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Abstract

The so-called leverage hypothesis is that negative shocks to prices/returns affect volatility

more than equal positive shocks. Whether this is attributable to changing financial leverage is

still subject to dispute but the terminology is in wide use. There are many tests of the lever-

age hypothesis using discrete time data. These typically involve fitting of a general parametric

or semiparametric model to conditional volatility and then testing the implied restrictions on

parameters or curves. We propose an alternative way of testing this hypothesis using realized

volatility as an alternative direct nonparametric measure. Our null hypothesis is of conditional

distributional dominance and so is much stronger than the usual hypotheses considered previ-

ously. We implement our test on a number of stock return datasets using intraday data over a

long span. We find powerful evidence in favour of our hypothesis.
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1 Introduction

The so-called leverage hypothesis is that negative shocks to stock prices affect their volatility more

than equal magnitude positive shocks. Whether this is attributable to changing financial leverage is

still subject to dispute (Engle and Ng (1993) and Figlewski and Wang (2000)), but the terminology is

in wide use. There are many tests of the leverage hypothesis using discrete time data. These typically

involve fitting of a general parametric or semiparametric model to conditional volatility and then

testing the implied restrictions on parameters or curves, see for example Nelson (1991), Engle and

Ng (1993), and Linton and Mammen (2005). There is also an important recent literature on leverage

effects in continuous time. Wang and Mykland (2009, 2012) propose a nonparametric estimator of

a class of leverage parameters inside a very general class of continuous time stochastic processes.

They propose an estimator that is quite simple and easily studied and provide its limiting properties.

They extend the theory to allow for measurement error and therefore more complicated estimators

of volatility and leverage. Their modified procedure is consistent and asymptotically mixed normal

in this case too, although the rate of convergence is slower. They provide the means to conduct

inference about the leverage parameter, although their application is more towards prediction of

volatility and they demonstrate the value added that their leverage effect has in this purpose. Ait-

Sahalia, Fan, and Li (2011) also investigate the leverage effect “puzzle” within the continuous time

framework. The puzzle is that natural estimators of the leverage effect based on high frequency data

are usually very small and insignificant. They take apart the sources of this finding and interpret

it as bias due to microstructure noise issues, and they propose a solution to this based on a bias

correction. Empirically their method seems to uncover a stronger leverage effect.

We propose a way of testing the leverage hypothesis nonparametrically without requiring a spe-

cific parametric or semiparametric model. Our null hypothesis is that the conditional distribution of

volatility given negative returns and past volatility dominates in the first order sense the distribution

of volatility given positive returns and past volatility. This hypothesis is in some sense more general

than those considered previously since we refer to the distribution of outcomes rather than just cor-

relations, although Wang and Mykland (2012) also allow for the leverage effect to be defined through

any (given) function F of volatility. Our distribution theory builds on work of Linton, Maasoumi,

and Whang (2005) who considered tests of unconditional dominance for time series data. Linton,

Song, and Whang (2010) consider conditional dominance tests but inside specific semiparametric

models. We obtain the limiting distribution, which is a functional of a Gaussian process. Since the
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limit distribution depends in a complicated way on nuisance parameters, we propose an inference

method based on subsampling. Our test is consistent against a general class of alternatives. We use

realized volatility as a direct nonparametric measure of volatility. This allows us to avoid specifying

any model for volatility and makes our test model free. We do assume some high level conditions like

stationarity and mixing properties of the data, but these can be generalized in various directions.

Our methodology sits between discrete time econometrics and continuous time econometrics. If the

volatility measure we use can be interpreted as an unbiased estimator of ex ante volatility, then our

hypothesis can be interpreted inside the typical discrete time framework.

We apply our testing methodology to real data. We focus on whether there is a leverage effect

between daily conditional variances and daily lagged returns in S&P500 (cash) index and individual

stocks. The stocks we consider are five constituents of the Dow Jones Industrial Average: Microsoft,

IBM, General Electronic, Procter& Gamble and 3M. The sample period covers 1993 to the end of

2009, which includes several very volatile episodes as well as some more tranquil ones. We find strong

evidence in favour of our leverage effect in this data. We also cast several robustness checks and

compare our results with some newly developed methods, and find these further results lend supports

to our conclusions.

2 Hypotheses of interest

We suppose that we observe a process {yt, xt, rt}Tt=1 that is either stationary or has stationary tran-

sitions, where xt ∈ Rdx for some dx. Let

F+(y|x) = Pr (yt ≤ y | rt−1 ≥ 0, xt = x)

F−(y|x) = Pr (yt ≤ y | rt−1 < 0, xt−1 = x) .

We consider the hypothesis

H0 : F+(y|x) ≥ F−(y|x) a.s. for all (y, x) ∈ Y × X

H1 : F+(y|x) < F−(y|x) for some (y, x) ∈ Y × X ,

where Y ⊂ R denotes the support of yt and X ⊂ Rdx denotes the support of xt. A leading example

would be to take yt = σ2
t and xt = σ2

t−1, in which case the hypothesis is effectively that bad news

on returns leads to a bigger effect on the conditional distribution of future volatility than good news
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whatever the current level of volatility. In this case, we can take Y = X ⊂ R+. Suppose that σ2
t was

generated from a GJR GARCH(1,1) process, i.e.,

σ2
t = ω + βσ2

t−1 + γ+r
2
t−11(rt−1 > 0) + γ−r

2
t−11(rt−1 ≤ 0). (1)

The case where γ− > γ+ corresponds to the presence of a leverage effect. In this case the distribution

F−(y|x) first order dominates F+(y|x) for all x.

We allow for the more general formulation than this example for practical reasons. In view of the

possible strong dependence in volatility, we might consider conditioning on xt = (σ2
t−1, . . . , σ

2
t−p) ∈ Rp

instead of just on σ2
t−1. In practice, however, this is likely to work poorly for large p because of the

curse of dimensionality. We consider a compromise approach in which we condition on a lower di-

mensional transform of a vector of lagged volatilities. Specifically, let h : Rp → Rdx for dx < p

be a measurable function and replace σ2
t−1 by xt = h(σ2

t−1, . . . , σ
2
t−p). For example, h(x1, . . . , xp) =∑p

j=1 cjxj for known c1, . . . , cp. In this case we consider the conditional distributions F+(y|x) =

Pr
(
σ2
t ≤ y | rt−1 ≥ 0, h(σ2

t−1, . . . , σ
2
t−p) = x

)
and F−(y|x) = Pr

(
σ2
t ≤ y | rt−1 < 0, h(σ2

t−1, . . . , σ
2
t−p) = x

)
.

Letting

π+
0 (x) = Pr(rt−1 ≥ 0|xt = x)

π−0 (x) = Pr(rt−1 < 0|xt = x),

we can write the above hypotheses by the conditional moment inequalities:

H0 : E

[
1(yt ≤ y)

(
1(rt−1 < 0)

π−0 (xt)
− 1(rt−1 ≥ 0)

π+
0 (xt)

)∣∣∣∣xt = x

]
≤ 0 for all (y, x) ∈ Y × X ,

H1 : E

[
1(yt ≤ y)

(
1(rt−1 < 0)

π−0 (xt)
− 1(rt−1 ≥ 0)

π+
0 (xt)

)∣∣∣∣xt = x

]
> 0 for some (y, x) ∈ Y × X ,

or equivalently,

H0 : E
[
1(yt ≤ y)

{
π+
0 (xt)− 1(rt−1 ≥ 0)

}∣∣xt = x
]
≤ 0 for all (y, x) ∈ Y × X

H1 : E
[
1(yt ≤ y)

{
π+
0 (xt)− 1(rt−1 ≥ 0)

}∣∣xt = x
]
> 0 for some (y, x) ∈ Y × X ,

using the fact π+
0 (x) = 1− π−0 (x) > 0 for all x. It is well known that the hypotheses of H0 and H1

can be equivalently stated using the unconditional moment inequalities

H0 : E
[
1(yt ≤ y)g (xt)

{
π+
0 (xt)− 1(rt−1 ≥ 0)

}]
≤ 0 for all (y, g) ∈ Y × G, (2)

H1 : E
[
1(yt ≤ y)g (xt)

{
π+
0 (xt)− 1(rt−1 ≥ 0)

}]
> 0 for some (y, g) ∈ Y × G, (3)
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where g is an instrument that depends on the conditioning variable xt and G is the collection of

instruments, see, e.g., Andrews and Shi (2011) and the references therein. In this paper, we take

G =
{
ga,b : ga,b(x) = Πdx

i=11 (ai < xi ≤ bi) for some a, b ∈ X
}
,

see Andrews and Shi (2011) for more examples of instruments. We will use the relation (2) to

generate a test statistic.

The case of first order dominance between the conditional distributions F−(y|x), F+(y|x) may

be quite strong, and one might consider the weaker concept of second order dominance. This would

allow for more general functional forms for volatility than considered above and subtler relationships

between the distributions than hitherto assumed.

We emphasize the null hypothesis of a leverage effect. Instead, one might take the hypothesis

to be the absence of a leverage effect. Specifically, we might consider the conditional independence

hypothesis, i.e.,

σ2
t is independent of sign (rt−1) given σ2

t−1. (4)

This hypothesis would be consistent with a GARCH(1,1) process for σ2
t , namely, σ2

t = ω+βσ2
t−1+γr

2
t−1

for positive parameters ω, γ, β. The GJR process (1) is incompatible with this hypothesis. In fact,

the GJR process is incompatible with (4) whenever γ− 6= γ+. In general, the alternative hypothesis

to (4) contains many processes that do not represent what we think a leverage effect should be, and

we should properly define the null hypothesis in a much more complicated way (in the parametric

case this is straightforward, but not so in the nonparametric case), which is why we do not pursue

this hypothesis here further.1

3 Test Statistic

Let π̂+ be nonparametric kernel estimators of π+
0 , i.e.,

π̂+(x) =

∑T
t=2 1(rt−1 ≥ 0)Kh (x− xt)∑T

t=2Kh (x− xt)
,

1This hypothesis could be tested using the methods developed in Linton and Gozalo (1996) for example.
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where K : Rdx → R is a kernel function and Kh(·) = K(·/h)/h and h is a bandwidth parameter

satisfying the assumptions below. Now the hypothesis can be tested based on the following statistic

m̄T (y, g, π) =
1

T

T∑
t=1

1(yt ≤ y)g (xt) {π(xt)− 1(rt−1 ≥ 0)} .

We consider Kolmogorov Smirnov-type (KS) and Cramér-von Mises-type (CM) test statistics, defined

by

ST = sup
(y,g)∈Y×G

√
Tm̄T (y, g, π̂+) and

S∗T =

∫
max

{
(
√
Tm̄T (y, g, π̂+), 0

}2

dQ(y, g),

respectively, where Q is a weighting function (i.e., probability measure) on Y × G and the integral

is over Y × G. Below, for brevity, we mainly discuss the asymptotic properties of ST , but we expect

that analogous results hold for S∗T .

4 Asymptotic Theory

We suppose that we observe a process {yt, xt, rt}Tt=1. In practice, we have only an estimate σ̂2
t of σ2

t

computed from high frequency data. Barndorff-Nielsen and Shephard (2002) have shown that the

realized volatility consistently estimates σ2
t at rate n

−1/2
t , where nt is the number of high frequency

observations within day t. We expect that nt is very large relative to T . In the sequel we shall ignore

the effect that estimation of volatility from high frequency data has.

4.1 The null distribution

Let Xε be an ε- neighborhood of X for some ε > 0. For some constant B <∞,let

Π =
{
π : ‖π(·)‖q,Xε

≤ B
}
, (5)

where q is an integer that satisfies q > dx/2. For nonnegative integers k, λ and ω with ω ≥ λ, we

define the following class of kernels:
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Kk,λ,ω = { K(·) : Rk → R :

∫
K(x)dx = 1,

∫
xµK(x)dx = 0

∀1 ≤ |µ| ≤ ω − λ− 1,

∫
|xµK(x)|dx <∞ ∀|µ| = ω − λ,

DµK(x)→ 0 as ‖x‖ → ∞ ∀µ with |µ| < λ,

sup
z∈Rk

|Dµ+ejK(x)|(‖x‖ ∨ 1) <∞ ∀µ with |µ| ≤ λ ∀j = 1, ..., k,

and K(·) is zero outside a bounded set in Rdx ,

where ej denotes the j-th elementary dx-vector.} .

Assumption A

1. (i) {(yt, xt, rt) : t ≥ 1} is a sequence of strictly stationary strong mixing random variables

with mixing numbers of size −2(4dx + 5)(dx + 2). (ii) X is an open bounded subset of Rdx with

minimally smooth boundary.

2. (i) The distribution of xt is absolutely continuous with respect to Lebesgue measure with density

f(x). (ii) infx∈Xε f(x) > 0, Dµf(x) exists and is continuous on Rdx and supx∈Xε
|Dµf(x)| <

∞ ∀µ with |µ| ≤ max{ω, q}, where ω is a positive integer that also appears in the other

assumptions below. (iii) The conditional distribution F (y|x) of yt given xt = x has bounded

density f(y|x) for almost all x ∈ Rdx .

3. Dµ
[
π+
0 (x)f(x)

]
exists and are continuous on Rdx and supx∈Xε

∣∣Dµ
[
π+
0 (x)f(x)

]∣∣ <∞ ∀µ with

|µ| ≤ max{ω, q}.

4. K(·) ∈ Kdx,0,ω
⋂
Kdx,q,q.

5. The bandwidth parameter h satisfies Tmin{ 1
2(dx+q)

, 1
4dx
}h→∞ and T

1
2ωh→ 0.

Assumption A1 requires that xt lies in an open bounded set with minimally smooth boundary.

Examples of sets with minimally smooth boundaries include open bounded sets that are convex or

whose boundaries are C1-embedded in Rdx . Finite unions of aforementioned type whose closures are

disjoint also have minimally smooth boundaries. The boundedness assumption is not restrictive,

because, if needed, we can transform the values of xt into a compact interval, say [0, 1]dx , via strictly
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increasing transformation. Assumptions A2 and A3 imposes smoothness on f and π+
0 . They are

needed to ensure that the realization of π̂+ are smooth with probability tending to one and therefore

the stochastic equicontinuity condition of a stochastic process {ν̄T (·, ·, ·) : T ≥ 1} that appears in

our proof can be verified. The use of higher-order kernel K(·) in Assumption A4 is due to the need

to establish T κ convergence of the kernel estimators f̂ , π̂+(x) (see (20) and (21) in Appendix) for

some sufficiently large κ ≥ 1/4. Assumption A5 imposes some conditions on the rate of convergence

of bandwidth to zero. The conditions are compatible if ω is sufficiently large. These conditions can

be relaxed, if needed, to allow for data-dependent methods of choosing bandwidth parameters, e.g.

cross-validation or plug-in procedures.

We now derive the asymptotic of the test statistic under the null hypothesis. Define the empirical

processes in (y, g) ∈ R× G

νT (y, g) =
√
T {ξT (y, g)− EξT (y, g)} , (6)

where

ξT (y, g) =
1

T

T∑
t=1

{1(yt ≤ y)− F (y|xt)} g (xt)
{
π+
0 (xt)− 1(rt−1 ≥ 0)

}
. (7)

Let ν(y, g) be a mean zero Gaussian process with covariance function given by

C((y1, g1), (y2, g2)) = lim
T→∞

cov (νT (y1, g1), νT (y2, g2)) .

The limiting null distribution of our test statistic is given in the following theorem.

Theorem 1. Suppose that Assumption A holds. Then, under the null hypothesis H0,

ST ⇒

{
sup(y,g)∈B [ν(y, g)] if B 6= ∅
−∞ if B = ∅

,

where B = {(y, g) ∈ Y × G : E
[
1(yt ≤ y)g (xt)

{
π+
0 (xt)− 1(rt−1 ≥ 0)

}]
= 0}.

Theorem 1 shows that our test statistic has a non-degenerate limiting distribution on the boundary

of the null hypothesis, i.e. the case where the ”contact set” (i.e., the subset of Y × G where the null

hypothesis (2) holds with equality) is non-empty. Since the distribution depends on the true data

generating process, we cannot tabulate it once and for all. We suggest estimating the critical values

by a subsampling procedure.
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4.2 Critical Values and Consistency

We first define the subsampling procedure. With some abuse of notation, the test statistic ST can

be re-written as a function of the data {Wt : t = 1, . . . , T} :

ST =
√
TτT (W1, . . . ,WT ),

where τT (W1, . . . ,WT ) is given by sup(y,g)∈Y×G m̄T (y, g, π̂+). Let

GT (·) = Pr
(√

TτT (W1, . . . ,WT ) ≤ ·
)

(8)

denote the distribution function of ST . Let τT,b,t be equal to the statistic τb evaluated at the subsample

{Wt, . . . ,Wt+b−1} of size b, i.e.,

τT,b,t = τ(Wt,Wt+1, . . . ,Wt+b−1) for t = 1, . . . , T − b+ 1.

We note that each subsample of size b (taken without replacement from the original data) is indeed

a sample of size b from the true sampling distribution of the original data. Hence, it is clear that one

can approximate the sampling distribution of ST using the distribution of the values of τT,b,t computed

over T −b+1 different subsamples of size b. That is, we approximate the sampling distribution GT of

ST by

ĜT,b(·) =
1

T − b+ 1

T−b+1∑
t=1

1
(√

bτT,b,t ≤ ·
)
.

Let gT,b(1− α) denote the (1− α)-th sample quantile of ĜT,b(·), i.e.,

gT,b(1− α) = inf{w : ĜT,b(w) ≥ 1− α}.

We call it the subsample critical value of significance level α. Thus, we reject the null hypothesis at

the significance level α if ST > gT,b(1− α). The computation of this critical value is not particularly

onerous, although it depends on how big b is. The subsampling method has been proposed in Politis

and Romano (1994) and is thoroughly reviewed in Politis, Romano, and Wolf (1999). It works in

many cases where the standard bootstrap fails: in heavy tailed distributions, in unit root cases, in

cases where the parameter is on the boundary of its space, etc.

We now show that our subsampling procedure works under a very weak condition on b. In many

practical situations, the choice of b will be data-dependent, see Linton, Maasoumi and Whang (2005,
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Section 5.2) for some methodology for choosing b. To accommodate such possibilities, we assume

that b = b̂T is a data-dependent sequence satisfying

Assumption B: P [lT ≤ b̂T ≤ uT ] → 1 where lT and uT are integers satisfying 1 ≤ lT ≤ uT ≤
T, lT →∞ and uT/T → 0 as T →∞.

The following theorem shows that our test based on the subsample critical value has asymptoti-

cally correct size:

Theorem 2. Suppose Assumptions A and B hold. Then, under the null hypothesis H0,

lim
T→∞

Pr[ST > gT,b̂T (1− α)] ≤ α,

with equality holding if B 6= ∅, where B is defined in Theorem 1.

Theorem 2 shows that our test based on the subsampling critical values has asymptotically valid

size under the null hypothesis and has asymptotically exact size on the boundary of the null hypoth-

esis. Under additional regularity conditions, we can extend this pointwise result to establish that

our test has asymptotically correct size uniformly over the distributions under the null hypothesis,

using the arguments of Andrews and Shi (2011) and Linton, Song and Whang (2010). For brevity,

we do not discuss the details of this issue in this paper.

We next establish that the test ST based on the subsampling critical values is consistent against

the fixed alternative H1.

Theorem 3. Suppose that Assumptions A and B hold. Then, under the alternative hypothesis

H1,

lim
T→∞

Pr[ST > gT,b̂T (1− α)] = 1.

5 Empirical Results

In this section we perform the conditional leverage hypothesis test using real data. We focus on

whether there is a leverage effect between daily conditional variances and daily lagged returns in

S&P500 (cash) index and individual stocks. The stocks considered here are five constituents of Dow

Jones Industrial Average (DJIA): Microsoft (MSFT), IBM (IBM), General Electronic (GE), Procter&

Gamble (PG) and 3M (MMM). The samples used for the test span from Jan-04-1993 to Dec-31-2009

(4,283 trading days). We first introduce two estimators for estimating the daily conditional variance

σ2
t . Then we detail how to construct the test statistic with the estimated σ2

t and present the empirical

results.
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5.1 Estimating The Daily Conditional Variance

For estimating the daily conditional variance σ2
t , we first consider the realized variance estimator

RVt:

RVt =
nt∑
i=1

r2i,t,

where

ri,t = logP

(
t− 1 +

i

nt

)
− logP

(
t− 1 +

i− 1

nt

)
is the ith intraday log return on day t, nt is the total number of intraday log return observations on

day t, and P (t− 1 + i/M) is the intraday asset price at time stamp t− 1 + i/nt.

The second estimator we consider for estimating σ2
t is the squared intraday range estimator RG2

t

(Garman and Klass, 1980; Parkinson, 1980):

RG2
t =

IG2

4 log 2
,

where

IG = max
t−1≤τ<t

logP (τ)− min
t−1≤τ<t

logP (τ) ,

and P (τ) is the intraday asset price at time stamp τ on day t, t− 1 ≤ τ < t. The constant 4 log 2 is

an adjustment factor to scale IG2 in order to obtain an unbiased estimation for σ2
t . Together with

other mild regular conditions, RG2
t is a conditionally unbiased estimator for σ2

t .

Let RV 1min
t and RV 5min

t denote 1-min and 5-min realized variances2. Figure 1 shows time series

plots of RV 1min
t , RV 5min

t , RG2
t and daily return Rt for S&P500 index and the five constituents of

DJIA. Here the Rt of S&P500 is daily index return, and of the DJIA stocks are daily holding period

returns excluding dividends. From the Figure, during the 2008 financial crisis period, all the five

stocks and S&P500 show huge fluctuations in daily returns and conditional variances, while in other

periods, these fluctuations are relatively mild.

Table 1 shows some summary statistics of these daily returns and estimated daily conditional

variances. Since the initial estimations on the conditional daily variances are very small, we scale

them by 104 before we calculate the summary statistics. From the Table, for individual stocks,

it can be seen that their RG2
t have lower mean values but higher standard deviations than the

realized variance estimators, which may suggest that the squared intraday range estimator has a

2Detail discussions on the data used for the estimations can be found in the Appendix B.
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downward biasness in these cases. The squared intraday range estimator also has a lower first order

autocorrelation (denoted by ACF(1)) than the realized variances. Comparing the realized variances

of the five stocks, we can find ranks of magnitudes of the price fluctuations are consistent: MSFT and

MMM are the most volatile and least volatile stocks among the five stocks. The squared intraday

range estimator, however, shows that PG is the least volatile stock, even though it still indicates

that MSFT has the largest volatility. Comparing with the individual stocks, S&P500 has less volatile

returns during the sample period: its estimated daily conditional variances have smaller mean values

than those of the five individual stocks. Overall, the mean values of the three estimated conditional

daily variances suggest that daily returns of S&P500 and the five stocks have substantially different

degrees of variations. In addition, all the estimated σ2
t have large sample standard deviations, which

indicates that the volatilities themselves also fluctuate significantly during the sample period. Finally,

as shown by previous research, the shapes of unconditional distributions of the estimated σ2
t are often

right-skewed and fat-tailed. From the high sample skewness and kurtosis shown in the table, the two

stylized empirical properties are also evident for our cases.

5.2 Unconditional Cross Correlation

We then have a look of how the daily conditional variances correlate with the daily returns. Figure

2 shows the sample (unconditional) cross correlations ρj between the three estimated σ2
t and Rt−j

for the five stocks of DJIA and S&P500 index. We set lag length j = −10, . . . , 10 (negative j means

lead return and lagged conditional variances). The horizontal dash lines in these plots are the 95%

confident bands for the cross correlations under the null of zero correlation.

From Figure 2 it can be seen that as j < 0, the sample cross correlation ρj gradually increases as

j approaches to zero, and then drops sharply from positive to negative as j becomes positive. As for

j > 0, the negative ρj instead converges slowly to zero as j grows. It also can be seen that the ρj’s for

the cases of j < 0 are overall larger and more statistically significant than those for the cases of j > 0,

and the result suggests that the cross correlations are asymmetric and the unconditional leverage

effects exist for the five DJIA stocks and S&P500 index. In addition, as for the contemporaneous

sample cross-correlations (j = 0), except for the cases of PG and S&P500, their values for the other

four DJIA stocks are almost closer to zero than the lead-lag cross correlations, and are also not

statistically significant. These insignificant contemporaneous correlations may suggest that volatility

feedback effects on contemporaneous returns are weak for these stocks on a daily basis.
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5.3 Conditional Hypothesis Test

As shown in the previous subsection, the unconditional cross correlations ρj between σ2
t and Rt−j

for the five stocks of DJIA and S&P500 index demonstrate asymmetric patterns. Will such leverage

effects still exist when we explicitly take the lag σ2
t into account? With the estimated daily conditional

variances at hand, we now use them to empirically construct the test statistic for the conditional

leverage hypothesis test. As shown in Section 3, the following test statistic can be used for testing

null hypothesis of (3):

τCj = sup
(y,g)∈χ×G

mj (y, g) ,

where

mj (y, g) = E
[
1
{
σ2
t ≤ y

}
g
(
σ2
t−1
) (
π+
j

{
σ2
t−1
}
− 1 {rt−j ≥ 0}

)]
and

π+
j (x) = Pr

(
rt−j ≥ 0|σ2

t−1 = x
)
,

Under the null of (3), τCj ≤ 0.

To practically evaluate τCj , we set the instrument function g
(
σ2
t−1
)

= 1
{
σ < σ2

t−1 ≤ σ
}

, and plug

σ̂2
t , σ̂

2
t−1 and Rt−j into the function m̄T shown in Section 3. An empirical version of mj (y, g) can be

̂̄mTj (y, σ, σ) =
1

Tj

T∑
t=j+1

1
{
σ̂2
t ≤ y

}
1
{
σ < σ̂2

t−1 ≤ σ
}{

π̂+
j

(
σ̂2
t−1
)
− 1 (Rt−j ≥ 0)

}
.

Here Tj = T − j and

π̂+ (x) =

∑T
t=j+1Kh

(
x− σ̂2

t−1
)
1 (Rt−j ≥ 0)∑T

t=j+1Kh

(
x− σ̂2

t−1
) ,

for j ≥ 1 and Kh (.) = K (./h) /h is a univariate kernel function. Moreover, we can decomposê̄mTj (y, σ, σ) as the difference between the following two terms:

m̂−Tj (y, σ, σ) =
1

Tj

T∑
t=j+1

1
{
σ̂2
t ≤ y, rt < 0

}
g
(
σ̂2
t−1
)
π̂+
j

(
σ̂2
t−1
)
,

m̂+
Tj

(y, σ, σ) =
1

Tj

T∑
t=j+1

1
{
σ̂2
t ≤ y, rt ≥ 0

}
g
(
σ̂2
t−1
)
π̂−j
(
σ̂2
t−1
)
.
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A feasible test statistic is

τ̂CTj = sup
(y,σ,σ)∈χ×χ×χ

̂̄mTj (y, σ, σ) .

The kernel function Kh (x) used here is the Gaussian kernel K (x) = (2π)−
1
2 exp (−(1/2)−1x2) .

To practically evaluate τ̂Cj , we apply the following settings. First, we fix the lower bound σ = 0

for reducing computational burden. Then to the intervals [mint=2,...,T σ̂
2
t , 1.1×maxt=2,...,T σ̂

2
t ] and[

mint=2,...,T σ̂
2
t−1, 1.1×maxt=2,...,T σ̂

2
t−1
]
, we assign each of them 100 grid points. From the 100× 100

points, we seek an optimal combination of (y, σ) to maximize ̂̄mj (y, 0, σ) .

Let τ̂CTj ,b,l be the statistic τ̂CTj evaluated at the following subsample of size b,{(
σ̂2
l , σ̂

2
l−1, Rl−j

)
,
(
σ̂2
l+1, σ̂

2
l , Rl+1−j

)
, . . . ,

(
σ̂2
l+b−1, σ̂

2
l+b−2, Rl+b−j−1

)}
,

for l = j + 1, . . . , T − b+ 1. We approximate the sampling distribution GC
Tj

of
√
Tj τ̂

C
j by

ĜC
Tj ,b

(.) =
1

T − b− j + 1

T−b+1∑
l=j+1

1
(√

bτ̂CTj ,b,l ≤ .
)
.

Let pTj = 1− GC
Tj

(√
Tj τ̂

C
Tj

)
be the p-value of

√
T τ̂CTj . In practice the p-value can be empirically

obtained by using

p̂Tj ,b = 1−ĜTj ,b

(√
T τ̂Tj

)
.

Let gCTj (1− α) denote the (1− α)-th quantile of GC
Tj

(.):

gCTj (1− α) = inf
{
ω : GC

Tj
(ω) ≥ 1− α

}
.

The gCTj (1− α) can be empirically approximated by

ĝCTj ,b (1− α) = inf
{
ω : ĜC

Tj ,b
(ω) ≥ 1− α

}
.

To illustrate how the test statistic behaves, we use MSFT as an example. Figure 3 shows plots

of the surfaces m̂−Tj (y, 0, σ), m̂+
Tj

(y, 0, σ), and ̂̄mj (y, 0, σ) against (y, σ) for j = 1 and 5 as RV 5min
t is

used as the estimate of σ2
t . The surfaces m̂−Tj (y, 0, σ) and m̂+

Tj
(y, 0, σ) are smooth and monotonically

increasing with y and σ, and visually they look almost the same. It also can be seen that the surfaces

of ̂̄mj (y, 0, σ) are not everywhere nonnegative, and after searching for their maximum values, we find
√
T1τ̂

C
T1

and
√
T5τ̂

C
T5

are around 0.0916 and 0.1101 respectively. With the same configurations as in

14



Figure 3, we show the empirical critical values ĝCTj ,b (1− α) over different subsample sizes in Figure

4. The subsample (1− α)-th quantile ĝCTj ,b (1− α) at different significant levels α often decrease

as the subsample size b increases. They also become more concentrated as b becomes large. It is

expected, since as the subsample size approaches the full sample size Tj, the approximated subsample

distribution ĜTj ,b (ω) will converge to the point mass 1
(√

bτ̂Tj ≤ ω
)

. Figure 5 shows a plot for the

corresponding empirical p-values over different subsample sizes. The empirical p-value of j = 5 is

larger and more stable than that of j = 1 as the subsample size varies. The empirical p-values

for both cases also show decreasing trends as b increases, which is consistent with the property

that ĜTj ,b (ω) becomes more concentrated as b approaches Tj. Over different subsample sizes, the

empirical p-value ranges from 0.977 to 0.340 for j = 1 and from 0.986 to 0.851 for j = 5. The results

support the claim that the leverage effects exist for MSFT.

As for more empirical results, Table 2 to 4 show the subsample critical values for the five stocks

and S&P500 when different estimated σ2 are used. We focus on the cases when the subsample size

b = 500, 1000 and 2000 and lag lengths of returns j = 1 and 5. In each table we also report the test

statistic
√
Tj τ̂

C
Tj

. Table 5 shows their corresponding empirical p-values. From these tables, it can be

seen that only in a few cases the conditional leverage hypothesis can be rejected. For instance, as

RV 1min
t is used, GE has

√
T1τ̂

C
T1

= 0.1996 and the null hypothesis of (3) can be rejected at α = 0.05

under ĜC
T1,2000

. Another example is IBM. When RV 1min
t and RG2 are used, its

√
T5τ̂

C
T5

are around

0.248 and 0.186 and the corresponding empirical p-values are around 0.062 and 0.074 when b = 2000.

For the rest cases, the results are consistent: the null hypothesis that F−j (y|x) first order dominates

F+
j (y|x) cannot be rejected for each j at α = 0.1, suggesting that given the lag conditional daily

variances, the leverage effects may still exist for the DJIA stocks and S&P500 index.

5.4 Robustness Checks

We then cast some robustness checks for our empirical results. Due to similar results from using

different integrated variance estimators and lag length of returns and to save space, we only present

results for the case of RV 1min
t and j = 1 in the following discussions.

In the previous subsection we showed the leverage effects may exist in our cases over the sample

period from Jan-04-1993 to Dec-31-2009. To see whether our results still hold within a certain period

od time, we divide the sample period into two subperiods: From Jan-04-1993 to Nov-30-2001 (2,248

trading days) and Dec-03-2001 to Dec-31-2009 (2,035 trading days), and cast the conditional test for
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each of them. The division of sample period is based on the U.S. recessions identified by the NBER:

The first subsample period spans the 2001 recession ending in Nov-2001, while the second one spans

the 2007-2009 recession ending in June-2009. Due to a smaller sample size in each subperiod, here we

set b = 500 and 1000 for the subsamping scheme. We show the results in Table 6. It can be seen that

except for MSFT with b = 1000 (with p-value equal to 0.0753), the conditional leverage hypothesis

cannot be rejected at the significant level 0.26 for the rest cases. The results for the subperiods

overall are consistent with those for the whole sample period, and for the five DJIA stocks and

S&P500 index, we conclude that the leverage effects may still exist within the two subperiods.

In the previous analysis we only set h
(
σ2
t−1, . . . , σ

2
t−p
)

= σ2
t−1, and we did not consider a more

general functional form of lagged σ2. We want to see whether a more complicated functional form

of h
(
σ2
t−1, . . . , σ

2
t−p
)

affects the test results. Here we let

h
(
σ2
t−1, . . . , σ

2
t−p
)

=
2

p+ 1

p−1∑
i=0

(
p− 1

p+ 1

)i
σ2
t−1−i, (9)

which is an approximation of EMA
(
σ2
t−1
)
, the exponential moving average of the conditional vari-

ances up to time t− 1, i.e.,

EMA
(
σ2
t−1
)

=
2

p+ 1
σ2
t−1 +

(
1− 2

p+ 1

)
EMA

(
σ2
t−2
)
,

where the term 2/(p + 1) is called the smoothing ratio. We set the parameter p equal to 5, 10

and 22, which correspond to daily observations in previous one week, two weeks and one month

respectively. Daily RV 1min
t−i , i = 1, . . . , p are used to replace σ2

t−i, i = 1, . . . , p in (9) in the test. Up

panel of Table 7 shows results of the leverage hypothesis test conditioning on h
(
RV 1min

t−1 , . . . , RV 1min
t−p

)
and one day lagged returns Rt−1 with the subsample window length b = 2000 for constructing the

empirical distribution of the test statistic. It can be seen that except for MSFT with p = 10 (which

has empirical p-value 0.0039), the rest results still hold as in the previous subsection: The null

hypothesis cannot be rejected at a moderately significant level and there is evidence for the presence

of the leverage effects.

We can also specify h
(
σ2
t−1, . . . , σ

2
t−p
)

as a predictive equation on σ2
t as σ2

t−1, . . . , σ
2
t−p are used,

i.e., h
(
σ2
t−1, . . . , σ

2
t−p
)

= Et−1
(
σ2
t |σ2

t−1, . . . , σ
2
t−p
)
. With the realized variances at hand, a practical

way to constructing the predictive equation is to estimate the HAR-RV (heterogeneous autoregressiv

realized variance) regression:

RVt = αD + βRDRVt−1 + βRWRVt−1,week + βRMRVt−1,month + εt, (10)
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The variables in the above regression

RVt−1,week =
1

5

4∑
i=0

RVt−1−i,

RVt−1,month =
1

22

21∑
i=0

RVt−1−i

are called normalized weekly and monthly realized variances. We run the HAR-RV regression (10)

in the fashion of real time forecasting with RV 1min
t as the inputs. The predictive regression at each

period t is estimated by using an expanding window scheme with initial window length equal to 22.

At time t− 1, the real time projected realized variance for time t, denote by R̂Vt
1min

, is a function of

RV 1min
t−1 , . . . , RV 1min

t−22 . Bottom panel of Table 7 shows the leverage effect test conditioning on R̂Vt
1min

and lagged daily Rt−1 with the subsample window length b = 2000. The values of the test statistic

are small (with range from 0.0087 to 0.1433) and the empirical p-values are all far larger than the

frequently used rejection levels. The results show that the leverage effects may exist even when we

include information for predictions of future realized variances.

5.5 Alternative Methods

In this subsection we use three alternative methods on detecting the leverage effects to check whether

our conclusions in previous subsections still hold. The first one is based on estimating the leverage

parameters in a parametric model. The other two are methods recently developed by Wang and

Mykland (2012) and Ait-Sahalia et al. (2012), which are based on the framework of continuous time

finance and high frequency data estimations. We find results from these methods further support

our previous analysis.

We first adopt a simple and direct way to test whether the leverage effects exist: Estimating

the HAR-RV model (heterogeneous autoregressive realized variance) with additional terms for the

leverage effects:

RVt = αD + βRDRVt−1 + βRWRVt−1,week + βRMRVt−1,month +

γ+R
2
t−1 × 1 {Rt−1 ≥ 0}+ γ−R

2
t−1 × 1 {Rt−1 < 0}+ εt (11)

and testing whether γ− > γ+. We specify the null hypothesis as H0 : γ− ≤ γ+, and if it is rejected,

we have evidence to say that there is the presence of leverage effects.
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In addition, it is well known that a realized variance can be decomposed into continuous (non-

jump) and jump components (Barndorff-Nielsen and Shephard, 2006). One of the most commonly

used estimators for the continuous component is the realized bi-power variation BVt:

BVt =
π

2

(
nt

nt − 1

) nt−1∑
i=1

|ri,t| |ri+1,t| .

With the realized bi-power variation BVt, the jump variation JVt is given by

JVt = RVt −BVt.

One thus can modify the right hand side of the above HAR-RV model as a linear combination of

BV and JV , and such modification may improve performances of the HAR-RV type regression on

predicting the future realized variances. Andersen et al. (2007) find that the continuous component

has a far better predict power than does the jump component on the future realized variances at

different time horizons. To see whether such separation of the realized variances in the HAR-RV

type model really affects the above results, we incorporate the leverage effects into the following

HAR-RV-CJ (heterogeneous autoregressive realized variance model controlling for the continuous

and jump components) model:

RVt = αD + βBDBVt−1 + βBWBVt−1,week + βBMBVt−1,month +

βJDJVt−1 + βJWJVt−1,week + βJMJVt−1,month +

γ+R
2
t−1 × 1 {Rt−1 ≥ 0}+ γ−R

2
t−1 × 1 {Rt−1 < 0}+ εt, (12)

where BVt−1,week (JVt−1,week) and BVt−1,month (JVt−1,month) are the normalized weekly and monthly

realized bi-power (jump) variation.

For the terms of the leverage effects, besides R2
t−1, we also use |Rt−1| in the regressions. The

OLS estimation results for the HAR-RV and HAR-RV-CJ augmented with the terms for the leverage

effects are shown in Table 8 and 9. In the parenthesis under the estimated coefficients are t-statistics

obtained using Newey-West standard errors with 18 lag periods. The in-sample model fittings have

high adjusted R2 (all above 0.41), which is one of the most documented features of the HAR-RV

type model in literatures. For our cases, it can be seen that the estimated γ− shows strong statistical

significance in MSFT, IBM, and GE, moderately significance in S&P500, and no significance in PG

and MMM. The estimated γ+, however, are not statistically significant over the six cases, and some
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of them are even negative. The results of the statistical significance of the estimated γ− and γ+ are

consistent over different specifications for the regressions, no matter whether R2
t−1 or |Rt−1| is used.

Comparing the estimated γ− under the HAR-RV and HAR-RV-CJ type models, we find their values

are very similar within each case. The same results also hold for the estimated γ+, but they are much

smaller than γ−. As R2
t−1 is used, the estimated γ− ranges from 0.0176 (PG) to 0.2016 (GE) under

the HAR-RV model and from 0.0197 (PG) to 0.2038 (GE) under the HAR-RV-CJ model. Turning to

the cases of |Rt−1|, the same estimates range from 0.0029 (IBM) to 0.0115 (GE) under the HAR-RV

model and from 0.0032 (IBM) to 0.0119 (GE) under the HAR-RV-CJ model. These results suggest

that among our cases, volatility of GE reacts most when its lag return receives a negative impact.

We show results of testing H0 : γ− ≤ γ+ in the last two columns of the Table 8 and 9. For

the cases considered here, except PG and MMM, the t-statistics are all above 2.37, suggesting the

hypothesis can be rejected at the significant level 0.009. As for PG and MMM, the hypothesis can

also be well rejected at the significant level 0.05. Overall, the evidence shown here indicates that

the hypothesis at least can be rejected at a moderate significant level. There is evidence to say that

negative shocks to asset returns have more impacts on the realized variances than positive shocks

with the same magnitudes have, and the leverage effects may exist.

We then use the quadratic co-variation approach proposed by Wang and Mykland (2012) to verify

the existence of leverage effects in intraday log returns and volatilities. Considering the following

data generating process for the log price Xt := logPt and volatility σt:

dXt = µtdt+ σtdWt, (13)

dσt = atdt+ ftdWt + gtdBt,

where Wt and Bt are two mutually independent Brownian motions. Wang and Mykland (2012)

propose to use the quadratic co-variation between Xt and F (σ2
t ) as a quantitative measure of the

contemporaneous leverage effect:

〈
X,F

(
σ2
)〉

T
= 2

∫ T

0

F ′
(
σ2
t

)
σ2
t ftdt. (14)

The function F (.) is twice differentiable and monotonic on (0,∞), and in the following discussion

we assume either F (x) = x or F (x) = 1/2 log (x) .

Recall that in this paper we define the leverage effects as negative shocks to prices/returns affect

volatility more than equal positive shocks, which is somehow different from the contemporaneous
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leverage effect defined in (14). While (14) only evaluates covariation between Xt and F (σ2
t ), it does

not tell us whether the negative or positive shocks have more effects on the volatility. One way to

link (14) and our definition of leverage effects is to require the parameter ft to be negative: If ft < 0,

negative (positive) shocks to the log returns increase (decrease) volatility.

Suppose within the time interval [0, T ], the log price process Xt is observed at equally spaced time

stamps; i.e., rt is observed every 4tn,i+1 = T/n units of time. To empirically estimate 〈X,F (σ2)〉T ,
we first divide the observed X ′ts into different blocks. Suppose the number of such blocks is Kn and

each block contains Mn = bc
√
nc observations, where c is some constant. Wang and Mykland (2012)

use

̂〈X,F (σ2)〉T = 2
Kn−2∑
i=0

(
Xτn,i+1

−Xτn,i

) (
F
(
σ̂2
τn,i+1

)
− F

(
σ̂2
τn,i

))
to estimate 〈X,F (σ2)〉T , where τn,i, i = 0, . . . , Kn − 1 is the lower bound of the i th block, and

σ̂2
τn,i+1

=
n

Mn × T
∑

tn,j∈(τn,i,τn,i+1]

(
Xtn,j+1

−Xtn,j

)2
.

is an estimate for the integrate variance within the block (τn,i, τn,i+1] . They show that

n
1
4

(
̂〈X,F (σ2)〉T −

〈
X,F

(
σ2
)〉

T

)
converges in law to Z ×B (c, T ) , where Z is a standard normal random variable and independent of

any information up to time T and

B (c, T ) =

√
16

c

∫ T

0

(F ′ (σ2
t ))

2
σ6
t dt+ cT

∫ T

0

(F ′ (σ2
t ))

2
σ4
t

(
44

3
f 2
t +

22

3
g2t

)
dt.

To estimate B (c, T ) , one can use
√
G1
n +G2

n, where

G1
n = 2

√
n
∑
i

(
Xτn,i+1

−Xτn,i

)2 (
F
(
σ̂2
τn,i+1

)
− F

(
σ̂2
τn,i

))2
,

G2
n = 2

MnT√
n

∑
i

σ̂2
τn,i

(
F
(
σ̂2
τn,i+1

)
− F

(
σ̂2
τn,i

))2
.

It can be shown that G1
n +G2

n converges in probability to B (c, T )2. One can also use

σ̃2
τn,i+1

=
n

Mn × T
∑

tn,j∈(τn,i,τn,i+1]

(
Xtn,j+1

−4Xτn,i+1

)2
.
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to replace σ̂2
τn,i+1

in the estimation, where 4Xτn,i+1
= 1/Mn

(
Xτn,i+1

−Xτn,i

)
is an average of log

return changes within the time interval (τn,i, τn,i+1] . Let ˜〈X,F (σ2)〉T denote the leverage estimate

when σ̃2
τn,i+1

is used. As shown in Wang and Mykland (2012), σ̂2
τn,i+1

and σ̃2
τn,i+1

are asymptotic

equivalent, and therefore ̂〈X,F (σ2)〉T and ˜〈X,F (σ2)〉T are also asymptotic equivalent. Furthermore,

the following two test statistics can be used to detect local leverage effects:

L1 :=
n

1
4

(
̂〈X,F (σ2)〉T − 〈X,F (σ2)〉T

)
√
G1
n +G2

n,
, (15)

L2 :=
n

1
4

(
˜〈X,F (σ2)〉T − 〈X,F (σ2)〉T

)
√
G1
n +G2

n,
. (16)

It can be shown that L1 and L2 both converge in law to the standard normal distribution.

We use 1-min equally spaced data, and set T = one day and Mn = 30 for the estimations.

Figure 6 shows time series plots of daily standardized quadratic co-variations, which are just daily

L1 and L2 with 〈X,F (σ2)〉T = 0. Table 10 reports some statistics of these standardized quadratic

co-variations. It can be seen that except MMM, all the other four DJIA stocks and S&P500 index on

average have negative L1 and L2. Without considering signs of the estimates, we compare absolute

values of the daily L1 and L2 with two critical values 1.96 and 2.58 (corresponding to significant

levels α = 0.05 and 0.01 of standard normal). We find very few days have significant L1 and L2:

Among the 4,283 days, the number of significant days ranges from 18 to 257 for α = 0.05 and 0

to 13 for α = 0.01. If considering significant negativity only, the numbers of significant days range

from 60 to 392 for α = 0.05 and 0 to 42 days for α = 0.01 (with critical values equal to -1.64 and

-2.33 of standard normal). S&P500 index on average has lower standardized quadratic co-variations

and more significant days than the five DJIA stocks. Overall, the results suggest that the leverage

effects may still exist in the five DJIA stocks and S&P500 index when log returns and volatilities are

estimated at the intraday level. But only in certain periods, these leverage effects are strong enough

to be detected by the quadratic co-variation approach.

We finally turn to the method proposed by Ait-Sahalia et al. (2012). In their method, the

following CIR process are considered for the squared volatility:

dvt = αv (θ − vt) + κ
√
vtdBt,

where vt := σ2
t , and 2αvθ > κ2. For the log price process, they assume it follows the same process as

in (13) except now E (dBtdWt) = fdt, where f is a constant. It can be shown that the parameter f

21



is the limit of correlation between vt+l − vt and Xt+l −Xt when the time interval l approaches zero,

i.e.,

f = lim
l→0

Corr (vt+l − vt, Xt+l −Xt) . (17)

Ait-Sahalia et al. (2012) use the limit correlation above as a measure for the leverage effect, which

is different from Wang and Mykland (2012) and our definition. To link the limit correlation (17) to

our definition of the leverage effect, again we may assume f to be negative.

Let f̂k and fk be the sample and true correlations between the difference of the estimated inte-

grated variances and difference of log prices at time t + k4 and t. Here 4 is the time unit and we

follow Ait-Sahalia et al. (2012) to let ∆ as one day for our cases3. Under some regular conditions,

Ait-Sahalia et al. (2012) show that fk and f satisfy the following linear relationship:

fk = f + b× k + o (k4) ,

which provides an easily-implemented way to identify the limit correlation f . That is, running a

linear regression of fk (or f̂k if fk is unknown) on the intercept term and k, and the estimated

intercept term can be used as an estimate of f . Furthermore, Ait-Sahalia et al. (2012) propose the

following data driven procedures for practically estimating the linear regression:

1. For each k = 1, . . . , K, we calculate f̂k, and rank the f̂ ′ks for k = k0, . . . , bK/2c. Then we

take the three smallest values of these ranked f̂k
′
s. Let k(1), k(2), and k(3) be the corresponding

indices k′s that the three smallest f̂ ′ks have. Let k∗ = max
(
k(1), k(2), k(3)

)
.

2. Regressing f̂k on k with k = k∗, . . . , k∗ + m, where m = a0, . . . , K − k∗. Let m∗ denote the

value of m at which the regression yields the highest (unadjusted) R2. Then let k
∗

= k∗ +m∗.

The estimated intercept term of the regression with the data
{
k, f̂k

}k∗
k=k∗

is the final estimate

of f .

We follow Ait-Sahalia et al. (2012) to set K = 252, k0 = 6 and a0 = 11. As shown in Ait-Sahalia

et al. (2012), the sample correlation f̂k is a bias estimation for the true fk. To improve performance

of the data driven approach above, we can replace the sample correlation f̂k with the following bias

corrected estimation in the above data driven procedures:

f̂ bck = γ
2
√
k2 − k/3

2k − 1
f̂k, (18)

3Note that in Ait-Sahalia et al. (2012), the basic time unit for t is one year, so 4 =one day= 1/252.
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where

γ =

(
1− 442E (v2t )

nV ar (RVt+k4 −RVt)

)− 1
2

.

Here the parameter n is the number of log return observations used to estimate the realized variance.

For estimating 42E (v2t ) , we can first estimate the realized quarticity:

QVt =
nt
3

nt∑
i=1

r4i,t,

and then calculate its sample mean. In the following we use

γ̂ =

(
1− 4× sample mean of QVt

sample mean of nt × sample variance of RVt

)− 1
2

(19)

as an estimate of γ in f̂ bck .

All the following empirical analysis is carried out on a daily basis: We use daily RV 1min
t and Rt

to calculate f̂k, and the 1-min log returns to estimate the daily realized quarticities in γ̂. Figure 7

plots f̂k and f̂ bck against k for the five DJIA stocks and S&P500 index. We use 1-min log returns

to estimate the realized quarticities. For all the cases, the two estimated correlations are negative

over k, and the bias corrected correlations are constantly lower than the uncorrected ones. Except

for small k, the two correlation estimations have extremely similar patterns in each case. Comparing

the results over different cases, however, the patterns of the correlation estimations are somehow

different, but they often have a higher value as k = 1 and then suddenly drop to a lower value as k

deviates from one. It also can be seen that as k > 100, the estimations gradually become stable and

all of them steadily move either up or down as k becomes large. Overall, the estimated correlations

vary substantially as the time interval k changes, no matter they are bias corrected or not; and the

smaller the time interval k, the more possible that we will get a higher estimated correlation.

To estimate f , we may use f̂1 or f̂ bc1 . As shown above, however, it is very likely that we get a

higher estimated correlation with k = 1 than with k > 1, and such high f̂1 or f̂ bc1 used for estimating

f perhaps result in an upward bias estimate. To obtain a more accurately estimated f , we use the

data driven procedures introduced above. In Table 11 we report the final estimate of f based on

the estimated intercept term from running linear regressions of f̂k (or f̂ bck ) on k ∈
[
k∗, k

∗
]
, and the

unadjusted R2 of the regression. The value of R2 is very high for all of the six cases, and k∗ and

k
∗

in each case are similar when either f̂k or f̂ bck is used. For all the six cases, the estimated f is
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moderately negative, with range from -0.24 (IBM) to -0.48 (GE)4. The negativity of the estimated f

implies that on average a positive shock to the log price has a smaller impact on the volatility than

a negative shock with the same magnitude has, and the leverage effects may exist. It also can be

seen that the estimated f from using f̂ bck and f̂k are qualitatively similar, but the former is slightly

lower than the later.

6 Conclusion

We have found strong evidence in favour of a leverage effect in daily stock returns both at the

individual stock level and the index level. The null hypothesis we consider is quite strong, namely

first order distributional dominance. Therefore, it is quite powerful that the data do not reject

this hypothesis. Our empirical evidence is robust along a number of directions. For example, our

results still hold for subperiods and for different specifications on the functional form of the lagged

conditional variances. In addition, several recently developed alternative methods are used on our

data and their results also support our findings.

On the theoretical side, we have considered stationary processes, but this can be relaxed along the

lines of Dahlhaus (1997) and Dahlhaus and Subba Rao (2006). We may also weaken the restrictions

on the amount of dependence to be consistent with some evidence on the time series properties of

realized volatility, see for example Andersen, Bollerslev, Christoffersen, and Diebold (2011).

Appendix A: Proofs

Consider the empirical process ν̄T (y, g, π) indexed by (y, g, π) ∈ R× G × Π

ν̄T (y, g, π) =
√
T {m̄T (y, g, π)− Em̄T (y, g, π)} .

4One thing worth to note is that, the estimated f of MSFT and S&P500 shown here are different from those

shown in Ait-Sahalia et al. (2012). It is mainly because we use different sample periods and different realized variance

estimators. In Ait-Sahalia et al. (2012), they used the pre-averaging approach (Jacob et al., 2009) to estimate the

integrated variances. With RV 1min
t , we re-estimate the f of MSFT with the data driven method over the same sample

period as theirs (Jan-2005 to June-2007). The estimated f from using f̂ bck (f̂k) is -0.90 (-0.87) and
[
k∗, k

∗]
= [125, 165]

([125, 165]). As for S&P500 (sample period is from Jan-2004 to Dec-2007), the estimated f from using f̂ bck (f̂k) is -0.62

(-0.60), and
[
k∗, k

∗]
= [22, 101] ([24, 101]).
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The following Lemma establishes stochastic equicontinuity of {ν̄T (·, ·, ·) : T ≥ 1}.
Lemma 1. Suppose that Assumption A holds. Then, for each ε > 0 and η > 0, there exists

δ > 0 such that

lim
T→∞

P ∗

[
sup

ρ((y1,g1,π1),(y2,g2,π2))<δ

|ν̄T (y1, g1, π1)− ν̄T (y1, g1, π1)| > η

]
< ε,

where Pr∗ denotes P -outer measure and

ρ ((y1, g1, π1), (y2, g2, π2)) = ρa ((y1, g1), (y2, g2)) ∨ ρb(π1, π2)

ρa ((y1, g1), (y2, g2)) =

(∫
Y

∫
Y
{[1(w1 ≤ y)− F (y|w2)] g (w2)

− [1(w1 ≤ y)− F (y|w2)] g (w2)} dw1dw2)
1/2

ρb(π1, π2) =
(
E (π1(xt)− π2(xt))2

)1/2
Proof of Lemma 1. The result of Lemma 1 follows from the stochastic equicontinuity results

of Andrews (1989, Theorem 7) that are applicable to classes of functions that are products of smooth

functions from an infinite dimensional class and a Type IV class of uniformly bounded functions.

It suffices to verify Assumption E of the latter paper. (Assumption) E(i) holds by taking WaT t,

WbT t, τa(·), τb(·), ma(WaT t, τa), and mb(WbTb, τb) to be xt, (yt, xt), π(·), 1(· ≤ y)g (·) , π(xt) and 1(yt ≤
y)g (xt) , respectively. E(ii) holds by Assumption A1(ii) with W∗a given by X . E(iii) follows from

Assumptions A2-A3 and the definition of Π in (5). E(iv) is irrelevant to our case. E(v) holds since

{1(· ≤ y)g (·) : y ∈ Y , g ∈ G} is a type IV class of uniformly bounded functions with index p = 2,

constant ψ = 1/2, and dimension d = dx + 1. Finally, E(vi) holds by Assumption A1(i). �

Proof of Theorem 1. To prove Theorem 1, we first establish the following results:

T 1/4 sup
x∈X

∣∣π̂+(x)− π+
0 (x)

∣∣ p→ 0, (20)

T 1/4 sup
x∈Rdx

∣∣∣f̂(x)− f(x)
∣∣∣ p→ 0, (21)

sup
x∈Xε

∣∣Dµπ̂+(x)−Dµπ+
0 (x)

∣∣ p→ 0 ∀µ with 1 ≤ µ < q, (22)

sup
(y,g)∈Y×G

∣∣ν̄T (y, g, π̂+)− ν̄T (y, g, π+
0 )
∣∣ p→ 0, (23)

sup
(y,g)∈Y×G

∣∣∣√T Em̄T (y, g, π)|π=π̂+ −
√
TRT (y, g)

∣∣∣ p→ 0, (24)
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where

RT (y, g) =
1√
T

∑
t

{
1(rt−1 ≥ 0)− π+

0 (xt)
}
F (y|xt)g (xt)

+
√
T

∫ [
F (y|x)− F+(y|x)

]
g (x)π+

0 (x)f(x)dx.

Equations (20)- (22) can be established using Theorem 1 of Andrews (1994) by verifying its

Assumptions NP1-NP5. Notice that NP1-NP3 are implied by Assumptions A1-A3 with η = β =∞
and |λ| = µ and Yt, Xt, ft(x), and g(x) given by 1(rt−1 ≥ 0), xt, f(x), and π+

0 (x), respectively.

NP4 (a) and (c) holds by Assumption A4 with Ω = Ω̂ = 1 and NP4(b) is not relevant in our case,

see Comment 5 to Theorem 1 of Andrews (1994). Finally NP5 is implied by Assumption A5. This

establishes (20) - (22).

Equation (23) holds by a standard argument (see p.2257 of Andrews (1994)) because {ν̄T (·, ·, ·) :

T ≥ 1} is stochastically equicontinuous by Lemma 1 and Pr (π̂+ ∈ Π)→ 1 and ρb(π̂
+, π+

0 )
p→ 0 using

(22) and Assumption A3.

To establish (24), Write

√
T Em̄T (y, g, π)|π=π̂+ =

√
T E1(yt ≤ y)g (xt) {π(xt)− 1(rt−1 ≥ 0)}|π=π̂+

=
√
T

∫
F (y|x)g (x)

[
π̂+(x)− π+

0 (x)
]
f(x)dx (25)

+
√
T

∫ [
F (y|x)− F+(y|x)

]
g (x) π+

0 (x)f(x)dx,

where the second equality holds by rearranging terms and applying law of iterated expectations.

Consider the first term on the right hand side of (25). We have

√
T

∫
F (y|x)g (x)

[
π̂+(x)− π+

0 (x)
]
f(x)dx

=
√
T

∫
F (y|x)g (x)

[
π̂+(x)− π+

0 (x)
]
f̂(x)dx (26)

+
√
T

∫
F (y|x)g (x)

[
π̂+(x)− π+

0 (x)
] [
f(x)− f̂(x)

]
dx

= A1T + A2T , say.

The term A2T is asymptotically negligible because it is bounded uniformly over (y, g) ∈ Y × G by

T 1/4 sup
x∈X

∣∣π̂+(x)− π+
0 (x)

∣∣× T 1/4 sup
x∈Rdx

∣∣∣f(x)− f̂(x)
∣∣∣ p→ 0 (27)
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using (20) and (21). Now, consider A1T . Write[
π̂+(x)− π+

0 (x)
]
f̂(x) =

1

T

∑
t

Kh (x− xt)
{

1(rt−1 ≥ 0)− π+
0 (xt)

}
+

1

T

∑
t

Kh (x− xt)
{
π+
0 (xt)− π+

0 (x)
}
.

Notice that

√
T

∫
F (y|x)g (x)

[
1

T

∑
t

Kh (x− xt)
{

1(rt−1 ≥ 0)− π+
0 (xt)

}]
dx

=
1√
T

∑
t

{
1(rt−1 ≥ 0)− π+

0 (xt)
}∫

F (y|x)g (x)Kh (x− xt) dx

=
1√
T

∑
t

{
1(rt−1 ≥ 0)− π+

0 (xt)
}

[F (y|xt)g (xt)

+

∫
{F (y|xt + uh)g (xt + uh)− F (y|xt)g (xt)}K (u) du

]
(28)

=
1√
T

∑
t

{
1(rt−1 ≥ 0)− π+

0 (xt)
}
F (y|xt)g (xt) + op(1),

uniformly over (y, g) ∈ Y × G, where the last equality holds by the following argument. For each

(y, g) ∈ Y × G and some δ > 0, we have

E

(
1√
T

∑
t

{
1(rt−1 ≥ 0)− π+

0 (xt)
}

×
∫
{F (y|xt + uh)g (xt + uh)− F (y|xt)g (xt)}K (u) du

)2

≤ C

(
E

∣∣∣∣∫ {F (y|xt + uh)g (xt + uh)− F (y|xt)g (xt)}K (u) du

∣∣∣∣2+δ
)2/(2+δ)

→ 0, (29)

where the inequality follows by the moment inequality for sums of strong mixing random variables

(see Lemma 3.1 of Dehling and Philipp (2002)) and Assumption A1(i), and convergence to zero

holds by the fact that F (y|·)g (·) is a bounded function using a well known convergence result for

convolutions of functions in an Lp-space (with p = 2 + δ) (see Theorem 8.14 (a) of Folland (1984)).

Using a stochastic equicontinuity argument as in Lemma 1, we can show that the convergence to
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zero holds uniformly over (y, g) ∈ Y × G. This establishes (28). Furthermore, we have

sup
(y,g)∈Y×G

∣∣∣∣∣√T
∫
F (y|x)g (x)

[
1

T

∑
t

Kh (x− xt)
{
π+
0 (xt)− π+

0 (x)
}]

dx

∣∣∣∣∣
= sup

(y,g)∈Y×G

∣∣∣∣∣ 1√
T

∑
t

∫
F (y|xt + uh)g (xt + uh)

{
π+
0 (xt)− π+

0 (xt + uh)
}
K(u)du

∣∣∣∣∣
≤ Op(T

1/2hω)
p→ 0, (30)

where the equality holds by a change of variables, the inequality holds by an ω-term Taylor expansion

using Assumptions A3 and A4, and the last convergence to zero holds by Assumption A5. Now, the

result (24) is established by combining (25)-(30).

We now establish Theorem 1. We have

√
Tm̄T (y, g, π̂+) = ν̄T (y, g, π̂+) +

√
T Em̄T (y, g, π)|π=π̂+

= ν̄T (y, g, π+
0 ) +

√
T Em̄T (y, g, π)|π=π̂+ + op(1) (31)

= νT (y, g) +
√
T

∫ [
F (y|x)− F+(y|x)

]
g (x) π+

0 (x)f(x)dx+ op(1), (32)

where the second equation hold by (23) and the last equality holds by (24). Notice that, under

the null hypothesis, we have
∫

[F (y|x)− F+(y|x)] g (x)π+
0 (x)f(x)dx = 0 for all (y, g) ∈ B, while∫

[F (y|x)− F+(y|x)] g (x) π+
0 (x)f(x)dx < 0 if (y, g) /∈ B. Furthermore, we can show that

νT (·, ·)⇒ ν(·, ·) (33)

with the sample paths of ν(·, ·) uniformly continuous with respect to pseudometric ρa on Y × G
with probability one. The latter holds by a standard argument because Lemma 1 implies that the

pseudometric space (Y ×G, ρa) is totally bounded, {νT (·, ·) : T ≥ 1} is stochastically equicontinuous,

and finite dimensional convergence in distribution holds using a CLT for bounded strong mixing

random variables (see Corollary 5.1 of Hall and Heyde (1980)). Therefore, using the same arguments

as those in Linton, Maasoumi and Whang (2005, Proof of Theorem 1) and continuous mapping

theorem, Theorem 1 is now established as desired. �

Proof of Theorem 2. The proof is similar to the proof of Theorem 2 of Linton, Maasoumi

and Whang (2005). �

Proof of Theorem 3. The proof is similar to the proof of Theorem 3 of Linton, Maasoumi

and Whang (2005). �
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Appendix B: Data Descriptions and Constructions

The data for estimating σ2
t come from different sources. For estimating the realized variances of

S&P500, we use intraday high frequency data provided by tickdata.com, which consist of 1-minute

and 5-minute index prices in regular trading time. The squared intraday range estimator RG2
t of

S&P500, however, is estimated by using data of the highest and lowest trading prices during a day,

which come from yahoo finance. For the five DJIA stocks, their RG2
t are estimated with daily highest

and lowest price data from the CRSP, and their RVt are estimated with the intraday trade prices

from the TAQ database.

The raw data of the high frequency observations from the TAQ database contain noises. In order

to obtain a more accurate realized variance estimation, we adopt the following procedures, which

are suggested by Barndorff-Nielsen et al. (2009), to clean the high frequency data of the individual

stocks:

(1) We keep the data points between 09:30AM to 16:00PM (regular trading time), and delete data

points with a time stamp outside this time interval.

(2) We delete the data points which prices are zero.

(3) We keep data points which the trade occurred on AMEX (A), NYSE (N), NASD (T/Q), and

delete the rest data points.

(4) Data points which are corrected traded are deleted (their Correction Indicator is not zero,

CORR!= 0).

(5) Data points which trades are not in abnormal sale condition are kept (The entries with the

column COND which does not has a letter code,or has the letter ”F” or ”E”).

(6) If multiple trades have the same time stamp, we use their median price.

(7) We delete the data point in which the absolute difference between its price and median of 50

neighborhood observations is larger than five times mean absolute deviation from the median.

Note that (7) is to replace rule T4 in Barndorff-Nielsen et al. (2009) for cleaning outliers in the

high frequency trade data. The rule T4 uses the quote data to discipline the trade data: if the trade
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prices are above the ask plus bid-ask spread or below the bid minus the bid-ask spread, they will be

deleted. However, it can be shown that such rule in practice is not very activated. Since our raw

data are the trade data, in order to more efficiently implement the cleaning procedures without using

the quote data, we use a more viable rule such as (7) for dealing with the outliers.

The time unit of the cleaned data is one second, but the data points are not equally-spaced. We

then transform the cleaned data to equally-spaced data. We set the time intervals for the equally-

spaced data equal to two frequently used choices: 1 minute and 5 minute. Then the last-tick method

is used to construct the equally-spaced data. Finally the equal-spaced data are used to calculate

the log returns and realized variances. In US stock market, except on a few inactive trading days,

one day has 6.5 trading hours (from 09:30AM to 16:00PM). Therefore in general, the numbers of log

return observations nt equal to 390 and 78 per day for the 1-min and 5-min cases respectively.
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Table 1: The table shows summary statistics of daily 1-min realized variance RV 1min
t , 5-min realized

variance RV 5min
t , squared intraday range estimator RG2

t , and stock return Rt for S&P500 index
and five stocks from Dow Jones Industrial Averages: Microsoft (MSFT), International Business
Machines Corporation (IBM), General Electric (GE), Procter & Gamble (PG) and 3M (MMM). We
scale RV 1min

t , RV 5min
t , and RG2

t by 104 before we calculate the statistics. The sample period is from
Jan-04-1993 to Dec-31-2009 (4,283 trading days).

MSFT
Min. Mean Max. Std. Skew. Kurt. ACF(1)

RV 1min
t 0.1327 5.3750 84.8100 5.6820 2.7469 14.6002 0.8598

RV 5min
t 0.1245 3.7010 60.3400 3.8738 4.3588 35.8134 0.7106
RG2

t 0.0792 3.3990 99.5000 4.8744 6.4918 78.7447 0.4014
Rt -0.1560 0.0008 0.1957 0.0221 0.2258 5.8996 -0.0333

IBM
Min. Mean Max. Std. Skew. Kurt. ACF(1)

RV 1min
t 0.1364 3.3960 112.1000 3.9539 8.1612 157.4227 0.6992

RV 5min
t 0.1077 2.8480 75.3800 3.6239 6.6502 79.9087 0.6176
RG2

t 0.0309 2.7540 96.3000 4.3458 7.1945 97.5840 0.3966
Rt -0.1554 0.0007 0.1316 0.0198 0.3747 6.3703 -0.0328

GE
Min. Mean Max. Std. Skew. Kurt. ACF(1)

RV 1min
t 0.1397 4.1300 163.4000 7.0400 9.6189 140.9916 0.7186

RV 5min
t 0.1102 3.3420 180.1000 6.8264 10.6219 179.1406 0.6840
RG2

t 0.0381 3.0970 200.3000 7.2896 9.8209 167.5244 0.5708
Rt -0.1279 0.0004 0.1970 0.0196 0.3141 8.7333 -0.0127

PG
Min. Mean Max. Std. Skew. Kurt. ACF(1)

RV 1min
t 0.1451 2.8810 116.2000 3.3935 13.6388 376.3909 0.5577

RV 5min
t 0.1078 2.3460 79.7400 3.0248 9.4751 171.7254 0.6229
RG2

t 0.0460 1.9050 68.9800 3.4090 8.7980 121.1760 0.4916
Rt -0.3138 0.0005 0.1021 0.0160 -1.8188 38.2772 -0.0546

MMM
Min. Mean Max. Std. Skew. Kurt. ACF(1)

RV 1min
t 0.1732 2.5600 104.2000 3.0787 12.2027 311.1090 0.6280

RV 5min
t 0.0803 2.3080 96.6000 3.1066 10.7258 234.8230 0.6051
RG2

t 0.0194 2.0290 115.3000 3.5674 11.4230 268.8034 0.3725
Rt -0.0959 0.0004 0.1107 0.0159 0.1628 4.3600 -0.0348

S&P500
Min. Mean Max. Std. Skew. Kurt. ACF(1)

RV 1min
t 0.0163 0.6995 73.5700 1.9412 17.4148 515.4656 0.6517

RV 5min
t 0.0272 0.8876 57.8300 1.9839 11.6192 223.2035 0.6958
RG2

t 0.0114 1.0660 42.8800 2.4713 8.9923 109.6879 0.6089
Rt -0.0904 0.0003 0.1158 0.0122 -0.0024 9.1608 -0.0668
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Table 2: The table shows the subsample critical value ĝCTj ,b (1− α) for the conditional leverage
hypothesis test at four different levels of α for S&P500 index and five stocks from Dow Jones Industrial
Averages: Microsoft (MSFT), International Business Machines Corporation (IBM), General Electric
(GE), Procter & Gamble (PG) and 3M (MMM). We set lag lengths of daily returns j = 1 and 5 and
subsample sizes b = 500, 1000 and 2000. σ2

t is estimated by the daily realized variance with 1-min
log returns. The sample period is from Jan-04-1993 to Dec-31-2009 (4,283 trading days).

j = 1 j = 5
α α

b 0.1 0.05 0.01 0.001 0.1 0.05 0.01 0.001
MSFT 500 0.2612 0.2810 0.3515 0.3735 0.3550 0.3727 0.4182 0.4598√

T1τ̂
C
T1

= 0.0825 1000 0.2085 0.2345 0.2553 0.2683
√
T5τ̂

C
T5

= 0.0823 0.2776 0.2857 0.3017 0.3170
2000 0.1557 0.1641 0.1758 0.1807 0.1890 0.1944 0.2055 0.2069

IBM 500 0.2669 0.2966 0.3415 0.3585 0.4320 0.4743 0.5836 0.6580√
T1τ̂

C
T1

= 0.0138 1000 0.2406 0.2550 0.2741 0.2991
√
T5τ̂

C
T5

= 0.2479 0.3759 0.4355 0.4874 0.5087
2000 0.1452 0.1539 0.1627 0.1671 0.2306 0.2551 0.2661 0.2813

GE 500 0.3275 0.3596 0.4135 0.4445 0.3314 0.3830 0.4819 0.5294√
T1τ̂

C
T1

= 0.1996 1000 0.2939 0.3365 0.4402 0.4707
√
T τ̂CT5

= 0.1885 0.2953 0.3223 0.3406 0.3556
2000 0.1779 0.1853 0.2185 0.2471 0.3167 0.3248 0.3496 0.3989

PG 500 0.2813 0.3021 0.3311 0.3506 0.2896 0.3231 0.3917 0.4121√
T1τ̂

C
T1

= 0.0622 1000 0.2318 0.2795 0.3575 0.3769
√
T τ̂CT5

= 0.1073 0.2453 0.2748 0.3274 0.3833
2000 0.1554 0.1887 0.2155 0.2240 0.177 0.1897 0.2127 0.2157

MMM 500 0.3360 0.3872 0.5014 0.5454 0.3548 0.4010 0.4813 0.5120√
T1τ̂

C
T1

= 0.0595 1000 0.3256 0.3529 0.3823 0.4055
√
T τ̂CT5

= 0.1242 0.2773 0.3074 0.3552 0.3660
2000 0.1813 0.1927 0.2062 0.2245 0.1695 0.1802 0.1947 0.2038

S&P500 500 0.2203 0.2615 0.3288 0.3547 0.3675 0.4464 0.498 0.5252√
T1τ̂

C
T1

= 0.0096 1000 0.1997 0.2152 0.2371 0.2508
√
T τ̂CT5

= 0.1480 0.3481 0.3777 0.4177 0.4689
2000 0.2041 0.2140 0.2241 0.2292 0.2613 0.3255 0.3958 0.4243
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Table 3: The table shows the subsample critical value ĝCTj ,b (1− α) for the conditional leverage
hypothesis test at four different levels of α for S&P500 index and five stocks from Dow Jones Industrial
Averages: Microsoft (MSFT), International Business Machines Corporation (IBM), General Electric
(GE), Procter & Gamble (PG) and 3M (MMM). We set lag lengths of daily returns j = 1 and 5 and
subsample sizes b = 500, 1000 and 2000. σ2

t is estimated by the daily realized variance with 5-min
log returns. The sample period is from Jan-04-1993 to Dec-31-2009 (4,283 trading days).

j = 1 j = 5
α α

b 0.1 0.05 0.01 0.001 0.1 0.05 0.01 0.001
MSFT 500 0.3407 0.3635 0.3981 0.4522 0.3825 0.4282 0.4821 0.4996√

T1τ̂
C
T1

= 0.0916 1000 0.2622 0.2829 0.3106 0.3228
√
T5τ̂

C
T5

= 0.1101 0.2911 0.3148 0.3548 0.3709
2000 0.1454 0.1590 0.1630 0.1692 0.1845 0.1966 0.2085 0.2136

IBM 500 0.2849 0.3361 0.3875 0.4905 0.4443 0.4936 0.5745 0.6150√
T1τ̂

C
T1

= 0.0247 1000 0.2510 0.3144 0.3687 0.3881
√
T5τ̂

C
T5

= 0.1970 0.3549 0.4161 0.4809 0.5051
2000 0.1096 0.1130 0.1214 0.1438 0.2238 0.2347 0.2572 0.2764

GE 500 0.3433 0.3776 0.4344 0.4622 0.3466 0.3785 0.4565 0.4803√
T1τ̂

C
T1

= 0.0940 1000 0.2465 0.2699 0.3045 0.3220
√
T τ̂CT5

= 0.1342 0.2931 0.3240 0.3624 0.3769
2000 0.1531 0.1823 0.2342 0.2489 0.1953 0.2104 0.2212 0.2279

PG 500 0.2646 0.2963 0.3311 0.3535 0.2862 0.3252 0.3718 0.3859√
T1τ̂

C
T1

= 0.0544 1000 0.1785 0.2019 0.2547 0.2967
√
T τ̂CT5

= 0.0776 0.2079 0.2359 0.2843 0.291
2000 0.1287 0.1402 0.1539 0.1601 0.1438 0.1669 0.2002 0.2185

MMM 500 0.3679 0.5158 0.6259 0.7201 0.3430 0.3817 0.4175 0.4508√
T1τ̂

C
T1

= 0.0637 1000 0.4355 0.5008 0.5299 0.5677
√
T τ̂CT5

= 0.1058 0.2587 0.3023 0.3734 0.3938
2000 0.2514 0.2727 0.3131 0.3401 0.1412 0.1509 0.1660 0.1741

S&P500 500 0.1903 0.2110 0.2739 0.2947 0.3524 0.4850 0.5389 0.5830√
T1τ̂

C
T1

= 0.0000 1000 0.1158 0.1242 0.1556 0.1922
√
T τ̂CT5

= 0.1160 0.3561 0.3858 0.4409 0.4660
2000 0.0897 0.0953 0.1146 0.1248 0.1886 0.2116 0.2571 0.2706
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Table 4: The table shows the subsample critical value ĝCTj ,b (1− α) for the conditional leverage
hypothesis test at four different levels of α for S&P500 index and five stocks from Dow Jones Industrial
Averages: Microsoft (MSFT), International Business Machines Corporation (IBM), General Electric
(GE), Procter & Gamble (PG) and 3M (MMM). We set lag lengths of daily returns j = 1 and 5 and
subsample sizes b = 500, 1000 and 2000. σ2

t is estimated by the intra-daily range variance estimator.
The sample period is from Jan-04-1993 to Dec-31-2009 (4,283 trading days).

j = 1 j = 5
α α

b 0.1 0.05 0.01 0.001 0.1 0.05 0.01 0.001
MSFT 500 0.4644 0.5648 0.7774 0.8167 0.4478 0.5330 0.5944 0.6220√

T1τ̂
C
T1

= 0.0940 1000 0.4412 0.4959 0.5720 0.5954
√
T5τ̂

C
T5

= 0.1534 0.3699 0.4190 0.5083 0.5238
2000 0.3001 0.3102 0.3308 0.3403 0.3140 0.3222 0.3328 0.3389

IBM 500 0.2890 0.3374 0.3864 0.4246 0.3381 0.3781 0.4443 0.4841√
T1τ̂

C
T1

= 0.1354 1000 0.2349 0.2517 0.2879 0.3031
√
T5τ̂

C
T5

= 0.1855 0.2573 0.2841 0.3264 0.3433
2000 0.1853 0.1916 0.2055 0.2092 0.1809 0.1923 0.2090 0.2301

GE 500 0.5426 0.6059 0.7410 0.8486 0.3487 0.4119 0.5107 0.5821√
T1τ̂

C
T1

= 0.0575 1000 0.4323 0.4668 0.5725 0.5999
√
T5τ̂

C
T5

= 0.0912 0.2726 0.2891 0.3174 0.3351
2000 0.2902 0.3095 0.3328 0.3493 0.2197 0.2472 0.3121 0.3254

PG 500 0.2644 0.3006 0.3464 0.3733 0.3586 0.3913 0.4558 0.5071√
T1τ̂

C
T1

= 0.0837 1000 0.1468 0.1595 0.1762 0.1865
√
T5τ̂

C
T5

= 0.1117 0.3018 0.3405 0.3952 0.4364
2000 0.1110 0.1175 0.1265 0.1281 0.1986 0.2075 0.2201 0.2233

MMM 500 0.3645 0.4466 0.6223 0.6821 0.4895 0.536 0.5965 0.6332√
T1τ̂

C
T1

= 0.0773 1000 0.2584 0.2792 0.3107 0.3545
√
T5τ̂

C
T5

= 0.0609 0.3465 0.3777 0.4176 0.4383
2000 0.2150 0.2213 0.2315 0.2383 0.1694 0.1856 0.2193 0.2291

S&P500 500 0.3126 0.3525 0.4024 0.4240 0.4060 0.4707 0.5518 0.5825√
T1τ̂

C
T1

= 0.0392 1000 0.2606 0.2812 0.3033 0.3144
√
T τ̂CT5

= 0.0751 0.3203 0.4497 0.4980 0.5078
2000 0.1843 0.1980 0.2301 0.2416 0.1216 0.1741 0.2233 0.2340
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Table 5: The table shows the empirical p-values of the conditional test statistic
√
Tj τ̂

C
Tj

for S&P500
index and five stocks from Dow Jones Industrial Averages: Microsoft (MSFT), International Business
Machines Corporation (IBM), General Electric (GE), Procter & Gamble (PG) and 3M (MMM).
Three different estimated σ2

t are used. We set lag lengths of daily returns j = 1 and 5 and subsample
sizes b = 500, 1000 and 2000. The sample period is from Jan-04-1993 to Dec-31-2009 (4,283 trading
days).

RV 1min
t RV 5min

t RG2
t

b b b
j 500 1000 2000 500 1000 2000 500 1000 2000

MSFT 1 0.9101 0.9138 0.8608 0.8956 0.7914 0.3936 0.9160 0.8916 0.9698
5 1.0000 0.9936 1.0000 0.9849 0.9662 0.8507 0.7389 0.6653 0.9343

IBM 1 0.9834 0.9769 0.8643 1.0000 0.9568 0.8958 0.6847 0.4674 0.4435
5 0.2994 0.1687 0.0617 0.5938 0.4141 0.2421 0.6155 0.4562 0.0744

GE 1 0.5264 0.2500 0.0201 0.8356 0.6544 0.6975 0.9884 0.8952 0.8148
5 0.6580 0.4568 0.3914 0.8597 0.9354 0.7329 0.9318 0.9814 0.9186

PG 1 0.9625 0.9656 0.8481 0.9765 0.7667 0.8117 0.7149 0.5356 0.4374
5 0.8776 0.8441 0.6856 0.9284 0.7174 0.5416 0.8198 0.5627 0.4247

MMM 1 0.9730 0.9900 0.8643 0.9514 0.9650 0.8783 0.9236 0.9062 0.8927
5 0.9086 0.7485 0.3827 0.8338 0.7211 0.4002 0.9374 0.7619 0.9387

S&P500 1 0.9860 0.9939 1.0000 0.9987 0.9915 1.0000 0.9323 0.9178 0.7877
5 0.6786 0.5612 0.8494 0.8890 0.6559 0.4952 0.9294 0.7555 0.5066
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Table 6: The table shows value of test statistic
√
Tj τ̂

C
Tj

, empirical p-value and the subsample critical

value ĝCTj ,b (1− α) for the conditional leverage hypothesis test at four different levels of α for SP500

index and five stocks from Dow Jones Industrial Averages: Microsoft (MSFT), International Business
Machines Corporation (IBM), General Electric (GE), Procter & Gamble (PG) and 3M (MMM). σ2

t

is estimated by the daily realized variance with 1-min log returns. We set lag lengths of stock returns
j = 1 and subsample sizes b = 500 and 1000. The sample period is divided into two subperiods: 1)
from Jan-04-1993 to Nov-30-2001 (2,248 trading days). 2) from Dec-03-2001 to Dec-31-2009 (2,035
trading days).

α
Period

√
T1τ̂

C
T1

b p̂T1,b 0.1 0.05 0.01 0.0001
MSFT Jan.93-Nov.01 0.1401 500 0.6049 0.2257 0.2662 0.3446 0.3610

1000 0.0753 0.1370 0.1434 0.1647 0.1724
Dec.01-Dec.09 0.0754 500 0.9150 0.2722 0.2839 0.3566 0.3780

1000 0.9828 0.2284 0.2430 0.2584 0.2703
IBM Jan.93-Nov.01 0.1458 500 0.8834 0.3014 0.3251 0.3461 0.3634

1000 0.8343 0.2576 0.2652 0.2829 0.3008
Dec.01-Dec.09 0.0214 500 0.9651 0.2140 0.2340 0.2541 0.2725

1000 0.9445 0.1517 0.1662 0.1880 0.1997
GE Jan.93-Nov.01 0.1622 500 0.7216 0.3519 0.3900 0.4354 0.4448

1000 0.2562 0.3391 0.3980 0.4555 0.4738
Dec.01-Dec.09 0.1472 500 0.6388 0.3157 0.3342 0.3652 0.3810

1000 0.5155 0.2464 0.3204 0.3389 0.3448
PG Jan.93-Nov.01 0.1075 500 0.8159 0.2597 0.2878 0.3207 0.3329

1000 0.7150 0.1814 0.1881 0.2002 0.2047
Dec.01-Dec.09 0.0470 500 0.9764 0.2942 0.3075 0.3339 0.3511

1000 0.9695 0.2712 0.3285 0.3621 0.3803
MMM Jan.93-Nov.01 0.1459 500 0.9989 0.3949 0.4506 0.5296 0.5523

1000 1.0000 0.3584 0.3720 0.3949 0.4069
Dec.01-Dec.09 0.0238 500 0.9951 0.2018 0.2294 0.2776 0.2971

1000 1.0000 0.1995 0.2282 0.2501 0.2549
S&P500 Jan.93-Nov.01 0.0902 500 0.5638 0.2712 0.3069 0.3406 0.3603

1000 0.4516 0.2111 0.2243 0.2386 0.2526
Dec.01-Dec.09 0.0598 500 0.9391 0.2025 0.2200 0.2401 0.2574

1000 0.8634 0.1839 0.2045 0.2333 0.2454
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Table 7: The table shows the empirical p-values, the test statistic
√
Tj τ̂

C
Tj

, and the subsample critical

values ĝCTj ,b (1− α) for the conditional leverage hypothesis test at four different levels of α for S&P500

index and five stocks from Dow Jones Industrial Averages: Microsoft (MSFT), International Business
Machines Corporation (IBM), General Electric (GE), Procter & Gamble (PG) and 3M (MMM). In
addition to the lagged one day return Rt−1, the test is also conditioning on more general forms of
h
(
σ2
t−1, . . . , σ

2
t−p
)
. Upper panel shows results of the test conditioning on h (.) as a finite approximation

for the exponential moving average in (9) and bottom panel shows results of the test conditioning
on h (.) as a real time forecast for RV 1min

t from the HAR-RV model in (10). σ2
t is estimated by daily

realized variance with 1-min log returns. We set lag lengths of stock returns j = 1 and subsample
size b = 2000. The sample period is from Jan-04-1993 to Dec-31-2009 (4,283 trading days).

Finite Exponential Moving Average
α

p p̂T1,2000
√
T1τ̂

C
T1

0.1 0.05 0.01 0.001
MSFT 5 0.5236 0.1078 0.1804 0.1961 0.2059 0.2107

10 0.0039 0.2082 0.1886 0.1928 0.1985 0.2162
22 0.2194 0.2027 0.2129 0.2214 0.2284 0.2291

IBM 5 0.9098 0.0817 0.1784 0.2181 0.2381 0.2525
10 0.8717 0.0716 0.1543 0.1736 0.1959 0.2043
22 0.8126 0.0636 0.1913 0.1954 0.2186 0.2230

GE 5 0.4882 0.1274 0.2332 0.2416 0.2452 0.2455
10 0.4593 0.1194 0.2271 0.2490 0.2714 0.2788
22 0.4286 0.1401 0.2604 0.2918 0.3162 0.3254

PG 5 0.9904 0.0281 0.1099 0.1147 0.1409 0.1530
10 0.7412 0.0450 0.1168 0.1416 0.1468 0.1504
22 0.6668 0.0537 0.1247 0.1293 0.1396 0.1443

MMM 5 0.5263 0.1329 0.1731 0.1877 0.1981 0.2161
10 0.6734 0.1163 0.2279 0.2340 0.2443 0.2650
22 0.9934 0.1220 0.2009 0.2160 0.2237 0.2260

S&P500 5 0.7601 0.0361 0.0947 0.1022 0.1235 0.1336
10 1.0000 0.0086 0.1001 0.1033 0.1178 0.1193
22 0.9834 0.0148 0.1415 0.1449 0.1501 0.1812

Real Time Forecast from the HAR-RV model
α

p p̂T1,2000
√
T1τ̂

C
T1

0.1 0.05 0.01 0.001
MSFT 22 0.6607 0.1166 0.1349 0.1658 0.1719 0.1912
IBM 22 0.7469 0.0710 0.1189 0.1405 0.1522 0.1672
GE 22 0.3529 0.1433 0.0928 0.2152 0.2269 0.2458
PG 22 0.9400 0.0117 0.0596 0.1057 0.1151 0.1236
MMM 22 0.9308 0.0442 0.0901 0.1795 0.1925 0.2111
S&P500 22 1.0000 0.0087 0.0502 0.1182 0.1258 0.1456
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Table 8: The Table shows the OLS estimation results of the HAR-RV model augmented with the
terms for the leverage effects (11) and results of testing the hypothesis H0 : γ− ≤ γ+. The 1-
min realized variance RV 1min

t is used in the OLS fittings. In the parenthesis under the estimated
coefficients are t-statistics obtained with Newey-West standard errors with 18 lag periods. The cases
considered here are S&P500 index and five stocks from Dow Jones Industrial Averages: Microsoft
(MSFT), International Business Machines Corporation (IBM), General Electric (GE), Procter &
Gamble (PG) and 3M (MMM). The sample period is from Jan-04-1993 to Dec-31-2009 (4,283 trading
days).

H0 : γ− ≤ γ+
αD βRD βRW βRM γ+ γ− Adj R2 t-statistic p-value

MSFT R2
t−1 0.0000 0.3080 0.4009 0.2520 0.0054 0.0463 0.7996 2.88 0.0020

(1.5109) (3.4832) (3.4076) (4.8492) (1.0721) (3.1394)
|Rt−1| -0.0000 0.2982 0.4043 0.2530 0.0007 0.0040 0.8017 5.38 0.0000

(-2.1753) (3.3179) (3.4144) (4.8945) (1.9027) (5.5406)
IBM R2

t−1 0.0000 0.1908 0.5788 0.1399 -0.0131 0.0361 0.5970 3.00 0.0014
(3.1423) (1.2951) (2.7290) (2.1214) (-1.4009) (2.9700)

|Rt−1| 0.0000 0.1953 0.5534 0.1459 0.0000 0.0029 0.5974 3.67 0.0001
(1.8065) (1.4204) (2.9082) (2.4100) (-0.0355) (3.9841)

GE R2
t−1 0.0000 0.2581 0.4724 0.1006 -0.0140 0.2016 0.6300 3.42 0.0003

(2.7765) (3.7433) (6.0651) (1.5677) (-0.7284) (3.4924)
|Rt−1| -0.0000 0.2739 0.4597 0.0999 0.0011 0.0115 0.6175 3.44 0.0003

(-0.7339) (3.6260) (5.8477) (1.6040) (1.0789) (3.8243)
PG R2

t−1 0.0000 0.2021 0.2902 0.3967 -0.0123 0.0176 0.4187 1.91 0.0282
(3.5922) (1.9651) (2.7418) (4.4417) (-1.1327) (0.8961)

|Rt−1| 0.0000 0.1732 0.2616 0.3915 0.0014 0.0065 0.4433 2.33 0.0101
(0.5923) (1.7321) (2.3486) (4.6627) (1.1906) (1.9860)

MMM R2
t−1 0.0000 0.1103 0.5569 0.1881 0.0074 0.1306 0.5429 1.66 0.0490

(2.5989) (0.8507) (3.8863) (2.8876) (0.7038) (1.6649)
|Rt−1| 0.0000 0.1142 0.5667 0.1707 0.0012 0.0056 0.5360 2.02 0.0215

(0.0432) (0.8813) (3.5723) (2.4630) (1.6301) (2.0489)
S&P500 R2

t−1 0.0000 0.1014 0.5021 0.1377 0.0199 0.1952 0.6496 2.75 0.0030
(1.1027) (0.8112) (3.3468) (2.6276) (1.2872) (2.8746)

|Rt−1| -0.0000 0.0935 0.5880 0.1207 0.0011 0.0063 0.5995 2.37 0.0089
(-1.6314) (0.6226) (3.1857) (1.7781) (1.6719) (2.3395)

38



Table 9: The Table shows the OLS estimation results of the HAR-RV-CJ model augmented with
the terms for the leverage effects (12) and results of testing the hypothesis H0 : γ− ≤ γ+. The
1-min realized variance RV 1min

t is used in the OLS fittings. In the parenthesis under the estimated
coefficients are t-statistics obtained with Newey-West standard errors with 18 lag periods. The cases
considered here are S&P500 index and five stocks from Dow Jones Industrial Averages: Microsoft
(MSFT), International Business Machines Corporation (IBM), General Electric (GE), Procter &
Gamble (PG) and 3M (MMM). The sample period is from Jan-04-1993 to Dec-31-2009 (4,283 trading
days).

H0 : γ− ≤ γ+
αD βBD βBW βBM βJD βJW βJM γ+ γ− Adj R2 t-statistic p-value

MSFT R2
t−1 0.0000 0.2999 0.4329 0.2525 -0.0313 0.3389 0.9365 0.0055 0.0475 0.7950 2.86 0.0021

(2.1119) (2.8715) (3.5586) (4.2595) (-0.3367) (2.0899) (4.7025) (1.0799) (3.0443)
|Rt−1| 0.0000 0.2883 0.4362 0.2451 -0.0287 0.3450 0.9789 0.0009 0.0042 0.7974 5.29 0.0000

(0.0322) (2.7402) (3.5820) (4.1166) (-0.3086) (2.1076) (4.8550) (1.8815) (5.1591)
IBM R2

t−1 0.0000 0.1845 0.5967 0.1408 0.0011 0.2239 0.7517 -0.0106 0.0387 0.5869 2.94 0.0016
(3.9448) (1.1346) (2.6655) (2.1168) (0.0159) (0.5862) (2.0366) (-1.1125) (3.0450)

|Rt−1| 0.0000 0.1875 0.5739 0.1412 0.0123 0.1320 0.8368 0.0003 0.0032 0.5881 3.65 0.0001
(2.5105) (1.2241) (2.8251) (2.2809) (0.1824) (0.2948) (2.0337) (0.5110) (4.1115)

GE R2
t−1 0.0000 0.2816 0.4995 0.0842 0.0133 0.4664 0.5403 -0.0107 0.2038 0.6373 3.37 0.0004

(3.6073) (4.3197) (6.1839) (1.5749) (0.0515) (1.1606) (1.8748) (-0.5542) (3.4998)
|Rt−1| -0.0000 0.2981 0.4864 0.0805 -0.0098 0.3522 0.7051 0.0016 0.0119 0.6256 3.43 0.0003

(-1.4288) (4.3399) (5.8685) (1.5416) (-0.0373) (0.8862) (2.4516) (1.6488) (3.9520)
PG R2

t−1 0.0000 0.1727 0.3839 0.3571 0.1209 -0.0834 0.8698 -0.0090 0.0197 0.4118 1.74 0.0412
(3.8307) (1.2404) (6.7152) (2.6765) (3.6550) (-0.3955) (4.1265) (-0.7830) (0.9524)

|Rt−1| 0.0000 0.1349 0.3530 0.3350 0.1376 -0.1197 0.8877 0.0018 0.0070 0.4394 2.32 0.0101
(0.6036) (1.0996) (5.8374) (2.9011) (4.2783) (-0.5279) (4.1579) (1.4862) (2.0842)

MMM R2
t−1 0.0000 0.1089 0.6092 0.1477 0.0130 -0.0012 0.8853 0.0094 0.1376 0.5459 1.72 0.0430

(3.9076) (0.7835) (4.0426) (2.2613) (0.0624) (-0.0069) (3.0911) (0.9267) (1.7609)
|Rt−1| 0.0000 0.1016 0.6302 0.1309 0.1073 -0.0501 0.8321 0.0014 0.0059 0.5386 2.07 0.0191

(0.0660) (0.7176) (3.7460) (1.8819) (0.7681) (-0.2799) (3.5467) (1.9428) (2.1791)
S&P500 R2

t−1 0.0000 0.1096 0.4774 0.1542 0.0212 -0.4703 1.4289 0.0220 0.1972 0.6479 2.78 0.0027
(1.1751) (0.9227) (3.3274) (2.9598) (0.0974) (-0.6704) (1.1810) (1.4051) (2.8945)

|Rt−1| -0.0000 0.0978 0.5675 0.1374 0.0702 -0.5867 1.5699 0.0012 0.0064 0.5971 2.39 0.0084
(-1.5487) (0.7030) (3.3248) (2.0635) (0.3511) (-0.7494) (1.1615) (1.7194) (2.3504)
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Table 10: The table shows minimum, mean and maximum values of daily standardized quadratic
co-variations between intraday log price Xt and function of spot variance F (σ2

t ) obtained by using
the method in Wang and Mykland (2012), and number of significant days when comparing the
daily standardized quadratic co-variations with different critical values. The standardized quadratic
co-variations are defined as L1 and L2 in (15) and (16) with 〈X,F (σ2)〉T = 0. We use 1-min
equally spaced data, and set T = one day and Mn = 30 for the estimations. We assume F (x) = x
and F (x) = 1/2 log (x). The cases considered here are S&P500 index and five stocks from Dow
Jones Industrial Averages: Microsoft (MSFT), International Business Machines Corporation (IBM),
General Electric (GE), Procter & Gamble (PG) and 3M (MMM). The sample period is from Jan-
04-1993 to Dec-31-2009 (4,283 trading days).

MSFT IBM
L1 − x L1 − 1

2
log (x) L2 − x L2 − 1

2
log (x) L1 − x L1 − 1

2
log (x) L2 − x L2 − 1

2
log (x)

Min. -2.807 -2.561 -2.906 -2.520 -2.421 -2.691 -2.509 -2.709
Mean -0.059 -0.065 -0.058 -0.065 -0.014 -0.017 -0.015 -0.019
Max. 2.224 2.498 2.429 2.716 2.584 2.728 2.763 2.728
|.| ≥ 1.96 29 46 32 47 39 51 40 54
. ≤ −1.64 85 102 88 98 66 94 70 99
|.| ≥ 2.58 2 0 1 1 1 2 1 3
. ≤ −2.33 2 3 3 5 1 3 1 3

GE PG
L1 − x L1 − 1

2
log (x) L2 − x L2 − 1

2
log (x) L1 − x L1 − 1

2
log (x) L2 − x L2 − 1

2
log (x)

Min. -2.322 -2.613 -2.51 -2.601 -2.416 -2.354 -2.426 -2.403
Mean -0.038 -0.039 -0.042 -0.042 -0.037 -0.038 -0.041 -0.043
Max. 2.815 2.765 2.790 2.851 2.263 2.475 2.260 2.501
|.| ≥ 1.96 42 63 42 70 18 35 20 37
. ≤ −1.64 83 108 86 109 60 95 66 101
|.| ≥ 2.58 1 2 1 2 0 0 0 0
. ≤ −2.33 0 1 1 2 1 2 1 2

MMM S&P500
L1 − x L1 − 1

2
log (x) L2 − x L2 − 1

2
log (x) L1 − x L1 − 1

2
log (x) L2 − x L2 − 1

2
log (x)

Min. -2.362 -2.638 -2.383 -2.646 -2.605 -2.735 -2.620 -2.987
Mean 0.001 0.003 0.000 0.003 -0.191 -0.186 -0.186 -0.186
Max. 2.496 2.471 2.504 2.434 2.850 2.785 2.781 2.969
|.| ≥ 1.96 43 64 50 71 148 244 157 257
. ≤ −1.64 88 99 87 101 308 379 307 392
|.| ≥ 2.58 0 1 0 1 2 8 4 13
. ≤ −2.33 1 6 1 6 15 39 19 42
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Table 11: The table shows estimated f = liml→0Corr (vt+l − vt, Xt+l −Xt) by using the data driven
method in Ait-Sahalia et al. (2012). Here Xt := logPt and vt := σ2

t . The estimates are based
on sample correlation and bias corrected sample correlation (denoted by f̂k and f̂ bck ) between daily
returns Rt and the difference of the realized variances RV 1min

t . We also report the upper and lower

bounds k
∗

and k∗ for
{
k, f̂k

}k∗
k=k∗

used for estimating the regression, and the (unadjusted) R2 of the

regression. The cases considered here are S&P500 index and five stocks from Dow Jones Industrial
Averages: Microsoft (MSFT), International Business Machines Corporation (IBM), General Electric
(GE), Procter & Gamble (PG) and 3M (MMM). The sample period is from Jan-04-1993 to Dec-31-
2009 (4,283 trading days).

Uncorrected f̂k
IBM MSFT GE PG MMM S&P500

f -0.24 -0.31 -0.48 -0.32 -0.28 -0.36

k
∗

15 21 44 29 17 17
k∗ 55 53 87 91 54 94
R2 0.97 0.92 0.96 0.98 0.94 0.89

Bias Corrected f̂ bck
IBM MSFT GE PG MMM S&P500

f -0.25 -0.32 -0.48 -0.34 -0.30 -0.37

k
∗

15 20 31 29 17 15
k∗ 55 53 88 88 54 93
R2 0.97 0.93 0.97 0.98 0.95 0.91
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Figure 1: Time series plots of daily RV 1min
t , RV 5min

t , RG2
t , and Rt for S&P500 index and five

stocks from Dow Jones Industrial Averages: Microsoft (MSFT), International Business Machines
Corporation (IBM), General Electric (GE), Procter & Gamble (PG) and 3M (MMM). The quantities
of RV 1min

t , RV 5min
t , and RG2

t shown here are scaled by 104. The sample period is from Jan-04-1993
to Dec-31-2009 (4,283 trading days). 42
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Figure 2: Cross correlations of daily RV 1min
t , RV 5min

t , RG2
t , and Rt−j for S&P500 index and five

stocks from Dow Jones Industrial Averages: Microsoft (MSFT), International Business Machines
Corporation (IBM), General Electric (GE), Procter & Gamble (PG) and 3M (MMM). We set lag
length j = −10, . . . , 10, and the sample period for the calculations is from Jan-04-1993 to Dec-31-2009
(4,283 trading days). 43
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Figure 3: Plots of surfaces m̂−Tj (y, 0, σ) (left), m̂+
Tj

(y, 0, σ) (middle) and ̂̄mj (y, 0, σ) (right) of MSFT.

Note that ̂̄mj (y, 0, σ) = m̂−Tj (y, 0, σ)− m̂+
Tj

(y, 0, σ). Upper: j = 1. Bottom: j = 5. Here RV 5min
t is

used as the estimate of daily σ2
t .
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Figure 6: Time series plots of daily standardized quadratic co-variations between intraday log re-
turn Xt and function of spot variance F (σ2

t ) obtained by using the method in Wang and Mykland
(2012). The standardized quadratic co-variations are defined as L1 and L2 in (15) and (16) with
〈X,F (σ2)〉T = 0. We use 1-min equally spaced data, and set T = one day and Mn = 30 for the
estimations. We assume F (x) = x and F (x) = 1/2 log (x). The cases considered here are S&P500
index and five stocks from Dow Jones Industrial Averages: Microsoft (MSFT), International Business
Machines Corporation (IBM), General Electric (GE), Procter & Gamble (PG) and 3M (MMM). The
sample period is from Jan-04-1993 to Dec-31-2009 (4,283 trading days).
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Figure 7: Plots of sample correlation between returns and difference of the daily realized variances,
f̂k and bias corrected sample correlation f̂ bck in (18) against k. The bias corrected sample correlation

f̂ bck is obtained by using method in Ait-Sahalia et al. (2012). We replace γ in (18) with γ̂ in
(19) which is estimated with mean of the realized quarticities and sample variance of the realized
variances. We use 1-min equally spaced log returns to estimate the daily realized variances and
quarticities. The cases considered here are S&P500 index and five stocks from Dow Jones Industrial
Averages: Microsoft (MSFT), International Business Machines Corporation (IBM), General Electric
(GE), Procter & Gamble (PG) and 3M (MMM). The sample period is from Jan-04-1993 to Dec-31-
2009 (4,283 trading days).
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