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1 Introduction

Regression discontinuity (RD) designs for evaluating causal effects of interventions, where as-

signment is determined at least partly by the value of an observed covariate lying on either side

of a threshold, were introduced by Thistlewaite and Campbell (1960). See Cook (2008) for a

historical perspective. A recent surge of applications in economics includes studies of the impact

of financial aid offers on college acceptance (Van Der Klaauw, 2002), school quality on housing

values (Black, 1999), class size on student achievement (Angrist and Lavy, 1999), air quality

on health outcomes (Chay and Greenstone, 2005), incumbency on re-election (Lee, 2008), and

many others. Recent important theoretical work has dealt with identification issues (Hahn,

Todd, and Van Der Klaauw, 2001, HTV from hereon), optimal estimation (Porter, 2003), tests

for validity of the design (McCrary, 2008), quantile effects (Frandsen, 2008; Frölich and Melly,

2008), and the inclusion of covariates (Frölich, 2007). General surveys include Lee and Lemieux

(2009), Van Der Klaauw (2008), and Imbens and Lemieux (2008).

In RD settings analyses typically focus on the average effect of the treatment for units

with values of the forcing variable close to the threshold, using kernel, local linear, or global

polynomial series estimators. Fan and Gijbels (1992) and Porter (2003) show that local linear

estimators are rate optimal and have attractive bias properties. A key decision in implementing

these methods is the choice of bandwidth. In current practice researchers use a variety of ad

hoc approaches for bandwidth choice, such as standard plug-in and crossvalidation methods.

These are sometimes based on objective functions which take into account the performance

of the estimator of the regression function over the entire support, and do not yield optimal

bandwidths here. There are no bandwidth choices in the literature (e.g., Härdle 1992, Fan

and Gijbels, 1992, Wand and Jones, 1994) for the case where the estimand is the difference

in two regression functions at boundary points. In this paper we propose a practical, rule-

of-thumb bandwidth choice tailored to the RD setting with some optimality properties. The

two contributions of this paper are (i), the derivation of the optimal bandwidth for this setting,

taking account of the special features of the RD setting, and (ii), a fully data-dependent method

for choosing the bandwidth that is asymptotically optimal in the sense of having the “asymptotic

no-regret” property.1 Although optimal in large samples, the proposed algorithm involves initial

bandwidth choices. We analyze the sensitivity of the results to these choices. We illustrate the

algorithm using a data set previously analyzed by Lee (2008), and compare our procedure to

1Matlab and Stata software for implementing this bandwidth rule is available on the website
http://www.economics.harvard.edu/faculty/imbens/imbens.html.
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others proposed in the literature, including the crossvalidation procedure proposed by Ludwig

and Miller (2007) and a bandwidth choice proposed by DesJardins and McCall (2008) that uses

a different criterion. Simulations indicate that the proposed algorithm works well in realistic

settings.

2 Basic model

In the basic RD setting, researchers are interested in the causal effect of a binary treatment. In

the setting we consider we have a sample of N units, drawn randomly from a large population.

For unit i, i = 1, . . . , N , the variable Yi(1) denotes the potential outcome for unit i given

treatment, and Yi(0) the potential outcome without treatment. For unit i we observe the

treatment received, Wi, equal to one if unit i was exposed to the treatment and 0 otherwise,

and the outcome corresponding to the treatment received:

Yi =

{

Yi(0) if Wi = 0,

Yi(1) if Wi = 1.

We also observe for each unit a scalar covariate, called the forcing variable, denoted by Xi.

Here we focus on the case with a scalar forcing variable. In Section 5 we discussion the case

with additional covariates. Define

m(x) = E[Yi|Xi = x],

to be the conditional expectation of the outcome given the forcing variable. The idea behind

the Sharp Regression Discontinuity (SRD) design is that the treatment Wi is determined solely

by the value of the forcing variable Xi being on either side of a fixed, known threshold c, or:

Wi = 1Xi≥c.

In Section 5 we extend the SRD setup to the case with additional covariates and to the Fuzzy

Regression Discontinuity (FRD) design, where the probability of receiving the treatment jumps

discontinuously at the threshold for the forcing variable, but not necessarily from zero to one.

In the SRD design the focus is on average effect of the treatment for units with covariate

values equal to the threshold:

τSRD = E[Yi(1)− Yi(0)|Xi = c].

Now suppose that the conditional distribution functions FY (0)|X(y|x) and FY (1)|X(y|x) are con-

tinuous in x for all y, and that the conditional first moments E[Yi(1)|Xi = x] and E[Yi(0)|Xi = x]
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exist, and are continuous at x = c. Then

τSRD = µ+ − µ−, where µ+ = lim
x↓c

m(x), and µ− = lim
x↑c

m(x).

Thus, the estimand is the difference of two regression functions evaluated at boundary points.

We focus on estimating τSRD by local linear regressions on either side of the threshold. Local

nonparametric methods are attractive in this setting because of the need to estimate regression

functions consistently at a point. Furthermore, in the RD setting local linear regression esti-

mators are preferred to the standard Nadaraya-Watson kernel estimator, because local linear

methods have been shown to have attractive bias properties in estimating regression functions

at the boundary (Fan and Gijbels, 1992), and enjoy rate optimality (Porter, 2003). To be

explicit, we estimate the regression function m(·) at x as

m̂h(x) =

{

α̂−(x) if x < c,

α̂+(x) if x ≥ c.
(2.1)

where,

(α̂−(x), β̂−(x)) = argmin
α,β

N
∑

i=1

1Xi<x · (Yi − α − β(Xi − x))2 · K

(

Xi − x

h

)

,

and

(α̂+(x), β̂+(x)) = argmin
α,β

N
∑

i=1

1Xi>x · (Yi − α − β(Xi − x))2 · K

(

Xi − x

h

)

,

Then

τ̂SRD = µ̂+ − µ̂−,

where

µ̂− = lim
x↑c

m̂h(x) = α̂−(c) and µ̂+ = lim
x↓c

m̂h(x) = α̂+(c).

3 Error Criterion and Infeasible Optimal Bandwidth Choice

In this section we discuss the objective function, and derive the optimal bandwidth under that

criterion.

3.1 Error Criteria

The primary question studied in this paper concerns the optimal choice of the bandwidth h. In

the current empirical literature researchers often choose the bandwidth by either crossvalidation
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or ad hoc methods. See Härdle (1992) , Fan and Gijbels (1992), and Wand and Jones (1994) for

textbook discussionz of crossvalidation and related methods, and see Lee and Lemieux (2009)

for a comprehensive discussion of current practice in RD settings. Conventional crossvalidation

yields a bandwidth that is optimal for fitting a curve over the entire support of the data.2 In

other words, it attempts to choose the bandwidth to minimize an approximation to the mean

integrated squared error criterion (MISE),

MISE(h) = E

[∫

x

(m̂h(x) − m(x))2 f(x)dx

]

,

here f(x) is the density of the forcing variable. This criterion is not directly relevant for the

problem at hand: we wish to choose a bandwidth that is optimal for estimating τSRD. This

estimand has a number two special features. First, it depends on m(x) only through two values,

and specifically their difference. Second, both these values are boundary values.

Our proposed criterion is based on a the expectation of the asymptotic expansion, around

h = 0, of the squared error (τ̂SRD − τSRD)2. First, define the expected squared error:

MSE(h) = E

[

(

τ̂SRD − τSRD

)2
]

= E

[

(

(µ̂+ − µ+) − (µ̂− − µ−)
)2
]

. (3.2)

and let h∗ be the optimal bandwidth that minimizes this criterion:

h∗ = argminMSE(h). (3.3)

This criterion is difficult to work with directly. The problem is that in many cases, as the

sample size N goes to infinity, the optimal bandwidth h∗ will not converge to zero, because

biases in different parts of the regression function may be offsetting.3 In such cases the optimal

bandwidth is very sensitive to the actual distribution and regression function, and it is difficult

to see how one could exploit such knife-edge cases.

A second comment concerns our focus on a single bandwidth. Because the estimand, τSRD,

is a function of the regression function at two points, an alternative would be to allow for a

different bandwidth for these two points, h− for estimating µ−, and h+ for estimating µ+ and

and focus on an objective function that is an approximation to

MSE(h−, h+) = E

[

(

(µ̂+(h+)− µ+)− (µ̂−(h−) − µ−)
)2
]

. (3.4)

2See Ludwig and Miller (2005) and Lee and Lemieux (2009) for a discussion of crossvalidation methods
designed more specifically for the RD setting. These methods are discussed in more detail in Section 4.5.

3To be explicit, consider a simple example where we are interested in estimating a regression function g(x)
at a single point, say g(0). Suppose the covariate X has a uniform distribution on [0, 1]. Suppose the regression
function is g(x) = (x − 1/4)2 − 1/16. With a uniform kernel the estimator for g(0) is, for a bandwidth h,
equal to

P

i:Xi<h Xi/
P

i:Xi<h 1. As a function of the bandwidth h the bias is equal to h2/3 − h/4, conditional
on
P

i:Xi<h 1. Thus, the bias is zero at h = 3/4, and if we minimize the expected squared error, the optimal
bandwidth will converge to 3/4.
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Doing so would raises an important issue. We focus on minimizing mean squared error, equal to

variance plus bias squared. Suppose that for both estimators the bias, E[µ̂−(h−)] and E[µ̂+(h+)]

are strictly increasing (or both strictly decreasing) functions of the bandwidth. Then there is

a function h+(h−) such that the biases cancel out: E[µ̂−(h−)] − E[µ̂+(h+(h−))] = 0. Hence

we can minimize the mean-squared-error by letting h− get large (the variance is generally a

decreasing function of the bandwidth), and choosing h+ = h+(h−). Even if this does not hold

exactly, the point is that a problem may arise that even for large bandwidths the difference

in bias may be close to zero. In practice it is unlikely that one can effectively exploit the

cancellation of biases for large bandwidths. However, it would make it difficult to construct

practical bandwidth algorithms. But, to avoid this problem, we focus in this discussion on a

single bandwidth choice. An alternative would be to change the criterion and add the mean-

squared-errors on the left and the right, e.g., E[(µ̂+ −µ+)2 + (µ̂−− µ−)2], rather than focusing

on the mean-squared-error of the difference, E[((µ̂+ − µ+)− (µ̂− − µ−))2].

3.2 An Asymptotic Expansion of the Expected Error

The next step is to derive an asymptotic expansion of (3.2). First we state the key assumptions.

Not all of these will be used immediately, but for convenience we state them all here.

Assumption 3.1: (Yi, Xi), for i = 1, . . . , N , are independent and identically distributed.

Assumption 3.2: The marginal distribution of the forcing variable Xi, denoted f(·), is con-

tinuous and bounded away from zero at the discontinuity, c.

Assumption 3.3: The conditional mean m(x) = E[Yi|Xi = x] has at least three continuous

derivatives in an open neigborhood of X = c. The right and left limits of the kth derivative of

m(x) at the threshold c are denoted m
(k)
+ (c) and m

(k)
− (c).

Assumption 3.4: The kernel K(·) is nonnegative, bounded, differs from zero on a compact

interval [0, a], and is continuous on (0, a).

Assumption 3.5: The conditional variance function σ2(x) = Var(Yi|Xi = x) is bounded in

an open neigborhood of X = c, and right and left continuous at c. The right and left limit are

denoted by σ2
+(c) and σ2

−(c) respectively.

Assumption 3.6: The second derivatives at the right and left, m
(2)
+ (x) and m

(2)
− (x), differ at

the threshold: m
(2)
+ (c) 6= m

(2)
− (c).
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Now define the Asymptotic Mean Squared Error (AMSE) as a function of the bandwidth:

AMSE(h) = C1 · h
4 ·
(

m
(2)
+ (c)− m

(2)
− (c)

)2
+

C2

N · h
·

(

σ2
+(c)

f(c)
+

σ2
−(c)

f(c)

)

. (3.5)

The constants C1 and C2 in this approximation are functions of the kernel:

C1 =
1

4

(

ν2
2 − ν1ν3

ν2ν0 − ν2
1

)2

, and C2 =
ν2
2π0 − 2ν1ν2π1 + ν2

1π2

(ν2ν0 − ν2
1 )2

, (3.6)

where

νj =

∫ ∞

0
ujK(u)du, and πj =

∫ ∞

0
ujK2(u)du.

The first term in (3.5) corresponds to the square of the bias, and the second term corresponds

to the variance. This expression clarifies the role that Assumption 3.6 will play. If the left and

right limits of the second derivative are equal, then the leading term in the expansion of the

square of the bias is not of the order h4. Instead the leading bias term would be of lower order.

It is difficult to exploit the improved convergence rate that would result from this in practice,

because it would be difficult to establish sufficiently fast that this difference is indeed zero, and

so we focus on optimality results given Assumption 3.6. Note however, that even if the second

derivatives are identical, our estimator for τSRD will be consistent.

An alternative approach would be to focus on a bandwidth choice that is optimal if the

second derivatives from the left and right are identical. It is possible to construct such a

bandwidth choice, and still maintain consistency of the resulting estimator for τSRD irrespective

of the difference in second derivatives. However, such an bandwidth choice would generally not

be optimal if the difference in second derivatives is nonzero. Thus there is a choice betweena

bandwidth choice that is optimal under m
(2)
+ (c) 6= m

(2)
− (c) and a bandwidth choice that is

optimal under m
(2)
+ (c) = m

(2)
− (c). In the current paper we choose to focus on the first case. The

reason is that if the second derivatives are in fact equal, the leading term in the bias vanishes.

Ignoring the leading term when in fact it is present appears in our view to be a bigger concern

than taking it into account when it is not.

Lemma 3.1: (Mean Squared Error Approximation and Optimal Bandwidth)

(i) Suppose Assumptions 3.1-3.5 hold. Then

MSE(h) = AMSE(h) + o

(

h4 +
1

N · h

)

.

(ii) Suppose Assumptions 3.1-3.6 hold. Then

hopt = argmin
h

AMSE(h) = CK ·







σ2
+(c) + σ2

−(c)

f(c) ·
(

m
(2)
+ (c)− m

(2)
− (c)

)2







1/5

·N−1/5, (3.7)
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where CK = (C2/(4 · C1))
1/5, indexed by the kernel K(·).

For the edge kernel, with K(u) = 1|u|≤1(1 − |u|), shown by Cheng, Fan and Marron (1997)

to have AMSE-minimizing properties for boundary estimation problems, the constant is CK ≈

3.4375.

4 Feasible Optimal Bandwidth Choice

In this section we discuss the proposed bandwidth, provide a full data-dependent estimator for

the bandwidth, and discuss its properties.

4.1 Proposed bandwidth

A natural choice for the estimator for the optimal bandwidth estimator is to replace the six

unknown quantities in the expression for the optimal bandwidth hopt, given in (4.16) by non-

parametric estimators, leading to

h̃opt = CK ·







σ̂2
−(c) + σ̂2

+(c)

f̂(c) ·
(

m̂
(2)
+ (c) − m̂

(2)
− (c)

)2







1/5

· N−1/5. (4.8)

We make one modification to this approach, motivated partly by the desire to reduce the

variance of the estimated bandwidth ĥopt, and partly by considerations regarding the structure

of the problem. More precisely, the concern is that the precision with which we estimate the

second derivatives m
(2)
+ (c) and m

(2)
− (c) may be so low, that the estimated optimal bandwidth

h̃opt will occasionally be very large, even when the data are consistent with a substantial

degree of curvature. To address this problem we add a regularization term to the denominator

in (4.8). This regularization term will be chosen carefully to decrease with the sample size,

therefore not compromising asymptotic optimality. Including this regularization term guards

against unrealistically large bandwidth choices when the curvature of the regression function is

imprecisely estimated.

We use as the regularization term the approximate variance of the estimated curvature.

This allows the regularization term to be invariant to the scale of the data. To be explicit,

we estimate the second derivative m
(2)
+ (c) by fitting to the observations with Xi ∈ [c, c + h] a

quadratic function. The bandwidth h here may be different from the bandwidth ĥopt used in

the estimation of τSRD, and its choice will be discussed in Section 4.2. Let Nh,+ be the number

of units with covariate values in this interval. We assume homoskedasticity with error variance
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σ2(c) in this interval. Let

µ̂j,h,+ =
1

Nh,+

∑

c≤Xi≤c+h

(Xi − X)j, where X =
1

Nh,+

∑

c≤Xi≤c+h

Xi,

be the j-th (centered) moment of the Xi in this interval to the right of the threshold. We can

derive the following explicit formula for the conditional variance of the curvature (viz. twice

the coefficient on the quadratic term), denoted by r+, in terms of these moments:

r+ =
4

Nh,+

(

σ2
+(c)

µ̂4,h,+ − (µ̂2,h,+)2 − (µ̂3,h,+)2/µ̂2,h,+

)

However, to avoid estimating fourth moments, we approximate this expression exploiting the

fact that for small h, the distribution of the forcing variable, normalized to have unit variance,

can be approximated by a uniform distribution on [c, c+ h], so that µ̂2,h,+ ≈ h2/12, µ̂3,h,+ ≈ 0,

and µ̂4,h,+ ≈ h4/60. After substituting σ̂2
−(c) for σ2

−(c) and σ̂2
+(c) for σ2

+(c) this leads to

r̂+ =
720 · σ̂2

+(c)

Nh,+ · h4
, and similarly r̂− =

720 · σ̂2
−(c)

Nh,− · h4
.

The proposed bandwidth is now obtained by adding the regularization terms to the curva-

tures in the bias term of MSE expansion:

ĥopt = CK ·









σ̂2
−(c) + σ̂2

+(c)

f̂(c)

(

(

m̂
(2)
+ (c)− m̂

(2)
− (c)

)2
+ (r̂+ + r̂−)

)









1/5

· N−1/5, (4.9)

To operationalize this proposed bandwidth, we need specific estimators f̂(c), σ̂2
−(c), σ̂2

+(c),

m̂
(2)
− (c), and m̂

(2)
+ (c). We provide a specific proposal for this in the next section.

4.2 Algorithm for bandwidth selection

The reference bandwidth ĥopt is a function of the outcome variable Y = (Y, , . . . , YN), the

forcing variable X = (X1, . . . , XN) and the chosen kernel; i.e. ĥopt = h(Y, X). We give below

a general algorithm for a specific implementation. In practice we recommend using the edge

optimal kernels, where K(u) = 1|u|≤1 · (1 − |u|), although the algorithm is easily modified for

other kernels by changing the kernel-specific constant CK .

To calculate the bandwidth we need estimators for the density at the threshold, f(c), the

conditional variances at the threshold, σ2
−(c) and σ2

+(c), and the limits of the second derivatives

at the threshold from the right and the left, m
(2)
+ (c), m

(2)
− (c). (The other components of (4.9),

r̂− and r̂+ are functions of these four components.) The first two functionals are calculated
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in step 1, the second two in step 2. Step 3 puts these together with the appropriate kernel

constant CK to produce the reference bandwidth.

Step 1: Estimation of density f(c) and conditional variances σ2
−(c) and σ2

+(c)

First calculate the sample variance of the forcing variable, S2
X =

∑
(

Xi − X
)2

/(N − 1). We

now use the Silverman rule to get a pilot bandwidth for calculating the density and variance

at c. The standard Silverman rule of h = 1.06 · SX · N−1/5 is based on a normal kernel and

a normal reference density. We modify this for the uniform kernel on [−1, 1] and the normal

reference density, and calculate the pilot bandwidth h1 as:

h1 = 1.84 · SX · N−1/5.

Calculate the number of units on either side of the threshold, and the average outcomes on

either side as

Nh1,− =

N
∑

i=1

1c−h1≤Xi<c, Nh1,+ =

N
∑

i=1

1c≤Xi≤c+h1 ,

Y h1,− =
1

Nh1,−

∑

i:c−h1≤Xi<c

Yi, and Y h1,+ =
1

Nh1,+

∑

i:c≤Xi≤c+h1

Yi.

Now estimate the density of Xi at c as

f̂X(c) =
Nh1,− + Nh1,+

2 · N · h1
, (4.10)

and estimate the limit of the conditional variances of Yi given Xi = x, at x = c, from the left

and the right, as

σ̂2
−(c) =

1

Nh1,− − 1

∑

i:c−h1≤Xi<c

(

Yi − Y h1,−

)2
, (4.11)

and

σ̂2
+(c) =

1

Nh1,+ − 1

∑

i:c≤Xi≤c+h1

(

Yi − Y h1,+

)2
. (4.12)

The main property we will need for these estimators is that they are consistent for the density

and the conditional variance respectively. They need not be efficient. For consistency of the

density and conditional variance estimators Assumptions 3.2 and 3.5 are sufficient, given that

the bandwidth goes to zero at rate N−1/5.

Step 2: Estimation of second derivatives m̂
(2)
+ (c) and m̂

(2)
− (c)
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First we need a pilot bandwidth h2,+. We base this on a simple, not necessarily consistent,

estimator of the third derivative of m(·) at c. Let N− and N+ be the number of of observations

to the left and right of the threshold, respectively. Now fit a third order polynomial to the data,

including an indicator for Xi ≥ 0. Thus, estimate the regression function

Yi = γ0 + γ1 · 1Xi≥c + γ2 · (Xi − c) + γ3 · (Xi − c)2 + γ4 · (Xi − c)3 + εi, (4.13)

and estimate m(3)(c) as m̂(3)(c) = 6 · γ̂4. This will be our estimate of the third derivative of the

regression function. Note that m̂(3)(c) is in general not a consistent estimate of m(3)(c) but will

converge to some constant at a parametric rate. Let m3 = 6 · plim(γ̂4) denote this constant.

However we do not need a consistent estimate of the third derivative at c here to achieve what

we ultimately need: a consistent estimate of the constant in the reference bandwidth. Calculate

h2,+, using the σ̂2
−(c), σ̂2

+(c) and f̂(c) from Step 1, as

h2,+ = 3.56

(

σ̂2
+(c)

f̂(c)
(

m̂(3)(c)
)2

)1/7

N
−1/7
+ , (4.14)

and

h2,− = 3.56

(

σ̂2
−(c)

f̂(c)
(

m̂(3)(c)
)2

)1/7

N
−1/7
− .

These bandwidths, h2,− and h2,+, are estimates of the optimal bandwidth for calculation of the

second derivative at the boundary using a local quadratic. See the Appendix for details.

Given this pilot bandwidth h2,+, we estimate the curvature m(2)(c) by a local quadratic

fit. To be precise, temporarily discard the observations other than the N2,+ observations with

c ≤ Xi ≤ c + h2,+. Label the new data Ŷ+ = (Y1, . . . , YN2,+) and X̂+ = (X1, . . . , XN2,+)

each of length N2,+. Fit a quadratic to the new data. I.e. let T = [ι T1 T2] where ι is

a column vector of ones, and T′
j =

(

(X1 − c)j, . . . , (XN2,+ − c)j
)

, for j = 1, 2. Estimate the

three dimensional regression coefficient vector, λ̂ = (T′T)−1T′Ŷ. Calculate the curvature as

m̂
(2)
+ (c) = 2 · λ̂3. This is a consistent estimate of m

(2)
+ (c). To estimate m

(2)
− (c) follow the same

procedure using the data with c − h2,− ≤ Xi < c.

Step 3: Calculation of Regularization Terms r̂− and r̂+, and Calculation of ĥopt

Given the previous steps, the regularization terms are calculated as

r̂+ =
720 · σ̂2

+(c)

N2,+ · h4
2,+

, and r̂− =
720 · σ̂2

−(c)

N2,− · h4
2,−

. (4.15)
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We now have all the pieces to calculate the proposed bandwidth:

ĥopt = CK ·









σ̂2
−(c) + σ̂2

+(c)

f̂(c) ·

(

(

m̂
(2)
+ (c)− m̂

(2)
− (c)

)2
+ (r̂+ + r̂−)

)









1/5

· N−1/5. (4.16)

where CK is, as in Lemma 3.1, a constant that depends on the kernel used. For the edge kernel,

with K(u) = (1− |u|) · 1|u|≤1, the constant is CK ≈ 3.4375.

Given ĥopt, we estimate τSRD as

τ̂SRD = lim
x↓c

m̂ĥopt
(x) − lim

x↑c
m̂ĥopt

(x),

where m̂h(x) is the local linear regression estimator as defined in (2.1).

4.3 Properties of algorithm

For this algorithm we establish certain optimality properties. First, the resulting RD estimator

is consistent at the best rate for nonparametric regression functions at a point (Stone, 1982).

Second, as the sample size increases, the estimated constant term in the reference bandwidth

converges to the best constant. Third, we also have an “asymptotic no-regret” or Li (1987)

type consistency result for the mean squared error and consistency at the optimal rate for the

RD estimate.

Theorem 4.1: (Properties of ĥopt)

Suppose Assumptions 3.1-3.5 hold. Then:

(i)

τ̂SRD − τSRD = Op

(

N−12/35
)

, (4.17)

(ii) Suppose also Assumption 3.6 holds. Then:

τ̂SRD − τSRD = Op

(

N−2/5
)

, (4.18)

(iii)

ĥopt − hopt

hopt
= op(1), (4.19)

and (iv):

MSE(ĥopt) − MSE(hopt)

MSE(hopt)
= o(1). (4.20)
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Note that if Assumption 3.6 holds, the convergence rate is N−14/35, and if it fails, the conver-

gence rate for τ̂SRD is slower, namely N−12/35. This may be somewhat counterintuitive, because

failure of Assumption (3.6) implies that the leading term of the bias vanishes, which, one might

expect, would improve convergence. Here is the explanation. If Assumption 3.6 fails, the lead-

ing term in the bias vanishes, and the square of the bias becomes of order O(h6). Because the

variance remains of order O((Nh)−1), the optimal rate for the bandwidth, based on balancing

the bias-squared and the variance, becomes N−1/7. As a result the optimal rate for the MSE

becomes N−6/7 and thus the optimal rate for τ̂SRD − τSRD becomes N−3/7. This is better than

the convergence rate of N−2/5 that we have when Assumption 3.6 holds. The reason this N−3/7

convergence rate does not show up in the theorem is that the proposed optimal bandwidth does

not adapt to the vanishing of the difference in second derivatives. If Assumption 3.6 fails, the

proposed bandwidth goes to zero as N−4/35 (instead of the optimal rate N−1/7), and so the

MSE becomes N−24/35, leading to τ̂SRD − τSRD = Op(N
−12/35), slower than the optimal rate of

N−3/7, and even slower than the rate we achieve when Assumption 3.6 holds (namely, N−2/5).

One could modify the regularization term to take account of this, but in practice it is unlikely

to make a difference.

4.4 DeJardins-McCall Bandwidth Selection

DesJardins and McCall (2008) use an alternative method for choosing the bandwidth. They

focus separately on the limits of the regression function to the left and the right, rather than

on the difference in the limits. This leads them to minimize the sum of the squared differences

between µ̂− and µ−, and between µ̂+ and µ+:

E[(µ̂+ − µ+)2 + (µ̂− − µ−)2],

instead of our criterion,

E[((µ̂+ − µ+) − (µ̂− − µ−))2].

The single optimal bandwidth based on this criterion is4

hDM = CK ·





σ2
+(c) + σ2

−(c)

f(c) ·
(

m
(2)
+ (c)2 + m

(2)
− (c)2

)





1/5

· N−1/5.

4DesJardins and McCall actually allow for different bandwidths on the left and the right, and also use a
Epanechnikov kernel instead of the optimal edge kernel. In the calculations below we use the edge kernel to
make the results more comparable.
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This will lead to a smaller bandwidth than our proposed bandwidth choice if the second deriva-

tives are of the same sign. We include the DesJardins-McCall bandwidth in our bandwidth

comparisons below.

4.5 Ludwig-Miller Crossvalidation

In this section we briefly describe the crossvalidation method proposed by Ludwig and Miller

(2005, LM from hereon), which we will compare to our proposed bandwidth in the application

and simulations. See also Lee and Lemieux (2009). The LM bandwidth is the only proposed

bandwidth selection procedure in the literature that is specifically aimed at providing a band-

width in a regression discontinuity setting. Let N− and N+ be the number of observations with

Xi < c and Xi ≥ c respectively. For δ ∈ (0, 1), let θ−(δ) and θ+(δ) be the δ-th quantile of the

Xi among the subsample of observations with Xi < c and Xi ≥ c respectively, so that

θ−(δ) = argmin
a

{

a

∣

∣

∣

∣

∣

(

N
∑

i=1

1Xi≤a

)

≥ δ · N−

}

,

and

θ+(δ) = argmin
a

{

a

∣

∣

∣

∣

∣

(

N
∑

i=1

1c≤Xi≤a

)

≥ δ · N+

}

.

Now the LM crossvalidation criterion we use is of the form:

CVδ(h) =

N
∑

i=1

1θ−(1−δ)≤Xi≤θ+(δ) · (Yi − m̂h(Xi))
2 .

(In fact, LM use a slightly different criterion function, where they sum up over all observations

within a distance h0 from the threshold.) The estimator for the regression function here is

m̂h(x) defined in equation (2.1). A key feature of this estimator is that for values of x < c,

it only uses observations with Xi < x to estimate m(x), and for values of x ≥ c, it only uses

observations with Xi > x to estimate m(x), so that m̂h(Xi) does not depend on Yi, as is

necessary for crossvalidation. By using a value for δ close to zero, we only use observations

close to the threshold to evaluate the cross-valdiation criterion. The only concern is that by

using too small value of δ, we may not get a precisely estimated crossvalidation bandwidth. In

a minor modification of the LM proposal we use the edge kernel instead of the Epanechnikov

kernel they suggest. In our calculations we use δ = 0.5. Any fixed value for δ is unlikely to lead

to an optimal bandwidth in general. Moreover, the criterion focuses implicitly on minimizing a

criterion more akin to E
[

(µ̂+ − µ+)2 − (µ̂− − µ−)2
]

, (with the errors in estimating µ− and µ+
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squared before adding them up), rather than rather than MSE(h) = E[((µ̂+−µ+)−(µ̂−−µ−))2]

in (4.19), where the error in the difference µ+−µ− is squared. As a result even letting δ → 0 with

the sample size in the crossvalidation procecure is unlikely to result in an optimal bandwidth.

5 Extensions

In this section we discuss two extensions. First the fuzzy regression discontinuity design, and

second the presence of covariates.

5.1 The Fuzzy Regression Design

In the Fuzzy Regression Discontinuity Design (FRD) the treatment Wi is not a deterministic

function of the forcing variable. Instead the probability Pr(Wi = 1|Xi = x) changes discontin-

uously at the threshold c. The focus is on the ratio

τFRD =
limx↓c E [Yi|Xi = x]− limx↑c E [Yi|Xi = x]

limx↓c E [Wi|Xi = x]− limx↑c E [Wi|Xi = x]
.

In an important theoretical paper Hahn, Todd and VanderKlaauw (2001) discuss identification

in this setting, and show that in settings with heterogenous effects the estimand has an inter-

pretation as a local average treatment effects (Imbens and Angrist, 1994). Now we need to

estimate two regression functions, each at two boundary points: the expected outcome given

the forcing variable E[Yi|Xi = x] to the right and left of the threshold c and the expected value

of the treatment variable given the forcing variable E[Wi|Xi = x], again both to the right and

left of c. Again we focus on a single bandwidth, now the bandwidth that minimize the mean

squared error to this ratio. Define

τY = lim
x↓c

E [Yi|Xi = x]− lim
x↑c

E [Yi|Xi = x] , and τW = lim
x↓c

E [Wi|Xi = x]− lim
x↑c

E [Wi|Xi = x] ,

with τ̂Y and τ̂W denoting the corresponding estimators, so that τFRD = τY /τW , and τ̂FRD =

τ̂Y /τ̂W . In large samples we can approximate the difference τ̂FRD − τFRD by

τ̂FRD − τFRD =
1

τW
(τ̂Y − τY ))−

τY

τ2
W

(τ̂W − τW )) + op((τ̂Y − τY ) + (τ̂W − τW )).

This is the basis for the asymptotic approximation to the MSE around h = 0:

AMSEfuzzy(h) = C1h
4

(

1

τW

(

m
(2)
Y,+(c)− m

(2)
Y,−(c)

)

−
τY

τ2
W

(

m
(2)
W,+(c)− m

(2)
W,−(c)

)

)2

(5.21)

+
C2

Nhf(c)

(

1

τ2
W

(

σ2
Y,+(c) + σ2

Y,−(c)
)

+
τ2
Y

τ4
W

(

σ2
W,+(c) + σ2

W,−(c)
)

−
2τY

τ3
W

(σY W,+(c) + σY W,−(c))

)

.
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In this expression the constants C1 and C2 are the same as before in Equation (3.6). The

second derivatives of the regression functions, m
(2)
Y,−(c), m

(2)
Y,+(c), m

(2)
W,−(c), and m

(2)
W,+(c), are

now defined separately for the treatment W and the outcome Y . In addition the conditional

variances are indexed by the treatment and outcome. Finally the AMSE also depends on the

right and left limit of the covariance of W and Y conditional on the forcing variable, at the

threshold, denoted by σY W,+(c) and σY W,−(c) respectively.

The bandwidth that minimizes the AMSE in the fuzzy design is

hopt,fuzzy = CK · N−1/5 (5.22)

×







(

σ2
Y,+(c) + σ2

Y,−(c)
)

+ τ2
FRD

(

σ2
W,+(c) + σ2

W,−(c)
)

− 2τFRD (σY W,+(c) + σY W,−(c))

f(c) ·
((

m
(2)
Y,+(c) − m

(2)
Y,−(c)

)

− τFRD

(

m
(2)
W,+(c)− m

(2)
W,−(c)

))2







1/5

.

The analogue of the bandwidth proposed for the sharp regression discontinuity is

ĥopt,fuzzy = CK · N−1/5

×









(

σ̂2
Y,+(c) + σ̂2

Y,−(c)
)

+ τ̂2
FRD

(

σ̂2
W,+(c) + σ̂2

W,−(c)
)

− 2τ̂FRD (σ̂Y W,+(c) + σ̂Y W,−(c))

f̂(c) ·

(

((

m̂
(2)
Y,+(c)− m̂

(2)
Y,−(c)

)

− τ̂FRD

(

m̂
(2)
W,+(c)− m̂

(2)
W,−(c)

))2
+ r̂Y,+ + r̂Y,− + τ̂FRD (r̂W,+ + r̂W,−)

)









1/5

.

We can implement this as follows. First, using the algorithm described for the sharp RD

case separately for the treatment indicator and the outcome, estimate τFRD, σ̂2
Y,+, σ̂2

Y,−, σ̂2
W,+,

σ̂2
W,−, m̂

(2)
Y,+(c), m̂

(2)
Y,−(c), m̂

(2)
W,+(c), m̂

(2)
W,−(c), r̂Y,+, r̂Y,−, r̂W,+, and r̂W,−. Second, using the

initial Silverman bandwidth use the deviations from the means to estimate the conditional

covariances σ̂Y W,+(c) and σ̂Y W,−(c). Then substitute everything into the expression for the

bandwidth. By the same argument as for the sharp RD case the resulting bandwidth has the

asymptotic no-regret property.

5.2 Additional covariates

Typically the presence of additional covariates does not affect the regression discontinuity anal-

yses very much. In most cases the distribution of the additional covariates does not exhibit

any discontinuity around the threshold for the forcing variable, and as a result those covariates

are approximately independent of the treatment indicator for samples constructed to be close

to the threshold. In that case the covariates only affect the precision of the estimator, and

one can modify the previous analysis using the conditional variance of Yi given all covariates

at the threshold, σ2
−(c|x) and σ2

+(c|x) instead of the unconditional variances σ2
−(c) and σ2

+(c).
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In practice this does not affect the optimal bandwidth much unless the additional covariates

have great explanatory power (recall that the variance enters to the power 1/5), and the basic

algorithm is likely to perform adequately even in the presence of covariates. For example, if

the conditional variances are half the size of the unconditional ones, the bandwidth will change

only by a factor 1/21/5, or approximately 0.83.

6 An Illustration and Some Simulations

6.1 Data

To illustrate the implementation of these methods we use a data set previously analyzed by Lee

(2008) in one of the most convincing applications of regression discontinuity designs. Lee studies

the incumbency advantage in elections. His identification strategy is based on the discontinuity

generated by the rule that the party with a majority vote share wins. The forcing variable Xi

is the difference in vote share between the Democratic and Republican parties in one election,

with the threshold c = 0. The outcome variable Yi is vote share at the second election. There

are 6558 observations (districts) in this data set, 3818 with Xi > 0, and 2740 with Xi < 0. The

difference in voting percentages at the last election for the Democrats was 0.13, with a standard

deviation of 0.46. Figure 1 plots the density of the forcing variable, in bins with width 0.05.

Figure 2 plots the average value of the outcome variable, in 40 bins with width 0.05, against

the forcing variable. The discontinuity is clearly visible in the raw data, lending credibility to

any positive estimate of the treatment effect. The vertical line indicate the optimal bandwidth

calculated below.

6.2 IK algorithm on Lee Data

In this section we implement our proposed bandwidth on the Lee dataset. For expositional

reasons we gave all the intermediate steps.

Step 1: Estimation of density f(0) and conditional variance σ2(0)

We start with the modified Silverman bandwidth,

h1 = 1.84 · SX · N−1/5 = 1.84 · 0.4553 · 6558−1/5 = 0.1445.

There are Nh1,− = 836 units with values for Xi in the interval [−h1, 0), with an average outcome

of Y h1,− = 0.4219 and a sample variance of S2
Y,h1,− = 0.10472, and Nh1,+ = 862 units with

values for Xi in the interval [0, h1], with an average outcome of Y h1,+ = 0.5643 and a sample
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variance of S2
Y,h1,+ = 0.12022. This leads to

f̂(0) =
Nh1,− + Nh1,+

2 · N · h1
=

836 + 862

2 · 6558 · 0.1445
= 0.8962,

and

σ̂2
−(0) = S2

Y,h1,− = 0.10472 and σ̂2
+(0) = S2

Y,h1,+ = 0.12022.

Step 2: Estimation of second derivatives m̂
(2)
+ (0) and m̂

(2)
− (0)

To estimate the curvature at the threshold, we first need to choose bandwidths h2,+ and h2,−.

We choose these bandwidths based on an estimate of m̂(3)(0), obtained by fitting a global cubic

with a jump at the threshold:

Yi = γ0 + γ1 · 1Xi≥c + γ2 · (Xi − c) + γ3 · (Xi − c)2 + γ4 · (Xi − c)3 + εi,

The least squares estimate for γ4 is γ̂4 = −0.1686, and thus the third derivative at the threshold

is estimated as m̂(3)(0) = 6 · γ̂4 = −1.0119. This leads to the two bandwidths

h2,+ = 3.56 ·

(

σ̂2
+(0)

f̂ (0) ·
(

m̂(3)(0)
)2

)1/7

· N
−1/7
+ = 0.6057, and h2,− = 0.6105.

The two pilot bandwidths are used to fit two quadratics. The quadratic to the right of 0 is

fitted on [0, 0.6057], yielding m̂
(2)
+ (0) = 0.0455 and the quadratic to the left is fitted on [-0.6105,

0] yielding m̂
(2)
− (0) = −0.8471.

Step 3: Calculation of Regularization Terms r̂− and r̂+, and Calculation of ĥopt

Next, the regularization terms are calculated. We obtain

r̂+ =
720 · σ̂2

+(0)

N2,+h4
2,+

=
720 · 0.112022

1983 · 0.60574
= 0.0275 and r̂− =

720 · σ̂2
−(0)

N2,−h4
2,−

= 0.0225.

Now we have all the ingredients to calculate the optimal bandwidth under different kernels and

the corresponding RD estimates. Using the edge kernel with CK = 3.4375, we obtain

ĥopt = CK









σ̂2
−(0) + σ̂2

+(0)

f̂(0) ·

[

(

m̂
(2)
+ (0)− m̂

(2)
− (0)

)2
+ (r̂+ + r̂−)

]









1/5

N−1/5 = 0.3005.
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6.3 Eleven Estimates for the Lee Data

Here we calculate fourteen estimates of the ultimate object of interest, the size of the discon-

tinuity in m(x) at zero. The first eight are based on local linear regression, and the last five

on global polynomial regressions. The first is based on our proposed bandwidth. The second

drops the regularization terms. The third uses a normal kernel and the corresponding Silver-

man bandwidth for estimating the density function at the threshold. The fourth estimates

separate cubic regressions on the left and the right of the threshold to derive the bandwidth for

estimating the second derivatives. The fifth estimates the conditional variance at the thresh-

old assuming its left and right limit are identical. The sixth uses a uniform kernel instead of

the optimal edge kernel. The seventh bandwidth is based on the DeJardin-McCall criterion.

The eigth bandwidth is based on the Ludwig-Miller crossvalidation. The last fife are based

on global linear, quadratic, cubic, quartic, and quintic regressions. The point estimates and

standard errors are presented in Table 1. To investigate the overall sensitivity of the point

estimates to the bandwidth choice, Figure 3 plots the RD estimates, and the associated 95%

confidence intervals, as a function of the bandwidth, for h between 0 and 1. The solid vertical

line indicates the optimal bandwidth (ĥopt = 0.3005).

6.4 A Small Simulation Study

Next we conduct a small Monte Carlo study assess the properties of the proposed bandwidth

selection rule in practice. We consider three designs, the first based on the Lee data, the second

based on the Ludwig-Miller data, and the last a modified Lee design.

In the first design, based on the Lee data, we use a Beta distribution for the forcing variable.

Let Z have a beta distribution with parameters α = 5 and β = 5, then the forcing variable is

X = 2 ·Z − 1. The regression function is a 5-th order polynomial, with separate coefficients for

Xi < 0 and Xi > 0, with the coefficients estimated on the Lee data, leading to

mLee(x) =

{

0.52 + 0.76x− 2.29x2 + 5.66x3 − 5.87x4 + 2.09x5 if x < 0,

0.48 + 1.43x + 8.69x2 + 25.50x3 + 29.16x4 + 11.13x5 if x ≥ 0.

The error variance is σ2
ε = 0.13562. We use data sets of size 500 (smaller than the Lee data set

with 6558 observations, but more in line with common sample sizes).

In the second design we use the same distribution for the forcing variable as in the first

design. We again have 500 observations per sample, and the true regression function is quadratic

both to the left and to the right of the threshold, but with different coefficients:

mquad(x) =

{

3x2 ifx < 0,
4x2 ifx ≥ 0,

19



implying the data generating process is close to the point where the bandwidth hopt is infinite

(because the left and right limit of the second derivative are 6 and 8 respectively), and one may

expect substantial effect from the regularization. The error variance is the same as in the first

design, σ2
ε = 0.13562.

In Table 2 we report results for the same estimators as we reported in Table 1 for the real

data. We include one additional bandwidth choice, namely the infeasible optimal bandwidth

hopt, which can be derived because we know the data generating process. In Table 2 we present

for the both designs, the mean (Mean) and standard deviation (Std) of the bandwidth choices,

and the bias (Bias) and the root-mean-squared-error (RMSE) of the estimator for τ .

First consider the design motivated by the Lee data. All bandwidth selection methods

combined with local linear estimation perform fairly similarly under this design. There is con-

siderably more variation in the performance of the global polynomial estimators. The quadratic

estimator performs very well, but adding a third order term more than doubles the RMSE. The

quintic approximation does very well, not surprisingly given the data generating process that

involves a fifth order polynomial.

In the second design the regularization matters, and the bandwidth choices based on different

criterion functions perform worse than the proposed bandwidth in terms of RMSE, increasing

it by about 28%. The global quadratic estimator obviously performs well here because it

corresponds to the data generating process, but it is interesting that the local linear estimators

have a RMSE very similar to the global quadratic estimator.

7 Conclusion

In this paper we propose a fully data-driven, asymptotically optimal bandwidth choice for re-

gression discontinuity settings. Although this choice has asymptotic optimality properties, it

still relies on somewhat arbitrary initial bandwidth choices. Rather than relying on a single

bandwidth, we therefore encourage researchers to use this bandwidth choice as a reference point

for assessing sensitivity to bandwidth choice in regression discontinuity settings. The proposed

procedure is the first available procedure with optimality properties. The bandwidth selection

procedures commonly used in this literature are typically based on different objectives, for ex-

ample on global measures, not tailored to the specific features of the regression discontinuity

setting. We compare our proposed bandwidth selection procedure to the crossvalidation proce-

dure developed by Ludwig and Miller (2005), which is tailored to the regression discontinuity

setting, but which requires the researcher to specify an additional tuning parameter, as well
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as to the procedure proposed by DeJardins and McCall (2008). We find that our proposed

method works well in realistic settings, including one motivated by data previously analyzed

by Lee (2008).
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Appendix

To obtain the MSE expansions for the RD estimand, we first obtain the bias and variance estimates from
estimating a regression function at a boundary point. Fan and Gijbels (1992) derive the same claim but under
weaker assumptions (such as thin tailed kernels rather than compact kernels) and hence their proof is less
transparent and not easily generalizable to multiple dimensions and derivatives. The proof we outline is based
on Ruppert and Wand (1994) but since they only cursorily indicate the approach for a boundary point in multiple
dimensions, we provide a simple proof for our case.

Lemma A.1: (MSE for Estimation of a Regression Function at the Boundary)
Suppose (i) we have N pairs (Yi, Xi), independent and identically distributed, with Xi ≥ 0, (ii), m(x) = E[Yi|Xi =
x] is three times continuously differentiable, (iii), the density of Xi, f(x), is continuously differentiable at x = 0,
with f(0) > 0, (iv), the conditional variance σ2(x) = Var(Yi|Xi = x) is bounded, and continuous at x = 0, (v),

we have a kernel K : R
+ 7→ R, with K(u) = 0 for u ≥ u, and

R u

0
K(u)du = 1, and define Kh(u) = K(u/h)/h.

Define µ = m(0), and

(µ̂h, β̂h) = arg min
µ,β

N
X

i=1

(Yi − µ − β · Xi)
2 · Kh (Xi) .

Then:

E [ µ̂|X1, . . . , XN ] − µ = C
1/2
1 m(2)(0)h2 + op

`

h2´ , (A.1)

V( µ̂|X1, . . . , XN) = C2
σ2(0)

f(c)Nh
+ op

„

1

Nh

«

, (A.2)

and

E
ˆ

(µ̂ − µ)2
˛

˛X1, . . . , XN

˜

= C1

“

m(2)(0)
”2

h4 + C2
σ2(0)

f(0)Nh
+ op

„

h4 +
1

Nh

«

, (A.3)

where the kernel-specific constants C1 and C2 are those given in Lemma 3.1.

Before proving Lemma A.1, we state and prove two preliminary results.

Lemma A.2: Define Fj = 1
N

PN
i=1 Kh(Xi)X

j
i . Under the assumptions in Lemma A.1, (i), for nonnegative

integer j,

Fj = hjf(0)νj + op(h
j) ≡ hj(F ∗

j + op(1)),

with νj =
R∞

0
tjK(t)dt and F ∗

j ≡ f(0)νj, and (ii), If j ≥ 1, Fj = op(h
j−1).

Proof: Fj is the average of independent and identically distributed random variables, so

Fj = E [Fj ] + Op

“

Var(Fj)
1/2
”

.

The mean of Fj is, using a change of variables from z to x = z/h,

E [Fj ] =

Z ∞

0

1

h
K
“ z

h

”

zjf(z)dz = hj

Z ∞

0

K (x)xjf(hx)dx

= hj

Z ∞

0

K (x)xjf(0)dx + hj+1

Z ∞

0

K (x)xj+1 f(hx) − f(0)

hx
dx = hjf(0)νj + O

“

hj+1
”

.

The variance of Fj can be bounded by

1

N
E

h

(Kh(Xi))
2 X2j

i

i

=
1

Nh2
E

"

„

K

„

Xi

h

««2

· X2j
i

#

=
1

Nh2

Z ∞

0

“

K
“ z

h

””2

· z2jf(z)dz.

By a change of variables from z to x = z/h, this is equal to

h2j−1

N

Z ∞

0

(K (x))2 · x2jf(hx)dx = O

„

h2j−1

N

«

= o

 

„

hj

hN1/2

«2
!

= o

„

“

hj
”2
«

.

Hence

Fj = E [Fj ] + op

“

hj
”

= hjf(0)νj + op

“

hj
”

= hj ·
“

f(0)νj + op (1)
”

.

�
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Lemma A.3: Let Gj = 1
N

PN
i=1 K2

h(Xi)X
j
i σ2(Xi). Under the assumptions from Lemma A.1,

Gj = hj−1σ2(0)f(0)πj (1 + op (1)) , with πj =

Z ∞

0

tjK2(t)dt.

Proof: This claim is proved in a manner exactly like Lemma A.1, here using in addition the differentiability of
the conditional variance function. �

Proof of Lemma A.1: Define R = [ι X ], where ι is a N -dimensional column of ones, define the diagonal
weight matrix W with (i, i)th element equal to Kh(Xi), and define e1 = (1 0)′. Then

m̂(0) = µ̂ = e′1(R
′WR)−1R′WY.

The conditional bias is B = E[m̂(0)|X1, . . . , XN ] − m(0). Note that E(m̂(0)|X) = e′1(R
′WR)−1R′WM where

M = (m(X1), . . . , m(XN))′. Let m(k)(x) denote the kth derivative of m(x) with respect to x. Using Assumption
(ii) in Lemma A.1, a Taylor expansion of m(Xi) yields:

m(Xi) = m(0) + m(1)(0)Xi +
1

2
m(2)(0)X2

i + Ti,

where

|Ti| ≤ sup
x

m(3)(x) · X3
i .

Thus we can write the vector M as

M = R

„

m(0)

m(1)(0)

«

+ S + T.

where the vector S has ith element equal to Si = m(2)(0)X2
i /2, and the vector T has typical element Ti. Therefore

the bias can be written as

B = e′1(R
′WR)−1R′WM − m(0) = e′1(R

′WR)−1R′W (S + T ).

Using Lemma A.2 we have

„

1

N
R′WR

«−1

=

„

F0 F1

F1 F2

«−1

=
1

F0F2 − F 2
1

„

F2 −F1

−F1 F0

«

=

0

@

F∗

2

F∗

0
F∗

2
−(F∗

1
)2

+ op (1) − 1
h

“

F∗

1

F∗

0
F∗

2
−(F∗

1
)2

+ op (1)
”

− 1
h

“

F∗

1

F∗

0
F∗

2
−(F∗

1
)2

+ op ((1)
”

1
h2

“

F∗

0

F∗

0
F∗

2
−(F∗

1
)2

+ op (1)
”

1

A

=

 

ν2

(ν0ν2−ν2
1
)f(c)

+ op (1) − ν1

(ν0ν2−ν2
1
)f(c)h

+ op

`

1
h

´

− ν1

(ν0ν2−ν2
1
)f(c)h

+ op

`

1
h

´

Op

`

1
h2

´

!

=

„

Op (1) Op

`

1
h

´

Op

`

( 1
h

´

Op

`

1
h2

´

«

.

Next
˛

˛

˛

˛

1

N
R′WT

˛

˛

˛

˛

= sup
x

m(3)(x) ·

„

F3

F4

«

=

„

op

`

h2
´

op

`

h3
´

«

.

Thus

e′1(R
′WR)−1R′WT = Op(1) · op(h

2) + Op

„

1

h

«

· op(h
3) = op

`

h2
´

,

implying

B = e′1(R
′WR)−1R′WS + op(h

2).

Similarly:

1

N
(R′WS) =

1

2
m(2)(0)

„

1
N

PN
i=1 Kh(Xi)X

2
i

1
N

PN
i=1 Kh(Xi)X

3
i

«

=
1

2
m(2)(0)f(0)

„

ν2h
2 + op(h

2)
ν3h

3 + op(h
3)

«

.
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Therefore:

B = e′1(R
′WR)−1R′WS + op(h

2) =
1

2
m(2)(c)

„

ν2
2 − ν3ν1

ν0ν2 − ν2
1

«

h2 + op(h
2).

This finishes the proof for the first part of the result in Lemma A.1, equation (A.1).
Next, we consider the expression for the conditional variance in (A.2).

V = V(m̂(0)|X1, . . . , XN ) = e′1(R
′WR)−1R′WΣWR(R′WR)−1e1,

where Σ is the diagonal matrix with (i, i)th element equal to σ2(Xi).
Consider the middle term

1

N
R′WΣWR =

„

1
N

P

i K2
h(Xi)σ

2(Xi)
1
N

P

i K2
h(Xi)Xiσ

2(Xi)
1
N

P

i K2
h(Xi)Xiσ

2(Xi)
1
n

P

i K2
h(Xi)X

2
i σ2(Xi)

«

=

„

G0 G1

G1 G2

«

.

Thus we have:

NV =
1

(F0F2 − F 2
1 )2

e′1

„

F2 −F1

−F1 F0

«„

G0 G1

G1 G2

«„

F2 −F1

−F1 F0

«

e1

=
F 2

2 G0 − 2F1F2G1 + F 2
1 G2

(F0F2 − F 2
1 )2

Applying lemmas A.1 and A.2 this leads to

V =
σ2(0)

f(0)Nh
·

„

ν2
2π0 − 2ν1ν2π1 + ν2

1π2

(ν0ν2 − ν2
1 )2

«

+ op

„

1

Nh

«

.

This finishes the proof for the statement in (A.2). The final result in (A.3) follows directly from the first two
results. �

Proof of Lemma 3.1: Applying Lemma A.1 to the N+ units with Xi ≥ c, implies that

E [ µ̂+ − µ+|X1, . . . , XN ] = C
1/2
1 m

(2)
+ (c)h2 + op

`

h2´ ,

and

V ( µ̂+ − µ+|X1, . . . , XN) = C2
σ2

+(c)

fX|X≥c(c)N+h
+ op

„

1

N+h

«

.

Because N+/N = pr(Xi ≥ c)+O(1/N), and fX|X≥c(x) = f(x)/Pr(Xi ≥ c) (and thus fX|X≥c(c) = f+(c)/Pr(Xi ≥
c)), it follows that

V ( µ̂+ − µ+|X1, . . . , XN) = C2
σ2

+(c)

f+(c)Nh
+ op

„

1

Nh

«

.

Conditional on X1, . . . , XN the covariance between µ̂+ and µ̂− is zero, and thus, combining the results from
applying Lemma A.1 also to the units with Xi < c, we find

E
ˆ

(τ̂SRD − τSRD)2
˛

˛X1, . . . , XN

˜

= E
ˆ

(µ̂+ − µ̂− − (µ̂+ − µ̂−))2
˛

˛X1, . . . , XN

˜

= E
ˆ

(µ̂+ − µ+)2
˛

˛X1, . . . , XN

˜

+ E
ˆ

(µ̂− − µ−)2
˛

˛X1, . . . , XN

˜

−2 · E [ µ̂+ − µ+|X1, . . . , XN ] · E [ µ̂− − µ−|X1, . . . , XN ]

= C1 · h4 ·
“

m
(2)
+ (c) − m

(2)
− (c)

”2

+
C2

N · h
·

„

σ2
+(c)

f+(c)
+

σ2
−(c)

f−(c)

«

. + op

„

h4 +
1

N · h

«

,

proving the first result in Lemma 3.1.
For the second part of Lemma 3.1, solve

hopt = arg min
h

„

C1h
4
“

m
(2)
+ (c) − m

(2)
− (c)

”2

+ C2

„

σ2
+(c)

f+(c)Nh
+

σ2
−(c)

f−(c)Nh

««

,

which leads to

hopt =

„

C2

4C1

«1/5

0

B

@

σ2
+

(c)

f+(c)
+

σ2
−

(c)

f
−

(c)
“

m
(2)
+ (c) − m

(2)
− (c)

”2

1

C

A

1/5

N−1/5.
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�

Motivation for the Bandwidth Choice in Equation (4.14) in Step 2 of bandwidth algorithm
Fan and Gijbels (1996 Theorem 3.2) give an asymptotic approximation to the MSE for an estimator of the
ν-th derivative of a regression function at a boundary point, using a p-th order local polynomial (using the
notation in Fan and Gijbels). Specializing this to our case, with the boundary point c, a uniform one-sided
kernel K(t) = 10≤t≤1, and interest in the 2-nd derivative using a local quadratic approximation (ν = p = 2, their
MSE formula simplifies to

MSE =

„

1

9
K2

1

“

m
(3)
+ (c)

”2

h2 + 4K2
1

Nh5

σ2
+(c)

f+(c)

«

(1 + op(1))

Here

K1 =

Z

t3K∗(t)dt K2 =

Z

(K∗(t))2dt,

where

K∗(t) =

0

@

0
0
1

1

A

′0

@

µ0 µ1 µ2

µ1 µ2 µ3

µ2 µ3 µ4

1

A

−10

@

1
t
t2

1

A · K(t), with µk =

Z

qkK(q)dq =
1

(k + 1)
,

so that

K∗(t) =

0

@

0
0
1

1

A

′0

@

1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5

1

A

−10

@

1
t
t2

1

A · K(t) = (30− 180t + 180t2) · 1[0,1],

and therefore, K1 = 1.5 and K2 = 180. Thus

MSE =

„

1

4

“

m
(3)
+ (c)

”2

h2 + 720
1

Nh5

σ2
+(c)

f+(c)

«

(1 + op(1)).

Minimizing this over h leads to

h2,+ = 72001/7 ·

0

B

@

σ2
+(c)

f+(c)
“

m
(3)
+ (c)

”2

1

C

A

1/7

N
−1/7
+ ≈ 3.56 ·

0

B

@

σ2
+(c)

f+(c)
“

m
(3)
+ (c)

”2

1

C

A

1/7

N
−1/7
+ .

This is the expression in the text for h2,+ except for the addition of the 0.01 term that ensures the necessary
properties if the estimate of m(3)(c) converges to zero. �

Proof of Theorem 4.1: Before directly proving the three claims in the theorem, we make some preliminary
observations. Write

hopt = Copt · N
−1/5, with Copt = CK ·

0

B

B

@

2σ2(c)

f(c) ·

„

“

m
(2)
+ (c) − m

(2)
− (c)

”2
«

1

C

C

A

1/5

,

and

ĥopt = Ĉopt · N
−1/5, with Ĉopt = CK ·

0

B

B

@

2σ̂2(c)

f̂(c) ·

„

“

m̂
(2)
+ (c) − m̂

(2)
− (c) + r̂+ + r̂−

”2
«

1

C

C

A

1/5

.

First we show that the various estimates of the functionals in Ĉopt, σ̂2
−(c), σ̂2

+(c), f̂(c), m̂
(2)
+ (c) and m̂

(2)
− (c)

converge to their counterparts in Copt, σ2
−(c), σ2

+(c), f(c), m
(2)
+ (c) and m

(2)
− (c) Consider f̂(c). This is a histogram

estimate of density at c, with bandwidth h = CN−1/5. Hence f̂(c) is consistent for f(c) if f−(c) = f+(c) = f(c),
if the left and righthand limit are equal, and for (f−(c) + f+(c))/2 if they are different.
Next, consider σ̂2

−(c) (and σ̂2
+(c)). Because it is based on a bandwidth h = C · N−1/5 that converges to zero, it

is consistent for σ2
−(c) if σ2

−(c) = σ2
+(c) = σ2(c).
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Third, consider m̂
(2)
+ (c). This is a local quadratic estimate using a one sided uniform kernel. From Fan and

Gijbels (1996), Theorem 3.2, it follows that to guarantee consistency of m̂
(2)
+ (c) for m

(2)
+ (c) we need both

h2,+ = op(1) and
`

Nh5
2,+

´−1
= op(1). (A.4)

Let m3 be the probability limit of m̂(3)(c). This probability limit need not be equal to m(3)(c), but it will exist
under the assumptions in Theorem 4.1. As long as this probability limit differs from zero, then h2,+ = Op(N

−1/7),

so that the two conditions in (A.4) are satisfied and m̂
(2)
+ (c) is consistent for m

(2)
+ (c).

Fourth, consider r̂+ = 720σ̂2
+(c)/(N2,+h4

2,+). The numerator converges to 720σ̂2
+(c). The denominator is ap-

proximately N2,+ · h4
2,+ = (C · N · h2,+) ·C · N−4/7 = C · N2/7, so that the ratio is C ·N−2/7 = op(1). A similar

result holds for r̂−.
Now we turn to the statements in Theorem 4.1. We will prove (iii), then (iv), and then (i) and (ii). First consider

(iii). If m
(2)
+ (c)−m

(2)
− (c) differs from zero, then Copt is finite. Moreover, in that case (m̂

(2)
+ (c)−m̂

(2)
− (c))2+r̂++r̂−

converges to (m̂
(2)
+ (c) − m̂

(2)
− (c))2, and Ĉopt converges to Copt. These two implications in turn lead to the result

that (ĥopt − hopt)/hopt = (Ĉopt − Copt)/Copt = op(1), finishing the proof for (iii).
Next, we prove (iv). Because hopt = Copt · N

−1/5, it follows that

MSE (hopt) = AMSE (hopt) + o

„

h4
opt +

1

N · hopt

«

= AMSE (hopt) + o
“

N−4/5
”

.

Because ĥopt = (Ĉopt/Copt) · CoptN
−1/5, and Ĉopt/Copt → 1 it follows that

MSE
“

ĥopt

”

= AMSE
“

ĥopt

”

+ o
“

N−4/5
”

.

Therefore

N4/5 ·
“

MSE
“

ĥopt

”

− MSE (hopt)
”

= N4/5 ·
“

AMSE
“

ĥopt

”

− AMSE (hopt)
”

+ op(1),

and

MSE
“

ĥopt

”
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MSE (hopt)
=

N4/5 ·
“

MSE
“

ĥopt

”

− MSE (hopt)
”

N4/5 · MSE (hopt)

=
N4/5 ·

“

AMSE
“

ĥopt

”

− AMSE (hopt)
”

+ op(1)

N4/5 · AMSE (hopt) + op(1)
.

=
N4/5 ·

“

AMSE
“

ĥopt

”

− AMSE (hopt)
”

N4/5 · AMSE (hopt)
+ op(1).

Because N4/5 ·AMSE(hopt) converges to a nonzero constant, all that is left to prove in order to establish (iii) is
that

N4/5 ·
“

AMSE
“

ĥopt

”

− AMSE (hopt)
”

= op(1). (A.5)

Substituting in, we have

N4/5 ·
“

AMSE
“

ĥopt

”

− AMSE (hopt)
”

= C1·
“

m
(2)
+ (c) − m

(2)
− (c)

”2

·
“

(N1/5hopt)
4 − N1/5ĥopt)

4
”

+

 

C2

N1/5 · hopt
−

C2

N1/5 · ĥopt

!

·

„

σ2
+(c)

f+(c)
+

σ2
−(c)

f−(c)

«

= op(1),

because N1/5hopt − N1/5ĥopt = Copt − Ĉopt = op(1), so that A.5 holds, and therefore (iv) is proven.
Now we turn to (ii). Under the conditions for (ii), ĥopt = ĈoptN

−1/5, with Ĉopt → Copt, a nonzero constant.
Then Lemma 3.1 implies that MSE(ĥopt) is Op(ĥ

4
opt + N−1ĥ−1

opt) = Op(N−4/5 so that τ̂SRD − τSRD = Op(N−2/5.

Finally, consider (i). If Assumption 3.6 holds, then τ̂SRD − τSRD = Op(N
−2/5), and the result holds. Now

suppose Assumption 3.6 does not hold and m
(2)
+ (c) − m

(2)
+ (c) = 0. Because h2,+ = CN−1/7, it follows that

r+ = CN−1h−4 = CN−3/7 (with each time different constants C), it follows that ĥopt = C(N3/7)1/5N−1/5 =
CN−4/35, so that the MSE(h) = CN−24/35 + C̃N−31/35 = CN−16/35 (note that the leading bias term is now
O(h3) so that the square of the bias is O(h6) = O(N−24/25)) and thus τ̂SRD − τSRD = Op(N

−12/35). �
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Table 1: RD estimates and bandwidths for Lee Data

Procedure h τ̂SRD (s.e.)

ĥopt 0.3005 0.0801 0.0083

no regularization 0.3042 0.0802 0.0082
f(c) estimated using normal kernel 0.3004 0.0801 0.0083

third order polynomial separate on left and right 0.2847 0.0795 0.0085
homoskedastic variance 0.3006 0.0801 0.0083

uniform kernel 0.4721 0.0730 0.0098
Desjardin-McCall 0.3105 0.0804 0.0081

Ludwig-Miller cross-validation (δ = 0.5) 0.3250 0.0810 0.0080

Linear global 0.1182 0.0056

Quadratic global 0.0519 0.0080
Cubic global 0.1115 0.0105

Quartic global 0.0766 0.0131
Quintic global 0.0433 0.0157
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Table 2: Simulations, 5,000 Replications

ĥ τ̂SRD

Mean Std Bias RMSE

Lee Design

hopt (infeasible) 0.166 0.000 0.019 0.062

ĥopt 0.538 0.094 0.039 0.053
no regularization 0.724 0.650 0.038 0.052

f(c) estimated using normal kernel 0.538 0.094 0.039 0.053
third order polynomial separate on left and right 0.395 0.055 0.042 0.058

homoskedastic variance 0.536 0.094 0.039 0.054
uniform kernel 0.845 0.148 0.042 0.061
Desjardin-McCall 0.551 0.131 0.039 0.052

Ludwig-Miller cross-validation (δ = 0.5) 0.405 0.071 0.039 0.056
Linear global 0.049 0.057

Quadratic global -0.018 0.043
Cubic global 0.089 0.102

Quartic global 0.029 0.069
Quintic global 0.003 0.076

Quadratic Design

hopt (infeasible) 0.371 0 0.001 0.041

ĥopt 0.452 0.098 0.012 0.039

no regularization 0.488 0.314 0.018 0.049
f(c) estimated using normal kernel 0.452 0.098 0.012 0.039
third order polynomial separate on left and right 0.410 0.080 0.008 0.040

homoskedastic variance 0.450 0.097 0.011 0.039
uniform kernel 0.709 0.154 -0.044 0.071

Desjardin-McCall 0.227 0.010 -0.002 0.051
Ludwig-Miller cross-validation (δ = 0.5) 0.224 0.024 -0.000 0.052

Linear global 0.246 0.251
Quadratic global 0.000 0.039

Cubic global 0.000 0.051
Quartic global 0.001 0.063

Quintic global 0.000 0.078
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Fig 1: Density for Forcing Variable
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Fig 2: Regression Function for Margin

difference in vote share last election
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Fig 3: RD Estimates and Confidence Intervals for Lee Data by Bandwidth

difference in vote share last election
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