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Abstract

This paper studies a simple dynamic panel linear regression model with interactive

�xed e¤ects in which the variable of interest is measured with error. To estimate

the dynamic coe¢ cient, we consider the least-squares minimum distance (LS-MD)

estimation method.

Keywords: dynamic panel, interactive �xed e¤ects, measurement error, LS-MD

estimation.
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1 Introduction

This paper studies a simple dynamic panel linear regression model with interactive �xed

e¤ects in which the variable of interest, say Y �it ; contains measurement error:

Y �it = �0Y
�
it�1 + �

0
i f
0
t + �it; i = 1; :::; N; t = 1; :::; T; (1)

Yit = Y �it + �it: (2)

Here Yit is the observed variable and �it represents measurement error. The term �0i f
0
t

describes unobserved interactive �xed e¤ects.12 The goal of the paper is to estimate �0
�Moon thanks the NSF for �nancial support.
1 In this paper, we consider a single factor, that is, the dimensions of ft and �i equals one. The extension

to the multiple factor case is straightforward, but omitted due to the space limitation.
2When interpreting �0i as an individual speci�c �xed e¤ects the term f0t represents the (time varying)

linear projection coe¢ cients of Y �
it on �

0
i (holding Y

�
it�1 constant). This allows the e¤ect of the unobserved
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when both the number of individuals N and the number of time periods T are large.3

The dynamics of the observed variable Yit can be written as

Yit = �0Yit�1 + �
0
i f
0
t + Uit; (3)

where Uit = �it + �it � �0�it�1: There are two noticeable features in equations (1) and
(3) compared to the widely studied dynamic panel regression model. First, the individual

e¤ects take an interactive form instead of the time invariant form. Secondly, the variable

of interest Y �it is not observed but measured with error. To our knowledge, combining these

two features in dynamic linear panel regression has not been studied in the large N;T panel

literature.

We expect two hurdles in estimating �0: One is the presence of the interactive �xed

e¤ects �0i f
0
t which might cause a so-called incidental parameter problem in both the cross

section and the time dimension. The second one is that the composite error Uit in the

observed variable equation (3) is correlated with the lagged dependent variable Yit�1 and

we may therefore need to use instrumental variables (IVs).

The main contribution of the paper is to �nd a valid estimation method that overcomes

these two problems. The proposed estimator is a nested two step estimator based on least

squares minimization in the �rst step and minimizing the distance of some of the �rst

step parameter estimates in the second step4. Following Moon, Shum and Weidner (2011)

(hereafter MSW), we call this method the LS-MD estimation method. This approach was

used in estimating endogenous quantile regression models by Chernozhukov and Hansen

(2006, 2008) and in estimating the random coe¢ cient logit demand model by MSW.

2 LS-MD Estimation

The properties of the quasi-maximum likelihood estimator (QMLE), which minimizes

the sum of squared residuals, for large N , T linear panel regressions with interactive

�xed e¤ects were discussed in Bai (2009), and Moon and Weidner (2010). However,

individual characteristic �0i on Y
�
it to be time varying. Alternatively, one can interpret f

0
t as a common time

speci�c shock (a common factor) and �0i then describes reaction to the common shock (a factor loading).
3We consider large N;T approximations to characterize the bias due to the incidental parameter prob-

lems, see e.g. Bai (2009) and Hahn and Kuersteiner (2004).
4An alternative approach would be to use the the common correlated e¤ect methods suggested by

Harding and Lamarche (2011). Both approaches have their own merits and weaknesses. Comparing these
di¤erent methods is not the interest of this paper.

2



this estimation method cannot be used to estimate model (3) since the regressor Yit�1
is endogenous w.r.t. the error Uit through the lagged measurement error �it�1: In this

case, we may use instrumental variables. Since Uit has an MA(1) type serial depen-

dence structure, we have E (UitYit�1�s) = 0 for all s � 1: This suggests to choose

Zit = (Z1;it; :::; ZL;it)
0 = (Yit�2; :::; Yit�1�L)

0 for the IVs of the endogenous regressor Yit�1;

t = 1; :::; T . The question, then, is how to use the instrumental variables Zit to estimate

�0 in the presences of interactive �xed e¤ects �0i f
0
t when both N and T are large.

The estimation method we consider in this paper is a two-step least-squares minimum

distance (LS-MD) estimation. This was recently proposed by MSW for estimating the BLP

demand model. A similar multi-step estimation idea was also used in Chernozhukov and

Hansen (2006, 2008) in estimating endogenous quantile regressions with IVs.

The LS-MD estimation consists of the following two steps: Step 1: For given �; we

solve the least squares problem augmented by the instrumental variables Zit; that is, we

run the OLS regression of Yit � �Yit�1 on Zit with interactive �xed e¤ects �ift and solve

�
̂ (�) ; �̂ (�) ; f̂ (�)

�
= arg min

(;�;f)

NX
i=1

TX
t=1

�
Yit � �Yit�1 � 0Zit � �ift

�2
;

where  = (1; :::; L)
0, � = (�1; :::; �N )

0 and f = (f1; :::; fT )
0 : Step 2: For some positive

de�nite weight matrix W 
NT , we estimate � by minimizing the length of ̂ (�) as

�̂ = argmin
�
̂ (�)0W 

NT ̂ (�) :

The idea of the LS-MDmethod is that since Zit is excluded in the regression equation (3)

the coe¢ cient of Zit should be zero when � = �0. When there is no interactive �xed e¤ect

one can show that the LS-MD estimator is equivalent to the conventional 2SLS estimator

for an appropriate weight matrix W 
NT .

3 Asymptotic Results

Assumption 3.1 (i) The unobserved error terms f�itg � iid
�
0; �2�

�
and f�itg � iid

�
0; �2�

�
across i and over t and E j�itj� ; E j�itj� < 1 for some � > 8: Also, f�itg and f�itg are
independent. (ii) Assume that f0t are strictly stationary and ergodic with supt jftj <1 and
1
T

PT
t=1(f

0
t )
2 !p �f > 0; and �i are iid with supi j�ij < 1 and 1

N

PN
i=1(�

0
i )
2 !p �� > 0.
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Also assume that
�
f0t
	
;
�
�0i
	
; f�itg ; f�itg are independent. (iii) W


NT !p W

 > 0: (vi)

j�0j < 1 and �0 6= 0:

The iid assumptions of �it and �it are made for simplicity of the analysis. Later, an

extension to a non-iid case will be discussed. Assumption 3.1(i) also assumes that the

measurement error �it is classical in the sense that �it has zero mean and is uncorrelated

with Y �it : Later we discuss how to extend our method to some special cases of non-classical

measurement error. Assumption 3.1(ii) assumes that the factors are strong, which is stan-

dard in the factor analysis literature. Assumption 3.1(vi) assumes that �0 6= 0, otherwise
the IVs become irrelevant.

Before we present the next assumption, we introduce some further notation. We use

[ait] to denote an N � T matrix with elements ait: For a full column rank matrix A;

let PA = A (A0A)�1A0 and MA = I � PA: We use notation Y = [Yit] ; Y�k = [Yit�k] ;

Z = [Zit] ; U = [Uit] ; � = [�it] ; � = [�it] ; and ��1 =
�
�it�1

�
: De�ne �0 =

�
�01; :::; �

0
N

�0
and

f0 =
�
f01 ; :::; f

0
T

�0
: We also de�ne the NT -vectors y�1 = vec (Y�1) and z = vec (Z) :

Assumption 3.2 Assume that there exists a positive constant c > 0 such that 1
NT y

0
�1Pzy�1�

max�
1
NT y

0
�1PIT
~�y�1 > c with probability approaching one as N;T ! 1, where ~� =�

�0; �
�
:

Assumption 3.2 is a relevence condition on the instruments. It demands that the

explanatory power of the instruments Zit for the endogenous regressor Yit�1, given by
1
NT y

0
�1Pzy�1, is larger than the joint explanatory power for Yit�1 of the true factor load-

ing �0 together with any other factor loading �, given by 1
NT y

0
�1PIT
~�y�1. If there are

no interactive �xed e¤ects included in the model, then the assumption simpli�es to the

standard relevence condition 1
NT y

0
�1Pzy�1 > 0, which is satis�ed for � 6= 0.

Suppose that Assumption 3.1 holds, and consider the special case where f0t has mean

zero and is distributed independently over t. Then, Assumption 3.2 is equivalent to5

�20 >
1 + �2�

���f
+

�2�
���f�

1 + �2�
���f

�2
+

�2�
���f

: (4)

Thus, by imposing an appropriate lower bound on j�0j one can guarantee that the lagged
values of Yit are su¢ ciently relevant instruments. The conclusion that an appropriate lower

5For the proof of this, we refer to the supplementary appendix which is available at
http://ihome.cuhk.edu.hk/~b121322/Research.html.
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bound on j�0j is su¢ cient for the relevance assumption Assumption 3.2 can be extended
to cases where f0t is correlated across t, but in general it is not possible to give such a

convenient analytic expression as in (4) for the lower bound.6 Note that the lower bound

in (4) goes to zero when ���f becomes small relative to �2� , i.e. the bound is not restrictive

when the relative in�uence of the factors on Yit is small.

Theorem 3.1 Under Assumption 3.1 and 3.2 we have �̂!p �0 as N;T !1:78

To present the limiting distribution of �̂; we need to introduce some further notation.

De�ne theNT -vectors y�f�1 and z
�f
l by y�f�1 = vec

�
M�0Y�1Mf0

�
, and z�fl = vec

�
M�0ZlMf0

�
,

where l = 1; :::; L: Let u = vec (U) and z�f =
�
z�f1 ; :::; z

�f
L

�
:

De�ne G = plimN;T!1
1
NT y

�f 0
�1 z

�f = �2�
1��20

�
�0; �

2
0; :::; �

L
0

�0
, and

W = plim
N;T!1

�
1

NT
z�f 0z�f

��1
W 
NT

�
1

NT
z�f 0z�f

��1

=

8>><>>:
�2"

1� �20

2664
1 � � � �L�10
...

. . .
...

�L�10 � � � 1

3775+ �2�IL
9>>=>>;W 

8>><>>:
�2"

1� �20

2664
1 � � � �L�10
...

. . .
...

�L�10 � � � 1

3775+ �2�IL
9>>=>>; :

Notice that under Assumption 3.1, the limits G and W are well de�ned. Also, notice that

under Assumption 3.1, we have GWG0 > 0:

De�ne

c(2) =
h
C(2) (Zl; u)

i
l=1;:::;L

;

6A non-zero mean of f0t can result in situations where Assumption 3.2 is not satis�ed for any value
of �0. The assumption that f0t is mean zero would not be restrictive if we would include a conventional
individual speci�c �xed e¤ect in the model, in addition to the interactive �xed e¤ect � or equivalently
(from an asymptotic perspective), one can demean Yit separately for each i before estimating the model
with only interactive e¤ects.

7The proof is omitted due to space limitation. It is a special case of MSW where their � (�) = Y ��Y�1
and the conditions in Assumptions 3.1 and 3.2 are su¢ cient for the consistency conditions in MSW (see
the supplementary appendix available at http://www.cemmap.ac.uk/publications.php.)

8Note that Assumption 3.2 is a su¢ cient condition for the relevance of the instruments, but nothing is
known about the necessity of this assumption. The LS-MD estimator may also give consistent parameter
estimates in some situations where the assumption is violated.
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where

C(2) (Zl; u)

= tr
�
uMf0u

0M�0Zlf
0
�
f00f0

��1 �
�00�0

��1
�00
�
+ tr

�
u0M�0uMf0Z

0
l�
0
�
�00�0

��1 �
f00f0

��1
f00
�

+tr
�
u0M�0ZlMf0u

0�0
�
�00�0

��1 �
f00f0

��1
f00
�i
:

MSW show that under Assumption 3.1, as N;T !1 with N
T ! �2; where 0 < � <1; we

can approximate

p
NT (�̂� �0) =

�
GWG0

��1
GW

�
1p
NT

�
z�f
�0
u+ c(2)

�
+ op (1) : (5)

Notice that as N;T !1 with N
T ! �2; where 0 < � <1; under Assumptions 3.1 we can

show that
1p
NT

�
z�f
�0
u) N (��b;
) ; and c(2) !p 0; (6)

where

b = (b1; :::; bL)
0 ; bl = plim

N;T!1

1

N
tr
h
Pf0

h
E
�
�0~��l�1

�
+ E

��
� � �0��1

�0
��l�1

�ii
;

~��l = [~�it�l] ; ~�it�l =
1X
s=0

�s0�it�l�s;


 =

�
�2�

1� �20
+ �2�

�8>><>>:
�2"

1� �20

2664
1 � � � �L�10
...

. . .
...

�L�10 � � � 1

3775+ �2�IL
9>>=>>; :

Combining (5) and (6) ; we have the following theorem.

Theorem 3.2 Suppose that Assumptions 3.1 hold. As N;T ! 1 with N
T ! �2 and

0 < � <1; we have

p
NT (�̂� �0)) N

�
��

�
GWG0

��1
GWb;

�
GWG0

��1
GW
WG0

�
GWG0

��1�
:

Notice that the bias b in the limit distribution is due to the incidental parameters

�0i f
0
t and the lagged dependent variables as IVs, which is similar to the bias in Moon and

Weidner (2010). This bias can be consistently estimated and is correctable, for details we
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refer to Moon, Shum, and Weidner (2011).

4 Discussion

Our LS-MD estimation can be used for more sophisticated cases. We brie�y discuss how

to extend our simple model.

1. Inclusion of covariates: The LS-MD estimation procedure can be easily extended
to include a model with other exogenous regressors, say Xit: For example, in the �rst

step one can regress Yit��Yit�1 on Xit; Zit with interative �xed e¤ects �ift for �xed
�: In the second step, minimize ̂ (�)0W 

NT ̂ (�) w.r.t. �:

2. Heteroskedastic error: Until now, we assume that the errors �it and �it are ho-
moskedastic for simplicity. If the errors are heteroskedastic, then the limit of c(2) is

non-zero and contributes additional bias terms to the limit distribution of �̂. These

biases are correctable (see e.g. Bai, 2009, and Moon and Weidner, 2010), and can

be interpreted as mis-speci�cation bias, since the least squares step in the LS-MD

procedure can only correspond to a correctly speci�ed likelihood maximization under

homoscedasticity.

3. Non-classical measurement error: Measurement error so far is assumed to be
classical. In many applications, however, measurement error can be correlated with

the unobserved latent variable and the covariates. Our estimation method is still

valid under more general measurement error models. For example, suppose that

people tend to report income, Yit proportionally to Y �it as

Yit = 0i + 1itY
�
it + vit; (7)

where vit is an unobserved error. Note that the measurement error in model (7) is

non-classical since the measurement error, �it = Yit � Y �it ; could be correlated with
Y �it and the mean of the measurement error is not necessarily zero.

9 Model (7) is a

modi�ed version of a linear measurement error model that allows for a heterogeneous

relationship between Yit and Y �it across cross-section and over time.
10 When the

9A special case of model (7) is 0it = 0 and 1it = 1; in which case vit is classical.
10Bollinger and Chandra (2005) and Kim and Solon (2005) develop a model allowing for a constant linear

relationship between Yit and Y �
it , based on the evidence in surveyed income; i.e., those who earn higher than
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coe¢ cient 1it is random satisfying 1it = 1 + wit; where fwitg and fvitg are iid
across i and over t with zero mean, and fwitg ; fvitg ; f�itg are independent of each
other, then we have the following dynamic equation with two factors (or one factor

and a time invariant �xed e¤ect) as

Yit = �Yit�1 + �
0
iht + Uit;

where �i = [1�i; (1� �) 0i; ]0 ; ht = [ft; 1]0 and

Uit = 1�it + vit � �vit�1 + Y �itwit � �Y �it�1wit�1: (9)

Note that the composite error Uit in (9) has serial dependence structure similar to an

MA (1) process, and we can use Zit = (Z1;it; :::; ZL;it)
0 = (Yit�2; :::; Yit�1�L)

0 as IVs

for the LS-MD estimator.
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5 Supplementary Appendix (Not for Publication)

5.1 Proof of Consistency

We show that Assumptions 3.1 and 3.2 in the current model are su¢ cient for Assumption 1

of Moon, Shum and Weidner (2011) with � (�) in MSW replaced by Y � �Y�1, and Xk in
MSW replaced by 0.

� Assumption 1(i) holds since uniformly in � outside of any neighborhood of �0 we
have

k� (�)� � (�0)kF
k�� �0k

= kY�1kF =

vuut NX
i=1

TX
t=1

Y 2it�1 = Op
�p
NT

�
:

Also, it follows that

kZlkF =

vuut NX
i=1

TX
t=1

Y 2it�1�l = Op
�p
NT

�
:

� Assumption 1(ii) is satis�ed because kUk =
�+ � � �0��1 � k�k+k�k+j�0j��1 =

Op

�p
max (J; T )

�
because f�itg ; f�itg � iid with mean zero and �nite moments

higher than 4 (See Moon and Weidner (2010)).

� Assumption 1(iii)
1

NT

NX
i=1

TX
t=1

Yit�1�lUit = op (1)

follows for l � 1 since E (Yit�1�lUit) = 0 if l � 1:

� Assumption 1(iv) follows since any (nontrivial) linear combinations of Z 0ls have rank
higher than two under Assumption 3.1.

� Assumption 1(v) holds by Assumption 3.2 with ���;� = � (�� �0) y�1:

� Assumption 1(vi) holds by Assumption 3.1 (iii).

5.2 Asymptotic Normality

� Assumptions 2 and 3 in MSW follow immediately under Assumption 3.1.

10



� Assumptions 4 and 5 in MSW follow since in this paper � (�) = Y � �Y�1 is linear
in � and by the conditions in Assumption 3.1.

5.3 Su¢ cient Conditions for Assumption 3.2

In matrix notation we can write (3) as

Y = �0Y�1 + �
0f00 + U;

where Y�1 = [Yi;t�1]i=1;:::;N ;t=1;:::;T , and we de�ne Y�2 analogously. By recursively applying

the model we �nd

Y = �0F 00 + E + Y init;

where F is the T � 1 vector with entries Ft =
Pt�1
�=0 �

�
0f
0
t�� , and E and Y init are the

T �N matrices with entries Eit = �it+
Pt�1
�=0 �

�
0�t�� , and Y

init
it = �t0Yi0. We denote lagged

versions of F 0 and E by F 0�1 and E�1, etc.

In the following we assume L = 1. In that case Assumption 3.2 is satis�ed if�
plimN;T!1

1
NT y

0
�1z

�2
plimN;T!1

1
NT z

0z
� plim
N;T!1

�
max
�

1

NT
y0�1PIT
~�y�1

�
> 0; (10)

where ~� =
�
�0; �

�
. If ft is mean zero and independent across t we have

1

NT
y0�1z =

1

NT
Tr(Y�1Y�2)

=
1

NT
Tr(E�1E�2) +

1

NT
k�k2(F 0�1F�2) + op(1)

=
�0

1� �20

�
�2� +���f

�
+ op(1);

1

NT
z0z =

1

NT
Tr(Y�1Y�1)

=
1

1� �20

�
�2� +���f

�
+ �2� + op(1);
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and

max
�

1

NT
y0�1PIT
~�y�1 = max�

1

NT
Tr(Y 0�1P~�Y�1)

= max
�

1

NT
Tr(F�1�

0P~��F
0
�1) + op(1)

=
1

NT
k�k2kF�1k2 + op(1)

=
1

1� �20
���f + op(1):

Plugging these results into condition (10) immediately yields condition (4). Here, we have

assumed only one instrument (L = 1), but in the special case under consideration (ft
independent across t) there is actually no additional explanatory power for Yit contained

in Yi;t�2, i.e the probability limit of 1
NT y

0
�1Pzy�1 is the same for all L � 1.
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