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Abstract
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the measurement of disability demonstrates the feasibility of the method and the power of
non-negativity restrictions.

Keywords: Factor rotation; Inequality constraints; Chen-Szroeter test; Disability

JEL codes: C12, C38, I10

Contact: Steve Pudney, ISER, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ,
UK; tel. +44(0)1206-873789; email spudney@essex.ac.uk

I am grateful to Marcello Morciano for his help with computation. This work was supported by the Nuffield
Foundation (via the project ‘The role and effectiveness of disability benefits for older people’) and the
European Research Council (project no. 269874 [DEVHEALTH]). Support from the Economic and Social
Research Council through the MiSoC research centre (award no. RES-518-285-001) and the University of
Melbourne through a Faculty Visiting Scholarship in the Department of Economics and Melbourne Institute
is also gratefully acknowledged. Data from the English Longitudinal Study of Ageing (ELSA) were developed
by researchers based at University College London, the Institute for Fiscal Studies and the National Centre
for Social Research and are made available through the UK Data Archive. Neither the collectors of the data
nor the UKDA bear any responsibility for the analyses or interpretations presented here.



1 Introduction

Statistical models involving unobservable latent variables have long played an important role

in applied research in psychology and the social sciences and, largely prompted by recent

work on cognitive and non-cognitive skill formation, are becoming increasingly important in

economics (Heckman, Stixrud and Urzua 2006). These models assert that a set of observable

indicators is determined by a small number of common unobservable factors. The coefficients

linking the latent factors and the indicators which reflect them are known as factor loadings

and the configuration of the loadings is an important clue to the conceptual meaning of

the unobserved factors. However, there are serious problems of interpretation in models

with multiple factors, since no factor can be distinguished unambiguously from the others

without further information. The indeterminacy of the estimated factors is often addressed

by means of rotation algorithms, which search for combinations of factors that can be given

simple interpretations. Discussions of rotation methods often take as their starting point

Thurstone’s (1947) analysis, which laid down the following five principles cast in terms of the

properties that conceptually meaningful factor loadings are expected to display (Thurstone

1947, p.335):

(i) Every indicator should have at least one zero factor loading;

(ii) The number of zero loadings for a given factor should equal the number of factors;

(iii) For any pair of factors, there should exist several indicators which have zero loadings

for one but not the other;

(iv) In models with many factors, for each pair of factors, there should exist several indicators

with zero loadings for both;

(v) For any pair of factors, there should be few indicators with non-zero loadings for both.
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The Thurstone principles have been found helpful, but they have no clear theoretical

basis. In contrast, for many applications of factor models, we have strong a priori information

on the sign of some or all of the factor loadings. For example, if the indicators are test scores

and the factors are cognitive abilities, we would definitely expect non-negative loadings

– it is hardly plausible to suggest that, for a given level of mathematical ability, higher

verbal ability makes it more difficult to do well in a maths test. Similarly, if the observed

indicators are measures of disability and the latent factors are to be interpreted as underlying

physical or mental impairments, we would again expect the loadings to be non-negative. In

the social sciences, these potentially powerful sign restrictions are rarely imposed on factor

rotation algorithms, and non-negativity does not appear as one of Thurstone’s five principles.

More recent reviews have also had little to say about the signs of factor loadings (see, for

example, Sass and Schmitt 2010). In the natural sciences, nonnegativity is more often

exploited through Positive Matrix Factorisation algorithms (see Paatero, P. and Tapper

1994, Plumbley 2003), but the factor models typically used there are restrictive in other

respects and non-negativity is exploited in a way that may not work well in the applications

typical of social science, where models involve random residuals and samples are rarely large

enough for sampling error to be unimportant.

2 Factor rotation

Consider the following prototypical factor model:

yi =A0f 0
i + ηi (1)

where yi is a J × 1 vector of indicators observed for the ith of n sampled individuals and

ηi is the corresponding vector of measurement errors. The superscript 0 here and elsewhere

indicates that A0 is the matrix of factor loadings corresponding to the Q × 1 vector of
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‘meaningful’ latent factors f 0
i . Note that (1) is incomplete and requires some specification

of the process generating the factors f 0
i . It can also be extended in various ways by the

inclusion of intercepts and covariates in (1) or complex observation mechanisms for yi. Such

extensions make no essential difference for our purposes.

Models of this class are unidentified because the structure (1) is observationally equivalent

to a system with any non-singular transformation of the factors:

yi = (A0H) (H−1f 0
i ) + ηi =Af i + ηi (2)

where H is an arbitrary nonsingular Q ×Q matrix. This lack of identification is generally

resolved by means of convenient but arbitrary normalisations during estimation of the factor

loadings, followed by use of a rotation algorithm to suggest simple interpretations of the

factors. For the sake of simplicity, we assume use of the following normalisation:

A = ( I
A2
) (3)

This normalisation involves no loss of generality provided it is possible to identify a subset

of Q of the J indicators for which the corresponding rows of A0 form a nonsingular basis. In

practice this requires that the basis is chosen to contain a diverse group of indicator types

and, as long as this is achieved, the choice of basis is unimportant (see Pudney 1982). Note

that any other set of minimal normalising assumptions (such as independent factors and

orthonormal A) can be recast in the form (3).

The aim of factor rotation is to find a matrix R such that AR has characteristics as close

as possible to those expected of the ‘meaningful’ loadings matrix A0. Perfectly successful

rotation would give R =H−1
=A0

1. Rotation operates by solving the following problem:

min
R

Ψ (ÂR) (4)
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where Ψ(.) is a criterion function that penalises hard-to-interpret structures for the factor

loading matrix and Â is an estimate of the normalised loadings matrix. Many different

rotation criteria have been used, mostly members of the CF family (Crawford and Ferguson

1970):

Ψ (A) = (1 − κ)
J

∑
j=1

Q

∑
q, r = 1
q ≠ r

a2
jqa

2
jr + κ

Q

∑
q=1

J

∑
j, k = 1
j ≠ k

a2
jqa

2
kq (5)

where the two components of Ψ penalise row complexity and column complexity of A,

respectively.

For simplicity, we assume here that all loadings are known a priori to be non-negative, but

note that it is possible to exclude some of the loadings from this restriction: for example,

those corresponding to a particular indicator variable. Our aim is to develop a method

of rotation that incorporates a priori knowledge of the nonnegativity of A, which implies

inequality constraints R ≥ 0 and A2R ≥ 0. It is possible to impose these constraints directly:

min
R≥0

Ψ (ÂR) subject to Â2R ≥ 0 (6)

There are two drawbacks to this approach. First, the large number of inequality con-

straints make this an awkward mathematical programming problem. More important is the

fact that the inequality constraints do not take account of sampling variation in the elements

of Â2R, and the solution of (6) may be dominated by restrictions on the sign of a quantity

that is estimated with very low precision, leading to unstable results.1

A better approach is to make explicit use of a hypothesis-testing procedure which au-

tomatically takes account of sampling variability. The difficulty in doing this is that non-

negativity of factor loadings involves a null hypothesis comprising multiple inequality re-

strictions. Wald, Likelihood Ratio and Lagrange Multiplier testing procedures for such

1The same criticism applies to the summations defining criteria like (5): there is a strong case for weighting
the elements of these sums to take account of sampling variability, but we do not pursue that here.
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hypotheses are long-established but very cumbersome computationally and lack some of the

desirable properties of a good test, such as similarity on the boundary of H0 and freedom

from nuisance parameters (see Kudô 1963, Perlman 1969, Gouriéroux, Holly and Monfort

1982, Kodde and Palm 1986, Wolak 1991, Chen and Szroeter 2009). The Extreme Value test

proposed by White (1990) is computationally simpler but has theoretical disadvantages. An

alternative test procedure has recently been put forward by Chen and Szroeter (2009), which

is extremely simple to implement and has good theoretical properties, at least asymptotically.

Our proposal for a nonnegativity-constrained rotation uses a single constraint that the set

of inequality restrictions on the rotated loadings should not be rejected by the Chen-Szroeter

test. Rather than using this merely as a post-rotation check (which would leave the user at

an impasse in the case of a rejection), we propose incorporating the condition as part of the

the rotation algorithm, in the following way:

min
R≥0

Ψ (ÂR) subject to P (Â2R, V̂ ) ≥ α (7)

where P (Â2R, V̂ ) is the P−value function of the Chen-Szroeter test, V̂ is an asymptotic

approximation to the covariance matrix of the elements of Â2 and α is a pre-selected signif-

icance level for the non-negativity test. In most applications, the optimisation problem (7)

will be simpler computationally than (6) because it involves only a single smooth inequality

constraint.

3 The Chen-Szroeter nonnegativity test

For any given R, write the restriction A2R ≥ 0 in vector form as follows:

H0(R) ∶ Ga ≥ 0 (8)
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where G = I ⊗R′, a = vec(A2) and vec(.) is the operator that stacks the rows of a matrix

into a column vector. Writing g = Ga, the inequalities in (8) can be chained into a single

equality restriction:

H0(R) ∶
S

∑
s=1

gi 1 (gs ≤ 0) = 0 (9)

where 1(.) is the indicator function, gs is the sth element of g and S = (J − Q)Q is the

number of elements of A2.

The essence of the Chen-Szroeter (CS) test is to replace the discontinuous indicator

function in (9) by a smoothing function which converges asymptotically to 1((gs ≤ 0). Write

ĝs as the estimate of gs based on Â2. The CS test statistic (interpretable essentially as a

P−value for the analogue of a t-statistic) is then constructed as:

P = Φ
⎛
⎝

∑S
s=1 ĝsFs√

∑S
s=1∑S

t=1 FsFtcst

⎞
⎠ (10)

where Φ(.) is the N(0,1) distribution function, F (.) is a smooth, strictly positive, mono-

tonically increasing function on the real line, Fs = F (ĝs

√
n/ lnn) and cst is the typical ele-

ment of the asymptotic approximation to the variance matrix of ĝ, constructed as GV̂ G′.

We follow one of Chen and Szroeter’s suggestions in using the logit smoothing function

F (x) = (1 + ex)−1. The null hypothesis (9) is rejected against the general alternative if

P < α. Note that, in common with other tests of composite hypotheses, α is the pre-selected

size of the test, in other words an upper bound on the rejection probability under H0: the

actual rejection probability at any point R depends on the true value A0
2R.

4 An example: latent disability

Our example relates to the measurement of disability in the older population. The English

Longitudinal Survey of Ageing (ELSA) (Taylor et al 2003) offers a particularly rich set of
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information on respondents’ difficulties with the activities of daily living (ADLs) (Katz et

al 1963) and instrumental activities of daily living (IADLs) (Lawton and Brody 1969). The

twenty-four ELSA disability indicators are listed in Table 1. They are all binary variables

and we use a logit link function to relate them to the continuous latent disability measures

f . Work by Morciano et al (2010) indicates a 2-factor structure for these data and we

use an initial normalisation suggested by their analysis, with the loadings for the indicators

recording difficulty with “walking 100 yards” and “preparing a hot meal” normalised at

unity for factors 1 and 2 respectively, and the cross-loadings for those two indicators set

to zero. All other indicators are allowed to have non-zero loadings on both factors. This

normalisation is completely general, since any other non-degenerate matrix of factor loadings

can be constructed from it by means of a suitable linear transformation. In applying factor

rotation, we retain the scale normalisation a11 = a22 = 1 by fixing the diagonal elements of R

at unity, so that optimisation is carried out with respect to the two off-diagonal elements.

The model is estimated by maximum likelihood (using MPlus version 6.0) for the sample

of 5,145 respondents aged 65 and over who give complete answers in ELSA wave 1 (2002).

The estimated loadings prior to rotation are shown in the first panel of Table 1.2 There is a

single negative loading on factor 1 and six on factor 2; these are significant in the sense that

the hypothesis of non-negativity for all loadings is rejected emphatically by the CS test.

Unconstrained rotation methods tend to worsen the problem of negative loadings. Table

1 shows results from three standard methods nested within the Crawford-Ferguson family:

Direct quartimin (κ = 0); Varimax (κ = 1/J); and Facparsim (κ = 1). All three methods

result in the same five negative loadings for factor 1, while there are respectively 11, 6 and

2We do not quote test results for individual loadings, because of the serious problem of multiple compar-
isons that afflict the element-wise interpretation of large arrays of estimated parameters.
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8 negative loadings for factor 2. For all three rotation methods, the null hypothesis of non-

negative rotated loadings is rejected very strongly by the CS test. These negative loadings

make interpretation very difficult: what are we to make of factor 1 which is clearly linked

with difficulties with physical activity but which also appears to make it less likely that the

individual has difficulty in preparing a hot meal, managing money or taking medication?

We incorporate the non-negativity assumption by solving the optimisation problem (7)

numerically, using a test size of α = 10%. To check that the constrained minimum was

achieved, this was done independently using two different optimisation algorithms: a quasi-

Newton method (implemented in the Gauss constrained optimisation procedure) and the

simulated annealing algorithm (Goffe et al 1994, implemented in a Gauss routine written by

E.G.Tsionas), using a penalty function approach. Both reached the same solution without

difficulty. A striking feature of the results is that the same set of rotated loadings was reached,

irrespective of which variant of the Crawford-Ferguson criterion was used. Thus the result

is, in this example, essentially invariant to the value of the rotation parameter κ and close

to the original, unrotated loadings. This finding underlines two very important points: first,

that rotation methods can make it more, rather than less, difficult to find a convincing,

theoretically-valid interpretation of factor loadings. Second, that prior information on the

non-negativity of factor loadings, if it exists, can have much greater identifying power than

the loose Thurstone principles which are reflected in various ways by standard rotation

criteria.

In this example, our first estimated factor represents disability relating mainly to physical

mobility, such as getting up from a bed or chair, walking around, etc. The second factor

is less clearly interpretable, but appears to be associated with activities which involve a

significant element of cognition and decision-making, such as shopping, taking medicines

and managing money. However, the existence of many non-negligible cross-loadings suggests
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that reported difficulties can often result from either physical or cognition/decision problems,

so that rotation methods which tend to eliminate cross-loadings may make interpretation

more difficult.
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5 Conclusion

In this paper, we have argued that non-negativity constraints on factor loadings are strongly

supported by theoretical arguments in many or most applications of latent factor models, and

that they are potentially much more powerful as sources of identifying information than the

loose Thurstone (1947) principles which are often appealed to as support for conventional

factor rotation methods. The difficulty with non-negativity constraints is that they are

hard to incorporate in rotation algorithms and, if imposed directly without reference to

sampling variability, could introduce unwelcome instability. We have instead proposed that

non-negativity is introduced in the form of a requirement that, after rotation, the hypothesis

of non-negativity should not be rejected by a suitable statistical test. The difficulty with

this approach is that it involves testing a null hypothesis comprising multiple inequality

restrictions, and standard testing LR, LM and Wald methods resulting in chi-bar-squared

test statistics are too cumbersome to be used in this context. Instead, we use a much

simpler test with very good asymptotic properties developed by Chen and Szroeter (2009)

to incorporate non-negativity via a single smooth P−value constraint on a standard rotation

algorithm.

Our example of survey data on self-reported disability among older people is typical of

applications where non-negativity is a theoretically-supported assumption: unless this type

of data were believed to be seriously misleading, it would be unreasonable to expect that

increased (latent) disability of any kind would reduce reported disability. In this example,

three standard rotation methods perversely increase the number of negative loadings, with

as many as a third of the post-rotation loadings (in the case of quartimin rotation) being

negative. In every case, the composite hypothesis of non-negativity for all loadings is rejected

emphatically by the CS test. When the test is introduced as an explicit constraint on the
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rotation, the same result is produced irrespective of the rotation method, indicating the

power of the non-negativity information. After non-negativity-constrained rotation, factor

1 represents mainly disability relating to physical mobility, while the second is associated

with activities which involve an element of cognition and decision-making, such as shopping,

taking medicines and managing money. The existence of many cross-loadings suggests that

reported difficulty with daily activities can often result from either physical or decision-

making problems.
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