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1 Introduction

Regression discontinuity (RD) designs for evaluating causal effects of interventions, where as-
signment is determined at least partly by the value of an observed covariate lying on either side
of a threshold, were introduced by Thistlewaite and Campbell (1960). See Cook (2008) for a
historical perspective. A recent surge of applications in economics includes studies of the impact
of financial aid offers on college acceptance (Van Der Klaauw, 2002), school quality on housing
values (Black, 1999), class size on student achievement (Angrist and Lavy, 1999), air quality
on health outcomes (Chay and Greenstone, 2005), incumbency on re-election (Lee, 2008), and
many others. Recent important theoretical work has dealt with identification issues (Hahn,
Todd, and Van Der Klaauw, 2001, HTV from hereon), optimal estimation (Porter, 2003), tests
for validity of the design (McCrary, 2008), quantile effects (Frandsen, 2008; Frolich and Melly,
2008), and the inclusion of covariates (Frolich, 2007). General surveys include Lee and Lemieux
(2009), Van Der Klaauw (2008), and Imbens and Lemieux (2008).

In RD settings analyses typically focus on the average effect of the treatment for units
with values of the forcing variable close to the threshold, using kernel, local linear, or global
polynomial series estimators. Fan and Gijbels (1992) and Porter (2003) show that local linear
estimators are rate optimal and have attractive bias properties. A key decision in implementing
these methods is the choice of bandwidth. In current practice researchers use a variety of ad
hoc approaches for bandwidth choice, such as standard plug-in and crossvalidation methods.
These are sometimes based on objective functions which take into account the performance
of the estimator of the regression function over the entire support, and do not yield optimal
bandwidths here. There are no bandwidth choices in the literature (e.g., Hardle 1992, Fan
and Gijbels, 1992, Wand and Jones, 1994) for the case where the estimand is the difference
in two regression functions at boundary points. In this paper we propose a practical, rule-
of-thumb bandwidth choice tailored to the RD setting with some optimality properties. The
two contributions of this paper are (i), the derivation of the optimal bandwidth for this setting,
taking account of the special features of the RD setting, and (i), a fully data-dependent method
for choosing the bandwidth that is asymptotically optimal in the sense of having the “asymptotic
no-regret” property.! Although optimal in large samples, the proposed algorithm involves initial
bandwidth choices. We analyze the sensitivity of the results to these choices. We illustrate the

algorithm using a data set previously analyzed by Lee (2008), and compare our procedure to

!Matlab and Stata software for implementing this bandwidth rule is available on the website
http://www.economics.harvard.edu/faculty /imbens/imbens.html.



others proposed in the literature, including the crossvalidation procedure proposed by Ludwig
and Miller (2007) and a bandwidth choice proposed by DesJardins and McCall (2008) that uses
a different criterion. Simulations indicate that the proposed algorithm works well in realistic

settings.

2 Basic model

In the basic RD setting, researchers are interested in the causal effect of a binary treatment. In
the setting we consider we have a sample of N units, drawn randomly from a large population.
For unit ¢, « = 1,..., N, the variable Y;(1) denotes the potential outcome for unit i given
treatment, and Y;(0) the potential outcome without treatment. For unit ¢ we observe the
treatment received, W;, equal to one if unit ¢ was exposed to the treatment and 0 otherwise,
and the outcome corresponding to the treatment received:
Yi:{ Y;(0) i Wi =0,
Yi(1) it W;=1.
We also observe for each unit a scalar covariate, called the forcing variable, denoted by X;.
Here we focus on the case with a scalar forcing variable. In Section 5 we discussion the case

with additional covariates. Define
m(z) = E[Y;|X; = 2],

to be the conditional expectation of the outcome given the forcing variable. The idea behind
the Sharp Regression Discontinuity (SRD) design is that the treatment W; is determined solely

by the value of the forcing variable X; being on either side of a fixed, known threshold ¢, or:
W, =1 X;>c-

In Section 5 we extend the SRD setup to the case with additional covariates and to the Fuzzy
Regression Discontinuity (FRD) design, where the probability of receiving the treatment jumps
discontinuously at the threshold for the forcing variable, but not necessarily from zero to one.

In the SRD design the focus is on average effect of the treatment for units with covariate

values equal to the threshold:
Tsrp = E[Y;(1) — Y;(0)| X; = ¢].

Now suppose that the conditional distribution functions Fy (o) x (y|7) and Fy (1) x (y|z) are con-

tinuous in z for all y, and that the conditional first moments E[Y;(1)| X; = z] and E[Y;(0)|X; = «]



exist, and are continuous at z = ¢. Then
TSRD = Mo — fh—, where pu, = lﬁrclm(:n), and pu_ = lﬁrclm(:n)

Thus, the estimand is the difference of two regression functions evaluated at boundary points.

We focus on estimating 7srp by local linear regressions on either side of the threshold. Local
nonparametric methods are attractive in this setting because of the need to estimate regression
functions consistently at a point. Furthermore, in the RD setting local linear regression esti-
mators are preferred to the standard Nadaraya-Watson kernel estimator, because local linear
methods have been shown to have attractive bias properties in estimating regression functions
at the boundary (Fan and Gijbels, 1992), and enjoy rate optimality (Porter, 2003). To be

explicit, we estimate the regression function m(-) at = as

. a_(x) if x <e,
{ Gy () if x> ec. (2.1)

N
(6 (x), -(x)) =argmin Y " 1x,cp- (Vi —a— B(X; —2))” K <Xi —ZE> |

a,3 =1 h
and
p al X;—z
(@4(2): () = angmin 3 Lo - (4 — 0 = 60— ) K (X2,
=1

Then

TSRD = fl4 — fi—,
where

= li%nmh(:n) =a_(c) and iy = liﬁnrhﬂ:n) = a4 (c).

3 Error Criterion and Infeasible Optimal Bandwidth Choice

In this section we discuss the objective function, and derive the optimal bandwidth under that

criterion.

3.1 Error Criteria

The primary question studied in this paper concerns the optimal choice of the bandwidth A. In

the current empirical literature researchers often choose the bandwidth by either crossvalidation



or ad hoc methods. See Hérdle (1992) , Fan and Gijbels (1992), and Wand and Jones (1994) for
textbook discussionz of crossvalidation and related methods, and see Lee and Lemieux (2009)
for a comprehensive discussion of current practice in RD settings. Conventional crossvalidation
yields a bandwidth that is optimal for fitting a curve over the entire support of the data.? In
other words, it attempts to choose the bandwidth to minimize an approximation to the mean

integrated squared error criterion (MISE),

MISE(h) = E [ / (i) — m(@)) f(z)dz| |

here f(x) is the density of the forcing variable. This criterion is not directly relevant for the
problem at hand: we wish to choose a bandwidth that is optimal for estimating 7ggp. This
estimand has a number two special features. First, it depends on m(x) only through two values,
and specifically their difference. Second, both these values are boundary values.

Our proposed criterion is based on a the expectation of the asymptotic expansion, around

h = 0, of the squared error (7sgp — Tsrp)?. First, define the expected squared error:

MSE(h) =E [(fSRD - TSRD>2] =E [(([wr — py) — (- — M—))z] : (3.2)
and let h* be the optimal bandwidth that minimizes this criterion:

h* = argmin MSE(h). (3.3)

This criterion is difficult to work with directly. The problem is that in many cases, as the
sample size N goes to infinity, the optimal bandwidth hA* will not converge to zero, because
biases in different parts of the regression function may be offsetting.? In such cases the optimal
bandwidth is very sensitive to the actual distribution and regression function, and it is difficult
to see how one could exploit such knife-edge cases.

A second comment concerns our focus on a single bandwidth. Because the estimand, 7srp,
is a function of the regression function at two points, an alternative would be to allow for a
different bandwidth for these two points, h_ for estimating p_, and hy for estimating p, and

and focus on an objective function that is an approximation to

MSE(h ) = & | (22 (h4) = ) (3 () = )| (3.4)

2See Ludwig and Miller (2005) and Lee and Lemieux (2009) for a discussion of crossvalidation methods
designed more specifically for the RD setting. These methods are discussed in more detail in Section 4.5.

3To be explicit, consider a simple example where we are interested in estimating a regression function g(x)
at a single point, say g(0). Suppose the covariate X has a uniform distribution on [0, 1]. Suppose the regression
function is g(x) = (x — 1/4)> — 1/16. With a uniform kernel the estimator for g(0) is, for a bandwidth h,
equal to >°, v, Xi/ > ;. x, o 1. As a function of the bandwidth h the bias is equal to h?/3 — h/4, conditional
on Zi:Xi<h 1. Thus, the bias is zero at h = 3/4, and if we minimize the expected squared error, the optimal
bandwidth will converge to 3/4.



Doing so would raises an important issue. We focus on minimizing mean squared error, equal to
variance plus bias squared. Suppose that for both estimators the bias, E[g_(h_)] and E[fi4 (hy)]
are strictly increasing (or both strictly decreasing) functions of the bandwidth. Then there is
a function h4(h_) such that the biases cancel out: E[i_(h_)] — E[fis+(hs(h-))] = 0. Hence
we can minimize the mean-squared-error by letting h_ get large (the variance is generally a
decreasing function of the bandwidth), and choosing hy = hy(h_). Even if this does not hold
exactly, the point is that a problem may arise that even for large bandwidths the difference
in bias may be close to zero. In practice it is unlikely that one can effectively exploit the
cancellation of biases for large bandwidths. However, it would make it difficult to construct
practical bandwidth algorithms. But, to avoid this problem, we focus in this discussion on a
single bandwidth choice. An alternative would be to change the criterion and add the mean-

squared-errors on the left and the right, e.g., E[(fiy — 4 )? + (fio — p_)?], rather than focusing
on the mean-squared-error of the difference, E[((fiy — pt) — (i — p_))?].

3.2 An Asymptotic Expansion of the Expected Error

The next step is to derive an asymptotic expansion of (3.2). First we state the key assumptions.

Not all of these will be used immediately, but for convenience we state them all here.

Assumption 3.1: (Y}, X;), fori=1,..., N, are independent and identically distributed.

Assumption 3.2: The marginal distribution of the forcing variable X;, denoted f(-), is con-

tinuous and bounded away from zero at the discontinuity, c.

Assumption 3.3: The conditional mean m(z) = E[Y;|X; = x| has at least three continuous
derivatives in an open neigborhood of X = c¢. The right and left limits of the k" derivative of

m(x) at the threshold ¢ are denoted mf)(c) and mgf)(c).

Assumption 3.4: The kernel K(-) is nonnegative, bounded, differs from zero on a compact

interval [0, al, and is continuous on (0, a).

Assumption 3.5: The conditional variance function o?(x) = Var(Y;|X; = x) is bounded in
an open neigborhood of X = ¢, and right and left continuous at c¢. The right and left limit are

denoted by 0% (c) and o2 (c) respectively.

Assumption 3.6: The second derivatives at the right and left, mf)(:n) and m(_z)(:n), differ at
the threshold: mf)(c) # m(_z)(c).



Now define the Asymptotic Mean Squared Error (AMSE) as a function of the bandwidth:

2 C o2(c)  a%(c)
AMSE(h) = Cy - h* - (m{P(c) — m™? (= : 3.5
(=0t (mP 0 =mP@) + 75 (T g (3.5)
The constants C7 and Cs in this approximation are functions of the kernel:
2
o — 1 (1/22 — Vlug;) ’ and Cy — vamy — 21/11/27712—12— 1/1271'2’ (3.6)
4 \ vy — v3 (vovp — v5)
where
vj = / w! K (u)du, and ;= / ! K2 (u)du.
0 0

The first term in (3.5) corresponds to the square of the bias, and the second term corresponds
to the variance. This expression clarifies the role that Assumption 3.6 will play. If the left and
right limits of the second derivative are equal, then the leading term in the expansion of the
square of the bias is not of the order h*. Instead the leading bias term would be of lower order.
It is difficult to exploit the improved convergence rate that would result from this in practice,
because it would be difficult to establish sufficiently fast that this difference is indeed zero, and
so we focus on optimality results given Assumption 3.6. Note however, that even if the second
derivatives are identical, our estimator for 7qgp will be consistent.

An alternative approach would be to focus on a bandwidth choice that is optimal if the
second derivatives from the left and right are identical. It is possible to construct such a
bandwidth choice, and still maintain consistency of the resulting estimator for 7ggrp irrespective
of the difference in second derivatives. However, such an bandwidth choice would generally not
be optimal if the difference in second derivatives is nonzero. Thus there is a choice betweena
bandwidth choice that is optimal under mf)(c) # m(_z)(c) and a bandwidth choice that is
optimal under mf)(c) = m(_z)(c). In the current paper we choose to focus on the first case. The
reason is that if the second derivatives are in fact equal, the leading term in the bias vanishes.
Ignoring the leading term when in fact it is present appears in our view to be a bigger concern

than taking it into account when it is not.

Lemma 3.1: (MEAN SQUARED ERROR APPROXIMATION AND OPTIMAL BANDWIDTH)

(i) Suppose Assumptions 3.1-3.5 hold. Then
1
MSE(h) = AMSE(h Mt —— .
SE(h) S()—I—o( +N-h>
(ii) Suppose Assumptions 3.1-3.6 hold. Then
1/5
o2 (c) + o2 (c)

NTUB, (3.7)
1)+ (mPe) - mP(0))

hopt = argm}in AMSE(h) = Ck - !

7



where Cxg = (Cy /(4 - C’l))l/5, indezed by the kernel K(-).

For the edge kernel, with K(u) = 1j,<;(1 — |u[), shown by Cheng, Fan and Marron (1997)
to have AMSE-minimizing properties for boundary estimation problems, the constant is Cx ~

3.4375.

4 Feasible Optimal Bandwidth Choice

In this section we discuss the proposed bandwidth, provide a full data-dependent estimator for

the bandwidth, and discuss its properties.

4.1 Proposed bandwidth

A natural choice for the estimator for the optimal bandwidth estimator is to replace the six
unknown quantities in the expression for the optimal bandwidth hqpt, given in (4.16) by non-
parametric estimators, leading to

1/5

~ 62 (c) + 6'_%(0)

hopt = Ck - N5, (4.8)

A (2 (2 2
f©)- (mPe) - ()

We make one modification to this approach, motivated partly by the desire to reduce the
variance of the estimated bandwidth Bopt, and partly by considerations regarding the structure
of the problem. More precisely, the concern is that the precision with which we estimate the

(2)

second derivatives m}”(c) and m(_z)(c) may be so low, that the estimated optimal bandwidth
ﬁopt will occasionally be very large, even when the data are consistent with a substantial
degree of curvature. To address this problem we add a regularization term to the denominator
in (4.8). This regularization term will be chosen carefully to decrease with the sample size,
therefore not compromising asymptotic optimality. Including this regularization term guards
against unrealistically large bandwidth choices when the curvature of the regression function is
imprecisely estimated.

We use as the regularization term the approximate variance of the estimated curvature.
This allows the regularization term to be invariant to the scale of the data. To be explicit,
we estimate the second derivative mf)(c) by fitting to the observations with X; € [¢,c+ h] a
quadratic function. The bandwidth h here may be different from the bandwidth ilopt used in

the estimation of Tsrp, and its choice will be discussed in Section 4.2. Let N 1 be the number

of units with covariate values in this interval. We assume homoskedasticity with error variance



o2(c) in this interval. Let

1

) s =1
fin+ = Z (Xi—X), where X = i Z X
h,+ c<X;<ct+h h,+ c<X;<ct+h

be the j-th (centered) moment of the X; in this interval to the right of the threshold. We can
derive the following explicit formula for the conditional variance of the curvature (viz. twice

the coefficient on the quadratic term), denoted by 74, in terms of these moments:

o ( o) A >
Ni+ \bap+ — (B2,n+)? = (A3,n,4)? [ fiz,h+
However, to avoid estimating fourth moments, we approximate this expression exploiting the
fact that for small h, the distribution of the forcing variable, normalized to have unit variance,
can be approximated by a uniform distribution on [¢, ¢+ h], so that fig p+ ~ h%/12, fiz p 4 =~ 0,
and fig 5+ ~ h1/60. After substituting 62 (c) for o2 (c) and 62 (c) for o2 (c) this leads to

720 - 6% (c)
T = ——
TNy -

d similarly 7 720 - 62 (c)
nd similarly 7. = —————=.
and s arly Nh,— A

The proposed bandwidth is now obtained by adding the regularization terms to the curva-
tures in the bias term of MSE expansion:

1/5

ilopt =Ck - — : N_1/5, (49)

o (20 - @) + 7+

To operationalize this proposed bandwidth, we need specific estimators f(c), 62 (c), 6% (c),

Th(_z)(c), and mf)(c). We provide a specific proposal for this in the next section.

4.2 Algorithm for bandwidth selection

The reference bandwidth ﬁopt is a function of the outcome variable Y = (Y,,...,Yy), the
forcing variable X = (X7y,..., Xy) and the chosen kernel; i.e. ﬁopt = h(Y,X). We give below
a general algorithm for a specific implementation. In practice we recommend using the edge
optimal kernels, where K (u) = 1},<; - (1 — |u]), although the algorithm is easily modified for
other kernels by changing the kernel-specific constant C .

To calculate the bandwidth we need estimators for the density at the threshold, f(c), the
conditional variances at the threshold, o2 (¢) and 2 (c), and the limits of the second derivatives
at the threshold from the right and the left, mf)(c), m(_z)(c). (The other components of (4.9),

7_ and 7, are functions of these four components.) The first two functionals are calculated



in step 1, the second two in step 2. Step 3 puts these together with the appropriate kernel

constant C'x to produce the reference bandwidth.

Step 1: Estimation of density f(c) and conditional variances o2 (¢) and o2 (c)

First calculate the sample variance of the forcing variable, 5% = 3 (X; — 7)2 /(N —1). We

now use the Silverman rule to get a pilot bandwidth for calculating the density and variance
at c. The standard Silverman rule of h = 1.06 - Sx - N™1/% is based on a normal kernel and
a normal reference density. We modify this for the uniform kernel on [—1, 1] and the normal

reference density, and calculate the pilot bandwidth A as:
hy =1.84-Sx-N71/°,

Calculate the number of units on either side of the threshold, and the average outcomes on

either side as

N N
Nhh— = E :1C—h1SXi<C7 Nh17+ = E :]-CSXiSC-l-hm
=1 =1
— 1 — 1
Yp -—=—— E Y, and Yy, 4 = E Y.
Nhi,— Nhy+
i:c—h1<X;<c i:c<X;<c+hi

Now estimate the density of X; at c as

(o) = N+ Mot

fx(c) = 2 N (4.10)

and estimate the limit of the conditional variances of Y; given X; = z, at x = ¢, from the left

and the right, as

1 — 2
A2
T EEL OE o
Nhlv_ -1 t:c—h1 <X;<c
and
~ 1 Y ?
6i(c) = — Z (Yi = Yh4) - 42
Npyt — 1 i:c<X;<ctha

The main property we will need for these estimators is that they are consistent for the density
and the conditional variance respectively. They need not be efficient. For consistency of the
density and conditional variance estimators Assumptions 3.2 and 3.5 are sufficient, given that

the bandwidth goes to zero at rate N~1/5.

Step 2: Estimation of second derivatives mf)(c) and Th(_z)(c)

10



First we need a pilot bandwidth hg . We base this on a simple, not necessarily consistent,
estimator of the third derivative of m(-) at ¢. Let N_ and N, be the number of of observations
to the left and right of the threshold, respectively. Now fit a third order polynomial to the data,

including an indicator for X; > 0. Thus, estimate the regression function
Yi=90 471 Lxze +92 - (Xi =) + 73+ (Xi — ) + 7 (X — ) + &, (4.13)

and estimate m(3)(¢) as m®)(¢) = 6-44. This will be our estimate of the third derivative of the
regression function. Note that 73 (c) is in general not a consistent estimate of m(®)(c) but will
converge to some constant at a parametric rate. Let ms3 = 6 - plim(94) denote this constant.
However we do not need a consistent estimate of the third derivative at ¢ here to achieve what
we ultimately need: a consistent estimate of the constant in the reference bandwidth. Calculate

ha ¢, using the 62 (c), 6% (c) and f(c) from Step 1, as

52 (c) 17 )
_ 9+\¢ -1/7
ho.4 = 3.56 (f(c) (m<3>(c))2> N{YT (4.14)

and

A 1/7
ha,— = 3.56 (%) NZVT
f(e) (m®(c))

These bandwidths, ho — and hg ., are estimates of the optimal bandwidth for calculation of the
second derivative at the boundary using a local quadratic. See the Appendix for details.
Given this pilot bandwidth hg 1, we estimate the curvature m®(c) by a local quadratic
fit. To be precise, temporarily discard the observations other than the Na | observations with
¢ < X; < c+ hg 4. Label the new data Y+ = (Y1,...,YN,, ) and X+ = (X1,.., XNn,)
each of length Ny . Fit a quadratic to the new data. Le. let T = [ T; Ts] where ¢ is
a column vector of ones, and T; = ((X1 —c),. .., (XNyy — c)j), for j = 1,2. Estimate the
three dimensional regression coefficient vector, A\ = (T'T) 'T'Y. Calculate the curvature as
mf)(c) = 2. 3. This is a consistent estimate of mf)(c). To estimate m(_z)(c) follow the same

procedure using the data with ¢ — hy - < X; <ec.

Step 3: Calculation of Regularization Terms 7_ and 7, and Calculation of ﬁopt

Given the previous steps, the regularization terms are calculated as

72067 (c)

720 - 62 (c)
re = , =
T Nag-hi,

No_ b}

and 7_ (4.15)

11



We now have all the pieces to calculate the proposed bandwidth:
1/5
- 62 (c) + 6% (c)

hopt = Cli -
V2 ((mf><c> =)+ (7 + m)

N5, (4.16)

where Ci is, as in Lemma 3.1, a constant that depends on the kernel used. For the edge kernel,
with K (u) = (1 — |u|) - 1j4<1, the constant is Cx ~ 3.4375.
Given ﬁopt, we estimate Tsrp as
TSRD = lﬁrcl iy, (@) — 1;?01 g, (@),

where () is the local linear regression estimator as defined in (2.1).

4.3 Properties of algorithm

For this algorithm we establish certain optimality properties. First, the resulting RD estimator
is consistent at the best rate for nonparametric regression functions at a point (Stone, 1982).
Second, as the sample size increases, the estimated constant term in the reference bandwidth
converges to the best constant. Third, we also have an “asymptotic no-regret” or Li (1987)
type consistency result for the mean squared error and consistency at the optimal rate for the

RD estimate.

Theorem 4.1: (PROPERTIES OF hopt)

Suppose Assumptions 3.1-3.5 hold. Then:
(4)
7SRD — TSRD = Op (N_12/35> , (4.17)

(i) Suppose also Assumption 3.6 holds. Then:

TSRD — TSRD = Op (N_2/5> , (4.18)
(7i7)
hopt — ho
PP — 0,(1), (4.19)
hopt
and (iv):

MSE(hopt) = MSE(hopt) _
MSE(hopt) =olb-

(4.20)

12



Note that if Assumption 3.6 holds, the convergence rate is N~14/35 and if it fails, the conver-
gence rate for 7grp is slower, namely N~12/35. This may be somewhat counterintuitive, because
failure of Assumption (3.6) implies that the leading term of the bias vanishes, which, one might
expect, would improve convergence. Here is the explanation. If Assumption 3.6 fails, the lead-
ing term in the bias vanishes, and the square of the bias becomes of order O(h%). Because the
variance remains of order O((INh)™!), the optimal rate for the bandwidth, based on balancing
the bias-squared and the variance, becomes N~/7. As a result the optimal rate for the MSE
becomes N %7 and thus the optimal rate for 7sgp — 7sgrp becomes N =3/7_ This is better than
the convergence rate of N~2/% that we have when Assumption 3.6 holds. The reason this N —3/7
convergence rate does not show up in the theorem is that the proposed optimal bandwidth does
not adapt to the vanishing of the difference in second derivatives. If Assumption 3.6 fails, the
proposed bandwidth goes to zero as N~4/3 (instead of the optimal rate N -1/ "), and so the
MSE becomes N_24/35, leading to 7srRp — TSRD = Op(N_12/35), slower than the optimal rate of
N—3/T_and even slower than the rate we achieve when Assumption 3.6 holds (namely, N -2/ o).
One could modify the regularization term to take account of this, but in practice it is unlikely

to make a difference.

4.4 DeJardins-McCall Bandwidth Selection

DesJardins and McCall (2008) use an alternative method for choosing the bandwidth. They
focus separately on the limits of the regression function to the left and the right, rather than
on the difference in the limits. This leads them to minimize the sum of the squared differences

between fi— and p_, and between fi and py:
E[(fiy — p1)” + (A — p-)?),
instead of our criterion,

E[((fr — py) — (e — p))?).

The single optimal bandwidth based on this criterion is*

02 (c) + o2 (c) v

(2) (2)
f(©)- (mP o2 +mP (e
4DesJardins and McCall actually allow for different bandwidths on the left and the right, and also use a

Epanechnikov kernel instead of the optimal edge kernel. In the calculations below we use the edge kernel to
make the results more comparable.

N5,

hpyv = Ck -
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This will lead to a smaller bandwidth than our proposed bandwidth choice if the second deriva-
tives are of the same sign. We include the DesJardins-McCall bandwidth in our bandwidth

comparisons below.

4.5 Ludwig-Miller Crossvalidation

In this section we briefly describe the crossvalidation method proposed by Ludwig and Miller
(2005, LM from hereon), which we will compare to our proposed bandwidth in the application
and simulations. See also Lee and Lemieux (2009). The LM bandwidth is the only proposed
bandwidth selection procedure in the literature that is specifically aimed at providing a band-
width in a regression discontinuity setting. Let N_ and N be the number of observations with
X; < cand X; > c respectively. For § € (0,1), let _(J) and 04 () be the d-th quantile of the

X; among the subsample of observations with X; < ¢ and X; > c¢ respectively, so that

N
(ZlXi§a> > 6-N_ } )
=1

N
(Z 1c§X1~§a> > 0- N+ } .

i=1

0_(0) = argmin {a

and

04 (0) = argmin {a

Now the LM crossvalidation criterion we use is of the form:

N

CVs(h) = lo_1-s)<x.<0, (5) - (Vi — 7n(X))? .
=1

(In fact, LM use a slightly different criterion function, where they sum up over all observations
within a distance hg from the threshold.) The estimator for the regression function here is
mp(z) defined in equation (2.1). A key feature of this estimator is that for values of = < ¢,
it only uses observations with X; < x to estimate m(z), and for values of x > ¢, it only uses
observations with X; > x to estimate m(z), so that m;(X;) does not depend on Yj, as is
necessary for crossvalidation. By using a value for § close to zero, we only use observations
close to the threshold to evaluate the cross-valdiation criterion. The only concern is that by
using too small value of §, we may not get a precisely estimated crossvalidation bandwidth. In
a minor modification of the LM proposal we use the edge kernel instead of the Epanechnikov
kernel they suggest. In our calculations we use § = 0.5. Any fixed value for § is unlikely to lead
to an optimal bandwidth in general. Moreover, the criterion focuses implicitly on minimizing a

criterion more akin to E [(44 — p4)* — (A— — p—)?] , (with the errors in estimating p— and
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squared before adding them up), rather than rather than MSE(h) = E[((fiy —py ) — (fie —p—))?]
in (4.19), where the error in the difference p —p— is squared. As a result even letting 6 — 0 with

the sample size in the crossvalidation procecure is unlikely to result in an optimal bandwidth.

5 Extensions

In this section we discuss two extensions. First the fuzzy regression discontinuity design, and

second the presence of covariates.

5.1 The Fuzzy Regression Design

In the Fuzzy Regression Discontinuity Design (FRD) the treatment W; is not a deterministic
function of the forcing variable. Instead the probability Pr(W; = 1|X; = z) changes discontin-
uously at the threshold c¢. The focus is on the ratio

TFRD =

In an important theoretical paper Hahn, Todd and VanderKlaauw (2001) discuss identification
in this setting, and show that in settings with heterogenous effects the estimand has an inter-
pretation as a local average treatment effects (Imbens and Angrist, 1994). Now we need to
estimate two regression functions, each at two boundary points: the expected outcome given
the forcing variable E[Y;|X; = x| to the right and left of the threshold ¢ and the expected value
of the treatment variable given the forcing variable E[WW;|X; = z], again both to the right and
left of c. Again we focus on a single bandwidth, now the bandwidth that minimize the mean

squared error to this ratio. Define
7v = lmE [Y;| X; = 2] -limE [V;| X; = z], and 7y = limE [W;|X; = 2] —limE [W;| X; = z],
zlc zTe zlc zTe

with 7y and 7y denoting the corresponding estimators, so that Tprp = 7y /7w, and 7prp =

7y /7w . In large samples we can approximate the difference 7Tprp — TFRD by

. . Y . . .
TFRD — TFRD = — (Ty — 7v)) — 5 (Tw — w)) + 0p((7y — 7v) + (Tw — Tw')).
T™W TW

This is the basis for the asymptotic approximation to the MSE around A = 0:

1 T 2
AMSEqy,y (h) = C1h* (5 (mgl(c) - mg?_(c)) - (m§§3+(c) - mga_(c))) (5.21)

Tw

C 2 ,
+7Nh;(c) (% (012/,+(C) + 032/7_(6)) + % (0124/7_1_(6) + 0%{/7_(0)) — i—swy (oyw+(c) + UYW,—(C))> )



In this expression the constants C; and Cy are the same as before in Equation (3.6). The
second derivatives of the regression functions, mg/z)_ (c), mgl(c), m(wz,?_ (c), and m(mz,) 4(c), are
now defined separately for the treatment W and the outcome Y. In addition the conditional
variances are indexed by the treatment and outcome. Finally the AMSE also depends on the
right and left limit of the covariance of W and Y conditional on the forcing variable, at the

threshold, denoted by oyw, +(c) and oyw, —(c) respectively.
The bandwidth that minimizes the AMSE in the fuzzy design is

hopt,fuzzy = CK ' N_1/5 (522)

1/5
<0§7+(c) + 012/,—(6)> + TirD (012/1/',-1-(6) + U%V,_(C)> — 27pRD (oyw+(¢) + oyw,—(c))

7(©)- (2 (0) = m$2 (@) = 7eno (mf2 (@)~ miE_(0))’

The analogue of the bandwidth proposed for the sharp regression discontinuity is

X

7 —-1/5
hopt,fuzzy = CK -N /

(512/,+(C) + 5'12/,_(0)> + TRRD (5514+(C) + 5’5{/,_(0)> — 27rD (Gyw,+(c) + oyw,—(c))

Fer- (20 = 0)) = up (2 (0 = F(00))" 4 P v+ o G+ ) )

We can implement this as follows. First, using the algorithm described for the sharp RD
case separately for the treatment indicator and the outcome, estimate Terp, 6'32/7 I 532/7_, 6%/, I
6%,7_, fngle(c), mgfz)_(c), m(vi?+(c), m(vf,?_(c), Ty, Ty.—, Tw+, and 7y,—. Second, using the
initial Silverman bandwidth use the deviations from the means to estimate the conditional
covariances oyw,+(c) and yw —(c). Then substitute everything into the expression for the

bandwidth. By the same argument as for the sharp RD case the resulting bandwidth has the

asymptotic no-regret property.

5.2 Additional covariates

Typically the presence of additional covariates does not affect the regression discontinuity anal-
yses very much. In most cases the distribution of the additional covariates does not exhibit
any discontinuity around the threshold for the forcing variable, and as a result those covariates
are approximately independent of the treatment indicator for samples constructed to be close
to the threshold. In that case the covariates only affect the precision of the estimator, and
one can modify the previous analysis using the conditional variance of Y; given all covariates

at the threshold, o2 (c|x) and o2 (c|z) instead of the unconditional variances o2 (c) and o2 (c).
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In practice this does not affect the optimal bandwidth much unless the additional covariates
have great explanatory power (recall that the variance enters to the power 1/5), and the basic
algorithm is likely to perform adequately even in the presence of covariates. For example, if
the conditional variances are half the size of the unconditional ones, the bandwidth will change

only by a factor 1/2/5, or approximately 0.83.

6 An Illustration and Some Simulations
6.1 Data

To illustrate the implementation of these methods we use a data set previously analyzed by Lee
(2008) in one of the most convincing applications of regression discontinuity designs. Lee studies
the incumbency advantage in elections. His identification strategy is based on the discontinuity
generated by the rule that the party with a majority vote share wins. The forcing variable X;
is the difference in vote share between the Democratic and Republican parties in one election,
with the threshold ¢ = 0. The outcome variable Y; is vote share at the second election. There
are 6558 observations (districts) in this data set, 3818 with X; > 0, and 2740 with X; < 0. The
difference in voting percentages at the last election for the Democrats was 0.13, with a standard
deviation of 0.46. Figure 1 plots the density of the forcing variable, in bins with width 0.05.
Figure 2 plots the average value of the outcome variable, in 40 bins with width 0.05, against
the forcing variable. The discontinuity is clearly visible in the raw data, lending credibility to
any positive estimate of the treatment effect. The vertical line indicate the optimal bandwidth

calculated below.

6.2 IK algorithm on Lee Data

In this section we implement our proposed bandwidth on the Lee dataset. For expositional

reasons we gave all the intermediate steps.

Step 1: Estimation of density f(0) and conditional variance o2(0)

We start with the modified Silverman bandwidth,

hy=1.84-Sx - N"1/5 =1.84.0.4553- 6558 /5 = 0.1445.

There are Ny, — = 836 units with values for X; in the interval [—hq, 0), with an average outcome
of th,— = 0.4219 and a sample variance of S%hh_ = 0.10472, and Np,,+ = 862 units with

values for X; in the interval [0, hy], with an average outcome of Y, + = 0.5643 and a sample
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variance of S%hl& = 0.12022. This leads to

7(0) = Npy,—+ Npy v 836 + 862
~ 2-N-h;y  2-6558-0.1445

= 0.8962,
and

6% (0) = S5, - = 0.1047° and 6% (0) = Sy, . = 0.1202%

Step 2: Estimation of second derivatives mf)(o) and m(_z)(o)

To estimate the curvature at the threshold, we first need to choose bandwidths ho 1 and hay _.
We choose these bandwidths based on an estimate of m<3)(0), obtained by fitting a global cubic
with a jump at the threshold:

Yi=v+7 - 1xze+72 (Xi—c)+y3- (Xi =)’ + - (Xi —0)® + &,

The least squares estimate for 4 is 44 = —0.1686, and thus the third derivative at the threshold
is estimated as () (0) = 6 - 44 = —1.0119. This leads to the two bandwidths
1/7
520 _
ha 4+ = 3.56 - ( A O'+A( ) . N, T _ 0.6057, and ho _ = 0.6105.
£(0) - ((0))

The two pilot bandwidths are used to fit two quadratics. The quadratic to the right of 0 is
fitted on [0, 0.6057], yielding mf)(o) = 0.0455 and the quadratic to the left is fitted on [-0.6105,
0] yielding 17'¥ (0) = —0.8471.

Step 3: Calculation of Regularization Terms 7_ and 7, and Calculation of ﬁopt

Next, the regularization terms are calculated. We obtain

20- 62 0. 2 720 - 62 (0
~720-6%(0)  720-0.11202  0.0975 nd 7 — 52(0)

_ . ) 0.0225.
"t No ki, 1983-0.60571 Ny _hi_

Now we have all the ingredients to calculate the optimal bandwidth under different kernels and
the corresponding RD estimates. Using the edge kernel with Cx = 3.4375, we obtain
1/5
. 62(0) +62(0)

hopt = Cic : N5 =0.3005.
F0) - | (10 - ®©0)" + (1 +1-)]
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6.3 Eleven Estimates for the Lee Data

Here we calculate fourteen estimates of the ultimate object of interest, the size of the discon-
tinuity in m(z) at zero. The first eight are based on local linear regression, and the last five
on global polynomial regressions. The first is based on our proposed bandwidth. The second
drops the regularization terms. The third uses a normal kernel and the corresponding Silver-
man bandwidth for estimating the density function at the threshold. The fourth estimates
separate cubic regressions on the left and the right of the threshold to derive the bandwidth for
estimating the second derivatives. The fifth estimates the conditional variance at the thresh-
old assuming its left and right limit are identical. The sixth uses a uniform kernel instead of
the optimal edge kernel. The seventh bandwidth is based on the DeJardin-McCall criterion.
The eigth bandwidth is based on the Ludwig-Miller crossvalidation. The last fife are based
on global linear, quadratic, cubic, quartic, and quintic regressions. The point estimates and
standard errors are presented in Table 1. To investigate the overall sensitivity of the point
estimates to the bandwidth choice, Figure 3 plots the RD estimates, and the associated 95%
confidence intervals, as a function of the bandwidth, for A between 0 and 1. The solid vertical

line indicates the optimal bandwidth (hopt = 0.3005).

6.4 A Small Simulation Study

Next we conduct a small Monte Carlo study assess the properties of the proposed bandwidth
selection rule in practice. We consider three designs, the first based on the Lee data, the second
based on the Ludwig-Miller data, and the last a modified Lee design.

In the first design, based on the Lee data, we use a Beta distribution for the forcing variable.
Let Z have a beta distribution with parameters a = 5 and g = 5, then the forcing variable is
X =2-Z—1. The regression function is a 5-th order polynomial, with separate coefficients for
X; <0 and X; > 0, with the coefficients estimated on the Lee data, leading to

o) = 0.52 + 0.76z — 2.2922 + 5.6623 — 5.872* 4 2.092° if x <0,
Leet™ ™ 0.48 + 1.43z + 8.6922 + 25.502° + 29.162* + 11.132° if > 0.

The error variance is 02 = 0.1356%. We use data sets of size 500 (smaller than the Lee data set
with 6558 observations, but more in line with common sample sizes).

In the second design we use the same distribution for the forcing variable as in the first
design. We again have 500 observations per sample, and the true regression function is quadratic
both to the left and to the right of the threshold, but with different coefficients:

32 ifr <0,
Mauaa(®) = | g2 ifz > 0
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implying the data generating process is close to the point where the bandwidth hqp¢ is infinite
(because the left and right limit of the second derivative are 6 and 8 respectively), and one may
expect substantial effect from the regularization. The error variance is the same as in the first
design, 02 = 0.13562.

In Table 2 we report results for the same estimators as we reported in Table 1 for the real
data. We include one additional bandwidth choice, namely the infeasible optimal bandwidth
hopt, which can be derived because we know the data generating process. In Table 2 we present
for the both designs, the mean (Mean) and standard deviation (Std) of the bandwidth choices,
and the bias (Bias) and the root-mean-squared-error (RMSE) of the estimator for 7.

First consider the design motivated by the Lee data. All bandwidth selection methods
combined with local linear estimation perform fairly similarly under this design. There is con-
siderably more variation in the performance of the global polynomial estimators. The quadratic
estimator performs very well, but adding a third order term more than doubles the RMSE. The
quintic approximation does very well, not surprisingly given the data generating process that
involves a fifth order polynomial.

In the second design the regularization matters, and the bandwidth choices based on different
criterion functions perform worse than the proposed bandwidth in terms of RMSE, increasing
it by about 28%. The global quadratic estimator obviously performs well here because it
corresponds to the data generating process, but it is interesting that the local linear estimators

have a RMSE very similar to the global quadratic estimator.

7 Conclusion

In this paper we propose a fully data-driven, asymptotically optimal bandwidth choice for re-
gression discontinuity settings. Although this choice has asymptotic optimality properties, it
still relies on somewhat arbitrary initial bandwidth choices. Rather than relying on a single
bandwidth, we therefore encourage researchers to use this bandwidth choice as a reference point
for assessing sensitivity to bandwidth choice in regression discontinuity settings. The proposed
procedure is the first available procedure with optimality properties. The bandwidth selection
procedures commonly used in this literature are typically based on different objectives, for ex-
ample on global measures, not tailored to the specific features of the regression discontinuity
setting. We compare our proposed bandwidth selection procedure to the crossvalidation proce-
dure developed by Ludwig and Miller (2005), which is tailored to the regression discontinuity

setting, but which requires the researcher to specify an additional tuning parameter, as well
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as to the procedure proposed by DeJardins and McCall (2008). We find that our proposed
method works well in realistic settings, including one motivated by data previously analyzed

by Lee (2008).
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Appendix

To obtain the MSE expansions for the RD estimand, we first obtain the bias and variance estimates from
estimating a regression function at a boundary point. Fan and Gijbels (1992) derive the same claim but under
weaker assumptions (such as thin tailed kernels rather than compact kernels) and hence their proof is less
transparent and not easily generalizable to multiple dimensions and derivatives. The proof we outline is based
on Ruppert and Wand (1994) but since they only cursorily indicate the approach for a boundary point in multiple
dimensions, we provide a simple proof for our case.

Lemma A.1: (MSE FOR ESTIMATION OF A REGRESSION FUNCTION AT THE BOUNDARY)

Suppose (i) we have N pairs (Y;, X;), independent and identically distributed, with X; > 0, (i1), m(z) = E[Y;| X; =
x| is three times continuously differentiable, (i), the density of X;, f(x), is continuously differentiable at x = 0,
with f(0) > 0, (iv), the conditional variance o*(x) = Var(Y;|X; = ) is bounded, and continuous at x =0, (v),
we have a kernel K : RY — R, with K(u) =0 for u > %, and [,' K(u)du = 1, and define Kn(u) = K (u/h)/h.
Define pn = m(0), and

N
A,A = arg min Yi—p—08-X)? Kn(Xi).
(An, Bn) g#ﬁ;( p= B Xi)" Kn (X)

Then:
E[a] X1,..., Xn] — p=C?m® (0)h* + o, (17), (A1)
X () 1
V(‘LL|X1,,XN)7OQW+OP <m)7 (A2)
and
R 2 a%(0 1
E[(i—p)?| X1,...,Xn] =Ch (m<2>(0)) n* +C’2f(0)(]\;h + 0p <h4 + ﬁ) , (A.3)

where the kernel-specific constants C1 and Ca are those given in Lemma 3.1.

Before proving Lemma A.1, we state and prove two preliminary results.

Lemma A.2: Define F; = + Zi\;l Kn(X:))X?. Under the assumptions in Lemma A.1, (i), for nonnegative
integer j,

Fy = 1 £(0)v; + 0p(h?) = W (F +0,(1)),

with v; = [[C K (t)dt and F} = f(0)v;, and (ii), If j > 1, Fj = op(h7 7).

Proof: Fj is the average of independent and identically distributed random variables, so
F; =E[F}]+ O, (Var(Fj)l/z) .

The mean of F} is, using a change of variables from z to z = z/h,
E[F;] = / i (5) 2 f(2)dz = hj/ K ()2’ f(ha)dz
o h h 0

[ k() et it [ e () it L) = FO) iy 1
7h/0 K (2) 2’ f(0)da + h /OK() =IO = 1 (0 + 0 (W),

The variance of F; can be bounded by

%E [(Kh(Xi))zij] = Nlh?E [(K <XT))2 -ij] = Nlh? /OOo (K (%))Z-Zij(z)dz.

By a change of variables from z to = z/h, this is equal to
p2i-1 oo s o B2t hi 2 \ 2
N/, (K (z)) -:c]f(h:c)d:c:0< I ):o <W) :o<(h]) )

Fy =E[F)]+o0, (W) = W FO)v; +0, () = 1 - (£(0)v; + 0, (1))

Hence
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Lemma A.3: Let G; = Zi\;l K?(X:)X?0%(X;). Under the assumptions from Lemma A.1,
Gj = h"'6%(0)f(0)m; (14 0p (1)), with m; = / 1 K2(t)dt.
0
Proof: This claim is proved in a manner exactly like Lemma A.1, here using in addition the differentiability of

the conditional variance function. [

Proof of Lemma A.1: Define R = [¢ X], where ¢ is a N-dimensional column of ones, define the diagonal
weight matrix W with (i,4)th element equal to K (X;), and define e; = (1 0)’. Then

m(0) = i = ey (RWR) 'RWY.

The conditional bias is B = E[fi(0)| X1, ..., Xn] — m(0). Note that E(7(0)|X) = e} (R'WR) "' R'WM where
M = (m(X1),...,m(Xn))". Let m* () denote the kth derivative of m(x) with respect to z. Using Assumption
(#4) in Lemma A.1, a Taylor expansion of m(X;) yields:

m(X:) = m(0) + m™M(0) X + %m@)(())xf LT
where
7| < supm® (2) - X7

Thus we can write the vector M as

M:R< mnfl()%) )+S+T.

where the vector S has ith element equal to S; = m® (0)X 2 /2, and the vector T has typical element T;. Therefore
the bias can be written as

B=¢(RWR) 'RWM —m(0) = e, (RWR) "RW (S +T).

Using Lemma A.2 we have

1, -t N o Py 1 Fy —Fy
(zeve) - = (5 8) ~mem (2 W)
o
_ F*F* <F*>2+0P(1) (e + o0 (D)
7 F*F* R —(F)? +0p((1)) %(%W*'Op(l))
1
(vova— v2)f(c) +op (1)1 " (vova—1v2 )f(c)h +0p (E)
(l/[)l/2 vy )f(c)h +Op (E) Op (FQ_)
- (s 5
Op (%) O» (52)
Next
1 | @y (B (o (p?)
NR WT‘ =supm (x) )= o (1) )
Thus
A(RWR)T'RWT = 0p(1) - 0 (h*) + Op (%) ~op(h*) = 0y (h?) ,
implying
B =€ (RWR) 'RWS + 0,(h?).
Similarly:

FEWS) = 5m0) ( ;ZZ‘ O ) = g (e ).



Therefore:
2 —
B = {(RWR)'RWS + 0,(h%) = 2m®(c) <”27”3”;) K2 + 0,(h?).
2 Vov2 — V]
This finishes the proof for the first part of the result in Lemma A.1, equation (A.1).
Next, we consider the expression for the conditional variance in (A.2).
V =V(m(0)|X1,...,Xn) =y (RWR) 'RWEWR(R' WR) ‘e,
where ¥ is the diagonal matrix with (i,4)th element equal to o?(X;)
Consider the middle term
1 _ [ w2 KR(Xi)o®(Xa) > Kh(Xi)Xio?(Xi) | _ ((Go Gi
N WEWE= < 7 2 Kin(Xi) Xio® (X)) ; ) ) \ G G2 )’

Thus we have:
NV _ 1 6/ F2 —F1 G() G1 F2 —F1 e
(FoF, —F22 '\ —F1 Ry G - R !

B FiGo — 2F1 F2Gy + FEGa
- (FoFy — F?)2

Applying lemmas A.1 and A.2 this leads to

V= 02(0) ) IJ%7T0—2IJ11/27T1—|—IJ%7T2 To L
~ f(O)Nh (vove — V2)? P\Nh )"
The final result in (A.3) follows directly from the first two

This finishes the proof for the statement in (A.2)

results. OJ
Proof of Lemma 3.1: Applying Lemma A.1 to the N4 units with X; > ¢, implies that

E[is — pt] X1,..., Xn] = C1°mP (¢)h? + 0, (A7),

and
2
, PSR M (i B
V(i = pt] X1y, Xv) = O Fxxse(€)N1h tor <N+h) '
Because Ny /N = pr(Xi > ¢)+O(1/N), and fx|x>.(2) = f(2)/Pr(X: > ¢) (and thus fx|x>c(c) = f+(c)/Pr(X: 2
c)), it follows that
52
V(i — pt] X, X)) :OZW% +or <ﬁ) '

., X~ the covariance between i+ and fi— is zero, and thus, combining the results from

Conditional on X7i,..
applying Lemma A.1 also to the units with X; < ¢, we find
o Xn]

E [(Fsrp — 7sr0)?| X1, 0, Xn] = B [(fr — oo — (s — -))°] X1,
XN HE [ (e — pm)? X, XN
.,XN]~E[,LAI,7—,LL7|X1,...,XN]
et (m @) m®@ (). G2 (gi(e) | o%(e) ot L
o (o) . () o v 7).

=E[(i+ —pt)? Xa, ...
=2 B[4 — pyl Xq, ..

proving the first result in Lemma 3.1.
For the second part of Lemma 3.1, solve
a2 (c) a2 (c) ))

hopt = argmhin <C1h4 (mf)(c) - mg)(c))z +C2 <f+(c)Nh f-(

which leads to
LACINEEAG 1o
f4(c) f—(c) N5

hoon = (O_)/
opt — p)
4C4 (mf)(C) _ m(f)(c))
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d

Motivation for the Bandwidth Choice in Equation (4.14) in Step 2 of bandwidth algorithm

Fan and Gijbels (1996 Theorem 3.2) give an asymptotic approximation to the MSE for an estimator of the
v-th derivative of a regression function at a boundary point, using a p-th order local polynomial (using the
notation in Fan and Gijbels). Specializing this to our case, with the boundary point ¢, a uniform one-sided
kernel K (t) = lo<i<1, and interest in the 2-nd derivative using a local quadratic approximation (v = p = 2, their
MSE formula simplifies to

MSE = <éK12 (mf>(c))2 h? 4 4Ky — ”i(c)) (1+ 0p(1))

Nh® fi(c)
Here
K, = /tBK*(t)dt Ko = /(K*(t))zdt,
where
/ —1
0 Ho  p1 2 1 . 1
K*(t)=1 0 i p2 o p3 to] K@), with g :/q K(q)dg = Tk
1 M2 p3 pa t2
so that
o\ / 1 1/2 1/3\ '/ 1
K*t)=1| o0 1/2 1/3 1/4 t |- K(t) = (30 — 180t + 180t*) - 110,11,
1 1/3 1/4 1/5 t2

and therefore, K1 = 1.5 and K2 = 180. Thus

MSE = G (mf)(c))z h* + 720N1h5 ‘ﬁ((z))) (1 +0p(1)).

Minimizing this over h leads to
1/7 1/7
2 2
hoe = 720047 | O N Nt g | 0@ ) o
3 3
f+(e) (mP () f4(e) (mP ()

This is the expression in the text for hs  except for the addition of the 0.01 term that ensures the necessary
properties if the estimate of m® (¢) converges to zero. O

Proof of Theorem 4.1: Before directly proving the three claims in the theorem, we make some preliminary
observations. Write

1/5
—1/5 20°
hopt = Copt - N™1/5, with Cope = Crc - o7 () - ,
1@ ((m® @ -m@)’)
and
1/5
~ ~ —1/5 . ~ 26’2 C
hopt = Oopt . N , Wlth Oopt = OK .

First we show that the various estimates of the functionals in Copi, 62 (c), 62 (c), f(c), m@ (c¢) and m(f)(c)
converge to their counterparts in Copt, o2 (c), o3 (c), f(c), m(f) (c) and m® (¢) Consider f(c). This is a histogram
estimate of density at ¢, with bandwidth h = CN~'/5. Hence f(c) is consistent for f(c) if f—(c) = f4(c) = f(c),
if the left and righthand limit are equal, and for (f—(c) + f+(c))/2 if they are different.

Next, consider 62 (c) (and 6% (c)). Because it is based on a bandwidth h = C' - N~'/% that converges to zero, it

is consistent for o2 (¢) if 02 (c) = o2 (c) = o*(c).
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Third, consider m(z)(c). This is a local quadratic estimate using a one sided uniform kernel. From Fan and
Gijbels (1996), Theorem 3.2, it follows that to guarantee consistency of 1 2 )( ) for mf)(c) we need both

-1

ha+ = op(1) and (Nh2,+) = o0p(1). (A4)

Let m3 be the probability limit of 77 (¢). This probability limit need not be equal to m® (¢), but it will exist
under the assumptions in Theorem 4.1. As long as this probability limit differs from zero, then ha y = Op(N -v 7),
so that the two conditions in (A.4) are satisfied and m? )( ) is consistent for m(f)(c).

Fourth, consider 7+ = 72062 (¢)/(Na,+h3 ). The numerator converges to 72063 (c). The denominator is ap-
proximately No 4 -h3 , = (C-N-hay)-C- N7 =C.N%7 so that the ratio is C - N~%/7 = 0,(1). A similar
result holds for 7_.

Now we turn to the statements in Theorem 4.1. We will prove (i), then (iv), and then (¢) and (¢¢). First consider
(t31). If m(f) (c) —m(f)(c) differs from zero, then Copy is finite. Moreover, in that case (1 (f) (¢) —m® ()2 +7y +7o
converges to (ﬁzf)(c) — m(f)(c))z, and Copy converges to Cops. These two implications in turn lead to the result
that (fops — hopt)/hopt = (Copt — Copt)/Cops = 0p(1), finishing the proof for (iii).

Next, we prove (iv). Because hopt = Copt - Nﬁl/s, it follows that

MSE (hopt) = AMSE (hopt ) + 0 <h§pt + ) = AMSE (hopt) + 0 (N*‘*/ 5) .

o
N - hopt
Because fzopt = (C’Opt/Copt) . C’Opthl/s, and C’Opt/Copt — 1 it follows that

MSE (hopt ) = AMSE (hops ) +o0 (N747) .
Therefore

N2 (MSE (hopt ) = MSE (hopt) ) = N** - (AMSE (fopt ) — AMSE (hopt) ) + 05(1),
and

MSE (hopt) ~ MSE (hopt)  NY/3. (MSE (i}opt) ~ MSE (hopt))
MSE (Fopt) - N4/5 - MSE (hopt)

N/5. (AMSE (fopt ) = AMSE (hopt) ) + 0,(1)
N175 - AMSE (hopt) 1 0p(1) '
NY/5. ( AMSE (i}opt) — AMSE (hopt))
= N75 - AMSE (hopy) + o)

Because N*/5. AMSE(hopt) converges to a nonzero constant, all that is left to prove in order to establish (i44) is
that

N5 (AMSE (hopt) — AMSE (hopt)) = op(1). (A.5)
Substituting in, we have

N5 (AMSE (hopt) — AMSE (hopt))

= 0= 0) (O = 3o Y (s = e ) (P + F69)

= OP(1)7

because N/5hope — NY%hopt = Cops — Copt = 0p(1), so that A.5 holds, and therefore (iv) is proven.

Now we turn to (i7). Under the conditions for ( ) hopt = C’optN 1/5 °, with C’opt — Copt, & nonzero constant.
Then Lemma 3.1 implies that MSE (hopt) is Op(hd opt TN~ 1hopt) = O,(N~*/® so that 7srp — Tsrp = Op (N~ /.
Finally, consider (i). If Assumption 3.6 holds, then 7srp — 7srp = Op(N~?/%), and the result holds. Now
suppose Assumption 3.6 does not hold and mf)(c) — m(f) (¢) = 0. Because hp = CN~Y7, it follows that
ry = CN7*h™" = CN~3/7 (with each time different constants C), it follows that hep, = C(N*/T)Y/SN~1/5 =
CN~™*% 5o that the MSE(h) = CN~24/3° 4 ON—3Y/35 — CN~1/35 (note that the leading bias term is now
O(h®) so that the square of the bias is O(h®) = O(N~2*?%)) and thus 7srp — Tsrp = Op(N~2/3%). O
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Table 1: RD ESTIMATES AND BANDWIDTHS FOR LEE DATA

Procedure h 7sRp  (s.e.)
ﬁopt 0.3005 0.0801 0.0083
no regularization 0.3042 0.0802 0.0082
f(c) estimated using normal kernel 0.3004 0.0801 0.0083
third order polynomial separate on left and right 0.2847 0.0795 0.0085
homoskedastic variance 0.3006 0.0801 0.0083
uniform kernel 0.4721 0.0730 0.0098
Desjardin-McCall 0.3105 0.0804 0.0081
Ludwig-Miller cross-validation (6 = 0.5) 0.3250 0.0810 0.0080
Linear global 0.1182 0.0056
Quadratic global 0.0519 0.0080
Cubic global 0.1115 0.0105
Quartic global 0.0766 0.0131
Quintic global 0.0433 0.0157
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Table 2: SIMULATIONS, 5,000 REPLICATIONS

Lee Design
hopt (infeasible)

hopt

no regularization

f(c) estimated using normal kernel
third order polynomial separate on left and right
homoskedastic variance

uniform kernel

Desjardin-McCall

Ludwig-Miller cross-validation (6 = 0.5)
Linear

Quadratic

Cubic

Quartic

Quintic

Quadratic Design
hopt (infeasible)

hopt

no regularization

f(c) estimated using normal kernel
third order polynomial separate on left and right
homoskedastic variance

uniform kernel

Desjardin-McCall

Ludwig-Miller cross-validation (6 = 0.5)
Linear

Quadratic

Cubic

Quartic

Quintic

30

Mean

0.166
0.538
0.724
0.538
0.395
0.536
0.845
0.551
0.405

h

Std

0.000
0.094
0.650
0.094
0.055
0.094
0.148
0.131
0.071

global
global
global
global
global

0.371
0.452
0.488
0.452
0.410
0.450
0.709
0.227
0.224

0.098
0.314
0.098
0.080
0.097
0.154
0.010
0.024

global
global
global
global
global

TSRD

Bias RMSE
0.019 0.062
0.039 0.053
0.038 0.052
0.039 0.053
0.042 0.058
0.039 0.054
0.042 0.061
0.039 0.052
0.039 0.056
0.049  0.057
-0.018  0.043
0.089 0.102
0.029  0.069
0.003 0.076
0.001 0.041
0.012 0.039
0.018 0.049
0.012  0.039
0.008 0.040
0.011 0.039
-0.044 0.071
-0.002  0.051
-0.000 0.052
0.246 0.251
0.000  0.039
0.000  0.051
0.001 0.063
0.000 0.078



demotratic vote share

Fig 1: Density for Forcing Variable
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Fig 2: Regression Function for Margin
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Fig 3: RD Estimates and Confidence Intervals for Lee Data by Bandwidth
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