Lee, Nayoung; Moon, Hyungsik Roger; Weidner, Martin

Working Paper
Analysis of interactive fixed effects dynamic linear panel regression with measurement error

cemmap working paper, No. CWP37/11

Provided in Cooperation with:
Institute for Fiscal Studies (IFS), London

Suggested Citation: Lee, Nayoung; Moon, Hyungsik Roger; Weidner, Martin (2011) : Analysis of interactive fixed effects dynamic linear panel regression with measurement error, cemmap working paper, No. CWP37/11, http://dx.doi.org/10.1920/wp.cem.2011.3711

This Version is available at:
http://hdl.handle.net/10419/64657

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Analysis of interactive fixed effects dynamic linear panel regression with measurement error

Nayoung Lee
Hyungsik Roger Moon
Martin Weidner

The Institute for Fiscal Studies
Department of Economics, UCL

cemmap working paper CWP37/11
Analysis of Interactive Fixed Effects Dynamic Linear Panel Regression with Measurement Error

Nayoung Lee
CUHK

Hyungsik Roger Moon
U of Maryland

Martin Weidner
UCL and CeMMAP

December 12, 2011

Abstract

This paper studies a simple dynamic panel linear regression model with interactive fixed effects in which the variable of interest is measured with error. To estimate the dynamic coefficient, we consider the least-squares minimum distance (LS-MD) estimation method.

Keywords: dynamic panel, interactive fixed effects, measurement error, LS-MD estimation.

JEL Classification: C23, C26

1 Introduction

This paper studies a simple dynamic panel linear regression model with interactive fixed effects in which the variable of interest, say \(Y_{it} \), contains measurement error:

\[
Y_{it}^* = \alpha_0 Y_{it-1}^* + \lambda_0^0 f_t^0 + \epsilon_{it}, \quad i = 1, ..., N, \quad t = 1, ..., T, \quad (1)
\]

\[
Y_{it} = Y_{it}^* + \eta_{it}. \quad (2)
\]

Here \(Y_{it} \) is the observed variable and \(\eta_{it} \) represents measurement error. The term \(\lambda_t^0 f_t^0 \) describes unobserved interactive fixed effects.\(^1\) The goal of the paper is to estimate \(\alpha_0 \).

\(^{1}\)Moon thanks the NSF for financial support.

\(^{2}\)In this paper, we consider a single factor, that is, the dimensions of \(f_t \) and \(\lambda_i \) equals one. The extension to the multiple factor case is straightforward, but omitted due to the space limitation.

\(^{3}\)When interpreting \(\lambda_t^0 \) as an individual specific fixed effects the term \(f_t^0 \) represents the (time varying) linear projection coefficients of \(Y_{it}^* \) on \(\lambda_t^0 \) (holding \(Y_{it-1}^* \) constant). This allows the effect of the unobserved
when both the number of individuals N and the number of time periods T are large.\footnote{We consider large N,T approximations to characterize the bias due to the incidental parameter problems, see e.g. Bai (2009) and Hahn and Kuersteiner (2004).}

The dynamics of the observed variable Y_{it} can be written as

$$Y_{it} = \alpha_0 Y_{it-1} + \lambda_i^0 f_t^0 + U_{it}, \quad (3)$$

where $U_{it} = \epsilon_{it} + \eta_{it} - \alpha_0 \eta_{it-1}$. There are two noticeable features in equations (1) and (3) compared to the widely studied dynamic panel regression model. First, the individual effects take an interactive form instead of the time invariant form. Secondly, the variable of interest Y_{it}^* is not observed but measured with error. To our knowledge, combining these two features in dynamic linear panel regression has not been studied in the large N, T panel literature.

We expect two hurdles in estimating α_0. One is the presence of the interactive fixed effects $\lambda_i^0 f_t^0$ which might cause a so-called incidental parameter problem in both the cross section and the time dimension. The second one is that the composite error U_{it} in the observed variable equation (3) is correlated with the lagged dependent variable Y_{it-1} and we may therefore need to use instrumental variables (IVs).

The main contribution of the paper is to find a valid estimation method that overcomes these two problems. The proposed estimator is a nested two step estimator based on least squares minimization in the first step and minimizing the distance of some of the first step parameter estimates in the second step\footnote{An alternative approach would be to use the the common correlated effect methods suggested by Harding and Lamarche (2011). Both approaches have their own merits and weaknesses. Comparing these different methods is not the interest of this paper.}. Following Moon, Shum and Weidner (2011) (hereafter MSW), we call this method the LS-MD estimation method. This approach was used in estimating endogenous quantile regression models by Chernozhukov and Hansen (2006, 2008) and in estimating the random coefficient logit demand model by MSW.

2 LS-MD Estimation

The properties of the quasi-maximum likelihood estimator (QMLE), which minimizes the sum of squared residuals, for large N, T linear panel regressions with interactive fixed effects were discussed in Bai (2009), and Moon and Weidner (2010). However,
this estimation method cannot be used to estimate model (3) since the regressor \(Y_{it-1} \) is endogenous w.r.t. the error \(U_{it} \) through the lagged measurement error \(\eta_{it-1} \). In this case, we may use instrumental variables. Since \(U_{it} \) has an MA(1) type serial dependence structure, we have \(E(U_{it} Y_{it-1-s}) = 0 \) for all \(s \geq 1 \). This suggests to choose \(Z_{it} = (Z_{1,it}, ..., Z_{L,it})' = (Y_{it-2}, ..., Y_{it-1-L})' \) for the IVs of the endogenous regressor \(Y_{it-1} \), \(t = 1, ..., T \). The question, then, is how to use the instrumental variables \(Z_{it} \) to estimate \(\alpha_0 \) in the presence of interactive fixed effects \(\lambda_i f_t \) when both \(N \) and \(T \) are large.

The estimation method we consider in this paper is a two-step least-squares minimum distance (LS-MD) estimation. This was recently proposed by MSW for estimating the BLP demand model. A similar multi-step estimation idea was also used in Chernozhukov and Hansen (2006, 2008) in estimating endogenous quantile regressions with IVs.

The LS-MD estimation consists of the following two steps: Step 1: For given \(\alpha \), we solve the least squares problem augmented by the instrumental variables \(Z_{it} \), that is, we run the OLS regression of \(Y_{it} - \alpha Y_{it-1} \) on \(Z_{it} \) with interactive fixed effects \(\lambda_i f_t \) and solve

\[
\left(\hat{\gamma}(\alpha), \hat{\lambda}(\alpha), \hat{f}(\alpha) \right) = \arg \min_{(\gamma, \lambda, f)} \sum_{i=1}^{N} \sum_{t=1}^{T} (Y_{it} - \alpha Y_{it-1} - \gamma' Z_{it} - \lambda_i f_t)^2,
\]

where \(\gamma = (\gamma_1, ..., \gamma_L)' \), \(\lambda = (\lambda_1, ..., \lambda_N)' \) and \(f = (f_1, ..., f_T)' \). Step 2: For some positive definite weight matrix \(W_{NT}^\gamma \), we estimate \(\alpha \) by minimizing the length of \(\hat{\gamma}(\alpha) \) as

\[
\hat{\alpha} = \arg \min_{\alpha} \hat{\gamma}(\alpha)' W_{NT}^\gamma \hat{\gamma}(\alpha).
\]

The idea of the LS-MD method is that since \(Z_{it} \) is excluded in the regression equation (3) the coefficient of \(Z_{it} \) should be zero when \(\alpha = \alpha_0 \). When there is no interactive fixed effect one can show that the LS-MD estimator is equivalent to the conventional 2SLS estimator for an appropriate weight matrix \(W_{NT}^\gamma \).

3 Asymptotic Results

Assumption 3.1

(i) The unobserved error terms \(\{\varepsilon_{it}\} \sim iid(0, \sigma_\varepsilon^2) \) and \(\{\eta_{it}\} \sim iid(0, \sigma_\eta^2) \) across \(i \) and over \(t \) and \(E|\varepsilon_{it}|^\kappa, E|\eta_{it}|^\kappa < \infty \) for some \(\kappa > 8 \). Also, \(\{\varepsilon_{it}\} \) and \(\{\eta_{it}\} \) are independent. (ii) Assume that \(f_t^0 \) are strictly stationary and ergodic with \(\sup_i |f_i| < \infty \) and \(\frac{1}{T} \sum_{t=1}^{T} (f_t^0)^2 \to_p \Sigma_f > 0 \), and \(\lambda_i \) are iid with \(\sup_i |\lambda_i| < \infty \) and \(\frac{1}{N} \sum_{i=1}^{N} (\lambda_i^2) \to_p \Sigma_\lambda > 0 \).
Also assume that \(\{ f^0_t \}, \{ \lambda^0_t \}, \{ \epsilon_{it} \}, \{ \eta_{it} \} \) are independent. (iii) \(W_N^T \to p W^T > 0 \). (vi) \(|\alpha_0| < 1 \) and \(\alpha_0 \neq 0 \).

The iid assumptions of \(\epsilon_{it} \) and \(\eta_{it} \) are made for simplicity of the analysis. Later, an extension to a non-iid case will be discussed. Assumption 3.1(i) also assumes that the measurement error \(\epsilon_{it} \) is classical in the sense that \(\epsilon_{it} \) has zero mean and is uncorrelated with \(Y^*_t \). Later we discuss how to extend our method to some special cases of non-classical measurement error. Assumption 3.1(ii) assumes that the factors are strong, which is standard in the factor analysis literature. Assumption 3.1(vi) assumes that \(\alpha_0 \neq 0 \), otherwise the IVs become irrelevant.

Before we present the next assumption, we introduce some further notation. We use \([a_{it}] \) to denote an \(N \times T \) matrix with elements \(a_{it} \). For a full column rank matrix \(A \), let \(\mathbb{P}_A = A (A' A)^{-1} A' \) and \(\mathbb{M}_A = I - \mathbb{P}_A \). We use notation \(Y = [Y_{it}] \), \(Y_{-k} = [Y_{it-k}] \), \(Z = [Z_{it}] \), \(U = [U_{it}] \), \(\epsilon = [\epsilon_{it}] \), \(\eta = [\eta_{it}] \), and \(\eta_{-1} = [\eta_{it-1}] \). Define \(\lambda^0 = (\lambda^0_1, ..., \lambda^0_N)' \) and \(f^0 = (f^0_1, ..., f^0_T)' \). We also define the \(NT \)-vectors \(y_{-1} = vec(Y_{-1}) \) and \(z = vec(Z) \).

Assumption 3.2 Assume that there exists a positive constant \(c > 0 \) such that \(\frac{1}{NT} y'_{-1} \mathbb{P}_z y_{-1} - \max_\lambda \frac{1}{NT} y'_{-1} \mathbb{P}_{Y_{-1} \otimes \lambda} y_{-1} > c \) with probability approaching one as \(N, T \to \infty \), where \(\lambda^* = (\lambda^0, \lambda) \).

Assumption 3.2 is a relevance condition on the instruments. It demands that the explanatory power of the instruments \(Z_{it} \) for the endogenous regressor \(Y_{it-1} \), given by \(\frac{1}{NT} y'_{-1} \mathbb{P}_z y_{-1} \), is larger than the joint explanatory power for \(Y_{it-1} \) of the true factor loading \(\lambda^0 \) together with any other factor loading \(\lambda \), given by \(\frac{1}{NT} y'_{-1} \mathbb{P}_{Y_{-1} \otimes \lambda} y_{-1} \). If there are no interactive fixed effects included in the model, then the assumption simplifies to the standard relevance condition \(\frac{1}{NT} y'_{-1} \mathbb{P}_z y_{-1} > 0 \), which is satisfied for \(\alpha \neq 0 \).

Suppose that Assumption 3.1 holds, and consider the special case where \(f^0_t \) has mean zero and is distributed independently over \(t \). Then, Assumption 3.2 is equivalent to\(^5\)

\[
\alpha_0^2 > \frac{1 + \frac{\sigma^2}{\Sigma_\lambda \Sigma_\lambda'} + \frac{\sigma^2}{\Sigma_\eta \Sigma_\eta'}}{1 + \frac{\sigma^2}{\Sigma_\lambda \Sigma_\lambda'}^2 + \frac{\sigma^2}{\Sigma_\eta \Sigma_\eta'}}^+.
\]

(4)

Thus, by imposing an appropriate lower bound on \(|\alpha_0| \) one can guarantee that the lagged values of \(Y_{it} \) are sufficiently relevant instruments. The conclusion that an appropriate lower bound

\(^5\)For the proof of this, we refer to the supplementary appendix which is available at http://ihome.cuhk.edu.hk/~b121322/Research.html.
bound on $|\alpha_0|$ is sufficient for the relevance assumption Assumption 3.2 can be extended to cases where f_t^0 is correlated across t, but in general it is not possible to give such a convenient analytic expression as in (4) for the lower bound.\footnote{A non-zero mean of f_t^0 can result in situations where Assumption 3.2 is not satisfied for any value of α_0. The assumption that f_t^0 is mean zero would not be restrictive if we would include a conventional individual specific fixed effect in the model, in addition to the interactive fixed effect — or equivalently (from an asymptotic perspective), one can demean Y_{it} separately for each i before estimating the model with only interactive effects.}

Note that the lower bound in (4) goes to zero when $\Sigma_{\lambda} \Sigma_f$ becomes small relative to σ_ε^2, i.e. the bound is not restrictive when the relative influence of the factors on Y_{it} is small.

\textbf{Theorem 3.1} Under Assumption 3.1 and 3.2 we have $\hat{\alpha} \xrightarrow{p} \alpha_0$ as $N, T \to \infty$.

To present the limiting distribution of $\hat{\alpha}$, we need to introduce some further notation. Define the NT-vectors $y^{\lambda_f}_{-1}$ and $z^{\lambda_f}_{-1}$ by

\[
y^{\lambda_f}_{-1} = \text{vec} (M_{\lambda_0} Y_{-1} M_{f_0}), \quad z^{\lambda_f}_{-1} = \text{vec} (M_{\lambda_0} Z_{f_0} M_{f_0}),
\]

where \(l = 1, \ldots, L \). Let $u = \text{vec}(U)$ and $z^{\lambda_f} = (z^{\lambda_f}_1, \ldots, z^{\lambda_f}_L)$.

Define $G = \text{plim}_{N,T \to \infty} \frac{1}{NT} y^{\lambda_f}_{-1} z^{\lambda_f} = \frac{\sigma_\varepsilon^2}{1-\alpha_0^2} (\alpha_0, \alpha_0^2, \ldots, \alpha_0^L)'$, and

\[
W = \text{plim}_{N,T \to \infty} \left(\frac{1}{NT} z^{\lambda_f} z^{\lambda_f} \right)^{-1} \frac{1}{NT} y^{\lambda_f}_{-1} z^{\lambda_f} \left(\frac{1}{NT} z^{\lambda_f} z^{\lambda_f} \right)^{-1}
\]

\[
= \left\{ \begin{array}{c}
\sigma_\varepsilon^2 \\
1 - \alpha_0^2
\end{array} \right\} \left[\begin{array}{ccc} 1 & \cdots & \alpha_0^{L-1} \\
\vdots & \ddots & \vdots \\
\alpha_0^{L-1} & \cdots & 1
\end{array} \right] + \sigma_\eta^2 I_L
\]

\[
W^\gamma \left\{ \begin{array}{c}
\sigma_\varepsilon^2 \\
1 - \alpha_0^2
\end{array} \right\} \left[\begin{array}{ccc} 1 & \cdots & \alpha_0^{L-1} \\
\vdots & \ddots & \vdots \\
\alpha_0^{L-1} & \cdots & 1
\end{array} \right] + \sigma_\eta^2 I_L.
\]

Notice that under Assumption 3.1, the limits G and W are well defined. Also, notice that under Assumption 3.1, we have $GWG' > 0$.

Define

\[
c^{(2)} = \left[C^{(2)} (Z_l, u) \right]_{l=1,\ldots,L}.
\]

\footnote{The proof is omitted due to space limitation. It is a special case of MSW where their $\delta(\alpha) = Y - \alpha Y_{-1}$ and the conditions in Assumptions 3.1 and 3.2 are sufficient for the consistency conditions in MSW (see the supplementary appendix available at http://www.cemmap.ac.uk/publications.php.)}

\footnote{Note that Assumption 3.2 is a sufficient condition for the relevance of the instruments, but nothing is known about the necessity of this assumption. The LS-MD estimator may also give consistent parameter estimates in some situations where the assumption is violated.}
where

\[
C^{(2)}(Z_t, u) = \text{tr} \left(u \mathbb{M}_f \mathbb{M}_0 Z_t f^0 (f^0 f^0)^{-1} (\lambda^0 \lambda^0)^{-1} \lambda^0 \right) + \text{tr} \left(u' \mathbb{M}_\lambda \mathbb{M}_f f_0 Z_t^0 (\lambda^0 \lambda^0)^{-1} (f^0 f^0)^{-1} f^0 \lambda^0 \right) + \text{tr} \left(u' \mathbb{M}_\lambda Z_t f^0 u' \lambda^0 (\lambda^0 \lambda^0)^{-1} (f^0 f^0)^{-1} f^0 \lambda^0 \right) .
\]

MSW show that under Assumption 3.1, as \(N, T \to \infty \) with \(\frac{N}{T} \to \kappa^2 \), where \(0 < \kappa < \infty \), we can approximate

\[
\sqrt{NT} (\hat{\alpha} - \alpha_0) = (GWG')^{-1} GW \left[\frac{1}{\sqrt{NT}} (z^{\lambda f})' u + c^{(2)} \right] + o_p(1) . \tag{5}
\]

Notice that as \(N, T \to \infty \) with \(\frac{N}{T} \to \kappa^2 \), where \(0 < \kappa < \infty \), under Assumptions 3.1 we can show that

\[
\frac{1}{\sqrt{NT}} (z^{\lambda f})' u \Rightarrow N(-\kappa b, \Omega), \quad \text{and} \quad c^{(2)} \to_p 0, \tag{6}
\]

where

\[
b = (b_1, ..., b_L)', \quad b_l = \lim_{N,T \to \infty} \frac{1}{N} \text{tr} \left[P_{f_0} \left[E(e' \tilde{\epsilon}_{l-1}) + E\left((\eta - \alpha_0 \eta_{l-1})' \eta_{l-1} \right) \right] \right],
\]

\[
\tilde{\epsilon}_{l-1} = [\tilde{\epsilon}_{l-1}], \quad \tilde{\epsilon}_{l-1} = \sum_{s=0}^{\infty} \alpha_0^s \epsilon_{it-l-s},
\]

\[
\Omega = \left(\frac{\sigma_z^2}{1 - \alpha_0^2} + \sigma_\eta^2 \right) \left\{ \begin{array}{c}
\sigma_z^2 \\
1 - \alpha_0^2 \\
\alpha_0^L - 1 \\
\end{array} \right\} + \sigma_\eta^2 I_L .
\]

Combining (5) and (6), we have the following theorem.

Theorem 3.2 Suppose that Assumptions 3.1 hold. As \(N, T \to \infty \) with \(\frac{N}{T} \to \kappa^2 \) and \(0 < \kappa < \infty \), we have

\[
\sqrt{NT} (\hat{\alpha} - \alpha_0) \Rightarrow \mathcal{N} \left(-\kappa (GWG')^{-1} GW b, (GWG')^{-1} GW \Omega GW' (GWG')^{-1} \right) .
\]

Notice that the bias \(b \) in the limit distribution is due to the incidental parameters \(\lambda^0 f^0 \) and the lagged dependent variables as IVs, which is similar to the bias in Moon and Weidner (2010). This bias can be consistently estimated and is correctable, for details we
refer to Moon, Shum, and Weidner (2011).

4 Discussion

Our LS-MD estimation can be used for more sophisticated cases. We briefly discuss how to extend our simple model.

1. **Inclusion of covariates**: The LS-MD estimation procedure can be easily extended to include a model with other exogenous regressors, say X_{it}. For example, in the first step one can regress $Y_{it} - \alpha Y_{i,t-1}$ on X_{it}, Z_{it} with interactive fixed effects λ_{it} for fixed α. In the second step, minimize $\hat{\gamma}(\alpha)' W_{NT}^N \hat{\gamma}(\alpha)$ w.r.t. α.

2. **Heteroskedastic error**: Until now, we assume that the errors ϵ_{it} and η_{it} are homoskedastic for simplicity. If the errors are heteroskedastic, then the limit of $c^{(2)}$ is non-zero and contributes additional bias terms to the limit distribution of $\hat{\alpha}$. These biases are correctable (see e.g. Bai, 2009, and Moon and Weidner, 2010), and can be interpreted as mis-specification bias, since the least squares step in the LS-MD procedure can only correspond to a correctly specified likelihood maximization under homoscedasticity.

3. **Non-classical measurement error**: Measurement error so far is assumed to be classical. In many applications, however, measurement error can be correlated with the unobserved latent variable and the covariates. Our estimation method is still valid under more general measurement error models. For example, suppose that people tend to report income, Y_{it} proportionally to Y_{it}^* as

$$Y_{it} = \gamma_{0i} + \gamma_{1it} Y_{it}^* + v_{it},$$

where v_{it} is an unobserved error. Note that the measurement error in model (7) is non-classical since the measurement error, $\eta_{it} = Y_{it} - Y_{it}^*$, could be correlated with Y_{it}^* and the mean of the measurement error is not necessarily zero.\(^9\) Model (7) is a modified version of a linear measurement error model that allows for a heterogeneous relationship between Y_{it} and Y_{it}^* across cross-section and over time.\(^10\) When the

\(^9\) A special case of model (7) is $\gamma_{0it} = 0$ and $\gamma_{1it} = 1$, in which case v_{it} is classical.

\(^10\) Bollinger and Chandra (2005) and Kim and Solon (2005) develop a model allowing for a constant linear relationship between Y_{it} and Y_{it}^*, based on the evidence in surveyed income; i.e., those who earn higher than
coefficient γ_{1it} is random satisfying $\gamma_{1it} = \gamma_1 + w_{it}$, where $\{w_{it}\}$ and $\{v_{it}\}$ are iid across i and over t with zero mean, and $\{w_{it}\}, \{v_{it}\}, \{\epsilon_{it}\}$ are independent of each other, then we have the following dynamic equation with two factors (or one factor and a time invariant fixed effect) as

$$Y_{it} = \alpha Y_{i t-1} + \delta_i h_t + U_{it},$$

where $\delta_i = [\gamma_1 \lambda_i, (1 - \alpha) \gamma_{0it}]$, $h_t = [f_t, 1]'$ and

$$U_{it} = \gamma_1 \epsilon_{it} + v_{it} - \alpha v_{it-1} + Y_{it}^* w_{it} - \alpha Y_{it-1}^* w_{it-1}. \quad (9)$$

Note that the composite error U_{it} in (9) has serial dependence structure similar to an $MA(1)$ process, and we can use $Z_{it} = (Z_{1it}, ..., Z_{L;it})' = (Y_{it-2}, ..., Y_{it-1-L})'$ as IVs for the LS-MD estimator.

References

average tend to report their earning less, while those who earn lower than average tend to report higher. See also Bound, Brown and Mathiowetz (2001).

5 Supplementary Appendix (Not for Publication)

5.1 Proof of Consistency

We show that Assumptions 3.1 and 3.2 in the current model are sufficient for Assumption 1 of Moon, Shum and Weidner (2011) with \(\delta (\alpha) \) in MSW replaced by \(Y - \alpha Y_{-1} \), and \(X_k \) in MSW replaced by 0.

- Assumption 1(i) holds since uniformly in \(\alpha \) outside of any neighborhood of \(\alpha_0 \) we have
 \[
 \frac{\| \delta (\alpha) - \delta (\alpha_0) \|_F}{\| \alpha - \alpha_0 \|} = \| Y_{-1} \|_F = \sqrt{\sum_{i=1}^{N} \sum_{t=1}^{T} Y_{it}^2} = O_p \left(\sqrt{NT} \right).
 \]
 Also, it follows that
 \[
 \| Z_l \|_F = \sqrt{\sum_{i=1}^{N} \sum_{t=1}^{T} Y_{it-1-l}^2} = O_p \left(\sqrt{NT} \right).
 \]

- Assumption 1(ii) is satisfied because \(\| U \| = \| \epsilon + \eta - \alpha_0 \eta_{-1} \| \leq \| \epsilon \| + \| \eta \| + |\alpha_0| \| \eta_{-1} \| = O_p \left(\sqrt{\max (J, T)} \right) \) because \(\{\epsilon_{it}\}, \{\eta_{it}\} \sim iid \) with mean zero and finite moments higher than 4 (See Moon and Weidner (2010)).

- Assumption 1(iii)
 \[
 \frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} Y_{it-1-l} U_{it} = o_p (1)
 \]
 follows for \(l \geq 1 \) since \(E (Y_{it-1-l} U_{it}) = 0 \) if \(l \geq 1 \).

- Assumption 1(iv) follows since any (nontrivial) linear combinations of \(Z_l' \)'s have rank higher than two under Assumption 3.1.

- Assumption 1(v) holds by Assumption 3.2 with \(\Delta \xi_{\alpha, \beta} = -(\alpha - \alpha_0) y_{-1} \).

- Assumption 1(vi) holds by Assumption 3.1 (iii).

5.2 Asymptotic Normality

- Assumptions 2 and 3 in MSW follow immediately under Assumption 3.1.
• Assumptions 4 and 5 in MSW follow since in this paper \(\delta(\alpha) = Y - \alpha Y_{-1} \) is linear in \(\alpha \) and by the conditions in Assumption 3.1.

5.3 Sufficient Conditions for Assumption 3.2

In matrix notation we can write (3) as

\[
Y = \alpha^0 Y_{-1} + \lambda^0 f^0 + U,
\]

where \(Y_{-1} = [Y_{i,t-1}]_{i=1, \ldots, N; t=1, \ldots, T} \), and we define \(Y_{-2} \) analogously. By recursively applying the model we find

\[
Y = \lambda^0 F^0 + E + Y^{\text{init}},
\]

where \(F \) is the \(T \times 1 \) vector with entries \(F_t = \sum_{\tau=0}^{t-1} \alpha_0 \tau^0 \), and \(E \) and \(Y^{\text{init}} \) are the \(T \times N \) matrices with entries \(E_{it} = \eta_{it} + \sum_{\tau=0}^{t-1} \alpha_0 \eta_{t-\tau} \), and \(Y^{\text{init}}_{it} = \alpha_0^t Y_{i0} \). We denote lagged versions of \(F^0 \) and \(E \) by \(F^0_{-1} \) and \(E_{-1} \), etc.

In the following we assume \(L = 1 \). In that case Assumption 3.2 is satisfied if

\[
\frac{\left(\text{plim}_{N,T \to \infty} \frac{1}{NT} y_{-1}^t z \right)^2}{\text{plim}_{N,T \to \infty} \frac{1}{NT} z' z} - \text{plim}_{N,T \to \infty} \left(\max \lambda \frac{1}{NT} y_{-1}^t \beta_{f(t)}^T \tilde{y}_{-1} \right) > 0, \tag{10}
\]

where \(\tilde{\lambda} = (\lambda^0, \lambda) \). If \(f_t \) is mean zero and independent across \(t \) we have

\[
\frac{1}{NT} y_{-1}^t z = \frac{1}{NT} \text{Tr}(Y_{-1} Y_{-2}) = \frac{1}{NT} \text{Tr}(E_{-1} E_{-2}) + \frac{1}{NT} ||\lambda||^2 (F_{-1}^t F_{-2}^t) + o_p(1)
\]

\[
= \frac{\alpha_0}{1 - \alpha_0^2} (\sigma_r^2 + \Sigma_{\lambda} \Sigma_f) + o_p(1),
\]

\[
\frac{1}{NT} z' z = \frac{1}{NT} \text{Tr}(Y_{-1} Y_{-1}) = \frac{1}{1 - \alpha_0^2} (\sigma_r^2 + \Sigma_{\lambda} \Sigma_f) + \sigma_r^2 + o_p(1),
\]

11
and

\[
\max_{\lambda} \frac{1}{NT} y_0' \mathbb{P}_{\mathcal{T} \otimes \lambda} y^{-1} = \max_{\lambda} \frac{1}{NT} \text{Tr}(Y_0' \mathbb{P}_{\lambda} Y^{-1})
\]

\[
= \max_{\lambda} \frac{1}{NT} \text{Tr}(F_0' \mathbb{P}_{\lambda} F_0') + o_p(1)
\]

\[
= \frac{1}{NT} ||\lambda||^2 ||F_0||^2 + o_p(1)
\]

\[
= \frac{1}{1 - \alpha_0} \Sigma \chi^2 + o_p(1).
\]

Plugging these results into condition (10) immediately yields condition (4). Here, we have assumed only one instrument ($L = 1$), but in the special case under consideration (f_t independent across t) there is actually no additional explanatory power for Y_{it} contained in $Y_{i,t-2}$, i.e the probability limit of $\frac{1}{NT} y_0' \mathbb{P}_{\lambda} y^{-1}$ is the same for all $L \geq 1$.

12