
Chesher, Andrew; Smolinski, Konrad

Working Paper

IV models of ordered choice

cemmap working paper, No. CWP37/09

Provided in Cooperation with:
Institute for Fiscal Studies (IFS), London

Suggested Citation: Chesher, Andrew; Smolinski, Konrad (2009) : IV models of ordered choice,
cemmap working paper, No. CWP37/09, Centre for Microdata Methods and Practice (cemmap),
London,
https://doi.org/10.1920/wp.cem.2009.3709

This Version is available at:
https://hdl.handle.net/10419/64651

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1920/wp.cem.2009.3709%0A
https://hdl.handle.net/10419/64651
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


  

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

IV models of ordered choice 
 
Andrew Chesher 
Konrad Smolinski 
 
 
 
 
 
 

The Institute for Fiscal Studies 
Department of Economics, UCL 
 
cemmap working paper CWP37/09 



IV Models of Ordered Choice

Andrew Chesher and Konrad Smolinski∗

CeMMAP & UCL

December 4th 2009

Abstract

This paper studies single equation instrumental variable models of
ordered choice in which explanatory variables may be endogenous. The
models are weakly restrictive, leaving unspecified the mechanism that
generates endogenous variables. These incomplete models are set, not
point, identifying for parametrically (e.g. ordered probit) or nonpara-
metrically specified structural functions. The paper gives results on
the properties of the identified set for the case in which potentially
endogenous explanatory variables are discrete. The results are used as
the basis for calculations showing the rate of shrinkage of identified sets
as the number of classes in which the outcome is categorised increases.

Keywords: Endogeneity, Incomplete models, Instrumental vari-
ables, Ordered choice, Ordered Probit, Set Identification, Threshold
Crossing Models.

JEL Codes: C10, C14, C50, C51.

1 Introduction

This paper studies single equation instrumental variables models for ordered
outcomes in which explanatory variables may be endogenous. These models
arise in structural econometric analysis of individuals’ choices amongst or-
dered alternatives, or of individuals’ attitudes arranged on an ordinal scale
and they arise in many other settings in which data are interval censored
continuous outcomes.

A common ploy when dealing with endogenous variation in a discrete
response situation is to presume that the discrete response is generated in
a recursive, triangular system along with the endogenous variable. Then,
∗We thank Martin Cripps and Adam Rosen for helpful discussions. Some of the results

in this paper were presented at the conference Identification and Decisions held May 8-9
2009 at Northwestern University. We gratefully acknowledge the financial support of the
UK Economic and Social Research Council through a grant (RES-589-28-0001) to the
ESRC Centre for Microdata Methods and Practice (CeMMAP).
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calling on some further restrictions, a control function method is used as the
basis for identification and estimation. See for example Smith and Blundell
(1986), Rivers and Vuong (1988), Blundell and Powell (2003, 2004), Chesher
(2003).1

Unfortunately this strategy does not generally work when endogenous
variables are discrete.2 And, as explained in Chesher(2009), the control
function approach exploits strong restrictions concerning the process gener-
ating the endogenous variables, restrictions which may not be found plausi-
ble in many econometric settings. By contrast here we work with a model
which is far less restrictive in this regard, imposing conditions only on the
structural function generating the discrete response.

The model requires that a scalar ordered outcome Y , with M ≥ 2 points
of support, is determined by a structural function h(X,U) which is weakly
monotone in scalar unobserved U . The observed vector of explanatory vari-
ables, X, and U may not be independently distributed. However the model
requires that U be distributed independently of instruments, Z. We call the
model a Single Equation Instrumental Variable (SEIV) model. The SEIV
model places no restrictions at all on the process generating the endogenous
variable, X, and in this respect is incomplete.

Thinking about Manski’s (2003) “Law of Decreasing Credibility” encour-
ages us to take this approach. It allows one to see what is lost by relaxing
the strong restrictions of the triangular control function model. It turns out
that what is lost is point identification because the SEIV model is generally
set not point identifying. Dropping the restrictions of the control function
model leads to ambiguity.

This paper focusses on models with discrete endogenous variables, having
K points of support, {x1, . . . , xK}, and explores the identified sets the SEIV
model delivers. The main results are now summarised.

Since the structural functions of a SEIV model are monotone in scalar
U there is a threshold crossing representation in which U is normalised
marginally uniformly distributed on the unit interval.

h(X,U) ≡


1 , 0 ≤ U ≤ h1(X)
2 , h1(X) < U ≤ h2(X)
...

...
...

...
...

M , hM−1(X) < U ≤ 1

In the discrete endogenous variable case a nonparametrically specified
structural function, h, is characterised by N = K × (M − 1) parameters,

1The control function approach is used quite widely in applied econometric practice.
STATA, Statacorp(2007) and LIMDEP, Greene (2007), are examples of widely used pro-
prietary software suites armed with commands to conduct control function estimation of
models of binary responses.

2Chesher (2005) gives partial identification results for a control function model with
discrete endogenous variables.
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denoted γ, which are the values of the M − 1 threshold functions at the K
values of X.

Let H0(Z) denote the set of values of γ identified by the SEIV model
given F 0

Y X|Z , a probability distribution for Y and X conditional on Z, when
Z takes values in a set Z. Each structural function is characterised by a
point in the unit N -cube and H0(Z) is a subset of that space.

The identified set delivered by a nonparametric SEIV model is shown
to be a union of convex sets each defined by a system of linear equalities
and inequalities. The number of sets involved can be enormous in what at
first sight seem to be small scale problems. For example when M = K = 5
there may be over 300 billion component sets. The result is generally not
a convex set unless instruments are strong. We give examples in which the
identified set is not convex and, indeed, not connected. Shape restrictions
(e.g. monotonicity) or parametric restrictions can bring substantial simpli-
fication.

A system of inequalities given in Chesher (2008) defines an outer set,
C0(Z), within which the SEIV model’s identified set lies. We develop expres-
sions for these inequalities for the M outcome, discrete endogenous variable
case. We propose a second system of inequalities defining a set of values
of γ, D0(Z), and show that the identified set resides in the intersection
C̃0(Z) ≡ C0(Z) ∩ D0(Z).

When the outcome Y is binary C0(Z) is a subset of D0(Z) and, as shown
in Chesher (2008), in that case C0(Z) is the identified set H0(Z). Here we
show that when the endogenous variable is binary C̃0(Z) is the identified set
however many categories there are for Y .

Finally we examine the impact of response discreteness on the identi-
fied sets. The discrete response model studied here is a non-additive error
model and the results for such models for continuous outcomes given in
Chernozhukov and Hansen (2005) show that there can be point identifica-
tion in SEIV models when observed responses are continuous. So it is to be
expected that as the number of categories observed rises there is reduction
in ambiguity and an approach to point identification.

We investigate this in the context of a model with parametrically speci-
fied structural functions such as arise in ordered probit models. We find that
in the cases considered identified sets for a parameter such as a coefficient
in a linear index shrink at a rate approximately equal to the inverse of the
square of the number of classes in which the outcome is categorised. In the
example, when Y is categorised into 10 or more classes, the SEIV model
delivers identified sets which are very small indeed.

The paper is organised as follows. Section 2 give a formal definition of
the SEIV model and defines its identified set of structural functions.

Section 3 develops the main results for nonparametrically specified struc-
tural functions with discrete endogenous variables. In Section 3.1 a piecewise
uniform system of conditional distributions of U given X and Z is introduced
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and conditions under which a structural function lies in the identified set are
stated. The geometry of the identified set for nonparametrically specified
structural functions is discussed in Section 3.2 and systems of inequalities
obeyed by values of these functions that lie in the identified set are set out
in Section 3.3 Proofs of propositions are given in an Annex.

Section 4 illustrates the results using a parametrically specified model
which, in the absence of endogeneity, would be a conventional ordered probit
model. This Section gives results on the rate of shrinkage of identified sets
as the number of categories of the discrete outcome increases. Section 5
concludes.

2 An IV model for ordered outcomes

In the SEIV model a scalar ordered outcome Y is determined by observable
X, which may be a vector, and unobserved scalar U . Restriction 1 defines
admissible structural functions.

Restriction 1. Y is determined by a structural function as follows:

Y = h(X,U) ≡


1 , h0(X) ≤ U ≤ h1(X)
2 , h1(X) < U ≤ h2(X)
...

...
...

...
...

M , hM−1(X) < U ≤ hM (X)

with, for all x, h0(x) = 0 and hM (x) = 1 and for all x and m, hm(x) >
hm−1(x). U is normalised to have a marginal uniform distribution on [0, 1].

Specifying the values of Y to be the first M integers is an innocuous
normalisation because Y is an ordered outcome.

U and X are not required to be independently distributed so the model
allows elements of X to be endogenous. However U is required to be dis-
tributed independently of instrumental variables, Z, as set out in Restriction
2.

Restriction 2. U and instrumental variables Z which take values in some
set Z are independently distributed in the sense that the conditional distri-
bution function of U given Z = z satisfies FU |Z(u|z) = u for all u ∈ [0, 1]
and z ∈ Z.

Restriction 1 excludes the instrumental variables from the structural
function. Neither restriction imposes any conditions on the process gener-
ating X. Now consider the identifying power of this model.

Let F 0
Y X|Z denote some distribution function of Y and X conditional on

Z. Imagine a situation in which data are informative about this distribution
for values of Z that lie in a set Z. If this distribution function is compatible
with the SEIV model then there exists (i) a structural function h0 with
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threshold functions {h0
m}Mm=1 and (ii) a distribution function F 0

UX|Z , both
admitted by the SEIV model and such that the following condition holds
when h = h0 and FUX|Z = F 0

UX|Z .

F 0
Y X|Z(m,x|z) = FUX|Z(hm(x), x|z), for all: z ∈ Z, m and x. (1)

There may be more than one admissible structure (h, FUX|Z) satisfy-
ing (1) because it may be possible to compensate for variations in the
x-sensitivity of the threshold functions {hm}Mm=1 by adjusting the u- and
x-sensitivity of FUX|Z leaving the left hand side of (1) unchanged while
respecting the independence Restriction 2. So the model is partially identi-
fying.

For a distribution F 0
Y X|Z let S0(Z) denote the set of structures identi-

fied by the model comprising Restrictions 1 and 2. This is the set of struc-
tures admitted by the SEIV model and satisfying (1). The set of structural
functions identified by the model, denoted H0(Z), is the set of structural
functions h which are elements of structures lying in the identified set.

H0(Z) ≡ {h : ∃ admissible FUX|Z s.t. (h, FUX|Z) ∈ S0(Z)}

The set H0(Z) is a projection of the set S0(Z).
This set is difficult to characterise and compute when X is continuously

distributed because determining whether there exists a distribution function
FUX|Z that can accommodate a particular structural function may require
searching across an infinite dimensional space of functions.

However Chesher (2008) shows that when Y is binary the identified set
is determined by a system of inequalities in which the distribution function
FUX|Z does not appear. One of the contributions of this paper is a similar
result for the case in which a scalar endogenous explanatory variable X is
binary and Y takes any number of values.

When X is discrete, say with K points of support, the distribution func-
tion FUX|Z can be characterised by a finite number of parameters for each
value of Z and the identified set can be computed when M and K are not too
large. The remainder of the paper studies the case in which the explanatory
variable, X, is discrete.

3 Identified sets with discrete endogenous vari-
ables

3.1 Identification

When X is discrete and K-valued with X ∈ {xi}Ki=1, the threshold functions
are characterised by the parameters

γmi ≡ hm(xi), m ∈ {0, . . . ,M}, i ∈ {1, . . . ,K}
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of which N ≡ (M − 1)K are free, that is not restricted to be zero or one.
Define γi ≡ {γmi}Mm=0 and γ ≡ {γi}Ki=1 with , for all i ∈ {1, . . . ,K}, γ0i ≡ 0,
γMi ≡ 1.

In the discrete X case an identified set of structural functions is a set of
values of γ, comprising a subset of the unit N -cube.

When determining whether a structural function characterised by a value
of γ lies in the identified set it is sufficient to search across distribution func-
tions which, at each value z of the instrumental variables are characterised
by the following parameters.

βmij(z) ≡ FU |XZ (γmi|xj , z) , m ∈ {0, 1, . . . ,M}, (i, j) ∈ {1, . . . ,K}

Let β(z) denote the list of values βmij(z), m ∈ {1, . . . ,M}, (i, j) ∈ {1, . . . ,K}
for some value z. For all (i, j) ∈ {1, . . . ,K} define β0ij(z) ≡ 0 and βMij(z) ≡
1. Let β(Z) denote the list of values of β(z) generated as z varies across Z.

Values βmij(z) with i = j are relevant because observational equivalence
requires that if γ lies in the identified set then for each z ∈ Z, m and i the
equality

FU |XZ (γmi|xi, z) = F 0
Y |XZ(m|xi, z) (2)

must hold. The conditional distribution F 0
X|Z is identified so (2) is effectively

the observational equivalence condition (1).
The independence restriction together with the uniform distribution nor-

malisation of the marginal distribution of U requires that for each m, i and
z the following condition holds:

E0
X|Z=z[FU |XZ (γmi|X, z)] ≡

K∑
j=1

FU |XZ (γmi|xj , z) Pr0[X = xj |Z = z] = γmi

(3)
so values of βmij(z) with i 6= j are also relevant. Here E0

X|Z=z indicates ex-
pectation taken with respect to the distribution F 0

X|Z with the conditioning
variable Z taking the value z.

So, for each point xj in the support of X the values of the conditional
distribution functions, FU |XZ(u|xj , z), at each value of u ∈ γ are relevant
when determining whether γ is in the identified set. Other values of u are
not relevant because they play no role in the fulfillment of the observational
equivalence condition (2) or the independence condition (3).

If γmi and γm′i′ are adjacent3 values of the threshold parameters then
the definition of FU |XZ for any values, xj and z of the conditioning variables
can be completed by connecting FU |XZ(γmi|xj , z) and FU |XZ(γm′i′ |xj , z)
with straight line segments delivering histogram-like piecewise uniform con-
ditional distributions.4

3If there is no γst ∈ γ such that γmi < γst < γm′i′ then γmi and γm′i′ are adjacent.
4Using straight line segments ensures that the independence condition:

E0
X|Z=z[FU|XZ (u|X, z)] = u
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Let Pr0 denote probabilities calculated using a particular distribution
function F 0

Y X|Z . Define conditional probabilities for X given Z:

δ0i (z) ≡ Pr0[X = xi|Z = z] i ∈ {1, . . . ,K}

and define δ0(z) ≡ {δ0i (z)}Ki=1. Let

δi(z) ≡ Pr[X = xi|Z = z] i ∈ {1, . . . ,K}

be conditional probabilities of X given Z
Define conditional probabilities and cumulative probabilities of the out-

come:

α0
mi(z) ≡ Pr0[Y = m|X = xi, Z = z], m ∈ {0, . . . ,M}, i ∈ {1, . . . ,K}

ᾱ0
mi(z) ≡

m∑
n=0

α0
ni(z), m ∈ {0, . . . ,M}, i ∈ {1, . . . ,K}

with α0
0i(z) ≡ 0 for all i and z, and lists of conditional probabilities as

follows.
α0

i (z) ≡ {α0
mi(z)}Mm=0 α0(z) ≡

{
α0

i (z)
}K

i=1

ᾱ0
i (z) ≡ {ᾱ0

mi(z)}Mm=0 ᾱ0(z) ≡
{
ᾱ0

i (z)
}K

i=1

Consider a structure characterised by

1. γ: a list of values of threshold functions,

2. β(Z): a list of values of conditional distribution functions of U given
X and Z obtained as Z takes values in Z, and,

3. δ(Z): a list of values of conditional probabilities of X given Z = z,
δ(z) = {δi(z)}Ki=1 where δi(z) ≡ Pr[X = xi|Z = z], obtained as z
varies across Z.

Such a structure lies in the set identified by the SEIV model associated
with probabilities α0(z) and δ0(z) and a set of instrumental values Z if and
only if the following three conditions hold for all z ∈ Z.

I1. Observational equivalence. For m ∈ {1, . . . ,M} and i ∈ {1, . . . ,K}

βmii(z) = ᾱ0
mi(z) δi(z) = δ0i (z)

I2. Independence. For m ∈ {1, . . . ,M} and i ∈ {1, . . . ,K}

K∑
j=1

δ0j (z)βmij(z) = γmi.

I3. Proper conditional distributions. For (m,n) ∈ {1, . . . ,M} and
(i, j, k) ∈ {1, . . . ,K} if γmi ≤ γnj then βmik(z) ≤ βnjk(z).

holds for all u ∈ (0, 1) and z ∈ Z.
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3.2 Geometry of the identified set

When determining whether a particular value of γ lies in the identified set,
the ordering of the elements of γ is crucial in determining whether there
exist distribution functions which satisfy condition I3.

There are L ≡ (K(M − 1))!/((M − 1)!)K admissible orderings of the
N elements of γ which are not restricted to be zero or one.5 For example,
when M = 3 and K = 2, there are 6 of the possible 24 orderings that are
admissible. The 18 inadmissible orderings have γ11 > γ21 or γ12 > γ22 or
both.

Let l index the admissible orderings of γ. For each l ∈ {1, . . . , L} define
sets S0

l (z) and H0
l (z) as follows.

S0
l (z) ≡ {(γ, β(z), δ(z)) : γ is in order l and (γ, β(z), δ(z)) respects I1-I3}

H0
l (z) ≡

{
γ : γ is in order l and ∃ (β(z), δ(z)) s.t. (γ, β(z), δ(z)) ∈ S0

l (z)
}

The set S0
l (z) is the set of structures admitted by the SEIV model that have

γ in order l and deliver the distribution F 0
Y X|Z for Z = z. The set H0

l (z) is
the projection of this set onto the component γ, that is onto the structural
function.

Since for any ordering, l, conditions I1-I3 comprise a system of linear
equalities and inequalities, each set S0

l (z) is convex, or empty. It follows,
from consideration of the Fourier-Motzkin elimination algorithm6, that the
set H0

l (z) is also defined by a system of linear equalities and inequalities, so
it is also convex or empty.

The identified set of values of γ in order l obtained as z takes all values in
the set of instrumental values Z, denotedH0

l (Z), is the following intersection
of the sets H0

l (z):
H0

l (Z) ≡
⋂
z∈Z
H0

l (z)

which is convex or empty. The identified set of values of γ of all orders is
the union of the sets H0

l (Z), as follows.

H0(Z) =
L⋃

l=1

H0
l (Z)

Thus the identified set of values of γ, that is the identified set of structural
functions, is a union of convex sets but that union may not itself be convex.

If there is a value l such that Hl(Z) contains values of γ in which no pair
of elements have a common value and for more than one value of l there are
sets Hl(Z) which are non-empty then the identified set is not connected.

5There are (K(M − 1))! permutations of the free elements of γ. Amongst these only 1
in each (M − 1)! have a sequence γi in ascending order and there are K such sequences to
be considered so only 1 in each ((M − 1)!)K have all these sequences in ascending order.

6See Ziegler (2007).
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Table 1: Number of admissible orderings of gamma with (upper) and with-
out (lower) monotonicity wth respect to X

Monotonicity with K
M respect to X 2 3 4 5
2 Yes 1 1 1 1

No 2 6 24 120
3 Yes 2 5 14 42

No 6 90 2, 520 113, 400
4 Yes 5 42 462 6006

No 20 1, 680 369, 600 168, 168, 000
5 Yes 14 462 24, 024 1, 662, 804

No 70 34, 650 6, 306, 300 305, 540, 235, 000

This is so because each set Hl(Z) lies in one of the N ! orthoschemes7

of the unit N -cube and the orthoschemes have intersections only at their
faces where there is equality of two or more elements of γ. In the exam-
ple in Section 4 there are a number of cases in which the identified set is
disconnected.

When instruments are strong or there are highly informative additional
restrictions (for example parametric restrictions) the sets Hl(Z) may be
empty for all but one value of l and then the identified set is convex. Other-
wise the identified set may be very irregular and complex, composed of the
union of a very large number of convex subsets of the identified set. With
M and K as low as 4 the value of L is 369, 600 and as M or K increase the
value of L quickly becomes astronomical.

Additional restrictions can bring some simplification. For example sup-
pose the threshold functions are restricted to be monotone in a scalar ex-
planatory variable X, with a common direction of dependence, say all non-
decreasing.

The problem of finding the number of admissible orderings of γ under
this restriction can be recast as the problem of finding the number of ways of
filling a (M−1)×K matrix with the integers {1, 2, . . . , (M−1)K} such that
the array increases both across columns and across rows. With K = 2 this is
the Catalan number 1

M+1

(2(M−1)
(M−1)

)
and the restriction of monotonicity with

respect toX brings an (M − 1)-fold reduction in the number of admissible
orderings.

Table 1 shows the value of L for values of M and K up to 5 together
with the number of admissible orderings once monotonicity with respect to

7The orthoschemes of the unit cube are the regions within which points obeying a
particular weak ordering of coordinate values lie. For example in a 3-cube within which
lie (x, y, z) there are 6 orthoschemes defined by the inequalities x ≤ y ≤ z, y ≤ x ≤ z, etc.
See Coxeter (1973).
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X is imposed.8 The monotonicity restriction can bring large reductions in
numbers of admissible orderings but when M or K are at all large there
remain huge numbers of admissible orderings of γ.

3.3 Characterisation of the identified set

Chesher (2008) shows that all structural functions in the set identified by
the SEIV model associated with a conditional distribution function F 0

Y X|Z
and a set of instrumental values Z satisfy the following inequalities for all
u ∈ (0, 1) and z ∈ Z.

Pr0[Y < h(X,u)|Z = z] < u ≤ Pr0[Y ≤ h(X,u)|Z = z]

In terms of threshold functions these inequalities are as follows.

M∑
m=1

Pr0[(Y = m)∧(hm(x) < u)|Z = z] < u ≤
M∑

m=1

Pr0[(Y = m)∧(hm−1(x) < u)|Z = z]

For the discrete endogenous variable case, there is the following representa-
tion.

K∑
i=1

M−1∑
m=1

δ0i (z)α0
mi(z)1(γmi < u) < u ≤

K∑
i=1

M∑
m=1

δ0i (z)α0
mi(z)1(γm−1,i < u)

(4)
These inequalities have implications for γ as set out in the following

Proposition which is proved in the Annex.

Proposition 1. For any z, if the inequalities (4) hold for all u ∈ (0, 1) then
for all l ∈ {1, . . . ,M} and s ∈ {1, . . . ,K} the following inequalities hold.

K∑
i=1

M−1∑
m=1

δ0i (z)α0
mi(z)1(γmi ≤ γls) ≤ γls ≤

K∑
i=1

M∑
m=1

δ0i (z)α0
mi(z)1(γm−1,i < γls)

(5)

For any ordering l of γ let C0
l (z) denote the set of values of γ that

satisfy the inequalities (5) of Proposition 1. Since these inequalities define
an intersection of halfspaces each set C0

l (z) is convex or empty, as is its
intersection

C0
l (Z) =

⋂
z∈Z
C0

l (z).

8The row and column ascending matrices encountered here are special cases of Young
Tableaux. The NumberOfTableaux command in the Combinatorica package (Pemmaraju
and Skienka, 2003) of Mathematica (Wolfram Research, Inc., 2008) was used to compute
those entries in Table 1 in which montonicity with respect to X is imposed.
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Define C0(Z) as the set of values of γ of any ordering that satisfy the in-
equalities of Proposition 1 for all z ∈ Z when calculations are done using a
distribution F 0

Y X|Z . This is the union of the sets C0
l (Z):

C0(Z) =
L⋃

l=1

C0
l (Z)

and, like the identified set, H0(Z), the set of values γ defined by the inequal-
ities of Proposition 1, C0(Z), is a union of convex sets. It may not itself be
convex nor need it be connected.

Chesher (2008, 2009) shows that, when Y is binary, C0(Z) is precisely
the identified set, H0(Z). When Y is not binary this may not be so.

This can be seen by considering Proposition 2, proved in the Annex.
Proposition 2, which follows directly from conditions I1-I3, places restric-
tions on values of γ that lie in the identified set. It will be demonstrated
in Section 4 that there can be values of γ which satisfy the inequalities of
Proposition 1 and fail to satisfy the inequalities of Proposition 2.

Proposition 2. If γ lies in the identified set associated with probabili-
ties ᾱ0(z) and δ0(z) for instrumental values, z, varying in Z, then for all
(m,n) ∈ {1, . . . ,M} with n > m and all i ∈ {1, . . . ,K} there are the follow-
ing inequalities, (i) for each z ∈ Z:

γni − γmi ≥ δ0i (z)
(
ᾱ0

ni(z)− ᾱ0
mi(z)

)
(6)

and (ii):
γni − γmi ≥ max

z∈Z

(
δ0i (z)

(
ᾱ0

ni(z)− ᾱ0
mi(z)

))
. (7)

Let D0(Z) denote the set of values of γ that satisfy the system of in-
equalities (7) of Proposition 2. Since D0(Z) is an intersection of halfspaces
it is a convex set.

Values of γ that lie in the set identified by the SEIV model obey the
inequalities of Proposition 1 and Proposition 2 so the identified set lies in
the intersection of the sets defined by the inequalities of the two Propositions
as stated in Proposition 3.

Proposition 3. The identified set, H0(Z), is a subset of C̃0(Z) ≡ C0(Z)∩
D0(Z).

Like C0(Z) the set C̃0(Z) is a union of convex sets as can be seen by
expressing it as follows.

C̃0(Z) =
L⋃

l=1

(
C0

l (Z) ∩ D0(Z)
)
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When Y is binary the inequalities (6) of Proposition 2 reduce to the
following.

δ0i (z)α0
1i(z) ≤ γ1i ≤ 1 + δ0i (z)(1− α0

1i(z)) i ∈ {1, . . . ,K} (8)

The inequality (5) of Proposition 1 requires that

i∑
j=1

δ0j (z)α0
1j(z) ≤ γ1i ≤ 1 +

K∑
j=i

δ0j (z)(1− α0
1j(z)) i ∈ {1, . . . ,K} (9)

and it is clear that (8) is satisfied if (9) is satisfied. Therefore when Y is
binary C0(Z) ⊆ D0(Z) so C̃0(Z) ≡ C0(Z) confirming the result of Chesher
(2008) for the binary endogenous variable case: for binary Y , C0(Z) is the
identified set H0(Z).

If the explanatory variable, X, is binary then C̃0(Z) is the identified set,
as stated in Proposition 4, which is proved in the Annex.

Proposition 4. When X is binary H0(Z) = C̃0(Z) no matter how many
points of support Y has.

The inequalities defining C̃0(Z) of Proposition 4 involve probabilities
about which data is informative and the value γ that characterises a struc-
tural function. The values of the elements of β(Z) that define the conditional
distribution functions of U given X and Z do not appear in these inequal-
ities. So Proposition 4 points the way to fast computation of the identified
set. In Section 4 it provides the basis for computations that illustrate iden-
tified sets in a parametrically restricted ordered probit model with a binary
endogenous variable and from M = 2 to M = 130 points of support for the
ordered outcome Y .

4 Discreteness and identified sets in a parametric
ordered probit model

4.1 Models

We now investigate the nature of the identified sets delivered by a parametric
ordered probit model with a binary endogenous variable. In this model the
structural function is parametrically specified, as follows.

Y =


1 , 0 ≤ U ≤ Φ(s−1(c1 − a0 − a1X))
2 , Φ(s−1(c1 − a0 − a1X)) < U ≤ Φ(s−1(c2 − a0 − a1X))
...

...
...

...
...

M , Φ(s−1(cM−1 − a0 − a1X)) < U ≤ 1
(10)
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Here Φ denotes the standard normal distribution function, the constants
c1, . . . , cM−1 are threshold values defining cells within which a latent normal
random variable is classified, and a0, a1 and s are constant parameters.
Throughout X is binary with support {−1,+1}, There is the independence
restriction: U ‖ Z, U is normalised Unif(0, 1).

In one portfolio of illustrations (A) the model specifies the values of the
threshold parameters c1, . . . , cM−1 as known, and s as known and normalised
to one. This leaves just two unknown parameters, a0 and a1, and it is easy to
display the identified sets graphically. In these illustrations M , the number
of levels of the outcome, is varied from 2 to 130.

In another illustration (B) M is held fixed at 3 and the model specifies
the thresholds, c1 and c2, along with the slope coefficient, a1, as unknown
parameters. In these illustrations the values of a0 and s are normalised to
respectively 0 and 1.

In all cases the instrumental variable takes equally spaced values in the
interval [−1, 1].

There are a number of reasons for choosing this particular parametric
model and set up for this exercise.

1. Many researchers doing applied work will base their analysis on para-
metric models and the ordered probit model is a leading case consid-
ered in practice.

2. When studying the impact of the discreteness of the outcome on iden-
tified sets it is convenient to have objects like the parameters a0 and
a1 which remain stable with a common meaning as the discreteness of
the outcome is varied.

3. The number of unknown objects in a fully nonparametric analysis is
N = K(M−1) and the identified set can be highly complex comprising
the union of an enormous number of sets associated with each possible
ordering of the N values delivered by the structural function - see
Table 1. The parametric model severely restricts the number of feasible
orderings and, as explained below, it is not necessary to search across
many possible orderings when determining the extent of the identified
set.

4.2 Calculation procedures

The calculation of an identified set of parameter values for a particular
distribution F 0

Y X|Z and set of instrumental values Z proceeds as follows.
A fine grid of values of the parameters (e.g. a0 and a1 in the illustrations

in set A) is defined. A value, say (a∗0, a
∗
1) is selected from the grid and the

value of γ, say γ∗, determined by (a∗0, a
∗
1) is calculated. Recall that γ is a
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list of values of the threshold functions defined by a model at the points of
support of the discrete endogenous variable.

With a value γ∗ to hand the ordering of its elements, say l∗, is determined
and the linear equalities and inequalities defining the convex set H0

l∗(Z) can
be calculated. In all the illustrations, because X is binary, H0

l∗(Z) = C̃0
l∗(Z).

If γ∗ falls in this set then (a∗0, a
∗
1) is in the identified set, otherwise it is not.

Passing across the grid the identified set is computed. Care is required
because the set may not be connected and sometimes component connected
subsets of the identified set can be small. To avoid missing component
subsets, dense grids of values are used in the calculations presented here.

4.3 Illustration A1

The probability distributions used in this illustration are generated by tri-
angular Gaussian structures with structural equations as follows.

Y ∗ = α1X +W

X∗ = 0.5Z + V

Y =


1 , −∞ ≤ Y ∗ ≤ c1
2 , c1 < Y ∗ ≤ c2
...

...
...

...
...

M , cM−1 < Y ∗ ≤ +∞

X =
{
−1 , −∞ ≤ X∗ ≤ 0
+1 , 0 < X∗ ≤ +∞

The value of α1 in this illustration is 1 and the distribution of (W,V ) is
specified to be Gaussian and independent of Z.[

W
V

]
|Z ∼ N2

([
0
0

]
,

[
1.0 0.5
0.5 1.0

])
These structures are closely related to a special case of the parametric Gaus-
sian models of discrete outcomes studied in Heckman (1978).

Expressed in terms of a random variable U which is uniformly distributed
on the unit interval the structural functions are as follows.

h(X,U) =


1 , 0 ≤ U ≤ Φ(c1 +X)
2 , Φ(c1 +X) < U ≤ Φ(c2 +X)
...

...
...

...
...

M , Φ(cM−1 +X) < U ≤ 1

There are 10 values in Z as follows.

Z = {±1.0,±0.777,±0.555,±0.333,±0.111}

In this illustration the number of classes in which Y is observed is in-
creased from 2 through 14 with threshold values as set out in Table 2.

14



Table 2: Illustration A1: Threshold values
Number of Classes: M Threshold Values (ci) Shading in Figure 1

2 {0.0} red
4 {±0.1, 0.0} blue
6 {±0.3,±0.1, 0.0} red
8 {±0.7,±0.3,±0.1, 0.0} blue
10 {±1.1,±0.7,±0.3,±0.1, 0.0} red
12 {±1.5,±1.1,±0.7,±0.3,±0.1, 0.0} green
14 {±1.8,±1.5,±1.1,±0.7,±0.3,±0.1, 0.0} black

Identified sets for the two parameters, (a0, a1), are drawn in Figure 1.
The sets are rhombuses arranged with edges parallel to 45◦ and 225◦ lines.
Identified sets are superimposed one upon another.

The largest rhombus drawn in Figure 1 is the identified set with M = 2.
Because the outcome is binary this is the set C0(Z).

The identified set with M = 4 is the rhombus comprising the lowest blue
chevron and what lies above it but excluding a narrow strip on the edge of
the two upper boundaries. This narrow strip (coloured dark blue) is the set
C0(Z)∩D0(Z). Notice that this does not extend all the way along the upper
edges of the set because for the case M = 2, C̃0(Z) = C0(Z) ⊆ D0(Z).

The identified set with M = 6 (respectively 8) is the rhombus comprising
the second lowest red (respectively blue) chevron and all that lies above it
apart from the narrow dark blue shaded strip on the edge of the two upper
boundaries.

The identified set with M = 10 is disconnected and comprises the two
small red shaded rhombuses in the upper part of the picture. The identified
set when M = 12 is the small green shaded rhombus in the centre of the
picture and the identified set when M = 14 is the tiny black shaded rhom-
bus at the intersection of the horizontal and vertical dashed lines. Further
increases in numbers of classes deliver sets which are barely distinguishable
from points at the scale chosen for Figure 1.

As the number of classes rises the extent of the identified sets falls rapidly
but the passage towards point identification is complex and even when the
sets are quite small they can be disconnected.

4.4 Illustration A2

In this illustration the class of structures generating probability distributions
is as in Illustration A1 and, as there, α1 = 1. But there are now 5 values in
Z as follows

Z = {±1.0,±0.5, 0.0}
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and the number of classes is varied through the following sequence.

M ∈ {2, 4, 6, 8, 10, 12, 14, 16, 18, 25, 50, 75}

Threshold values are chosen to “cover” the main probability mass of the
distribution of Y marginal with respect to X and Z. They are chosen
as quantiles of a N(0, (2.4)2) distribution associated with equally spaced
probabilities in [0, 1], e.g. {1/2} for M = 2, {1/3, 2/3} for M = 3. The
identified sets are drawn in Figure 2-5.

Figure 2 shows identified sets for M = 2 (red), M = 4 (blue) and
M = 6 (green). Notice that in the latter two cases the identified sets are
disconnected comprising two rhombuses. On the upper edges of the upper
rhombus in the case M = 4 is a narrow dark blue strip marking the intersec-
tion C0(Z)∩D0(Z) which does not lie in the identified set. This intersection
is empty in the other cases shown in this Figure and in Figures 3 - 5.

Figure 3 shows identified sets for M = 8 (red), M = 10 (blue) and
M = 12 (green). The identified set for M = 10 is disconnected. Notice that
the scale is greatly expanded in this Figure - the identified sets are rapidly
decreasing in size as the number of classes observed for Y increases. The
outline unshaded rhombus in Figure 3 is the identified set for M = 6 copied
across from Figure 2. Boxes formed by the dashed lines in Figure 2 show
the region focussed on in Figure 3.

Figure 4 shows identified sets for M = 14 (red), M = 16 (blue) and
M = 18 (green). Again the scale is greatly expanded relative to the previous
Figure. The outline unshaded rhombus is the identified set for M = 12
copied across from Figure 3.

Figure 5 shows identified sets for M = 25 (red), M = 50 (blue) and
M = 75 (green). Yet again the scale is greatly expanded relative to the
previous Figure. The lower part of the identified set for M = 18 is drawn
in outline. All the identified sets are connected and of very small extent.
The situation is now very close to point identification. The identified set at
M = 100 is not distinguishable from a point at the chosen scale.

The two panes of Figure 6 plot logarithm (base e) of the lengths of
identified intervals for a0 and a1 against the logarithm of the number of
classes in which Y is observed. Figure 7 plots the logarithm of he area of the
identified set for a0 and a1 against the logarithm of the number of classes. In
each case the points are quite tightly scattered around a negatively sloped
linear relationships suggesting approach to point identification at a rate
proportional to a power of the number of classes9. OLS estimates indicate
that the lengths of the sets for a0 and a1 both fall at a rate proportional to

9Where sets are disconnected the lengths of the identified sets for individual parameters
are the calculated as the sum of the lengths of disjoint intervals and the area of the sets
for a pair of parameters is calculated as the sum of the areas of the connected component
sets.
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M−2.1 and that the area of the identified set for a0 and a1 falls at a rate
proportional to M−3.6.

The fine details of this approach and the geometry of the identified sets
depends on fine details of the specification of the structures generating the
probability distributions such as the precise spacing of the thresholds.

4.5 Illustration B1

The class of structures generating probability distributions is as in Illustra-
tion A1 and, as in that illustration there are 10 values in Z, as follows.

Z = {±1,±0.777,±0.555,±0.333,±0.111}

In this illustration there are M = 3 classes throughout. The values of a0

and s are normalised to respectively zero and one. The unknown parameters
are the thresholds c1 and c2 and the slope coefficient a1. This is the sort of
set up one finds when modelling attitudinal data where threshold values are
unknown parameters of considerable interest.

In the structure generating the probability distributions the values of
the thresholds are as follows

(c1, c2) = (−0.667,+0.667)

and α1 = 1.
The identified set resides in a 3-dimensional square prism of infinite

extent: R× (0, 1)2. Figures 8, 9 and 10 show slices taken through this at a
sequence of values of a1 showing at each chosen value of a1 the associated
identified set for (c1, c2). In all cases this is connected and resides in the
upper orthoscheme of the unit square because the restriction c2 > c1 has
been imposed.

In each case the rectangular regions (shaded red and green) indicate
combinations of (c1, c2) which at the chosen value of a1 lie in the set C0(Z).
The green shaded regions indicate combinations of (c1, c2) that at the chosen
value of a1 are in the intersection C0(Z) ∩ D0(Z). These combinations of
(a1, c1, c2) do not lie in the identified set. The red shaded regions indicate
combinations of (c1, c2) that at the chosen value of a1 are in the intersec-
tion C̃0(Z) = C0(Z) ∩ D0(Z). These combinations of (a1, c1, c2) are in the
identified set.

The extent of the regions in the c1 × c2 plane grows as a1 falls towards
the value 1.0 and then shrinks as a1 falls further.
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5 Concluding remarks

Single equation instrumental variable models for ordered discrete outcomes
generally set identify structural functions or, if there are parametric re-
strictions, parameter values. Complete models, for example the triangular
control function model, can be point identifying, but in applied econometric
practice there may be no good reason to choose one point identifying model
over another.

For any particular distribution of observable variables the sets delivered
by the SEIV model give information about the variety of structural functions
or parameter values that would be delivered by one or another of the point
identifying models which are restricted versions of the SEIV model.

For the nonparametric case we have developed a system of equalities and
inequalities that bound the identified sets of structural functions delivered
by a SEIV model in the case when endogenous variables are discrete. We
have shown that when either the outcome or the endogenous variable is
binary the inequalities sharply define the identified set. The inequalities
involve only probabilities about which data is informative and the identified
sets can be estimated and inferences drawn using the methods set out in
Chernozhukov, Lee and Rosen (2009). Some illustrative calculations for the
binary outcome case are given in Chesher (2009).

Calculations in a parametric model suggest that the degree of ambiguity
attendant on using the SEIV model reduces rapidly as the discreteness of the
outcome is reduced. Research to determine the extent to which this is true
in less restricted settings is one of a number of topics of current research.

References

Blundell Richard W., and James L. Powell (2003): “Endogeneity
in Nonparametric and Semiparametric Regression Models,” in Dewatripont,
M., L.P. Hansen, and S.J. Turnovsky, eds., Advances in Economics and
Econometrics: Theory and Applications, Eighth World Congress, Vol. II.
Cambridge: Cambridge University Press.
Blundell, Richard W., and James .L. Powell (2004): “Endogeneity
in Semiparametric Binary Response Models,” Review of Economic Studies,
71, 655-679.
Chernozhukov, Victor And Christian Hansen (2005): “An IV Model
of Quantile Treatment Effects,” Econometrica, 73, 245-261.
Chernozhukov, Victor, Sokbae Lee and Adam Rosen (2009): “In-
tersection Bounds: Estimation and Inference,” CeMMAP Working Paper
19/09.

18



Chesher, Andrew D., (2003): “Identification in Nonseparable Models,”
Econometrica, 71, 1405-1441.
Chesher, Andrew D., (2005): “Nonparametric Identification under Dis-
crete Variation,” Econometrica, 73, 1525-1550.
Chesher, Andrew D., (2008): “Instrumental Variable Models for Discrete
Outcomes,” CeMMAP Working Paper 30/08, forthcoming in Econometrica.
Chesher, Andrew D., (2009): “Single Equation Endogenous Binary Re-
sponse Models,” CeMMAP Working Paper 23/09.
Coxeter, Harold S.M., (1973): Regular Polytopes. New York: Dover.
Greene, William (2007): LIMDEP 9.0 Reference Guide. Econometric
Software, Inc., New York.
Heckman, James J., (1978): “Dummy Endogenous Variables in a Simul-
taneous Equations System,” Econometrica, 46, 931-959.
Ihaka, Ross, and Robert Gentleman (1996): “R: A Language for Data
Analysis and Graphics,” Journal of Computational and Graphical Statistics,
5, 299-314.
Manski, Charles F., (2003): Partial Identification of Probability Distri-
butions. New York: Springer-Verlag.
Pemmaraju, Sriram and Steven Skienka (2003); Combinatorial Dis-
crete Mathematics. New York: Cambridge University Press.
Rivers, Douglas and Quang Vuong (1988): “Limited Information Es-
timators and Exogeneity Tests for Simultaneous Probit Models,” Journal of
Econometrics 39, 347-366.
Smith, Richard J., and Richard W. Blundell (1986): “An Exogeneity
Test for a Simultaneous Equation Tobit Model with an Application to Labor
Supply,” Econometrica 54, 679-685.
Statacorp (2007): “Stata Statistical Software: Release 10.” College Sta-
tion, TX: StataCorp LP.
Wolfram Research Inc. (2008): Mathematica Edition: Version 7.0.
Champaign IL: Wolfram Research Inc.
Ziegler, Gunter M., (2007): Lectures on Polytopes. (Updated seventh
printing of the first edition). New York: Springer Science.

19



Annex: Proofs of Propositions

Proof of Proposition 1. Consider some arrangement of the elements of
γ in which two elements, γkr < γls are adjacent so that there is no element
γqt ∈ γ satisfying γkr < γqt < γls. Consider u ∈ (γkr, γls] and the right hand
side of (4), reproduced here.

u ≤
K∑

i=1

M∑
m=1

δ0i (z)α0
mi(z)1(γm−1,i < u)

This inequality must hold for all u in (γkr, γls] and so must hold at the
supremum of the interval which is its maximal value, γls, and so there is:

γls ≤
K∑

i=1

M∑
m=1

δ0i (z)α0
mi(z)1(γm−1,i < γls)

which is the right hand side of (5).
Now consider some arrangement of the elements of γ in which two el-

ements, γls < γpr are adjacent so that there is no element γqt satisfying
γls < γqt < γpr. Consider u ∈ (γls, γpr] and the left hand side of (4), repro-
duced here.

K∑
i=1

M−1∑
m=1

δ0i (z)α0
mi(z)1(γmi < u) < u

This inequality must hold for all u in (γls, γpr] and so must hold as in (4)
with strong inequalities at every value of u in the interval and so with weak
inequalities at the infimum of the interval which is γls, and so there is:

K∑
i=1

M−1∑
m=1

δ0i (z)α0
mi(z)1(γmi ≤ γls) ≤ γls

which is the left hand side of (5). �

Proof of Proposition 2. Since γ is in the identified set for each z ∈ Z there
exists a distribution function characterised by β(z) satisfying conditions I1-
I3. Conditions I1 and I2 imply that:

γni = δ0i (z)ᾱ0
ni(z) +

∑
j 6=i

δ0j (z)βnij(z)

γmi = δ0i ᾱ
0
mi(z) +

∑
j 6=i

δ0j (z)βmij(z)

and the result (i) follows on subtracting and noting that the properness
condition I3 ensures that for, each i and j, βnij(z) ≥ βmij(z) because n > m.
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The result (ii) follows directly on intersecting the intervals obtained at each
value z ∈ Z. �

Proof of Proposition 4. Consider candidate structural functions, that is,
values of γm1 and γm2, m ∈ {1, . . . ,M − 1}. Define β(Z) so that conditions
I1 and I2 are satisfied for all z ∈ Z. There is only one way to do this: for
each m, to satisfy Condition I1:

βm11(z) = ᾱ0
m1(z) βm22(z) = ᾱ0

m2(z) (11)

and to satisfy Condition I2:

δ01(z)βm11(z) + δ02(z)βm12(z) = γm1

δ01(z)βm21(z) + δ02(z)βm22(z) = γm2

and, on combining these results, for m ∈ {1, . . . ,M} there are the following
expressions

βm12(z) =
γm1 − δ01(z)ᾱ0

m1(z)
δ02(z)

βm21(z) =
γm2 − δ02(z)ᾱ0

m2(z)
δ01(z)

(12)

It is now shown that for every γ ∈ C̃0(Z) the value of β(Z) defined by
(11) and (12) as z varies across Z satisfies the properness condition I3. It
follows that C̃0(Z) ⊆ H0(Z) and Proposition 3 states that H0(Z) ⊆ C̃0(Z),
so it must be that H0(Z) = C̃0(Z) in this binary endogenous variable case.

To proceed, consider the distribution function characterised by βmj1(z)
for m ∈ {1, . . . ,M − 1} and j ∈ {1, 2} and any z ∈ Z. Here conditioning is
on X = x1 and Z = z. The argument when conditioning is on X = x2 goes
on similar lines and can be worked through by exchange of indices in what
follows.

Condition I3 is satisfied if for every adjacent pair of values γsi < γtj :

βsi1(z) ≤ βtj1(z)

and there are four possibilities to consider as follows.

A1 i = 1, j = 1. In this case t = s + 1 because γs1 < γt1 are adjacent.
Properness requires that βs11 ≤ βs+1,11 but (11) ensures that this holds
because βs11 = ᾱ0

s1(z) ≤ ᾱ0
s+1,1(z) = βs+1,11.

A2 i = 1, j = 2. Properness requires that βs11 ≤ βt21 which, on using
(11) and (12), requires that:

ᾱ0
s1(z) ≤ γt2 − δ02(z)ᾱ0

t2(z)
δ01(z)

which is written as follows.

δ01(z)ᾱ0
s1(z) + δ02(z)ᾱ0

t2(z) ≤ γt2 (13)
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If γ ∈ C0(z) then the inequality (5) holds and, on its left hand side,
replacing γls by γt2 there is:

K∑
i=1

M−1∑
m=1

δ0i (z)α0
mi(z)1(γmi ≤ γt2) ≤ γt2 (14)

and since γs1 < γt2 and the values are adjacent the left hand side of
(14) as follows:

δ01(z)
s∑

m=1

α0
m1(z) + δ02(z)

t∑
m=1

α0
m2(z) = δ01(z)ᾱ0

s1(z) + δ02(z)ᾱ0
t2(z)

and so (13) holds.

A3 i = 2, j = 1. Properness requires that βs21 ≤ βt11 which, on using
(11) and (12), requires that:

γs2 − δ02(z)ᾱ0
s2(z)

δ01(z)
≤ ᾱ0

t1(z)

which is written as follows.

γs2 ≤ δ01(z)ᾱ0
t1(z) + δ02(z)ᾱ0

s2(z) (15)

If γ ∈ C0(z) then the inequality (5) holds and, on its right hand side,
replacing γls by γs2 there is:

γs2 ≤
K∑

i=1

M∑
m=1

δ0i (z)α0
mi(z)1(γm−1,i < γs2) (16)

and since γs2 < γt1 and the values are adjacent the right hand side of
(16) is as follows:

δ01(z)
t∑

m=1

α0
m1(z) + δ02(z)

2∑
m=1

α0
m2(z) = δ01(z)ᾱ0

t1(z) + δ02(z)ᾱ0
s2(z)

and so (15) holds.

A4 i = 2, j = 2. It must be that t = s+ 1 because γs2 < γt2 are adjacent.
Properness requires that βs21 ≤ βs+1,21 which, on using (12), requires
that:

γs2 − δ02(z)ᾱ0
s2(z)

δ01(z)
≤
γs+1,2 − δ02(z)ᾱ0

s+1,2(z)
δ01(z)

which is written as follows.

δ02(z)α0
s+1,2(z) ≤ γs+1,2 − γs2 (17)
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If γ ∈ D0(z) then the inequality (6) of Proposition 2 holds and replac-
ing γni and γmi by respectively γs+1,2 and γs2 gives the following:

γs+1,2 − γs2 ≥ δ02(z)
(
ᾱ0

s+1,2(z)− ᾱ0
s2(z)

)
= δ02(z)α0

s+1,2(z)

and so (17) holds.

It has been shown that for any z ∈ Z and for all γ ∈ C̃0(z) = C0(z)∩D0(z)
there are conditional distribution functions characterised by β(z) defined as
in (11) and (12) such that conditions I1, I2 and I3 hold.

Let β(Z) be the conditional distribution functions generated using the
definitions (11) and (12) as z varies within Z. Since C̃0(Z) =

⋂
z∈Z
C̃0(z),

values γ ∈ C̃0(Z) lie in every set C̃0(z) and so for each such value of γ there
are conditional distribution functions in β(Z) such that conditions I1, I2 and
I3 are satisfied. It follows that C̃0(Z) ⊆ H0(Z) and since H0(Z) ⊆ C̃0(Z),
it follows that H0(Z) = C̃0(Z). �
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Figure 1: Illustration A1. Outer sets and identified sets in a binary
endogenous variable SEIV model with a parametric ordered probit structural
function with threshold functions of the form Φ(ci−a0−a1x) as the number
of categories of the outcome varies from 2 to 10. The dark blue strip at the
upper margin of the rhombi is not part of the identified sets.
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Figure 2: Illustration A2. Outer sets and identified sets delivered by a
binary endogenous variable SEIV model with a parametric ordered probit
structural function, intercept a0 and slope a1. Number of categories of the
oucome, M : 2(red), 4(blue) and 6(green). The dark blue strip at the upper
margin is not in the identified sets.
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Figure 3: Illustration A2. Identified sets delivered by a binary endogenous
variable SEIV model with a parametric ordered probit structural function,
intercept a0 and slope a1. Number of categories of the outcome, M : 8(red),
10(blue) and 12(green).
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Figure 4: Illustration A2. Identified sets delivered by a binary endogenous
variable SEIV model with a parametric ordered probit structural function,
intercept a0 and slope a1. Number of categories of the outcome, M :14(red),
16(blue) and 18(green).
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Figure 5: Illustration A2. Identified sets delivered by a binary endogenous
variable SEIV model with a parametric ordered probit structural function,
intercept a0 and slope a1. Number of categories of the outcome, M : 25(red),
50(blue) and 75(green).
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Figure 6: Illustration A2. Reduction of identified set as the number
of outcome categories increases: (upper pane) logarithm of length of the
identified interval for a0 plotted against logarithm of number of categories
of the outcome, Y , (lower pane) logarithm of length of the identified interval
for a1 plotted against logarithm of number of categories of the outcome, Y .
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Figure 7: Illustration A2. Reduction of identified set as the number of
outcome categories increases. Logarithm of area of the identified set plotted
against logarithm of number of categories of the outcome, Y .
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Figure 8: Illustration B1. Three class ordered probit model with unknown
threshold parameters c1 and c2 and slope coefficient a1. Cross-section of the
identified set (red) and outer set (red and green) for c1, c2 and a1 at selected
values of a1.
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Figure 9: Illustration B1. Three class ordered probit model with unknown
threshold parameters c1 and c2 and slope coefficient a1. Cross-section of the
identified set (red) and outer set (red and green) for c1, c2 and a1 at selected
values of a1.
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Figure 10: Illustration B1. Three class ordered probit model with un-
known threshold parameters c1 and c2 and slope coefficient a1. Cross-section
of the identified set (red) and outer set (red and green) for c1, c2 and a1 at
selected values of a1.
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