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Abstract This paper shows how larger group size can enhance punishing
behavior in social dilemmas and hence support higher levels of cooperation.

We focus on describing con�ict technology using Lanchester�s equations and

study the role of �collectivity�of punishment to support cooperation in large

groups. The main results suggest that as long as defectors are, even slightly,

less �collective�than punishers, Lanchester�s law can be applied to show that

a smaller proportion of punishers can successfully eliminate defectors as the

size of the population increases.
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1 Introduction

Provisions of public goods in a community, revolutionary activities to over-

throw corrupt and ine¢ cient governments, and more generally various actions

that members of a group take to achieve a common goal have all been exam-

ined extensively by social scientists under the name of collective action. Group

size has played an important role in explaining collective action. A standard

argument put forward by Olson (1965) asserts that a larger group faces more

di¢ culties in achieving a common goal compared to a smaller group, because

of an aggravated free-rider problem: �unless the number of individuals in a

group is quite small ... rational, self-interested individuals will not act to

achieve their common or group interests�(Olson, 1965, p.2).

Since then, studies of the relationship between group size and the provision

of collective goods have been conducted by various researchers (Chamberlin,

1974; Marwell and Pamela, 1993; McGuire, 1974; Oliver and Marwell, 1988;

Sandler, 1992; Agrawal and Goyal, 2001; Esteban and Ray, 1999). Chamberlin

(1974) emphasizes the distinction between goods with perfect non-rivalness

and goods with rivalness of consumption among nonexcludable goods. With

this distinction he argues that Olson�s claim that larger groups would provide

fewer public goods only holds for goods with perfect rivalness. In the case of

goods with non-rivalness, Chamberlin shows that as group size increases, the

amount of total contribution, in absolute terms, would increase. This view

� that the Olson thesis holds when the collective good is private but may

be reversed when the good is purely public � was initiated by Chamberlin

and substantiated by others (Chamberlin, 1974; Marwell and Pamela, 1993;

McGuire, 1974; Oliver and Marwell, 1988; Sandler, 1992); it is called �common
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wisdom�by Esteban and Ray (2001)

Esteban and Ray (2001) examine the group size e¤ect using a model with

intergroup con�icts. In particular, they show that under plausible assumptions

about costs, the winning probabilities of a larger group is greater than that

of a smaller group even if the prize is purely private. However, the context in

which they examine collective action � competition between several groups �

may be more relevant in some instances, but it is neither a general situation

nor the situation that Olson considers.

A variety of empirical or experimental studies have also examined the group

size hypothesis (Isaac andWalker, 1988; Bagnoli and McKee, 1991; Isaac et al.,

1994; Hann and Koorema, 2002; Carpenter, 2007) and many of them �nd that

�the size of a group is positively related to its level of collective action�(Marwell

and Pamela, 1993, p.38). Hann and Koorema (2002) use data from a candy bar

honor system in 166 �rms in the Netherlands and �nd evidence that free riding

decreases with group size. Carpenter (2007) tests the group size hypothesis

when punishment is allowed and �nds that �large groups contribute at rates

no lower than small groups because punishment does not fall appreciably in

large groups�(Carpenter, 2007, p.31). In sum, even though various empirical

and experimental studies suggest that large groups may perform better, few

theoretical works provide the logic and reasoning of how larger groups can

overcome an aggravated free-rider problem.

We examine critically the traditional understanding of the role of group

size in collective action, when members of the population punish defectors in

a public goods game. Particularly, we focus on describing con�ict technology

using Lanchester�s equations and study the role of �collectivity�of punishment

to support cooperation in large groups. Boehm (1982) introduces and empha-
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sizes the functioning of collective punishment or sanctioning in maintaining

social norms:

... group sanction emerged as the most powerful instrument for reg-

ulation of individually assertive behaviors, particularly those which

very obviously disrupted cooperation or disturbed social equilib-

rium needed for group stability. (Boehm, 1982, p.146)

The idea of using Lanchester�s equations in explaining collective action is

not new; biologists have been applying Lanchester�s law to collective action

among animals. For example, Franks and Partridge (1993) use Lanchester�s

square law to explain why predatory army ants rely on large numbers of work-

ers that are smaller than their prey. In the context of human collective action

problems, Bingham (1999, 2000) invokes Lanchester�s square law to claim that

the cost of punishment decreases exponentially as the number of punishers be-

comes larger. He argues that the remote killing ability of humans and their

precursors � the special capacity of the human species to kill at a distance

from its target � enables a large number of punishers to attack a single cheater

simultaneously, and hence Lanchester�s square law applies.

We observe that Bingham�s point is valid only in the situation where a large

number of punishers face a single cheater. Because the number of punishers

is not always large even in a large group, it is not clear whether the same

argument can carry over to the collective action problem in large groups. In

addition, there is no reason to expect that only punishers can concentrate on

attacking, when punishers and defectors engage in con�ict. Thus the remote

killing competence may be a necessary, but not su¢ cient, condition for the

large group e¤ect.
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In this paper we adopt the collective punishment hypothesis and develop a

simple model of a public goods game with punishment. We combine the stan-

dard evolutionary model of three behavioral types � cooperator, punisher, and

defector � with the Lanchester-type con�ict between punishers and defectors

(Bowles and Choi, 2002; Bowles and Gintis, 2004; Bingham, 1999, 2000; Pan-

chanathan and Boyd, 2004; Sethi and Somanathan, 2006). We introduce a

parameter to capture the degree of �collectivity� among punishers who en-

gage the defectors, and study the conditions for the group size e¤ect. We �nd

that group size has a positive e¤ect in supporting higher levels of cooperation.

More surprisingly, we show that as long as the defector type is even slightly

less collective than the punisher type, the large group e¤ect prevails. Thus,

we may conclude that the large group e¤ect is quite robust, considering that

the defector type, because of its behavioral disposition, would be reluctant to

participate in any type of collective action. The organization of the paper is as

follows. Section 2 reminds readers of Lanchester�s equations and Lanchester�s

square law. We present the model in section 3 and discuss implications and

extensions of the model in section 4.

2 Lanchester�s Law and an Illustrating

Example

Suppose that x combatants of army A engage y combatants of army B.

The time evolutions of x; y are given by Lanchester�s equations (Lanchester,

1916, p.20):
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dx

dt
= ��y; dy

dt
= ��x (1)

where � and � denote the �ghting e¤ectiveness of each army. Equation (1)

is derived from the assumption that the number of persons knocked out per

unit time is directly proportional to the numerical size of the opposing force;

during each unit of time, �t, the opposing force of magnitude y concentrates

on the elimination of �x; so �x = y�t. Engel (1954) and Samz (1972) verify

the validity of Lanchester�s equation in an actual combat situation where U.S.

forces captured the island of Iwo Jima during World War II. The solution of

di¤erential equations (1) is well-described by a function, H(x; y):

H(x; y) =
�

2
x2 � �

2
y2; (2)

in the following sense. When we evaluate H(x; y) at the solutions of (1),

its value only depends on the initial values; i.e. H(x(t); y(t)) = �
2
(x(t))2 �

�
2
(y(t))2 = �

2
x20 � �

2
y20 for all t > 0: Using this relation we can construct time

paths of all solutions starting from various initial values (see �gure 1).

We suppose that one army wins a battle if the other army vanishes �rst;

i.e. army A wins the battle at time T; if �(x(T ))2 > �(y(T ))2; or equivalently

�x20 > �y20 where x0 and y0 are initial values for x and y: So, the result of

battles depends on the squares of the initial numbers of armies, which is called

Lanchester�s square law. Similarly, if army B divides evenly and, accordingly,

army A engages twice with half
�
y0
2

�
of the original army B, army A wins

both battles if �x20��
�
y0
2

�2
> �

�
y0
2

�2
; where the left-hand side represents the

square of the remaining combatants in army A after the �rst engagement. In
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Figure 1: Solution curves for Lanchester�s equation. Each line corresponds
to each solution of Lanchester�s equation. If the system starts from a, it will reach b ; so
army B defeats army A. By constrast, the system, starting from c; predicts the winning of
army A. We set � = � = 1.

general when army B is divided by n we obtain the following rule:

�x20 > �
y20
n

(3)

Now consider a population which consists of defectors, punishers, and pos-

sibly cooperators. For concreteness, suppose that 50% of the population are

defectors and suppose that a punishment process � where the punishers elim-

inate defectors and defectors counteract � is described by Lanchester�s equa-

tions with � = �. We assume that the defectors behave individually, so the

divisor in the left side of (3), n; equals y0. Then equation (3) is reduced to

x0 >
p
y0: First consider the case in which the population size is 20. Since 50%

of the population (10 individuals) are defectors, we need 4 punishers to elimi-

nate the defectors (4 > 3:1328 �
p
10). However, if the size of the population

is 200, only 11 punishers are enough for 100 defectors (11 > 10 �
p
100). In
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other words, when the group size is 20, about 15% of the population must be

punishers in order to get rid of the defectors, whereas in a group of size 200,

about 5% of the population will be enough.

3 Model and Analyses

3.1 Model

Consider a population of size n playing a public goods game. We suppose

that each member in the population can choose to be one of three types: co-

operator, punisher, or defector. Punishers (P) contribute to the public project

and punish defectors, defectors (D) do not contribute to the public goods,

and �nally, cooperators (C) do not punish, but only contribute to the public

project. A member chooses types taking account of the e¤ect of this choice on

the costs he incurs because of ensuing con�icts, which we call a punishment

process. In the punishment process, punishers and defectors have a series of

engagements described by Lanchester�s equations. With the notation Ei = 1

if i contributes and Ei = 0 otherwise, member i�s expected payo¤s of each

type (or evaluation of utility upon adopting each type) reads

�(P ) =
b

n

X
j

Ej � c� dPr(IP ) (4)

�(D) =
b

n

X
j 6=i

Ej � sPr(ID) (5)

�(C) =
b

n

X
j

Ej � c (6)

8



where b denotes a bene�t from the public project and c is the cost of contri-

bution. We assume that c < b < nc; so in the absence of punishment it is

socially optimal for all members to contribute, while none of them have enough

material motivation to do so. The term Pr(IP ); which we will specify precisely

later, represents the probability with which punisher i would be injured or hurt

during the punishment process; if this happens he pays the cost d. Similarly,

defector i needs to pay s with the probability Pr(ID)� the probability of the

defector being injured. We assume that s > c; so the cost that the defector

pays in case of being injured � for example the cost of recovery from injury or

foregone income from the exclusion of productive activities because of injury

� is greater than the per-period contribution cost. Note that when d = s = 0;

no punishment takes place and payo¤s replicate the n-prisoner dilemma.

Though we use the language of public goods problems, we observe that this

setting can be readily extended to the situation of political collective actions

(Tullock, 1971; DeNardo, 1985; Epstein, 2002). In the context of revolutionary

activities to overthrow a corrupt and oppressive government, this setting mod-

els an individual�s choice from among three activities: join the revolutionaries

(punisher), join the forces of repression (defector), or remain inactive (coop-

erator). With these name changes (4)�(6) reproduce a similar speci�cation

of expected payo¤s that Tullock (1971) used in his study of the �paradox of

revolution�.

We proceed to specify terms Pr(IP ) and Pr(IC) using Lanchester�s theory.

First we introduce a parameter � to describe the degree of �collectivity�of the

defectors in the punishment process:

� =
1

the number of defectors who counteract together
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Figure 2 illustrates this parameter schematically.

Figure 2: Defectors�tendency to act �collectively�in the punishment.
1
�
represents the number of defectors who act together in the punishment process. When

� = 1 all defectors behave individually in the punishing process and as � ! 0 defectors
behave more collectively.

For instance, when the number of punishers and the defectors are x and

y = 2021 and � = 1=1000, from a similar calculation the condition for the

punishers to defeat �the army�of defectors is as follows:

x2 � 2� (1000)2 + 212 = [0:001� 2021]� ( 1

0:001
)2 + (2021� 2000)2

where [x ] denotes the integer part of x. The �rst term, 2� (1000)2, indicates

that the army of punishers faces 1000 defectors twice and then competes with

the remaining 21 defectors. Thus in general we have the following condition

for the punishers to annihilate all defectors:

�x2 � �[�y]
�
1

�

�2
+ �(y � [�y]1

�
)2 (7)

where � > 0: Since a type is more likely to be injured or knocked out if
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the result of the punishment process is close to the defeat of that type, we

suppose that Pr(ID) and Pr(IP ) monotonically depends on (7). In particular,

we suppose that

Pr(ID) = F (�x2 � �[�y]
�
1

�

�2
� �(y � [�y]1

�
)2)

Pr(IP ) = 1� F (�x2 � �[�y]
�
1

�

�2
� �(y � [�y]1

�
)2)

where F (t) increasing, lim
t!1

F (t) = 1; lim
t!�1

F (t) = 0: For example, F (t) =

1[0;1)(t); or F (t) = 1 if t � 0 ; = exp(�t) if t < 0:

3.2 Static Analysis

Using the model we have developed, we ask two questions: 1. How does an

increase in group size change �P ; �D; and �C at a given time? 2. How does

an increase in group size a¤ect, at equilibrium, the proportion of each type in

the population when individuals update their types? The �rst question ad-

dresses the static characterization of the model, while the second one concerns

equilibrium states in the dynamics of the model. Of course, these two are

closely related as the standard result in game theory suggests � for instance,

the strict Nash equilibrium in the underlying game is an evolutionarily stable

strategy, and hence the asymptotically stable state in the replicator dynamics

(See Weibull, 1995). Concerning the �rst question, we have proposition 1.

Proposition 1 Suppose that � = x
n
; � = y

n
; and s > c: Then for all � > 0,

� > 0; � > 0, lim n!1 (�P � �D) > 0 and lim n!1 (�C � �D) > 0
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Proof. From the de�nition of Pr(ID) we have

Pr(ID) = F (��2n2 � �[��n]
�
1

�

�2
� �(n� � [�n�]1

�
)2)

! 1 as n!1

since
�����(n� � [�n�]1�)2��� = �

�2

��(�n� � [�n�])2�� � �
�2
: Then �C � �D � �P �

�D ! �c+ s > 0.

Since �C > �D; whenever �P > �D holds, playing D is strictly dominated

by both strategies C and P: Figure 3 below characterizes the combinations of

the population proportion (�; �; 1� �� �) which support �P > �D:

Figure 3: The fractions of population which support punishment.
Each point in the triangles uniquely corresponds to one population state, composed of

fractions of each type, through the Bary centric coordinate. For example, the point lo-

cated on the left bottom vertex corresponds to a population state in which all individuals

choose the defector type. The points in the shaded area are population states which ensure

Pr (IP ) = 1, so �P��D> 0;so in the shaded region playing defector is strictly dominated.
� = 0:5; � = �; F (t) = 1[0;1) are used.

In each panel of �gure 3 the shaded regions show the population state where

playing defector is strictly dominated by punishers, and hence by cooperators.

In contrast, when x; y belong to the unshaded regions, we have Pr(IP ) � 1;

Pr(ID) � 0; so �D > �P and �D > �C and playing defector is individually
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rational. When the size of the group increases, the shaded region enlarges; be-

ing defector becomes less favorable. In addition, because of these features of

the payo¤s we may regard the shaded regions, in a suitable dynamic process,

as basins of attraction for some equilibrium supporting cooperation; unshaded

regions may correspond to the basins of attraction for an all-defectors equilib-

rium. The static analysis of the payo¤ structures and the basins of attraction

strongly suggests that cooperation would be supported in the long run.

3.3 Dynamic Analysis

We consider a state space �n = f(x; y; z) 2 R3j x + y + z = n g;which

describes the numbers of punishers, defectors, and cooperators. Given that

the state at the end of period of t is (x; y; z); we write �k(x; y) := �k; for

k = P;D;C to emphasize the dependence of payo¤s on x; y: During the period

t+ 1

D1 A proportion of individuals is drawn from the population at random.

D2 With probability (1��) for � 2 (0; 1), the drawn individuals choose types

according to the following switching rule:

type i switch to type j if j 2 argmax
k

�k(x; y)

Whenever target strategies are more than one, an individual is assumed

to choose one randomly.

D3 With probability �, individuals choose types randomly and the system

moves into the next period.
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D2 is called a best response update (Kandori et al., 1993; Young, 1998) and

the speci�cation of stochastic dynamics follows Young (1998) except for D1.

Instead of drawing one individual as Young (1998) does, we draw a proportion

of individuals. If we draw one individual at each period, the convergence speed

of the system to an equilibrium may slow down as n increases, so some positive

level of punishing and cooperating behaviors may persist simply due to the

sampling method. Since we wish to control this artifact and single out the large

group e¤ect from the irrelevant aspects of the modeling, we allow a proportion

of individuals to update their strategies. In D3, we allow for the possibility of

idiosyncratic behavior such as mistakes by individuals in choosing their best

response strategies following the standard evolutionary model (Kandori et al.,

1993; Young, 1998).

Since the independent randomness, which arises each period both by D1

and D3, accumulates in the system through time, the process follows a Markov

chain and the standard limit theorem for �nite state Markov processes ap-

plies. In particular, D3 makes the chain irreducible and aperiodic, so we

have a unique invariant distribution �. Since we are interested in the long

run equilibrium value of population fractions, playing cooperators, punishers,

and defectors, we estimate lim
t!1

E(Xt); lim
t!1

E(Yt); and lim
t!1

E(Zt) using a Monte

Carlo simulation (Madras, 2002). As we do not know an invariant distribu-

tion we take the all-defectors state as an initial state, which is the least likely

state to support a high level of cooperation in the long run. Figure 4 depicts

trajectories of the states of the system. In the �rst panel, where the size of the

population is relatively small, the population state starting from all defectors

stays close to the all-defectors equilibrium. This may capture the situation in

which all individuals are trapped in the basin of attraction of the all-defectors

14



Figure 4: The fractions of population in each period. Each point is

each state in the simulation. The initial values of states are taken as � = 0; � = 1;

 = 0: 10% of population are drawn at each period. Other parameters used are

� = 1; � = 1; � = 0:5; � = 0:1; � = 10; c = 2; d = 3; s = 3; T = 10000:

equilibrium in �gure 3. The second panel shows that as the basin of attraction

for the all-defectors equilibrium shrinks, the system manages to escape from

this equilibrium and reach the state with higher levels of cooperation. The

estimates in table 1 corroborate the large group e¤ect more precisely. As the

size of the population grows, it becomes easier to prevent the proliferation of

defectors with a smaller fraction of punishers.

n = 90 n = 900

Punisher Defector Cooperator Punisher Defector Cooperator

fraction 0.03362 0.93242 0.03395 0.48231 0.033359 0.484325
95% Conf. [0.031855 [0.929807 [0.032531 [0.480872 [0.03275 [0.48274

Interval 0.0353861] 0.935051] 0.035368] 0.48376] 0.033960] 0.48591]

Table 1: Estimates of mean fractions of population. Estimates of the mean
fractions of population and 95% con�dence intervals. To estimate the mean fractions and

construct the con�dence intervals, we follow the batch means method (See Madras, 2002)

and choose 25 batches. Also to avoid the initialization bias the �rst �ve batches have been

dropped. The parameters used are the same as in �gure 2.
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4 Discussion

We note two features of the model. When �! 0, the above argument fails

to hold in the limit. This is because if �! 0, meaning the defectors behave as

collectively as the punishers do, the punisher cannot exploit Lanchester�s law.

However, proposition 1 does hold for all � > 0. As long as � remains positive

(even if � is very close to 0) or the defector tends to behave less collectively,

the punisher will always enjoy large group advantages. In addition, the result

does not depend on the magnitude of d. This means that, however high the

cost of punishment is, an increase in group size is always favors punishers and

cooperators. This fact suggests that the second-order free rider problem can

be reduced by the size of the group (Panchanathan and Boyd, 2004).

We have shown that if the punishment process is well described by Lanchester�s

equations, larger groups may favor cooperation. Of course this argument does

not assert that larger groups are always successful in collective action; larger

groups may have other disadvantages � for instance, higher coordination costs

and information costs. However, by providing one instance of large-group ad-

vantages we verify that the Olsonian view of collective action and group size

does not always provide a correct answer. Moreover, an appropriately modi-

�ed theory, for instance one incorporating coordination costs, would provide

better understanding of interesting questions of group and collective action

such as the determination of the optimal size of a group.
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