly increasing on [to,T), i =1,...,d

Proposition 3.7. Suppose that the model is stated correctly. Let F' be a solution to the

model. Then Ja
lim d —(t)=1, i=1,...,d
tlto (GlGQ...Gi,lGHl---Gd)ﬁ
qé-t

Corollary 3.8. Suppose that the model is stated correctly. Then the following conditions
hold:



Necessary conditions (I1d)

i G1G2 . Gi—lGi—i-l Ce Gd
1m d—1
tlto G’L

(H)=0, i=1,....d.

The mathematical model of the identification problem is obtained in the following way.
The definition of GG; and the independence of private values yield the following system of
integral-differential equations that describes relationships between observable functionsG;

and unknown distribution functions F;:

t
Gz(t) == / (Fl - -E—lFi+1 .. Fd),(l - E)ds, 1= 1, Ce ,d.

to

The differentiation of both sides of these equations gives us a system of differential equations
g=(F ... F,\F..F)(1-F), i=1,....d. (3.6)

Functions F; in this system must satisfy initial conditions
Fi(tg) =0, i=1,...,d. (3.7)

Theorem 3.9 below gives necessary and sufficient conditions for the existence of a solution

to the model. Theorem 3.10 presents an identification result.

Theorem 3.9. (Existence of a solution) Let observable functions G; satisfy conditions
(Id) and (1Id). Then problem (3.6)-(3.7) has a positive solution on[to, T).

Theorem 3.10. (Uniqueness of a solution) Let observable functions G; satisfy condi-
tions (Id), (I1Id) and

Sufficient condition (IIId): The function

343 (AleGafent™

=1 i ?

is Lebesgque integrable in a neighborhood of ty. Then problem (3.6)-(3.7) has a unique

positive solution on [ty, T).

The main identification condition (IIId) has an equivalent form in terms of the primitives
of the model:

The function
d

=1

kel e
™
=

15 Lebesgue integrable in a neighborhood ofty.
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3.6.2 Only two types of bidders

Suppose that there are only two types of bidders. Without a loss of generality, bidders
1, ..., k have type I and bidders k + 1, ..., d are of type II. In this case, there are two

observable functions:
G(t) = Pr(price < t, bidder of type I wins),

Gri(t) = Pr(price < t, bidder of type II wins).

Clearly, G; = G;, i = 1,...,k, and G; = Gy, i = k+1,...,d. The following theorem
gives the conditions on observables that are both necessary and sufficient for identification.
It shows that in the situation with only two types, condition (IIId) is not required for

identification.

Theorem 3.11. If observable functions G; satisfy conditions (Id), then the distributions of
bidders’ values are identified. In other words, conditions (Id) are necessary and sufficient

for identification.

The result in theorem 3.11 can be extended to the case when bidders’ private values are

dependent and their joint distribution is described by an Archimedean copula:

Clug,uy, ... uq) = (W(ur) + ¢(ug) + ...+ p(uq))

where function 1) is defined on (0, 1] and

P(1) =0, limy(r) =00, ¢'(x)<0, ¢"(x)>0.

x—0

Theorem 3.12. If observable functions G; satisfy conditions (Id) and the function%

18 increasing, then the distributions of bidders’ values are identified.
This theorem can be applied, for instance, to the following copulas:

Clayton copulas: ¥(x) = 2(z7% — 1), § € (0, 00).

1
9
Gumbel copulas: ¥(r) = (—Inx)?, § € [1,00).

Frank copulas:

Joe copulas: 1(x) = —In(1 — (1 —2)?%), 6 € [1,0).

—0

Ali-Mikhail-Haq (AMH) copulas: ¢ (z) = In 220=2"" " 9 ¢ (-1, 0].

xT
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Identification within the Archimedean family of copulas in a different auction framework

is considered in Brendstrup and Paarsch (2007).

3.6.3 Weaker support conditions

The assumption that bidders’ values have the same support can be relaxed. For instance,
bidders can have different upper support point or holes in their supports, but the assump-
tion that has to be maintained is that bidders’ values have the same lower support point.
This result is explained by the fact that in the identification proof, I first established the
existence and uniqueness of a local solution and then extended it to the whole support.

I start by considering a case of three bidders and analyzing identification when their
distributions’ upper support points differ from each other. I then generalize this analysis
for auctions with any number of bidders. Finally, I briefly discuss what happens when
distributions have holes in their supports.

Auctions with three bidders

Let 7, 7, 73 be the upper support points of the distributions of bidders’ valuations.
Without a loss of generality, assume that m; < 7, < 73. Given these inequalities, there
are four possibilities for the locations of 7y, 7, 73 with respect to each other; they are

illustrated in figures 4 and 5.

Case 1: 71 =Th =73
This is the case analyzed in this paper. Clearly, functions G; are defined on [t, 1] and

satisfy the boundary condition
G1(7'1) + GQ(Tl) + G3(7'1) =1

because G1(11) + Go(m1) + G3(11) = Pr(price < 71) = 1. As I have already established,
given G1, Gy and G, distribution functions Fy, F» and Fj are identified on [tg, 71]. This

case is illustrated in figure 4.

Case 2: 1 < T =13

Because the first player never submits bids higher than7, function G; is defined on [tg, 71].
The second and the third players have positive probability of submitting bids in[r, 73], so
Go and Gj are defined on [tg, 7). The definitions of G;, G2 and G3 imply the boundary
condition

Gi(11) + Ga(72) + G3(12) = 1.

Identification is obtained in the following way. On [to, 71], functions F; must solve (DE)-
(IC). First, I find the unique solution to (DE)-(/C) in a small neighborhood of t. I then
use methods from section 7.4.2 in Appendix A to extend it farther to the right until one
of the functions Fy, Fy, Fj reaches value 1. Because by assumption 7, < 7 = 73, function

F} will be the first one to reach value 1, and that will happen at 7. Thus, all F; can be
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identified on [tg, 1], and T can find values xo = Fy(71) > 0 and 23 = F3(7;) > 0. The next
step is to identify functions F, and F3 on (71, 72]. On this interval, functions F» and Fj

must solve the system

g2 = Fy(1— F3) (3.8)
g3 = le(l - Fs)

and satisfy initial conditions
F2(7'1) = X9, F3(7'1) = I3.

Applying techniques from section 7.4.1 in Appendix A, I can show that this problem has
the unique solution in a right-hand neighborhood of ;. Employing extension methods, I
can demonstrate that this local solution can be extended to the interval[ry, 73] and that

such extension is unique? This case is illustrated in figure 5.

Case 3: 71 =T < T3
In this case, there are no observable data on (71, 73]. So, functions G; are defined on [ty, 1]

and satisfy the boundary condition
Gi(m1) + Ga(m) + G3(11) = 1.

Given Gy, G5 and Gs, I find the unique solution F' to (DE)-(IC) on [to,71]. Hence, F}
and Fy are identified. As for F3, nothing can be learned about this function fort > 7
because there are no observations corresponding to thoset, so this function is only partially

identified. This case is illustrated in figure 4.

Case 4: 71 < Tp < T3
This situation is similar to case 3. Function G is defined on [ty, 71], G2 is defined on [tg, 7],
and because a transaction price never exceeds 75, G5 is defined only on [tg, 72]. Functions

(G4, Go and (G5 satisfy the boundary condition
Gl(Tl) + GQ(TQ) + Gg(Tg) = 1.

To identify Fy and F, as well as partially identify F3, 1 proceed as follows. On [tg, 7],
functions Fy, Fy and F3 must solve problem (DE)-(IC). On [ry, 73], functions F, and Fj
must solve system (3.8) and satisfy certain initial conditions atr;. Therefore, F} and F

are identified. Because there are no observed data fort > 75, function F3 cannot be learned

2The methodology presented here can be used for auctions with any number of bidders. In this particular
case, however, system (3.8) can be handled much more easily once it is rewritten as a system of two

linear equations: F, = f’fg;_%l and Fy = %. This system has a closed-form solution: Fy(t) =

t S t S
L= (1= @) exp(— [} =giieds), Fy(t) =1 — (1 = a3) exp(— [ 1=y ds).
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for t > m; that is, F3 is only partially identified. This case is illustrated in figure 5.

Thus, in auctions with three bidders, two distribution functions F; and F, are always
identified. In two cases, the third distribution function Fj is identified too. In two other
cases, it is identified only on a subinterval of the corresponding support.

Auctions with any number of bidders

Now I consider auctions with any number of bidders and briefly discuss identification in
this case. Suppose I found the unique local solution to (DE)-(IC'). I extend it farther and
farther to the right until T reach a point where one of the functions F; hits the value of 1.
Beyond this point, system (DFE) does not contain the equation corresponding to bidderi.
Thus, d — 1 equations (or possibly even fewer equations, if several functions F; hit value
1 at the same point) remain in system (DFE). Next, I find the unique local solution to
the reduced system and extend this solution to the right until I reach a point where one
of the remaining functions F; hits value 1. Beyond this point, the number of equations in
the system decreases again. Proceeding in this way, I eventually come to a final system
such that all functions F; in its solution, with the possible exception of one function, reach
value 1 at the same point.

The result of the next proposition is intuitive from case of the three bidders. I do not
prove this result because it follows from the local existence and local uniqueness results,

as well as the extension techniques.

Proposition 3.13. Suppose that d bidders are participating in the auction, and the dis-
tributions of their values are locally identified. Let[to, 7;] stand for the support of bidderi,
1=1,...,d. Without a loss of generality, assume that

<7 <...<731 <174

If 141 = 14, then all distribution functions Fy, ..., Fy are identified. If ;1 < T4, then
d — 1 functions Fy,. .., Fy_1 are identified, and Fy is identified only on [to, T4—1].

Holes in the support

Finally, I want to informally discuss identification in a situation where the distributions
of bidders’ values can have holes in the supports. In this case, distribution functionsF; can
have intervals on which they are constant. If all distributions have the same lower support
point ty, then F;(t) > 0 for ¢ > ¢, and therefore local identification can be shown by using
techniques from section 7.3. Extension to the global solution depends on distributions’

upper support points, as explained in Proposition 3.13.

3.6.4 Reserve price

The case of a reserve price is considered in Athey and Haile (2006) . The authors state

that the distributions of bidders’ values are identified fort > r when the transaction price,
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Case l: =T =13 Case 3: 11 =72 < T3

1 1

Underlying distribution functions Underlying distribution functions
FII\/Z, FQItQ, ngt Flz\/E, ngtz, ngét
Observed functions G1, Gs, G3 Observed functions G, Gs, G3

Identified functions Identified functions

Figure 4. Supports for cases 1 and 3
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Case 2: 71 < 19 = T3

1 3/2

Underlying distribution functions
Fi=Vt, F=3t? F3=2t

1 312

Observed functions G1, Gs, G3

B 3/2

Identified functions

Case 4d: 71 < 1 < T3

1 3/2 2

Underlying distribution functions
Fi=vVt, F=3t? Fy=4it

1 3/2 2

Observed functions G, Gs, G3

1 3/2 2

Identified functions

Figure 5. Supports for cases 2 and 4



the identity of the winning bidder, and the set of actual bidders are observable. Below I
briefly explain why this is so.

Suppose that the seller sets a reserve price of r. In second-price auctions with pri-
vate values, a reserve price does not change bidders’ behavior because it is still a weakly
dominant strategy to bid one’s value.

Assume that the reserve price is known to the bidders, and that a bidder does not submit
a bid if her value lies below the reserve price. Also suppose thatr lies in the intersection
of the supports of all bidders® and in any right-hand side neighborhood of r, densities F
are positive on sets that have positive Lebesgue measure.

Define the following truncated distribution functions:

- Fi(t) = F(r)

Fi(t) = I F0) t>r.

Because for bidder i the probability of the event {all bidders participate, i wins} is positive,

then all the truncated distribution functions can be identified from the system

gi=(F...Fi Fy .. . E)(1—F), i=1,....4
with the initial conditions
Fi(T):O, 221,,d

Here g; is the derivative of the following function G;:
G;(t) = Pr(r < price < t, i wins),

and it is assumed that sufficient conditions for identification are satisfied.

Note that the values F;(r) are identified for each i because
F;(r) = P(i does not participate in the auction),

and the probability of this event is known due to the assumption that the set of actual
bidders is observed.
The identification of the truncated distributions functions fort > r and the identification

of the values F;(r) imply that distributions functions F; are identified for ¢ > r.

3.6.5 Auctions with stochastic number of bidders

In this section, I assume that the number of potential buyers is known and does not change,
but the number of actual bidders is unknown and varies exogenously. For instance, this

may happen because of entrance fees or the different costs of acquiring information. In this

3We can allow bidders to have different lower support points.
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setting, I do not aim to present a complete analysis of identification in general. Rather,
I want to illustrate how the methods developed in this paper allow us to approach the
identification problem. To gain some insight while keeping the problem simple, I consider
the case of three buyers.

Suppose that the number of bidders and their identities are determined by chance and
the process through which bidders are selected is taken to be exogenous, embodied in
probabilities p4, A C {1,2,3}. T assume that at least two bidders are participating in the

auction:

P12 + P13 + P23 + p12s = 1,
and each buyer has a positive probability of participation:
Zpij + P23 >0, =123
J#i

Suppose that buyers’ private values are absolutely continuous and distributed on a
common support [to, T]. As before, assume that the available data tells us the winner’s
identity and the transaction price, and therefore we observe functionsG;(t) = Pr(price <

t, 1 wins), i = 1,2,3. Using the law of total probability, it can be found that

G1(t) = P( price <t,1 wins [{1,2})p12 + P( price < ¢,1 wins [{1,3})p13

t
+ P( price <t, 1 wins ’{1,2,3})]?123 = / (p12F2 +p13F3 +p123(F2F3) )(1 — Fl)dS.

to

Likewise,

t
Go(t) = / (p12F1/ —1—p23F3: +p123(F1F3)/)(1 — Fy)ds

to

¢
Gs(t) = / (p13F1l +P23F2, —|—p123(F1F2)/)(1 — F3)ds.

to
The differentiation of these equations yields that a.e. on[tg, 7]

I

g1 = (p12F2/ +p13F:; + prog(FoF3) )(1 — FY)
9o = (P12 F) + pasFy + pras(FLE3) ) (1 — ) (3.9)
g3 = (P13 F) + pasFy + pras(FL ) ) (1 — F).

To prove identification, I have to show that system (3.9) with initial conditions
Flt)) =0, i=1,2,3, (3.10)

has a unique positive solution on [tg, T]. My approach is to construct an auxiliary system
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by introducing new functions

Hy = piaFs + pi3lfs + prasFa ks,
Hy = p1oF1 + pasls + pras b1 3,
Hs = pi13F + pas s + prog 1 Fs.

Below I demonstrate that, in general, functions F; have a unique representation in terms
of H;. Let ¢;(H) denote the representation of F; in terms of H. Then (3.9) can be written

as the system of differential equations

gi .
H=——>"_ =12, 3.
1 1—ql<H)’ Z b )

The initial conditions on H; are

The existence of a local solution to the auxiliary problem can be proved by applying
techniques from section 7.3. First, I would find necessary conditions onG;. Assuming these
conditions I would use the Tonelli approximations method to prove the local existence of a
solution H to the auxiliary problem. Then, I would find a solution £ to (3.9)-(3.10) from
H by using formulas F; = ¢;(H), i = 1,2,3. The extension techniques in section 7.4 would
be used to show global identification.

Now I demonstrate that F; have unique representations through H;. I consider two
cases: one with pjs > 0, p13 > 0, pa3 > 0, p123 > 0, and the other where p15 > 0, p13 > 0,
paz > 0, pras = 0. In both cases, the only conditions required for uniqueness areg; € L' in
a small neighborhood of ty; these conditions are obviously satisfied. Note that the example

in which pi23 = 1 constitutes the paper’s original problem.

Case pip > 0, p13 > 0, paz > 0, p1az >0
Observe that

Hy = pros (Fg—i-pﬁ) <F3+ p12> _ P12P13

D123 D123 P123

D23 D12 P12D23
Hy = pias (F1+—> (F3+ ) -

D123 P123 P123

P23 D13 D13P23
Hs = pia3 (F1+—> (F2+ ) - )

P123 D123 D123
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Taking into account that F; are positive for ¢t > ty, I derive the following formulas:

D23 1 (p123H2 + p122?23)(29123H3 + P13p23)
F, = —
P12z P123 p123Hy + piapis

- P n 1 (pr2sHy + pi2p13) (PrasHs + pi3pes)
L = —
P123 D123 P123Hs + piapas

o P n 1 (pr2sHy + pi2p13) (Pr2sHa + pi2pas)
Y= —
P123 P123 P123H3 + pi3pas

The expressions on the right-hand sides of these equations are ¢;(H), ¢2(H) and ¢3(H),
respectively.

Case pip > 0, p13 > 0, pa3 > 0, p123 =0
Because

Hy = pi1oFs + pi3ks
Hy = pi1oFy + pas ks
Hs = pi13 [ + paslh,

F; can be expressed through H; by inverting matrix

0 pi2 pi3
P = pi2 0 pos
p13 p23 0
Because
P23 1 1
2p13p12 2p12 2p13
Pl = 1 __pi3 _1
2p12 2p12p23 2p23 ?
1 _1 __ P12
2p13 2p23 2p13p23
then
1 1
F=—8 g+ g+ H
2p13p12 2p12 2p13
1
F2 = H1 - P13 H2 —+ H3
2p12 2p12p23 2pa3

1 1
Fy= —H, +—H, — P2 _p,.
2p13 2po3 2p13p2s

The expressions on the right-hand sides of these equations are q;(H), ¢2(H) and ¢3(H),

respectively. As we can see, in both cases F; are uniquely expressed in terms of H;.
Several papers have explored other types of auctions with exogenous variation in the

number of bidders. For instance, McAfee and McMillan (1987) allow the number of actual
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bidders to be stochastic in first-price, sealed-bid auctions with independent private values.
They investigate how bidders’ uncertainty about the number of actual rivals affects their
equilibrium behavior, not to mention the seller’s expected revenue and other issues. In
another study, Harstad, Kagel and Levin (1990) consider symmetric first-price and second-
price auctions with an uncertain number of actual bidders. They show that first-price and
second-price auctions, each with the number of bidders known or uncertain, and English

auctions are revenue-equivalent.

3.7 Non-monotonicity of the solution

Conditions (I), (II) and (III) guarantee that problem (DE)-(IC) has a unique positive
solution. However, it is possible that functions in this solution are not all increasing. In
this situation, one can conclude that the auction model is not stated correctly.

The example below describes a system of well-defined functions G; such that one of

functions F; in the corresponding unique solution is not monotone.

Example 3.1. This example is illustrated in Figure 6. On [0, 1] consider Fy(t) = t,
F3(t) = t, and define function F} in the following way:

—9t + 272m+17 t e [272m72’ 272m71] ., m Z 17
Fi(t) =< 10t —272mF2  te[272m=1 272m  m > 2,
(6t +1)/7, tel1/s,1].

Function F; has the Lipschitz property and therefore it is absolutely continuous. It is
strictly decreasing on intervals [272m72 272m=1] 'y > 1, and strictly increasing on other
intervals. In particular, Fy is not increasing in any small neighborhood ofty.

I now demonstrate that functions FyF3, F1F3 and F} F, are strictly increasing. Clearly,
FyF3 = t? is strictly increasing on [0,1]. Consider F}F3 on an interval [272m72 272m~1],
m > 1:

R F3(t) =t (=2t + 272"

Function ¢ (—2t +272™1) is quadratic; it strictly increases until point 272™~1  then it

strictly decreases. So, F} F3 is strictly increasing on [272"2 272m~1],

Now consider F} F3 on an interval [272m~1 272m] m > 2:
FyF3(t) =t (10t — 2727m+2)

Quadratic function ¢ (10t — 272™2) strictly decreases until point 272™/5 and strictly in-
creases afterward. Because2™?™~! > 272m /5 then F) F3 strictly increases on [272m~1 272m],
Obviously, on [1/8, 1] function

iRy () = t (6t + 1) /7
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strictly increases. Thus, F} F3 and, consequently, F} I, are strictly increasing on [0, 1].
Now find functions G; according to integral-differential equations (3.3). Because F} Fy,
F1F3 and F, Fj are strictly increasing, functions G; are strictly increasing as well. These G;
clearly satisfy other conditions in (I) and also condition (IT). It can be shown thatF; satisfy
condition (3.5) and, therefore, G; satisfy the main identification condition (III). Hence, we

can find well-defined, observable G; whose corresponding F; are not all monotone.

1 1
2 2
11 1 1 11 1 1
64 32 16 8 64 32 16 8
Fy Fy, F3

Figure 6. Fy, F», F3 on [0,1/8] (Example 3.1).

The last thing that has to be to shown is that functions G; in this example can indeed
be observed in auction’s outcomes. To do this, I present an example of a joint absolutely
continuous distribution that rationalizes GG;. Find functions ®;, ¥,, =;,, « = 1,2,3, that

satisfy the following conditions:

1. They are defined on [0, 1], positive, increasing and absolutely continuous on [0, 1].
2. ®;(0) = 0, W,(0) = 0 and Z(0) = 0, i = 1,2,3.
3.

Denote ¢; = @}, 1); = ¥, and & = =.. Consider the following function defined on [0, 1]*:

(a1, 22, 23) = ¢1(21)Pa(w2) P3(23) (21 > 22)1(21 > 23)
+ 1 (1) 2 (w2) Y3 (23) (29 > 21)1(72 > 73)

+ &1(21)62(72)83(w3) Lz > 21)1(23 > 29).
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Function f is an example of the joint density of the distribution of bidders’ values that
rationalizes observable GG;. Note that because we can choose functions ®;, ¥;, =; in many

different ways, there are many observationally equivalent densities of this type.

This non-monotonicity result is possible because of the complexity of auction data.
Indeed, in auctions with d bidders, data provide direct knowledge regarding groups ofd — 1
bidders. To learn each bidder’s value separately, this information has to be disentangled
further.

It is important to mention that non-monotonicity is sufficient but not necessary for de-
tecting an incorrectly stated model. That is, considering such models under the assumption
of independence, it is possible to obtain a solution in which all functions are distribution
functions.

The non-monotonicity result carries important implications for generalized competing
risks models and contrasts sharply with results for classical competing risks models. In
classical models (Roy model), every dependent risks model has a unique, observationally
equivalent independent risks model, as shown in Tsiatis (1975). Example 3.1 shows that in
generalized competing risks models this is not necessarily so because the non-monotonicity
of at least one function F; means that the risks are dependent. In other words, in general-
ized competing risks models, in some situations dependent and independent risks can be
distinguished nonparametrically.

In auctions, the non-monotonicity of F; can occur for a variety of reasons. For instance,
it can happen if bidders’ private values are not independent, or if bidders do not behave

rationally, or if bidders’ values are not private.

4 Sieve estimation of distribution functions

This section presents an approach to estimating the distribution functions of private values
from a random sample. First, I define an operator A that maps unknown distribution
functions Fy, F,, F3 to observable functions G;, Gs, Gs3. I show that this operator is
Lipschitz and that under weak conditions on the set of F' = (Fy, Fy, F3), its inverse operator
A~1is continuous. T then derive sieve estimators of F; and use the properties of A to show

their consistency.
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4.1 Operator A

For an absolutely continuous function F' = (Fy, Fy, F3)'" define A(F) = (A(F)1, A(F)2, A(F)3)""

as follows:

A(F)u(t) = / (R (1 - F)ds

to

A(F)(t) = / (FLF) (1 - Fy)ds

to

A(F)s(t) :/ (FLF) (1 — F3)ds.

to

Let A be the set of functions F' = (F}, Fy, F3)"™" defined on [ty, T] and satisfying the following

conditions:

Conditions CL
1. F; are absolutely continuous on [to, T).
2. F; are strictly increasing on [to, T).
3. Fy(ty) =0, F(T) =1, i=1,2,3.

4. The function

o Fy L
— 4+ =4+ =) (F1+ F,+ F
(F1+F2+F3 (1+ 2 + 3)

1s Lebesgue integrable in a neighborhood oft.

Let A be defined on A. Properties of the image A(A) are described in Proposition 3.1:
G, are absolutely continuous on [ty, T'], strictly increasing on [ty, T and G;(ty) = 0. Also,
G1(T) + Go(T) + G5(T) = 1. As shown in this paper, there exists the inverse operator
A7t AAN) — A

Endow both domain A and its image A(A) with the following uniform metric:

The proposition below implies that A is continuous in this metric.

Proposition 4.1. For any F, I € A,
A(A(F), A(F)) < 9V3d(F, F);
that is, operator A is Lipschitz on A.
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The properties of A are important for proving the consistency of the estimators of F;.
Usually, it is easier to establish consistency when the space of functions is compact. 1
compactify A by bounding the densities of F; by the same function in L':

Condition CII.
Fi'(t) <¢t) ae. [to, T], i=1,2,3,

where ¢ is some absolutely continuous function on [ty, T).
Let A, be a subset of A such that all functions F' from A, satisfy condition CII. This

condition guarantees that Ay is relatively compact under the uniform metric. Indeed, for

any F' € Ay and t,7 € [to, T
t
[ Fiis

Because ¢ is absolutely continuous, the last inequality implies that the setA, is equicontin-

Y

|Fi(t) — Fi(7)| = <lo(t) —o(r)], 1=1,2,3.

uous. It is also uniformly bounded because the values of F; do not exceed 1. According to
the Arzela-Ascoli theorem, A, is relatively compact in metric d(-,-). Note that if F' € Ay,
then function G = A(F) satisfies this condition too:

gi(t) < P'(t) ae. [to,T], i=1,2,3.

Let A4 stand for the closure of Ay under metric d(-, -). Because A, is relatively compact,
K¢ is a compact set. To consider operator A on K¢, I first have to show that A is defined
for functions in this set that do not belong to A,. The proposition below establishes that
all functions in K¢ satisfy conditions 1, 3 and a modified condition 2 in CI, and also satisty
condition CII.

Proposition 4.2. If F = (F|, Fy, F3)'" € K¢, then functions F; are absolutely continuous,
increasing and satisfy Fi(to) = 0. Also, Fl(t) < ¢'(t) a.e. on [to,T], i =1,2,3.

Because all functions in K¢ are absolutely continuous, operator A can be extended from

Ay to K¢. The next proposition implies that A is continuous on Kd»

Proposition 4.3. For any F, Fe Kdn

d(A(F), A(F)) < Cod(F, F), (4.1)

where Cy = 3v/3(1 + 36(T) — 36(to)); that is, A is Lipschitz on Ag.
Finally, I establish the continuity of A=* on A(A,).
Proposition 4.4. A~ is continuous on A(A,).

This proposition follows from the fact that if a continuous operator is defined on a

compact set and the inverse operator is defined on the image of that set, then the inverse
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operator is continuous. The inverse operator A~! is clearly defined on A(A4) but T have
not shown that it is defined on the set A(A4). However, this does not affect the result (see
explanation in Appendix 8).

4.2 Consistent estimation

In this section, I define sieve estimators of the distribution functions F; and prove their
consistency.

Without a loss of generality, assume that the distributions have support [0, 1]. Denote
the true distribution functions as F}" and the corresponding observable functions as G;.
That is, G* = A(F*), where F* = (F}, Fy, F;)" and G* = (G}, G5, G5)". Let F* € Ay.

The next lemma introduces a function @ on A, that is uniquely minimized by F*.

Lemma 4.5. F* is the unique minimizer of
Q(F) = E(G" — A(F))"(G" — A(F))
on Ktﬁ'

The idea of sieve estimation is to use a sample analog of () and approximate K¢ with
finite-dimensional spaces. For each k, choose base functions pi k..., pmu), (for example,
B-splines with uniform knots or Bernstein polynomials) and introduce the set of linear

combinations of these functions:
m(k)
My = {(F\, Fo, F5)" : Fy(t) = > ajpir(t), t € 0, 1]}
=1

In this set of functions, consider only those functions that are inAy:

Set ¥, consists of functions from M, with certain restrictions on coefficients af. It is
relatively compact and, hence, its closure ¥, is compact, and ¥, C K¢,.

Consider a random sample of n observations (¢;, w;)" ,, where t; is the observed price
and w; is the winner’s identity in ¢’s auction. Without a loss of generality, assume that
t; < tiv1, © = 1,...,n — 1. From the sample, find consistent estimators Gm of G;, for
instance, analogs of empirical distribution functions.

Let the sample objective function be

~

QulF) = = 3 (Gult) = AMF)(E) " (Gult) — A1)
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Also let k = k(n), and define the following estimator of F™*:

~

F, = argminFe§k<n> QH(F)

The theorem below establishes the estimator consistency when setsX; well approximate
set K¢.

Theorem 4.6. If
V(FeAy)IAF e dF,EF) L0 ask — oo, (4.2)
then estimator Fn 18 consistent:
d(E,, F*) 20 as n — co.

Condition (4.2) holds if approximating sets are chosen properly — for instance, if base
functions pi, ..., Pm@)k are B-splines with uniform knots, Bernstein polynomials or trun-

cated power series.

5 Identification in generalized competing risks models

The main purpose of this section is to present conditions on observables sufficient to guar-
antee identification in generalized competing risks models.

In section 2, T gave two examples of these models. First, I explained why we can
consider second-price auctions to be a special case of these models. In the other example, I
considered widely used classical competing risks models. I now proceed to a more detailed
description of generalized competing risks models. For convenience, I use the terminology of
reliability theory, which refers to these generalized models as coherent systems? Essentially,
a coherent system is a system that collapses because several of its elements fail.

Suppose that a machine with a coherent structure consists ofd elements. Denote the
elements’ lifetimes as X1,...,X; and the machine’s lifetime as Z; the lifetime 7 is a function
of X1,..., X4. Conveniently, Z can be characterized by fatal sets. As defined in section 2,
a fatal set is a subset of parts such that the failure of all the parts in the subset causes the
failure of the machine. Even more conveniently, Z can be characterized by the collection
Iy, ..., I, of minimal fatal sets, which are fatal sets that do not encompass other fatal
sets.

The examples below clarify the structure of a coherent system. To guarantee that the
probability of the simultaneous failure of several elements is 0, I suppose that the joint

distribution of X7,..., Xy is absolutely continuous. Also, X; have the same support [to, .

4The concept of a coherent system was introduced in Barlow and Proschan (1975).
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Example 5.1. In a classical competing risks model with d risks, the collection of minimal
fatal sets is I; = {1}, ..., I; = {d}, and the machine’s lifetime is

Z =min{Xy,..., Xy}

Clearly, the number of minimal fatal sets coincides with the number of elements. Further-
more, there are no fatal sets other than sets I;. Take, for instance, set {1,2}. Although it
is a superset of fatal sets {1} and {2}, it is not fatal itself. Indeed, the death of these two
elements could not cause the machine’s failure because the death of either of them would

have led to failure earlier.

Example 5.2. Consider a button auction with d bidders who have private values. In this
case, the fatal sets are the sets of bidders who dropped out before the auction ended. The

collection of minimal fatal sets is
L=A{1,...;i—1i+1,....d}, 1=1,...,d.

Here, element lifetimes X; are bidders’ private values, and the lifetime Z is the winning
price. Notice that the number of minimal fatal sets is the same as the number of bidders,

and there are no fatal sets besides I;.

Example 5.3. Consider a machine with five parts. Let the collection of minimal fatal
sets be I} = {1,2,3}, I, = {1,2,4}, Iy = {1,3,4}, I, = {2,3,4}, Iy = {1,3,5} and
Is = {2,3,5}. An example of a fatal set that is not a minimal fatal set is {1,2,3,5}:
It causes the failure of the machine when, for instance, the machine’s elements break in
the order of 5, 1, 2 and 3. Set {1,2,3,4}, on the other hand, is not fatal because all its

three-element subsets are minimal fatal sets.

For coherent systems, the goal is to learn the marginal distributions of element lifetimes
X, from the joint distribution of observed "autopsy" data, which comprise the machine’s
lifetime Z and a fatal set I that is responsible for the machine’s failure. This identification
question is raised in Meilijson (1981). Meilijson claims that, under certain restrictions on
a coherent system’s structure, the distributions of the components’ lifetimes are identified
if the lifetimes are independent. To formulate the identification result, he introduces an
incidence matrix constructed in the following way. Given a collection of minimal fatal sets,
the coherent system’s incidence matrix is a matrix M such that M (i,j) = 1 if j € I;, and
M(i,j) = 0 otherwise,i =1,...,m, j=1,...,d.

For example, in the three-bidder auctions considered in Example 5.2, the incidence

matrix is
01 1
M = 1 01
1 10
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In classical competing risks models, on the other hand, the incidence matrix is thed x d
identity matrix.

The main result of Meilijson (1981) says that if X7, X5, ..., X, are non-atomic and
independent and possess the same essential infimum and supremum, and if the rank of M
is d, then the joint distribution of Z and I uniquely determines the distribution of each
X, j=1,...,d

The idea behind Meilijson’s proof is (a) to use data only from those cases where set/ is a
minimal fatal set and (b) to obtain integral equations that relate the distribution functions
of components’ lifetimes to observable functions, and then apply to them a fixed point
theorem for multidimensional functional spaces. Though Meilijson (1981) made impor-
tant contributions, including the observation that only the data corresponding to minimal
fatal sets can be considered, as well as and the rank condition on the incidence matrix,
the proofs lack some essential details. First, the author does not discuss necessary condi-
tions on observable data besides mentioning them as a prospect for future research. As
we have seen in the auction model, however, such conditions are crucial for obtaining the
existence and uniqueness result. Second, he does not explore the existence of underly-
ing distributions that rationalize the observables. A possible reason for this omission is
the fact that in the majority of generalized competing risks models, existence cannot be
proved and must be assumed, as I explain below. Nevertheless, I show that existence can
be established for a special class of competing risks models, and I present conditions on ob-
servables that are necessary and sufficient for existence. Another important piece missing
from Meilijson’s proof is conditions on observables sufficient to guarantee the uniqueness
of underlying distributions consistent with the data. I provide these conditions for any
generalized competing risks model. Finally, although the author mentions that the locally
identified distribution functions can be extended to the whole support, he does not present
a proof of this result. Asin the auction, such a proof would require the identification result
for the case in which all distribution functions have positive values at the initial point.

I suggest a new approach to identification in generalized competing risks models that
offers a complete transparent proof of the identification result. I assume that the com-
ponents’ lifetimes have absolutely continuous distributions, even though Meilijson (1981)
obtains his result under the weaker assumption that the lifetimes’ distributions are merely
continuous. The idea behind my method is similar to the case of the auction; namely, I
derive a system of non-linear differential equations that relates the underlying distribution
functions to observable functions, then examine the existence and uniqueness issues for this
system. I use the incidence matrix and assume the rank condition as in Meilijson (1981).

Now I turn to stating the main results for generalized competing risks models. An

outline of Meilijson’s method are in Appendix B.
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For any fatal set D, there is a corresponding observable function Gp:
Gp(t) = P(Z <t, D causes machine’s failure).

Because lifetimes X; are independent, then

Gplt) = / (TT 7 TT-F) T Fis)ds, (5.1)

to jeCp jeDe jeD\Cp

where F} is the distribution function of X;, Cp is the intersection of all minimal fatal sets
contained in D, and D¢ = {1,...,d}\D.

Let GG; be an observable function corresponding to the minimal fatal set/;,, i = 1,... ,m:

(5.2)

E

G,-(t):/(HFj(s))’H(l—Fj(s))ds, i=1,...

o jer, jele

System (5.2) of integral-differential equations is an analog of system (3.3). The differ-
entiation of the equations in (5.2) yields the following system of non-linear differential

equations:

gi .
TFr)==—2— i=1,....m (5.3)
E ’ Hje[z?(l —F’])

[ analyze this system together with initial conditions
Fi(ty) =0, i=1,...,d. (5.4)

First, I consider the case in which the number of minimal fatal sets coincides with the
number of the machine’s components — that is m = d. In this instance, the matrix M is
quadratic. Let k;; stand for the (i, 7) element of the inverse matrix M.

In the next theorem I formulate the existence result for problem (5.3)-(5.4) and describe

conditions on G; that guarantee it.

Theorem 5.1. ° Let m = d. Let functions G; satisfy the following conditions:
1 Gi(t)=0,i=1,....d
2. G, are absolutely continuous on [ty,T], i =1,...,d
3. G; are strictly increasing on [to,T), i =1,...,d
4o Timg, [T, G5P () =0,i=1,....d
Then problem (5.3)-(5.4) has a solution F on [ty, T).

Notice that, from the model, conditions 1-4 in this proposition are necessary onG;.

Indeed, 1-3 follow directly from the definition of functions G;. Given that conditions 1-3

5The proof of this theorem is available upon request.
6T consider only positive solutions.
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hold, condition 4 can be obtained from (5.3). The interpretation of these conditions is
similar to that of conditions (I) and (II) in the auction model.

An important difference between this case and the auction, however, is that even if
problem (5.3)-(5.4) possesses a solution F' and all F; in this solution have the properties of
distribution functions, the existence of a solution to the model is not guaranteed. Indeed, to
satisfy the model, F' must solve equation (5.1) for any fatal set D. System (5.3), however,
accounts only for the minimal fatal sets. Therefore, after finding a solution to (5.3)-(5.4),
we have to substitute it into (5.1) to verify that it solves this equation for anyD. Because
it is difficult (and perhaps impossible) to find conditions on functionsGp under which the
model has a solution, it is common in reliability theory to assume existence. The only
situation in which the conditions in Theorem 5.1 guarantee existence of a solution to the
model is when m = d and the only fatal sets in the model are minimal fatal sets. Notice
that this is the case in the auction model analyzed in this paper.

The next theorem provides conditions on GG; that are sufficient for the uniqueness of a

solution to (5.3)-(5.4). The proof of this theorem is in Appendix B.

Theorem 5.2. Let m = d. Suppose that all conditions on G; in Theorem 5.1 are satisfied.
Denote

Li(t) =g > > Ikl (J] GG

lel¢ h=1 j#h

If for any 1 =1,....d, function
I'; is Lebesgue integrable in a small neighborhood ofty, (5.5)

then problem (5.3)-(5.4) has a unique solution on|[ty, T).

Because problem (5.3)-(5.4) has a unique solution, the model cannot have more than

one solution. Therefore, the following corollary holds.

Corollary 5.3. Let m = d. Suppose that all conditions in Theorem 5.2 are satisfied. Then

a solution to the model, if it exists, is unique.

When the number of minimal fatal sets exceeds d — that is, m > d — the existence
of a solution to the model is always assumed. It is easy, however, to indicate conditions
on observable functions that guarantee the uniqueness of a solution to the model when
one exists. Consider any d x d full-rank submatrix of M. Without a loss of generality,
suppose that this submatrix is formed by the firstd rows in M. The subsystem of (5.3) that
comprises the differential equations corresponding to the first d rows in M has only one
solution if GG; satisfy the conditions in Theorem 5.2. Consequently, the model has at most

one solution. We can find other sufficient conditions by choosing different submatrices of
M.
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The proofs of theorems 5.1 and 5.2 use the same methods as those of theorems 3.4 and

3.5. First, the existence and uniqueness of a solution are established locally, then globally.

6 Values are not independent

The main goal of this section is to investigate the identification issue in second-price auc-
tions in the absence of independence. Many of the results obtained here can be extended
to dependent generalized competing risks models.

For affiliated private values, Athey and Haile (2002) show that when only a subset
of bids is observed, the joint distribution of bidders’ values is not identified without any
additional assumptions. In particular, even if all the bids except for the highest bid are
known, there are many distributions consistent with the data.

Even though the distribution of values is not identified, the data are informative and
allow finding bounds on distributions. These bounds can exploited in the analysis of
counterfactuals and other applications.

Because the auction problem is related to generalized competing risks models, T start
by reviewing the competing risks literature regarding partial identification. The study of
partial identification in classical competing risks models was initiated by Peterson (1976),
who obtained tight point-wise bounds on the joint and marginal survival functions. Crow-
der (1991) and Bedford and Meilijson (1997) obtained new results on bounds for those
functions. We also can look to Manski (1990), who examined partial identification for self-
selection models, of which competing risks models are a subset. For generalized competing
risks models, several results for bounds on survival functions are established by Deshpande
and Karia (1997).

I consider two observational schemes in auctions. The first scheme is the case when
only the winner’s identity and the transaction price are observed. For this scheme, I
derive bounds on the joint distribution of values for any subset of bidders. It is of interest
to analyze how these bounds change when more data become available — data on other
identities or other bids. That is why I consider the second scheme, which is the situation
when all the identities and all the bids except for the highest bid are known. This situation
corresponds to continuous monitoring models for coherent systems. For this scheme, I
present bounds on the joint distribution of values for the set of all bidders and bounds on
the marginal distributions. All the bounds are derived for any type of dependence, not

only when private values are affiliated.
Notation

Throughout this section it is supposed that d bidders are participating in a second-price
auction, and their private values Xy, ..., X; have continuous marginal distributions on
the same support [to,T]. It is also assumed that P(X; = X;) = 0, i # j, so that the
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probability of a tie is 0. Instead, it can be assumed that the joint distribution of bidders’
values is absolutely continuous, which implies zero probabilities of ties.

Suppose that D = {iy,...,i,.} is a subset that consists of bidders iy, ...,4,. Define Qp
as the distribution function of valuations of bidders in this subset:

QD(ti17"'7tir>:P(Xi1 Sti17“'7X7: <t'LT‘)'

r o o—

For D ={1,...,d}, Tdenote Qp as Q. For D ={1,....m—1,m+1,...,d}, I denote Qp
as Q_n,. For D = {j}, Qp is denoted as Fj}.

6.1 Bounds when only the winner’s identity and the winning price

are observed

To obtain the lower bound on Qp, T use the fact that if bidder j ¢ D = {iy,...,4,} wins
and the price does not exceed ¢, then all the values X;,,...,X; do not exceed t either.
In other words, functions G;, j ¢ D, provide information about the lower bound on Q)p.
On the other hand, if bidder ¢; wins, then it is not known how large the value X;, is and,
consequently, G;, is not helpful in finding the lower bound on @)p.

To obtain the upper bound on @p, I exploit the fact that if we know an upper bound
on value X;, , then we know an upper bound on the price when bidderi; wins. If we know
upper bounds on values X;,, ..., X, , and bidder j ¢ D = {iy,...,i.} wins, then in general
no conclusion can be made about the price. In other words, only functionsG;,,...,G;,
determine the upper bound on Qp.

The theorem below formalizes this discussion and presents bounds on distribution func-

tions @p.

Theorem 6.1. Suppose that bidders play their weakly dominant strategy by submitting
their true values. Also suppose that only the winner’s identity and the transaction price
are observed.

(a) Then Qp is bounded from below as follows:

Qp(tiy, - ti,) > lzll(tn = T)Gu(kirlun ti) + Z Gj( min t;,).

r k=1,...,r
jeCD
(b) Function Q is bounded from above as follows:
d
Q(t1, ..., ta) < L(mint; > to) Y G;(min{t;, maxt,}).
i i i#j
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For anym =1,...,d, distribution function Q)_,, is tightly bounded from above as follows:

oty ettty - -t <1m1nt>t G,( m(maxt;) | .
Q-m(t1 1 tmt ) <10 0 (Z na ))

J#Em

If D contains at most d — 2 elements, then Qp s tightly bounded from above as follows:

QD(ti17' .. ) < 1(m111t > to) (Z sz(tzk) + Z GJ(T)> .

’LkE h .
i,€D JjeCD

Theorem 6.1 relies on the fact that bidders submit their true values. However, this

condition can be relaxed. Consider the following two assumptions.
Assumption I (AI). Bidders do not bid more than they are willing to pay.

Assumption IT (AII). Bidders do not allow an opponent to win at a price they are
willing to beat.

These assumptions were introduced in Haile and Tamer (2003). The authors were among
the first ones to relax equilibrium conditions and allow other types of bidders’ behavior.
One of their contributions is the construction of bounds on distributions for this limited
structure in certain auction models.

The proposition below shows that the bounds in theorem 6.1 are correct when the
equilibrium condition is replaced with assumptions 1 and 2. In addition, I have to assume
that the probability of a tie is 0.

Proposition 6.2. Suppose that only the winner’s identity and the transaction price are
observed and P(b; = b;) =0 fori # j.

(a) If AI holds, then Qp are bounded from above as in theorem 6.1.

(b) If AII holds, then Qp are bounded from below as in theorem 6.1.

6.2 Bounds when all the identities and all the bids except for the
highest bid are observed

Let I1; denote the set of all the permutations of set {1,...,d} and p € II;. Let p(i) stand
for the ith element of permutation p. In the auction context, bidder p(i) is the ith highest
bidder.

The following d! functions are observed:
WP(SQ, ey Sd) = P(ﬂz;él(bp(z) < Si)7 bp(l) > bp(g) > ... > bp(d))
Notice that

pEa:p(1)=3
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Also introduce the following d(d — 1) functions:

Gjh(t) :P(;na;{hbz <bh7bh <bj7bh St)7 h%]u .]: 177d7 h
i#£5,1

Il
\_}—‘
&

Note that

Gn(t) = > W,(t,...,t).

pElly:p(1)=3,p(2)=h

Value G, (t) is the probability that bidder j wins, bidder & submits the second-highest bid
and this bid does not exceed t.
For simplicity, I show bounds only on the joint distribution function ) and marginal

distribution functions £}, j =1,...,d.

Theorem 6.3. Suppose that bidders play their weakly dominant strategy by submitting
their true values. Also suppose all the identities and all the bids except for the highest bid
are observed.

(a) Then function Q is bounded from above and below as follows:

d
[[iti=7) < Q... ta) <> W,(min{t,ay, o)} - LM ), ., D f).

1 petly, omEbet =k

(b) The marginal distribution functionsFj, j =1,...,d, are bounded from above and below

as follows:

Y Gt +1t=T)Gi(T) < Fi(t) <Y _Gu() + > _Gyt) + 1t >t0) Y Y Gu(D).

i#j i#j i#j i#j h#ihtj
The example below illustrates the results of theorems 6.1 and 6.3. It is depicted in

figures 7 and 8.

Example 6.1. Consider the auction with three buyers. Let )~(17 XQ, X5 and A be indepen-
dent random variables distributed on [0, 1] with distribution functions F (t) = t, Fy(t) = t2,
F5(t) = vt and Fu(t) = t. Let private values X, X, and X5 of the buyers be

X, =0.25X; +0.75A
X5 =0.6X5 + 0.4A
X3 =0.5X;3 + 0.5A.

Figure 7 shows the bounds on the marginal distribution functions Fy, 5 and F3 in the
first scenario in Theorem 6.1. Figure 8 shows the bounds on £}, F5 and F3 in the second

scenario.
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Figure 8. Bounds on the marginal distribution functions in the second scenario.
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7 Appendix A: Proofs of the results in section 3

In the Appendix, I use the following notations. L![r, £] stands for the class of Lebesgue integrable
functions on [7,¢]. The Euclidian norm of vector x = (x1,...,x4) is denoted as ||z||. ||z]/1 stands
for the following norm of x: ||z||; = Z?Zl |z;|. The right derivative of function v at point ¢ is
v(t+ h) —v(t)

Dru(t) =i
ro(t) = lim

7.1 Proofs of Proposition 3.2 and Corollary 3.3

Proof of Proposition 3.2. It suffices to show that limy, L(t) = 1. Let t; > tg be very

GaG3

G1

close to tp and let 0 < L < 1 be such that F;(t) < L for any ¢ € (to,t1), i = 1,2,3. Consider the

first equation in system (3.3) and use it to obtain that

Ci(t) > /tl(FQFg)/u ~ L)ds = (1 — L)Fy(t1) Fa(ts),

Gi(t1) < Fa(t1) F3(th).

Similarly, using the other two equations in (3.3), obtain that
(1= L)F1(t1) F3(t) < Ga(th) < Fi(t) F3(t1),

(1 — L)Fi(t) Fa(t1) < Gs(t) < Fi(t)Fa(ty).

Because F; = \/%%Fﬁ then

1 G2G3 G2G3
< — > — .
Fi(h) < 7=/ o B 2 VIS L =8

Because Fi(tp) = 0 and ¢; can be chosen arbitrarily close to tg, then L can be arbitrarily close to
0. This implies that limy %217(;3(25) =1

G1

Proof of Corollary 3.3. Conditions (3.2) follow from Proposition 3.2 and the fact thatlim,;, Fj(t) =
0,i=1,2,3.

7.2 Strategy for proving identification

Theorems 3.4 and 3.5 follow from the proofs in sections 7.3 and 7.4.

As mentioned in section 3.5, my strategy for proving identification consists of two logical steps:
first establishing local identification, then global identification.

It can be shown that (DE)-(IC') always has a negative local solution as well as a positive local
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solution.” Conditions for uniqueness in the theory of differential equations do not let us control
the sign of solutions. Therefore, even though I am interested only in a positive solution and can
neglect a negative one, sufficient conditions that guarantee uniqueness of a positive local solution
cannot be derived from system (DE). To tackle this problem, I use auxiliary tools.

Auxiliary tools

I transform (DE) into a new system by introducing auxiliary functions Hy, Ha, Hs:
Hy = F5F3, Hy = FF3, Hs= F1F>.

Clearly, these functions are the distribution functions ofmax{Xs, X3}, max{X1, X3} and max{X, Xo},

respectively. Functions Fj are expressed through H; as F2 = Hfl?3, F} = Hg:?’, F32 = H;I—Ij? Tak-

ing into account that F; must be positive, I obtain

| HoH3 H\H; [H, Hy
F = Fy = F3 = . 7.1
1 }ii 5 2 }{2 ) 3 ng ( )

Thus, for any point t > tg, system (DE) can be written as

1— /li?;?Q
g2

H,H.

1— /s

Hy= —2
g3

1
/R R—

1— H1H>
Hjy
Note that initial conditions H;(t9) = 0 cannot be imposed because the right-hand sides of the
equations in this system are undefined when H; takes value 0. Instead, I can set conditions on
the upper limit of H; at to:

lim H;(t) =0, i=1,2,3. (ICH)
tlto

The right-hand side of the last system is a vector-valued function that depends ont, Hy, Hy and
Hs. Denote it as J(t, H):

tr
t t t
1](t,l¥) _ gl( ) ’ 92( ) ’ 93( ) ’ (7.2)
1—  /H2Hs 1 _  /HiHs 1_\/@
H, Ho Hj3
and rewrite the last system as
H'(t) = J(t, H(2)). (DEx)

I will refer to (DEp) as an auxiliary system and to problem (DEg)-(ICy) as an auxiliary problem.

Definition 7.1. Function H = (Hy, Ha, H3)'" is a solution to (DEg)-(ICy) on an interval
(to,to + a] if H; are absolutely continuous on (to,to + a], satisfy (DEg) a.e. on (to,to + a] and
also satisfy (ICy).

"See remark 7.4 for further explanation.
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Proof roadmap

Because formulas (7.1) account for the sign of F}, we automatically consider positive solutions to
(DE)-(IC). Thereafter by a solution to (DE)-(IC) I will always mean a positive solution.

The local identification result is proved in steps. In the first step, I show that conditions (I) and
(IT) are sufficient to guarantee that problem (DFEy)-(ICy), which is the auxiliary problem, has
a local solution. In the second step, I use formulas (7.1) to find F; from H; and show that these
F; constitute a local solution to the main problem. Lastly, for the auxiliary problem, I establish
that its local solution that was found in the first step is unique. This implies that for the main
problem, its local solution that was found in the second step is the unique solution.

The global identification result is obtained from the local identification result by showing how
the unique local solution to (DE)-(IC) can be extended to the unique solution on the whole
support. The idea is to extend this local solution to small intervals progressively farther to the

right until the upper support point 7' is reached.

7.3 Local identification

Proving local identification is the most difficult part of the identification proof. I show that to
establish the existence of a local solution, I only need conditions (I) and (II). To obtain local

uniqueness, I use condition (IIT) as well as (I) and (II).

7.3.1 Existence of a local solution

I start by finding an interval on which a local solution to the auxiliary problem OEg)-(ICx)
and a local solution to the main problem (DE)-(IC) exist. Then I prove local existence for
(DEw)-(ICyH) and use this result to establish local existence for (DE)-(IC).

Before moving on, I must introduce some notations and carry out preliminary technical work.
First of all, T have to indicate the domain of function J(¢, H). Take into account formulas (7.1),

which express F' through H, and note that for the auxiliary problem, we want to prove not only

HoHs H1H3 HiHo
Hy Hy Hs

that there is a local solution but also that this solution is such that functions

take values less than 1 and the following conditions hold:

. HyHj . HiHj . HiHs
1 t)=0, 1 t)=0, 1
iite  H; =0, ilte  Ho =0, ilto  H;

(t) = 0.

This accords with the fact that for function J(¢, H) to be well defined, the denominators in J (¢, H)
must be separated from 0. To do that, choose any ¢ € (0,1) and allow H to take values only in

the following sets:
Ho(é) == (0,00)3 N {(hl,hg,hg)tT : h2h3 E 6h1, h1h3 S 5h2,h2h3 S 5h1}

Let Do(8) = [to, T] x Ho(8) be the domain of J(¢, H) (a.e. with respect tot). As we can see, &
guarantees that the denominators in J(t, H) are separated from 0 by the value 1 — /3.

To determine an interval of existence for a local solution, I use conditions (IT). Choosey > 0
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such that y/(1 —V/§)? < 8. Let tg +a, a > 0, be a point from [tg, T] such that

GoG3
G

G1G3
Go

G1G2

W(t € [to, to +a]) G

(t) <,

(t) <,

() <. (7.3)

Conditions (IT) guarantee that such ¢ty + a exists. Interval [tg,to + a] is an interval on which a
solution to problem (DEp)-(ICpy) exists.

Auxiliary system with ¢

The right-hand side J(¢, H) of the auxiliary system (D FEp) has singularities in H when H; =0
or Hy = 0 or H3 = 0. These singularities can be handled by using a very smalle > 0 and

considering an auxiliary system with e > 0:

g1
H) =
1— HoHjy
Hi+e
Hl — 92
2 1— /H1H3
Ho+e
Hl — g3
1— H1H> ’
Hs+e
together with initial conditions
Hi(tp) =0, i=1,2,3. (ICH.,)
Denote
tr
t t t
Je(t, H) _ gl( ) , 92( ) : 93( )
1—,/H2Hs 1 /HiHs | _  [HiH>
Hi+te Ha+e H3+te
and rewrite the system with € as
H’(t) = J(t,H(t)). (DEmq,)

The definition of a solution to (DEp )-(ICh ) is analogous to Definition 7.1 and defines a solution
on [to, to + a] instead of (to, to + aj.

Introduce
1:1(5) = [0, 00)3 N {(hl, hQ, hg)tr : h2h3 S 5h1, hlhg S 5h2, h2h3 S 5h1}

and let D(8) = [to,T] x H(J) be the domain of J¢(¢, H) (a.e. with respect to t). The difference
between H(8) and Hy(8) is that H(J) allows H; to take value 0.

Lemma 7.1. Let observable functions G; satisfy conditions (1) and (II). Let J°(t, H) be defined
on D(8). Then (DEg.)-(ICH.) has a solution on [ty,to + a).

Proof. To prove this result, I use a Tonelli approximation approach, which builds special approx-
imations of a solution on very small intervals. These approximations have an important property
— when the lengths of the intervals go to zero, the sequence of approximations has a subsequence

converging to a solution to (DEg)-(ICH,).
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Tonelli approximations are constructed step by step according to a specified rule. Consider,
for example, intervals [to, to + %], [to + %, to + %], .., [to+ 1, to +a], where a < %, and k is very
large. For these intervals an approximation is built in the following way. First, an approximation
is found on [to,to + 1], then it is extended to interval (to + £, %o + 2]. Next, the approximation
is extended to (to + %,to + %] and so on. This process is continued until the approximation is
constructed on the whole interval [tg, tg + al.

A special feature of the Tonelli approach is that the extension of the approximation to(ty +
%, to+ 1] is completely determined by the values of the approximating function on[to—i—%, to+ 1]
and therefore does not require any knowledge about the approximation onlto, o + ).

Now I turn to describing the rule of constructing approximations. The integration of both
sides in (DEp,) yields H(t) = ftz J(s,H)ds. For a given k, denote a corresponding Tonelli

approximation as H* = (H¥, HY, H¥). Function H* is defined according to the following rule:

H*(t) = /t Je (s, H* <5 — }C)) ds, t€ [to,to+ a). (7.4)

to

Choose a k that is large enough. To carry out the first step of constructing an approximation on
[to, to + 7], let
HFt)=0, telto—1,t9), i=1,2,3.

Let me show that formula (7.4) is meaningful. In the first step, it defines H*(t) for t € [to,to +
min{3,a}]. Because J(s, H*(s — 1)) = (91(s), g2(s), g3(s))"" for any s € [to, to + min{},a}] and
gi € L [to,to + a], then the integral on the right-hand side exists. For the next step to be well
defined, I have to check that for ¢t € [to,to + min{%, a}l], the values of the constructed function

HA(t) = (HE, 1, HY)" belong to H(6). Tndeed, HE(t) = Gi(t). Properties "£00 < 5
1

% < § and % < ¢ follow from (7.3) and the fact that v < . Therefore, H(t) €

H(5).

In the second step, formula (7.4) defines H* on [t + 1,to + min{2,a}]. For t € [to + +,t0 +
min{%, a}], the Lebesgue integral on the right-hand side exists because functionJ¢ (s, H* (s — 1)) ds

is evidently measurable and bounded by a Lebesgue integrable function:

Ji <5,Hk <5— ;)) ds

Clearly, H¥(t) > 0. Because H}(t) < 1G2(t). HE(t) <

9i(s)
< 5

2
S Ll[to,to + CL], ERS [to,to + min{E,a}].

Q

1j% and H{(t) > G1(t), then

HE () HE (1) o _G)Gs() Y 5
Hi(t) 7~ (1=V0)2Gi(t) — (1—V6)2 ~
Likewise,
HEOHE®D GG v
HY(t)  — (1—-V6)2Ga(t) ~— (1—-+06)2 ~ 7
HE(t)Hy(t) < G1(t)Ga(t) < Y 5
HE()  ~ (1-V0)2Gs(t) ~ (1—V6)2
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Therefore, H¥(t) € H(5) for t € [to + £, to + min{Z,a}].

All subsequent steps are similar to the second step. By continuing to construct approximations
in this manner, T can eventually define function H* on the whole interval [to, to + a.

I take progressively smaller intervals and obtain a sequence of approximations{ H*}. Because

for any k

||Hk(t)H1 < Gl(t) + Gz(t) + Gg(t) < Gl(to + a) + Gz(to + a) + G3(t0 + a)

< Y < o . (1.5)

functions H* in this sequence are uniformly bounded. Moreover, sequence{ H*} is equicontinuous,

a property that is implied by inequality (7.6) and the absolute continuity ofG; on [tg, to + a]:

|H"(t) — H (7)) < ”G(tl)_%ﬂ”l, t,7 € [to, to + al. (7.6)

According to the Arzela-Ascoli theorem, sequence { H*} is relatively compact in C([to, to +a], H),

so it contains a subsequence { H*"} such that for some function H¢

sup ||H(t) — H* (t)]}1 — 0
tG[to,to-{-a}

as m — o0o. Because
€ k 1 € €
J(t, H™™ [t — . — J(t, H (t)) a.e. [to,to+ a]

as m — 00, and a.e. on [tg, to + a]
< 91(t) +92(t) + g3(t)

) e

then according to the Lebesgue dominated convergence theorem, H solves

€ L'[to, to + al,

He(t) = /t J(s, H(s))ds, t € [to,to+ al.

to
The last equation implies that H¢ is absolutely continuous and solves (DEp)-(ICp,) a.e. on

[to,to—l—a]. ]

Local existence for the auxiliary problem

The next proposition formulates the local existence result for the auxiliary problem.

Proposition 7.2. Let observable functions G; satisfy conditions (I) and (II). Let J(t,H) be
defined on Do(8). Then (DEy)-(ICy) has a solution on (tg,to + a).

Proof. Choose a sequence €, such that ¢,, — 0 as m — oo. For every ¢, denote a solution
constructed under Proposition 7.1 for thise,, as H*. As I proved, for every €,,, function H" is
absolutely continuous on [to, to + a] and H;™(t) > 0, t € (to,to + al.
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Notice that the bounds in (7.5) and (7.6) do not depend on the value ofe, therefore,

- Gt + a)ll

R Y

t € [to,to + al,

and

|H™(t) — H(1)||1 < ”G(?:%ﬂnl, t, T € [to,to + al.

The last two inequalities and the Arzela-Ascoli theorem imply that sequence {H"} is relatively

compact in C([to, to + a], H). Hence, it has a subsequence H“™ such that for some function H

sup  |[H(t) — H*™(t)]ly — 0
te[to,t0+a]

as | — 0o. Because

JC(t, H ™ (t)) — J(t, H(t)) a.e. [to,to+ a]
as | — oo, and a.e. on [t, to + a]

g1(t) + g2(t) + gs(?)

Jem (¢, Hem (8)|, < e L'to, to + al,
[[Tem ( @)l < =3 [t0, to + a
the Lebesgue dominated convergence theorem yields
t
H(t)y= [ J(s,H(s))ds, tE€ [to,to+ al.

to

From the last equation, it can be concluded that H; are absolutely continuous on [tg, ty + a] and
constitute a solution to (DEy)-(ICy) on (to,to + a). O

It is remarkable that this existence result does not require any assumptions on observableG;
besides necessary conditions, which are satisfied in the model.

The proof of this proposition implies that if we take a solutionH to (DEg)-(ICp) on (to, to+a]
and define the function for tg as H(ty) = (0,0,0)", then this extended function is absolutely
continuous on [tg, to + a] and clearly satisfies (DEp)-(ICy) a.e. on [tg,to + a]. In other words, a
solution H can be extended from (tg, to + a] to [to,to + a.

The following explanation shows why I cannot use standard existence theorems to prove Propo-

sition 7.2. A general form of a system of differential equations is
2 (t) = v(t, (1)),
where z and v are vector-valued functions. Let the initial condition be
x(to) = xo.

In our problem, z is function H, and v(t,z) is J(t, H).® Existence theorems are usually proved

8Even though initial conditions (ICy) characterize the limit at ¢y rather than the value at ¢, this does
not matter because, as I mentioned above, solution H can be extended from (to,to + a] to [to, to + a.
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for the situation in which the domain of v is [tg — h, to + h] X B(xg) or [to,to + h] X B(zg), where
B(xg) is an open ball with the center in z.° This property implies, for example, that xq is an
interior point in the domain of v with respect to x. Existence theorems are also proved for some
more general cases, but all require, at the very least,zp to be an interior point in the domain of
v with respect to x, and this domain must satisfy certain properties. Because of the specificity of
sets Ho(d) and H(J) and the fact that the point of the initial conditions (0, 0,0)" is on the border
of these sets, I cannot apply any of those results. The method of Tonelli approximation allows me
to take into account the specificity of Hy(6) and H(8) by verifying at each step that the values of
the constructed Tonelli function belong to the domain H (9).

Local existence for the main problem

Now that I have established the local existence result for the auxiliary problem OFEg)-(ICq),
I can turn to proving that the main problem (DE)-(IC) has a local solution. This result is easy

to obtain if we recall how H and F are related in formulas (7.1).

Theorem 7.3. Let observable functions G; satisfy conditions (I) and (II). Then (DE)-(IC) has

a solution on [tg, to + a].

Proof. Let H be a solution to (DEg)-(ICg) on (tg,to + a|. For t > tg, define F; according to
formulas (7.1), and let F;(t9) = 0, i = 1,2, 3. It follows from (DFEp) that the ratios % have finite

positive limits when t | tg. Therefore, functions F; are continuous at ty because for some constant

C 40,

lim F(t) = lim m
tlto 1) tlto H; tlto Gq

and, similarly, lim;, Fo(t) = limg s, F3(t) = 0. Because functions Fj are absolutely continuous
on [tog + A, tg + a] for any A € (0,a), and continuous at point tg, they are absolutely continuous
on [to,to + a]. Tt is evident that F; solve equations (DFE) a.e. on [tg,to + al. O

Observe that because J(¢, H) is defined on Dg(8) and therefore a solution H to (DEg)-(ICx)
takes values only in Hy(8), the values of the corresponding functions F; belong to [0, /4] only.
The goal, however, is to identify F; for all values in [0, 1]. This will be possible because d can be

arbitrarily close to 1.

Remark 7.4. The last thing about the local existence that is worth mentioning concerns the
comment made in section 7.2 about the ezistence of a negative functionF that satisfies (DE) a.e.
in a neighborhood of ty and also satisfies (IC). Note that functions F; are expressed through H; as
F? = Hfli?k?, Fi = HI;I?, F2 = H#;IQ, as follows from the definition of functions H;. Taking into

account that F; are positive, I obtained (7.1) and substituted these formulas into (DE) to obtain

the auziliary system (DEy ). However, if I were looking for negative solutions, I would substitute

| HoH3 [H1Hj [ H1Ho
1 }]—1 ) 2 HQ ) 3 H3

9For systems with discontinuous right-hand sides, this result is illustrated in Filippov (1988).
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into (DE) and obtain a different form of the auziliary system:

H{ — g1
14,/

H) = 92 (7.7)
14 /B

Hy=—9
14/

Using the techniques of this section, it can be shown that (7.7) with initial conditions {Cp)
has a local solution H. This implies there is a negative function ' that solves (DE) a.e. in a

neighborhood of tg.

7.3.2 Uniqueness of a local solution

The next step in the proof of local identification is to show that (DE)-(IC') has only one local
solution. Local existence was proved without imposing any assumptions onG; besides necessary
conditions (I) and (II). To establish local uniqueness, I will assume that condition (III) is also
satisfied. In fact, condition (III) is the most important condition for proving uniqueness.

I start by stating the local uniqueness result. It relies mostly on conditions (3.1), which find

the rate of convergence of F; at tg in terms of observable functions G;.

Theorem 7.5. Let observable functions G; satisfy conditions (I), (II) and (III). Then (DE)-(IC)

has only one solution in a neighborhood ofty.

The idea of the proof of this theorem is to take two local solutions to problem DFE)-(IC) and
show that they coincide on their common interval of existence.
Suppose that F and F are two local solutions to (DE)-(IC) with a common interval of existence

[to,to + ¢|, ¢ > 0. Let H; and ﬁi be corresponding to them auxiliary functions:
Hy = F3F3, Ho=F1F3, Hz= I,
o 21*:'21*:'3, H, =F1F37 Hy = F\ .

Clearly, if functions H and H are identical, then F and F coincide.

The lemma below is key to proving that functions H and H are identical.

Lemma 7.6. Functions H and H satisfy the following inequality a.e. on [to,to + c|:
IH'(t) = H'()|1 < To() | H(t) — H(®)]1, (7.8)

where

and C > 0 is some constant.
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Proof. From (DEj) obtain

Y i=1,2,3. (7.9)
)

From equalities

Hy — Hy = Fy(F3 — F3) + F3(Fy — )
Hy — Hy = F\(F3 — F3) + F3(Fy — Fy)
Hy — H3 = Fi(Fy — Fy) + Fy(Fy — Fy),
find that on (g, to + |
~ F . F: - 1 -
Fl—Fl:—%(Hl—ﬂl)—i-%(ffg—ffg)—i- = (Hg—Hg)
F3(F + F3) F3(Fy + F3) KR+ F
_ E _ FyF . F.
Fy—Fy=— "2 (H—-H)-——2%22% _ (Hy— H))+——2—(Hs; — H3) (7.10)
Fg(FQ + FQ) F1F3(F2 + FQ) Fy (FQ + FQ)
1 - F. 8 F _
F3—F3 (H1 H1)+72~(H2—H2)—73~(H3—H3).
Fy + By (Fy + F»)Fy (Fy + F>)Fy

According to (3.1), there exist constants C; > 0, Cy > 0 such that on (to, o + ]

Fy Fy F3

C; < <Oy, C1 < <Cy, C1 < <y
GQGg GlG3 G1G2
G'1 GQ G3
F F F.
Ol < ———<Cy, C1<——==<0Cy O1<——0<C
G2Gs G1Gs G1G2
\Vaen \Vawes \V Gs
(to + ¢ can be taken close enough to tp). Then on (¢g,ty + ¢,
GG ~ G - G .
F - F < K H H K Hy, — H. K H; — H
|F1 — Fi an G |Hy — Hy| + GG’ o — Ha| + G1G3| 3 — Hj
G1G3 ~ 1 ~
|F2—F2| <K |H1 H1|+K |H2—H2|—|—K 2G3|H3—H3| (7 11)
. . N 1 /G1Ga ~
- B <K 2H—H K 1H—H K— H; — H.
|F3 — F3| < G3| 1 1]+ G3\ 2 9| + a\ G |H3 3]s

where K > 0 is a constant expressed in terms of C7 and Cs. Let L > 0 be a constant that bounds
F; and F; from above on [to, tg 4 ¢]. Denote C = ﬁ Inequalities (7.11) and equations (7.9)
imply that a.e. on [tg, to + ]

GG G1G G1G
H — 0|, < 91 | 92 | 93 \/ 2L3 \/ 163 \/ 192\
- s e (v 2 2 (o O 2 ) i - A

Establishing inequality (7.8) is the most challenging part of proving local uniqueness.
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Notice that because H and H solve the auxiliary problem (DEg)-(ICy), then a.e. on (t, to+c]

Therefore, inequality (7.8) can be rewritten as
1 (¢, H(2)) = J (¢, H(t))l[1 < To(t)[|H () — H (Bl

This last inequality is a generalized local Lipschitz condition for functionJ(t, H) with respect to
variable H. It is worth emphasizing that this inequality holds only for the values of functions H
and H at the same point ¢ but not for any two arbitrary values of variable H.

The following two lemmas prove that inequality (7.8) together with condition (III) yield that

H and H are identical functions and, therefore, prove Theorem 7.5.

Lemma 7.7. Let z : [1,£§] — R" be an absolutely continuous function. Then||z||1 has the right

derivative Dg||z||1 a.e. on [1,&], and

Drllz®)llh < '@l a-e. on [r,€].

Proof. Hartman (1964) proves a similar lemma for smooth functions for the maxnorm and the
euclidian norm. First, for any fixed i consider function |z;|. Since z; is absolutely continuous, |z|
is absolutely continuous too. Dg|z;(t)| then exists a.e. on [7,&].

Let t € [1,£] be a point in which z; has derivative. Use the definition of the right derivative:

X Zi(t-i-h — % t)|
Drfzi(t)] = Jim PRI

to conclude that Dplz;(t)] = 2i(t) if z;(t) > 0 and Dpgl|z(t)| = —zi(t) if z;(t) < 0. Indeed, if
zi(t) > 0, then z;(t + h) > 0 for small enough h, and Dpg|z;(t)| = 2/(t). In a similar way we
consider the case z;(t) < 0. If z;(t) = 0, then

4+ h
lim Z(hﬂ‘ ol

-zt +h)l
Drlzi(t)| = hhm 5 = | im

—0+ h

In all three cases Dg|z(t)| < |z(t)].
Function ||z||; is the sum of absolutely continuous function and, hence, absolutely continuous.
Then a.e. on [, {]

n

Dgllz®)[ = DR(Z |2i(t)] ZDR!ZZ Z Bl =12l

O

Lemma 7.8. Let function v : [1,€] — R be absolutely continuous. Suppose that v(r) = 0, and

a.e. on [T,&]

Dro(t) < T(t)u(t), where T € Lr,¢].
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Then
v(t) <0, telr{].

Proof. Results similar to the one in this lemma have been obtained by researchers on a more
general level. However, it is easier to prove this lemma directly than to show how it follows from
more general results.

Function ¢(t) = v(t)e™ J7T(s)ds i absolutely continuous as the product of two absolutely con-

tinuous function and
Dro(t) = Dr(v(t))e™ - TO% _D(t)o(t)e= [T <0 qee. [1,€].

Szarski (1965) uses Zygmund’s lemma to show that if ¢ is absolutely continuous and Dré(t) < 0
a.e. on [7,¢], then ¢ is non-increasing on [7,€]. Since ¢(7) = 0, then ¢(¢) < 0 on [7,&] and, hence,
v(t) <0 on [7,£]. O

Let me explain in more detail how these two lemmas imply that functions H and H coincide
on [to,to + ¢]. Consider [r,&] = [to,to + ¢]. In the first lemma, take z(t) = H(t) — H(t) and use
inequality (7.8) to obtain

D[ H(t) = H(t)|lx < To(t)||H(t) = H(t)[|r-

In the second lemma, let v(t) = ||H(t) — H(t)||; and T'(t) = Ty(t). Because condition (III)
holds, then according to this lemma, |[H(t) — H(t)|1 < 0, t € [to,to + ¢]. This means that
|H(t) — H(t)||s = 0, t € [to,to + ], or, in other words, functions H and H coincide on [to, tg + ¢].

In its turn, this implies that functions F' and F coincide on [to, to + ¢] too.

To summarize, I have shown that, given conditions (I), (II) and (III) on observable functions
G;, problem (DE)-(IC) has the unique solution F' in a neighborhood of ty. As mentioned in

section 3, this solution is assumed to be monotone.

7.4 Global identification

Now I establish that the local solution to (DE)-(IC) can be extended to a solution on the entire
interval [tp,T], and that such extension is unique.

Consider Figure 3 and the local solution F' on [to,tp + ¢] depicted on the left in this figure.
Notice that all functions F; take positive values at tg 4+ ¢ and these values are known. Denote
them as v; = Fj(tp + ¢),v; > 0. To extend the local solution to the right, I need to solve system
(DE) in a right-hand side neighborhood of ¢y + ¢ given that functions F; in a solution to this
system take values v; at tg + c. Clearly, results of theorems 7.3 and 7.5 cannot be used for this
problem because the methods in these theorems were developed for the situation when all initial
values of F; are 0. Therefore, to carry out the extension process I first need to prove the local

existence and uniqueness result for the case when when all the initial values of F; are positive.
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7.4.1 Positive initial values

Let t; € (to,T) and functions F; satisfy initial conditions
Fi(tl) = Uy, 1= 1,2,3, (7.12)

where v; are known, 0 < v; < 1. Notice that the values of G;(¢;) are known.

I first consider the auxiliary system (DFEp). The initial conditions on functions H; are obviously
Hi(t1) = vous, Ha(t1) =vivs, Hs(ty) = vivs. (7.13)

Proposition 7.9. Let observable functions G; satisfy conditions (I). Then (DEy)-(7.13) has a

solution in a right-hand neighborhood oft;.

Proof. The proof uses the Tonelli approximations approach. It is similar to the proof of Lemma
7.1 and differs from it by technical details.

Let me first specify the domain of the right-hand side J(¢, H) of the auxiliary system (DEp)
and find a solution’s interval of existence. Let A > 0 be any number such that A < min{l —

v1,1 —v9,1 — v3}. Define set
H(A) = [0,00)> N {(hy, ha, h3)'" : hohs < (v1 + A)?hy, hihs < (vy + A)?ha, hohg < (v3 + A)%hy}.

Let the domain of J(¢t, H) be D(A) = [t;,T] x H. For a given A, I can always choose a y > 0

small enough so that
(L+7)%0f < (o + A% (14+79)%05 < (v2+A)%  (1+9)%03 < (v3+A)>%
Because limy |+, G;(t) = G;(t1), there exists a point 1 + a1, a1 > 0, from [t1,T] such that

Gl(tl + al) — Gl(tl) < 'yvgvg(l — v — A)
Gg(tl + CL1) — Gg(tl) < ’71117./3(1 — Vg — A)
Gg(tl + al) — Gg(t1) < ’}/1)11)2(1 — V3 — A)

Interval [t1,t1 + a1] is an interval on which a local solution exists.

Now I construct Tonelli approximations. For any natural numberk let
Hf(t) = V203, Hég(t) = V103, Héc(t) = V102

for t € [t; —1,t1]. Denote vg = (vovs, v1v3, v1v2)"" and let vf) be the i’s coordinate of vy, i = 1,2, 3.

Define function

HY () = vp + /t J (S,Hk <s _ ;)) ds, et b +al). (7.14)

t1

This formula is meaningful. In the first step it defines H on [t1,t; + min{3,a1}]. For ¢ from this

interval the Lebesgue integral on the right-hand side exists because the integrand is bounded from
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above by functions from L! [t1,t1 + a1]:

1 i .1
J; <3,Hk (s — k))’ < 9:(s) , SE[ti,t1 +m1n{E,a1}].

Evidently, for ¢ € [t1, ¢ + min{}, a;}]

HE (1) = vgug + SO = CG1t)

1-— (%]
Ga(t) — Gaft
HE(t) = vyu + 20 = Cotr)
1-— ()
Gs(t) — Gs(t
HE(t) = vy, + S = Gs(0),
1-— v3
_ krrk
Let me show that H*(t) € H for t € [t1,t; +min{3,a1}]. Consider, for instance, Hé??’ . Because

Gg(tl + a1) — Gg(tl) ")/1111)3(1 — Vg — A)

Hy(t) < vivg + T—— < wivz + o < (1 +7y)vrs,
Hy(t) < (1+7)vivg,
HY(t) > vavs,
then
Hg t)Héc(t) 2,2 2
=2 < (1) < (v + A2
Likewise,
HY(t)Hy(t) < (s + A)? HY(t)H3(t) < (vg+ A)2.
HE(t) 7 HE(@)

In the second step formula (7.14) defines H on [t; + 1,1 + min{2, a1 }]. For ¢ from this interval

the Lebesgue integral on the right-hand side exists because

1 i .2
J; <S,Hk (s — k:))‘ < 1_91}% € Ll[tl,tl +a1], sé€ti,ty —f—mln{%?al}].

Note that H*(t) € H for t € [t; + 1,1 + min{Z, a1 }]. Indeed,

Gg(tl + al) — Gg(tl)
1—v9—A

HY(t) < vz + < v1vz + yvrvg = (1 4 v)vyvs,

HE(t) < (1+7)viv,

Therefore,

o7



In a similar way I can show that for¢ € [t1 + 1, + min{%, a; }]

This process continues and defines function H k on the whole interval [t1,t1 + a1].

Now let me obtain the properties of sequence { H k }. Inequality
IH(#)[11 < (1+7)(vavs + v1v3 + v1v2)

for all t € [t1,#1 + a1] implies that sequence { H*} is uniformly bounded.

Because for any t,7 € [t1,t1 + a1]

Gu(t) ~ Gr(r)] |, 1Ga(t) — Galr)] _ [Got) — Gis(r)
1—-v1 —A 1—vy—A 1—v3—A
1G(#) = G
~ 1 —max{v; + A,v2 + A vg + A}’

1" (8) — HE(7)

IN

and G; are absolutely continuous on [t1,t; +a1], then sequence { H*} is equicontinuous. According
to the Arzela-Ascoli theorem, { H¥} is relatively compact in C([t1,t1 +a1], H). Hence, it contains

a subsequence H*" such that for some function H,

sup ||[H(t) — H* (t)||; — 0 as m — oc.
[t1.t1+a1]

Because .
J (t,Hkm (t - k>> — J(t,H(t)) a.e. on [t1,t1 + a1]

and a.e. on [t1,t] + a1]

1 g1(t) + g2(t) + gs(t) X
Jt, H [+ - — < Ll ¢
‘ (7 ( km))’_ 1—maX{U1+A71)2+A7U3+A}E [17 1+a],

then by the Lebesgue dominated convergence theorem, H () solves

H(t):vo—l—/tJ(s,H(s))ds, t € [t1,t1 + a1],

t1
which implies that H; are absolutely continuous and solve (DEy)-(7.13) on [t1,t1 + a1]. O

The existence result of Proposition 7.2 also required G; to satisfy conditions (II). Note that
because the values of the underlying distribution functions F; at ¢; are separated from 0, then the
result of Proposition 7.9 does not require any conditions on the behavior ofG; around t;.

The next theorem establishes the local existence and uniqueness result for problem D FE)-(7.12).
It is noteworthy that conditions Fj(¢1) > 0 guarantee uniqueness result without any additional

conditions on functions G;.

Theorem 7.10. Let observable functions G; satisfy conditions (I). Then (DE)-(7.12) has only

one solution in a right-hand neighborhood oft;.
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Proof. According to Proposition 7.9, problem (DFEf)-(7.13) has a solution H on [t1,t1 + ai],

a1 > 0. Use this solution to find functions

| HoHs [H1H3 | H1Hy
= = F; = .
1 Hl ) 2 H2 ) 3 HS
Clearly, F' = (Fy, Fy, F3)!" is absolutely continuous and solves (DE)-(7.12) on [t1,t1 + a1].
The uniqueness proof is based on obtaining a generalized local Lipschitz condition (7.8). LetF
and F be two local solutions of (DE)- (7.12). Without a loss of generality, assume that|[ty, t; +a;]

is their common interval of existence. Let H and H be their corresponding auxiliary functions:

Hy = Fyl5, He=IF;, H3=FF,
oy = BF;, Hy=FF;, H;=RF.
Functions H and H solve the auxiliary system (DEp) a.e. on [ty,t; + a1].

The proof of the uniqueness part of this theorem is much easier than the proof for problem
(DE)-(IC). Indeed, for (DE)-(IC), the difficulty of proving uniqueness for stemmed from the
fact that all F; had values 0 at tgp. Now all Fj(t;) are positive. Use (7.10) and the fact that F;
are separated from 0 in a neighborhood oft; (without a loss of generality, a; is small enough) to

obtain
|F; - Fi| < K||H — H|y

on [t1,t1 + a;] for some constant K. Exploit (7.9) and establish that for some constant C,
IH'(t) = H'()[[1 < C(g1(t) + ga2(t) + g3 H () — H(t)]1-

a.e. on [t1,t1 + a1]. Because g; € L'[t1,t1 + a1], then lemmas 7.7 and 7.8 imply that H and H

coincide on [t1,t1 + a1]. Hence, F' and F coincide on this interval too. OJ

7.4.2 Extension of the local solution to the whole support

Now I turn to the final element of the identification proof. I demonstrate how the unique local
solution to (DE)-(IC) can be uniquely extended to a solution on the whole support. Throughout
this section, I assume that functions F; obtained from H; are strictly monotone — that is, the

inq H2Hs HiHs HiHp ; : ;
ratios oo Hy o Hs e strictly increasing.

To begin, recall that in the proof of the existence result in section 7.3.1, functionJ (¢, H) was
defined on Dy(d) and the values of function H were restricted to set H () for a chosen 0 < § < 1:

I;[()((s) = (0,00)3 N {(hl,hg,hg)tr s hohg < (5h1, hihs < 5h2,h2h3 < (5h1}.

Because the local solution to the auxiliary problem takes values only in this set, the functions
F; in the corresponding local solution to the main problem (DEg)-(ICy) take values in [0, v/0]
only. However, we also want to identify F; when these functions take values above v/6. Notice

that § < 1 could be chosen arbitrarily close to 1, and this is what will allow extending the local
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solution to the whole support.

Fix §, 0 < § < 1, and let the domain of J(¢t, H) be Do(8) = [to, T] x Ho(d) (a.e. with respect
to t). Theorem 7.5 proved that given conditions (I), (IT) and (IIT), system (DEy) with initial
conditions (ICy) has the unique solution H = (Hy, Ha, H3) on some interval [t, to + ¢|. Denote
t1 = to + ¢, and calculate

vi = Hi(t), i=12,3.

Because H; are strictly increasing functions, then z;1 > 0. Note that H(t1) € Ho(5). If H(t1) is
an interior point in Ho(§) — that is, if

1121 <5 11231 <5 2131 <5
) )
31 Z21 Z11

then (t1, H(t1)) is an interior point of Dy(6), therefore J(t, H) is defined in a neighborhood of this

point. This means that the auxiliary system (DE}), considered for ¢ > ¢1, with initial conditions
Hz(tl) = Z51, 1= 172737

is a well-defined problem. In light of the results of Proposition 7.9 and Theorem 7.10, this problem
has a unique solution H on some interval [t1,t; + p], ¢ > 0. Thus, I can uniquely extend the
local solution found on [to, 1] to a solution on the interval [tg,¢; + p]. Note that the value of
H (t; + p) belongs to Ho(6). If this value is in the interior of set Hy(8), I can extend the solution
even farther to the right and continue this process until I reach a point in which the value of
function H becomes located on the border of set Hy(d). This point determines the solution’s right

maximal interval of existence for the given value of §.

Definition 7.2. An interval [to,&] is the maximal interval of existence of solution H to (DEy )-
(ICy ) if there does not exist an extension of H over an interval [to, & + 1] such that n > 0 and H
remains a solution to (DEy )-(1Cy ).

In the case that I am currently considering, the solution’s maximal interval of existence is
determined by the value of § that was chosen to define set Hy(5). The proposition below yields

an explicit formula for this interval.

Proposition 7.11. Let function J(t, H) be defined on Do(38). Assume that all conditions on G;
that guarantee existence and uniqueness of a local solution to (DE)-(ICy) are satisfied. The
mazimal interval of existence of solution H to (DEg )-(ICy) is [to, Ts|, where Ts is such that

max{H2(T5)H3(T5) H\(T5)Hs(Ts) Hl(Tg)Hg(Tg)}:(S
Hi(Ts) 7 Ho(Ts) ~ Hs(Ty) '

This proposition follows from the discussion above and therefore it is left without a proof.

Proposition 7.11 implies that for the given d, [to, Ts] is the maximal interval of existence of
a corresponding solution F' to problem (DE)-(IC). Also, the values of functions F; on [tg, Tj]
belong to [0, v/4], and for point Ty,

max { F1 (Ts), Fo(Ts), F5(T5)} = V3.
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£ T, T £, T, T
Fi, Fy, F3on [ty, Ty, ] Fy, Fy, F3 on [ty, Ty,]

Figure 9. Maximal intervals of existence of a solution to the main problem: [ty, Ts,] corresponds
to 61 (left), [to, T5s,] corresponds to d2, where d2 > 1 (right).

Y

Figure 9 depicts maximal intervals of existence of a solution F' for values d; and do, where
d2 > 4. Maximal interval [tg, Ts,]| corresponds to d1, and maximal interval [to, T5,] corresponds
to d2. Because functions Fj are strictly increasing, then T, > Tj,. Intuitively, if 6 approaches 1,
then the maximal interval of existence approaches support [tg, T']. The theorem below establishes
this fact.

Theorem 7.12. Consider a strictly increasing sequence 6, n > 1, such that §, < 1, and §,, — 1
asn — 0o. Assume that all conditions on G; that guarantee the existence and uniqueness of a local
solution to problem (DEy )-(ICy) are satisfied. Let [to,Ts,] be the mazimal interval of existence
for the solution to (DEy )-(ICy) when J(t,H) is defined on Do(8,). Then Ty, is determined

from the equation

H,(T5,) Hy(T5,) H3(T5,)
and T, is a strictly increasing sequence. If
F(T)=1, i=1,2,3, (7.16)

then T5, — T as n — oo.

HyHz HyHs; HH>
Hy ° Hz ° Hs

sequence 0y, are strictly increasing, equation (7.15) implies that sequenceT}, is strictly increasing.

and

Proof. Proposition 7.11 clearly implies equation (7.15). Because functions

Because Ty, increases and is bounded from above by 7', it converges to some point T < T. If
T < T, then we get a contradiction with the condition 6, — 1 and conditions (7.16). Thus,
T=T. O

Taking into account that F2 = Hi,lj?’, Fi = Hig% F? = H}{—?, we can see that Theorem 7.12

guarantees that by choosing § arbitrarily close to 1, we will identify F; on the whole support

[to, T]. This completes the proof of identification.
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7.5 Auctions with any number of bidders

Proofs of propositions 3.6 and 3.7 and Corollary 3.8 are similar to those of propositions 3.1 and
3.2 and Corollary 3.3.

Proof of Theorem 3.9. I can use the same approach as in the case of three bidders. System
(3.6) can be rewritten in a convenient form by introducing d auxiliary functions Hy, Ho, ...,
H, that stand for the distribution functions of max{Xo, X3, ..., X4}, max{Xy, X3,..., X4}, ...,
max{X1, Xo,...,X4-1}, respectively:

Hy = FyF;...Fy, Hyo=FFy...Fy, ... ,Hy=FF...Fp,.

For t > tg functions F; can be expressed through H; as

1
HoHs...Hy\ "' HiHy...Hg 1\ "'
F:<Hw> L ,Fd:<12dl> , (.17)
1

therefore, (3.6) can be rewritten in the following way:

i

H! = ——, i=1,...,d (7.18)
1_ <H1..,H,-1Hi+1...Hd> d-1
HI7?
This system together with initial conditions
lim H;(t) =0, i=1,...,d. (7.19)
tlto

constitutes an auxiliary problem. To deal with discontinuities in H on the right-hand side in

(7.18), T introduce a very small number € > 0 and obtain an auxiliary system with e:
H = =l L i=1,....d

1 Hi.Hi_1Hiz1..Hg \ ¢
HI 21,
i

As in the case of three bidders, first I can establish local existence for the auxiliary system
with e. Then I can show the existence of a local solution to the auxiliary problem (7.18)-(7.19)
by letting € — 0. After that, I can use formulas (7.17), which express F' through H, to prove that

the main problem (3.6)-(3.7) has a local solution

Proof of Theorem 3.10. The existence part of this theorem follows from Theorem 3.9. To
prove the uniqueness part, let F and F be two solutions to (3.6)-(3.7) with a common interval of

existence [to,to + ¢], ¢ > 0. Let
Hi=F,...F,_Fy,...F;, Hi=F,...F,_\F.,...Fy, i=1,...,d.

The idea is to derive an inequality similar to (7.8). Use (7.17) and (7.18) to obtain that a.e. on

10A detailed proof of Theorem 3.9 is available upon request.
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[to, to + ] ]
C -R)(-F) '

The definitions of H and H allow me to express H — H through F' — F as follows:

where a d x d matrix B(F, F) depends on F and F in this way:

0 F3Fy...F;  FyF,...F; FF3Fs...F; ... FyFy...Fy

. F3F,...F 0 RE,...Fy RFF...Fy ... FFy... Fy

B(F,F): 344 d 114 d 1431475 d 143 d—1
FyFy...Fy 1 I[WF3...Fy, F\FyF,...F; F\F>2Fy...F; ... 0

B
F; N
(without a loss of generality, I can assume that ¢t + ¢ is close enough to p), matrix B(F, F') can

The result of Proposition 3.7 implies that lim;;, = (¢£) = 1. Therefore, for a ¢ close enough to g

be written as
B(F,F) = <I+Mo(1)(F7F))BO(F)7

where [ is the d x d identity matrix, M) (F), F)is a d x d matrix such that each of its elements
is o(1) as t — tg, and Bo(F) = B(F, F):

0 F3Fy...Fy,  FyF,...F, F3Fs...Fy ... FyFs... Fy

F3Fy ... F 0 FFy...Fy, FFFs...Fy ... FiF... Fy

Bo(F): 3144 d 144 d 143145 d 143 d—1
Fs...Fy FFs...Fy, FRFyFy...Fy FiFFs...Fy ... 0

Matrix By(F) is symmetric and invertible at any point ¢ # ty. The inverse matrix is

—(d —2)F? FF FF3 FFy ... FiFy
B(F) = 1 FiFy —(d—2)F} KF; FRF, ... FyFy
0 (d=1)F1F...Fy
F\Fy FyFy FsFy FyFy ... —(d—2)F?

Thus, F — F can be expressed through H — H as

F—F = By"(F)(I + My (F,F))""(H — H). (7.21)

The next step is to bound on [t, tg+c] the absolute values of the elements in By ' (F') by observable

functions. This is achieved by using the result of Proposition 3.7. Take, for instance, the element
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By Y(F)11 in the first row and the first column:

1

GGy \ T"
d—2)F < Gi? )
2 d Hd Glu-Gi—lGi—Q—LnGd) d-1
=2 G?—Q

for some constant K71;. Consider another cell in Bo_l(F), for example, the element BO_I(F)H in

the first row and the second column:

1

d a1
1 Gi...Gi—1Giq1...G
-1 1 i—1541 d
|BO (F)12‘:‘(d_1)F3Fd‘§K12H< Gd—2 )
=3 i

for some constant Kj5. For the other elements, bounds are found in a similar way. Then equations
(7.20) and (7.21) yield that a.e. on [t, tg + ]

d a—2 d

~ GlGQ...Gi_lGi 1...Gd gi ~

’H/_HIHISCZ< T + ) Z@HH_H”I
i=1 i i=1 '

for some constant C. The last inequality and lemmas 7.7 and 7.8 imply that H and H coincide
on [to,to + ¢], and hence, F and F coincide on [to, to + ¢].

7.6 Auctions with two types of bidders

Proof of Theorem 3.11.
Necessity is obvious. Sufficiency follows from theorem 3.12 by considering(x) = —Inz,
xz € (0,1].

Proof of Theorem 3.12.
Let

Fi(t) = P(value of type I bidder < t), Fyr(t) = P(value of type II bidder < t)
and introduce functions

S =C, Fi(t), ..., Fi(t), Fir(t), ..., Fri(t)) = v~ ((k = Do(Fi(t) + (d — k)¢ (Fir(t)))
k-1 Ak

S =C(Fi(t), ..., Fr(t), Fri(t), ..., Frr(t),1) = =" (k(F7(t) + (d — k — D) (Fr(t))) -
! d—k—1
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The system of differential equations that determines; and X7 is

’ gI
S = — Fen (7.22)
W (W (S +EEw(200)))
r air
1= 1— V' (Xr11)

W (UL (S)+ 2Ry (S11)))

I analyze it together with initial conditions
Y1(to) = E11(to) = 0. (7.23)

It is enough to show that problem (7.22)-(7.23) can have only one solution in a neighborhood
of tg. Then the extension of this solution along the whole support will be unique too.

System (7.22) implies that for any point from the support

" d—k
kX1 + (d - k)ZH — (d — l)w ﬁib (Z[) + ﬁw (2]]) = kG + (d — k)G][.

Suppose that problem (7.22)-(7.23) has two solutions (X7, %;7) and (X7,%77) with a common
interval of existence [tg, %o 4+ a]. T want to show that for any t € [to,to 4 a], X7(t) > 2;(t) iff
Yt) < fln(t). Fix ¢ € (to,to + a]. From the equation

k d—k
kX + (d — k)ZH — (d — 1)1/)_1 (d_llb(zj) + m (EII)) =
) ) Y I
K+ (d— B — (d - 1)y (d_ﬂ’@” T d_lw@m)
obtain that
w1 Y (X7) (S — %)) =

(7.24)

¥(S5) s
=d—k [1- - (311 = X1,
o (o (FEeEn + i) )

where X% = aX; + (1 — a)¥; for some a = a(Z;(t), 2r(t), Xr1(t)) € [0,1], and X%, = 857 + (1 —
B)X1 for some 3 = B(X1(t), Xr1(t), X11(t)) € [0,1]. Note that for t < T,

Y'(30)
1(a)y—1(_k d—k <1, / 1(_k 3 d—k S
V(N 750 (Er) + 3¢ (3r0r))) V(N 7503 + 1 -9(E)))
Because %’ — 1, g—ﬁ — 1 as t — tp, then for ¢ close enough to ¢y (and we can choose a to be

small enough),




Therefore, from (7.24) T obtain that $;(t) > X7(¢) iff £77(t) < 277(t). Now I want show that this
and the fact that the function (:f (()32 is increasing imply that

( /I* ZN]II)(E] — i[) <0, (EIH — i/“-)(z[[ — ZN]][) <0 a.e. [to,to +CL}.

Suppose that for a given point ¢ € (t,to + a], at which the derivatives ¥} and 3} exist, it holds
that X7 > ;. Let us prove that ¥} — %/ < 0. From (7.22) obtain that
/ r 91 ,( ) 1/}/(21)
Xr =X = g\ ok T h—1( k% d—k /(s ’
Wi\ @' (= FE(En) + 750 (3m) (U (FEv(En) + 59 (5)))

where

L%:G_ V() >G_ ¥(S0) )'
(U (L (Sr) + FE(S))) (U (L (Sr) + Z(S)))
Because ;7 < EH, then

E_n<m( vE) VE) )
T =W\ N E (e + 2o (Sn) '@ (0 + SEe(S))

Now we want to show that the difference in the parenthesis is non—positive

' (3) 3 ~1(_k_y(S -
Because T R ST < 1, then 3 > ¢~ Y20 (Sr) + SE4(24)), and there

fore, X5 > ”L/J_ (d lw(zj) + le (E[[))
Thus, if we show that the function

w’(dfl(%w )+ rv(y2)))

is decreasing in y; when y; and o close to 0 and y; > 1/1_1(%1#(?;1) + %w(yg)), then we
establish that ¥} — f]’l < 0.

The derivative of this function with respect toy; is

V() _ R )" (0 (G ) + i)
W(Tﬂ_l(%@/’(yl) + %w(w))) (d—1) (7/}/(@071(%?/)(3/1) + Z d)(yg))))g

For this derivative to be non-positive, it is sufficient that

) 0 o) + b(m)
W) = WO o) + E )P

The last inequality holds because of the assumption that (Zf,/;% is increasing and the condition

y1 > 7 (FEp () + S (ye).
To summarize, we have established that

(2] - 20,81 —%1) <0 ae. [to, to +a,
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that is,
d

7 — (X — 21)2 <0 a.e. [to,to+ al.

This inequality and (7.23) imply that ¥; and %, coincide in a neighborhood of t.

In a similar way, it can be shown that

d

dt(ZQ — 22) < 0 a.e. [to,to + CL]

and, therefore, ¥o and 3, coincide in a neighborhood of ¢.

8 Appendix B: Proofs of the results in section 4

Proof of Proposition 4.1. Let F, F € A, and G = A(F), G = A(F). For convenience, I

temporarily use the following metric:

di( = sup Z|F (t)]

te(o, 1]

di(G,G) = sup ZIG @)]-

telo, 1]

From the definition of A,

t

Gi(t) — Gyi(t) = /tt(FgFg)l(l — Fy)ds — /t (FyF3) (1 — Fy)ds =

= F2F3 — F2F3 — /t(FgFg)l(Fl — Fl)ds —|—/ Fl((ﬁéﬁé)l — (F2F3),)d8.

to to

Integration by parts yields

G1(t) — G1(t) = (FoFy — [y F3)(1 — Fy) — /t(FQFg)/(Fl — F))ds + /t F|(FyF3 — FyFy)ds.

to to

Knowing that F| and FyFj are distribution functions, obtain that for anyt € [to, T,

G1(t) — G1(t)| < 2 sup |[FoFy — FyFy| + sup |[Fy — Fi| < 3dy(F, F).
[to.T] [to,T)

After arriving at similar inequalities for Go — Gy and G5 — @3,

3
Z ’ < 9d1(F F) t e [to,T],

and, hence,
di(G,G) < 9dy(F, F).
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Because
d\(F,F) < V/3d(F,F) and d,(G,G) > d(G, G), (8.1)

then
d(G,G) < 9V3d(F, F),

or, equivalently,
d(A(F), A(F)) < 9V3d(F, F).

Proof of Proposition 4.2. Because F' € qu, then there exists a sequence F;, € Ay such that
d(F,,F) — 0 as n — co. Take any two points t1,t2 € [tg,T] and any F;, i = 1,2,3. Convergence

in metric d implies point-wise convergence. Therefore,
[Fj(t1) = Fy(ta)| = lim |Fy;(t1) = Fj(t2)] < [6(t1) — o(t2)]-

The last inequality and the absolute continuity of ¢ imply that F; is absolutely continuous. Func-
tions F,; are strictly increasing and converge to F; point-wise, so F; are increasing. F, ;(to)
converge to Fj(tp). Hence, F;(tp) = 0. In a similar way, it can proved that F;(T) = 1.

Because F; are absolutely continuous, they can differentiated a.e. on[tg,T]. Let ¢ be a point
at which both F; and ¢ have derivatives. For any fixed h,

-Fi(t+ h) - Fz(t) — lim Fn,i(t+ h) - Fn,i(t)
h " n—oo h

¢t +h) — ¢(t)
- :

<

Taking the limit as h — 0, we obtain that F(t) < ¢/(t).

Proof of Proposition 4.3. This proof is similar to the proof of Proposition 4.1. Let F, F € K¢
and G = A(F), G = A(F). Integration by parts yields

G1(t) — Gy (t) = (FoFy — Iy F3)(1 — Fy) — /t(FgFg)’(F1 — Fy)ds + tF{(F2F3 — [yF3)ds.

to to
Therefore, for any ¢ € [to, T,
G1(t) = G1(1)] < (14 ¢(T) — p(to)) sup |[FaFs — FoF3| 4 2(¢(T) — é(to)) sup |[Fy — F1| <
[to,T} [tOvT]
< (14 3¢(T) — 3¢(to))d1 (F, F).
Similar inequalities for G2 — G2 and G3 — G5 imply that
d1(G,G) < 3(1+36(T) = 3¢(to))dn (F, F).

Taking into account (8.1),

d(A(F), A(F)) < Cod(F,F), where Coy=3v3(1+36(T) — 3é(to)).
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Proof of Proposition 4.4. Let Gy € A(Ay) and d(G,,Go) — 0 as n — oo for Gy, € A(Ay).
Denote Fy = A™1Gy, F,, = A7'G,,. Clearly, Fyy, F,, € Ay. 1 want to show that d(F,, Fy) — 0
as n — oo. Notice that the sequence F), is equicontinuous, as all functions in the sequence are
bounded and

[Fu(t1) = Fu(t2)] < [6(t1) — (t2)|

for any t1,ts € [to,T]. According to the Arzela-Ascoli theorem, there is a convergent subsequence
F,,. Let F* be the limit of F),,. Because F* € Ay and A is continuous on Ay,

d(AF,,, AF*) — 0.

Thus, AF* = Gp. Given that on A(A,) inverse A~! is defined, F* = Fp.

Proof of Lemma 4.5. Q(F*) = 0. Because the inverse operator A~! exists on A(A,), then
A(F) # G* and, hence, Q(F) > 0 for any F € Ay, F # F*. Now consider F' € Ag\A,. Taking
into account the result of Proposition 4.2, conclude that there is a functionF; in F' that is constant
on some interval in [tg,T]. There are two possible cases for F': when (a) Fj(t) > 0 for t > to,
i = 1,2,3, and (b) some F; takes value 0 in a right-hand side neighborhood of¢g. In the first
case, A(F') # G* because the uniqueness result was proved without the assumption of the strict
monotonicity of F;. In the second case, without a loss of generality assume that Fy(t) = 0,
t € [to,to +w). Then Ga(t) =0 and G3(t) =0, t € [to,to + w), for the corresponding G = A(F).
Because G} (t) > 0 for t > tp, ¢ = 1,2, 3, then obviously A(F) # G*.

Proof of Theorem 4.6. To prove this theorem, I use lemmas A1 and A2 from Newey and Powell
(2003). Consistency will hold if all conditions in Lemma A1 are satisfied. I divide these conditions
into three groups, as in Newey and Powell (2003).

(i) According to Lemma 4.5, F* is the unique minimizer of @ on Ay.

(ii) Set Ay is compact. Let me show that @ and Q, are continuous on Ay and

sup |Qn(F) — Q(F)| 0. (82)
FeR,

The continuity of Q and Q,, will follow from the properties of A on Ay. First, consider Q. For
any F| Fe K¢

Q(F) = Q(F)| = |B{(G" = A(F))" (G* = A(F)) — (G" — A(F))" (G" — A(F))}| =

=|E Z(A(F)j — A(F);) (2G5 — A(F); — A(F);)|.

For any t € [to, T, A(F);(t) <1 and Gj(t) <1, j = 1,2,3, therefore

3
Q(F) — Q(F)| <4E Y |A(F); — A(F);.
j=1
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Applying the Cauchy-Schwartz inequality and (4.1),

IQ(F)—Q(F)| < 4\/§E\/ (A(F) — A(F))Ir(A(F) — A(F)) < 4V3d(A(F), A(F)) < 4V3Cod(F, F).

Thus, function @ is Lipschitz and therefore continuous.

Now consider function Q,. Similar to the methods described above,

n 3
|Qn(F) = Qu(F)| < % DD (Glts) = A(F);(t:)* = (Gnj(t:) — A(F);(1:)*] = (8.3)
i=1 j=1
n 3
= 0 STIAR) 1) — AGF); (0)) (2G5 (1) — A(F); (1) — ACF); (1)) <
=1 j=1

< A‘\f Zn: \/ (A(E)(t:) = A(F)(t) (A(F) () — AF)(t:)) <
< 4\/§dl(:/;(F), A(F)) < 4V3Cyd(F, F).
Property (8.2) will follow from Lemma A2 in Newey and Powell (2003). Indeed, it is clear that
V(F €hy) Qun(F) L Q(F).

This fact combined with (8.3) implies (8.2).
(iii) This condition follows from assumption (4.2).

Conditions (i)-(iii) imply the consistency property (4.6).

9 Appendix C: Identification in generalized competing
risks models

First, I outline Meilijson’s approach. From (5.3), Meilijson obtains a system of integral equations

that do not contain the derivatives of F}:

F(t) =exp {Tlog /t exp{—M log(1 — F(s))dG(s)}} ,
to

where matrix M is such that M(i,j) = 1—M(i,§) and T = (M" M)~'M*'". He suggests applying

to these equations a fixed point theorem for multidimensional functional spaces. As I mentioned,
however, his proofs miss important parts.

I now turn to describing my method. The rank condition implies thatm > d — that is, there

are at least as many minimal fatal sets as the number of the elements in a coherent system. First,

I consider the case of m = d and assume that the rank condition for the incidence matrix M holds

— that is, M is invertible. Introduce auxiliary functions

H=][[F i=1....4,
Jjel;
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and denote H = (Hy,...,Hy)". The rank condition guarantees that functions F}, i = 1,...,d,
taking into account that they are positive, are uniquely expressed through functionsH;, ¢ =

1,...,d, via multiplication, division and taking a rational root. Indeed,

logH; =Y logFj, i=1,...,d.
JEL;

These equations can be rewritten aslog H = M log F, therefore F' = exp{ M ~'log H}, that is,

d
F=[lu", i=1,...d (9.1)
j=1

Similar to the auction problem, I obtain an auxiliary system of differential equations by rewriting
(5.3) in terms of H:

H = f . i=1..d (9.2)
[ljere <1 — Il H)Y )

Functions H; satisfy initial conditions

lim H;(t) =0, i=1,...,d. (9.3)
tlto

As with the auction, the existence and uniqueness theorems 5.1 and 5.2 can be proved in steps.
First, the results are obtained locally, then globally.

The existence of a local solution to (5.3)-(5.4) can be proved in the following way. First, to
avoid discontinuities in H, I can modify the auxiliary system (9.2) by introducing a very small
number € when necessary. Using Tonelli approximations, I can establish the existence of a local
solution for the auxiliary system with e. After that, I can take the limit as e — 0 and show the
existence of a local solution for (9.2)-(9.3). Then I can use formulas (9.1) to obtain the existence
of a local solution to problem (5.3)-(5.4). To establish local uniqueness, I obtain a generalized
local Lipschitz condition on H;.

Finally, I can show that the unique local solution can be extended to the whole support, and
that such extension is unique. Again, the monotonicity of F; in this solution has to be assumed.

Below I prove the local uniqueness part of Theorem 5.2.

Proof of Theorem 5.2. Let F and F be two local solutions to (5.3)-(5.4) with a common
interval of existence [to, to + ¢]. Let H and H be the corresponding auxiliary functions. Then H

and H solve auxiliary system (9.2) a.e. on (tg,to + ¢]. Denote the right-hand side of (9.2) as

91(1) ga(t)
y TN y o
Hje]f (1 1= H ]l) Hjelg (1 —[l= H, ]l)

J(t, H) =

A plan is to derive a generalized local Lipschitz condition on H; and then use lemmas 7.7 and 7.8
to establish that H and H coincide. This will imply that F and F coincide. Consider H; — H; for
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any ¢ and let |I¢| be the number of elements in I¢. Then a.e. on [tg, tg + ]

i 9i 9i
|H! — H]| = — — =
' ' Hjel;(l - Fj) Hje[f(l - )

— gi [Ta-F)-J[a-F+@E-F)| <

= = J J J J =
Hje]f(l_Fj) Hje[;(l_Fj) JEI? jeI¢

9i l7¢]-1 A [

< 2N — By < Cigi Y |Fy — F

Hje]f(l_Fj) Hje[f(l_Fj) jele jere

for some constant C;. Differences |F; — F}| can be bounded from above by expressions of | H; — H|.
According to (9.1), for ¢ > to,
F— By =[] 8" - T] &
=1 =1

therefore

d
Fy—Fy=> T8 I fndm (e - 2,7)
h=1I<h m>h
For x1,22 > 0, by the mean value theorem
zf —a§ = a(fry + (1 — G)xg)o‘fl(m — 1),
where 6 = 6(z1,z2) € [0,1]. If @ > 1, then

|28 — 25| < a(max{xy, x2})* Hap — x|

If a < 1, then

i — 23| < |of(minfay, 22})* oy — zal.

Because Hy,(t), Hy(t) > 0 for t > tg, then for t > to,

[HY" (1) — HY™ (1)] < Win (6)| Ha(t) — Hi(8)],

where
- . kip—1
Win(t) = (1(/% > 1) max{Hy (), Hy, ()} + 1(kjn < 1)min{Hh(t),Hh(t)}> e

Because -

. Hp(1) . Hy(t)

e T rad imE ey =1
then —

tim

o G
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Thus, for t > tg,

d
~ k- kin—1 r
= Bl < L ) (T GG kjnl [Hh — Hy
h=1 i#h

for some constants L; > 0. Thus, a.e. on [tg,ty + |

\HI(t) — H(t r<ngZZZ [T G )G ) ksl Hu(t) — Hi (1))

JEIE h=1 I#h

for some constants D; > 0 and, hence,

|1H'(t) = H'(t)][1 < C(T1(t) + ... Ta()[|H(t) — H(t)|x

for some constant C' > 0. This inequality and lemmas 7.7 and 7.8 imply that H(t) = H(t),
te [to,to + C].

10 Appendix D: Bounds on distributions

Proof of Theorem 6.1.
(a) First, I prove the result for the lower bound. Suppose thatmaxg—y ., t;, <7T. Then

Qp(tiys - sti,) = P(Mp=y (Xi, < ti)) = P(Miq (byy, < t4y)) =

'
= P(Myy (bi, < t,),im wins) + Y P(Nf_y (by, <t,),j wins) >

F€CD
> Z (price < nlun ti,,J wins) Z Gj( mln t L)
jeCD jeCD

Now consider the case when at least one of ¢;, takes value T'. It is enough to consider the case
when ¢;;, = T and maxy—g__,t;, <7T. Denote D= {i2,...,4,}. From what T have shown above,
it follows that

Qp(T,....t;,) = Qpltiy, ..., 1, Z Gy( mln tlk) :Gil( mln t Z G,( mln t L) =
jeCD Jjeco
:Gil( mln t Z G5( mm t Z =T)G;,/( mln t Z G,( mln t L)
j€CD =1 JECD

(b) For any D = {t;,,...,t;.}, if ming—y _,t;, = to then @p(t;,,..., ;) = 0 because by assump-
tion all marginal distributions X; are continuous and, therefore, do not have mass points. Suppose

that minkzlw,’,ﬂ ti, > to.

Q(tr, . ta) = P(NL1(Xs < 1) = POy (b < 1) = D P(Migj(bs < t:),b; < 15,5 wins) <
J
< P(price < min{maxt;,t;},j wins) = Gj(min{maxt;,t;}).
_Z (p = {#jzj}] ) ; i( {i#jzj})

J
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To obtain an upper bound for )_,,, use the upper bound for () and the fact that

Q-m(t1, - s tm—1,tmits o ta) = Qt1, .y tm—1, Ty tmy1, .. tg).

Clearly,
Q-m(ti, s tm—1,tmg1y ...t Z Gj(min{T,t;}) + G, (mm{maxtz, T}) =
J#Em
=) Gj(tj) + Gm(maxt;).
j#m m
To obtain an upper bound for D = {t;,,...,t;.} that contains at most d — 2 elements, use the

upper bound for @ and substitute values of t;, j ¢ D, with the value of T'.

Proof of Proposition 6.2.
(a) According to AI, for any D = {t;,,...,t; }, the event {N}_,(X;, < t;,)} implies the event
{M_;(bs, < tip)}. Therefore,

Qp(tiy,s -5 ti,) = P(Mp—y (Xi, < ti)) < P(Mizy (biy, < t4y))-

The rest of the proof for the upper bounds is the same as in Theorem 6.1.

(b) Suppose that maxy—y, _,t;, <7. Then
,

Qp(tiy, .- ti,) = PN (Xiy, <t5,) = > P(Noy (Xi, < ty,), i wins)+
k=1

+ Z (M= ( X < tlk)?] wins) > Z P(“Zzl(Xik < tik)aj wins).
Jj€ECD JjeECD

According to AIl, for j € CD, the event {price < ming—y,__,t; ,j wins} implies the event
{1 (X5, <tiy),J wins}. Indeed, if some X;, was larger than ¢;,, then bidder i;, would not allow

bidder j to win at a price less or equal than ming—; _ ,t; . Therefore,

Qp(tiy, ... ti,) > Z P(price < kfiifl,,rti’“’j wins).
jeCD

The rest of the proof for the lower bounds is the same as in Theorem 6.1.

Proof of Theorem 6.3.

(a) The lower bound is obvious. Let me obtain the upper bound.

Q(t1,...,tq) = ZP i=1,. a(bi < ty), b(1)>bp(2)>...>bp(d))§

pElly

< D P(Oimaalbpy < i tyim)), by > bogz) > - > b)) =
p€Elly 77

= Z Wo(min{t 1), tp2) 5 - - - ,minlin ltp(m), . ,ijrllin t;).
pelly T T
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(b) Without a loss of generality, consider function F3.
Fi(t)=P(X, <t)=Pb <t)= ZZP(&%}; by < bp,bp, < bi,by <t) =
7

= P(max b <by,by <by,by <) +ZP max by < by, by < bi, by < )+

e I#h,1#1 1#1,1#
+> Y P Z;I}ILaX bl<bh,bh<bz,bl<t)
1#1 h#i,h#1

Let t € (to,T]. For the upper bound,

P(blgt)SZP max bl<bh,bh<bl,bh<t —I—ZP max bl<bl,b1<b“b1<t)+

st l;éhl;él 1£1,1#
S P bt < =Y G0+ Y00+ Y
A haing T h#1 i#1 i#1 heti,h#1

Let t € [to,T'). For the lower bound,

P(by <t) >0+ Y P(max b < by, by <b;,by < t)+

i1 1#1,1#1
+Z Z l;r}lbax bl<bh,bh<bz,bh<t ZGil(t)—i-Z Z
i#1 hti,j£1 i#1 i#1 h#i,h#1
=2 |Ga®+ X Gal) | =3 > Ginlt) =3 Gi#)
i1 hoi,ht1 i1 hti i1

Evidently, Fi(tg) =0 and Fy(T) = 1.

I6)



