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Abstract 

We report experiments designed to test between Nash equilibria that are stable and unstable 

under learning.  The “TASP” (Time Average of the Shapley Polygon) gives a precise prediction 

about what happens when there is divergence from equilibrium under fictitious play like 

learning processes.  We use two 4 x 4 games each with a unique mixed Nash equilibrium; one is 

stable and one is unstable under learning.  Both games are versions of Rock-Paper-Scissors with 

the addition of a fourth strategy, Dumb.  Nash equilibrium places a weight of 1/2 on Dumb in 

both games, but the TASP places no weight on Dumb when the equilibrium is unstable.  We 

also vary the level of monetary payoffs with higher payoffs predicted to increase instability. We 

find that the high payoff unstable treatment differs from the others.  Frequency of Dumb is 

lower and play is further from Nash than in the other treatments. That is, we find support for the 

comparative statics prediction of learning theory, although the frequency of Dumb is 

substantially greater than zero in the unstable treatments. 
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1. Introduction 
Economic models often only have equilibria in mixed strategies, but it is difficult to see 

how actual market participants know how to randomize with the correct probabilities.  Recent 

theoretical advances, in particular the development of stochastic fictitious play, demonstrate 

that, fortunately, even if agents only follow simple learning rules, it is still possible to learn 

equilibrium behavior. The downside to this is that it has been shown that there are a large 

number of games for which the equilibria are not learnable.  Players following any one of a 

range of learning processes would not converge to equilibrium. However, Benaïm, Hofbauer 

and Hopkins (2009) show that, nonetheless, stochastic fictitious play can give a point prediction 

for play even when it diverges. This point is the TASP (Time Average of the Shapley Polygon) 

which they show can be quite distinct from any Nash equilibrium. 

In this paper, we report experiments designed to test between Nash equilibria that are 

stable and unstable under learning.  Subjects were randomly matched to play one of two 4 x 4 

games each with a unique mixed Nash equilibrium. In one game, the equilibrium is predicted to 

be stable under learning, and in the other unstable.  Both games are versions of Rock-Paper-

Scissors with the addition of a fourth strategy, Dumb.  The mixed equilibrium in both games is 

(1, 1, 1, 3)/6:  Dumb is thus the most frequent strategy.  However, in the unstable game, 

fictitious play-like learning processes are predicted to diverge from the equilibrium to a cycle, a 

“Shapley polygon,” that places no weight upon Dumb.  Thus, if fictitious play describes agents' 

behavior, the limiting frequency of Dumb is a ready indicator of whether we are in the stable or 

unstable case.  It is also, therefore, a simple way to determine whether the predictions of 

fictitious play, and learning theory, hold in practice.  Equilibrium theory suggests that the 

frequency of Dumb should be the same in both games.  Learning theory suggests they should be 

quite different. 

The experiment has a 2 x 2 design with four treatment conditions: unstable or stable 

game and high or low payoff.  This is because both the theory of quantal response equilibria 

(QRE) and stochastic fictitious play (SFP) predict that multiplying all payoffs by a positive 

constant will affect play. Specifically, QRE predicts higher payoffs result in play closer to Nash 

equilibrium, but SFP predicts that higher payoffs will lead to play being further from Nash in 

the unstable game. We find that there is a difference in play in the high payoff unstable 

treatment.  The frequency of Dumb is lower and play is further from Nash than in the other 



treatments.  That is, we find support for the comparative statics prediction of learning theory 

even though the frequency of Dumb is substantially greater than zero in the unstable games.  

The data also reject Nash equilibrium, which predicts no difference between the treatments and 

QRE theory that predicts play should be closer to Nash in the high payoff treatments. 

Fictitious play has the underlying principle that players select a best response to their 

beliefs about opponents.  Traditionally, these beliefs are constructed from the average past play 

of opponents.  This we refer to as players having “classical” beliefs.  However, experimental 

work has found greater success with generalizations of fictitious play that allow for players 

constructing beliefs by placing greater weight on more recent events (see Cheung and Friedman 

(1997), Camerer and Ho (1999) amongst many others).  This is called forgetting or recency or 

weighted fictitious play. 

In both the existing empirical and theoretical literature on mixed strategy equilibria, 

there are two principal criteria for determining whether players do actually play a mixed strategy 

equilibrium.  For example, Foster and Young (2003) make the distinction between what they 

call convergence in time average and convergence in behavior.  The first requires the overall 

frequencies of play to approach the mixed strategy equilibrium frequencies.  The second 

requires the more demanding standard that players should actually come to randomize with 

equilibrium probabilities.  To illustrate the difference the sequence 0,1,0,1,0,1,... converges in 

average to 1/2 but clearly not to the behavior of randomizing between 0 and 1 with equal 

probabilities. 

In the experimental literature, this distinction was first raised by Brown and Rosenthal 

(1990).  Indeed, their analysis of the earlier experiments of O'Neill (1987) finds that while play 

converged in time average, it failed to do so in behavior, in that there was significant 

autocorrelation in play.  Subsequent experiments on games with mixed strategy equilibria seem 

to confirm this finding.  For example, Brown Kruse et al. (1994), Cason and Friedman (2003) 

and Cason, Friedman and Wagener (2005) find in oligopoly experiments that the average 

frequencies of prices approximate Nash equilibrium frequencies.  However, there are persistent 

cycles in the prices charged, which seems to reject convergence to equilibrium in behavior.2

Returning to theory, even when fictitious play converges to a mixed strategy 
                                                 
2A recent exception to this run of results is that Palacios-Huerta and Volij (2008) find that expert players 
(professional sportsmen) can in fact learn equilibrium behavior.  However, Levitt et al. (2007) report additional 
experiments in which professionals do no better than students. 
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equilibrium, it does so only in time average not in behavior.  This problem motivated the 

introduction of smooth or stochastic fictitious play (Fudenberg and Kreps (1993)), which 

permits asymptotic convergence in behavior to mixed strategy equilibria.  This more recent 

work still employs classical beliefs.  When one considers weighted stochastic fictitious play, 

there is not even this asymptotic convergence - play can converge close to equilibrium but never 

quite lose autocorrelation.  This creates a significant problem in research on mixed strategy 

equilibria in the laboratory.  If play is not i.i.d. over the finite length of an experiment, is this 

because play is diverging, because convergence will never be better than approximate, or 

because convergence is coming but has not yet arrived? 

The current experiment attempts to sidestep these problems by not measuring 

convergence in terms of the time series properties of play.  Rather, the advantage of the game 

we consider is that a considerable qualitative difference in behavior is predicted between its 

stable and unstable versions.  The result proved in Benaïm, Hofbauer and Hopkins (2009) is 

that, when players learn according to weighted fictitious play in a class of games in which 

learning diverges from the mixed equilibrium, the time average of play converges.  However, it 

does not converge to the equilibrium but to the TASP, a new concept.  In the unstable game we 

consider, the TASP is quite distinct from the unique Nash equilibrium.  Thus, an easy test of 

divergence is simply to see whether average play is closer to the TASP or the Nash equilibrium. 

In practice, one cannot expect play to be exactly at either the Nash equilibrium or the 

TASP.  The now extensive literature on perturbed equilibria such as quantal response equilibria 

(QRE) (McKelvey and Palfrey, 1995) makes clear that play in experiments can be quite distinct 

from Nash equilibrium.  Subjects appear to behave as though their choices were subject to noise.  

Equally, since the stationary points of stochastic fictitious play are QRE, learning theory can 

make similar predictions.  Thus we should expect learning to converge exactly to the TASP only 

in the absence of noise.  In both cases, the theory predicts that the effective level of noise should 

be sensitive to the level of the payoffs.  This type of effect has been found empirically by 

Battalio et al. (2001) and Bassi et al. (2006).  Thus, the other aspect of our design is to change 

the level of monetary rewards.  We ran both the stable and unstable game at two different 

conversion rates between experimental francs and U.S. dollars, with the high conversion rate 

two and a half times higher than the lower.  

Learning theory predicts that this change in monetary compensation will have a different 
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comparative static effect in the two different games. Higher payoffs should make play diverge 

further from the equilibrium in the unstable game and make play closer in the stable one. QRE 

theory, which as an equilibrium theory does not consider stability issues, predicts play should be 

closer to Nash equilibrium when payoffs are higher, in both the stable and unstable games.  

Nash equilibrium predicts no difference across the treatments.  That is, we have clear and 

distinct comparative statics predictions to test. 

Other experimental studies have tested for differences in behavior around stable and 

unstable mixed equilibria.  Tang (2001) and Engle-Warnick and Hopkins (2006) look at stable 

and unstable 3 x 3 games in random matching and constant pairing set-ups respectively.  Neither 

study finds strong differences between stable and unstable games.  In a quite different context, 

Anderson et al. (2004) find that prices diverge from competitive equilibrium that is predicted to 

be unstable by the theory of tatonnement. Cyclical behavior follows. 

 

2. RPSD Games and Theoretical Predictions 
The games that were used in the experiments are, firstly, a game we call the unstable RPSD 

game  

0 0,20 90,20 90,20 90,Dumb
90 20,90 90,0 120,120 0,Scissors
90 20,120 0,90 90,0 120,Paper
90 20,0 120,120 0,90 90,Rock

DSPR

!URPSD  

 and secondly, the stable RPSD game,  

0 0,20 90,20 90,20 90,Dumb
90 20,60 60,0 150,150 0,Scissors
90 20,150 0,60 60,0 150,Paper
90 20,0 150,150 0,60 60,Rock

DSPR

!SRPSD  

Both games are constructed from the well-known Rock-Paper-Scissors game with the addition 

of a fourth strategy Dumb (called so, as it is never a pure best response).  Games of this type 

were first introduced by Dekel and Scotchmer (1992).  Both these games have the same unique 

Nash equilibrium which is symmetric and mixed with frequencies . Thus, while 6/)3,1,1,1(!"p
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the fourth strategy is “Dumb,” it is by far the most frequent in equilibrium. Expected 

equilibrium payoffs are 45 in both games. 

While these two games are apparently similar, they differ radically in terms of predicted 

learning behavior. To summarize our basic argument, suppose there is a population of players 

who are repeatedly randomly matched to play one of the two games. Then, if all use a fictitious 

play like learning process to update their play, in the second game there would be convergence 

to the Nash equilibrium.3 In the first game, however, there will be divergence from equilibrium 

and play will approach a cycle in which no weight is placed on the strategy Dumb (D). 

 
2.1 Learning Under Fictitious Play 

We state and prove results on the stability of the mixed equilibria in    and  

  in Appendix A.  Here we give a heuristic account.  For example, the outcome in  

  is illustrated in Figure 1, with the red triangle on the base of the pyramid being the 

attracting cycle.  (This is simplex of possible mixed strategies over the four available actions.) 

This cycle was named a Shapley triangle or polygon after the work of Shapley (1964) who was 

the first to produce an example of non-convergence of learning in games. See also 

Gaunersdorfer and Hofbauer (1995) for a detailed treatment. 

URPSD

SRPSD

URPSD

More recently, Benaïm, Hofbauer and Hopkins (BHH) (2009) observe the following.  

Suppose people learn according to “weighted” instead of classical fictitious play. Under what 

we call classical beliefs, a simple average is taken over all observations.  Under weighted 

fictitious play, players construct their beliefs about the play of others by placing greater weight 

on more recent experience.  Then, play in the unstable game will still converge to the Shapley 

triangle, but, furthermore, the time average of play will converge to a point that they name the 

TASP (Time Average of the Shapley Polygon), denoted “T” on Figure 1.  This is in contrast to 

Shapley's original result, where in the unstable case nothing converges.  For the game , 

the TASP places no weight on the strategy D, despite its weight of 1/2 in Nash equilibrium.  

That is, it is clearly distinct from the Nash equilibrium of the game, denoted “N” in Figure 1. 

URPSD

However, it is not the case that theory predicts that the frequency of D should decrease 
                                                 
3Fictitious play is perhaps the most enduring model of learning in games. See Fudenberg and Levine (1998, 
Chapter 2) for an introduction. There are, of course, other learning models. Young (2004) gives a survey of recent 
developments. 
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monotonically. Specifically, (see Proposition 2 in Appendix A) we identify a region E in the 

space of mixed strategies where D is the best response and so its frequency will grow. This 

region E is a pyramid within the pyramid in Figure 1, with the Shapley triangle as its base and 

apex at the Nash equilibrium.  But under fictitious play, given almost all initial conditions, play 

will exit E and the frequency of D will diminish. 

In the second game , by contrast, the mixed equilibrium is stable under most 

forms of learning, including fictitious play. Hence, one would expect to see the average 

frequency of the fourth strategy, D, to be close to one half. 

SRPSD
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Figure 1: Nash equilibrium (N) and TASP (T) in the unstable version of the RPSD game. 

The frequencies of strategies 1 and 2 are on the horizontal axes and of strategy 4 on the 

vertical axis. 

 

Thus, if fictitious play describes agents' behavior, the limiting frequency of D is a ready 

indicator of whether we are in the stable or unstable case. It is also, therefore, a simple way to 

determine whether the predictions of fictitious play, and learning theory, hold in practice. 
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Equilibrium theory suggests that the frequency of D should be the same in both games. Learning 

theory suggests they should differ. 

 

2.2 Noisy Play: SFP and QRE 

This clean distinction is unlikely to occur exactly in practice, given that actual behavior 

is often noisy. This tendency for subjects to make mistakes or to experiment can be captured 

theoretically in two linked ways. The first is to move to stochastic fictitious play (SFP), a 

modification of the original learning model that allows for random choice. The second is to look 

at perturbed equilibria known as quantal response equilibria (QRE). The connection is that QRE 

are the fixed or stationary points for the SFP learning process. 

The stochastic choice rule that is most frequently used is the logit version where the 

probability of player i  taking action j of a possible  at time t  is given by n
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where 0&#  is a precision parameter and in SFP the attraction  will be the expected payoff 

to action

)(tA j
i

j at time t . As#  becomes large, the probability of choosing the action with the highest 

expected payoff, the best response, goes to one. 

In fictitious play, expectations about payoffs are derived from expectations over 

opponents' actions which in turn are derived from past observations of play. Recently, in the 

experimental literature, the formation of beliefs has most often been approached in the context 

of the EWA (experience weighted attraction) model of Camerer and Ho (1999). This is a more 

general specification which includes SFP, both the weighted form and with classical beliefs, and 

other learning models as special cases. Attractions in the EWA model are set by  
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)1()]1()1([)1()1(
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where 1)1()( ('! tNtN , , and +  and ,  are recency parameters. For classical beliefs, 

1!!+, ; for weighted beliefs +, ! <1. The parameter *  is an imagination factor and for all 

forms of fictitious play, it is set to 1, and  )1( 'tI j  is an indicator function that is one if action j 
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is chosen at    and is zero otherwise.1't 4  Finally,   is the (implied) payoff to strategy j) j .  In 

this context, we deal with simple strategic form games, so that given a game matrix B , we will 

have the payoff to strategy j  being   given the opponent chooses action k. jk
j B!)

Equilibrium in SFP occurs when the expected payoffs are consistent with players' actual 

choice frequencies. This idea for a perturbed equilibrium was proposed independently by 

McKelvey and Palfrey (1995) under the title of QRE. Given the logit choice rule, one finds the 

QRE equilibrium frequencies by solving the following system of equations  

nj
e

epp
pn

k

p
jj

k

j

,...,1for  ))((
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%

!!
!

#)

#)

)$  

where pBp .)( !)  with B being the payoff matrix. QRE with the specific logit choice rule can 

also be called logit equilibrium (LE). 

The principal method for the analysis of SFP has been by way of the perturbed best 

response dynamics  

xxx '! ))(()$!      (PBR) 

where the function  )(-$   is a perturbed choice function such as the logit above and x is a vector 

of players’ beliefs.  Results from stochastic approximation theory show that a perturbed 

equilibrium is locally stable under SFP if it is stable under the perturbed dynamics.  See Benaïm 

and Hirsch (1999), Hopkins (1999) and Ellison and Fudenberg (2000) for details. 

One well-known property of QRE is that as the precision parameter #  increases in 

value, the set of QRE approaches the set of Nash equilibria. But notice that given the logit 

formulation above an increase in ! is entirely equivalent to an increase in payoffs. For example, 

if all payoffs are doubled this would have the same effect as doubling # . 

Specific results for logit equilibria in the games   and  are the following: URPSD SRPSD

1) Each logit equilibrium is of the form  ),,,(ˆ kmmmp !   where  mk 31'!   and is unique 

for a given value of # . That is, each LE is symmetric in the first three strategies. 

2) The value of , the weight placed on the fourth  strategy D, is in    and is 

strictly  increasing in  

k )2/1,4/1[

# . That is, the LE is always between the Nash equilibrium  

  and uniform mixing    and approaches the Nash equilibrium as 6/)3,1,1,1( 4/)1,1,1,1( #  or 

                                                 
4The EWA model permits , +.   and/or 1* /  to capture a variety of reinforcement learning approaches. 
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payoffs become large. 

3) For a given value of # , the LE of  and of  are identical.  That is, while 

the level of optimization affects the LE, the stability of the equilibrium does not. 

URPSD SRPSD

 

The implications of an increase of the precision parameter # , or equivalently of an 

increase in payoffs, for learning outcomes are quite different. First, it is well known that the 

stability of mixed equilibria under the perturbed best response (PBR) dynamics depend upon the 

level of # . When #  is very low, agents randomize almost uniformly independently of the 

payoff structure and a perturbed equilibrium close to the center of the simplex will be a global 

attractor. This means that even in the unstable game , the mixed equilibrium will only be 

unstable under SFP if  

URPSD

#   is sufficiently large.  For the specific game , it can be 

calculated that the critical value of 

URPSD

#  is approximately 0.17.  In contrast, in the stable 

game , the mixed equilibrium will be stable independent of the value of SRPSD # .  

This is illustrated in Figure 2. The smooth red curve, labeled “Stable,” gives the 

asymptotic level of the proportion of the fourth strategy  for game D SRPSD  under the 

perturbed best response (PBR) dynamics as a function of # . The smooth blue curve, labeled 

“Unstable,” gives the asymptotic level of the proportion of the fourth strategy  for game 

. For low values of 

D

URPSD # , that is on the interval [0, 0.17], the perturbed best response 

dynamics converge to the LE in both games. Indeed, in the stable case, the dynamics always 

converge to the LE and this is why the red “Stable” curve thus also gives the proportion of  in 

the LE as a function of the precision parameter 

D

# . 

However, the behavior in  is quite different for values of URPSD #  above the critical 

value of 0.17. The LE is now unstable and from almost all initial conditions play converges to a 

cycle. But given the presence of noise this cycle can be quite different from the Shapley triangle 

illustrated in Figure 1 (basically, the noise ensures that every strategy is played with positive 

probability). Only as #  increases does the proportion of  approach zero.  This leads to very 

different comparative static outcomes. An increase in 

D

#  for game   leads to an increase 

in the frequency of . However, for 

SRPSD

D #  greater than 0.17, an increase in either #  or in payoffs 

should lead to a decrease in the frequency of . Remember that the prediction of QRE/LE is D
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that an increase in payoffs or #  should lead to an increase in the weight on  in both games. D
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Figure 2: Frequencies of the 4th strategy D against ! the precision parameter. The smooth 

lines are generated by continuous time learning processes, the jagged lines by simulations 

of the experimental environment. Stable/Dashed refers to the RPSDS game, Unstable/Solid 

to the RPSDU game. The smooth Stable line also gives the frequency of the 4th strategy in 

the logit equilibrium as a function of ! for both games. 

 
There are several qualifications in applying these theoretical results to an experimental 

setting. In effect, the theoretical framework assumes an infinite population of agents all who 

share the same beliefs and investigates asymptotic behavior, taking the further limit of the 

recency parameter ,  to one.  In the experiments we must work with a finite population and a 

finite horizon. We, therefore, also report simulations of populations of twelve agents who play 

80 repetitions (both values chosen to be the same as the experiments we run). Each simulated 

agent learns according to weighted SFP (that is, EWA with  1/! ,+   and 1!* ). We set the 

recency parameter  8.0!! ,+  and then vary the precision parameter # . We ran one simulation 
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for each value of #  in the sequence 0, 0.0025, 0.005, ..., 0.5 for each of the two games    

and  . Initial conditions in each simulation were set by taking the initial attractions to be 

drawn from a uniform distribution on [0, 150]. The resulting average levels of the frequency of 

 over the whole 80 periods and 12 simulated subjects are graphed as jagged lines in Figure 2.  

As learning outcomes over a finite horizon are stochastic, there is considerable variation from 

one simulation to the next even though the value of 

URPSD

SRPSD

D

#  changes slowly. What is encouraging, 

however, is that the simulations preserve the same qualitative outcomes as the asymptotic results 

generated by the theoretical models.5 The experiment employed four treatments in a  220   

design. First, the game was varied between   and .  Second, payoffs were in 

experimental francs and we varied the rate of exchange. In high payoff treatments the rate of 

exchange was 2.5 times higher than in low payoff treatments. Theoretically, as noted above, this 

is the same as an increase in 

URPSD SRPSD

# .  An empirical effect of this type is reported in Battalio et al. 

(2001), though the increase is less than one-for-one.  Given the theoretical arguments outlined 

above, reinforced by the simulations, we would expect the following outcomes. 

 

2.3 Testable Hypotheses 

1) Nash Equilibrium (NE): average play should be at the  NE    in all treatments. 6/)3,1,1,1(

2) Quantal Response/Logit Equilibrium (LE): play should be between NE and    

in both stable and unstable treatments, but play should be closer to Nash equilibrium, and 

the proportion of   higher, in high payoff treatments. 

4/)1,1,1,1(

D

3) TASP: 

a) play should be closer to the TASP in unstable treatments, but closer to LE in stable 

treatments 

b) play should be closer to the TASP in the high payoff unstable treatment (smaller 

proportion ) than in the low payoff unstable treatment, but play should be closer to 

Nash  equilibrium in the high payoff stable treatment  (higher proportion ) than in the 

low payoff stable treatment. 

D

D

c) Average play should converge in all treatments but in the unstable treatments beliefs 

                                                 
5 Clearly, however, they are not identical. Further simulations, not reported here, indicate that this difference 
cannot be ascribed to any one of the three factors (finite horizon, finite population, "<1) but rather arises from a 
combination of the three. 
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should continue to cycle.  

 

3. Experimental Design and Procedures 
The experiment featured a full factorial two-by-two design. One treatment variable was 

the game payoff matrix, either the unstable game RPSDU or the stable game RPSDS shown 

earlier. The other treatment variable was the payoff conversion rate of Experimental Francs (EF, 

the entries in the game matrix) to U.S. Dollars. In the High Payoffs treatment, 100 EF = $5. In 

the Low Payoffs treatment, 100 EF = $2. Subjects also received an extra, fixed “participation” 

payment of $10 in the Low Payoffs treatment to ensure that their total earnings comfortably 

exceeded their opportunity cost.  

Each period each player i entered her choice  = 1, 2, 3, or 4 (for Rock, Paper, Scissors, 

Dumb), and at the same time entered her beliefs about the opponent’s choice in the form of a 

probability vector (p

j
is

1, p2, p3, p4). When all players were done, the computer matched the players 

randomly into pairs and announced the payoffs in two parts. The game payoff was obtained 

from the matrix, and so ranged from 0 to 120 or 150 EF. The prediction payoff was 

 when the opponent’s actual choice was j, and so ranged from 0 to 10 EF.   
4

2

1

5 5 10i
i

p
!

' (% jp

                                                

The payoff scheme was chosen because belief data allow diagnostic tests of the 

competing models, and because belief elicitation itself can help focus players on belief learning 

(Ruström and Wilcox, 2006). The quadratic scoring rule was calibrated so that the prediction 

payments were an order of magnitude smaller than the game payoffs, reducing the incentive to 

hedge action choices by biasing reported beliefs.6

In each session, 12 subjects were randomly and anonymously re-matched over a 

computer network for a known number of 80 periods to play the same game, either RPSDU or 

RPSDS.7 After each period, subjects learned the action chosen by their opponent, their own 

 
6 This potential for biased beliefs does not appear to be empirically significant in practice, at least as measured for 
other games (Offerman et al., 1996; Sonnemans and Offerman, 2001). Taken by itself, the quadratic scoring rule is 
incentive compatible (Savage, 1971), and is commonly used in experiments with matrix games (e.g., Nyarko and 
Schotter, 2002).  
7 Some experiments studying learning and stability in games have used a longer 100 or 150 period horizon (e.g., 
Tang, 2001; Engle-Warnick and Hopkins, 2006). We used the shorter 80-period length because subjects needed to 
input beliefs and this lengthened the time to complete each period. Including instructions and payment time, each 
session lasted about two hours. One of the 12 sessions was unexpectedly shortened to 70 periods due to a move by 
nature: a tornado warning that required an evacuation of the experimental laboratory. 
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payoffs, as well as the frequency distribution of actions chosen by all 12 subjects in the session. 

At the conclusion of the session, 10 of the 80 periods were drawn randomly without replacement 

for actual cash payment using dice rolls (to control for wealth effects). 

We conducted three sessions in each of the four treatment conditions, for a total of 144 

subjects. Two sessions in each treatment were conducted at Purdue University, and one session 

in each treatment was conducted at UC-Santa Cruz. All subject interaction was computerized 

using z-Tree (Fischbacher, 2007). The experiment employed neutral terminology, such as “the 

person you are paired with” rather than “opponent” or “partner.” Action choices were labeled as 

A, B, C and D, and the instructions and decision screens never mentioned the words “game” or 

“play.” The instructions in Appendix B provide additional details of the framing, and also show 

the decision and reporting screens. 

 

4. Experiment Results 
We begin with a brief summary of the overall results before turning to more detailed 

analysis. Figures 3 and 4 show the cumulative proportion of action choices for two individual 

sessions out of the 12 conducted for this study. Figure 3 displays a session with the unstable 

matrix and high payoffs. Paper and Scissors are initially the most common actions. Scissors 

appears to rise following the early frequent play of Paper, followed by a rise in the frequency of 

Rock. This pattern is consistent with simple best response dynamics. Dumb is played less than a 

quarter of the time until the second half of the session and its rate tends to rise over time. Figure 

4 displays a session with the stable matrix and high payoffs. The Paper, Scissors and Rock rates 

again fluctuate, in the direction expected by best response behavior. For the stable matrix, Dumb 

starts at a higher rate and rises closer to the Nash equilibrium prediction of 0.5 by the end of the 

session. 

Figure 5 and Table 1 provide a pooled summary for all 12 sessions. The figure displays 

the cumulative frequency that subjects play the distinguishing Dumb action in each of the four 

treatments. This rate tends to rise over time, but is always lowest in the unstable, high payoffs 

condition as predicted by the TASP model. Table 1 shows that Dumb is played about 26 percent 

of the time overall in this treatment, compared to about 40 percent in the stable matrix 

treatments. 
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Figure 3: Example Unstable Session-Cumulative Proportion Choosing Each Action (Session 5: High 
Payoffs, Unstable Matrix)
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Figure 4: Example Unstable Session-Cumulative Proportion Choosing Each Action (Session 11: High 
Payoffs, Stable Matrix)
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Figure 5: Cumulative Proportion Choosing Action Dumb, Over Time for All Treatments , All 12 Sessions
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Table 1: Theoretical Predictions and Observed Frequencies of Each Action for Each 

Treatment Condition 

 
      Frequencies 
Theory Rock Paper Scissors Dumb 
    - Nash 0.167 0.167 0.167 0.5 
    - QRE [0.25, 0.167] [0.25, 0.167] [0.25, 0.167] [0.25, 0.5] 
    - TASP 0.333 0.333 0.333 0 
Results     
  Unstable, High payoffs 0.226 0.231 0.280 0.263 
  Unstable, Low payoffs 0.221 0.203 0.207 0.368 
  Stable, High payoffs 0.176 0.233 0.212 0.378 
  Stable, Low payoffs 0.172 0.204 0.204 0.420 
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4.1 Tests of the Principal Hypotheses 

Figure 5 indicates an upward time trend in all treatments for the rate that subjects choose 

the critical action Dumb. The Dumb action is played more frequently over time even in the 

unstable game RPSDU. Although the research questions of this study principally concern 

learning and game play over a very long horizon, for practical reasons the experiment sessions 

included only 80 periods of play. Nevertheless, we can draw some statistical inferences about 

long-run, asymptotic play using this 80-period time series.  

We focus on the following reduced form model of subjects’ choice of the critical 

strategy Dumb, 
3

*
1 2

1

(1/ ) (( 1) / ) ,it j j i it
j

y D t t t u1 1
!

! ( ' (% v(

                                                

       

*1 if 0 and 0 otherwise.it ity y! 2  

The t, i and j subscripts index the period, subject and session, and the Dj are dummy variables 

that have the value of 1 for the indicated session within each treatment. We assume logistically-

distributed errors ui +vit, including a random effect error component for subject i (ui), so this can 

be estimated using a random effects logit model. [This panel data approach accounts for the 

repeated choices made by the same individual subjects and the resulting non-independence of 

actions within subjects and within sessions.] Note that the time index t=1 in the first period, so 

that (t-1)/t is zero. Thus the 11j coefficient provides an estimate of the probability for choosing 

Dumb at the start of session j. As t#$ the 1/t terms approach 0 while the (t-1)/t term 

approaches one, so the 12 coefficient provides an estimate of the asymptotic probability of 

choosing Dumb in the treatment. All three models discussed in Section 2 (Nash, QRE, TASP) 

predict stable long-run rates of Dumb play, although play of the other actions continues to cycle 

in TASP. A similar reduced form empirical specification has been employed to model 

convergence behavior in dozens of experimental studies since Noussair et al. (1995).8  

The Dumb strategy is played half the time in the Nash equilibrium, which implies the 

null hypothesis of 12=0 since the logit model probability F(x)=exp(x)/[1+exp(x)] is 0.5 at x=0. 

Table 2 presents the estimation results for the asymptote 12 coefficients. Only the low payoffs, 
 

8 Qualitatively identical conclusions result from an alternative specification that does not use the 1/t and ((t-1)/t) 
terms to model early and late period play, but instead simply uses treatment dummy variables and time trends in 
random effect logit models to compare the likelihood of the Dumb action across treatments. We also draw the same 
conclusions under the assumption of normally-distributed errors, estimating this equation using a probit model. 
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stable game asymptotic estimate is not significantly different from 0. This indicates that the 

Dumb strategy is converging toward the Nash equilibrium rate of 0.5 only for the low payoffs, 

stable game treatment. The data thus reject the Nash equilibrium Hypothesis 1 for three out of 

the four treatments. The data also reject the Quantal Response/Logit Equilibrium Hypothesis 2, 

since according to this hypothesis play should be closer to Nash in the high payoff treatments. 

This implies coefficient estimates closer to 0 for high payoffs compared to low payoffs, but 

columns (1) and (2) display the opposite pattern. Moreover, column (5) shows that the 

differences are statistically significant, in a direction contrary to Hypothesis 2, for the pooled 

data and for the unstable game. That is, play is further away from Nash in the high payoff 

treatments. 

The coefficient estimates are consistent only with the TASP Hypothesis 3. The estimated 

asymptotic rate that subjects pay Dumb is further from the Nash equilibrium and closer to the 

TASP prediction for the unstable treatments and for high payoffs. The 1 = -1.282 estimate for 

the unstable, high payoff treatment implies a point estimate of a 22 percent rate for the Dumb 

strategy. While this rate is below the Nash equilibrium, it is also well above the rate of 0 

predicted by TASP. Thus, data are consistent with only the comparative statics predictions of 

TASP, and not its quantitative implications. 

Average payoffs in the Nash equilibrium are 45, while average payoffs are 90 over the 

entire Shapley cycle. Thus average payoffs provide another measure to distinguish TASP and 

Nash. The average payoffs per player mirror the pattern of the Dumb strategy frequency, both in 

the trend towards Nash over time and in the ranking across treatments. The following cross-

sectional regression of each subject’s average earnings per period indicates that the marginal 

impact of switching from the unstable to the stable game is about a 10 percent decrease in 

payoffs. It also shows that Experimental Franc payoffs are about 10 percent higher in the high 

conversion rate treatment compared to the low conversion rate treatment. Both effects are 

significant at the 5 percent level.9  

 

Ave (EF) Payoff = 54.5 – 5.41(RPSDS dummy) + 4.94(High Payoff dummy) N=144 
(std. errors)         (1.8)   (2.20)         (2.20)    R2=0.17 

 
9 This regression accounts for across-subject correlation of payoffs within sessions by adjusting standard errors to 
account for session clustering. The average payoffs do not include earnings from belief accuracy. 
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Table 2: Random Effects Logit Model of Dumb Action Choice 
 
Dependent Variable = 1 if Dumb Chosen; 0 otherwise 
 
Estimation 
Dataset 

High Payoff× 
(t-1)/t 

(1) 

Low Payoff× 
(t-1)/t 

(2) 

Unstable× 
(t-1)/t 

(3) 

Stable× 
(t-1)/t 

(4) 

Probability 
(coefficients equal)a 

(5) 

 
Obser-
vations 

 
 
Subjects 

 
 
Log-L 

All Sessions -0.909** 
(0.210) 

-0.408* 
(0.209) 

  0.046 11400 144 -5470.6

All Sessions   -0.946** 
(0.209) 

-0.370†

(0.208) 0.026 11400 144 -5470.1

Unstable 
Only 

-1.282** 
(0..291) 

-0.611* 
(0.289) 

  0.050 5640 72 -2596.5

Stable  
Only 

-0.537†

(0.295) 
-0.205 
(0.294) 

  0.213 5760 72 -2872.0

High Payoffs 
Only 

  -1.283** 
(0.292) 

-0.537†

(0.290) 0.035 5640 72 -2543.5

Low Payoffs 
Only 

  -0.612* 
(0.294) 

-0.205 
(0.293) 0.165 5760 72 -2925.0

Note: Session×(1/t) dummies included in each regression are not shown. Standard errors in parentheses. † indicates coefficient 
significantly different from 0 at the 10-percent level; * indicates coefficient significantly different from 0 at the 5-percent level; ** 
indicates coefficient significantly different from 0 at the 1-percent level (two-tailed tests). aOne-tailed likelihood ratio tests, as implied 
by the TASP research hypotheses. 
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4.2 Learning and Stochastic Best Responses 

Average play moves closer to the Nash equilibrium frequencies over time. This is not 

anticipated by learning theory for the unstable game, particularly for the high payoff treatment. 

In order to help understand the possible learning process employed by the subjects, we 

empirically estimate the EWA learning model that was presented in Section 2. 

In our application, the realized (or forgone) profit )i(t-1) is calculated based on the 

observed action chosen by the paired player in the previous period. Our implementation of the 

model incorporates stochastic best responses through a logit choice rule, the same as typically 

used in QRE applications. For our application with 80 periods, 36 subjects per treatment and 4 

possible actions, the log-likelihood function is given by 

 , 

where I is an indicator function for the subjects’ choice and  is player i’s probability of 

choosing action j. 

Table 3 reports the maximum likelihood estimates for this model.10 The estimated decay 

parameter + always exceeds the decay parameter ,, and in all four treatments a likelihood ratio 

test rejects the null hypothesis that they are equal. Nevertheless, we also report estimates for a 

restricted model on the right side of that table which imposes restrictions of + ,!

                                                

 and * = 1 to 

implement the special case of weighted stochastic fictitious play.11 The large increase in the 

estimated log-likelihood, however, indicates that the data strongly reject those restrictions. 

A drawback of the estimation results shown on the left side of Table 3 is that they pool 

across subjects whose learning could be heterogeneous. Wilcox (2006) shows that this 

heterogeneity can potentially introduce significant bias in parameter estimates for highly 

nonlinear learning models such as EWA. He recommends random parameter estimators to 

address this problem, and with his generous assistance we are able to report such estimates in 

the center of Table 3. The assumed distributions are lognormal for # and a transformed normal  

 
10 We impose the initial conditions A(0)=1 and N(0)=0 for all four strategies, but the results are robust to alternative 
initial attraction and experience weights. 
11 The restriction of * = 1 implies that a subject’s unchosen actions receive the same weight as chosen actions in her 
belief updating, which is the assumption made in fictitious play learning. 
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Table 3: Experience-Weighted Attraction and Stochastic Fictitious Play Learning Model Estimates  
 

EWA    EWA   Weighted Stochastic Fictitious Play 

  random parameter estimates  +!,, *=1 
  

Unstable, 
Low 

Payoffs 

Unstable, 
High 

Payoffs 

Stable, 
Low 

Payoffs 

Stable, 
High 

Payoffs
  

Unstable, 
Low 

Payoffs 

Unstable, 
High 

Payoffs 

Stable, 
Low 

Payoffs 

Stable, 
High 

Payoffs  

Unstable, 
Low 

Payoffs 

Unstable, 
High 

Payoffs 

Stable, 
Low 

Payoffs

Stable, 
High 

Payoffs

Decay Parameters                           
+9 0.889 0.882 0.910 0.934  E(+) 0.878 0.873 0.834 0.879 +9 0.997 0.828 1.000 1.000 
 (0.029) (0.024) (0.012) (0.009) CV(+) 0.193  0.171  0.152  0.175  (0.024) (0.111)   
           median + 0.950  0.932  0.869  0.940           
! 0.568 0.488 0.634 0.529  E(!) 0.871 0.870 0.702 0.870 !         
 (0.171) (0.155) (0.075) (0.205) CV(!) 0.192 0.171 0.152 0.175      
           median , 0.942 0.927 0.731 0.930           

Imagination Factor                            
" 0.000 0.000 0.000 0.000 " 0.072 0.114 0.000 0.003 " 1.000 1.000 1.000 1.000 
  (Likelihood maximized at 0 bound)    (0.060) (0.075) (0.000) (0.052)   (Constrained at 1)     

Payoff sensitivity                            
# 0.014 0.011 0.015 0.010 E(#: 0.067 0.055 0.024 0.067 # 0.030 0.012 0.016 0.019 
 (0.004) (0.003) (0.003) (0.004) CV(#) 0.442  0.366  0.763  0.352  (0.006) (0.005) (0.003) (0.004)
           median # 0.061  0.052  0.019  0.063           

Log-
Like -3053.5 -3091.3 -3055.6 -3007.6    -2978.0 -3074.5 -3009.2 -2985.8   -3843.4 -3732.9 -3889.6 -3863.3

Notes: Standard errors in parentheses. CV denotes the estimated coefficient of variation for the parameter distribution: standard deviation/mean. 

 



 

(to range between 0 and 1) for + and ,. The table reports the mean, the coefficient of variation 

(standard deviation/mean) and the median to summarize the estimated distributions of these 

parameters. The point estimates for + are similar to the central tendency of the estimated 

distributions, but for , and # the point estimates are somewhat lower than the estimated 

distribution means. Although this is consistent with a statistical bias arising from imposing 

homogeneity, these random parameter estimates do not qualitatively change the puzzling finding 

that the imagination factor * is near zero. That is, subjects’ learning evolves as if they focus only 

on realized payoffs and actions, and not on unchosen actions, contrary to fictitious play learning. 

Note also that the payoff sensitivity/precision parameter estimates (#) are always quite 

low, and they never approach the critical level (0.17) identified in the continuous time and 

simulated learning models (Section 2).12 The estimates also do not increase systematically with 

the treatment change from low to high payoffs. This suggests that subjects were not very 

sensitive to payoff levels and were not more sensitive to payoffs that were 2.5 times higher in the 

high payoff treatment. In other words, although as predicted subjects played Dumb less 

frequently in the Unstable/High payoff treatment, the structural estimates of this learning model 

suggest that they did not respond as expected to this treatment manipulation. 

 

4.3 Beliefs and Best Responses 

Recall that average play is expected to converge in all treatments, but if the TASP is a 

reasonable approximation of final outcomes then in the unstable game treatment beliefs should 

continue to cycle. The difficulty in identifying a cycle is that its period depends on how quickly 

players discount previous beliefs and their level of payoff sensitivity. As documented in the 

previous subsection, these behavioral parameters are estimated rather imprecisely and the 

weighted stochastic fictitious play model is a poor approximation of subject learning for these 

games. Nevertheless, we can compare whether in later periods beliefs vary more in the unstable 

game than the stable game. 

Table 4 summarizes this comparison using the mean absolute value of subjects’ change in 

their reported belief from one period to the next, for each of the four actions. Although beliefs 

                                                 
12 In the random parameter estimates shown in the middle of Table 3, the 99th percentile of the estimated lognormal 
distribution of # is less than 0.17 in all treatment conditions. 
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change by a smaller amount in the later periods for all treatment conditions, this increase in 

belief stability is insignificant in the unstable, high payoff treatment. Beliefs change on average 

by 2 percent less in periods 41-80 compared to periods 1-40 in the Unstable/High treatment. By 

comparison, beliefs change on average by 24 percent less in periods 41-80 compared to periods 

1-40 in the other three treatments. This provides evidence that belief stability improves over time 

except for the Unstable/High payoff treatment. 

 

Table 4: Mean Absolute Change in Reported Beliefs 
 
     Unstable, Low Pay  Unstable, High Pay  Stable, Low Pay    Stable, High Pay
 Period

<41 
Period
>40 

Period 
<41 

Period 
>40 

Period
<41 

Period
>40 

Period 
<41 

Period 
>40 

Rock 0.147 0.107 0.117 0.128 0.111 0.087 0.133 0.091 
Paper 0.148 0.093 0.129 0.130 0.135 0.097 0.132 0.094 
Scissors 0.153 0.113 0.139 0.126 0.130 0.088 0.139 0.095 
Dumb 0.133 0.146 0.092 0.083 0.135 0.115 0.137 0.114 
 
Ave. % reduction 
In belief change       20.2%         2.2%   24.2%          27.2% 
periods 1-40 to  
periods 41-80 

 

Consider next the relationship between beliefs and best responses. As discussed in 

Appendix A (Proposition 2), the set of mixed strategies can be partitioned into a set E, for which 

the best response is Dumb, and everything else (denoted set F). In the unstable game the set E is 

a pyramid with the Shapley triangle as its base and the Nash equilibrium as its apex. Importantly, 

the point where all actions are chosen with equal probability is in this pyramid, and for many 

sessions average play begins (roughly) in this region. Therefore, we might expect the frequency 

of Dumb to increase initially. But at some point if beliefs move out of E into F then the 

frequency of Dumb might fall. 

Since subjects report their beliefs each period when choosing their action we have a 

direct measure of when beliefs are in each set. Figure 6 displays the fraction of reported beliefs 

in set E for each of the six sessions with the unstable game. Although some variation exists 

across sessions, in most periods between one-third and two-thirds of subjects report beliefs in E. 

No session shows a substantial downward trend in the fraction of beliefs in E. Subjects do not 
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always best respond to their reported beliefs, particularly when the payoff costs of deviating to 

another action are small. Nevertheless, we observe subjects in the unstable game choose Dumb 

893 out of the 1271 times their reported beliefs are in set E (41.3 percent), and they chose Dumb 

893 out of the 2583 times their reported beliefs are in set F (25.7 percent). 
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Figure 6: Fraction of Reported Beliefs in Dumb Best Response Region 
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The learning model estimates in Table 3 suggest that the belief decay parameter is close 

to one, particularly when imposing parameter restrictions consistent with weighted stochastic 

fictitious play (+=,, *=1). Alternative estimates of the best-fitting decay parameter based directly 

on reported beliefs (not shown) also indicate a best pooled estimate near one. We also calculated 

the best-fitting decay parameter for each individual’s reported beliefs based on the same 

procedure employed by Ehrblatt et al. (2007), which minimizes the squared prediction error 

between the reported belief and the belief implied by the subjects’ experience for each possible 

decay parameter. Constraining this parameter estimate to the interval [0, 1], the best fit is on the 
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boundary of 1 for 92 out of 144 subjects. Thus, a large fraction of our subjects appear to update 

beliefs in a manner consistent with classical fictitious play. 

Based on a maintained assumption of classical fictitious play updating, we can calculate 

how beliefs would evolve for each session as a function of the cumulative actions of all players. 

This indicates when aggregate action frequencies suggest beliefs would be in set E or set F. 

Aggregate beliefs are in set E whenever the expected payoff advantage to action Dumb 

(compared to the best alternative among Rock, Paper and Scissors) is positive. Figure 7 shows 

that this payoff advantage is negative (implying aggregate beliefs in set F) in the early periods 

for about half of the unstable game sessions, but after period 22 the aggregate beliefs based on 

classical fictitious play are in set E for all 6 sessions. Alternative calculations based on weighted 

fictitious play and a decay parameter of 0.8, not shown, paint a similar picture overall—except 

that beliefs move into set F for periods 61-80 of one session (session 8). 
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5. Discussion 
To summarize, the Nash hypothesis fared poorly in our data. The overall rate of playing 

Dumb ranged from 26 percent in the Unstable/High treatment to 42 percent in the Stable/Low 

treatment and only began to approach the NE value of one-half towards the end of some Stable 

sessions. The performance of the QRE (or LE) hypothesis also was unimpressive. Although the 

observed rates fell into the (rather broad) LE range, the data contradict the main comparative 

statics prediction:  High payoffs led to lower rates of Dumb play, not the predicted higher rates. 

The TASP hypothesis had a mixed performance. As predicted, subjects played Dumb 

least often in the Unstable/High treatment, and most often in the Stable treatments. On the other 

hand, the proportion of Dumb play showed no consistent tendency to decline over time, much 

less to zero, in either Unstable treatment. 

  Some clues can be found in the more detailed examination of the theory and the data. 

According to theory, learning dynamics in the Unstable treatments should increase the 

prevalence of Dumb when players’ beliefs lie in a tetrahedral subset of the simplex labeled E, 

and decrease Dumb only when they lie its complement F. The data show that subjects indeed are 

more likely to play Dumb when they report beliefs in E than in F. However, reported beliefs 

show little tendency to move (as predicted) into F. Perhaps the reason is that actual play offers 

little reason for beliefs to move in that direction. In several of the six Unstable sessions, average 

actual play (the belief proxy in the classic model of learning dynamics, fictitious play) lies in F in 

the first 20 periods, but it always moves back into E for the remainder of the 80 periods. In one 

session, with Low payoffs, it gets very close to the boundary of E in the last 20 periods, but in 

the other sessions Dumb retains a 2 to 8 point advantage in expected payoff.  

Another piece of evidence concerns the payoff sensitivity parameter #. In theory, there is 

a critical value, ! % 0.17, below which the TASP prediction fails. That is, for sufficiently low 

values of #, behavior should be similar in Stable treatments as in Unstable treatments: the rate of 

Dumb play should remain in the 25-40 percent range and be higher in the High payoff 

treatments.  

We estimate the EWA model using aggregate data, and obtain #9estimates far below the 

critical value. This can account for the overall rates of Dumb play. To account for the lower rates 

of Dumb play in the High payoff treatments, we can point to the tendency of the Unstable 

simulations in Figure 2 to have a lower proportion of Dumb than the theoretical predictions, even 
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when values of #9are relatively low. However, it is also true that the proportion of Dumb play in 

the Stable treatments is higher, and play is closer to Nash equilibrium, than suggested by the 

estimated level of #.  

These accounts, of course, raise further questions.   In particular, why do players seem to 

use such small values of #, i.e., respond so weakly to estimated payoff advantages? This weak 

response to payoffs would appear to be the best explanation for the difference between our 

experimental results and the point predictions of both equilibrium and learning theory.   

One can think of two leading potential explanations for this weak responsiveness. 

Choosing between them may be the key both to understanding our current results and giving 

directions for further research. First, payoff differences may have been simply not prominent 

enough to subjects. In which case, in future experiments, one could improve the feedback or the 

information provided, perhaps even showing the payoff advantages implied by forecasts and by 

average play.  Second, in contrast, the apparent irresponsiveness of subjects to payoffs in fact 

indicates that actual subject behavior is only partially captured by the EWA model, even though 

this model encompasses many forms of learning.   Human learning behavior in the complex 

environment of the current experiments is too sophisticated and too heterogeneous to be captured 

by current theory, except in terms of the basic comparative statics results that were confirmed 

here.  In this case, the challenge is not to change the experimental design but to provide new and 

more refined theories of non-equilibrium behavior.  
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Appendix A (Stability Properties of RPSD Games) 
In this appendix, we state and prove some results on the behavior of the best response (BR) and 

perturbed best response (PBR) dynamics in the two games  and  . There is 

already an extensive theoretical literature that shows how the PBR and BR dynamics can be used 

to predict the behavior of learning under stochastic fictitious play and fictitious play respectively. 

Specifically, Benaïm and Hirsch (1999), Hopkins (1999b, 2002), Hofbauer and Sandholm (2002) 

look at the relation between the PBR dynamics and SFP, while Benaïm, Hofbauer and Sorin 

(2005) show the relationship between the BR dynamics and classical fictitious play. Finally, 

Benaïm, Hofbauer and Hopkins (2009) look at the relation between the BR dynamics and 

weighted fictitious play. 

URPSD SRPSD

We have seen the perturbed best response dynamics (PBR). The continuous time best 

response (BR) dynamics are given by  

xxbx '; ))(()!            (BR) 

where  is the best response correspondence. )(-b

When one considers stability of mixed equilibria under learning in a single, symmetric 

population, there is a simple criterion. Some games are positive definite and some are negative 

definite. Mixed equilibria in positive definite games are unstable, mixed equilibria in negative 

definite games are stable. 

The game    is not positive definite. However, the RPS game that constitutes its 

first three strategies is positive definite. We use this to show that the mixed equilibrium of  

  is a saddlepoint and hence unstable with respect to the BR and PBR dynamics. 

URPSD

URPSD

 

Proposition 1 In , the perturbed equilibrium (LE)    is unstable under the logit form of 

the perturbed best response dynamics for all   . 

URPSD p̂

17.0<2 "##

 

Proof: This follows from results of Hopkins (1999b). The linearization of the logit PBR 

dynamics at    will be of the form  x̂ IBpR ')ˆ(#   where  R  is the replicator operator and B  is 

the payoff matrix of .  Its eigenvalues will therefore be of the form  URPSD 1'ik#   where the  

are the eigenvalues of .   is a saddlepoint with stable manifold  

ik

BpR )ˆ( BpR )ˆ( 321 xxx !! .  But 
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for #  sufficiently small, all eigenvalues of  IBpR ')ˆ(#   will be negative. We find the critical 

value of 0.17 by numerical analysis. &  

 

Further, under the BR dynamics we have converge to a cycle which places no weight on the 

fourth strategy . D

 

Proposition 2 The Nash equilibrium  of the game  is unstable under the 

best response (BR) dynamics. Further, there is an attracting limit cycle, the Shapley triangle, 

with vertices, , 

6/)3,1,1,1(!"p URPSD

)0,231.0,077.0,692.0(1 !A )0,077.0,692.0,231.0(2 !A  and 

,  and  time average, the TASP, of  )0,692.0,231.0,077.0(3 !A 3/)0,1,1,1(~ !x . 

 

Proof: We can partition the simplex into two sets.  One  E   is where the best response is the 

fourth strategy , and  where the best response is one or more of the first three strategies. The 

set  

D F

E   is a pyramid with base the Shapley triangle on the face  04 !x   and apex at the mixed 

strategy equilibrium . In "p E , as D is the best response, under the BR dynamics we have  

  and    for 01 4
4 2'! xx! 0/ix! 3,2,1!i .  If the initial conditions satisfy 

, then the dynamics converge to . Otherwise, the orbit exits3/)1( 4321 xxxx '!!! "p E  and 

enters .  In , the best response    to  F F b x   is almost everywhere one of the first three 

strategies.  So we have .  Further, consider the Liapunov function . We have  04 /x! AxbxV -!)(

.AxbAbbV -'-!!  

As the best response b  is one of the first three strategies, we have  90!- Abb   and when  x   is 

close to , clearly    is close to the equilibrium payoff of 45.  So, we have    

and    for

"p Axb - 45)( !"pV

02V! x  in and in the neighborhood of .  Thus, orbits starting in close to  in 

fact flow toward the set  , which is contained in the face of the simplex where 

F "p F "p

90!- Axb 04 !x .  

The dynamics on this face are the same as for the RPS game involving the first three strategies.  

One can then apply the results in Benaïm, Hofbauer and Hopkins (2009) to show that the 

Shapley triangle attracts the whole of this face. So, as the dynamic approaches the face, it must 

approach the Shapley triangle. Then, the time average can be calculated directly. & 
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The game  is negative definite and hence its mixed equilibrium is a global attractor under 

both the BR and PBR dynamics. This implies it is also an attractor for (stochastic) fictitious play. 

SRPSD

 

Proposition 3 The Nash equilibrium    of the game   is globally 

asymptotically stable under the best response dynamics. The corresponding perturbed 

equilibrium (QRE) is globally asymptotically stable under the perturbed best response dynamics 

for all 

6/)3,1,1,1(!"p SRPSD

0&# . 

 

Proof: It is possible to verify that in the game  is negative definite with respect to the set 

. The result then follows from Hofbauer (1995) and Hofbauer and 

Sandholm (2002). & 

SRPSD

}0:{0 !%;! i
nn xRxR

 

What do these results imply for stochastic fictitious play? Suppose we have a large population of 

players who are repeatedly randomly matched to play either   or . All players use 

the choice rule (logit) and updating rule (attract).  Assume further that at all times all players 

have the same information and, therefore, the same attractions. Remember that for SFP we 

assume that  

URPSD SRPSD

+, !  and that 1!* . 

 

Proposition 4 (a) : for , the population SFP process diverges from the 

perturbed Nash equilibrium (the logit equilibrium). If  

URPSD 17.0<2 "##

1/! +,  , taking the joint limit 1=, ,  

>=#   and , the time average of play approaches the TASP  >=t 3/)0,1,1,1(~ !p  .  

(b) : the population SFP process will approach the perturbed equilibrium and taking the 

joint limit, we have 

SRPSD

 

ptx
t

ˆ)(limlim
1

!
>==,

 

 

players' mixed strategies will approach the logit equilibrium. 

 

Proof: These results follow from our earlier results on the behavior of the BR and PBR 
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dynamics and the application of stochastic approximation theory.  See Benaïm and Hirsch 

(1999), Hopkins (1999b, 2002), Hofbauer and Sandholm (2002) and Benaïm, Hofbauer and 

Hopkins (2009). & 

 
Appendix B (Experiment Instructions) 
 This is an experiment in the economics of strategic decision making. Various agencies 

have provided funds for this research. If you follow the instructions and make appropriate 

decisions, you can earn an appreciable amount of money. The currency used in the experiment is 

francs. Your francs will be converted to dollars at a rate of _____ dollars equals 100 francs. At 

the end of today’s session, you will be paid in private and in cash for ten randomly-selected 

periods. 

 It is important that you remain silent and do not look at other people’s work. If you have 

any questions, or need assistance of any kind, please raise your hand and an experimenter will 

come to you. If you talk, laugh, exclaim out loud, etc., you will be asked to leave and you will 

not be paid. We expect and appreciate your cooperation. 

 The experiment consists of 80 separate decision making periods. At the beginning of each 

decision making period you will be randomly re-paired with another participant. Hence, at the 

beginning of each decision making period, you will have a one in  11  chance of being 

matched with any one of the  12  other participants. 

 Each period, you and all other participants will choose an action, either A, B, C or D. An 

earnings table is provided on the decision screen that tells you the earnings you receive given the 

action you and your currently paired participant chose. See the decision screens on the next page. 

To make your decision you will use your mouse to click on the A, B, C or D buttons under Your 

Choice: and then click on the OK button. 

 Your earnings from the action choices each period are found in the box determined by 

your action and the action of the participant that you are paired with for the current decision 

making period. The values in the box determined by the intersection of the row and column 

chosen are the amounts of money (in experimental francs) that you and the other participant earn 
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in the current period. These amounts will be converted to cash and paid at the end of the 

experiment if the current period is one of the ten periods that is randomly chosen for payment. 

 
Decision Screen 
 

To take a random example, if you choose C and the other participant chooses D, then  as 

you can see in the square determined by the intersection of the third row (labeled C) and the 

fourth column (labeled D), you earn 20 francs and the other participant earns 90 francs. The 16 

different boxes indicate the amounts earned for every different possible combination of A, B, C 

and D. 
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Predictions 

When you make your action choice each period you will also enter your prediction about 

how likely the person you are paired with makes each of his or her action choices. In addition to 

your earnings from your action choices we will pay you an extra amount depending upon how 

good your prediction is. 

To make this prediction you need to fill in the boxes to the right of Your Prediction: on 

the Decision Screen, indicating what the chances are that the participant you are paired with will 

make these choices. For example, suppose you think there is a 30% chance that this other person 

will choose C, and a 70% chance that he or she will choose D. This indicates that you believe 

that D is more than twice as likely as C, and that you do not believe that either A or B will be 

chosen. [The probability percentages must be whole numbers (no decimals) and sum to 100% or 

the computer won’t accept them.] 

At the end of the period, we will look at the choice actually made by the person you are 

paired with and compare his or her choice to your prediction. We will then pay you for your 

prediction as follows: 

Suppose you predict that the person you are paired with will choose D with a 70% chance 

and C with a 30% chance (as in the example above), with 0% chances placed on A and B. 

Suppose further that this person actually chooses D. In that case your earnings from your 

prediction are 

Prediction Payoff (D choice) = 5 – 5(0.72 + 0.32 + 02 + 02) + 10(0.70) = 9.1 francs. 

In other words, we will give you a fixed amount of 5 francs from which we will subtract 

and add different amounts. We subtract 5 times the sum of the squared probabilities you 

indicated for the four choices. Then we add 10 times the probability that you indicated for the 

choice of the person you are paired with actually made (0.7 probability in this example).  

For these same example predictions, if the person you are paired with actually chooses A 

(which you predicted would happen with 0% probability), your prediction earnings are 

Prediction Payoff (A choice) = 5 – 5(0.72 + 0.32 + 02 + 02) + 10(0) = 2.1 francs. 

Your prediction payoff is higher (9.1) in the first part of this example than in the second part of 

this example (2.1) because your prediction was more accurate in the first part. 
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Note that the lowest payoff occurs under this payoff procedure when you state that you 

believe that there is a 100% chance that a particular action is going to be taken when it turns out 

that another choice is made. In this case your prediction payoff would be 0, so you can never lose 

earnings from inaccurate predictions. The highest payoff occurs when you predict correctly and 

assign 100% to the choice that turns out to the actual choice made by the person you are paired 

with; in this case your prediction payoff would be 10 francs. 

Note that since your prediction is made before you know which action is chosen 

by the person you are paired with, you maximize the expected size of your 

prediction payoff by simply stating your true beliefs about what you think this 

other person will do. Any other prediction will decrease the amount you can 

expect to earn from your prediction payoff. 

 
The End of the Period 
 
 When all participants have made choices for the current period you will be automatically 

switched to the outcome screen, as shown on the next page. This screen displays your choice as 

well as the choice of the person you are paired with for the current decision making period. The 

chosen box is highlighted with a large X. It also shows your earnings for this period for your 

action choice (ABCD decision) and prediction, and your total earnings for the period. The 

outcome screen also displays the number of A, B, C and D choices made by all participants 

during the current period. 

Once the outcome screen is displayed you should record your choice and the choice of the 

participant you were paired with on your Personal Record Sheet. Also record your earnings. 

Then click on the continue button on the lower right of your screen. Remember, at the start of the 

next period you are randomly re-paired with the other participants, and you are randomly re-

paired each and every period of the experiment. 

The End of the Experiment 
 

At the end of the experiment we will randomly choose 10 of the 80 periods for actual 

payment using dice rolls (two ten-sided die, one with the tens digit and one with the ones digit). 

You will sum the total earnings for these 10 periods and convert them to a U.S. dollar payment, 

as shown on the last page of your record sheet. 
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 We will now pass out a questionnaire to make sure that all participants understand how to 

read the earnings table and understand other important features of the instructions. Please fill it 

out now. Raise your hand when you are finished and we will collect it. If there are any mistakes 

on any questionnaire, I will go over the relevant part of the instructions again. Do not put your 

name on the questionnaire. 

 

 

Example Outcome Screen 
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