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Abstract. This paper is concerned with the nonparametric estimation of

regression quantiles where the response variable is randomly censored. Using

results on the strong uniform convergence of U-processes, we derive a global

Bahadur representation for the weighted local polynomial estimators, which is

sufficiently accurate for many further theoretical analyses including inference.

We consider two applications in detail: estimation of the average derivative, and

estimation of the component functions in additive quantile regression models.
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1 Introduction

Quantile regression (Koenker and Bassett, 1978), designed originally to render robust es-

timators against extreme values or outliers among the error terms (Huber, 1973), has at-

tracted tremendous interest in applied work. Equally, censored data regression has always

been an important topic in survival analysis, for example, the accelerated failure time
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model, as well as in econometrics, through the well-known Tobit model. A direct con-

sequence of either fixed censoring or random censoring is that it renders the error term

to deviate severely from the normal distribution and even worse the conditional moment

restrictions of the uncensored model to be violated. Regression quantiles are among the

natural choices in analyzing censored data because they may be robust to some censor-

ing, Powell (1984). Most of the existing literature on quantile regressions under censoring

adopted a linear/parametric approach; see e.g. Buckley and James (1979), Koul, Susarla

and Van Ryzin (1981), Ritov (1990), Ying et al (1995), Honoré, Khan, and Powell (2002),

Bang and Tsiatis (2003), and Heuchenne and Van Keilegom (2007a). They assumed that

the quantile function belongs to a fixed finite-dimensional space of functions. Under their

assumption, the statistical theory of quantile regression for censored data has been well

understood and investigated. In this paper, we will focus on the quantile regression models

in a nonparametric setting, which imposes no restrictions on the form of the function except

for some smoothness properties and likewise we do not restrict the form of the censoring,

allowing the censoring distribution to depend in an unknown way on the covariates, so

generalizing the setting considered in Honoré, Khan, and Powell (2002).

A small number of estimators exist for nonparametric censored regression models, in

most cases focusing on the standard random censoring model. Dabrowska (1992) and Van

Keilegom and Veraverbeke (1998) proposed nonparametric censored regression estimators

based on quantile methods. Lewbel and Linton (2002) considered the case where the cen-

soring time is a degenerate random variable (i.e., it is constant), extended by Chen, Dahl,

and Khan (2005) to allow for heteroscedasticity. Heuchenne and Van Keilegom (2007b,

2008) considered a nonparametric regression model where the error term is independent of

the covariates. Linton, Mammen, Nielsen, and Van Keilegom (2011) consider univariate re-

gression models with a variety of censoring schemes and employ estimation methods based

on hazard functions.

Bahadur (1966) representations are a useful tool to study the asymptotic properties of

estimators especially when the loss function is not smooth, such as in M-estimation and

quantile regression. As commented in He and Shao (1996), Bahadur representation approxi-

mates the estimator by a sum of independent variables with a smaller-order remainder. As a

consequence, many asymptotic properties useful in statistical inference can be derived easily

from the Bahadur representation. Under different settings, a number of different Bahadur
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representations have been obtained. For example, Carroll (1978) and Martinsek (1989)

obtained strong representations for location and regression M-estimators with preliminary

scale estimates; Babu (1989) and Pollard (1991) obtained the Bahadur representation for

the least absolute deviation regression. Portnoy (1997) obtained the Bahadur representa-

tion of quantile smoothing splines. Portnoy (2003) obtained the Bahadur representation

for the Cox and censored quantile regression. Chaudhuri (1991a) investigated the pointwise

Bahadur representation of nonparametric kernel quantile regression. Kong, Linton and Xia

(2009) and Guerre and Sabbah (2009) obtained the uniform Bahadur representation for

the quantile local polynomial estimators. Wu (2007) and Zhou and Wu (2010) investigated

the Bahadur representation for nonstationary time series data under both parametric and

nonparametric settings.

In nonparametric settings, global or uniform asymptotic theory (Bickel, 1972 and Mack

and Silverman, 1982) is essential for conducting statistical inference. Because of this, uni-

form Bahadur representations are more useful than their pointwise counterparts. In this

paper, we shall give a global Bahadur representation for nonparametric estimates of cen-

sored regression quantiles. We provide two applications of our theory. The first one is

the additive model which has been investigated under quantile regression (Linton 2001, De

Gooijer and Zerom, 2003; Yu and Lu, 2004) or censored data (Uña Álvarez and Pardiñasa,

2009) separately. However, as far as we know, no one has investigated the model under

the combination of the two settings. The second application is to the popular single-index

model. Again, this model was investigated under two separate settings. Chaudhuri et

al (1991), Wu, Yu and Yu (2010) and Kong and Xia (2011) considered quantile regres-

sion of the single-index model, while Lu and Cheng (2007) and Xia, Zhang and Xu (2009)

considered the conditional mean regression under random censoring. The global Bahadur

representation can also be applied to censored regression quantiles of other semiparametric

models; see for example Zhang and Li (2011). Our results are particularly useful for con-

ducting inference about the quantities of interest. The representations we have obtained

can directly be used to obtain consistent standard errors in the case where a parametric

quantity like the average derivative is of interest or where one wants a pointwise confidence

interval for a function like the additive component. They can also be used to obtain uniform

confidence bands for such functions, since the detailed probabilistic analysis of the leading

terms follows from the well established results for kernel regression and density estimators,
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Bickel and Rosenblatt (1973) and Johnston (1982). We remark that recent work of Belloni,

Chernozhukov, and Fernández-Val (2011) has provided tools for inference about nonpara-

metric quantile regression based on the series methodology but in the absence of a censoring

mechanism.

2 The model and estimation method

Suppose that we have real-valued iid observations {(Y ∗
i ,Xi), ı = 1, · · · , n}, satisfying the

model

Y ∗
i = Q(Xi) + εi, 1 ≤ i ≤ n, (1)

where Y ∗
i is the (uncensored and scalar) response variable, whileXi is the observed p−dimensional

covariates. Here Q(.) is an unknown but smooth function, and εi is the ’error term’, which

conditional on X has a τth quantile equal to zero; i.e. Q(Xi) is the conditional τth quantile

of Y ∗
i given Xi. Or equivalently, through the use of the quantile loss of function, we have

Q(Xi) = argmin
a

Eρτ (Y
∗
i − a|Xi)

where ρτ (s) = |s| + (2τ − 1)s. The objective of estimation is the unknown function Q(.)

and its derivatives.

In this paper, we focus on random right censoring; the methodology can be extended

to left censoring. Let Ci denote the censoring variable, with conditional survival function

G(.|Xi), i.e. we allow its distribution to depend on Xi. In this case, we only observe the

triple ζi = (Yi, Xi, di), where

Yi = min{Y ∗
i , Ci} = min{Q(Xi) + εi, Ci}, di = I{Y ∗

i ≤ Ci}, (2)

are the observed (possibly censored) response variable and the censoring indicator, respec-

tively. Equation (1) together with (2) specify a censored quantile regression model, and our

main objective is the estimation of Q(.), the conditional quantile function of Y ∗
i given Xi.

Suppose ζi = {Y ∗
i ,Xi, Ci}, i = 1, · · · , n, are i.i.d. random variables, and Q(.) has partial

derivatives up to order k. For any fixed point x ∈ Rp, the local polynomial estimation of

Q(x) is based the approximation of Q(.) in the neighborhood of x by its k−order Taylor

expansion:

Q(X) ≈ Q(x) +
∑

1≤[u]≤k

DuQ(x)

u!
(X− x)u, (3)
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where u = (u1, · · · , up) denotes an arbitrary p−dimensional vector of nonnegative integers,

[u] =
∑p

i=1 ui, u! =
∏p

i=1 ui!, x
u =

∏p
i=1 x

ui
i with the convention that 00 = 1, and Du

denotes the differential operator ∂[u]/∂xu1
1 · · · , xup

p . let A = {u : [u] ≤ k} and n(A) = ♯(A).

When there is no censoring, the estimates of Q(.) and its partial derivatives, are obtained

by minimizing the function below with respect to c = (cu)u∈A, a vector of length n(A),

n∑
i=1

Kδn(Xi,x)ρτ{Yi − ⟨c,Xi,x(δn, A)⟩}, Xi,x = Xi − x, (4)

where Kδn(.) = K(./δn) is some probability density function in Rp with a smoothing pa-

rameter δn → 0, x(δn, A) = (x(δn,u))u∈A, with x(δn,u) = δ
−[u]
n xu defined for any x ∈ Rp,

and ⟨, ⟩ denotes the Euclidean inner product. Similar ideas have been used in Chaudhuri

(1991a, 1991b), and Kong et al (2010).

One of the complications brought about by censoring is that, Q(.) is the τ− quantile of

Yi iff di = 1. However, the straightforward modification of (4) by restricting the summation

to be across those i’s with di = 1 results in a biased estimator. Among many, there are

three possible ways to tackle this problem. One is by replacing ρτ{Yi − ⟨c,Xi,x(δn, A)⟩}

with its conditional expectation given (Yi,Xi, di); see Honoré et al (2002) for its application

to the linear quantile regression model. The second is to apply the ’redistribution-of-mass’

idea of Efron (1967); see also Portnoy (2003), Peng and Huang (2008), and Wang and Wang

(2009). The third strategy which we consider in this paper, is based on the observation

that E[di/G(Yi|Xi)] = 1 (Bang and Tsiatis, 2003), which when plugged into (4) leads to

the minimization of

n∑
i=1

di
G(Yi|Xi)

ρτ{Yi − ⟨c,Xi,x(δn, A)⟩}Kδn(Xi,x). (5)

In practice, G(.|Xi) is unknown and has to be estimated. A nonparametric estimator of

G(.|Xi) is the local Kaplan-Meier estimator Ĝn(.|Xi) (Gonzalez-Manteigaa and Cadarso-

Suarez, 1994) defined as

Ĝn(t|x) =
n∏

j=1

{
1− Bnj(x)

n∑
k=1

I(Yk ≥ Yj)Bnk(x)

}βj(t)
, (6)

where βj(t) = I(Yj ≤ t, dj = 0), and Bnk(x), k = 1, · · · , n is a sequence of nonnegative

weights adding up to 1. We adopt this idea of local Kaplan-Meier estimator, but with a

slightly different choice for Bnk(.): the local polynomial ’equivalent kernel/weight’; see, Fan
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and Gijbels (1996) and Masry (1996) for more details. Specifically, for some positive integer

κ1, define

Bnk(x) = e⊤1 Σ̃
−1
n (x)B̃nk(x), B̃nk(x) = Xkx(hn, A1)K̃hn(Xkx), (7)

where A1 = {u : [u] ≤ κ1}, e1 is the n(A1)× 1 vector (1, 0, · · · , 0)⊤,

Σ̃n(x) =
1

n

n∑
k=1

K̃hn(Xkx)Xkx(hn, A1)Xkx(hn, A1)
⊤,

K̃(.) : Rp → R+ is yet another kernel density function, and hn ∈ R+ is the associated

smoothing parameter, not necessarily identical to the K(.) and δn used above.

Substituting Ĝn(.|.) for G(.|.) in (8), we propose to estimate {DuQ(x) : [u] ∈ A} by

cn(x) = (cn,u(x))u∈A
def
= argmin

c

n∑
i=1

di

Ĝn(Yi|Xi)
ρτ{Yi − ⟨c,Xi,x(δn, A)⟩}Kδn(Xi,x). (8)

Since 0 < τ < 1, ρτ (s) goes to infinity as |s| → ∞. Thus the minima of (8) always exists.

The reason to use a weight function Bnk(x) as in (7), instead of the commonly used

Nadaraya-Waston’s type weights such as in Wang and Wang (2009), is that the latter is no

longer up for the job of yielding a bias which is ’negligible relative to variance’ in multivariate

settings; whereas the ’local polynomial equivalent kernel’, though a bit more complicated,

renders a bias of order hκ1+1
n , which can be arbitrarily small for large value of κ1.

A minor complication resulted from using weight (7) is that the corresponding K-M

estimator (6) is not necessarily a proper survival function as Bnk(.) could be negative. How-

ever, this shouldn’t cause much concern, as firstly, the result proved in Gonzalez-Manteigaa

and Cadarso-Suarez (1994) on the local K-M estimator (6) doesn’t rely on the positiv-

ity of Bnk(.). Secondly, in practice, a simple truncation can always be applied to ensure

0 ≤ Ĝn(.|x) ≤ 1; see Spierdijk (2008) for a similar observation.

3 Notations and Assumptions

Let D be an open convex set in Rp and for s0 = l + γ, with non-negative integer l and

0 < γ ≤ 1, we say a function m(.) : Rp → R has the order of smoothness s0 on D, denoted

by m(.) ∈ Hs0(D), if its partial derivatives up to order l exists and there exists a constant

C > 0, such that

|Dum(x1)−Dum(x2)| ≤ C|x1 − x2|γ , for all x1,x2 ∈ V and [u] = l.
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Note that |.| in this paper stands for the suprenorm, i.e. for x = (x1, · · · , xp)⊤ ∈ Rp,

|x| = max1≤i≤p |xi|.

For any t ∈ [−1, 1]p, denote by t(A) the vector of length n(A) with elements (tu)u∈A.

Let Σ(A) be the n(A)× n(A) matrix

Σ(A) =

∫
[−1,1]p

t(A)t(A)⊤dt.

t(A1) and matrix Σ(A1) are similarly defined. It is assumed throughout this paper that

both matrices, Σ(A) and Σ(A1) are invertible.

Let f(.) be the marginal probability density function of Xi. For any x ∈ Rp, denote by

g(.|x), f0(.|x), and fε(.|x), the probability density functions of Ci, Y ∗
i and εi conditional

on Xi = x. Let F0(t|x) = P (Y ∗
i ≤ t|Xi = x), Fε(t|x) = P (εi ≤ t|Xi = x).

We make the following assumptions:

[A1] f(x) is positive on a compact set D ⊂ Rp and f ∈ Hs1(D).

[A2] The quantile function Q(.) has the order of smoothness s2, i.e. Q(.) ∈ Hs2(D).

[A3] fε(t|x), considered as a function of x belongs to Hs3(D) for all t in a neighborhood

of zero. fε(0|x) is positive for all x ∈ D, and its first derivative with respect to t exists

continuously for values of t in a neighborhood of zero for all x ∈ D.

[A4] The censoring variable {Ci} is conditionally independent of εi given Xi; and for

any x ∈ Rp, there exists some finite π0, which might depend on x, such that G(τ0|x) = 0

and inf
x

P (Ci = π0|x) > 0.

[A5] The functions f0(0|x) and g(t|x) are uniformly bounded both in t and in x. Both

belong to Hs4(D) and their κ1(= [s4])-order partial derivatives with respect to x belong to

Hs4(D), uniformly in t.

[A6] The kernel function K̃(.) is a probability density function on Rp with a compact

support. It is symmetric and Lipschitz continuous of order 1 with finite variance.

[A7] The bandwidth hn is chosen such that nh2s4+p
n / log n → ∞, nh3pn / log n → 0,

nhp+4
n / log n < ∞.

[A8] The relationship between the two smoothing parameters δn and hn is such that

nh2pn /(δpn log n) → ∞.

Remark [A1]-[A3] are standard regularity conditions assumed in the context of local

polynomial smoothing; see also Chaudhuri et al (1997). Especially, [A2] implies that, if

|X− x| ≤ δn, then the error resulted from approximating Q(X) by the k−order (k = [s2])
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Taylor expansion

Qn(X,x) =
∑
u∈A

cn,u(x)[(X− x)/δn]
u

is of order O(δs2n ), uniformly over x ∈ D and {X : |X − x| ≤ δn}. [A4] implies a upper

bound on the censoring values and the positive mass on the upper boundary of their sup-

port. This guarantees that di/Ĝn(Yi|Xi) is uniformly finite in large samples; this condition

can be satisfied by artificially censoring all observations at some point π0(≤ maxi Yi). [A5]-

[A7] are imposed such that the local K-M estimator Ĝn(.|Xi) admits the almost sure rep-

resentation in terms of a sum of independent random variables. Note that compared to

that in Gonzalez-Manteigaa and Cadarso-Suarez (1994) or Wang and Wang (2009), which

focuses on univariate covariate, [A6] is stronger, which is necessary to ensure that the bias

of the K-M estimator is negligible relative to the stochastic terms.

To facilitate the subsequent discussion on application, we will focus on the estimation

of cn(x) = (cn,u(x))u∈A with cn,u(x) = δ
[u]
n DuQ(x)/u! with x = Xj , j = 1, · · · , n. Note

that for simplification purposes, we choose K(.) to be the uniform density on [−1, 1]p:

U [−1, 1]p. Results obtained in this paper hold for the use of any symmetric probability

density functions with a compact support. We will derive uniform convergence rate and the

Bahadur type representation of ĉn(Xj) defined as

ĉn(Xj) = argmin
c

∑
i∈Sn(x)

di

Ĝn(Yi|Xi)
ρτ{Yi − ⟨c,Xi,j(δn, A)⟩}, Xi,j = Xi −Xj (9)

where Sn(Xj) is the index set defined as

Sn(Xj) = {i : 1 ≤ i ≤ n, i ̸= j, |Xij | ≤ δn}, Nn(Xj) = ♯(Sn(Xj)),

4 Convergence rate and asymptotic representation

Our first result concerns the almost sure representation of the local K-M estimator Ĝn(.|.):

Lemma 4.1 Under [A4]-[A7], we have with probability one,

sup
x

sup
t

|Ĝn(t|x)−G(t|x)| = O
(( log n

nhpn

)1/2)
(10)

Ĝn(t|x)−G(t|x) = e⊤1 Σ
−1(A1)G(t|x) 1

n

n∑
j=1

B̃nj(x)ξ(Yj , dj , t,x) (11)

+O
(( log n

nhpn

)3/4)
8



uniformly in x as well as in t, where, for j = 1, · · · , n,

ξ(Yj , dj , t,x) =
I{Yj ≤ t, dj = 0}

h(Yj |x)
−

∫ min(Yj ,t)

0

dΓ(s|x)
h(s|x)

h(t|x) = 1− P (Yj ≤ t|x) = G(t|x)(1− F (t|x))

Γ(t|x) = − ln(G(t|x)) = −
∫ t

0

dG(t|x)
G(t|x)

.

The next Theorem gives the almost sure convergence rate of ĉn(Xj) uniform in j = 1, · · · , n :

Theorem 4.2 Suppose [A4]-[A8] and assume that fX(.) is positive and continuous. Then

under [A2] and [A3]with s2 > 0, s3 > 1, (3) holds with k = [s2], and that the bandwidth δn

in the definition (9) is such that

δn ∝ n−κ, with
1

2s2 + d
< κ.

then we have with probability one,

sup
1≤j≤n

|ĉn(Xj)− cn(Xj)| = O[(logn/n1−κp)1/2]. (12)

Remark Note that conditions in Theorem 4.2 could be weakened; see Chaudhuri (1991b).

The uniformity can be extended to cover the whole compact set D, which can be easily

verified as follows. Cover D with Jp
n number of cubes side length 2δn and let Sn,r, 1 ≤

r ≤ Jp
n, be a typical such cube with center at xn,r. Once ĉn(xn,r) are obtained through

minimizing (9) with xn,r in place of Xj , the estimates of cn(x) for any fixed point x with

Sn,r is defined as

ĉn,u(x) = δ[u]n /u!Du[⟨ĉn(xn,r), (xn,r − x)(δn, A)⟩], if x ∈ Sn,r (13)

where the differential operator Du is with respect to x. Under [A2], the problem thus

translates into a problem of establishing the uniform convergence rate for ĉn(xn,r), which

can be proved in exactly the same way as (12), by applying

Regarding the strong uniform Bahadur type representation of ĉn(.), we have

Theorem 4.3 Suppose conditions of Theorem 4.2 hold and

δn ∝ n−κ, with
1

2(s2 + p)
< κ <

1

p
,

9



we have

ĉn(Xj)− cn(Xj) =
Σ−1
n (Xj)

Nn(Xj)

∑
i∈Sn(Xj)

di
G(Yi|Xi)

Xij(δn, A)
[
τ − I

{
Yi ≤ Qn(Xi,Xj)

}]

−Σ−1
n (Xj)

Nn(Xj)

n∑
k=1

Q̃(ζj , ζk)Σ
−1(A1)e1 +Rn(Xj), (14)

where

Σ−1
n (x) = Ei

{
fε|X(0|Xi)Xix(δn, A)X⊤

ix(δn, A)|Xi ∈ Sn(x)
}

Q̃(ζj , ζk) =

∫
Xij(δn, A)X⊤

ki(hn, A1)EYi|Xi
[I{Yi ≤ Qn(Xi,Xj)} − τ ]ξ(Yk, dk, Yi,Xi)dXi

and

max
1≤j≤n

|Rn(Xj)| = O(n−3(1−κp)/4[log n]3/4), a.e.

Remark

Compared to the result in Chaudhuri et al (1997) (Lemma 4.1), the extra term in (14)

can be interpreted as the ’correction term’ resulted from the preliminary estimation of the

survival function G(.). Similar observation has been made by Honoré et al (2002) for linear

quantile regression under censoring. The uniformity results again can easily strengthened

to be over any nι of x’s: x1, · · · ,xnι with ι being finite. Similarly, if [A2] and [A3], which

concern functions (random variables) varying with τ, are satisfied uniformly in τ as well

in addition to in x and (or) t, then the uniformity results in Theorem 4.3 can be easily

extended to cover estimation at different quantile levels τ1, · · · , τnι with finite ι.

Under conditions of Theorem 4.3, we have

max
1≤j≤n

δ−1
n |Rn(Xj)| = o(n−1/2) a.e. (15)

provided that

δn ∝ n−κ, with
1

2(s2 + p)
< κ <

1

4 + 3p
, (16)

and

(ii) max
1≤j≤n

|Rn(Xj)| = o(n−1/2) a.e. (17)

provided that

δn ∝ n−κ, with
1

2(s2 + p)
< κ <

1

3p
. (18)

(15) will be used for the average derivative estimator, and (17) will be used for the additive

quantile regression model.
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5 Applications

In this section, we will demonstrate how the results in Theorem 4.3 can be used to obtain

the asymptotic properties of a class of estimators through two examples

5.1 The Average Derivative Estimator

Define the average gradient vector

β = (β1, · · · , βp)⊤ = E(∇Q(X)),

which gives a concise summary of quantile specific regression effects, i.e. the average change

in the quantile of the response as the ith covariate is perturbed while the other covariates

are held fixed. This parameter has been of great interest in econometrics following Härdle

and Stoker (1989). See for example Chaudhuri et al (1997) who extended this theory to

quantile regression case. Here we study the estimation of β in the presence of censoring

using the average derivative method.

Let ∇Q̂(Xj) be the nonparametric estimator of the gradient of the conditional quantile

Q(x) at x = Xj , defined in (8), i.e.

∇Q̂(Xj) = (ĉn,u(Xj))[u]=1.

The average derivative estimator of β is thus defined as

β̂ =
1

n

n∑
j=1

∇Q̂(Xj). (19)

To establish the asymptotics of β̂, we assume that [A1]-[A3] hold with s1 = s3 = 1+γ(γ > 0),

s2 > 3 + 3p/2 and (3) holds with k = [s2], then according to Theorem 4.3, under (16) for

any a = (a1, · · · , ap)⊤ ∈ Rp, we have

a⊤(β̂ − β)

= a⊤[
1

n

n∑
j=1

∇Q(Xj)− β] + o(n−1/2)

+A⊤ 1

nδn

n∑
j=1

Σ−1
n (Xj)

Nn(Xj)

∑
i∈Sn(Xj)

di
G(Yi|Xi)

Xij(δn, A)
[
τ − I

{
Yi ≤ Qn(Xi,Xj)

}]
(20)

+A⊤ 1

n2

n∑
j,k=1

Σ−1
n (Xj)

Nn(Xj)
Q̃(ζj , ζk) e

⊤
1 Σ

−1(A1) (21)
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where A is an n(A)× 1 factor, defined as

A = (0,a⊤,0)⊤

Firstly note that the term (20) has been shown (Chaudhuri et al 1997, Theorem 2.1) to

have the following asymptotic form

1

n

n∑
j=1

dj
G(Yj |Xj)

[τ − I{εj ≤ 0}] ∇f(Xj)

fε,x(0,Xj)
+ op(n

−1/2). (22)

Observe next that, the smallest eigenvalue of Σn(x) is bounded away from zero uniformly

over x ∈ D and that the term inside the square bracket of (21) is uniformly bounded, follow-

ing from [A5]. Therefore, the term in (21) is essentially a U-statistic plus an asymptotically

negligible term, i.e.

A⊤

n2

[ n∑
j,k=1

Σ−1
n (Xj)

Nn(Xj)
Q̃(ζj , ζk)

]
Σ−1(A1)e1 = A⊤ Un

n(n− 1)
Σ−1(A1)e1 + op(n

−1/2),

where Un =
∑

1≤j<k≤n

ξn(Zj ,Zk), Zj = (Xj , Yj), ξn(Zj ,Zk) = ηn(Zj ,Zk) + ηn(Zk,Zj), and

ηn(Zj ,Zk) =
Σ−1
n (Xj)

Nn(Xj)
Q̃(ζj , ζk).

To analyze Un, first note that E[ξn(Zj ,Zk)] = E[ηn(Zk,Zj)] = 0. Consider the Hoeffding

decomposition of Un (see, e.g., Serfling (1980)) and define the projection of Un as

Pn = (n− 1)
n∑

k=1

gn(Zk),

with gn(Zk) = Ej [ξn(Zk,Zj)] = Ej [ηn(Zk,Zj)]. We thus have, through arguments similar

to that in Chaudhuri et al (1997), that

E(Un − Pn)
2 =

n(n− 1)

2
{E[ξ2n(Zk,Zj)]− 2E[g2n(Zk)]}

≤ n(n− 1)

2
E[ξ2n(Zk,Zj)] = O(n2/δ2n)

whence Un = Pn + op(n
3/2). We move on to study gn(.). Noting (32) and (28), i.e.

sup
x∈Rp

|Nn(x)

n
− δpnf(x)| = o(1) a.e.

Σ−1
n (x) = f−1

ε|X(0|x)Σ−1(A) + δn

Σ−1(A)
p∑

l=1

Σ∗
l f

(l)
ε,X(0,x)Σ−1(A)

f2
ε|X(0|x)fX(x)

+O(δs3n + δ2n),
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we have

δpn
Σ−1
n (Xj)

Nn(Xj)
=

1

n

Σ−1(A)

fε,X(0,Xj)
+

δn
n

Σ−1(A)
p∑

l=1

Σ∗
l f

(l)
ε,X(0,Xj)Σ

−1(A)

f2
ε,X(0,Xj)

+O(δs3n + δ2n),

uniformly in j = 1, · · · , n. Therefore,

1

n2
Pn =

1

n

n∑
k=1

gn(Zk)

=
Σ−1(A)

nδp+1
n

n∑
k=1

Ej

[
f−1
ε,X(0,Xj)Q̃(ζj , ζk)

]

+
1

nδpn
Σ−1(A)

[ n∑
k=1

∫ p∑
l=1

Σ∗
l f

(l)
ε,X(0,Xj)

f2
ε,X(0,Xj)

Σ−1(A)Q̃(ζj , ζk)fx(Xj)dXj

]
+op(n

−1/2) (23)

The two leading terms in (23) turn out to be of order op(n
−1/2). We only deal with the

first term to illustrate. Note that

Ej

{
f−1
ε,X(0,Xj)Q̃(ζj , ζk)

}
=

∫
Xij(δn, A)X

⊤
ki(hn, A1)EYi|Xi

[I{Yi ≤ Qn(Xi,Xj)} − τ ]ξ(Yk, dk, Yi,Xi)
f(Xj)

fε|X(0|Xj)
dXidXj .

We assume that if regarded as a function of (Xi,Xj ,Xk),

E{[I{Yi ≤ Qn(Xi,Xj)} − τ ]ξ(Yk, dk, Yi,Xi)|Xi,Xj ,Xk},

is continuous with respect of all its arguments, then based on the fact that Σ(A1)
−1

∫
t(A2)dt =

(1, 0, · · · , 0), Σ(A)−1
∫
t(A)dt = (1, 0, · · · , 0), and Ek[ξ(Yk, dk, Yi,Xi)] = 0, we have

A⊤Σ−1(A)

nδp+1
n

n∑
k=1

Ej

[
f−1
ε,X(0,Xj)Q̃(ζj , ζk)

]
Σ−1(A1)e1 = o(n−1/2) a.e.

Hence,

β̂ − β =
1

n

n∑
j=1

∇Q(Xj)− β +
1

n

n∑
j=1

dj
G(Yj |Xj)

[τ − I{εj ≤ 0}] ∇f(Xj)

fε,x(0,Xj)
+ op(n

−1/2).

This is exactly the same as that obtained in Chaudhuri et al (1997, Theorem 2.1) in the

case of no censoring. Empirical interpretation for this could be that the ’averaging’ in the

construction of β̂ together with the ’polynomial smoothing’ used in the local K-M estimator

(6) have canceled out the correction term in Theorem 4.3 resulted from the preliminary

estimation of the survival function G(.).
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5.2 ADDITIVE QUANTILE REGRESSION MODEL UNDER RANDOM
CENSORING

In this section, we apply our main result to derive estimators of the additive quantile-

regression model again under random censoring. Specifically we assume an additive struc-

ture for the function Q(.) in model (2), i.e.

Q(x) = Q(x1, · · · , xp) = c+Q1(x1) + · · ·+Qp(xp), (24)

where c is an unknown constant and Qk(.), k = 1, . . . , p are unknown functions which

have been normalized such that EQk(xk) = 0, k = 1, . . . , p. For previous work on additive

quantile regression model, see Linton (2001) Yu and Lu (2004) and Horowitz and Lee (2005).

Now to estimate the component functions in (24), Q1(.) say, we consider the marginal

integration method; this involves estimating function Q(.) and then integrating it over

certain directions. Partition x as (x1,x2) where x1 is the one dimensional direction of

interest and x2 is a p − 1 dimensional nuisance direction. Accordingly, partition Xi =

(Xi1,Xi2). Define the functional

ϕ1(x1) =

∫
Q(x1,x2)f2(x2)dx2, (25)

where f2(x2) is the joint probability density of X2i. Under the additive structure (24), the

difference between ϕ1(.) and Q1(.) is a constant. Replace Q(.) in (25) with ĉn1(x1,x2), the

first element of ĉn(x1,x2) defined in (9), with Xj replaced by (x1,x2), and ϕ1(x1) can thus

be estimated by the sample version of (25):

ϕn1(x1) = n−1
n∑

j=1

ĉn1(x1,Xj2).

In the case of mean regression, Linton and Härdle (1996) and Hengartner and Sperlich (2005)

suggested that for ϕn1(.) to be asymptotically normal, bandwidth used for the direction of

interest X1 should be different from those for the p − 1 nuisance directions. However, for

simplification purposes, we assume that the same bandwidth is used for all directions.

Let X∗
j = (x1,Xj2) and X∗

ij = Xi −X∗
j . According to Theorem 4.3, we have

ĉn1(X
∗
j )− cn1(X

∗
j ) = ẽ⊤1

Σ−1
n (X∗

j )

Nn(X∗
j )

∑
i∈Sn(X∗

j )

di
G(Yi|Xi)

X∗
ij(δn, A)

[
τ − I

{
Yi ≤ Qn(Xi,X

∗
j )
}]

−ẽ⊤1
1

n

n∑
k=1

Σ−1
n (X∗

j )

Nn(X∗
j )

Q̃(ζ∗j , ζk) e
⊤
1 Σ

−1(A1) +Rn(X
∗
j ),
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where ẽ1 = (1, 0, · · · , 0)⊤ is a n(A)×1 vector, and Q̃(ζ∗j , ζk) is defined similarly to Q̃(ζ∗j , ζk)

with X∗
j replacing Xj and X∗

ij replacing Xij , which together with the additive structure

(24) assumed for Q(.), leads to

ϕn1(x1) = ϕ1(x1) +
1

n

n∑
j=1

Q2(Xj2) + o(n−1/2)

+ẽ⊤1
1

n

n∑
j=1

Σ−1
n (X∗

j )

Nn(X∗
j )

∑
i∈Sn(X∗

j )

di
G(Yi|Xi)

X∗
ij(δn, A)

[
τ − I

{
Yi ≤ Qn(Xi,X

∗
j )
}]
(26)

−ẽ⊤1
1

n2

∑
j,k

Σ−1
n (X∗

j )

Nn(X∗
j )

Q̃(ζ∗j , ζk) e
⊤
1 Σ

−1(A1) (27)

where Q2(x2, · · · , xp) = Q1(x2) + · · · + Qp(xp). Note ϕn1(x1) is, by definition the average

of n− sub-vectors of ĉn(.), The only difference being that for ϕn1(x1), the average is taken

along the p − 1 nuisance directions, while for ADE (19), the average is taken along all p

directions. Therefore, as in the case of ADE (19), the leading term in (27) is negligible

(similar to (21)), and methodologies in Chaudhuri et al (1997) can be used to tackle term

(26), as shown in the case of ADE. Specifically, we have

1

n

n∑
j=1

Σ−1
n (X∗

j )

Nn(X∗
j )

∑
i∈Sn(X∗

j )

di
G(Yi|Xi)

X∗
ij(δn, A)

[
τ − I

{
Yi ≤ Qn(Xi,X

∗
j )
}]

=
Σ−1(A)

nδn

n∑
i=1

diI{|Xi1 − x| ≤ δn}
G(Yi|Xi)

[τ − I{εi ≤ 0}
][ f2(Xi2)

fε,X(0, x1,Xj2)

]
×∫

[0,1]⊗(p−1)

[δ−1
n (Xi1 − x), ν](A)dν + op(δ

−1
n n−1/2),

where Xi1 stands for the first element of Xi. This together with the fact that (27) is of

order Op(n
−1/2), leads to

ϕn1(x1) = ϕ1(x1) + ẽ⊤1
Σ−1(A)

nδn

n∑
i=1

diI{|Xi1 − x| ≤ δn}
G(Yi|Xi)

[τ − I{εi ≤ 0}
][ f2(Xi2)

fε,X(0, x1,Xi2)

]
×∫

[0,1]⊗(p−1)

[δ−1
n (Xi1 − x), ν](A)dν + op(

1

n1/2δn
).

Define b(A) =
∫
[0,1]⊗p t(A)dt. Asymptotic normality for ϕn1(.) can thus be established, with

mean zero and covariance equal to n−1δ−1
n ẽ⊤1 Σ

−1(A)b(A)b(A)⊤Σ−1(A)ẽ1 multiplied by∫
[τ − I{εi ≤ 0}]2f2

2 (X2)

G{Q(x1,X2) + ε|X = (x1,X2)}fε,X(0, x1,Xi2)
dεdX2
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To conduct pointwise inference one only needs to estimate the unknown quantities in the

asymptotic variance, which is straightforward. For uniform confidence bands, one can

proceed as Johnston (1982).

6 Discussion

In this paper, we have obtained the Bahadur representation for the local polynomial esti-

mator of a nonparametric quantile regression function. The weighting scheme suggested by

Bang and Tsiatis (2002) is adopted to deal with the presence of random censoring. Two

examples have been provided to demonstrate the usefulness of the results in establishing the

asymptotic properties of estimators. We nevertheless point out that due to the nature of

this weighting scheme, information contained in the censored observations is largely lost. It

is therefore worthwhile examining other weighting schemes which makes more efficient use

of the data, such as those by Portnoy (2003), Peng and Huang (2008) and Wang and Wang

(2009). Or to replace ρτ (.) in (8) in with E[ρτ (.)|Yi, diXi] as considered in Honoré et al

(2002) for linear quantile regression under independent censoring. Study and comparison of

these alternative methods in the context of nonparametric censored quantile regression will

be part of our ongoing research on this subject. The presence of initial consistent estimators

with a linear expansion greatly facilitates this work.

Appendix

Proposition 6.1 If δn ≈ n−κ,with 0 < κ < 1/p, there exists another pair of positive

constants K1 < K2, such that Pr(lim inf En) = 1, where

En = {K1n
1−κp ≤ Nn(Xj) ≤ K2n

1−κp, for all j = 1, · · · , n}.

which can be strengthened as

sup
x∈Rp

|Nn(x)

n
− δpnf(x)| = o(1) a.e. (28)

Similarly, we have under [A2] and [A3],

sup
x∈D

|Σn(x)− fε|X(0|x)Σ(A)− δn
fX(x)

p∑
l=1

Σ∗
l f

(l)
ε,X(0,x)| = O(δs3n ), a.e. (29)

where fε,X denotes the joint probability density function of (ε,x), f
(i)
ε,X, i = 1, · · · , p, its

first order partial derivatives, and for each 1 ≤ l ≤ p, Σ∗
l is the corresponding n(A)× n(A)
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matrix with a typical entry

σu,v,ek =

∫
[−1,1]⊗p

tu+v+ekdt

with ek being the kth column of the p× p identity matrix; and under [A1] and [A6] ,

sup
x∈D

|Σ̃n(x)− f(x)Σ(A1)| = O
(
(nhpn/ log n)

−1/2 + hn

)
a.e. (30)

The proof follows directly from application of GlivenkoCantelli Theorem. Using the von

Neumann expansion for the inverse matrix, we further have

Σ−1
n (x) = f−1

ε|X(0|x)Σ−1(A) + δn

Σ−1(A)
p∑

l=1

Σ∗
l f

(l)
ε,X(0,x)Σ−1(A)

f2
ε|X(0|x)fX(x)

+O(δs3n + δ2n), (31)

Σ−1
n (x)fX(x) =

fX(x)

fε|X(0|x)
Σ−1(A) + δn

Σ−1(A)
p∑

l=1

Σ∗
l f

(l)
ε,X(0,x)Σ−1(A)

f2
ε|X(0|x)

+O(δs3n + δ2n). (32)

Proof of Lemma 4.1 This follows directly from (30), Theorem 2.1 and Theorem 2.3 of

Gonzalez-Manteigaa and Cadarso-Suarez (1994). Note that the fact that the weight B̃nj(.)

might be negative does not affect the validity of the proof. �
We now list a few facts used in the proof.For any x ∈ D, let ωδn(.,x) denote the

conditional density of the vector δ−1
n (X− x), given that |X− x| ≤ δn.

[F1] Then under [A1], ωδn(t,x) converges uniformly both in t and x, to the uniform density

on [−1, 1]p.

The proof of [F1] is straightforward; also see Chaudhuri(1991b). We now move on to derive

the explicit form of ĉn(x), x = Xj , 1 ≤ j ≤ n.

Let T = {i : 1 ≤ i ≤ n, di = 1}, DXn(x) be the matrix with rows given by the

vectors {Xix(δn, A), i ∈ Sn(x) ∩ T}, and V Yn(x) be the corresponding column vector with

components {Yi, i ∈ Sn(x) ∩ T}. For any subset h ⊂ Sn(x) ∩ T, such that ♯(h) = n(A),

denote by DXn(x,h), the corresponding n(A)×n(A) matrix with rows {Xix(δn, A), i ∈ h},

and by V Yn(x,h), the n(A) dimensional column vector {Yi, i ∈ h}. Define

Hn(x) = {h : h ⊂ Sn(x) ∩ T, ♯(h) = n(A), DXn(x,h) has full rank}

The following two facts will play a crucial role in the proofs of the Theorems.
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[F2] If DXn(x) has rank n(A), then there is a subset h ∈ Hn(x), such that (9) has at least

one minima of the form

ĉn(x) = [DXn(x,h)]
−1V Yn(x,h).

[F3] For the h specified in [F2], Ln(x,h) ∈ [τ − 1, τ ]n(A) which stands for the n(A)-

dimensional interval in Rn(A), where

Ln(x,h) =
∑
i∈h̄

di

[1
2
− 1

2
sign

{
Yi −

⟨
Xix(δn, A), ĉn(x)

⟩}
− τ

]
×
{
Ĝn(Yi|Xi)

}−1
Xix(δn, A)

[
Wn(h)DXn(x,h)

]−1
,

where h̄ = Sn(x)\h denotes its complement in Sn(x), sign(a) is +1, 0, or −1 de-

pending on whether x is positive, zero or negative, and Wn(h) is the diagonal matrix

with elements {Ĝn(Yi|Xi), i ∈ h}. Moreover, ĉn(x) is the unique minima of (9) iff

Ln(x,h) ∈ (τ − 1, τ)n(A).

Remark Noticing the linearity of the loss function ρτ (.), [F2] and [F3] can be proved

in exactly the same manner as Theorem 3.1 and 3.3 in Koenker and Bassett (1978); see

Chaudhuri (1991a) for parallel results. Note that the form of ĉn(x) specified in [F2] is free

from the K-M estimator Ĝn(.), and appears to be identical to the minimizer of,

min
c

∑
i∈Sn(x)

ρτ{Yi − Pn(c,x,Xi)},

which is another version of (9) with equal weights. They are, however, distinct, since the

subsets h they are related to are usually different. This can be seen from the [F3], the

necessary and sufficient condition h has to satisfy, which does involves Ĝn(.), and thus is

different from Fact 6.4 in Chaudhuri (1991a). For illustration purposes, consider a simple

example, where we have only two observations {Y1, Y2}, with Y1 < Y2, then the solution set

to the minimization problem miny{|Y1−y|+|y−Y2|} with equal weights is [Y1, Y2]. However,

the weighted minimization problem miny{a1|Y1−y|+a2|y−Y2|} for some positive a1 ̸= a2,

has a unique solution, Y1, if a1 > a2, and Y2, if a1 < a2. Therefore, the two solutions sets

may overlap, but they usually do not coincide.

Under [A2], we have for any x ∈ D, k = [s2], all sufficiently large n, and any bounded

t ∈ [−1, 1]⊗p, Q(x+ tδn) can be approximated by the k−th order Taylor polynomial

Qn(x+ tδn,x) =
∑
u∈A

cn,u(x)t
u = ⟨cn(x), t⟩, (33)
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and the remainder r(tδn,x) = Q(x+ tδn)−Qn(x+ tδn,x) satisfies

|r(tδn,x)| ≤ C(|t|δn)s2 , (34)

uniformly over t ∈ [−1, 1]⊗p and x ∈ D. Define

Q̂n(x+ tδn,x) = ⟨ĉn(x), t⟩. (35)

Proof of Theorem 4.2. For any positive constant K1 and a generic x ∈ Rp, which stands

for any one of Xj , j = 1, · · · , n, let Un be the event defined as

Un(x) = {|ĉn(x)− cn(x)| ≥ K1[nδ
p
n/ log n]

−1/2}.

According to the Borel-Cantelli lemma, the assertion in Theorem 4.2 will follow, if there

exists some K1 > 0, such that ∑
n

nP (Un(x)) < ∞.

To obtain an uniform upper bound for P (Un(x)), for any given vector ∆n ∈ Rn(A), set

Zni(x) =
[1
2
− 1

2
sign

{
εi −

⟨
Xix(δn, A),∆n

⟩
+ rn(Xix,x)

}
− τ

]
Xix(δn, A), (36)

where rn(Xix,x) is the remainder from the Taylor expansion (33). Using results (10) on

the strong uniform consistency of K-M estimator, i.e.

sup
x

sup
t≤τ(x)

|Ĝn(t|x)−G(t|x)| = O
(( log n

nhpn

)1/2)
we have Wn(h) = W (h) + o(1) a.e., where W (h) is the diagonal matrix with elements

{G(Yi|Xi), i ∈ h}. Consequently, the assertion in [F3] that Ln(x,h) ∈ (τ − 1, τ)d+1 implies

that there exists some constant ϕ1 > 0, which depends on n(A), such that |Ln1(x,h) +

Ln2(x,h)| ≤ ϕ1, where

Ln1(x,h) =
∑
i∈h̄

{ G(Yi|Xi)}−1Zni(x)di,

Ln2(x,h) =
∑
i∈h̄

G(Yi|Xi)− Ĝn(Yi|Xi)

G(Yi|Xi)Ĝn(Yi|Xi)
Zni(x)di,

where Zni(x) is defined as in (36) with ∆n = ĉn(x) − cn(x). As E[di|Xi, Yi] = G(Yi|Xi),

we have in parallel to FACT 6.5 in Chaudhuri (1991a) that there exists positive constants

ϵ∗1, ϵ
∗
2, c

∗
5 and M∗

2 , such that∣∣∣E[
Zni(x)di/G(Yi|Xi)

]∣∣∣ ≥ min{ϵ∗1, c∗5|ĉn(x)− cn(x)|},
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whenever |rn(Xix,x)| ≤ ϵ∗2 and |ĉn(x)− cn(x)| ≥ M∗
3 |rn(Xix,x)|, where M∗

3 ≥ M∗
2 . There-

fore, if event Un is true, i.e. |ĉn(x) − cn(x)| ≥ K1[nδ
p
n/ log n]−1/2, for some positive K1,

we have from rn(Xix,x) = O(|δn|s3) = o([nδpn/ log n]−1/2), for κ > 1/(2s3 + d), that there

exists some constant c5 > 0, such that∣∣∣E[
Zni(x)di/G(Yi|Xi)

]∣∣∣ ≥ c5[nδ
p
n/ log n]

−1/2.

This combined with the facts that |Ln1(x,h) + Ln2(x,h)| ≤ ϕ1, for some ϕ1 > 0, ♯(h̄) =

O(nδpn) (Proposition 6.1), and sup
x∈D

Ln2(x,h) = O{(nδpn log n)1/2} a.e. which follows from

(10), leads to the conclusion that there exists some K∗
1 > 0, such that Un(x) is contained

in the event{
for some h ∈ Hn(x),

∣∣∣∑
i∈h̄

{Zni(x)di/G(Yi|Xi)−E[Zni(x)di/G(Yi|Xi)]}
∣∣∣ ≥ K∗

1 [nδ
p
n log n]

1/2,

with ∆n = ĉn(x)− cn(x), ĉn(x) = [DXn(x,h)]
−1V Yn(x,h), and |∆n| ≥ K1[nδ

p
n/ log n]

−1/2
}
.

Apply Berstein’s inequality to
∑
i∈h̄

Zni(x)di/G(Yi|Xi), we have by noting that ♯(Hn(x)) =

O{(nδpn)n(A)}, and that Zni(x)di/G(Yi|Xi) is bounded, there exist constants c6 > 0, c7 > 0

and an integer N1 > 0, such that

P (Un(x)) ≤ c6(nδ
p
n)

n(A) exp(−c7 log n) (37)

uniformly in x = X1, · · · ,Xn. By letting K1, thus K
∗
1 sufficiently large, we indeed have∑

n nP (Un(x)) < ∞. �

Proof of Theorem 4.3. Again, here the generic x ∈ Rp should be interpreted as any of

the Xj , j = 1, · · · , n. The proof consists of the following steps
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Step 1: Define

H̃n(x, δn, cn(x)) =

∫
[−1,1]p

Fε{⟨cn(x), t(A)⟩ −Q(x+ tδn)}t(A)ωδn(t,x)dt

=

∫
[−1,1]p

Fε{Qn(x+ tδn,x)−Q(x+ tδn)}t(A)ωδn(t,x)dt

=

∫
[−1,1]p

Fε{r(tδn,x)}t(A)ωδn(t,x)dt

H̃n(x, δn, ĉn(x)) =

∫
[−1,1]p

Fε{⟨ĉn(x), t(A)⟩ −Q(x+ tδn)}t(A)ωδn(t,x)dt

=

∫
[−1,1]p

Fε{Q̂n(x+ tδn,x)−Q(x+ tδn)}t(A)ωδn(t,x)dt,

and

R(1)
n (x) = H̃n(x, δn, ĉn(x))− H̃n(x, δn, cn(x))− Σn(x)[ĉn(x)− cn(x)].

Then as shown in Step 1 on page 773 of Chaudhuri (1991a), that by Theorem 4.2,

[A1] and [A2] we have

sup
j

|R(1)
n (Xj)| = O{[n(1−κp)/ log n]−3/4} (38)

almost surely.

Step 2: Define the n(A)−dimensional random vector χn(x) as

χn(x) =
∑

i∈Sn(x)

[
di

G(Yi|Xi)
Xix(δn, A)I{Yi ≤ Q̂n(Xi,x)} − H̃n(x, δn, ĉn(x))]

−
∑

i∈Sn(x)

[
di

G(Yi|Xi)
Xix(δn, A)I{Yi ≤ Qn(Xi,x)} − H̃n(x, δn, cn(x))],

and for some constant K3 > 0, the corresponding event

Wn(x) =
{
|χn(x)| ≥ K3[log n]

3/4n(1−κp)/4
}

Also for h ∈ Hn(x), and large enough n, define

ĉhn(x) = [DXn(x,h)]
−1V Yn(x,h), Q̂h

n(Xi,x) = ⟨ĉhn(x),Xix(δn, A)⟩,

χh
n(x) =

∑
i∈h̄

[
di

G(Yi|Xi)
Xix(δn, A)I{Yi ≤ Q̂h

n(Xi,x)} − H̃n(x, δn, ĉ
h
n(x))]

−
∑
i∈h̄

[
di

G(Yi|Xi)
Xix(δn, A)I{Yi ≤ Qn(Xi,x)} − H̃n(x, δn, cn(x))].
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Then in view of definition of the events An(i.e. unique solution), Un(x) and [F2], the

event Wn(x) ∩An ∩ Un(x) is contained in the event{
for some h ∈ Hn(x), |χh

n(x)| ≥ K4[log n]
3/4n(1−κp)/4

and |ĉhn(x)− cn(x)| ≤ K1[n
(1−κp)/ log n]−1/2

}
∩An

for large enough n, where K4 = K3/2 and we have implicitly used the fact that

[log n]3/4n(1−κp)/4 → ∞ and that ♯(h) = p. As argued in Chaudhuri (1991a), given

the set Sn(x), h ∈ Hn, and the set of {(Xi, Yi) : i ∈ h}, the terms in the sum defining

χh
n(x) are IID with mean 0, and variance-covariance matrix with Euclidean norm of

the same order as |ĉhn(x)−cn(x)|, which is O([n(1−κp)/ log n]−1/2). This result follows

from the fact that the presence of the indicator function I(.) in the definition of χh
n(x)

causes the terms in the sums acts in a similar way as a random vector with Binomial

components. As G(.) is abounded away from zero, an application of the Bernstein’s

inequality to the sum defining χh
n(x) yields a result similar to (37), i.e. there exist

constant c8 > 0, c9 > 0, such that

P (Wn(x) ∩An ∩ Un(x)) ≤ c8n
(1−κp)n(A) exp(−c9 log n) = o(n−2),

by choosing K3, hence c9 sufficiently large. Therefore, we have

sup
j

|χh
n(Xj)| = O([logn]3/4n(1−κp)/4) (39)

Step 3: Combining (38) and (39), we have

1

Nn(Xj)

∑
i∈Sn(Xj)

di
G(Yi|Xi)

Xij(δn, A)[I{Yi ≤ Qn(Xi,Xj)} − τ ]

=
1

Nn(Xj)
χh
n(Xj) + H̃n(Xj , δn, ĉn(Xj))− H̃n(Xj , δn, cn(Xj))

− 1

Nn(Xj)

∑
i∈Sn(Xj)

di
G(Yi|Xi)

Xij(δn, A)[I{Yi ≤ Q̂n(Xi,Xj)} − τ ]

= O([n(1−κp))/ log n]−3/4) + Σn(Xj)[ĉn(Xj)− cn(Xj)]

+
1

Nn(Xj)

∑
i∈Sn(Xj)

di

Ĝn(Yi|Xi)
Xij(δn, A)[I{Yi ≤ Q̂n(Xi,Xj)} − τ ] (40)

+
1

Nn(Xj)

∑
i∈Sn(Xj)

di

[ 1

G(Yi|Xi)
− 1

Ĝn(Yi|Xi)

]
Xij(δn, A)[I{Yi ≤ Q̂n(Xi,Xj)} − τ ]

uniformly for x = Xj , j = 1, · · · , n. Note that according to [F3], term (40) is of order

O(nκp−1), and is thus negligible. The rest of the proof is left as Lemma 6.2. �
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Lemma 6.2 Let γn = log n/n1−κp. Then, with probability 1,

1

Nn(Xj)

∑
i∈Sn(Xj)

di{Ĝn(Yi|Xi)−G(Yi|Xi)}
G(Yi|Xi)Ĝn(Yi|Xi)

Xij(δn, A)[I{Yi ≤ Q̂n(Xi,Xj)} − τ ]

=
1

Nn(Xj)

n∑
k=1

EiFXj (ζi, ζk) +O([n1−κp/ log n]−3/4) + o(n−1/2)

uniformly in j = 1, · · · , n, where

Fx(ζi, ζk) =
diI{Xi ∈ Sn(x)}Xix(δn, A)

fX(Xi)G(Yi|Xi)
[I{Yi ≤ Qn(Xi,x)} − τ ]

×e⊤1 Σ
−1(A1)B̃hn(Xki)q(Yk, Yi,Xi),

and Ei(.) stands for expectation taken with respect to the joint distribution of (Xi, Yi) with

the other argument held fixed.

Proof. The proof consists of the following steps

Step 1 According to (10), [A6] , and the facts that G(.) is bounded below from zero, and

|Xij(δn, A)| ≤ 1 for all i ∈ Sn(Xj), it is obvious that

1

Nn(Xj)

∑
i∈Sn(Xj)

di{Ĝn(Yi|Xi)−G(Yi|Xi)}
G(Yi|Xi)Ĝn(Yi|Xi)

Xij(δn, A)[I{Yi ≤ Q̂n(Xi,Xj)} − τ ]

=
1

Nn(Xj)

∑
i∈Sn(Xj)

diXij(δn, A)}
G2(Yi|Xi)

[I{Yi ≤ Q̂n(Xi,Xj)} − τ ]{Ĝn(Yi|Xi)−G(Yi|Xi)}

+o(n−1/2), (41)

Step 2: For the leading term in (41), replace I{Yi ≤ Q̂n(Xi,Xj} with I{Yi ≤ Qn(Xi,Xj)},

the resulting remainder, as shown in Lemma 6.3, is of order O(γ
3/4
n ), i.e.

1

Nn(Xj)

∑
i∈Sn(Xj)

diXij(δn, A)}
G2(Yi|Xi)

[I{Yi ≤ Q̂n(Xi,Xj)} − τ ]{Ĝn(Yi|Xi)−G(Yi|Xi)}

=
1

Nn(Xj)

∑
i∈Sn(Xj)

diXij(δn, A)}
G2(Yi|Xi)

[I{Yi ≤ Qn(Xi,Xj)} − τ ]{Ĝn(Yi|Xi)−G(Yi|Xi)}

+O(γ3/4n )

uniformly in j = 1, · · · , n.

Step 3: Using the result in Lemma 4.1, under [A7] , with probability one,

Ĝn(t|x)−G(t|x) = ε⊤1 Σ
−1(x)

nfX(x)

n∑
j=1

K̃hn(Xjx)ξ(Yj , dj , t,x) + o(n−1/2),
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uniformly in t and x,we have

1

Nn(Xj)

∑
i∈Sn(Xj)

diXij(δn, A)

G2(Yi|Xi)
[I{Yi ≤ Qn(Xi,Xj)} − τ ]{Ĝn(Yi|Xi)−G(Yi|Xi)}

=
1

nNn(Xj)

n∑
i,k=1

FXj (ζi, ζk) + o(n−1/2), (42)

uniformly in Xj , j = 1, · · · , n.

Step 4: Built on Step 3, it remains to show that

1

nNn(x)

n∑
i,k=1

Fx(ζi, ζk) =
1

Nn(x)

n∑
k=1

Ei[Fx(ζi, ζk)] + o([logn/Nn]
α + n−1/2),

uniformly in x ∈ D.

Firstly, from the definition of Fx(ζi, ζk) and noting that the ’own observation’ terms

are asymptotically negligible, we know the leading term on the right hand side of (43)

can be written a U-statistic plus an asymptotically negligible term:

1

n(n− 1)

n∑
i̸=k

Fx(ζi, ζk) =
1

2n(n− 1)

∑
i ̸=k

Hx(ζi, ζk), (43)

where Hx(., .) is a symmetric function defined as

Hx(ζi, ζk) = Fx(ζi, ζk) + Fx(ζk, ζi).

Consider the Hoeffding decomposition of Hx(., .)

H0
x(ζi, ζk) = Hx(ζi, ζk)− EiHx(ζi, ζk)−EkHx(ζi, ζk) + EHx(ζi, ζk),

where EiHx(ζi, ζk) standing for taking expectation w.r.t ζi with ζk held fixed. Since

EkHx(ζi, ζk) = Ek[Fx(ζi, ζk) + Fx(ζk, ζi)] = Ek[Fx(ζk, ζi)]

EiHx(ζi, ζk) = Ei[Fx(ζi, ζk)], EHx(ζi, ζk) = 0,

We thus have∑
i ̸=k

Hx(ζi, ζk) =
∑
i ̸=k

H0
x(ζi, ζk) +

∑
i̸=k

EiHx(ζi, ζk) +
∑
i ̸=k

EkHx(ζi, ζk)−
∑
i̸=k

EHx(ζi, ζk)

= 2(n− 1)

n∑
k=1

Ei[Fx(ζi, ζk)] +
∑
i ̸=k

H0
x(ζi, ζk) (44)
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For the third term, to apply Proposition 4 in Arcones (1995), we need to verify

that the class of functions {H0
x(., .) : x ∈ D} is Euclidean with constant envelope,

referred to as the uniformly bounded VC subgraph class in Arcones (1995). This is

because, first of all, the class of functions {Fx(., .) : x ∈ D} is uniformly bounded

(CONDITION 7). Secondly, as Σ−1B̃hn(Xki)q(Yk, Yi,Xi) is independent of x, we note

from Lemma 2.14 (i) and (ii) in Pakes and Pollard (1989) that it suffices to show the

Euclidean property for the two classes (a) (I{Xi ∈ Sn(x)}Xix(δn, A) : x ∈ D), (b)

(I{Yi ≤ Qn(Xi,x)} : x ∈ D). This is indeed true for the envelope F ≡ 1 , following

directly from Lemma 22(ii) in Nolan and Pollard (1987) as I(.) is of bounded variation.

Therefore, according to Proposition 4 in Arcones (1995), there exists some constant

c0 > 0, such that for any ϵ > 0 and 1 > α > 0,

P r
{
max
x∈D

|
∑
i̸=k

H0
x(ζi, ζk)| ≥ ϵNnn(log n/Nn)

α
}
< 2 exp(−c0N

1−α
n logα n) = o(n−2).

By the Borel-Cantelli lemma, we have with probability one,

max
x∈D

1

nNn
|
∑
i̸=k

H0
x(ζi, ζk)| = o([logn/Nn]

α), for any α < 1.

This together with (43) and (44) leads to

1

nNn(x)

n∑
i,k=1

Fx(ζi, ζk)

=
1

n

n∑
k=1

Ei[Fx(ζi, ζk)] + o([logn/Nn]
α + n−1/2)

almost surely, for any α < 1 with the o(.) uniform in x ∈ D. Moreover, noting (30), it

is straightforward to check that Ei[Fx(ζi, ζk)] does coincide with the second leading

term in Theorem 4.3. This completes the proof. �

Lemma 6.3 Under conditions assumed for Theorem 4.3, we have∑
i∈Sn(Xj)

diXij(δn, A)

G2(Yi|Xi)

[
I{Yi ≤ Q̂n(Xi,Xj)} − I{Yi ≤ Qn(Xi,Xj)}

]
{Ĝn(Yi|Xi)−G(Yi|Xi)}

= O(n1−κpγ3/4n ), (45)

uniformly in j = 1, · · · , n.
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Proof Based on (10), and the facts that |Xij(δn, A)| ≤ 1, G(.) is bounded away from zero,

the term in (45) is bounded by O{(nhpn/ log n)1/2} multiplied by

1

Nn(Xj)

∑
i∈Sn(Xj)

∣∣∣diXij(δn, A)

G2(Yi|Xi)
I{Yi ≤ Q̂n(Xi,Xj)} − I{Yi ≤ Qn(Xi,Xj)}

∣∣∣
≤ 1

Nn(Xj)

∑
i∈Sn(Xj)

di|I{Yi ≤ Q̂n(Xi,Xj)} − I{Yi ≤ Qn(Xi,Xj)}|

≤ 1

Nn(Xj)

∑
i∈Sn(Xj)

I{εi ∈ Ini(Xj)} ≤ 1

Nn(Xj)

∑
i∈Sn(Xj)

I{εi ∈ Dn},

where

Ini(x) =
[
rn(Xix,x)− |⟨Xix(δn, A), ĉn(x)− cn(x)⟩|, rn(Xix,x) + |⟨Xix(δn, A), ĉn(x)− cn(x)⟩|

]
,

and Dn = [−K1γ
1/2
n ,K1γ

1/2
n ], for some K1 > 0, and the last equality follows from (34),

Theorem 4.2 and the fact that δs3n = o(γ
1/2
n ).

As EI{εi ∈ Dn} = O(γ
1/2
n ) = o{(nhpn/ log n)1/2γ3/4n }, obviously (45) will follow if we

can show that

sup
j

∑
i∈Sn(Xj)

[
I{εi ∈ Dn} − E[I{εi ∈ Dn}]

]
= O{(nhpn log n)1/2γ−1/4

n }. (46)

To this aim, for any positive constant K2, and x ∈ Rp, define

Un(x) = {
∑

i∈Sn(x)

I{εi ∈ Dn} − E[I{εi ∈ Dn}] ≥ K2{(nhpn log n)1/2γ−1/4
n }.

Applying Bernstein’s inequality, we have

P (Un(x)) ≤ 2 exp{− K2
2nh

p
n log n/γ

1/2
n

4n1−κpγ
1/2
n + 2K2(nh

p
n log n)1/2/γ

1/4
n

} = o(n−2),

i.e.
∑

nP (Un(x)) < ∞, which, according to the Borel-Cantelli lemma, leads to (46). �
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