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Abstract

We provide a tractable characterization of the sharp identification region of the parameters
θ in a broad class of incomplete econometric models. Models in this class have set valued
predictions that yield a convex set of conditional or unconditional moments for the observable
model variables. In short, we call these models with convex moment predictions. Examples
include static, simultaneous move finite games of complete and incomplete information in the
presence of multiple equilibria; best linear predictors with interval outcome and covariate data;
and random utility models of multinomial choice in the presence of interval regressors data.
Given a candidate value for θ, we establish that the convex set of moments yielded by the model
predictions can be represented as the Aumann expectation of a properly defined random set.
The sharp identification region of θ, denoted ΘI , can then be obtained as the set of minimizers
of the distance from a properly specified vector of moments of random variables to this Aumann
expectation. Algorithms in convex programming can be exploited to effi ciently verify whether
a candidate θ is in ΘI . We use examples analyzed in the literature to illustrate the gains in
identification and computational tractability afforded by our method.
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1 Introduction

Overview. This paper provides a simple, novel, and computationally feasible procedure to deter-

mine the sharp identification region of the parameters θ characterizing a broad class of incomplete

econometric models. Models in this class have set valued predictions which yield a convex set of

conditional or unconditional moments for the model observable variables. In short, throughout the

paper, we call these models with convex moment predictions. Our use of the term “model”encom-

passes econometric frameworks ranging from structural semi-parametric models, to non-parametric

best predictors under square loss. In the interest of clarity of exposition, in this paper we focus

on the semi-parametric case. We exemplify our methodology applying it to static, simultaneous

move finite games of complete and incomplete information in the presence of multiple equilibria;

and best linear predictors with interval outcome and covariate data.1

Models with convex moment predictions can be described as follows. For a given value of the

parameter vector θ and realization of (a subset of) model variables, the economic model predicts

a set of values for a vector of variables of interest. These are the model set valued predictions,

which are not necessarily convex. No restriction is placed on the manner in which, in the data

generating process, a specific model prediction is selected from this set. When the researcher takes

conditional expectations of the resulting elements of this set, the unrestricted process of selection

yields a convex set of moments for the model variables—this is the model’s convex set of moment

predictions. If this set were almost surely single valued, the researcher would be able to identify θ by

matching the model-implied vector of moments to the one observed in the data. When the model’s

moment predictions are set valued, one may find many values for the parameter vector θ which,

when coupled with specific selection mechanisms picking one of the model set valued predictions,

generate the same conditional expectation as the one observed in the data. Each of these values

of θ is observationally equivalent, and the question becomes how to characterize the collection of

observationally equivalent θ’s in a tractable manner.

Although previous literature has provided tractable characterizations of the sharp identification

region for certain models with convex moment predictions (see, e.g. Manski (2003) for the analysis

of nonparametric best predictors under square loss with interval outcome data), there exist many

important problems, including the examples analyzed in this paper, in which such a characterization

1When thinking about best linear prediction (BLP), no “model” is assumed in any substantive sense. However,
with some abuse of terminology, for a given value of the BLP parameter vector θ, we refer to the set of prediction
errors associated with each logically possible outcome and covariate variables in the observable random intervals, as
the “model set valued predictions.”In the Supplement to this paper, Beresteanu, Molchanov, and Molinari (2010b),
we also analyze random utility models of multinomial choice in the presence of interval regressors data.
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is diffi cult to obtain. The analyses of Horowitz, Manski, Ponomareva, and Stoye (2003, HMPS

henceforth), and Andrews, Berry, and Jia (2004, ABJ henceforth) and Ciliberto and Tamer (2009,

CT henceforth), are examples of research studying, respectively, the identified features of best

linear predictors with missing outcome and covariate data, and finite games with multiple pure

strategy Nash equilibria. HMPS provide sharp identification regions, but these may have prohibitive

computational cost. In order to make progress not only on identification analysis but also on finite

sample inference, ABJ and CT propose regions of parameter values which are not sharp.

Establishing whether a conjectured region for the identified features of an incomplete econo-

metric model is sharp is a key question in identification analysis. Given the joint distribution of the

observed variables, a researcher asks herself what parameters θ are consistent with this distribution.

The sharp identification region is the collection of parameter values that could generate the same

distribution of observables as the one in the data, for some data generating process consistent with

the maintained assumptions. Examples of sharp identification regions for parameters of incomplete

models are given in Manski (1989, 2003), Manski and Tamer (2002), and Molinari (2008), among

others. In some cases, researchers are only able to characterize a region in the parameter space that

includes all the parameter values that may have generated the observables, but may include other

(infeasible) parameter values as well. These larger regions are called outer regions. The inclusion

in the outer regions of parameter values which are infeasible may weaken the researcher’s ability to

make useful predictions, and to test for model misspecification.

Using the theory of random sets (Molchanov (2005)), we provide a general methodology that

allows us to characterize the sharp identification region for the parameters of models with convex

moment predictions in a computationally tractable manner. Our main insight is that for a given

candidate value of θ, the (conditional or unconditional) Aumann expectation of a properly defined

θ-dependent random closed set coincides with the convex set of model moment predictions.2 That

is, this Aumann expectation gives the convex set, implied by the candidate θ, of moments for

the relevant variables which are consistent with all the model’s implications. This is a crucial

advancement compared to the related literature, where researchers are often unable to fully exploit

the information provided by the model that they are studying, and work with just a subset of

model’s implications. In turn, this advancement allows us to characterize the sharp identification

region of θ, denoted ΘI , through a simple necessary and suffi cient condition. Assume that the model

is correctly specified. Then θ is in ΘI if and only if the conditional Aumann expectation (a convex

2We formally define the notion of random closed set in Appendix A and the notion of conditional Aumann
expectation in Section 2.
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set) of the properly defined random set associated with θ, contains the conditional expectation of a

properly defined vector of random variables observed in the data (a point).3 The methodology that

we propose allows us to verify this condition by checking whether the support function of such point

is dominated by the support function of the θ-dependent convex set.4 The latter can be evaluated

exactly or approximated by simulation, depending on the complexity of the model. Showing that

this dominance holds amounts to checking whether the difference between the support function of

a point (a linear function) and the support function of a convex set (a sublinear function) in a

direction given by a vector u attains a maximum of zero as u ranges in the unit ball of appropriate

dimension. This amounts to maximizing a superlinear function over a convex set, a task which can

be carried out effi ciently using algorithms in convex programming (e.g., Boyd and Vandenberghe

(2004), Grant and Boyd (2008)).

It is natural to wonder which model with set valued predictions may not belong to the class of

models to which our methodology applies. Our approach is specifically tailored towards frameworks

where ΘI can be characterized via conditional or unconditional expectations of observable random

vectors and model predictions.5 Within these models, if restrictions are imposed on the selection

process, non-convex sets of moments may result. We are chiefly interested in the case that no

untestable assumptions are imposed on the selection process, and therefore exploring identification

in models with non-convex moment predictions is beyond the scope of this paper.

There are no precedents to our general characterization of the sharp identification region of

models with convex moment predictions. However, there is one precedent to the use of the Aumann

expectation as a key tool to describe fundamental features of partially identified models. This is

the work of Beresteanu and Molinari (2006, 2008), who were the first to illustrate the benefits of

using elements of random sets theory to conduct identification analysis and statistical inference for

incomplete econometric models in the space of sets, in a manner which is the exact analog of how

these tasks are commonly performed for point identified models in the space of vectors.

In related work, Galichon and Henry (2009a) study finite games of complete information with

multiple pure strategy Nash equilibria. They characterize the sharp identification region of θ

3This is because when such condition is satisfied, there exists a vector of conditional expectations associated with
θ that is consistent with all the implications of the model, and coincides with the vector of conditional expectations
observed in the data.

4“The support function [of a nonempty closed convex set B in direction u] h (B, u) is the signed distance of the
support plane to B with exterior normal vector u from the origin; the distance is negative if and only if u points into
the open half space containing the origin,”Schneider (1993, page 37). See Rockafellar (1970, Chapter 13) or Schneider
(1993, Section 1.7) for a thorough discussion of the support function of a closed convex set, and its properties.

5 In Section 2.2 we explain what mathematical features of conditional Aumann expectations yield the computational
tractability that is novel to our approach.
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through the capacity functional (i.e., the “probability distribution”) of the random set of pure

strategy equilibrium outcomes, by exploiting a result due to Artstein (1983).6 They also show that

under certain monotonicity restrictions, further computational simplifications may be obtained by

using tools of optimal transportation theory. With pure strategies only, the characterization based

on the capacity functional is “dual” to ours, as we formally establish in Beresteanu, Molchanov,

and Molinari (2010b, Appendix B.2). It cannot, however, be extended to the general case where

mixed strategies are allowed for, as discussed also in Galichon and Henry (2009a, Section 4), nor to

other solution concepts such as, for example, correlated equilibrium. Hence, in order to deal with

more general game theoretic models, Galichon and Henry (2009a) apply our methodology.

While our main contribution lies in the identification analysis that we carry out, our charac-

terization leads to an obvious sample analog counterpart which can be used when the researcher

is confronted with a finite sample of observations. This sample analog is given by the set of min-

imizers of a sample criterion function. We establish that the methodology of Andrews and Shi

(2009) can be applied in our context, to obtain confidence sets that uniformly cover each element

of the sharp identification region with a prespecified asymptotic probability. Related methods for

statistical inference in partially identified models include, among others, Chernozhukov, Hong, and

Tamer (2004, 2007), Pakes, Porter, Ho, and Ishii (2006), Beresteanu and Molinari (2008), Rosen

(2008), Chernozhukov, Lee, and Rosen (2009), Galichon and Henry (2009b), Kim (2009), Andrews

and Soares (2010), Bugni (2010), Canay (2010), and Romano and Shaikh (2010).

Structure of the Paper. In Section 2 we describe formally the class of econometric models to

which our methodology applies, and we provide our characterization of the sharp identification

region. In Section 3 we analyze in detail the identification problem in static, simultaneous move

finite games of complete information in the presence of multiple mixed strategy Nash equilibria

(MSNE), and show how the results of Section 2 can be applied. In Section 4, we show that our

approach easily applies to finite games of incomplete information, and characterizes ΘI through a

finite number of moment inequalities. In Section 5 we show how the results of Section 2 can be

applied to best linear prediction with interval outcome and covariate data. Section 6 concludes.

Appendix A contains definitions taken from random sets theory, proofs of the results appearing in

6Galichon and Henry (2006) use the notion of capacity functional of a properly defined random set and the results
of Artstein (1983), to provide a specification test for partially identified structural models, thereby extending the
Kolmogorov-Smirnov test of correct model specification to partially identified models. They then define the notion of
“core determining”classes of sets, to find a manageable class of sets for which to check that the dominance condition is
satisfied. Beresteanu and Molinari (2006, 2008) use Artstein’s (1983) result to establish sharpness of the identification
region of the parameters of a best linear predictor with interval outcome data.
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the main text,7 and details concerning the computational issues associated with our methodology

(for concreteness, we focus on the case of finite games of complete information).

Appendices B-D are given in the Supplement to this paper, Beresteanu, Molchanov, and Moli-

nari (2010b). Appendix B specializes our results for the case that players are restricted to use

pure strategies only and Nash equilibrium is the solution concept. In this case, ΘI is character-

ized through a finite number of moment inequalities, and further insights are provided on how to

reduce the number of inequalities to be checked in order to compute it. Appendix C shows that

our methodology is applicable to static simultaneous move finite games regardless of the solution

concept used.8 Appendix D applies the results of Section 2 to the analysis of individual decision

making in random utility models of multinomial choice in the presence of interval regressors data.

2 Semi-parametric Models with Convex Moment Predictions

Notation. Throughout the paper, we use capital Latin letters to denote sets and random sets. We

use lower case Latin letters for random vectors. We denote parameter vectors and sets of parameter

vectors, respectively by θ and Θ. For a given finite set W, we denote by κW its cardinality. We

denote by∆d−1 the unit simplex in <d. Given two non-empty sets A,B ⊂ <d, we denote the directed
Hausdorff distance from A to B, the Hausdorff distance between A and B, and the Hausdorff norm

of B, respectively, by

dH (A,B) = sup
a∈A

inf
b∈B
‖a− b‖ , ρH (A,B) = max {dH (A,B) , dH (B,A)} , ‖B‖H = sup

b∈B
‖b‖ .

Outline. In this Section we describe formally the class of econometric models to which our

methodology applies, and we provide our characterization of the sharp identification region. In

Sections 3, 4 and 5 we illustrate how empirically relevant models fit into this general framework.

In particular, we show how to verify, for these models, the assumptions listed below.

2.1 Framework

Consider an econometric model which specifies a vector z of random variables observable by the re-

searcher, a vector ξ of random variables unobservable by the researcher, and an unknown parameter

vector θ ∈ Θ ⊂ <p, with Θ the parameter space. Maintain the following assumptions:

7The only proof appearing in the main text is that of our fundamental result, Theorem 2.1.
8Specifically, we illustrate this by looking at games where rationality of level-1 is the solution concept (a problem

first studied by Aradillas-Lopez and Tamer (2008)), and by looking at games where correlated equilibrium is the
solution concept.
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Assumption 2.1 (Probability Space) The random vectors (z, ξ) are defined on a probability

space (Ω,F,P) . The σ-algebra F is generated by (z, ξ). The researcher conditions her analysis

upon a sub-σ-algebra of F, denoted G, which is generated by a subvector of z. The probability space

contains no G−atoms. Specifically, ∀ A ∈ F having positive measure, there is a B ⊆ A such that

0 < P (B|G) < P (A|G) with positive probability.

Assumption 2.2 (Set Valued Predictions) For a given value of θ, the model maps each real-

ization of (z, ξ) to a non-empty closed set Qθ (z, ξ) ⊂ <d. The functional form of this map is known

to the researcher.

Assumption 2.3 (Absolutely Integrable Random Closed Set) For every compact set C in

<d and all θ ∈ Θ,

{ω ∈ Ω : Qθ (z (ω) , ξ (ω)) ∩ C 6= ∅} ∈ F.

Moreover, E (‖Qθ (z, ξ)‖H) <∞.

Assumption 2.1 requires the probability space to be non-atomic with respect to the σ-algebra G

upon which the researcher conditions her analysis. This technical assumption is not restrictive for

most economic applications, as we show in Sections 3, 4 and 5. For example, it is satisfied whenever

the distribution of ξ conditional on G is continuous.

Assumption 2.2 requires the model to have set valued predictions.9 As we further explain below,

the set Qθ (z, ξ) is the fundamental object that we use to relate the convex set of model moment

predictions, to the observable moments of random vectors. In Sections 3, 4 and 5 we provide

examples of how Qθ (z, ξ) needs to be constructed in specific applications to exploit all the model

information.

Assumption 2.3 is a measurability condition, requiring Qθ (z, ξ) to be an integrably bounded

random closed set, see Definitions A.1-A.2 in Appendix A. It guarantees that any (F-measurable)

random vector q such that q (ω) ∈ Qθ (z (ω) , ξ (ω)) a.s. is absolutely integrable.

In what follows, for ease of notation, we write the set Qθ (z, ξ) and its realizations, respectively,

as Qθ and Qθ (ω) ≡ Qθ (z (ω) , ξ (ω)) , ω ∈ Ω, omitting the explicit reference to z and ξ. The

researcher wishes to learn θ from the observed distribution of z. Because the model makes set

valued predictions, we maintain the following assumption:

9A model which makes singleton predictions with probability one is a special case of the more general class of
models analyzed here.
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Assumption 2.4 (Selected Prediction) The econometric model can be augmented with an un-

known selection mechanism which selects one of the model predictions, yielding a map ψ which

depends on z and ξ, and may depend on θ, and which satisfies the following conditions:

(i) ψ(z (ω) , ξ (ω) , θ) ∈ Qθ (ω) for almost all ω ∈ Ω;

(ii) ψ(z (ω) , ξ (ω) , θ) is F-measurable for all θ ∈ Θ.

Assumption 2.4 requires that the econometric model can be “completed”with an unknown selection

mechanism. Economic theory often provides no guidance on the form of the selection mechanism,

which therefore we leave completely unspecified. For each ω ∈ Ω, the process of selection results in

a random element ψ which takes values in Qθ, i.e., is a model’s selected prediction.10 The map ψ is

unknown and constitutes a nonparametric component of the model; it may depend on unobservable

variables even after conditioning on observable variables. We insert θ as an argument of ψ to reflect

the fact that Assumption 2.4-(i) requires ψ to belong to the θ-dependent set Qθ.

In this paper we restrict attention to models where the set of observationally equivalent parame-

ter vectors θ, denoted ΘI , can be characterized via conditional expectations of observable random

vectors and model predictions. One may find many values for the parameter vector θ which, when

coupled with maps ψ satisfying Assumption 2.4, generate the same moments as the ones observed

in the data. Hence, we assume that ΘI can be characterized through selected predictions as follows:

Assumption 2.5 (Sharp Identification Region) Given the available data and Assumptions 2.1-

2.3, the sharp identification region of θ is

(2.1)

ΘI = {θ ∈ Θ : ∃ ψ(z, ξ, θ) satisfying Assumption 2.4, s.t. E (w (z)|G) = E (ψ(z, ξ, θ)|G) a.s.} ,

where w (·) is a known function mapping z into vectors in <d and E (w (z)|G) is identified by the

data.

The process of “unrestricted selection” yielding ψ’s satisfying Assumption 2.4 builds all possible

mixtures of elements of Qθ. When one takes expectations of these mixtures, the resulting set of

expectations is the convex set of moment predictions:

{E (ψ(z, ξ, θ)|G) : ψ(z, ξ, θ) satisfies Assumption 2.4}.

Convexity of this set is formally established in the next Section.

10For expository clarity, we observe that even for ω1 6= ω2 such that z (ω1) = z (ω2) and ξ (ω1) = ξ (ω2) ,
ψ(z (ω1) , ξ (ω1) , θ) may differ from ψ(z (ω2) , ξ (ω2) , θ).
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Using the notion of selected prediction, Assumption 2.5 characterizes abstractly the sharp iden-

tification region of a large class of incomplete econometric models, in a fairly intuitive manner.

This characterization builds on previous ones given by Berry and Tamer (2007) and Tamer (2009,

Section 3). However, because ψ is a rather general random function, it may constitute an infinite

dimensional nuisance parameter, which creates great diffi culties for the computation of ΘI and

for inference. In this paper, we provide a complementary approach based on tools of random sets

theory. We characterize ΘI avoiding altogether the need to deal with ψ, thereby contributing to a

stream of previous literature which has provided tractable characterizations of sharp identification

regions without making any reference to the selection mechanism or the selected prediction (see,

e.g., Manski (2003) and Manski and Tamer (2002)).

2.2 Representation Through Random Sets Theory

As suggested by Aumann (1965), one can think of a random closed set (or random correspondence

in Aumann’s work) as a bundle of random variables —its measurable selections, see Definition A.3

in Appendix A. We follow this idea, and denote by Sel (Qθ) the collection of F-measurable random

elements q with values in <d such that q(ω) ∈ Qθ (ω) for almost all ω ∈ Ω. As it turns out, there

is not just a simple assonance between “selected prediction”and “measurable selection.”Our first

result establishes a one-to-one correspondence between them.

Lemma 2.1 Let Assumptions 2.1-2.3 hold. For any given θ ∈ Θ, q ∈ Sel (Qθ) if and only if there

exists a selected prediction ψ(z, ξ, θ) satisfying Assumption 2.4, such that q (ω) = ψ(z (ω) , ξ (ω) , θ)

for almost all ω ∈ Ω.

The definition of the sharp identification region in Assumption 2.5 indicates that one needs to

take conditional expectations of the elements of Sel (Qθ) . Observe that by Assumption 2.3, Qθ is

an integrably bounded random closed set, and therefore all its selections are integrable. Hence, we

can define the conditional Aumann expectation (Aumann (1965)) of Qθ as

E (Qθ|G) = {E (q|G) : q ∈ Sel (Qθ)} ,

where the notation E ( ·|G) denotes the conditional Aumann expectation of the random set in

parentheses, while we reserve the notation E ( ·|G) for the conditional expectation of a random

vector. By Theorem 2.1.46 in Molchanov (2005) the conditional Aumann expectation exists and is

unique. Because F contains no G-atoms, and because the random set Qθ takes its realizations in a

subset of the finite dimensional space <d, it follows from Theorem 1.2 of Dynkin and Evstigneev
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(1976) and from Theorem 2.1.24 of Molchanov (2005), that E (Qθ|G) is a closed convex set a.s.,

such that E (Qθ|G) = E (co [Qθ]|G), with co [·] the convex hull of the set in square brackets.
Our second result establishes that E (Qθ|G) coincides with the convex set of model’s moment

predictions:

Lemma 2.2 Let Assumptions 2.1-2.3 hold. For any given θ ∈ Θ, E (Qθ|G) = {E (ψ(z, ξ, θ)|G) :

ψ(z, ξ, θ) satisfies Assumption 2.4}, and therefore the latter set is convex.

Hence, the set of observationally equivalent parameter values in Assumption 2.5 can be written as

ΘI = {θ ∈ Θ : E (w (z)|G) ∈ E (Qθ|G) a.s.}

The fundamental characterization result of this paper is the following:

Theorem 2.1 Let Assumptions 2.1-2.5 be satisfied, and no other information be available. Let

h (Qθ, u) ≡ supq∈Qθ u
′q denote the support function of Qθ in direction u ∈ <d. Then

ΘI =

{
θ ∈ Θ : max

u∈B

(
u′E (w (z)|G)−E [h (Qθ, u)|G]

)
= 0 a.s.

}
(2.2)

=
{
θ ∈ Θ :

∫ (
u′E (w (z)|G)−E [h (Qθ, u)|G]

)
+
dU = 0 a.s.

}
,(2.3)

where B =
{
u ∈ <d : ‖u‖ ≤ 1

}
, U is a probability measure on B with support equal to B, and for

any a ∈ <, (a)+ = max {0, a} .

Proof. The equivalence between equations (2.2)-(2.3) follows immediately, observing that the

integrand in equation (2.3) is continuous in u and both conditions inside the curly brackets are

satisfied if and only if

(2.4) u′E (w (z)|G)−E [h (Qθ, u)|G] ≤ 0 ∀u ∈ B a.s.

In order to establish sharpness, it suffi ces to show that for a given θ ∈ Θ expression (2.4) holds

if and only if θ ∈ ΘI as defined in equation (2.1). Take θ ∈ Θ such that expression (2.4) holds.

Theorem 2.1.47-(iv) in Molchanov (2005) assures that

(2.5) E [h (Qθ, u)|G] = h (E (Qθ|G) , u) ∀u ∈ <d a.s.

Recalling that the support function is positive homogeneous, equation (2.4) holds if and only if

(2.6) u′E (w (z)|G) ≤ h (E (Qθ|G) , u) ∀u ∈ <d a.s.

9



Standard arguments in convex analysis (see, e.g. Rockafellar (1970, Theorem 13.1)) assure that

equation (2.6) holds if and only if E (w (z)|G) ∈ E (Qθ|G) a.s., and therefore by Lemma 2.2 θ ∈ ΘI .

Conversely, take θ ∈ ΘI as defined in equation (2.1). Then there exists a selected prediction ψ

satisfying Assumption 2.4, such that E (w (z)|G) = E (ψ(z, ξ, θ)|G). By Lemma 2.2 and the above

argument, it follows that expression (2.4) holds.

It is well known (e.g., Rockafellar (1970, Chapter 13), Schneider (1993, Section 1.7)) that the

support function of a non-empty closed convex set is a continuous convex sublinear function.11

This holds also for the support function of the convex set of moment predictions. However, calcu-

lating this set is computationally prohibitive in many cases. The fundamental simplification comes

from equation (2.5), which assures that one can work directly with the conditional expectation of

h (Qθ, u) . This expectation is quite straightforward to compute. Hence, the characterization in

equation (2.2) is computationally very attractive, because for each candidate θ ∈ Θ it requires to

maximize an easy-to-compute superlinear, hence concave, function over a convex set, and check

if the resulting objective value is equal to zero. This problem is computationally tractable and

several effi cient algorithms in convex programming are available to solve it, see for example the

book by Boyd and Vandenberghe (2004), and the MatLab software for disciplined convex program-

ming CVX by Grant and Boyd (2010). Similarly, the characterization in equation (2.3) can be

implemented by calculating integrals of concave functions over a convex set, a task which can be

carried out in random polynomial time (see, e.g. Dyer, Frieze, and Kannan (1991) and Lovász and

Vempala (2006)).

Remark 2.1 Using the method proposed by Andrews and Shi (2009), expression (2.4) can be

transformed, using appropriate instruments, into a set of unconditional moment inequalities in-

dexed by the instruments and by u ∈ B, even when the conditioning variables have a continuous
distribution. Equations (2.2)-(2.3) can be modified accordingly, to yield straightforward criterion

functions which are minimized by every parameter in the sharp identification region. When faced

with a finite sample of data, one can obtain a sample analog of these criterion functions by replac-

ing the unconditional counterpart of the moment u′E (w (z)|G) − E [h (Qθ, u)|G] with its sample

analog. The resulting statistics correspond,12 respectively, to the Kolmogorov-Smirnov (KS) and

11 In particular, for a given set A ⊂ <d, h (A, u+ v) ≤ h (A, u) + h (A, v) for all u, v ∈ <d and h (A, cu) = ch (A, u)
for all c > 0 and for all u ∈ <d. Additionally, one can show that the support function of a bounded set A ⊂ <d is
Lipschitz with Lipschitz constant ‖A‖H , see Molchanov (2005, Theorem F.1).
12Because u = 0 ∈ B, the function (u′E (g (z)|G)−E [h (Qθ, u)|G]) and its positive part achieve the same maxi-

mum value for u ∈ B. Andrews and Shi’s test statistics are obtained by replacing (u′E (g (z)|G)−E [h (Qθ, u)|G])+
with its square, and by choosing appropriate instruments (as detailed in Andrews and Shi’s Section 3) to transform
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the Cramér-von Mises (CvM) statistics introduced by Andrews and Shi (2009, see their equations

(3.6), (3.7), (3.8), and their Section 9). When the assumptions imposed by Andrews and Shi are

satisfied, one can obtain confidence sets that have correct uniform asymptotic coverage probability

for the true parameter vector, by inverting the KS or the CvM tests. Under mild regularity con-

ditions, these assumptions are satisfied using our characterization, because our moment function

in expression (2.4) is Lipschitz in u. In Appendix A.3 we formally establish this for the models in

Sections 3, 4 and 5.13

3 Application I: Finite Games of Complete Information

3.1 Model Set-Up

We consider simultaneous-move games of complete information (normal form games) in which each

player has a finite set of actions (pure strategies) Yj , j = 1, . . . , J, with J the number of players. Let

y = (y1, . . . , yJ) ∈ Y denote a generic vector specifying an action for each player, with Y = ×Jj=1Yj
and Y−j = ×i6=jYi. Let πj (yj , y−j , xj , εj , θ) denote the payoff function for player j, where y−j is

the vector of player j’s opponents’actions, xj ∈ X is a vector of observable payoff shifters, εj is

a payoff shifter observed by the players but unobserved by the econometrician, and θ ∈ Θ ⊂ <p

is a vector of parameters of interest, with Θ the parameter space. Let σj : Yj → [0, 1] denote the

mixed strategy for player j that assigns to each action yj ∈ Yj a probability σj (yj) ≥ 0 that it is

played, with
∑

yj∈Yj σj (yj) = 1 for each j = 1, . . . , J. Let Σ (Yj) denote the mixed extension of Yj ,
and Σ (Y) = ×Jj=1Σ (Yj) . With the usual slight abuse of notation, denote by πj (σj , σ−j , xj , εj , θ)

the expected payoff associated with the mixed strategy profile σ = (σ1, . . . , σJ) . With respect to

the general notation used in Section 2, z = (y, x), ξ = ε, F is the σ-algebra generated by (y, x, ε) ,

and G is the σ-algebra generated by x. We formalize our assumptions on the games and sampling

processes as follows. These assumptions are fairly standard in the literature.14

the conditional moment inequalities in unconditional ones. See Appendix A.3 for details.
13 Imbens and Manski (2004, see also Stoye (2009)) discuss the difference between confidence sets that uniformly

cover the true parameter vector with a prespecified asymptotic probability, and confidence sets that uniformly cover
ΘI . Providing methodologies to obtain asymptotically valid confidence sets of either type when the conditioning
variables have a continuous distribution, is a developing area of research, to which the method of Andrews and
Shi (2009) belongs. In certain empirically relevant models (see for example Section 4 and Beresteanu, Molchanov,
and Molinari (2010b, Appendix B and Appendix D)) the characterization in Theorem 2.1 yields a finite number
of (conditional) moment inequalities. In such cases, the methods of Chernozhukov, Hong, and Tamer (2007) and
Romano and Shaikh (2010) can be applied after discretizing the conditioning variables, to obtain confidence sets
which cover ΘI with a prespecified asymptotic probability, uniformly in the case of Romano and Shaikh (2010).
Ciliberto and Tamer (2009) verify the required regularity conditions for finite games of complete information.
14We assume that players’actions and the outcomes observable by the econometrician coincide. This is a standard

assumption in the literature, see e.g. ABJ, CT, Berry and Tamer (2007) and Bajari, Hong, and Ryan (2009). Our
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Assumption 3.1 (i) The set of outcomes of the game Y is finite. Each player j has κYj ≥ 2 pure

strategies to choose from. The number of players is J ≥ 2.

(ii) The observed outcome of the game results from static, simultaneous move, Nash play.

(iii) The parametric form of the payoff functions πj (yj , y−j , xj , εj , θ) , j = 1, . . . , J, is known, and

for a known action ȳ it is normalized to πj (ȳj , ȳ−j , xj , εj , θ) = 0 for each j. The payoff functions

are continuous in xj and εj. The parameter space Θ is compact.15

Assumption 3.2 The econometrician observes data that identify P (y|x) . The observed matrix

of payoff shifters x is comprised of the non-redundant elements of xj , j = 1, . . . , J. The unobserved

random vector ε = (ε1, . . . , εJ) has a continuous conditional distribution function Fθ (ε|x) that is

known up to a finite dimensional parameter vector that is part of θ.

Remark 3.1 Under Assumption 3.2, Assumption 2.1 is satisfied.

It is well known that the games and sampling processes satisfying Assumptions 3.1-3.2 may

lead to multiple MSNE and partial identification of the model parameters, see for example Berry

and Tamer (2007) for a thorough discussion of this problem. To achieve point identification, Bjorn

and Vuong (1985), Bresnahan and Reiss (1988, 1990, 1991), Berry (1992), Mazzeo (2002), Tamer

(2003), and Bajari, Hong, and Ryan (2009), for example, add assumptions concerning the nature of

competition, heterogeneity of firms, availability of covariates with suffi ciently large support and/or

instrumental variables, and restrictions on the selection mechanism which, in the data generating

process, determines the equilibrium played in the regions of multiplicity.16

We show that the models considered in this Section satisfy Assumptions 2.1-2.5, and therefore

our methodology gives a computationally feasible characterization of ΘI . Our approach does not

impose any assumption on the nature of competition, on the form of heterogeneity across players,

or on the selection mechanism. It does not require availability of covariates with large support or

instruments, but fully exploits their identifying power if they are present.

results, however, apply to the more general case that the strategy profiles determine the outcomes observable by
the econometrician through an outcome rule known by the econometrician, as we illustrate with a simple example
in Beresteanu, Molchanov, and Molinari (2010b, Appendix B.1). Of course, the outcome rule needs to satisfy
assumptions guaranteeing that it conveys some information about players actions.
15Continuity is needed to establish measurability and closedness of certain sets. A location normalization is needed

because if we add a constant to the payoff of each action, the set of equilibria does not change.
16Tamer (2003) also suggests an approach to partially identify the model’s parameters when no additional assump-

tions are imposed.
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3.2 The Sharp Identification Region

For a given realization of (x, ε) , the mixed strategy profile σ = (σ1, . . . , σJ) constitutes a Nash

equilibrium if πj (σj , σ−j , xj , εj , θ) ≥ πj (σ̃j , σ−j , xj , εj , θ) ∀σ̃j ∈ Σ (Yj) , ∀j = 1, ..., J. Hence, for a

given realization of (x, ε) we define the θ-dependent set of MSNE as

(3.1) Sθ (x, ε) = {σ ∈ Σ (Y) : πj (σj , σ−j , xj , εj , θ) ≥ πj (σ̃j , σ−j , xj , εj , θ) ∀σ̃j ∈ Σ (Yj) ∀j} .

Example 3.1 Consider a simple two player entry game similar to the one in Tamer (2003), omit

the covariates, assume that players’ payoffs are given by πj = yj (y−jθj + εj) , where yj ∈ {0, 1}
and θj < 0, j = 1, 2. Let σj ∈ [0, 1] denote the probability that player j enters the market, with

1 − σj the probability that he does not. Figure 1-(a) plots the set of mixed strategy equilibrium

profiles Sθ (ε) resulting from the possible realizations of ε1, ε2. �

For ease of notation we write the set Sθ (x, ε) and its realizations, respectively, as Sθ and

Sθ (ω) ≡ Sθ (x (ω) , ε (ω)) , ω ∈ Ω, omitting the explicit reference to x and ε. Proposition 3.1

establishes that the set Sθ is a random closed set in Σ (Y).

Proposition 3.1 Let Assumption 3.1 hold. Then the set Sθ is a random closed set in Σ (Y) as

per Definition A.1 in Appendix A.

For a given θ ∈ Θ and ω ∈ Ω, each element σ (ω) ≡ (σ1 (ω) , . . . , σJ (ω)) ∈ Sθ (ω) is one of

the admissible mixed strategy Nash equilibrium profiles associated with the realizations x (ω) and

ε (ω) , and it takes values in Σ (Y) . The resulting random elements σ = {σ (ω) , ω ∈ Ω} are the
selections of Sθ, denoted Sel (Sθ) , see Definition A.3 in Appendix A.

Example 3.1 (Cont.) Consider the set Sθ plotted in Figure 1-(a). Let ΩM = {ω ∈ Ω : ε (ω) ∈
[0,−θ1] × [0,−θ2]}. Then for ω /∈ ΩM the set Sθ has only one selection, since the equilibrium is

unique. For ω ∈ ΩM , Sθ contains a rich set of selections, which can be obtained as

σ (ω) = (σ1 (ω) , σ2 (ω)) =


(1, 0) if ω ∈ ΩM

1 ,(
ε2(ω)
−θ2 ,

ε1(ω)
−θ1

)
if ω ∈ ΩM

2 ,

(0, 1) if ω ∈ ΩM
3 ,

for all measurable disjoint ΩM
i ⊂ ΩM , i = 1, 2, 3, such that ΩM

1 ∪ ΩM
2 ∪ ΩM

3 = ΩM . �

By definition of a mixed strategy profile, σj (ω) : Yj → [0, 1] assigns to each action tj ∈ Yj
a probability σj (ω, tj) ≥ 0 that it is played, with

∑
tj∈Yj σj (ω, tj) = 1, j = 1, . . . , J. Index the

set Y = ×Jj=1Yj in some (arbitrary) way, such that Y =
{
t1, . . . , tκY

}
and tk ≡

(
tk1, . . . , t

k
J

)
,
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k = 1, . . . , κY . Then for a given parameter value θ ∈ Θ and realization σ (ω) , ω ∈ Ω, of a selection

σ ∈ Sel (Sθ) , the implied probability that y is equal to tk is given by
∏J
j=1 σj

(
ω, tkj

)
. Hence, we

can use a selection σ ∈ Sel (Sθ) to define a random vector q (σ) whose realizations have coordinates

(3.2)

(
[q (σ (ω))]k =

J∏
j=1

σj

(
ω, tkj

)
, k = 1, . . . , κY

)
.

By construction, the random point q (σ) is an element of ∆κY−1. For given ω ∈ Ω, each vector

([q (σ (ω))]k , k = 1, . . . , κY) is the multinomial distribution over outcomes of the game (a J-tuple

of actions) determined by the mixed strategy equilibrium σ (ω) . Repeating the above construction

for each σ ∈ Sel (Sθ), we obtain

(3.3) Qθ = {([q (σ)]k , k = 1, . . . , κY) : σ ∈ Sel (Sθ)} .

Remark 3.2 The set Qθ ≡ Qθ (x, ε) satisfies Assumption 2.2 by construction. By Proposition 3.1,

Qθ is a random closed set in ∆κY−1, because it is given by a continuous map applied to the random

closed set Sθ. Because every realization of q ∈ Sel (Qθ) is contained in ∆κY−1, Qθ is integrably

bounded. Hence, Assumption 2.3 is satisfied.

Example 3.1 (Cont.) Consider the set Sθ plotted in Figure 1-(a). Index the set Y so that Y =

{(0, 0) , (1, 0) , (0, 1) , (1, 1)} . Then

Qθ =

q (σ) =


(1− σ1) (1− σ2)
σ1 (1− σ2)
(1− σ1)σ2

σ1σ2

 : σ ∈ Sel (Sθ)

 .

Figure 1-(b) plots the set Qθ resulting from the possible realizations of ε1, ε2. �

Because Qθ is an integrably bounded random closed set, all its selections are integrable and its

conditional Aumann expectation is

E (Qθ|x) = {E (q|x) : q ∈ Sel (Qθ)}

= {(E ( [q (σ)]k|x) , k = 1, . . . , κY) : σ ∈ Sel (Sθ)} .

Example 3.1 (Cont.) Consider the set Qθ plotted in Figure 1-(b). Let ΩM = {ω ∈ Ω : ε (ω) ∈
[0,−θ1] × [0,−θ2]}. Then for ω /∈ ΩM the set Qθ has only one selection, since the equilibrium is

unique. For ω ∈ ΩM , the selections of Qθ are:

q (σ (ω)) =


[0 1 0 0]′ if ω ∈ ΩM

1 ,

q
(
ε2(ω)
−θ2 ,

ε1(ω)
−θ1

)
if ω ∈ ΩM

2 ,

[0 0 1 0]′ if ω ∈ ΩM
3 ,
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for all measurable partitions
{

ΩM
i

}3

i=1
of ΩM . In the above expression,

q
(
ε2(ω)
−θ2 ,

ε1(ω)
−θ1

)
=
[(

1− ε2(ω)
−θ2

)(
1− ε1(ω)

−θ1

)
ε2(ω)
−θ2

(
1− ε1(ω)

−θ1

) (
1− ε2(ω)

−θ2

)
ε1(ω)
−θ1

ε2(ω)
−θ2

ε1(ω)
−θ1

]′
The expectations of the selections of Qθ build the set E (Qθ), which is a convex subset of ∆3 with

infinitely many extreme points. �

The set E (Qθ|x) collects vectors of probabilities with which each outcome of the game can

be observed. It is obtained by integrating the probability distribution over outcomes of the game

implied by each mixed strategy equilibrium σ given x and ε (that is, by integrating each element

of Sel (Qθ)), against the probability measure of ε|x. We emphasize that in case of multiplicity,
a different mixed strategy equilibrium σ (ω) ∈ Sθ (ω) may be selected (with different probability)

for each ω. By construction, E (Qθ|x) is the set of probability distributions over action profiles

conditional on x which are consistent with the maintained modeling assumptions, i.e., with all the

model’s implications. In other words, it is the convex set of moment predictions.

If the model is correctly specified, there exists at least one value of θ ∈ Θ such that the observed

conditional distribution of y given x, P (y|x) , is a point in the set E (Qθ|x) for x − a.s., where
P (y|x) ≡

[
P
(
y = tk

∣∣x) , k = 1, . . . , κY
]
.17 Hence, the set of observationally equivalent parameter

values which form the sharp identification region is given by

(3.4) ΘI = {θ ∈ Θ : P (y|x) ∈ E (Qθ|x) x− a.s.}

Theorem 3.2 Let Assumptions 3.1-3.2 hold, and no other information be available. Then

ΘI =

{
θ ∈ Θ : max

u∈B

(
u′P (y|x)−E [h (Qθ, u)|x]

)
= 0 x− a.s.

}
(3.5)

=
{
θ ∈ Θ :

∫ (
u′P (y|x)−E [h (Qθ, u)|x]

)
+
dU = 0 x− a.s.

}
(3.6)

where h (Qθ, u) = maxq∈Qθ u
′q = maxσ∈Sθ

∑κY
k=1 uk

∏J
j=1 σj

(
tkj

)
and u′ = [u1 u2 . . . uκY ].18

Theorem 3.2 follows immediately from Theorem 2.1, because Assumptions 2.1-2.5 are satisfied for

this application, as summarized in Remarks 3.1, 3.2, and 3.3 (the latter given below).

By Wilson’s (1971) result, the realizations of the set of MSNE, Sθ, are almost surely finite

sets. Therefore, the same holds for Qθ. Hence, for given ω ∈ Ω, h (Qθ (ω) , u) is given by the

17By the definition of E (Qθ|x) , P (y|x) ∈ E (Qθ|x) if and only if ∃ q ∈ Sel (Qθ) : E (q|x) = P (y|x) .
18Recall that B is the unit ball in <κY and U is a probability measure on B with support equal to B. Recall also

that Y = {t1, t2, ..., tκY } is the set of possible outcomes of the game, and tk ≡
(
tk1 , . . . , t

k
J

)
is a J-tuple specifying one

action in Yj for each player j = 1, ..., J.
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maximum among the inner product of u with a finite number of vectors, the elements of Qθ (ω) .

These elements are known functions of (x (ω) , ε (ω)) . Hence, given Qθ, the expectation of h (Qθ, u)

is easy to compute.

Example 3.1 (Cont.) Consider the set Qθ plotted in Figure 1-(b). Pick a direction u ≡ [u1 u2 u3 u4]′

∈ B. Then, for ω ∈ Ω such that ε (ω) ∈ (−∞, 0]× (−∞, 0] , we have Qθ (ω) =
{

[1 0 0 0]′
}
, and

h (Qθ (ω) , u) = u1. For ω ∈ Ω such that ε (ω) ∈ [0,−θ1]× [0,−θ2] , we have Qθ (ω) =
{

[0 1 0 0]′ ,

q
(
ε2(ω)
−θ2 ,

ε1(ω)
−θ1

)
, [0 0 1 0]′

}
, and h (Qθ (ω) , u) = max

(
u2, u

′q
(
ε2(ω)
−θ2 ,

ε1(ω)
−θ1

)
, u3

)
. Figure 1-(c)

plots h (Qθ (ω) , u) against the possible realizations of ε1, ε2. �

By a way of comparison with the previous literature, and to show how Assumptions 2.4-2.5

can be verified, we provide the abstract definition of ΘI given by Berry and Tamer (2007, equation

(2.21), page 67) for the case of a two player entry game, extending it to finite games with potentially

more than two players and two actions. A finite game with multiple equilibria can be completed by

a random vector which has almost surely non-negative entries that sum up to one, and which gives

the probability with which each equilibrium in the regions of multiplicity is played when the game

is defined by (x, ε, θ). Denote such (random) discrete distribution by λ (·;x, ε, θ) : Sθ → ∆κSθ−1.

Notice that λ (·;x, ε, θ) is left unspecified and can depend on market unobservables even after
conditioning on market observables. By definition, the sharp identification region includes all the

parameter values for which one can find a random vector λ (·;x, ε, θ) satisfying the above conditions,
such that the model augmented with this selection mechanism generates the joint distribution of

the observed variables. Hence,

(3.7)

ΘI =

θ ∈ Θ :

∃ λ (·;x, ε, θ) : Sθ → ∆κSθ−1 for (x, ε)− a.s., such that ∀k = 1, . . . , κY ,

P
(
y = tk

∣∣x) =

∫ ( ∑
σ∈Sθ(x,ε)

λ (σ;x, ε, θ)
J∏
j=1

σj

(
tkj

))
dF (ε|x) x− a.s.


Notice that with respect to the general notation used in Section 2, w (z) =

[
1
(
y = tk

)
, k = 1, . . . , κY

]
.

Finally, observe that using λ (·;x, ε, θ) one can construct a selected prediction ψ (x, ε, θ) as a random

vector whose realizations given x and ε are equal to[∏J
j=1 σj

(
tkj

)
, k = 1, . . . , κY

]
, with probability λ (σ;x, ε, θ) , σ ∈ Sel (Sθ) .

Remark 3.3 The random vector ψ (x, ε, θ) is a selected prediction satisfying Assumption 2.4. Ob-

serving that E (ψ(x, ε, θ)|x) =

∫ [∑
σ∈Sθ(x,ε) λ (σ;x, ε, θ)

∏J
j=1 σj

(
tkj

)
, k = 1, . . . , κY

]
dF (ε|x),

where the integral is taken coordinate-wise, Assumption 2.5 is verified.
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Remark 3.4 Appendix A.3 verifies Andrews and Shi’s (2009) regularity conditions for models

satisfying Assumptions 3.1-3.2, under the additional assumption that the researcher observes an

i.i.d. sequence of equilibrium outcomes and observable payoffshifters {yi, xi}
n
i=1. Andrews and Shi’s

(2009) generalized moment selection procedure with infinitely many conditional moment inequalities

can therefore be applied, to obtain confidence sets that have correct uniform asymptotic coverage.

3.3 Comparison with the Outer Regions of ABJ and CT

While ABJ and CT discuss only the case that players are restricted to use pure strategies, it is clear

and explained in Berry and Tamer (2007, pp. 65-70) that their insights can be extended to the

case that players are allowed to randomize over their strategies. Here we discuss the relationship

between such extensions, and the methodology that we propose.19

In the presence of multiple equilibria, ABJ observe that an implication of the model is that for

a given tk ∈ Y, P
(
y = tk

∣∣x) cannot be larger than the probability that tk is a possible equilibrium
outcome of the game. This is because for given θ ∈ Θ and realization of (x, ε) such that tk is a

possible equilibrium outcome of the game, there can be another outcome tl ∈ Y which is also a
possible equilibrium outcome of the game, and when both are possible tk is selected only part of

the time. CT point out that additional information can be learned from the model. In particular,

P
(
y = tk

∣∣x) cannot be smaller than the probability that tk is the unique equilibrium outcome of the
game. This is because tk is certainly realized whenever it is the only possible equilibrium outcome,

but it can additionally be realized when it belongs to a set of multiple equilibrium outcomes.

The following Proposition rewrites the outer regions originally proposed by ABJ and CT, de-

noted ΘABJ
O and ΘCT

O , using our notation. It then establishes their connection with ΘI .

Proposition 3.3 Let Assumptions 3.1-3.2 hold, and no other information be available. Then the

outer regions proposed by ABJ and CT are respectively

(3.8)

ΘABJ
O =

{
θ ∈ Θ : P

(
y = tk

∣∣∣x) ≤ max
(∫

[q (σ)]k dFθ (ε|x) : σ ∈ Sel (Sθ)
)
, for k = 1, ..., κY , x− a.s.

}

(3.9) ΘCT
O =

{
θ ∈ Θ :

min
(∫

[q (σ)]k dFθ (ε|x) : σ ∈ Sel (Sθ)
)
≤ P

(
y = tk

∣∣x) ≤
max

(∫
[q (σ)]k dFθ (ε|x) : σ ∈ Sel (Sθ)

)
, for k = 1, ..., κY , x− a.s.

}
ΘABJ
O can be obtained by solving the maximization problem in equation (3.5) over the restricted set

of u’s equal to the canonical basis vectors in <κY . ΘCT
O can be obtained by solving the maximization

19Beresteanu, Molchanov, and Molinari (2009, Section 3.3) revisit Example 3.1 in light of this comparison.
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problem in equation (3.5) over the restricted set of u’s equal to the canonical basis vectors in <κY

and each of these vectors multiplied by −1.

Hence, the approaches of ABJ and CT can be interpreted on the base of our analysis as follows.

For each θ ∈ Θ, ABJ’s inequalities give the closed half spaces delimited by hyperplanes that are

parallel to the axis and that support E (Qθ|x). ΘABJ
O is the collection of θ’s such that P (y|x)

is contained in the non-negative part of such closed half spaces x − a.s. CT use a more refined

approach, and for each θ ∈ Θ their inequalities give the smallest hypercube containing E (Qθ|x).

ΘCT
O is the collection of θ’s such that P (y|x) is contained in such hypercube x − a.s. The more

E (Qθ|x) differs from the hypercubes used by ABJ and CT, the more likely it is that a candidate

value θ belongs to ΘABJ
O and ΘCT

O , but not to ΘI . A graphical intuition for this relationship is

given in Figure 2.

3.4 Two Player Entry Game —An Implementation

This section presents an implementation of our method, and a series of numerical illustrations of

the identification gains that it affords, in the two player entry game in Example 3.1, both with and

without covariates in the payoff functions. The set Sθ for this example (omitting x) is plotted in

Figure 1. Appendix A.4 provides details on the method used to compute ΘABJ
O , ΘCT

O and ΘI .

For all the data generating processes (DGPs) we let (ε1, ε2)
iid∼ N (0, 1). The DGPs with-

out covariates are designed as follows. We build a grid of 36 equally spaced values for θ?1, θ
?
2

on [−1.8,−0.8] × [−1.7,−0.7], yielding multiple equilibria with a probability that ranges from

substantial (0.21), to small (0.07). We match each point on the θ?1, θ
?
2 grid, with each point

on a grid of 10 values for λ?, the probability distribution over equilibria in the region of mul-

tiplicity.20 This results in 360 distinct DGPs, each with a corresponding vector [P(y = t), t ∈
{(0, 0), (1, 0), (0, 1), (1, 1)}]. We compute ΘI , ΘCT

O and ΘABJ
O for each DGP, letting the parameter

space be Θ = [−4.995,−0.005]2 .We then rank the results, according to L(Proj(ΘI |1))+L(Proj(ΘI |2))

L(Proj(ΘCTO |1))+L(Proj(ΘCTO |2))
,

where Proj(·|i) is the projection of the set in parentheses on dimension i, and L(Proj(·|i)) is the
length of such projection. To conserve space, in Table 1 we report only the results of our “top

15% reduction,”“median reduction,”and “bottom 15% reduction.”21 Figure 3 plots ΘI , ΘCT
O and

ΘABJ
O for each of these DGPs.

20The grid on λ? is constructed by letting λ? ((0, 1)) take values 0, 0.25, 0.5, 0.75, λ? ((1, 0)) take values in

[0, 0.75− λ? ((0, 1))] with step size 0.25, and by letting λ?
((

ε2
−θ2 ,

ε1
−θ1

))
= 1− λ? ((0, 1))− λ? ((1, 0)).

21The full set of results is available from the authors upon request. Our best result has a 97% reduction in size of
ΘI compared to ΘCT

O . Our worst result has a 20% reduction in size of ΘI compared to ΘCT
O . Only 6% of the DGPs

yield a reduction in size of ΘI compared to ΘCT
O of less than 25%.
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To further illustrate the computational feasibility of our methodology, we allow for covari-

ates in the payoff functions. Specifically, we let πj = yj
(
y−jθj + β0j + x1jβ1j + x2jβ2j + εj

)
,

j = 1, 2, where [x11 x21], the covariates for player 1, take four different values, {[−2 1], [1

−1.5], [0 0.75], [−1.5 −1]} and [x12 x22], the covariates for player 2, take five different values,

{[1 −1.75], [−1.25 1], [0 0], [0.6 0.5], [0.5 −0.5]}. The parameter vector of interest is θ = [(θj β0j

β1j β2j)j=1,2]. In generating P(y|x), we use the values of λ? and θ?1, θ
?
2 which yield the “top 15%

reduction,” “median reduction,” and “bottom 15% reduction” in the DGPs with no x variables,

and pair them with [β?01 β
?
11 β

?
21] = [0 1/2 1/3] and [β?02 β

?
12 β

?
22] = [0 −1/3 −1/2]. This results

in three different DGPs. Compared to the case with no covariates, for each of these DGPs the

computational time required to verify whether a candidate θ is in ΘI is linear in the number of

values that x can take. The reductions in size of ΘI compared to the outer regions of ABJ and CT

is of similar magnitude to the case with no covariates. Table 2 reports the results.

4 Application II: Entry Games of Incomplete Information

We now consider the case that players have incomplete information (see, e.g. Aradillas-López

(2010), Brock and Durlauf (2001, 2007), Seim (2006), Sweeting (2009)). We retain the notation

introduced in Section 3, but we substitute Assumption 3.1 with the following one, which is fairly

standard in the literature.22 We continue to maintain Assumption 3.2.

Assumption 4.1 (i) The set of outcomes of the game Y is finite. The observed outcome of the
game results from simultaneous move, pure strategy Bayesian Nash play.

(ii) All players and the researcher observe payoff shifters xj , j = 1, ..., J. The payoff shifter εj

is private information to player j = 1, ..., J, and unobservable to the researcher. Conditional on

{xj , j = 1, ..., J} , εj is independent of {εi}i6=j . Players have correct common prior Fθ (ε|x) .

(iii) The payoffs are additively separable in ε : πj (yj , y−j , xj , εj ; θ) = π̃j (yj , y−j , xj ; θ) + εj . As-

sumption 3.1-(iii) holds.

For the sake of brevity, we restrict attention to two player entry games. However, this restriction

is not necessary. Our results easily extend, with appropriate modifications to the notation and the

definition of the set of pure strategy Bayesian Nash Equilibria (BNE), to the case of J ≥ 2 players

each with 2 ≤ κYj < ∞ strategies. In what follows, we characterize the set of BNE of the game,

22The independence condition in Assumption 4.1-(iii) substantially simplifies the task of calculating the set of BNE.
Conceptually, however, our methodology applies also when players’ types are correlated. The resulting diffi culties
associated with calculating the set of BNE are to be faced with any methodology for inference in this class of games.
The correct-common-prior condition in Assumption 4.1-(iii) can be relaxed, but we maintain it here for simplicity.
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borrowing from the treatment in Grieco (2009, Section 4), and then apply our methodology to this

set.23 To conserve space, we do not explicitly verify Assumptions 2.1-2.5. Assumptions 2.1-2.3

follow by similar arguments as in Section 3. Assumptions 2.4-2.5 follow by the same construction

that we provide at the end of Section 3, replacing equation (3.7) with equation (8) in Grieco (2009,

Theorem 4).

With incomplete information, players’ strategies are decision rules yj : E → {0, 1} , with E
the support of ε. The set of outcomes of the game is Y = {(0, 0) , (1, 0) , (0, 1) , (1, 1)} . Given
θ ∈ Θ and a realization of x and εj , player j enters the market if and only if his expected payoff

is non-negative. Therefore, equilibrium mappings (decision rules) are step functions determined

by a threshold: yj (εj) = 1 (εj ≥ tj) , j = 1, 2. As a result, player j’s beliefs about player −j’s
probability of entry under the common prior assumption is

∫
y−j (ε−j) dFθ (ε−j |x) = 1−Fθ (t−j |x) ,

and therefore player j’s best response cutoff is24

tbj (t−j , x; θ) = −π̃j (1, 0, xj ; θ)Fθ (t−j |x)− π̃j (1, 1, xj ; θ) (1− Fθ (t−j |x)) .

Hence, the set of equilibria can be defined as the set of cutoff rules:

Tθ (x) =
{

(t1, t2) : tj = tbj (t−j , x; θ) ∀ j = 1, 2
}
.

Note that the equilibrium thresholds are functions of x only. The set Tθ (x) might contain a finite

number of equilibria (e.g., if the common prior is the Normal distribution), or a continuum of

equilibria. For ease of notation we write the set Tθ (x) and its realizations, respectively, as Tθ and

Tθ (ω) ≡ Tθ (x (ω)) , ω ∈ Ω.

For given realization of the random variables characterizing the model, i.e., for given ω ∈ Ω,

we need to map the set of equilibrium decision rules of each player, into outcomes of the game.

Consider the realization t (ω) of t ∈ Sel (Tθ) . Through the threshold decision rule, such realization

implies the following action profile:

q (t (ω)) =


1 (ε1 (ω) ≤ t1 (ω) , ε2 (ω) ≤ t2 (ω))
1 (ε1 (ω) ≥ t1 (ω) , ε2 (ω) ≤ t2 (ω))
1 (ε1 (ω) ≤ t1 (ω) , ε2 (ω) ≥ t2 (ω))
1 (ε1 (ω) ≥ t1 (ω) , ε2 (ω) ≥ t2 (ω))

 ∈ ∆3,

with ∆3 the simplex in <4. The vector q (t (ω)) indicates which of the four possible pairs of actions

is played with probability 1, when the realization of (x, ε) is (x (ω) , ε (ω)) and the equilibrium
23We refer to Grieco (2009) for a thorough discussion of the related literature and of identification problems in

games of incomplete information with multiple BNE. See also Berry and Tamer (2007, Section 3).
24For example, with payoffs linear in x and given by π(yj , y−j , x, εj ; θ) = yj (y−jθ1j + xjθ2j + εj), we have that

player 1 enters if and only if (ε1 + x1θ21)Fθ (t2|x) + (ε1 + x1θ21 + θ11) (1− Fθ (t2|x)) ≥ 0. Therefore the cutoff is
tbj (t−j , x; θ) = −x1θ21Fθ (t2|x)− (x1θ21 + θ11) (1− Fθ (t2|x)) = −x1θ21 − θ11 (1− Fθ (t2|x)) .
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threshold is t (ω) ∈ Tθ (x (ω)). Applying this construction to all measurable selections of Tθ, we

construct a random closed set in ∆3 :

Qθ = {q (t) : t ∈ Sel (Tθ)} .

For given x and θ ∈ Θ, define the conditional Aumann expectation

E (Qθ|x) = {E (q (t)|x) : t ∈ Sel (Tθ)} .

Notice that for a specific selection t ∈ Sel (Tθ) , given the independence assumption on ε1, ε2, the

first entry of the vector E (q (t)|x) is

E (1 (ε1 ≤ t1, ε2 ≤ t2)|x) = (1− Fθ (t1|x)) (1− Fθ (t2|x)) ,

and similarly for the other entries of E (q (t)|x) . This yields the multinomial distribution over

outcome profiles determined by equilibrium threshold t ∈ Sel (Tθ). By the same logic as in Section

3, E (Qθ|x) is the set of probability distributions over action profiles conditional on x which are

consistent with the maintained modeling assumptions, i.e., with all the model’s implications. By

the same results that we applied in Section 3, the set E (Qθ|x) is closed and convex.

Observe that regardless of whether Tθ contains a finite number of equilibria or a continuum,

Qθ can take on only a finite number of realizations,25 corresponding to each of the vertices of ∆3.

As we show in the proof of Theorem 4.1, this implies that E (Qθ|x) is a closed convex polytope

x−a.s., fully characterized by a finite number of supporting hyperplanes. In turn, this allows us to
characterize ΘI through a finite number of moment inequalities, and to compute it using effi cient

algorithms in linear programming.

Theorem 4.1 Let Assumptions 4.1 and 3.2 hold, and no other information be available. Then

ΘI =

{
θ ∈ Θ : max

u∈B

(
u′P (y|x)−E [h (Qθ, u)|x]

)
= 0 x− a.s.

}
=

{
θ ∈ Θ : u′P (y|x) ≤ E [h (Qθ, u)|x] ∀ u ∈ D, x− a.s.

}
where D =

{
u =

[
u1 ... uκY

]′
: ui ∈ {0, 1} , i = 1, ..., κY

}
.

Remark 4.1 Grieco (2009) introduces an important model, where each player has a vector of

payoff shifters unobservable by the researcher. Some of the elements of this vector are private

information to the player, while the others are known to all players. Our results in Section 2 apply

to this set-up as well, by the same arguments as in Section 3 and in this Section.
25Hence, the set Qθ is a “simple” random closed set in ∆3, see Definition A.4 in Appendix A.

21



Remark 4.2 Appendix A.3 verifies Andrews and Shi’s (2009) regularity conditions for models

satisfying Assumptions 4.1 and 3.2, under the additional assumption that the researcher observes

an i.i.d. sequence of equilibrium outcomes and observable payoff shifters {yi, xi}
n
i=1.

5 Application III: Best Linear Prediction with Interval Outcome
and Covariate Data

Here we consider the problem of best linear prediction under square loss, when both outcome and

covariate data are interval valued.26 HMPS studied the related problem of identification of the

BLP parameters with missing data on outcome and covariates, and provided a characterization of

the identification region of each component of the vector θ. While their characterization is sharp,

the computational complexity of the problem in the HMPS formulation grows with the number of

points in the support of the outcome and covariate variables, and becomes essentially unfeasible if

these variables are continuous, unless one discretizes their support quite coarsely. Using the same

approach as in the previous part of the paper, we provide a characterization of ΘI which remains

computationally feasible regardless of the support of outcome and covariate variables.

We let y?, x? denote the unobservable outcome and covariate variables. To simplify the ex-

position, we let x? be scalar, though this assumption can be relaxed and is not essential for our

methodology. We maintain the following assumption:

Assumption 5.1 The researcher does not observe the realizations of (y?, x?), but rather the re-

alizations of real valued random variables yL, yU , xL, xU such that P(yL ≤ y? ≤ yU ) = 1 and

P(xL ≤ x? ≤ xU ) = 1. E (|yi|) , E (|xj |) , E (|yixj |) , and E
(
x2
j

)
are all finite, for each i, j = L,U.

One of the following holds: (i) at least one of yL, yU , xL, xU , y?, x? has a continuous distribution;

or (ii) (Ω,F,P) is a non-atomic probability space.27

With respect to the general notation used in Section 2, z = (yL, yU , xL, xU ), ξ = (y?, x?) , F is the

σ-algebra generated by (yL, yU , xL, xU , y
?, x?) . The researcher works with unconditional moments.

Remark 5.1 Under Assumption 5.1, Assumption 2.1 is satisfied.
26Beresteanu and Molinari (2008) study identification and statistical inference for the parameters θ ∈ Θ of the

BLP parameters when only the outcome variable is interval valued. See also Bontemps, Magnac, and Maurin (2008)
for related results. Here we significantly generalize their identification results by allowing also for interval valued
covariates. This greatly complicates computation of ΘI and inference, because ΘI is no longer a linear transformation
of an Aumann expectation.
27Clearly, case (i) guarantees that (Ω,F,P) is non-aotmic.
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When y? and x? are perfectly observed, it is well known that the BLP problem can be expressed

through a linear projection model, where the prediction error associated with the BLP parameters

θ? and given by ε? = y? − θ?1 − θ?2x
? satisfies E (ε?) = 0 and E (ε?x?) = 0. For any candidate

θ ∈ Θ, we extend the construction of the prediction error to the case of interval valued data. We

let Y = [yL, yU ] and X = [xL, xU ]. It is easy to show that these are random closed sets in < as per
Definition A.1 (see Beresteanu and Molinari (2008, Lemma A.3)). We build the set

(5.1) Qθ =

{
q =

[
y − θ1 − θ2x
(y − θ1 − θ2x)x

]
: (y, x) ∈ Sel(Y ×X)

}
.

This is the not necessarily convex θ-dependent set of prediction errors and prediction errors multi-

plied by covariate which are implied by the intervals Y and X.

Remark 5.2 The set Qθ satisfies Assumption 2.2 by construction. Because it is given by a con-

tinuous map applied to the random closed sets Y and X, Qθ is a random closed set in <2. By

Assumption 5.1, the set Qθ is integrably bounded, see Beresteanu and Molinari (2008, proof of

Theorem 4.2). By the Fundamental Selection Theorem (Molchanov (2005, Theorem 1.2.13)) and

by Lemma 2.1, there exist selected predictions ψ(yL, yU , xL, xU , y
?, x?, θ) that satisfy Assumption

2.4. The last step in the proof of Theorem 5.1, given in Appendix A, establishes that Assumption

2.5 holds.

Given the set Qθ, one can relate conceptually our approach in Section 2 to the problem that we

study here, as follows. For a candidate θ ∈ Θ, each selection (y, x) from the random intervals Y and

X yields a moment for the prediction error ε = y − θ1 − θ2x and its product with the covariate x.

The collection of such moments for all (y, x) ∈ Sel(Y ×X) is equal to the (unconditional) Aumann

expectation E (Qθ) = {E (q) : q ∈ Sel (Qθ)} . Because the probability space is non-atomic and Qθ
belongs to a finite dimensional space, E (Qθ) is a closed convex set. If E (Qθ) contains the vector

[0 0]′ as one of its elements, then the candidate value of θ is one of the observationally equivalent

parameters of the BLP of y? given x?. This is because if the condition just mentioned is satisfied,

then for the candidate θ ∈ Θ there exists a selection in Sel(Y × X), that is, a pair of admissible

random variables y and x, which implies a prediction error that has mean zero and is uncorrelated

with x, hence satisfying the requirements for the BLP prediction error.28 This intuition is formalized

in Theorem 5.1.

28Notice that with respect to the general notation used in Section 2, w (z) = [0 0]′.
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Theorem 5.1 Let Assumption 5.1 hold, and no other information be available. Then

ΘI =

{
θ ∈ Θ : max

u∈B
(−E [h (Qθ, u)]) = 0

}
=

{
θ ∈ Θ :

∫
(E [h (Qθ, u)])− dU = 0

}
.

The support function of Qθ can be easily calculated. In particular, for any u = [u1 u2]′ ∈ B,

(5.2) h (Qθ, u) = max
q∈Qθ

u′q = max
y∈Y,x∈X

[
u1 (y − θ1 − θ2x) + u2

(
yx− θ1x− θ2x

2
)]
.

For given θ ∈ Θ and u ∈ B, this maximization problem can be effi ciently solved using the gradient

method, regardless of whether (yi, xi)i=L,U , (y?, x?) are continuous or discrete random variables.

Hence, h (Qθ, u) is an easy to calculate continuous-valued convex sublinear function of u. Member-

ship of a candidate θ to the set ΘI can be verified using effi cient algorithms in convex programming,

or taking integrals of concave functions.

Remark 5.3 Appendix A.3 verifies Andrews and Shi’s (2009) regularity conditions for models

satisfying Assumption 5.1, under the additional assumption that the researcher observes an i.i.d.

sequence {yiL, yiU , xiL, xiU}ni=1 and that these have finite fourth moments.

6 Conclusions

This paper introduces a computationally feasible characterization for the sharp identification region

ΘI of the parameters of incomplete econometric models with convex moment predictions. Our

approach is based on characterizing, for each θ ∈ Θ, the set of moments which are consistent

with all the model’s implications, as the (conditional) Aumann expectation of a properly defined

random set. If the model is correctly specified, one can then build ΘI as follows. A candidate θ

is in ΘI if and only if it yields a conditional Aumann expectation which, for x− a.s., contains the
relevant expectations of random variables observed in the data. Because in general, for each θ ∈ Θ,

the conditional Aumann expectation may have infinitely many extreme points, characterizing the

set ΘI entails checking that an infinite number of moment inequalities are satisfied. However, we

show that this computational hardship can be avoided, and the sharp identification region can

be characterized as the set of parameter values for which the maximum of an easy-to-compute

superlinear (hence concave) function over the unit ball is equal to zero. We show that finite sample

inference can be carried out adopting the generalized moment selection procedure with infinitely

many conditional moment inequalities recently proposed by Andrews and Shi (2009). We exemplify
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our methodology by applying it to empirically relevant models, for which a feasible characterization

of ΘI was absent in the literature.

We acknowledge that the method proposed in this paper may, for some models, be computa-

tionally more intensive than existing methods (e.g., ABJ and CT in the analysis of finite games

of complete information with multiple equilibria). However, advanced computational methods in

convex programming made available in recent years, along with the use of parallel processing, can

substantially alleviate this computational burden. On the other hand, the benefits in terms of

identification yielded by our methodology may be substantial, as illustrated in our examples.
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A Proofs and Auxiliary Results for Sections 3-5

A.1 Definitions

The theory of random closed sets generally applies to the space of closed subsets of a locally compact

Hausdorff second countable topological space F (e.g., Molchanov (2005)). For the purposes of this paper it
suffi ces to consider F = <d, which simplifies the exposition. Denote by F the family of closed subsets of <d.

Definition A.1 A map Z : Ω → F is called a random closed set, also known as a closed set valued

random variable, if for every compact set K in <d, {ω ∈ Ω : Z (ω) ∩K 6= ∅} ∈ F.

Definition A.2 A random closed set Z : Ω→ F is called integrably bounded if ‖Z‖H = sup {‖z‖ : z ∈ Z}
has a finite expectation.

Definition A.3 Let Z be a random closed set in <d. A random element z with values in <d is called a
(measurable) selection of Z if z(ω) ∈ Z (ω) for almost all ω ∈ Ω. The family of all selections of Z is denoted

by Sel (Z) .

Definition A.4 A random closed set Z in F is called simple if it assumes at most a finite number of

values, so that there exists a finite measurable partition Ω1, . . . ,Ωm of Ω and sets K1, ...,Km ∈ F such that
Z (ω) = Ki for all ω ∈ Ωi, 1 ≤ i ≤ m.

A.2 Proofs

Proof of Lemma 2.1. For any given θ ∈ Θ, if ψ(z, ξ, θ) is a selected prediction, then ψ(z, ξ, θ) is a random

element as a composition of measurable functions, and it belongs to Qθ for almost all ω ∈ Ω by Assumption

2.4-(i). Conversely, for any given θ ∈ Θ let q ∈ Sel (Qθ) . Because q is F-measurable, by the Doob-Dynkin

Lemma (see, e.g., Rao and Swift (2006, Proposition 3, Chapter 1)) q can be represented as a measurable

function of z and ξ, which is then the selected prediction and satisfies conditions (i)-(ii) in Assumption 2.4.

This selected prediction can also be obtained using a selection mechanism which picks a prediction equal to

q (ω) for each ω ∈ Ω.

Proof of Lemma 2.2. For any given θ ∈ Θ, let µ ∈ E (Qθ|G) . Then by the definition of the

conditional Aumann expectation, there exists a q ∈ Sel (Qθ) such that E (q|G) = µ. By Lemma 2.1 there

exists a ψ (z, ξ, θ) satisfying Assumption 2.4 such that q (ω) = ψ (z (ω) , ξ (ω) , θ) for almost all ω ∈ Ω, and

therefore µ ∈ {E (ψ(z, ξ, θ)|G) : ψ(z, ξ, θ) satisfies Assumption 2.4}. A similar argument yields the reverse
conclusion.

Proof of Proposition 3.1. Write the set Sθ as follows:

Sθ =
J⋂
j=1

{σ ∈ Σ (Y) : πj (σj , σ−j , xj , εj , θ) ≥ π̃j (σ−j , xj , εj , θ)} ,

where π̃j (σ−j , xj , εj , θ) = supσ̃j∈Σ(Yj) πj (σ̃j , σ−j , xj , εj , θ) . Since πj (σj , σ−j , xj , εj , θ) is a continuous func-

tion of σ, xj , εj , its supremum π̃j (σ−j , xj , εj , θ) is a continuous function. Continuity in xj , εj follows from
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Assumption 3.1-(iii). Continuity in σ follows because by definition

πj (σ, xj , εj , θ) ≡
∑
tk∈Y

[
J∏
j=1

σj
(
tkj
)]
πj
(
tk, xj , εj , θ

)
,

where tk ≡
(
tk1 , . . . , t

k
J

)
, k = 1, . . . , κY and Y can be ordered arbitrarily so that Y =

{
t1, . . . , tκY

}
. Therefore

Sθ is the finite intersection of sets defined as solutions of inequalities for continuous (random) functions. Thus,

Sθ is a random closed set, see Molchanov (2005, Section 1.1).

Proof of Proposition 3.3. To see that the expression in equation (3.8) is the outer region proposed

by ABJ, observe that max
(∫

[q (σ)]k dF (ε|x) : σ ∈ Sel (Sθ)
)
gives the probability that tk is a possible equi-

librium outcome of the game according to the model. It is obtained by selecting with probability one, in each

region of multiplicity, the mixed strategy profile which yields the highest probability that tk is the outcome

of the game. To see that the expression in equation (3.9) is the outer region proposed by CT, observe that

min
(∫

[q (σ)]k dF (ε|x) : σ ∈ Sel (Sθ)
)
gives the probability that tk is the unique equilibrium outcome of the

game according to the model. It is obtained by selecting with probability one, in each region of multiplicity,

the mixed strategy profile which yields the lowest probability that tk is the outcome of the game.

To obtain ΘABJ
O by solving the maximization problem in equation (3.5) over the restricted set of u’s

equal to the canonical basis vectors in <κY , take the vector uk ∈ <κY to have all entries equal to zero except
entry k which is equal to one. Then

P
(
y = tk

∣∣x) = uk′P (y|x) ≤ h
(
E (Qθ|x) , uk

)
= max (E ( [q (σ)]k|x) : σ ∈ Sel (Sθ)) .

To obtain ΘCT
O by solving the maximization problem in equation (3.5) over the restricted set of u’s equal to

the canonical basis vectors in <κY and each of these vectors multiplied by −1, observe that the statement

for the upper bound follows by the argument given above when considering ΘABJ
O . To verify the statement

for the lower bound, take the vector −uk ∈ <κY to have all entries equal to zero except entry k which is
equal to minus one. Then

−P
(
y = tk

∣∣x) = −uk′P (y|x)

≤ h
(
E (Qθ|x) ,

(
−uk

))
= h

(
−E (Qθ|x) , uk

)
= −min

(∫
[q (σ)]k dF (ε|x) : σ ∈ Sel (Sθ)

)
.

Equivalently, taking u to be a vector with each entry equal to 1, except entry k which is set to 0, one has

that

1−P
(
y = tk

∣∣x) = u′P (y|x) ≤ h (E (Qθ|x) , u) = max
(∑

i6=k
∫

[q (σ)]i dF (ε|x) : σ ∈ Sel (Sθ)
)

= max
(
1−

∫
[q (σ)]k dF (ε|x) : σ ∈ Sel (Sθ)

)
= 1−min

(∫
[q (σ)]k dF (ε|x) : σ ∈ Sel (Sθ)

)
.

Proof of Theorem 4.1. By the same argument as in the proof of Theorem 2.1,

ΘI = {θ ∈ Θ : P (y|x) ∈ E (Qθ|x) , x− a.s.}

=

{
θ ∈ Θ : max

u∈B
(u′P (y|x)−E [h (Qθ, u)|x]) = 0 x− a.s.

}
= {θ ∈ Θ : u′P (y|x) ≤ E [h (Qθ, u)|x] ∀ u ∈ B, x− a.s.}
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It remains to show equivalence of the conditions

(i) u′P (y|x) ≤ E [h (Qθ, u)|x] ∀u ∈ B

(ii) u′P (y|x) ≤ E [h (Qθ, u)|x] ∀u ∈ D.

By the positive homogeneity of the support function, condition (i) is equivalent to u′P (y|x) ≤ E [h (Qθ, u)|x]

∀u ∈ <κY . It is obvious that this condition implies condition (ii). To see why condition (ii) implies condition
(i), observe that because the set Qθ and the set co [Qθ] are simple, one can find a finite measurable partition

Ω1, . . . ,Ωm of Ω and convex sets K1, ...,Km ∈ ∆κY−1, such that by Theorem 2.1.21 in Molchanov (2005)

E (Qθ|x) = K1P (Ω1|x)⊕K2P (Ω2|x)⊕ ...⊕KmP (Ωm|x) ,

with Ki the value that co [Qθ (ω)] takes for ω ∈ Ωi, i = 1, ...,m (see Definition A.4). By the properties of

the support function, see Schneider (1993, Theorem 1.7.5),

h (E (Qθ|x) , u) =
m∑
i=1

P (Ωi|x)h (Ki, u) .

Finally, for each i = 1, ...,m, the vertices of Ki are a subset of the vertices of ∆κY−1. Hence the supporting

hyperplanes of Ki, i = 1, ...,m, are a subset of the supporting hyperplanes of the simplex ∆κY−1, which

in turn are obtained through its support function evaluated in directions u ∈ D. Therefore the supporting
hyperplanes of E (Qθ|x) are a subset of the supporting hyperplanes of ∆κY−1.

Proof of Theorem 5.1. It follows from our discussion in Section 2 that minu∈B E [h (Qθ, u)] = 0 if

and only if 0 ≤ h (E (Qθ) , u) ∀ u ∈ B, which in turn holds if and only if [0 0]
′ ∈ E (Qθ) . By the definition

of the Aumann expectation, this holds if and only if ∃ q ∈ Sel (Qθ) : E (q) = [0 0]
′
. This is equivalent to

saying that a candidate θ belongs to ΘI if and only if ∃ (y, x) ∈ Sel(Y × X) which yields, together with

θ, a prediction error ε = y − θ1 − θ2x such that E (ε) = 0 and E (εx) = 0. By Theorem 2.1 in Artstein

(1983) and Lemma A.2 in Beresteanu, Molchanov, and Molinari (2010a), (y, x) ∈ Sel(Y × X) if and only

if P ((y, x) ∈ K × L) ≥ P ((Y ×X) ⊂ K × L) = P (yL > inf K, yU < supK,xL > inf L, xU < supL) for all

compact intervals K,L ⊂ <. Hence, the above condition is equivalent to being able to find a pair of random
variables (y, x) with a joint distribution P (y, x) that belongs to the (sharp) identification region of P (y?, x?)

as defined by Manski (2003, Chapter 3), such that θ = arg minϑ∈Θ

∫
(y−ϑ1−ϑ2x)2dP (y, x) . It then follows

that the set ΘI is equivalent to the sharp identification region characterized by Manski (2003, Complement

3B, pp. 56-58). The previous step and Lemma 2.1 also verify Assumption 2.5

A.3 Applicability of Andrews and Shi’s (2009) GMS Procedure29

A.3.1 Finite Games of Complete and Incomplete Information

AS (Section 9) consider conditional moment inequality problems of the form E (md (y, x, θ, u) |x) ≥ 0 ∀u ∈ B
x−a.s., d = 1, ..., D. They show that the conditional moment inequalities can be transformed into equivalent

unconditional moment inequalities, by choosing appropriate weighting functions (instruments) g ∈ G, with
G a collection of instruments and g that depend on x. This yields E (md (y, x, θ, g, u)) ≥ 0, ∀u ∈ B, ∀g =

29We are grateful to Xiaoxia Shi for several discussions that helped us develop this Section.
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[g1, ..., gD]′ ∈ G, d = 1, ..., D, where md (y, x, θ, g, u) = md (y, x, θ, u) g (x) . In the models that we analyze in

Sections 3-4, the conditional moment inequalities are of the “ ≤ ”type, and

m (y, x, θ, u) = u′
[
1
(
y = tk

)
, k = 1, ..., κY

]
−E [h (Qθ, u) |x] ,

m (y, x, θ, g, u) =
(
u′
[
1
(
y = tk

)
, k = 1, ..., κY

]
−E [h (Qθ, u) |x]

)
g (x) .

Notice that E [h (Qθ, u) |x] is a known (or simulated) function of θ, u and x, and that for each u ∈ B, we
have only one inequality. Notice also that by the positive homogeneity of the support function, our moment

inequalities can be written equivalently as E (m (y, x, θ, g, u)) ≤ 0, ∀g ∈ G, ∀u ∈ S ≡ {u ∈ <κY : ‖u‖ = 1}.
Hence, they are invariant to rescaling of the moment function, which is important for finite sample inference

(see, e.g., Andrews and Soares (2010)).

In all that follows, to simplify the exposition, we abstract from the choice of G. Once we establish that
our problem fits into the general framework of AS, one can choose instruments g as detailed in Section

3 of AS. To avoid ambiguity, in this Section we denote F (y|x) ≡
[
P
(
y = tk|x

)
, k = 1, ..., κY

]
. We first

establish that ΘI can be equivalently defined using only the first κY − 1 entries of Y, thereby avoiding the
problems for inference associated with linear dependence among the entries of F (y|x) and also lowering the

dimension over which the maximization is performed. Let F̃ (y|x) denote the first κY − 1 rows of F (y|x),

BκY−1 = {u ∈ <κY−1 : ‖u‖ ≤ 1}, SκY−1 = {u ∈ <κY−1 : ‖u‖ = 1}, and

Q̃θ = {q̃ = [[q (σ)]k , k = 1, ..., κY − 1] , q ∈ Sel(Qθ)} .

Theorem A.1 Let Assumptions 3.1 (or 4.1) and 3.2 hold, and no other information be available. Then

Θ̃I ≡
{
θ ∈ Θ : max

u∈BκY−1

(
u′F̃ (y|x)−E

[
h
(
Q̃θ, u

)
|x
])

= 0 x− a.s.
}

(A.1)

=

{
θ ∈ Θ :

[
max

u∈SκY−1

(
u′F̃ (y|x)−E

[
h
(
Q̃θ, u

)
|x
])]

+

= 0 x− a.s.
}

(A.2)

= ΘI

Proof. The equality between equations (A.1) and (A.2) follows by standard arguments, see, e.g.,

Beresteanu and Molinari (2008, Lemma A.1). To establish that Θ̃I = ΘI , observe that θ ∈ Θ̃I if and

only if F̃ (y|x) ∈ E
(
Q̃θ|x

)
. Pick θ ∈ ΘI . Then there exists a q ∈ Sel (Qθ) : F (y|x) = E (q|x) . Notice

that this implies F̃ (y|x) = E (q̃|x) for q̃ ∈ Sel
(
Q̃θ

)
, hence, θ ∈ Θ̃I . Conversely, pick θ ∈ Θ̃I . Then there

exists a q̃ ∈ Sel
(
Q̃θ

)
: F̃ (y|x) = E (q̃|x) , which in turn implies that q =

[
q̃; 1−

∑κY−1
k=1 q̃

]
∈ Sel(Qθ) and

F (y|x) = E (q|x) . Hence, θ ∈ ΘI .

AS propose a confidence set with nominal value 1− α for the true parameter vector, as follows:

CSn = {θ ∈ Θ : Tn (θ) ≤ cn,1−α (θ)} ,

where Tn (θ) is a test statistic and cn,1−α (θ) is a corresponding critical value for a test with nominal sig-

nificance level α. AS establish that, under certain assumptions, this confidence set has correct uniform

asymptotic size. In order to apply the construction in AS, we maintain the following:

29



Assumption A.1 The researcher observes an i.i.d. sequence of equilibrium outcomes and observable payoff

shifters {yi, xi}
n
i=1 . Define Σ̃x = diag

(
F̃ (y|x)

)
− F̃ (y|x) F̃ (y|x)

′
, and let Σ̃x be non-singular with a <∥∥∥Σ̃x

∥∥∥ < b for some constants 0 < a < b <∞, x− a.s., where
∥∥∥Σ̃x

∥∥∥ is a matrix norm for Σ̃x compatible with

the Euclidean norm.

AS propose various criterion functions Tn, some of the Cramér-von Mises type, some of the Kolmogorov-

Smirnov type. Here, we work with a mix of Cramér-von Mises and Kolmogorov-Smirnov statistic, using a

modification of the function S1 on page 10 of AS. Specifically, we use

(A.3)

Tn (θ) =
∫ (

max
u∈BκY−1

√
nm̄n (θ, g, u)

)2

dΓ =
∫ (

max
u∈SκY−1

√
nm̄n (θ, g, u)

)2

+

dΓ =
∫

max
u∈SκY−1

(√
nm̄n (θ, g, u)

)2
+
dΓ

where Γ denotes a probability measure on G whose support is G as detailed in Section 3 of AS, the second
equality follows from the proof of Theorem A.1, and

m̄n (θ, g, u) =
1

n

∑n
i=1 (u′w (yi)− f (xi, θ, u)) g (xi) ,

f (xi, θ, u) = E
[
h
(
Q̃θ, u

)
|xi
]

w (yi) =
[
1
(
yi = tk

)
, k = 1, ..., κY − 1

]
,

so that m̄n (θ, g, u) is the sample analog of a version of E (m (y, x, θ, g, u)) which is based on the first κY − 1

entries of Y and on Q̃θ. Note that by the same argument which follows, our problem specified as in equation

(3.6) corresponds to the Cramér-von Mises test statistic of AS, with modified function S1.

We conclude by showing that our modified function S1 satisfies Assumptions S1-S4 of AS, and that

Assumption M2 of AS is also satisfied. This establishes that their generalized moment selection procedure

with infinitely many conditional moment inequalities is applicable. We note that one can take the confi-

dence set CSn applied with confidence level 1/2 to obtain half-median-unbiased estimated sets, see AS and

Chernozhukov, Lee, and Rosen (2009). Finally, one can also take equation (A.1), replace there F̃ (y|x) with

its sample analog, and construct an Hausdorff-consistent estimator of ΘI using the methodology proposed

by Chernozhukov, Hong, and Tamer (2007, equation 3.2 and Theorem 3.1).30

Theorem A.2 Let Assumption A.1 hold. Then Assumptions S1-S4 and M2 of AS are satisfied.
30Assume that the payoff functions are continuous in θ. Then the Nash equilibrium correspondence has a closed

graph, see Fudenberg and Tirole (1991, Section 1.3.2). This implies that Qθ has a closed graph, and therefore the
same is true for E(Qθ|x), see Aumann (1965, Corollary 5.2). In turn, this yields lim supθn→θ E (Qθn |x) ⊆ E (Qθ|x) .
Observe that

max
u∈BκY−1

(
u′F̃

(
y|x
)
−E

[
h
(
Q̃θ, u

)
|x
])

= dH
(
F̃ (y|x) ,E

(
Q̃θ|x

))
.

The criterion function s (θ) ≡
∫
dH
(
F̃ (y|x) ,E

(
Q̃θ|x

))
dFx, with Fx the probability distribution of x (or a probability

measure which dominates it), is therefore lower semicontinuous in θ, because

lim inf
θn→θ

s(θn) ≥
∫

lim inf
θn→θ

dH
(
F̃ (y|x) ,E

(
Q̃θn |x

))
dFx ≥

∫
dH
(
F̃ (y|x) , lim supE

(
Q̃θn |x

))
dFx

≥
∫
dH
(
F̃ (y|x) ,E

(
Q̃θ|x

))
dFx = s(θ).

Conditions (c-e) in Assumption C1 of Chernozhukov, Hong, and Tamer (2007) are verified by standard arguments.
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Proof. Assumption S1-a follows because the moment inequalities are defined for u ∈ SκY−1, hence any

rescaling of the moment function is absorbed by a corresponding rescaling in u. The rest of Assumption S1

and Assumptions S2-S4 are verified by AS. To verify Assumption M2, observe that

m̃ (y, x, θ, u) ≡ u′w (y)− f (x, θ, u)

is given by the sum of a linear function of u and a Lipschitz function of u, with Lipschitz constant equal to

1. It is immediate that the processes {u′w (yin) , u ∈ SκY−1, i ≤ n, n ≥ 1} satisfy Assumption M2. We now
show that the same holds for the processes {f (xin, θn, u) , u ∈ SκY−1, i ≤ n, n ≥ 1}. Assumption M2-(a)
holds because for all u ∈ SκY−1,

∣∣∣∣ f (x, θ, u)

V ar (m̃ (y, x, θ, u))

∣∣∣∣ ≤
∣∣∣∣∣∣ f (x, θ, u)

E
(
u′Σ̃xu

)
∣∣∣∣∣∣ ≤ c

∣∣∣E [h(Q̃θ, u) |x]∣∣∣ ≤ cE(∥∥∥Q̃θ∥∥∥
H
|x
)
≤ c x− a.s.,

where the first inequality follows from the variance decomposition formula, c is a constant that depends

on a and b from Assumption A.1, and the last inequality follows recalling that Q̃θ takes its realizations in

the unit simplex which is a subset of the unit ball. Assumption M2-(b) follows immediately because the

envelope function is a constant. Assumption M2-(c) is verified observing that f (x, θ, u) is Lipschitz in u, with

Lipschitz constant equal to 1. By Lemma 2.13 in Pakes and Pollard (1989), the class of functions {f (·, u) ,

u ∈ SκY−1} is Euclidean with envelope equal to a constant, and therefore manageable. Assumption M2 for
the processes {(u′w (yin)− f (xin, θn, u)) , u ∈ SκY−1, i ≤ n, n ≥ 1} then follows by Lemma E1 of AS.

A.3.2 BLP with Interval Outcome and Covariate Data

We maintain the following:

Assumption A.2 The researcher observes an i.i.d. sequence of tuples {yiL, yiU , xiL, xiU}ni=1. E
(
|yi|2

)
,

E
(
|xj |2

)
, E
(
|yixj |2

)
, and E

(
x4
j

)
are all finite, for each i, j = L,U.

Let Qθi be the mapping defined as in equation (5.1) using (yiL, yiU , xiL, xiU ) . Beresteanu and Molinari (2008,

Lemmas A.4, A.5 and proof of Theorem 4.2) establish that {Qθi}ni=1 is a sequence of i.i.d. random closed

sets, such that E
(
‖Qθi‖2H

)
<∞. Define Tn (θ) similarly to the previous Section:

Tn (θ) =

(
max
u∈B

(
−
√
nm̄n (θ, u)

))2

=

(
max
u∈S
−
√
nm̄n (θ, u)

)2

+

= max
u∈S

(
−
√
nm̄n (θ, u)

)2
+
,

m̄n (θ, u) =
1

n

n∑
i=1

h (Qθi, u) ,

where, again, the fact that u ∈ S guarantees that the above test statistic is invariant to rescaling of the

moment function. This preserves concavity of the objective function. We then have the following result:

Theorem A.3 Let Assumptions 5.1 and A.2 hold. Then Assumption EP on page 37 of AS is satisfied.
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Proof. Let m (yiL, yiU , xiL, xiU , θ, u) = h (Qθi, u) . Following AS notation, define

√
nm̄n (θ, u) =

1√
n

n∑
i=1

h (Qθi, u) ,

γ1,n (θ, u) =
√
nE [h (Qθi, u)] ,

γ2 (θ, u, u∗) = E [h (Qθi, u)h (Qθi, u
∗)]−E [h (Qθi, u)]E [h (Qθi, u

∗)] ,

νn (θ, u) =
1√
n

n∑
i=1

[h (Qθi, u)−E (h (Qθi, u))] .

Given the above definitions, we have

√
nm̄n (θ, u) = νn (θ, u) + γ1,n (θ, u) .

By the Central Limit Theorem for i.i.d. sequences of random sets (Molchanov (2005, Theorem 2.2.1))

νn (θ, ·) =⇒ νγ2(θ) (·) ,

a Gaussian process with mean zero, covariance kernel γ2 (θ, u, u∗) , and continuous sample paths. It follows

from the Strong Law of Large Numbers in Banach spaces of Mourier (1955) that the sample analog estimator

γ̂2,n (θ, u, u∗) which replaces population moments with sample averages, satisfies γ̂2,n (θ, ·, ·)→a.s. γ2 (θ, ·, ·) ,
uniformly in u, u∗.

A.4 Computational Aspects of the Problem

In this Section, we focus on games of complete information. The case of games of incomplete information

can be treated analogously, and we refer to Grieco (2009) for a thorough discussion of how to compute the

set of Bayesian Nash equilibria. The case of BLP with interval data is straightforward.

When computing ΘI (or ΘABJ
O and ΘCT

O ), one faces three challenging tasks. We describe them here, and

note how each task is affected by the number of players, the number of strategy profiles, and the presence of

covariates in the payoff functions. For comparison purposes, we also discuss the differences in computational

costs associated with our methodology, versus those associated with ABJ’s and CT’s methodology.

The first step in the procedure requires one to compute the set of all MSNE for given realizations of the

payoff shifters, Sθ (x, ε) . This is a computationally challenging problem, though a well studied one which can

be performed using the Gambit software described by McKelvey and McLennan (1996).31 The complexity

of this task grows quickly with the number of players and the number of actions that each player can choose

from. Notice, however, that this step has to be performed regardless of which features of normal form games

are identified: whether suffi cient conditions are imposed for point identification of the parameter vector of

interest, as in Bajari, Hong, and Ryan (2009), or this vector is restricted to lie in an outer region, or its sharp

identification region is characterized through the methodology proposed in this paper. For example, Bajari,

Hong, and Ryan (2009) work with an empirical application which has a very large number of players, but

31The Gambit software can be freely downloaded at http://gambit.sourceforge.net/. Bajari, Hong, and Ryan (2009)
recommend the use of this software to compute the set of mixed strategy Nash equilibria in finite normal form games.
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group the smaller ones together in order to reduce the number of players to 4. Similarly, application of our

method to games with multiple mixed strategies Nash equilibria requires a limited number of players.32

The second task involves verifying whether a candidate θ ∈ Θ is in the region of interest. The diffi culty

of this task varies depending on whether one wants to check that θ ∈ ΘI , or that θ ∈ ΘABJ
O or θ ∈ ΘCT

O .

As established in Proposition 3.3, in all cases one needs to work with E [h (Qθ, u)|x] , so we first describe,

for a given u ∈ <κY , how to obtain this quantity by simulation (see, e.g., McFadden (1989) and Pakes and
Pollard (1989)). Recall that for given θ ∈ Θ and realization of x

E [h (Qθ, u)|x] = E

[
max

σ∈Sθ(x,ε)
u′q (σ)

∣∣∣∣x] =

∫
max

σ∈Sθ(x,ε)

∑κY
k=1 uk

∏J
j=1 σj

(
tkj
)
dFθ (ε|x) ,

where u′ = [u1u2 . . . uκY ] and Y =
{
t1, ..., tκY

}
is the set of possible outcomes of the game. One can

simulate this multidimensional integral using the following procedure.33 Let X denote the support of x.

For any x ∈ X , draw realizations of ε, denoted εr, r = 1, . . . , R, according to the distribution F (ε|x)

with identity covariance matrix. These draws stay fixed throughout the remaining steps. Transform the

realizations εr, r = 1, . . . , R, into draws with covariance matrix specified by θ. For each εr, compute the

payoffs πj
(
·, xj , εrj , θ

)
, j = 1, . . . , J, and obtain the set Sθ (x, εr) . Then compute the set Qθ (x, εr) as the set

of multinomial distributions over outcome profiles implied by each element of Sθ (x, εr) . Pick a u ∈ <κY ,
compute the support function h (Qθ (x, εr) , u) , and average it over a large number of draws of εr. Call the

resulting average ÊR [h (Qθ, u)|x] . Note that because each summand is a function of εr and these are i.i.d.

draws from the distribution Fθ (ε|x), EFθ( ε|x)

(
ÊR [h (Qθ, u)|x]

)
= E [h (Qθ, u)|x] .

Having obtained ÊR [h (Qθ, u)|x], in order to verify whether θ ∈ ΘABJ
O and θ ∈ ΘCT

O , it suffi ces to

verify conditional moment inequalities involving, respectively, κY and 2κY evaluations of ÊR [h (Qθ, u)|x],

corresponding to the choices of u detailed in Proposition 3.3. As illustrated in our examples, however, using

only these inequalities may lead to outer regions which are much larger than ΘI . Verifying whether θ ∈
ΘI using the method described in this paper involves solving max

u∈BκY−1
(
u′F̃ (y|x)− ÊR

[
h
(
Q̃θ, u

)
|x
])

and checking if the resulting value function is equal to zero, for each value of x. We emphasize that the

dimensionality of u does not depend in any way on the number of equilibria of the game (just on the number

of players and strategies), or on the number R of draws of ε taken to simulate E
[
h
(
Q̃θ, u

)∣∣∣x] . As stated
before, for given x ∈ X , the criterion function to be maximized is concave, and the maximization occurs
over a convex subset of <κY−1. In a two player entry game with payoffs linear in x, we have experienced

that effi cient algorithms in convex programming, such as the CVX software for MatLab (Grant and Boyd

(2010)), can solve this maximization problem with a handful of iterations, in the order of 10-25 depending on

the candidate θ. We have also experienced that a simple Nelder-Mead algorithm programmed in Fortran 90

works very well, yielding the usual speed advantages of Fortran over MatLab. For each parameter candidate,

the above maximization problem needs to be solved for each possible value of x ∈ X when x is discrete and

for each g ∈ G when applying AS procedure,34 and checking whether all required conditions are satisfied.
32On the other hand, our method is applicable to models with a larger set of players, when players are restricted

to playing pure strategies, or the game is one of incomplete information.
33The procedure described here is very similar to the one proposed by Ciliberto and Tamer (2009). When the

assumptions maintained by Bajari, Hong, and Ryan (2009, Section 3) are satisfied, their algorithm can be used to
significantly reduce the computational burden associated with simulating the integral.
34AS show that in practice, the integral over G can be replaced by a finite sum, see their Section 3.5.
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Therefore, it is reasonable to say that the computational burden of this stage is linear in the number of

values that x (respectively, g) takes.

Finally, the region of interest needs to be computed. This means that the researcher should search over

the parameter space Θ and collect all the points in ΘI or ΘCT
O or ΘABJ

O . This is of course a theoretical

set and in practice the researcher seeks to collect enough points that belong to the region of interest, such

that it can be covered reasonably well. While easy to program, a grid search over Θ is highly ineffi cient,

especially when Θ belongs to a high-dimensional space. CT propose to search over Θ using a method based

on Simulated Annealing. In this paper we use an alternative algorithm called Differential Evolution. We

give here a short description of this method focusing mainly on its complexity. We refer to Price, Storn,

and Lampinen (2004) for further details. Differential Evolution (DE) is a type of Genetic Algorithm that

is often used to solve optimization problems. The algorithm starts from a population of Np points picked

randomly from the set Θ. It then updates this list of points at each stage, creating a new generation of Np
points to replace the previous one. A candidate to replace a current member of the population (child) is

created by combining information from members of the current population (parents). This new candidate

is accepted to the population as a replacement to a current member if it satisfies a certain criterion. In

our application, the criterion for being admitted into the new generation is to be a member of ΘI (or ΘCT
O

or ΘABJ
O , when computing each of these regions). The process of finding a replacement for each of the

current Np points is repeated N times, yielding N ·Np maximizations of the criterion function (respectively,
evaluation of the conditional inequalities for CT and ABJ). During this process we record the points which

were found to belong to the regions of interest. In our simulations, we experienced that this method explores

Θ in a very effi cient way. Price, Storn, and Lampinen (2004) recommend for Np to grow linearly with the

dimensionality of Θ. The number of iterations (generations) N depends on how well one wants to cover the

region of interest. For example, in a two player entry game with Θ ⊂ <4, we have found that setting Np = 40

and N = 1000 gave satisfactory results, and when N was increased to 5000 the regions of interest seemed

to be very well covered, while the projections on each component of θ remained very similar to what we

obtained with N = 1000. Creating candidates to replace members of the population involve trivial algebraic

operations whose number grows linearly with the dimensionality of Θ. These operations involve picking two

tuning parameters, but satisfactory rules of thumb exist in the literature, see Price, Storn, and Lampinen

(2004).
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B Tables and Figures

Table 1: Projections of ΘABJ
O , ΘCT

O and ΘI , reduction in bounds width compared to CT, and
reduction in area of ΘI compared to ΘCT

O . Results reported are "top 15 percent," "median," and
"bottom 15 percent" reduction in the sum of length of sharp bounds on θ1 and θ2 compared to the
sum of length of outer bounds of CT. Two player entry game with mixed strategy Nash equilibrium
as solution concept.
True Values1 Projections of: % Width % Region

ΘABJ
O ΘCT

O ΘI Reduction2 Reduction3

θ?1 = −1.0
θ?2 = −1.3

[−3.22,−0.22]
[−3.22,−1.05]

[−3.22,−0.28]
[−3.22,−1.15]

[−2.21,−0.30]
[−2.32,−1.16]

35.03%
43.96%

63.81%

λ? =
[
0 3

4
1
4

]
θ?1 = −0.8
θ?2 = −1.1

[−1.82,−0.53]
[−1.82,−0.59]

[−1.82,−0.57]
[−1.82,−0.64]

[−1.51,−0.58]
[−1.55,−0.64]

25.60%
22.88%

56.87%

λ? =
[

1
2

1
4

1
4

]
θ?1 = −1.2
θ?2 = −1.5

[−2.19,−0.75]
[−2.19,−0.75]

[−2.19,−0.90]
[−2.19,−0.79]

[−2.11,−1.05]
[−2.13,−0.90]

17.83%
12.14%

26.02%

λ? =
[

1
4 0 3

4

]
1λ? = [Pr((0, 1) is chosen | ε ∈ EMθ? ) Pr((1, 0) is chosen | ε ∈ EMθ? ) Pr(( ε2

−θ2 ,
ε1
−θ1 ) is chosen | ε ∈ EMθ? )],

EMθ? = [0,−θ?1]× [0,−θ?2]

2Calculated as
Proj(ΘCTO |j)-Proj(ΘI |j)

Proj(ΘCTO |j)
, where Proj(·|j) is the projection of the set in parenthesis on dimension j.

3Calculated as
Area(ΘCTO )-Area(ΘI )

Area(ΘCTO )
, where Area(·) is the area of the set in parenthesis.
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Figure 1: Two player entry game. Panel (a): The random set of mixed strategy NE profiles, Sθ, as
a function of ε1,ε2. Panel (b): The random set of probability distributions over outcome profiles
implied by mixed strategy NE, Qθ, as a function of ε1,ε2. Panel (c): The support function in
direction u of the random set of probability distributions over outcome profiles implied by mixed
strategy NE, h (Qθ, u), as a function of ε1,ε2.

ε2

 ­θ2

 ­θ1 ε1

( a )

ε2

 ­θ2

 ­θ1 ε1

( b )
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 ­θ2

h(Qθ,u) = max{u2,u'q(­ε2/θ2,­ε1/θ1),u3}

 ­θ1 ε1
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Figure 2: A comparison between the logic behind the approaches of ABJ, CT, and this paper,
obtained by projecting in <2 : ∆κY−1, E (Qθ|x) , and the hypercubes used by ABJ and CT. A
candidate θ ∈ Θ is in ΘI if P (y|x), the white dot in the picture, belongs to the black ellipses
E (Qθ|x) , which gives the set of probability distributions consistent with all the model’s implica-
tions. The same θ is in ΘCT

O if P (y|x) belongs to the red region or to the black ellipses, which
give the set of probability distributions consistent with the subset of model’s implications used by
CT. The same θ is in ΘABJ

O if P (y|x) belongs to the yellow region or to the red region or to the
black ellipses, which give the set of probability distributions consistent with the subset of model’s
implications used by ABJ.
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