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Abstract

This paper proposes a new semi-nonparametric maximum likelihood estimation

method for estimating production functions. The method extends the literature on

structural estimation of production functions, started by the seminal work of Olley and

Pakes (1996), by relaxing the scalar-unobservable assumption about the proxy variables.

The key additional assumption needed in the identification argument is the existence

of two conditionally independent proxy variables. The assumption seems reasonable in

many important cases. The new method is straightforward to apply, and a consistent

estimate of the asymptotic covariance matrix of the structural parameters can be easily

computed.

1 Introduction

The literature on estimating production functions on panel data using control functions

has focused mainly on two major issues. One is the simultaneity bias, and the other is the

sample-selection problem caused by firm entry and exit. Both problems exist because of

the unobserved productivity in the production function. The seminal paper by Olley and

Pakes (1996) (hereafter OP) proposes the idea of using investment as a proxy variable to

∗We thank James Levinsohn for providing us with the Chilean manufacturing industry survey data.

We also thank Xiaohong Chen, Joe Harrington, Przemek Jeziorski, Ahmed Khwaja, Zhipeng Liao, Arvind

Magesan, Zhengtao Shi, Matt Shum and K. Sudhir for helpful comments. Any remaining errors are our own.

1



2

correct for the simultaneity bias.1 Their key observation is that if productivity is the only

unobserved factor affecting investment and if investment is a strictly increasing function of

productivity, then a nonparametric function of investment and other covariates can be used

to control for the latent productivity when estimating the production function. Important

discussions and extensions of the method have since been made, for example, by Levinsohn

and Petrin (2003) (hereafter LP), Ackerberg, Caves, and Frazer (2006) (hereafter ACF), etc.

LP suggest that intermediate inputs may be better proxy variables for productivity. They

argue that when using intermediate inputs as proxy variables, the primitive conditions that

ensure the monotonicity condition would be easier to come by, and that the intermediate

inputs could be much less lumpy and have fewer values of zero. ACF suggest an improvement

to avoid a potential identification issue in the first stage of LP’s procedure. The problem

they point out is very clear. Suppose that labor demand, like investment, is also a function of

capital and productivity but no other unobserved factors. Then, after controlling for capital

and productivity perfectly by the nonparametric function, there would be no independent

variation in labor left to identify the coefficient of labor in LP’s first stage.

The two fundamental assumptions maintained by these methods are: a) the demand func-

tions of the proxy variables are strictly increasing in the unobserved productivity; and b) the

productivity is the only unobserved determinant of the demands of these proxy variables.

Under these assumptions, the methods have provided very intuitive and convenient ways to

control for the latent productivity and consistently estimate the production function and

firm-level productivity. These methods have been used in a large number of applications.

The estimates of production functions and firms’ productivity are often used as inputs in

the analysis of issues such as the impact of deregulations, trade, etc, on firm productivity

(e.g., Pavcnik (2002), Bernard, Eaton, Jensen, and Kortum (2003), Javorcik (2004), Aw,

Roberts, and Xu (2008), etc).

However, the second assumption of productivity being the single unobserved factor affecting

investment/intermediate inputs has raised concerns as far back as OP’s original paper. LP

also point out that a major criterion in selecting their proxy variable is to avoid inputs

that could be subject to the influence of other unobserved factors (see p.326 in LP). The

importance of the issue can be seen from the following two problems associated with the as-

sumption. First, if there were additional unobserved factors affecting investment and input

decisions, the OP/LP/ACF procedures cannot fully control for the latent productivity.2 In

1They suggest using the propensity of exiting to correct for the sample-selection problem.
2Closely related to the literature, Imbens and Newey (2009) use the conditional CDF of the input given

some instrumental variables, such as cost shocks, as the control variable for the latent productivity. But as
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general, some other unobserved factors could be affecting the actual investment and inputs.

For example, measurement errors may be ubiquitous in the data. As LP point out, disrup-

tions in the supply of intermediate inputs and unobserved changes in their inventories could

all make the actual inputs of materials and fuels differ from those observed in their data (see

p.326 in LP). One may get some sense of the seriousness of the simultaneity bias problem by

looking at the estimated labor coefficients and returns to scale. Without any correction for

the simultaneity bias, the OLS tends to overestimate the labor coefficient and the returns

to scale. For example, for the Food industry in Table 1 in ACF, with OLS, the estimated

labor coefficient and returns to scale are, respectively, 1.080 and 1.416. After correction

using the procedure of ACF or LP, the estimates make much more sense. For example, for

ACF’s method, the estimated labor coefficient is around 0.84, and the estimated returns

to scale is about 1.24. However, the persistent existence, from 1979 to 1986, of significant

increasing returns to scale in the Food industry may prompt one to ask whether the scalar

unobservable assumption is seriously violated.

Second, the assumption forces us to give up some important sources of identification. This

problem manifests itself most clearly in the first stage of LP’s procedure, where they es-

timate the labor coefficient. Suppose, like what is assumed for the proxy variables, the

demand of labor is also a function of only capital and the latent productivity (but not of

any other unobserved factors). The identification issue in LP’s first stage, as ACF point

out, then is that the labor input is left with no independent variation after controlling for a

nonparametric function of capital and the latent productivity. To maintain logical consis-

tency, one does not want to both use the additional sources of variation in labor input—due

to cost shocks, for example—to identify the labor coefficient in LP’s first stage and use

an intermediate input as a perfect proxy variable for the latent productivity. Relatedly,

Bond and Söderbom (2005) point out the difficulty of identifying fully flexible inputs when

there is no variation in input prices across firms; they suggest that one may use stochastic

input adjustment costs to help identify the input coefficients. The authors argue that with

stochastic adjustment costs it is better to use the instrumental variable methods, as in

Blundell and Bond (2000), to estimate production functions since the model of OP and LP

would be misspecified if the stochastic input adjustment costs were present.

We propose a new method in this paper to estimate production functions, allowing the

demand of the proxy variables to be affected by other unobserved factors in addition to

Imbens (2007) points out, such an approach cannot correct all the simultaneity bias if the input demand is

also affected by other unobservables in addition to the latent productivity.
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the latent productivity.3 The insight of our method is that, because researchers normally

have multiple proxy variables, such as some intermediate inputs and investment, available

for productivity, we may be able to find two such proxy variables that, conditional on

productivity, are independent of each other in some reasonable cases. We may intuitively

view these two proxy variables as two contaminated measures of productivity. Then, loosely

speaking, we can use one proxy variable as the instrument for the other contaminated

measure of productivity to fully control for the latent productivity in the estimation of

production functions. Hu and Schennach (2008) establish the corresponding identification

results for a general class of nonclassical measurement-error models. In this paper, we

apply their results to show that production functions can be identified and estimated in

many important cases even when the scalar-unobservable assumption is not satisfied by the

proxy variables.

Two key conditions are needed for our identification of production functions. The first one

is the conditional independence condition alluded to above. As we will discuss in detail

later, this condition seems reasonable in many important cases. The second is that the

conditional density of each proxy variable given productivity and all the control variables

satisfy an injectivity condition. This condition is satisfied, for example, if the conditional

expectations of the proxy variables given productivity and all the control variables are

strictly increasing in productivity. We can view this condition as a generalization of the

original monotonicity condition of OP in the more general specification for the demand of

the proxy variables.

Our identification strategy provides the foundation for an alternative estimation method

without the above two problems associated with the scalar-unobservable assumption about

the proxy variables. As our identification explicitly allows for additional unobservable fac-

tors to affect investment/intermediate-input demand, it is robust against such a possibility

and frees up many important sources of variation for identifying the input coefficients in

the production function.

We propose a semi-nonparametric maximum likelihood estimation method to estimate the

structural parameters in the production function. The latent densities included in the

likelihood functions are approximated by using Hermite series (Gallant and Nychka (1987)).

We compare our method to those of LP and ACF in a Monte Carlo exercise. The Monte

Carlo evidence shows the robustness of our method, but not of the other methods, against

the additional unobserved factors. The methods of LP and ACF tend to overestimate the

3We focus on dealing with the simultaneity bias in this paper.
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labor coefficient when there are additional unobserved factors affecting the demand of the

intermediate inputs. We also apply all these methods to the same data of the Chilean

manufacturing industry (1979-1986), as used by LP and ACF, and our comparison yields

similar results. The estimates generated using the methods of LP and ACF show relatively

large labor coefficients and significant increasing returns to scale. In comparison, our method

produces smaller labor coefficients and largely constant returns to scale.

The rest of the paper proceeds as follows. Section 2 briefly reviews the methods of estimating

production functions proposed by OP, LP and ACF. Section 3 describes our model, shows

the identification of the model, and discusses the conditions required in our identification.

Section 4 proposes a new estimation method based on our identification result. Section

5 discusses the calculation of asymptotic covariance matrix of the estimates. Section 6

contains the comparison of our method with those of LP and ACF, using simulated data

and the Chilean manufacturing-industry census data. Section 7 concludes.

2 Literature Review

We start by putting down the model used by OP/LP/ACF. Throughout the paper, we follow

the tradition of using uppercase letters to denote levels and lowercase letters to denote the

log of levels. And to simplify notation, we omit the subscript for firms. The goal is to

estimate the following form of industry production function

yt = β0 + βllt + βkkt + ωt + ηt

by using firm-level panel data, where yt, lt, and kt are, respectively, the output (value

added), labor and capital inputs; ωt is the latent productivity that is serially correlated;

and ηt is the residual term with E (ηt|lt, kt) = 0. The productivity ωt follows an exogenous

first-order Markov process

ωt = E (ωt|ωt−1) + ξt

where ξt is mean-independent of ωt−1. The capital is depreciated and accumulated according

to following equation:

Kt = (1− δ)Kt−1 + It−1

where δ ∈ (0, 1) is the depreciation rate and It−1 is the investment made in period t − 1.

OP note that, under certain conditions, the firm investment is determined as

it = ιt (ωt, kt)
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where ιt (ωt, kt) is the investment demand function that is strictly increasing in ωt for any

given kt. LP make use of the following intermediate input demand function:

mt = µt (ωt, kt)

that is similarly assumed to be strictly increasing in ωt for any given kt in their estimation

procedure. The difficulty in estimating the production function is that normally lt and kt

are correlated with ωt, and we do not observe ωt.

2.1 Olley and Pakes (1996)

OP propose a structural approach to estimate the production function. The key observation

of OP is that we can use investment as a proxy for ωt. More specifically, under some

conditions, the investment demand function ιt (ωt, kt) is strictly increasing in ωt , so we can

invert ιt (ωt, kt) to get ωt (it, kt). Based on this insight, OP propose the following procedure

to estimate the production function:

Step 1: semiparametrically estimate

yt = βllt + ϕt (it, kt) + ηt

where ϕt (it, kt) = β0+βkkt+ωt (it, kt) is estimated nonparametrically. We get an estimate

of βl, ϕt and ϕt−1 in this stage.

Step 2: semiparametrically estimate

yt − β̂llt = βkkt + ρ (ω̂t−1) + ξt + ηt

where ρ (ωt−1) ≡ E (ωt|ωt−1) is estimated nonparametrically based on ω̂t−1 = ϕ̂t−1−βkkt−1

and ω̂t = ϕ̂t − βkkt. Here, one gets a consistent estimate of βk using the condition that kt

is mean-independent of ξt.

2.2 Levinsohn and Petrin (2003)

The insight of LP is that we can actually use intermediate inputs, such as materials and

energy inputs, as the proxy for ωt if similarly the demand functions for such inputs are also

strictly monotonic in ωt for any given kt. For example, suppose that we have the following
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demand function for the material input mt:

mt = µt (kt, ωt)

where µt (ωt, kt) is strictly increasing in ωt for any given kt. Then, following OP’s idea, we

can use a nonparametric function, ϕ (mt, kt), of kt and mt to control for ωt when estimating

the production function.

The LP method has two advantages over the original OP method. First, one does not

have to get rid of the observations with zero investment. Second, primitive conditions that

ensure monotonic intermediate input demand functions are easier to derive and test since

intermediate inputs have no dynamic implications.

2.3 Ackerberg, Caves and Frazer (2006)

The critique of ACF is that the first stages in OP and LP’s procedures are actually not

identified because lt would have no independent variation when ϕt is nonparametrically

estimated. To see this, suppose that, similar to the demand of mt and it we have the

following labor demand function:

lt = lt (ωt, kt)

And for LP’s method, by assumption, one has ωt = ωt (mt, kt). Then, lt = lt (ωt (mt, kt) , kt)

is thus also a function of (mt, kt), and would be collinear with the terms used to approximate

the unknown function of ϕ (mt, kt). ACF assume that the decision on lt is made before that

of mt, and the intermediate input demand function would be mt = µt (ωt, kt, lt), where µt

is assumed to be strictly increasing in ωt for any given (kt, lt). So, after substituting in the

expression for ωt, the production function can be written as follows:

yt = β0 + βllt + βkkt + ωt (mt, kt, lt) + ηt

To get around the identification problem of lt in the first stage of LP’s procedure, they

suggest estimating the coefficients of both lt and kt in the second stage. They propose

estimating the production function through the following two steps:

Step 1. To net out the effect of ηt, nonparametrically estimate the unknown function of

φ (mt, lt, kt) = β0 + βllt + βkkt + ωt (mt, kt, lt).

Step 2. Estimate (βl, βk) using the following set of two moment conditions,

E

(
ξt ·
(
kt
lt−1

))
= 0
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where ξt (βl, βk) = ωt −E (ωt|ωt−1), ω̂t = φ̂− βllt − βkkt, and E (ωt|ωt−1) = ρ (ωt−1) is also

estimated nonparametrically.

2.4 Discussion

All the above methods rely critically on the key assumption that the latent productivity is

the only unobservable affecting the intermediate inputs and investment. So, in the cases

where the observed intermediate inputs and investment are also affected by measurement

errors, optimization errors, cost shocks, etc., these methods would not be able to eliminate

the simultaneity bias. To illustrate the problem, suppose that the material demand function

is a linear function as the following:

mt = µt + ϵt

µt = γ̃0 + γ̃1ωt + γ̃2kt + γ̃3lt

In this case, the latent productivity can be written as a linear function of (kt,mt, lt) and ϵt

ωt = γ0 + γkkt + γllt + γm (mt − ϵt)

where (γ0, γk, γl, γm) are functions (γ̃0, γ̃1, γ̃2, γ̃3). Substituting the expression for ωt into

the production function, we have

yt = (β0 + γ0) + (βl + γl) lt + (βk + γk) kt + γmmt − γmϵt + ηt

However, the equation now cannot be consistently estimated since Cov (mt, ϵt) ̸= 0. Thus,

when one tries to use a nonparametric function of (lt, kt,mt) to control for ωt, part of ωt

that is a linear combination of mt and ϵt would always be missed as long as var (ϵt) > 0.

Therefore, in this case, the first stage estimates of LP and ACF’s procedure would be

inconsistent, and the estimates of their second stage would also be problematic.

In the next section, we show that with commonly available data, we can still identify the

structural parameters in the production function even if the observed intermediate inputs

and investment are also affected by other unobservables.

3 Model and Identification

Starting in this section, we study the identification and estimation of production functions

assuming that each observed intermediate input (and investment) is affected by another
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unobservable factor in addition to productivity. In the following, we first outline the main

idea of our identification strategy and some issues involved in implementing the idea; then

we set up our generalized model and show the identification of the model.

Our key identification idea is to use two intermediate inputs (or one intermediate input plus

the investment) simultaneously as two proxy variables for productivity. The two proxy vari-

ables can be thought as two contaminated measures of the latent productivity. Although,

now, one cannot directly invert the demand function of an input to fully control for the

latent productivity due to the additional unobserved factor in the demand of the input, we

can use the other input as an instrument for the first crude input proxy variable. Given this

perspective of the model, we can employ Hu and Schennach (2008)’s identification result

for nonclassical measurement-error models to show the identification of parameters in the

production function. More specifically, suppose that we are interested in estimating the

following equation of a dependent variable yt,
4

yt = β0 + βllt + βkkt + ωt + ηt

And suppose that we have two contaminated measures of the latent variable ωt: xt and

zt, such that 1) the three dependent variables (yt, zt, xt) are independent of each other

conditional on ωt and the control variables—i.e., f (yt|ωt, zt, xt, kt, lt) = f (yt|ωt, kt, lt) and
g (zt|ωt, xt, kt, lt) = g (zt|ωt, kt, lt); 2) g (zt|ωt, kt, lt) and g (ωt|xt, kt, lt) are injective for any

given (kt, lt).
5 Then, it can be shown that the conditional density of f (yt|kt, lt, ωt), as well

as g (zt|ωt, kt, lt) and g (ωt|xt, kt, lt), are identified through the following equation based on

the observed conditional density of f (yt, zt|xt, kt, lt) 6

f (yt, zt|xt, kt, lt)

=

∫ ∞

−∞
f (yt|kt, lt, ωt) g (zt|ωt, kt, lt)h (ωt|xt, kt, lt) dωt

Furthermore, the structural parameters (βl, βk) are identified given that f (yt|kt, lt, ωt) is

identified.

We note that the above two assumptions put much less restriction on yt than on zt and

xt. The second condition normally requires zt and xt to be continuous and have no point

4yt may be simply the output, but as we will see it can also be some other dependent variable.
5As we will discuss below, some additional technical assumptions are needed to prove the identification

results, but these two conditions are the most substantive assumptions we need. A conditional density

function g (z|ω) is injective if the integral operator defined by it, Lg (h (.)) =
∫
g (z|ω)h (z) dz, is invertible.

6The equation is a result of the total law of probability and the first condition.
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mass, as ωt is normally modeled as continuous and having no point mass. Yet, yt can even

be binary as long as the independence conditions are satisfied. Meanwhile, all three latent

conditional densities are identified. Thus to get the full potential of the identification idea,

the production output does not have to be put as the “main” dependent variable yt. We

can either put the output as yt, or we can treat it as a “proxy variable” (i.e. xt or zt)

since it satisfies the second (injectivity) condition automatically by its specification. This

observation is useful when we have to use investment it in our identification, which often

has large point mass at zero and is not easily verified for the second condition even if we

are willing to throw out all the observations with zero investment. As will become more

clear later, this feature makes our identification idea more generally applicable.

There are a few complications in applying the above identification idea to the estimation

of production functions. First, we need think about how to carefully choose (zt, xt) given

industry background knowledge and the underlying structural framework as described in

Olley and Pakes (1996), such that the above two identification conditions can be satisfied.

Second, normally, there are no direct crude measures of the productivity term ωt. The rela-

tion between ωt and proxy variables, such as intermediate inputs and investment, depends

on (kt, lt). This creates a collinearity problem in the identification of the structural param-

eters. We need to find a way to avoid the collinearity problem. In the rest of this section,

we first specify our econometric model and then discuss in greater detail the identification

of our model and our approach to dealing with the above complexities.

3.1 Model

We assume that the underlying structural model is the same as described by Olley and

Pakes (1996). The notation is the same as in our literature review. We assume the following

Cobb-Douglas value-added production function:

yt = β0 + βllt + βkkt + ωt + ηt

where ηt ⊥ (lt, kt, ωt), and E (ηt|lt, kt, ωt) = 0. The functional form assumption is made here

for the ease of demonstration. The identification result applies equally well to other forms

of production functions. Our interest here is to identify and estimate (βl, βk) given that ωt

is correlated with (lt, kt), but is not observed by the econometrician. For the productivity

ωt, let E (ωt|It−1) be the prediction of ωt based on the information, It−1, available in period

t−1, and ξt = ωt−E (ωt|It−1) is the prediction error. In the following, we will assume that

ωt follows an exogenous first-order Markov process, such that E (ωt|It−1) = E (ωt|ωt−1).
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We define ϕ (ωt−1) ≡ E (ωt|ωt−1). Later, we will demonstrate that the more general case

of ωt following a controlled Markov process can be similarly treated as long as the control

variable is observed.

The timing assumptions about the input decisions determine the appropriate arguments to

be included in the input demand functions. In applications, these assumptions should be

made to match the specific industries under analysis. To compare our estimates to those

obtained under previous methods, we assume that decisions about intermediate inputs are

made after observing the contemporaneous capital and labor input and productivity. And

we assume that the capital and labor input of period t are determined in period t − 1,

without observing the period-t innovation, ξt, of productivity.
7

As an important extension of the literature, we model the intermediate input demand more

generally as follows:

mt = µt (kt, lt, ωt) + ϵt

where µt (ωt, lt, kt) is the “theoretical” input demand function that is strictly increasing

in ωt for any given (kt, lt), and ϵt is the residual error. We assume ϵt ⊥ (lt, kt, ωt). In

the following, we will simply call µt (ωt, lt, kt) an input demand function, keeping in our

mind that there is a deviation in the actual demand from what is predicted by its demand

function.

Similarly, we specify the demand of electricity (or any other intermediate input) in the

following way:

ut = ψ(kt, lt, ωt) + vt

where, similarly, ψ(ωt, lt, kt) is the “theoretical” electricity demand function that is strictly

increasing in ωt for any given (kt, lt), and we assume vt ⊥ (lt, kt, ωt).

Given the Cobb-Douglas production function and the timing assumption, labor demand has

the following linear form:

lt = α0 + α1kt + α2ωt−1 + εt

We assume εt ⊥ (kt, ωt−1).

The data-generating process for the investment It is somewhat different from that of the

above static inputs. We often observe a significant portion of the firms in the data making

7The case of lt being determined after observing ξt will be discussed later.
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no investment in physical capital in some periods. To account for the fact that there are

a lot of zero observations for investment, we model investment as a censored variable as

follows:

I∗t = ιt (ωt, kt) + ζt

It = I∗t × 1 (I∗t ≥ 0)

where It is the observed investment, I∗t is a latent index variable, and ιt (ωt, kt) is the

“theoretical” investment function that is strictly increasing in ωt for any given kt. We

assume ζt ⊥ (kt, ωt). The observed investment data are censored at zero.

To complete the model, we assume that capital is accumulated according to the following

equation:

Kt = (1− δ)Kt−1 + It−1

where δ is the depreciation rate. And we assume that (ηt, ξt, ϵt, vt, ζt) are mutually inde-

pendent.

3.2 Identification

We note that the equations of the dependent variables—i.e. (yt,mt, ut, It)—are very similar

in that they all depend on the unobserved productivity ωt, similar control variables (kt, lt)

or just kt, and some error terms ηt, ϵt, vt, ζt. Our argument about the identification of the

model below includes the production function equation of yt and the equations of two other

dependent variables. In the following, we base our identification discussion on the current

value-added output yt and two intermediate inputs, mt−1 and ut−1, from the previous

period. However, similar arguments can be made about yt, it−1 and an intermediate input

variable. We use (mt−1, ut−1) instead of (mt, ut) in the identification to avoid the collinearity

problem we alluded to before. This point will become clear after we give the identification

equation. Now we begin our identification argument by listing the conditions we need to

prove identification.

Condition 1 (Conditional Independence) f (yt|mt−1, ut−1, ωt−1, lt, lt−1, kt, kt−1) =

f (yt|ωt−1, lt, lt−1, kt, kt−1), and g (mt−1|ut−1, ωt−1, lt, lt−1, kt, kt−1) = g (mt−1|ωt−1, lt, lt−1, kt, kt−1),

for all (lt, lt−1, kt, kt−1), where f and g are conditional density functions.

Condition 2 (injectivity) i) characteristic functions of g and h do not vanish on the real

line; ii) µt (kt, lt, ωt) and ψt(kt, lt, ωt) are monotonic in ωt for any given (kt, lt).
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The first equality in condition 1 states that mt−1 and ut−1 do not provide information

about yt beyond what is already contained in ωt−1. Condition 2 guarantees that the integral

operators defined by g (mt−1|ωt−1, kt−1, lt−1) and h (ut|ωt−1, kt−1, lt−1) are invertible. These

assumptions make mt−1 and ut−1 two potential proxy variables for the unobserved ωt−1.

The second equality in condition 1 says that the two proxy variables are independent of each

other, conditional on ωt−1 and other control variables. This condition and the injectivity

condition make one proxy variable a valid instrument for the error in the other proxy

variable. We also need the following two technical conditions for our identification.

Condition 3 (distinctive eigenvalues) for any given (kt, lt) and any ωt ̸= ω̃t, there exists

a set A such that g (yt|ωt−1, lt, kt) ̸= g (yt|ω̃t−1, lt, kt) for all yt ∈ A and Pr (A) > 0.

Condition 4 (normalization) E (mt|µt) = µt, that is, E (ϵt|µt) = 0.

Condition 3 guarantees that we can always find distinctive eigenvalues and, consequently,

different eigenfunctions, in the spectral decomposition that we employ in the proof of our

identification. And condition 4 will be used to pin down the eigenfunctions for each given

ωt−1.
8 We will discuss the substantive implications of these assumptions later.

Given condition 1 and by the law of total probability, we have

f (yt, ut−1,mt−1|lt, lt−1, kt, kt−1)

=

∫
f (yt|ut−1,mt−1, ωt−1, lt, lt−1, kt, kt−1) g (mt−1|ut−1, ωt−1, lt, lt−1, kt, kt−1)

h (ωt−1, ut−1|lt, lt−1, kt, kt−1) dωt−1

=

∫
f (yt|ωt−1, lt, kt) g (mt−1|ωt−1, lt−1, kt−1)h (ωt−1, ut−1|lt, lt−1, kt, kt−1) dωt−1

The second equality follows from the conditional independence condition and the model

specification. Rewriting the above equation, we have

f (yt, ut−1,mt−1|lt, lt−1, kt, kt−1) (1)

=

∫
f (yt|ωt−1, lt, kt) g (mt−1|ωt−1, lt−1, kt−1)h (ωt−1, ut−1|lt, lt−1, kt, kt−1) dωt−1

Intuitively speaking, mt−1 works as a crude proxy for ωt−1, and ut−1 works as an instrument

for the error in mt−1. Note that we use (mt−1, ut−1), instead of (mt, ut), as the proxy

8In fact, any known functional of f (mt|µt (kt, lt, ωt)), such as median and known quantiles, works here.

The mean function is a natural choice here, as a constant term can always be included in the function of

µt (kt, lt, ωt).
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variables. If we use (mt, ut) as the proxy variables, the control variables in the conditioning

set would be same—i.e. ((kt, lt)—for yt and mt. This creates an identification problem,

because we then cannot both nonparametrically identify the conditional density of mt and

the structural parameters in the production function. Using (mt−1, ut−1) as the proxy

variables gets us around this problem. Now, given equation (1), the identification question

is whether we can identify the latent densities, especially f (yt|ωt−1, lt, kt), given the observed

density of f (yt, ut−1,mt−1|lt, lt−1, kt, kt−1).

Given the conditions above, Theorem 1 in Hu and Schennach (2008) (p. 202) can be

applied to show that the latent densities f (yt|ωt−1, lt, kt), g (mt−1|ωt−1, kt−1, lt−1), and

h (ωt−1, ut−1|lt, lt−1, kt, kt−1) are identified.9 In the following, we sketch the main idea of

the proof of the identification to help make the key identification sources more transparent.

We will omit the control variables of k and l for notational simplicity. First, we define an

integral operator based on a conditional density.

Definition 1 Let F (X ) and F (Z) be spaces of functions defined on the domains of X and

Z respectively. Then, the integral operator Lx|z is defined as[
Lx|zg

]
(x) =

∫
Z
f (x|z) g (z) dz

where the operator Lx|z maps a function g (z) in F (Z) into a function in F (X ).

Then equation (1) now can be equivalently written in corresponding integral operators as

Ly;m|u = Lm|ω∆y;ωLω|u (2)

where Ly;m|u is defined similarly to Lm|u with f (m|u) replaced by f (y,m|u) for a given

y, and where ∆y;ω is a “diagonal operator” mapping a function h (ω) to f (y|ω)h (ω).
Meanwhile, by integrating both sides of equation (2) over y, we get Lm|u = Lm|ωLω|u,

which is equivalent to

Lω|u = L−1
m|ωLm|u

Now, we substitute the above expression of Lω|u into (2) and rearrange the operators based

on observable densities to the left-hand side, and we get

Ly;m|uL
−1
m|u = Lm|ω∆y;ωL

−1
m|ω (3)

9Hu and Schennach’s theorem is stated without control variables. We can define, for example, ỹt ≡
yt − β0 + βllt + βkkt, such that their identification results can be applied directly given that (βl, βk) are

identified from the variation in the data.
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The inverse of Lm|u used in the above equation can be shown to exist by using the sec-

ond condition in condition 2. Equation (3) means that Ly;m|uL
−1
m|u admits an eigenvalue-

eigenfunction decomposition. The left-hand-side operator based on observed conditional

densities is decomposed to obtain g (m|ω, .), and f (y|ω, .), the latent conditional densities

of interest. Theorem XV.4.5 in Dunford and Schwartz (1971) can be used to show that the

decomposition is unique given that the operators are defined with density functions. Lastly,

conditions 3 and 4 are employed to ensure the uniqueness of the ordering and indexing of

the eigenvalue and eigenfunctions.

The independence and injectivity conditions are implicitly applied in the above identification

argument. The independence assumptions play two roles in the identification. First, it

helps reduce the dimensionality of the latent conditional densities to make the spectral

decomposition possible. Second, it makes one proxy variable a potential instrument for the

measurement error of the other proxy variable. The injectivity assumptions make sure that

the integration operators are invertible. This role played by the injectivity condition bears

some similarity to that of the rank conditions for the instrumental variable method in the

classical linear regression models.

We summarize the above identification results in the following Lemma.

Lemma 1 Under conditions 1, 2, 3, 4, the observed density of

f (yt, ut−1,mt−1|lt, kt, kt−1, lt−1) uniquely determines the latent conditional densities of f (yt|ωt−1, lt, kt),

g (mt−1|ωt−1, kt−1, lt−1) and h (ωt−1, ut−1|lt, lt−1, kt, kt−1).

Given the identification of the conditional densities and the assumptions of ξt + ηt ⊥
(kt, lt, ωt−1) and E (ξt + ηt) = 0, the density of fξt+ηt and the production function are

identified nonparametrically given enough variation in (kt, lt). Thus, for the Cobb-Douglas

production function, the structural parameters of interest, (βl, βk), are identified. We sum-

marize the identification results in the following Theorem.

Theorem 5 Under conditions 1, 2, 3 and 4, the observed density

f (yt, ut−1,mt−1|lt, kt, kt−1, lt−1) uniquely determines (βl, βk), together with fξ+η, gϵ and h

from the following equation:

f (yt, ut−1,mt−1|lt, lt−1, kt, kt−1) (4)

=

∫ ∞

−∞
fξ+η (yt − (β0 + βllt + βkkt + E (ωt|ωt−1)) |lt, kt, ωt−1)

×gϵ (mt−1 − µt (ωt−1, kt−1, lt−1) |ωt−1, kt−1, lt−1)× h (ωt−1,mt−1|kt−1, lt−1, lt, kt) dωt−1
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We note that similar identification arguments can also be made with (yt,mt−1, ut−1) re-

placed by (yt,mt−1, it−1) .
10 As investment can also be used as one of the proxy variables

if we keep only the part of sample with positive investment, we can derive the same iden-

tification result by using investment and one of the intermediate inputs as the two proxy

variables. So, we can similarly identify the production function by using the following

equation:

f(yt,mt−1, it−1|lt, lt−1, kt, kt−1, (It−1> 0)) (5)

=

∫ ∞

−∞
fξ+η(yt−(β0+βllt+βkkt+E(ωt|ωt−1))|lt, kt, ωt−1)×

gϵ(mt−1−µt(ωt−1, kt−1, lt−1)|ωt−1, kt−1, lt−1)×

h
(
ωt−1, it−1|kt−1, lt−1, lt, kt, (It−1> 0)

)
dωt−1

We lose the part of sample with zero investment by using the above equation. Yet, as

we have noted, the output yt satisfies the injectivity assumption automatically without

having to throw out any observations. So we can switch the roles played by the three

dependent variables to avoid throwing out a lot of observations. Specifically, we can use

It−1 as the variable that satisfies only the conditional independence assumption and use yt

and one intermediate input as the proxy variables that satisfy both the independence and

injectivity assumptions. So now, we can base our identification on the following equation:

f
(
yt,mt−1, It−1|lt, lt−1, kt, kt−1

)
(6)

=

∫ ∞

−∞
fξ+η(yt−(β0+βllt+βkkt+E(ωt|ωt−1))|lt, kt, ωt−1)×

gϵ
(
mt−1−µt(ωt−1, kt−1, lt−1)|ωt−1, kt−1, lt−1

)
×

h
(
ωt−1, It−1|kt−1, lt−1, lt, kt

)
dωt−1

As we discuss below, the above two alternative equations for identification become useful

when the identification assumptions are more likely to hold for (yt,mt−1, it−1) than for

(yt,mt−1, ut−1) in some cases. The trade-off here is that the computational burden in the

estimation may be heavier when we use equation (6), whereas only the observations with

positive investment can be used if we use equation (5).

10The same observation is also true with (yt,mt−1, ut−1) replace with (yt, ut−1, it−1).
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3.3 Extension

As an important extension of the above model, we can allow ωt to be endogenously de-

termined. This extension is important for applications in which it is essential that firms

are assumed to actively spend resources to improve productivity. Our model can very con-

veniently accommodate the case of productivity following a controlled first-order Markov

process. Specifically, suppose that the control variable affecting the process of ωt is deter-

mined in the following way:

rt = R (kt, ωt) + ϱt

where rt is the R&D spending in period t (or some other control variable affecting the

evolution of productivity), and ϱt captures other unobserved factors affecting rt. Under the

alternative assumption, we have E (ωt|It−1) = E (ωt|ωt−1, rt−1). Given that R&D spending

is observed, our identification arguments above can be largely replicated as long as we

replace the term of E (ωt|ωt−1) in the output equation with E (ωt|ωt−1, rt−1).

Doraszelski and Jaumandreu (2008) extend LP’s method by modeling productivity as a

controlled Markov Process. Their interest is in estimating the impact of R&D on produc-

tivity in the Spanish manufacturing sector. Obviously, the assumption of ωt following an

exogenous Markov Process is conceptually inconsistent with their goal. To estimate such a

model, they assume a parametric form for the labor demand function to avoid the identifica-

tion issues associated with the nonparametric input demand functions. Similar to LP, their

method also relies on the assumption that the only unobserved determinant of labor input

is productivity. The identification issue they avoid by assuming a parametric labor demand

function also has its root in the implicit assumption that other unobserved factors, such

as cost shocks, do not affect investment and input decisions. We do not need parametric

assumptions for input demand functions to allow for endogenous productivity, because we

explicitly allow other unobserved shocks to affect investment and input decisions, and these

random shocks break up the collinearity problem when the demand functions of inputs used

as proxy variables are estimated nonparametrically.

3.4 Discussion

Although we have shown that the identification of production function can be achieved

even if we allow additional unobservables to show up in the proxy variable equations, the

validity of the underlying conditions still needs to be assessed carefully in order to verify the
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applicability of the above identification results for estimation. In the following, we discuss

the key conditions in turn, assuming that the underlying the structural framework is the

same as described in Olley and Pakes (1996).

3.4.1 The conditional independence assumption

The conditional independence assumption can be equivalently stated through the residuals

in the corresponding equations. For example, the assumption of mutual independence

among yt,mt−1, ut−1 is equivalent to the assumption of mutual independence among the

corresponding residuals—i.e. ηt, ϵt−1, vt−1. Whether it is reasonable to assume that the

three residual terms are mutually independent depends on what are captured by them.

Conceptually, the residual of the output equation, ηt, often reflect measurement errors

of the output and/or unanticipated technology shocks, such as the number of defective

products and machine breakdowns. The errors associated with intermediate inputs and

investment could be results of measurement errors, optimization errors, or idiosyncratic

cost shocks. To assess the validity of the independence assumption, we need to carefully

assess the following two questions: 1) What unobserved factors are being captured in the

residuals? 2) Whether the unobserved factors can be reasonably assumed independent of

each other? The residuals under consideration here are ηt, ϵt−1, vt−1 (and ζt−1), which are,

respectively, the residuals in the equations of yt,mt−1, ut−1 (and It−1). The purpose of our

discussion below is to find some guidelines for picking out the two proxy variables that,

together with yt, satisfy the independence assumption. In the following, we discuss the

independence assumption for each of three common types of unobserved factors.

Measurement error Measurement errors in the proxy variables are often the top con-

cern for researchers applying OP,LP and ACF’s methods. If only measurement errors are

involved, we expect that the residual in the equation of a proxy variable contains only its

own measurement error. Suppose that the measurement errors are simply recording errors.

Then, it seems reasonable to assume that the measurement error of one proxy variable is

conditionally independent of that of another proxy variable. However, measurement errors

due to other reasons may need to be analyzed more carefully. For example, as LP point

out, some intermediate inputs —such as materials and fuels—may be storable, and it could

become a cause of measurement errors if the econometrician can only observe the new pur-

chase of such inputs instead of the actual usage of them. The unobserved inventory changes

make the actual inputs differ from what are observed in the data. If, furthermore, the



19

inventory decisions of the two proxy variables are correlated, then the measurement errors

of the two proxy variables would also be correlated. In this case, using material and fuel, for

example, as the two proxy variables would be problematic. However, as electricity normally

cannot be stored, we may use the material and electricity inputs as the two proxy variables

in the estimation. Hence, to assess the independence assumption for the measurement er-

ror case in application, we need to carefully consider the main causes of such errors. The

independence assumption could be satisfied if we carefully select the two proxy variables.

Optimization error In the model, we assumed that the decisions on intermediate inputs,

mt−1 and ut−1, are made simultaneously after observing (kt−1, lt−1, ωt−1). With optimiza-

tion errors, the timing assumption implies, for example, that if more than the optimal

material input were used, the extra material would not be complemented by additional

energy input. Thus, under this timing assumption, it seems reasonable to assume that

the residual of each intermediate input contains only its own optimization error and that

the residuals are independent. Now suppose that the intermediate inputs are determined

sequentially. If the decision sequence is known to the econometrician, the independence

assumption seems reasonable as we can modify the model by including the input deter-

mined first as a control variable in the equation of the input determined later. However,

if the decision timings are unknown, the independence assumption would be violated in a

misspecified model, because now the optimization error of one input can be captured by

the residual of the other input. Lastly, as we expect no interaction between the static input

decision and the dynamic investment decision, it should be reasonable to assume that the

optimization error in investment is independent of the two input optimization errors. So, if

the residuals capture only optimization errors, we expect the independence assumption to

be satisfied for both (mt−1, ut−1) and (mt−1, it−1), with the independence assumption for

(mt−1, it−1) more robust to alternative timing assumptions on input decisions.

Idiosyncratic cost shocks The literature has been assuming a competitive market for

intermediate inputs and capital such that the costs in each period are the same for all the

firms. Now suppose that there are idiosyncratic cost shocks. Given that firms observe the

cost shocks while making simultaneous decisions on the two inputs, we expect the residuals

of the two inputs to capture the cost shocks of both inputs. Thus, the independence

assumption would be violated for (mt−1, ut−1). However, suppose that the cost shocks of

the intermediate inputs are independent across time. In this case, the investment decision

should not be affected by the cost shocks to static inputs. So, the independence assumption
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would still hold for (mt−1, it−1) and (ut−1, it−1). Finally, if cost shocks of the inputs are

serially correlated, the current cost shocks would contain information about future input cost

shocks and, consequently, future returns to the current investment. Then, the investment

would respond to the cost shocks to the inputs, and the residual in the investment equation

would capture the cost shocks of both the inputs and the investment. Hence, if the input cost

shocks are serially correlated, the independence assumption would most likely be violated.11

To finish our assessment of the independence assumption, we still need to evaluate the

relation between the residual of the output equation, ηt, and that of the two proxy variables.

Given that the output errors are normally results of measurement errors and technological

shocks, it seems reasonable to assume that the error of the output is independent of the

errors of the intermediate inputs and investment for all the three types of errors above.

However, it is worth noting that the errors of the contemporary intermediate inputs could

be captured in the residual of the output equation if the output is measured by value-added.

This creates no problem if the errors of the intermediate inputs are independent across time.

Otherwise, one can get around the problem by estimating the production function for the

gross output instead of value-added.

In summary, the independence assumption seems reasonable in many important cases. In

some cases, carefully chosen proxy variables for estimation would make the independence

assumption more likely to be satisfied. For each specific application, special attention

should be given to the interpretations of the residual terms when assessing the validity of

the assumption. We summarize the above discussion in Table 1.

Table 1: Assessment of the validity of the independence assumption

1: Likely valid; 0: Unlikely valid

Error types (yt,mt−1, ut−1) (yt,mt−1, it−1) (yt, ut−1, it−1)
Measurement errors 1 1 1

Optimization errors, simultaneous 1 1 1

Optimization errors, sequential 0 1 1

Cost shocks, independent over time 0 1 1

Cost shocks, serially correlated 0 0 0

11In the extreme case of firm-specific cost shocks being constant over time, the methods of OP, LP and

ACF would work as the cost shocks can be combined into the firm-specific productivity term.
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3.4.2 The injectivity assumption

We also require that the demand function (the certainty part) of the inputs and investment

to be strictly increasing in productivity in order to satisfy the injectivity condition. In

comparison to the method of OP/LP/ACF, we do not need the inputs/investment to be

a deterministic function of productivity. This generalization should also make the mono-

tonicity assumption easier to satisfy. As LP point out, the primitive conditions ensuring the

monotonicity condition are easier to obtain for the demand of intermediate inputs than for

investment. This observation suggest that intermediate inputs can be preferable candidates

for the two proxy variables in our estimation.

3.4.3 The distinctive eigenvalues and the normalization

The distinctive eigenvalue condition is a very weak assumption, which should be easily

satisfied in practice. The normalization assumption of E (mt|µt) = µt does not add addi-

tional restrictions given the assumption of additive errors in the intermediate input demand

functions.

In the next section, we propose an estimation method based on our identification strategy.

4 Estimation

In the estimation, we treat each firm as an observation, and the data as i.i.d across firms. A

complete specification of the likelihood for each firm would be very complicated, especially

for longer panels. The likelihood of the observation of a firm would involve, for example,

the conditional density of the firm’s last period data given its data in all previous periods.

Specifying such complete models requires many additional assumptions, which are undesir-

able and are unnecessary for estimating the structural parameters of interest here. In our

case, the structural parameters in the production functions are identified with the partial

conditional likelihood, which involves only two periods’ data . Thus we adopt the partial

likelihood framework for our estimation (c.f. Wooldridge (2002)).

We follow Gallant and Nychka (1987) by approximating the conditional densities with

Hermite series. More specifically, to compute the likelihood function, we approximate a
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unknown density function h (u), for example, by using Hermite series:

h (u) ≈ P 2
k (u)ϕ (u)

where Pk (u) is a kth-order polynomial of u, and ϕ (u) is the density of the standard normal

distribution. The advantage of using this approximation method for estimating our model

is threefold. First, the Hermite series automatically impose some smoothness requirements

for the approximated density. This avoids having to add a penalty function that punishes

nonsmoothness in the density functions, which is necessary, for example, when one uses a

polynomial to approximate the densities. Second, the approximation method, in principle,

automatically guarantees that the approximated density is nonnegative at all values of the

parameters. This avoids having to impose restrictions in estimation that the approximated

density has to be nonnegative. Lastly, the likelihood function in our method involves inte-

gration of a product of multiple conditional densities over the support of the latent variable.

With the approximation by Hermite series, the integration is very convenient to compute

and has an analytical result.

For estimation, we first spell out the observed density, f (yt,mt−1, ut−1, lt, kt|lt−1, kt−1), as

a mixture of the product of several latent conditional densities as follows:

f (yt,mt−1, ut−1, lt, kt|lt−1, kt−1)

=

∫
gy (yt|lt, kt, ωt−1,mt−1, ut−1, lt−1, kt−1) gl (lt|kt, ωt−1,mt−1, ut−1, kt−1, lt−1)

gk (kt|ωt−1,mt−1, ut−1, lt−1, kt−1) gm (mt−1|ωt−1, ut−1, lt−1, kt−1) gu (ut−1|ωt−1, lt−1, kt−1)

gω (ωt−1|lt−1, kt−1) dωt−1

=

∫
gy (yt|lt, kt, ωt−1) gl (lt|kt, ωt−1) gk (kt|ωt−1, kt−1)

gm (mt−1|ωt−1, lt−1, kt−1) gu (ut−1|ωt−1, lt−1, kt−1) gω (ωt−1|lt−1, kt−1) dωt−1

The first equality above follows by the total law of probability; the second equality follows

from the conditional independence assumption and the fact that the variables in period t−1

are independent of the period-t innovation in the latent productivity. Thus we can estimate

the model using Semi-Nonparametric Maximum Likelihood estimation (SNPMLE) method
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as follows

(β̂, α̂, ϕ̂, µ̂, ψ̂, ĝξ+η, ĝε, ĝk, ĝϵ, ĝv, ĝω)

= arg max
β,α,ϕ,µ,ψ,(gξ+η ,gε,gk,gϵ,gv ,gω)∈An

1

J

J∑
j=1

T∑
t=1

ln

∫ ∞

−∞
gξ+η (yjt − (βlljt + βkkjt + ϕ (ωj,t−1)))

gε (ljt − α0 − α1kjt − α2ωj,t−1) gk (kjt|kj,t−1, ωj,t−1) (7)

gϵ (mj,t−1 − µ (kj,t−1, lj,t−1, ωj,t−1)) gv (uj,t−1 − ψ (kj,t−1, lj,t−1, ωj,t−1))

gω (ωj,t−1|lj,t−1, kj,t−1) dωj,t−1.

where An is the set of all nth-order Hermite series that integrate to one.12 Note that the

sum of per-period likelihoods over t for each firm j is not the likelihood of the observation

of firm j.

A few things worth pointing out about the above estimation method. First, the above

likelihood is analytical in the parameters as long as we use polynomials to approximate

the unknown functions of µ, ψ and ϕ. If these unknown functions are linear in ωj,t−1, the

likelihood can be easily computed using the values of the moments of normal distributions.

When the unknown functions involves higher order terms of ωj,t−1, the likelihood is still

analytical in the parameters, though the coefficients of which involve the gamma functions

evaluated at some constants. This is a very convenient property that greatly simplifies the

computation of the likelihood.

Second, if one assumes Cobb-Douglas production function, the functions of µ and ψ would

be linear in their arguments. Furthermore, if ωt follows a AR (1) process, then ϕ would also

be a linear function. These assumptions would make the likelihood very easy to compute.

Third, we use partial likelihood method with constraints, which needs to be carefully ac-

counted for when we compute the covariance matrix of the estimates. And, as we detail

below, the recent numerical equivalence results by Ackerberg, Chen, and Hahn (2011) show

that the asymptotic variances of our semi-nonparametric estimates of the structural param-

eters are no more difficult to compute than those of a parametric model.

Lastly, the above likelihood function is a mixture of latent conditional densities. It is well-

12For example, an nth-order approximation of gε would be given by

ĝε (x) =

(
n∑

s=1

asx
s

)2

exp

(
−x2

σ2
ε

)
where

(
{as}ns=1 , σε

)
are the parameters to be estimated.
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known that such likelihood functions often have some local maximums. When computing

the estimates, we look for the global maximum of the likelihood function by repeating the

optimization routine many times, starting from different random initial values centered

around a reasonable guess. As most of the structural parameters in the model can be

interpreted as elasticities, they are normally relatively small numbers, and many of them

should actually be roughly in (0, 1). This makes finding the global maximum easier.

4.1 Using Alternative Proxy Variables

As we discussed above, in some cases, the residuals in the equations of mt−1 and ut−1 may

capture the optimization errors/cost shocks of both mt−1 and ut−1, but the errors may be

independent across time. In this case, to satisfy the conditional independence assumption,

we can replace one of the proxy variables (mt−1 and ut−1) by investment it−1 and use only

the sample with positive investment for estimation. So we can use the decomposition of the

following observed density for estimation:

f (yt,mt−1, it−1, lt, kt|lt−1, kt−1)

=

∫
gy (yt|lt, kt, ωt−1) gl (lt|kt, lt−1, ωt−1) gk (kt|it−1, kt−1)

gi (it−1|kt−1, ωt−1) gm (mt−1|kt−1, lt−1, ωt−1) gω (ωt−1|lt−1, kt−1) dωt−1

In the above expression, the density of kt does not involve the latent variable ωt−1, and

thus can be dropped in the estimation.13So, we can estimate the model using the method

of SNPMLE as follows

(β̂, α̂, ϕ̂, µ̂, ι̂, ĝξ+η, ĝε, ĝζ , ĝϵ, ĝω)

= arg max
β,α,ϕ,µ,ι,(gξ+η ,gε,gζ ,gϵ,gω)∈An

1

J

J∑
j=1

T∑
t=1

ln

∫ ∞

−∞
gξ+η (yjt − (βlljt + βkkjt + ϕ (ωj,t−1)))

gε (ljt − α0 − α1kjt − α2ωj,t−1) gζ (ijt−1 − ι (ωjt−1, kjt−1))

gϵ (mj,t−1 − µ (kj,t−1, lj,t−1, ωj,t−1)) gω (ωj,t−1|lj,t−1, kj,t−1) dωj,t−1.

Finally, one might want to use the investment variable but have only a relatively small

sample. To use the entire sample, as we have pointed out before, we may switch the roles of

the three key dependent variables. We can let yt and one of the intermediate inputs (mt−1

or ut−1) be the two variables that satisfy the assumptions of both conditional independence

13So the likelihood is constructed based on f (yt,mt−1, it−1, lt, kt|lt−1, kt−1) /gk (kt|kt−1, it−1)
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and monotonicity, and let it−1 be the variable that satisfy only the conditional independence

assumption. So, for the entire sample, we can use the following decomposition:

f (yt,mt−1, it−1, lt, kt|lt−1, kt−1)

=

∫
gy (yt|lt, kt, ωt−1) gl (lt|kt, ωt−1, lt−1) gk (kt|it−1, kt−1)

(Pr (It−1 = 0|kt−1, ωt−1))
1{It−1=0} (gi (it−1|kt−1, ωt−1))

1−1{It−1=0}

gm (mt−1|kt−1, lt−1, ωt−1) gω (ωt−1|lt−1, kt−1) dωt−1

Now the integration does not have an analytical result. We have to simulate the integration,

for example, via importance sampling, and estimate the model using simulated partial like-

lihood method. Suppose that we draw ns1 and ns2 simulation draws from two independent

standard normal distribution for ωt−1 and ζt−1; then we can estimate the parameters as

follows:

(β̂, α̂, ϕ̂, µ̂, ι̂, ĝξ+η, ĝε, ĝζ , ĝϵ, ĝω)

= arg max
β,α,ϕ,µ,ι,(gξ+η ,gε,gζ ,gϵ,gω)∈An

1

J

J∑
j=1

T∑
t=1

ln{ 1

ns1
Σns1s=1gξ+η (yjt − (βlljt + βkkjt + ϕ (ωs,t−1)))

gε (ljt − α0 − α1kjt − α2ωs,t−1)[
1

ns2
Σns2s′=1

[
1
{
ζs′,t−1 ≤ −ι (ωs,t−1, kj,t−1)

}
gζ
(
ζs′,t−1

)
/h
(
ζs′,t−1

)]]1{Ij,t−1=0}

gζ (ij,t−1 − ι (ωs,t−1, kj,t−1))
1−1{Ij,t−1=0}

gϵ (mj,t−1 − µ (ωs,t−1, lj,t−1, kj,t−1)) gω (ωs,t−1|lj,t−1, kj,t−1) /h (ωs,t−1)}.

where h (ωs,t−1) and h
(
ζs′,t−1

)
are the density of the standard normal distribution.

4.2 Alternative Timing Assumption for the Labor-Input Decision

We assumed in the model that lt is determined in period t−1 before the realization of ξt, and

thus E (ξt|lt) = 0. It is a reasonable assumption, given that it often takes time to adjust the

labor input. If lt is determined in period t instead, then we have Cov (lt, ξt|kt, ωt−1) ̸= 0.

In such a case, we can use the assumption of Cov (lt−1, ξt|kt, ωt−1) = 0 to help identify

the labor elasticity and achieve similar identification results. This has been the standard

alternative identification condition used in the literature.

In the case of lt being determined in period t after observing ωt, the appropriate specification
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for the labor demand equation is:

lt = α0 + α1kt + α2ωt + εt

Then, the identification of f (yt|lt, kt, ωt−1) above does not lead to the identification of the

coefficient of lt, because lt is now correlated with ξt. Using lt−1 as an instrument for lt in the

production function, a Full Information Maximum Likelihood estimator can be employed

to consistently estimate the structural parameters.

To illustrate, the estimation now can be based on the following decomposition of the ob-

served conditional density:

f (yt,mt−1, ut−1, lt, kt|lt−1, kt−1)

=

∫
f (yt, lt|kt, ωt−1, lt−1) gk (kt|ωt−1, kt−1)

gm (mt−1|ωt−1, lt−1, kt−1) gu (ut−1|ωt−1, lt−1, kt−1) gω (ωt−1|kt−1, lt−1) dωt−1

Then, the we can estimate the structural parameters using the SNP FIML method as

follows:

(β̂, α̂, ϕ̂, µ̂, ψ̂, ĝξ+η,ξ+ε, ĝk, ĝϵ, ĝv, ĝω)

= arg max
β,α,ϕ,µ,ψ,(gξ+η,ξ+ε,gk,gϵ,gv ,gω)∈An

1

J

J∑
j=1

T∑
t=1

ln

∫ ∞

−∞
gξ+η,ξ+ε (yjt − (βlljt + βkkjt + ϕ (ωj,t−1)) , ljt − α0 − α1kjt − α2ϕ (ωj,t−1)− α3lj,t−1)

gk (kjt|kj,t−1, ωj,t−1) gϵ (mj,t−1 − µ (kj,t−1, lj,t−1, ωj,t−1))

gv (uj,t−1 − ψ (kj,t−1, lj,t−1, ωj,t−1)) gω (ωj,t−1|lj,t−1, kj,t−1) dωj,t−1

where, similarly, the gξ+η,ξ+ε, gk, gϵ, gv, gω are nth-order approximations of the densities

using Hermite series. Here, as lt is endogenous, we employ the joint distribution of gξ+η,ξ+ε

in the likelihood function, and use lt−1 as the variable that is affecting lt, but excluded from

the yt equation.
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5 Asymptotic Inference

In this section, we discuss how to estimate the covariance matrix of our estimator. As

the densities in the likelihood function of (7) are nuisance parameters, we focus on how

to estimate the covariance matrix of the structural parameters in the production function.

The covariance matrix of the estimators of OP/LP/ACF are normally estimated through

bootstrapping. We can similarly estimate the covariance matrix of the parameters via

bootstrapping. Alternatively, we can employ the recent numerical equivalence result proved

by Ackerberg, Chen, and Hahn (2011), with which computing the asymptotic variances of

our SNPMLE estimator turns out to be as simple as computing the asymptotic variances

of a parametric MLE estimator.

Suppose that we use second-order Hermite series to approximate the densities in the like-

lihood function of (7). Shen (1997)’s results imply that our estimator of the structural

parameters are
√
n consistent and asymptotically normal. These asymptotic properties are

based on the assumption that both the sample size and the order of the approximating series

go to infinity. Then, a consistent estimator can be derived for the asymptotic covariance

matrix for structural parameters (see Appendix D in Ackerberg, Chen, and Hahn (2011)

for details). Meanwhile, if one assumes that the functional forms of the true conditional

densities are exactly second-order Hermite series, the model becomes a parametric model,

and the asymptotic covariance matrix can be easily estimated using standard results for

parametric MLE. Obviously, here, the asymptotic properties of parametric MLE are based

on the assumption that only the sample size goes to infinity. A bit surprisingly, the results

of Ackerberg, Chen, and Hahn (2011) show that the consistent estimator of the asymptotic

covariance matrix for the semi-parametric model is numerically exactly the same as that

for the fictitious parametric model, even though the estimated structural parameters in

the two models have different limiting distributions. In short, for the given Hermite series

used to approximate the densities, we can compute the asymptotic covariance matrix of

the structural parameters as if the Hermite series are the known functional form for the

densities.

In the following section, we first compare our method to the previous methods through

a simple Monte Carlo exercise. Then, we apply all these methods to the same Chilean

manufacturing census data that LP and ACF used for illustration.
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6 Empirical Example

6.1 Monte Carlo Evidence

We simulate two random samples by using models with a Cobb-Douglas production function.

The general set-up is the same as in the model we described above. Productivity is the

single unobservable affecting the intermediate inputs and investment in the first sample,

whereas additional additive errors are also affecting these variables in the second sample.

The exact simulation set-up is described in the Appendix. We then apply the method of

OLS, ACF and ours (HH) to estimate the structural parameters of the labor and capital

elasticities. The estimation results are presented in Table 2 and Table 3.

Table 2: The Estimation Results with Perfect Proxy Variables, with Simulated Data

Parameters (True Value)
Labor Elasticity (0.625) Capital Elasticity (0.375)

Mean Std. Dev. RMSE Mean Std. Dev. RMSE
OLS 0.957 0.004 0.332 0.078 0.004 0.298
ACF 0.636 0.022 0.025 0.365 0.021 0.023
HH Parametric 0.621 0.021 0.021 0.380 0.023 0.024
HH SNP 0.620 0.021 0.021 0.381 0.023 0.024

Table 3: The Estimation Results with Mismeasured Proxy Variables, with Simulated Data

Parameters (True Value)
Labor Elasticity (0.625) Capital Elasticity (0.375)

Mean Std. Dev. RMSE Mean Std. Dev. RMSE
OLS 0.957 0.005 0.332 0.078 0.005 0.297
ACF 0.832 0.010 0.207 0.205 0.011 0.171
HH Parametric 0.621 0.034 0.035 0.374 0.031 0.031
HH SNP 0.622 0.035 0.035 0.373 0.031 0.031

Table 2 shows the estimation results for the sample with the latent productivity being the

single unobservable in the demand of the proxy variables. We do not compute the LP or OP

estimates because of the identification issue pointed out by ACF. The coefficients estimated

using the methods, except for OLS, are all very similar. Thus, without additional errors in

the input/investment demand functions, both ACF and our method (HH parametric and

HH SNP) can control for endogeneity caused by the unobserved productivity. Table 3 shows

the comparison of the estimates when the demands of the intermediate inputs/investment

are also affected by other unobserved factors. In this case, as we have argued, the ACF
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method cannot fully control for the unobserved productivity. The ACF and OLS estimates

are biased in the same direction, with ACF having a smaller bias relative to OLS. Our

Parametric and SNP estimates are much closer to true values than OLS and ACF estimates,

and achieve significant reductions in the root mean squared error relative to the OLS and

ACF estimates.

Given the above Monte Carlo evidence, one can build a test of measurement error, for

example, by comparing our estimates to the ACF estimates. Under the null hypothesis that

the inputs and investment are not affected by unobserved factors other than productivity,

the two methods should produce close estimates.

6.2 Chilean Manufacturing Industry Data

We use an eight-year plant-level panel, from 1979 to 1986, for the Chilean manufacturing

industries to illustrate our method. The data are the same as those used by Liu (1991), LP

and ACF. We only briefly describe the data here. Readers are referred to Liu (1991) and

LP for the details about the data.

The panel is from an annual census of the Chilean manufacturing industry, covering all

plants with at least ten employees. The data we use include revenue (the measure of output,

net of intermediate inputs), labor, capital, and the intermediate inputs of electricity and

material. All the variables are measured in 1980 Chilean Pesos, deflated using their own

annual price deflators. The capital input is measured by the total value of machineries,

buildings and vehicles at each plant. The labor input is measured by the total wage for

both blue collar and white collar workers. Liu (1991) gives the details of how the capital

input is constructed. The intermediate inputs are measured by the net purchases of the

inputs in each year. These intermediate input variables, especially the material, are likely

measured with errors since the inventories are not observed. The material input is positive

for over 99 percent observations. The electricity input is also positive for more than 90

percent observations in most industries. However, only less than half of the observations of

investment are nonzero.

We follow LP and ACF by focusing on the Food Products industry (311), which has much

larger number of plants and observations than the other three industries that LP and ACF

also looked at. Table 4 gives the number of plants and observations for each industry in the

data.
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Table 4: The Plants and Observations in the Four Industries
Industry Num. of plants Num. of observations

Food (311) 926 4699
Textile (321) 193 803

Wood Products (331) 174 686
Metal (381) 258 1101

In our estimation, we use polynomials to approximate the unknown input demand functions

in the model. Particularly, we specify the material and electricity demand functions as

follows

µt (kt, lt, ωt) = γ0 + γ1lt + γ2kt + γ3l
2
t + γ4k

2
t + γ5ktlt +(

γ6 + γ7lt + γ8kt + γ9l
2
t + γ10k

2
t + γ11ktlt

)
ωt

ψt (kt, lt, ωt) = λ0 + λ1lt + λ2kt + λ3l
2
t + λ4k

2
t + λ5ktlt +(

λ6 + λ7lt + λ8kt + λ9l
2
t + λ10k

2
t + λ11ktlt

)
ωt

The approximation is linear in the latent productivity, which simplifies the computation of

the likelihood function and is appropriate given the assumption of Hicks-neutral produc-

tivity. Furthermore, we assume that the productivity process to be AR(1) also to facilitate

computation. All the density functions are approximated by second-order Hermite series.

Following LP, we also allow the input demand functions to be different across the three pe-

riods in the eight years in the data (1979-1981, 1982-1983, and 1984-1986). Our estimates

are computed as described in (7), using material and electricity as the two proxy variables.

Those of LP and ACF are computed using material and electricity separately.

All estimates are presented in Table 5. First, we compare our SNPMLE estimates to those

obtained using previous methods. The estimates of the labor elasticity using LP and ACF’s

methods range from 0.68 (LP(M)) to 0.87 (ACF(E)). Our estimate of the labor elasticity,

0.54, is significantly smaller than all these estimates. In comparison, all the estimates of the

capital elasticity are similar, which are around 0.40. For the implied returns to scale, our

estimate is quite close to one, while the previous estimates all suggest increasing returns

to scale to some extent. As the labor input is normally more variable than the capital

input, the labor elasticity tend to be overestimated when the latent productivity is not

well controlled for. The comparison of the estimates suggests that our method can be a

useful alternative when the single unobservable assumption is not appropriate for the proxy

variables.

In the parametric version of our model, we assume that the conditional distributions in the
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likelihood functions are normal distributions. The parametric estimates are close to our

SNP estimates. As the parametric model is very easy to code and compute, we use it to

find a reasonable guess for the parameters in the SNP model. It could also be a useful

substitute in the preliminary analysis in practice.

It is also interesting to check how the inputs demand varies with the latent productivity.

Given the Hicks-neutral productivity, we should expect inputs demand to increase with

productivity, controlling for the other factors, that is, the slopes of the intermediate inputs

demand with respect to productivity should be positive at all values of labor and capital.

Figure 1-Figure 3 (see Appendix) present our estimates of the slopes of material and elec-

tricity demand with respect to productivity at all values of labor and capital in the data.

From the graphs, we see that the slopes of the input demand functions are positive at almost

all values of labor and capital across all three periods. The only exception is that, in Figure

3, at a few small values of capital and labor the slope of the material demand is slightly

negative in the third period (1984-1986). The input demand slopes also vary widely with

capital and labor. The input demand increases with productivity more quickly at plants

with large capital input and/or large labor input. The relationship between the input de-

mand slope and the capital and labor input are relatively stable across all three periods.

In general, the estimated relation between the intermediate inputs and productivity seem

quite reasonable.

Table 5: Estimation Results, with the Chilean Manufacturing Data

Parameters

Labor Capital Return to Scale

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev

Food Industry (311)

OLS 1.080 0.042 0.336 0.025 1.416 0.026

LP (M) 0.676 0.037 0.455 0.038 1.131 0.035

LP (E) 0.765 0.040 0.446 0.032 1.210 0.034

ACF (M) 0.842 0.048 0.371 0.037 1.212 0.034

ACF (E) 0.865 0.047 0.379 0.031 1.244 0.032

HH parametric (M&E) 0.610 0.032 0.372 0.019 0.982 0.039

HH SNP (M&E) 0.539 0.071 0.415 0.030 0.954 0.047

Note: (M) and (E): material input and electricity input as the proxy variables. The standard deviations are bootstrapped.
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7 Conclusions

In this paper, we proposed a new method to estimate production functions using panel

data. Our method provides the robustness that is very important when the proxy variables

used by OP, LP and ACF are affected not only by the latent productivity, but also by some

other unobserved factors. In addition, the method frees up some important identification

sources that were not applicable in the methods of OP, LP and ACF. In view of the large

number of applications based on the previous methods, we believe that our contribution

to this literature will be of value to future studies of various issues centered around firm

productivity and production functions.
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Appendix A: Monte Carlo Simulation Set-up

In this appendix, we describe the model we used to simulate the random samples used

in our Monte Carlo exercise. For the simulation, we assume the following Cobb-Douglas

production for our simulation:

Yt = exp (ωt + ηt)L
βl
t K

βk
t Mβm

t Uβut

where Mt and Ut are the static intermediate inputs of material and electricity; ωt follows

an AR (1) process

ωt = ρωt−1 + ξt

; and ηt and ξt are i.i.d across time and firms. We set the equilibrium price for the output

Yt as 1, and the unit price of material and electricity input and wage as pm, pu and pl,

respectively. We let Lt be determined in period t − 1, after Kt is determined, without

the observing ηt and ξt. And Mt and Ut are determined simultaneously in period t after

observing Lt and Kt. We let Mt, Ut and Lt to be affected by some error terms (unobserved

by econometrician) in addition to by productivity. Denote ∆ ≡ logE (exp (ηt)). Then we

have the following demand functions for material:

m∗
t =

1

1− βm − βu

[
∆+ (1− βu) log

βm
pm

+ βu log
βu
pu

+ βllt + βkkt + ωt

]
and for electricity:

u∗t =
1

1− βm − βu

[
∆+ βm log

βm
pm

+ (1− βm) log
βu
pu

+ βllt + βkkt + ωt

]
The material and electricity inputs are measured with errors as follows:

mt = m∗
t + εt

ut = u∗t + vt

Given the optimal material and electricity inputs, the expected output in the period t given

the information in period t− 1 would be:

E (Yt|ωt−1) = ∆1 exp (ρω̃t−1)K
β̃k
t Lβ̃lt

where

∆1 ≡

(
E (exp (ηt))

(
βm
pm

)βm (βu
pu

)βu) 1
1−βm−βu

E
(
exp

(
ξ̃t

))



36

and x̃ ≡ x
1−βm−βu for any parameter or variable x. So, the labor demand function can be

derived as

lt =
1

1− β̃l

[
log∆1 + log

β̃l
pl

+ β̃kkt + ρω̃t−1

]
+ ϵt

where ϵt is an unobserved factor affecting labor demand. The value-added (net of the costs

of intermediate inputs) production function in log form is

y′t = log∆2 + β̃llt + β̃kkt + ρω̃t−1 + ξ̃t + log

(
exp (ηt)

E (exp (ηt))
+ βm + βu

)

∆2 ≡

(
E (exp (ηt))

(
βm
pm

)βm (βu
pu

)βu) 1
1−βm−βu

where y′t is value-added. Finally, we assume the following investment equation:

it−1 = γ0 + γ1kt−1 + γ2ωt−1 + ζt−1

; and that the capital accumulates according to the following equation:

kt = kt−1 + it−1

where it−1 is investment; and ζt−1 is an unobserved factor affecting investment. In the

simulation, the error terms, ηt, εt, vt, ϵt and ζt are mutally independent random variables

from the standard Normal distributions. For estimation, we use mt−1 and ut−1 as the two

proxy variables.
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Appendix B: Figures

Figure 1: The Slope of Input Demand with Regard to the Latent Productivity, 1979-1981
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Figure 2: The Slope of Input Demand with Regard to the Latent Productivity, 1982-1983
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Figure 3: The Slope of Input Demand with Regard to the Latent Productivity, 1984-1986


