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ABSTRACT: We incorporate a renewable resource into an overlapping generations
model without capital and with quasi-linear preferences. Besides being an input for pro-
duction the resource serves as a store of value. We characterize the dynamics, efficiency
and stability of the steady state equilibria. The stability properties are sensitive to the
type of the resource growth. For constant growth there is only one steady state equilib-
rium which is stable and efficient. In the general case of the concave growth function
there are usually at least two steady state equilibria, one of which is stable and the other
one unstable. The unstable steady state is efficient, but the stable one may or may not
be. We study the robustness of our results by assuming a logarithmic periodic utility
function. We show that for the Cobb-Douglas production function the steady state is
unique and stable regardless of whether the equilibrium is efficient or inefficient. Our
analytical results are illustrated by numerical calculations.

Keywords: overlapping generations, renewable resources.

JEL classification: D90, Q20.



1. INTRODUCTION

Traditional theories of renewable resource use assume an infinitely lived agent or a social
planner, and have the property that there is one steady state equilibrium, which is a saddle.
Equilibrium is a function of resource demand (price), costs and exogenous real interest rate
(for economics of forestry and fisheries, see e.g. [6] and [7]). These models do not account
for the fact that in practice renewable resources are important stores of value between dif-
ferent generations.1 Hence, one can ask whether this analysis is robust in an overlapping
generations economy, where agents have a finite life but resource stock may grow forever,
and where the real interest rate is determined endogenously.

Recent studies ([9], [11], [13] and [14]) focusing on the sustainable use of renewable re-
sources within the overlapping generations framework have provided a partial answer.2
They establish the generally well-known fact that competitive overlapping generations
economies may be inefficient. [9] demonstrates that a competitive economy with constant
population may under-harvest its renewable resources as a consequence of the resource
being inessential for production. In a different vein, [14] shows that both a low rate of re-
source regeneration relative to population growth and a low level of saving may lead to
unsustainable use of renewable resources, so that consumption declines over time.

These papers study the steady state equilibrium without analyzing its dynamics and sta-
bility. This is an unfortunate drawback, since stability properties of the renewable resource
exploitation are important e.g. in policy making. If the utilization of the resource tends to
be unstable, competition may more easily lead to the destruction of the whole resource,
which naturally necessitates a more careful resource management.

In this paper we characterize the steady state equilibrium of a general equilibrium over-
lapping generations economy, study its stability properties, and compare competitive and
efficient steady state equilibria. For this purpose, we construct a model where agents live
for two periods. The renewable resource serves both as a store of value and as an input in
the production of consumption good.

Our focus is entirely on the extractive use of resource and we omit amenity services pro-
vided by the resource. The resource stock may be interpreted, for instance, as forests or
fisheries (with well-defined property rights over fishing stocks). Unlike [9] and [14], who
assume constant and linear growth, we utilize a general concave resource growth function,
which captures the essential features of renewable resources more adequately. As a special
case we analyze also the use of expendables, for which the growth rate is independent of
the resource stock (relevant e.g. for the use of hydropower or most agricultural production,
see [18] for the resource classification). Our model is similar to the exhaustible resource
model of Olson and Knapp, see [15].

It will turn out that for a model with quasi-linear utility function the type of growth
function plays a very important role in the analysis. Under constant growth there is one

                                                
1 Tobin , for instance, points out that “land and durable goods, or claims upon them are principal stores of

value” [19, p. 83].
2  In addition to the above references in the OLG framework, see e.g. [1] for an analysis of the effects of

forest and inheritance taxation on harvesting, stand investment and timber bequests in an overlapping
generations model with one-sided altruism. For pollution as an intergenerational externality, see [8].
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equilibrium which is stable, indicating that the overlapping generations economy does not
qualitatively differ from the world of infinitely living agents of traditional renewable re-
source theories. Assuming concave resource growth, however, brings a striking difference
to the results of traditional analyses. Instead of one equilibrium, there are usually at least
two steady state equilibria, one of which is stable and the other one unstable.

To explore the robustness of our results with quasi-linear utility, we also impose con-
cavity on both periodic utility functions via logarithmic specification. Now the dynamical
system reduces to a non-linear first-order difference equation for the resource stock (har-
vesting being determined recursively). We show that for the Cobb-Douglas production
function the steady state equilibrium is unique and stable regardless of whether the equilib-
rium is efficient or inefficient, and irrespective of the type of the growth function. Since
the steady state equilibrium is determinate, the qualitative properties of the model under
logarithmic utility function are similar to the saddle point equilibrium.

The paper is organized as follows. In section 2 the basic structure of the model is devel-
oped. Section 3 analyzes steady state equilibria, while dynamical equilibria are studied in
section 4, and efficiency of competitive equilibrium in section 5. Dynamical equilibria with
logarithmic utility are examined in section 6. Numerical calculations with parametric
specifications are presented in section 7. This is followed by a concluding discussion.

2. THE MODEL AND THE EQUILIBRIUM CONDITIONS

We consider an overlapping generations economy without population growth, where
agents live for two periods. We assume that agents maximize the intertemporally additive,
quasi-linear lifetime utility function

tt ccuV 21 )( β+= , (1)

where ci
t  denotes the period i (=1,2) consumption of consumer-worker born at time t and

1)1( −+= δβ  with δ  being the rate of time preference.3 In addition to simplifying the
analysis, quasi-linear specification allows us to focus more sharply on the importance of
the time preference for the use of a renewable resource. We assume for the first period

utility function that 0>′u , 0<′′u  and 0)('lim =
∞→

cu
c

 and ∞=
→

)('
0

lim cu
c

. The young

are endowed with one unit of labor, which they supply inelastically to firms in consump-
tion goods sector. The labor earns a competitive wage. The representative consumer-
worker uses the wage to buy consumption good and save in the financial asset or to buy the
available stock of the renewable resource.

                                                
3 Assumption of quasi-linearity produces a saving function with positive interest rate elasticity.
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The firms in the consumption good sector have a constant returns to scale technology,
),( tt LHF , to transform the harvested resource ( tH ) and labor ( tL ) into output. This tech-

nology can be expressed in factor intensive form to give )(/),( tttt hfLLHF =  with the
standard properties 0>′f  and 0<′′f . Furthermore, we assume that ∞=′→ )(0

lim
th hf  and

0)(lim =′∞→ th hf , where th  (= tt LH / ) is the per capita level of harvest.

The growth of the renewable resource is )( txg , where tx  denotes the beginning of pe-
riod t stock of the resource. )( txg  is assumed to be a strictly concave function, i.e. 0<′′g .
Furthermore, we assume that there are two values 0=x  and xx ~=  for which

0)~()0( == xgg . Consequently, there is a unique value x̂  at which 0)ˆ( =′ xg  where x̂  de-
notes the stock providing the maximum sustained yield (MSY), and x~  is the stock at
which growth is zero. It is the maximal stock that the natural environment can sustain. For
instance, a logistic growth function ( 2)2/1()( bxaxxg −= ) fulfills these assumptions.

The renewable resource in our model has two roles. It is both a store of value and an in-
put in the production of consumption good. The market for the resource operates in the
following manner. At the beginning of the period the old agents own the stock, and also
receive that period’s growth of the stock. They sell the stock (growth included) to the
firms, which then decide how much of that resource to harvest and use as an input in the
production of the consumption good. The firm will sell the remaining stock of the resource
to the young at the end of the period. Besides owning the stock the current old generation
(generation t-1 in period t) will also get its growth, so that the stock they have available for
trading is )( tt xgx + .

It is interesting to note that via growth function this “natural” production activity yields a
profit for its owner. These profits could presumably be distributed in alternative ways. For
instance, there could be a stock market where the ownership rights for the resource are ex-
changed. The young buy the shares for the resource, and when old, get the dividend and
the proceeds from selling the shares next period.4 This kind of arrangement leads to the
same allocation, which we will have in our model.5

The transition equation for the resource is

)(1 tttt xghxx +−=+ , (2)

where th  denotes that part of the resource stock which has been harvested for use as an
input in production. The initial stock and its growth, )( txg , can be conserved for the next
period’s stock or used for this period’s harvest.

                                                
4 We are thinking here about the stock market arrangements proposed by Lucas and Brock (see, [10] [3]

and [4]). Since [10] and [2] have infinitely lived agents, the treatment of the stock market in their papers
cannot readily be applied to our overlapping generations model, where e.g. there is limited market par-
ticipation. [3] presents an overlapping generations version of the asset pricing model of [10], where the
asset pays a constant dividend each period. For a recent treatment of the stock market in an overlapping
generations model with capital, see [12].

5 A sketch of the proof is available from the authors upon request.
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In addition to trading in the resource market, the young can also participate in the finan-
cial markets by borrowing or lending, the amount of which is denoted by ts .  The periodic
budget constraints are thus

tttt
t wsxpc =++ +11  (3)

[ ] ttttt
t sRxgxpc 11112 )( ++++ ++=  (4)

where tp  is the price of the resource stock in terms of period t’s consumption, tw  is the
wage rate, and 11 1 ++ += tt rR  is the interest factor. The young generation buys an amount

1+tx  of the resource stock from the representative firm. The firm harvests an amount th  of
the stock, and 1+tx  is left to grow. According to (4) the old generation consumes their sav-
ings including the interest, and the income they get from selling the resource next period to
the firm, [ ])( 111 +++ + ttt xgxp .

The periodic budget constraints (3) and (4) imply the lifetime budget constraint

[ ]
1

11111

1

2
1

)(

+

+++++

+

−+
+=+

t

tttttt
t

t

t
t

R
xpRxgxp

w
R
cc . (5)

Maximizing (1) subject to (5) and the appropriate non-negativity constraints gives the fol-
lowing first-order conditions for ts  and 1+tx  at the interior solution

β11 )(' += t
t Rcu  (6)

[ ]β)('1)(' 111 ++ += tt
t

t xgpcup . (7)

Due to the linear second period utility function we might get corner solutions (i.e. 02 =tc )
for some parameter values. This happens, for instance, if β  is low enough, implying that
the consumer does not want to consume anything in the second period.6

These conditions have straightforward interpretations. The Euler equation (6) says that
the marginal rate of substitution between today’s and tomorrow’s consumption should be
equal to the interest factor. According to (7) the marginal rate of substitution between con-
sumptions in two periods should be equal to the resource price adjusted growth factor. (6)
and (7) together imply the arbitrage condition for two assets

                                                
6 To make the left-hand side of (6) very small for a given 1+tR , the first-period consumption must be very

large. This is not, however, possible since the level of the stock, harvest and consumption in any period
are bounded. We elaborate the issue of corner solution later when discussing the existence of steady state
equilibrium.
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[ ]
t

t
tt p

p
xgR 1

11 )('1 +
++ += , (8)

which says that the interest factor is equal to the resource price adjusted growth factor.
Using (8) we can rewrite the lifetime budget constraint as

[ ]
1

1111

1

2
1

)(')(

+

++++

+

−
+=+

t

tttt
t

t

t
t

R
xxgxgp

w
R
cc , (9)

where the term in the square brackets is positive.

We next characterize the equilibria and dynamics of the model. The competitive equilib-
rium is defined as follows.

Definition. A sequence of a price system and a feasible allocation,

  { } ∞
=

−
1

1
21 ,,,,,, ttt
tt

ttt xhccwRp  is a competitive equilibrium, if

(i) given the price system consumers maximize subject to their budget 
constraints
and
(ii) markets clear for all t = 1,2,...,T,...

Market clearing conditions are

)(1
21 t
tt hfcc =+ −  (10a)

)(1 tttt xgxhx +=++  (10b)

0=ts  (10c)

tt phf =′ )(  (10d)

tttt whfhhf =′− )()( (10e)

Equation (10a) is the resource constraint for all t, and (10b) is the transition equation for
the renewable resource stock. The fact that there is only one type of a consumer per gen-
eration and no government debt forces the asset market clearing condition to be such that
saving is zero for all t. Equations (10d) and (10e) in turn are the first-order conditions for
profit maximization, and determine the evolution of prices, tp  and tw .

Market clearing condition (10b) and the first-order condition (7) for the resource stock
and harvesting imply the following planar system that describes the dynamics of the model

)(1 tttt xghxx +−=+  (11)

[ ] =−− +1)(')(')(')(' tttttt xhfhhfhfuhf  [ ])('1)(' 11 ++ + tt xghfβ ,             (12)
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where we have used the periodic budget constraints (3) and (4), and the equilibrium condi-
tions (10d) and (10e), to arrive at the equilibrium Euler equation (12). Equations (11) and
(12) are the main objects of our study. Before analyzing the dynamic properties of this
system we characterize the steady state equilibrium.

3. STEADY STATE EQUILIBRIA

The planar system describing the dynamics of the resource stock and harvesting consists of
equations (11) and (12). The steady states ∆ ∆x ht t= = 0  fulfill the following equations

h g x= ( ) (13)

[ ] [ ])('1))((')(' xgxhhfhfu +=+− β , (14)

and define two stationary loci in the hx - space for which the resource stock and harvesting
remain unchanged. Total differentiation of (13) and (14) yields

')0,0( g
dx
dh

hx ==∆=∆  (15)

0
)()0,0( >

+′′′′−
′′+′′′

==∆=∆ xhfu
gfu

dx
dh

xh
β . (16)

These equations describe the slopes of the curves ∆ ∆x ht t= = 0  in the hx- space. While
the slope of the curve defined by (15) is not monotone, by (16) the steady state Euler equa-
tion is an increasing curve in the hx -space.

The curve (14) must lie above the curve 0))((')(1 =+−= xhhfhfc , since the first-

period consumption must be positive due to the condition ∞=
→

)('
0

lim cu
c

. To get further

insight on how this requirement affects the number of steady states (and also on the possi-
ble dynamic paths) we consider the inequality .0))((')(01 >+−⇔> xhhfhfc  The lower
bound on positive consumption can be rearranged to obtain

xf
f
hffc ''11 −








−= , (17)

where 11'0 1 <=< − αhff  is the elasticity of output with respect to harvest, i.e. the factor
share of the renewable resource in production.7 It is straightforward to show that the curve

                                                
7 We can rewrite this condition as )1/()/(01 αα −>⇔> xhc , which is analogous to the respective con-

dition developed by Olson and Knapp [15, pp. 281–282] for the model with exhaustible resource.
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0))((')( =+− xhhfhf  is upward sloping in hx -space. The following lemma establishes
that the curve goes through the origin.

Lemma 1. The point { }0,0 == xh  fulfills the curve 0))((')( =+− xhhfhf .

Proof. See Appendix 1.

This is natural since there can be no consumption if there is no resource and harvesting
(a necessary input in production). Next we study the behavior of the Euler equation in a
steady state

[ ] [ ])(1)(')(')(' xgxhfhhfhfu ′+=−− β . (18)

Hence, we have

Lemma 2. A point { }0,0 => xh  fulfills [ ] [ ])('1)(')(')(' xgxhfhhfhfu +=−− β .

Proof. See Appendix 1.

To study the existence of the steady state we rewrite the Euler equation (14) by using
)(xgh =  as follows

[ ] [ ] )()('1))((')())(('))((')( xRHSxgxxgfxgxgfxgfuxLHS ≡+=−−≡ β . (19)

Differentiation of both sides of (19) gives

0)('')(' <= xgxRHS β  (20)

[ ] ?))(('''')('')(' 1 =++−= xgxgffcuxLHS  (21)

As for the limiting behavior of )(xLHS , recall that x~  is such that 0)~( =xg . If xx ~→  the
argument of the marginal utility approaches minus infinity because of the Inada condition
for the production function. Hence, there must be a value of x , say xx ~'< , such that this
argument approaches zero. This means that the marginal utility (i.e. the value of )(xLHS )
approaches infinity. On the other hand, if 0→x , the first period consumption approaches
zero and the marginal utility approaches infinity. It is also clear that the argument of the
marginal utility cannot reach the value infinity for any xx ~0 << , so that the function

)(xLHS  cannot touch the x -axis on that interval. Because 0)(' =xLHS  is equivalent of
having [ ] 0)('''' =++ xgxgff , it means that the minimizing level of the stock is such that
the first-period steady state consumption ( [ ] [ ] [ ] xxgfxgxgfxgf )(')()(')( −− ) is maxi-
mized. We denote that level of x  as cx  and the corresponding consumption as mc1 .
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Since there is no Inada condition for the growth function, [ ])0('1 g+β  is just a finite
number. Lowering the value of the discount factor (i.e. β ) tilts the function )(xRHS
downwards making its slope less steep. Hence, there must be a lower bound for the dis-
count factor, say β , such that for any ββ <  , the steady state equilibrium does not exist.
We have drawn the case with two nontrivial steady states in Figure 1. Since the function

)(xLHS  does not depend on the value of β , we can lower the function )(xRHS so much
that the two curves neither cross nor touch.

For the nonexistence of equilibrium (see Figure 1) at least the following necessary, but
not sufficient condition (the )(xRHS  curve must lie below the )(xLHS curve at the mini-
mum point of the )(xLHS ), must hold for the discount factor [ ])('1)(' 1 cm xgcu +> β ,
where [ ] [ ] [ ] cccccm xxgfxgxgfxgfc )(')()(')(1 −−= . It can be rewritten as

)('1
)(' 1

c

m

xg
cu

+
<β . (22)

Thus it is necessary for the nonexistence of the steady state that the discount factor must be
lower than the quantity on the right-hand side, which in turn depends on the identifiable
and economically meaningful allocation, i.e. there is an upper bound for this lower bound.8
This nonexistence result follows from the fact that there is no Inada condition for the sec-
ond period linear utility function. As discussed in section 2, this means that there can be
circumstances (e.g. a very low discount factor), when consumers do not want to consume
anything next period.

Figure 1. Existence of steady states

LHS(x)

RHS(x)

LHS
RHS

cx 'x x~
x

                                                
8 For the more general role of the bounds of the discount factor for conservation versus extinction of a re-

newable resource, see [16].
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The preceding discussion has made it clear that the steady state in our model is not nec-
essarily unique. Given that the steady state Euler equation starts at the point { }0,0 => xh ,
if there are steady state equilibria, there are at least two of them, except for the rare case,
where the Euler equation and the growth curve are tangent to each other. When the growth
rate, )(' xg , is positive, the upward sloping Euler equation can cross the growth curve in
many points. For two steady states it is necessary that the Euler equation cuts the growth
curve first from above and then from below. On the portion of the growth curve where

0)(' ≤xg  there can be only one steady state equilibrium.

We will describe the loci 0=∆ tx  and 0=∆ th  in the hx -space by totally differentiating
(13) and (14). The slope of the locus, )( tt xgh = , when 0=∆ tx  (but h may vary) and
evaluated at the steady state is

)('
0

xg
dx
dh

txt

t =
=∆

. (23)

The slope of the Euler equation, when 0=∆ th  (but x may vary), and evaluated at the
steady state is

[ ] 0
'')('''''

)'1)('''''(

0

>
++−
++=

=∆
ghxffu

ggfu
dx
dh

tht

t

β
β . (24)

While the slope in (23) can be positive, zero or negative, the slope in (24) is always posi-
tive given our assumptions on the utility function and the fact that '1 g+  >0, because in the
steady state equilibrium '1 g+  equals the interest factor (c.f. arbitrage equation (8)).

We collect the previous discussion in

Proposition 1. If the discount factor, β , is “low enough”, the steady state may not
exist. If the steady state exists, there are at least two of them, except for
the rare case where the Euler equation and the growth curve are
tangential to each other.

When β  is “low enough”, the economy consumes the entire resource stock despite its
capability of providing new stock via growth, so that resource use is not sustainable. This
extinction result derives from the combination of quasi-linearity and zero harvest costs in
our model, while e.g. in some traditional fisheries models the harvest costs increase with
the decrease of the stock, preventing extinction.

In what follows we concentrate on the case of two steady states, i.e., the Euler equation
cut the growth curve from below in equilibrium with the larger level of resource stock (see
Figures 2 and 3 below).

00 =∆=∆

>
tt xt

t

ht

t

dx
dh

dx
dh .       (25)



10

4. DYNAMICAL EQUILIBRIA

To study the dynamics of our model we start by considering paths for which x xt t+ ≥1  and
h ht t+ ≥1 . It follows from (11)

x x x h g x x g x ht t t t t t t t+ ≥ ⇔ − + ≥ ⇔ ≥1 ( ) ( ) ,     (26)

and from (12)

[ ]
[ ] 1

)('1
)(')(')('

)(')('
1

1
11 ≤

+
−−

⇔≤⇔≥
+

+
++

t

ttttt
tttt xg

xhfhhfhfu
hfhfhh

β
. (27)

Equations (26) and (27) represent the area in the state space where the variables x and h are
weakly increasing and also the complementary area in which they are strictly decreasing.

We will rewrite equations (11) and (12) as follows

x x h g x G x ht t t t t t+ = − + ≡1 ( ) ( , )  (28)

[ ]
[ ])('1

)(')(')(')('
)('

1

1
1

+

+
+ +

−−
=

t

tttttt
t xg

xhfhhfhfuhf
hf

β
. (29)

Substituting the RHS of (28) for xt+1  in (29) gives an implicit equation for ht+1 ,

h F x ht t t+ =1 ( , ) .     (30)

The planar system describing the dynamics of the resource stock and harvesting consists
now of equations (28) and (30). The Jacobian matrix of the partial derivatives of the sys-
tem is

J =
G G
F F

x h

x h









 ,

where partial derivatives can be calculated (and evaluated at the steady state) as

G x h gx ( , ) '= +1 1),( −=hxGh

0
''

''''')'(),(
2

<−−=
f

gfufhxFx β
β

0
'')'1(

'''
)'1(

)('''
'')'1(

'')'(1),(
2

>
+

+
+

+−
+

+=
fg

gf
g

hxuf
fg

ufhxFh ββ
.
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Based on these partial derivatives, the trace T and the determinant D of the characteristic
polynomial can be calculated to be

0)(''''1 >+−+=
β

hxufgD ,

1
'')'1(

'''
)'1(

)('''
'')'1(

'')'('2
2

>
+

+
+

+−
+

++=
fg

gf
g

hxuf
fg

ufgT
ββ

.

It is easy to see that D T+ + >1 0  holds. The nature of the stability of the steady state de-
pends then crucially on the sign of 1+−TD . In determining this sign we use information
about the behavior of Euler equation and the growth curve at both steady states (see Ap-
pendix 1 for details). Armed with these calculations, we get

Proposition 2.  In the case of concave resource growth with two steady states, the one
associated with a larger natural resource stock is stable (a saddle), while
the other with a smaller stock is unstable (a source).

Proof: See Appendix 2.

Figures 2 and 3 describe the dynamics in the case of two steady states. In Figure 2 the
larger steady state equilibrium stock lies on the right-hand side, while in Figure 3 on the
left-hand side of the maximum sustained yield x̂ . The steady state is at the maximum sus-
tained yield only accidentally. The equilibrium with the smaller stock is unstable and with
the larger one is stable.

Figure 2. xx ˆ>∗

xx

h

∗xx̂

hh

x
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Figure 3. xx ˆ<∗

We will next study briefly the case of expendables where the growth function is constant
so that g x m( ) = > 0  as in [9], [13] and [14]. Then the dynamics in (11) and (12) will be
modified to

x x x h m x m ht t t t t t+ ≥ ⇔ − + ≥ ⇔ ≥1  (31)

[ ] β≤+−⇔≤⇔≥ ++ ))((')(')(')(' 11 tttttttt xhhfhfuhfhfhh , (32)

and the steady state is characterized by the following equations

m h=  (33)

[ ] β=+− ))((')(' xhhfhfu . (34)

For the existence of a nontrivial steady state we need to assume that
[ ] β<− mmfmfu )(')(' . This means that hh-phaseline starts below m, which is clearly the

case for high enough m. Total differentiation of (34) yields

dh
dx

h f
f h x

( ) '
' ' ( )

∆ = =
− +

>0 0 . (35)

xx

h

xx ˆ∗

hh

x
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Figure 4 describes the resulting dynamics. With constant growth we get at most only one
steady state at the point where the upward-sloping hh-phaseline crosses the constant
growth xx-phaseline. This steady state is stable (a saddle).9

Figure 4. Constant growth

Thus we have,

Corollary 1. In the case of constant growth there is a unique steady state which 
is stable.

Proposition 2 and Corollary 1 reveal how, in the case of quasi-linear preferences, the
nature of the growth function matters both for the number of steady states and the stability
of the system. The difference to the results of traditional renewable resource theories is
striking. While they have only one stable steady state, assuming general concave resource
growth in the overlapping generations economy produces usually at least two steady states,
one of which is stable and the other unstable.

5. EFFICIENCY OF STEADY STATE EQUILIBRIA

To investigate the efficiency of steady state equilibria, we explicitly take into account the
welfare of the oldest generation, and denote the weight of its utility function in the social

                                                
9 This can be seen from the proof in Appendix 1 by setting mg =  so that 0=′′=′ gg .

h

hh

∗x

x

x
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welfare function by 0>φ . The efficient equilibrium is obtained by solving the following
social planner’s problem

{ } 21
0
2

21
0
2

)(
,,,,

max ccucW
xhccc

βφ ++= (PE)

s.t. )(xgh =

)(21 hfcc =+

)(0
21 hfcc =+

)( 11 xgxhx +=+ ,

where 1x  is the initial stock of the resource owned by the initial old generation. In Appen-
dix 3 we show that efficient equilibria are characterized by the condition 1)('1 ≥+= xgR .
Hence, all the equilibria for which 0)(' ≥xg  are efficient, while those with 0)(' <xg , are
inefficient. Equilibria with 0)(' <xg  are inefficient because consumption could be in-
creased for every generation by harvesting some of the stock. But equilibria with 0)(' >xg
are efficient, because trying to increase the stock to the maximum level will force the con-
sumption of some generation to be lowered.10 If the weight of the oldest generation were
zero, we would obtain 0)(' =xg  for efficiency, which defines the maximum sustained
yield (MSY) stock.

How do these findings relate to the properties of steady states in standard overlapping
generations models? Given the arbitrage condition (8), the real rate of interest equals g x' ( )
in the steady state.  The case g x' ( ) < 0  corresponds to the situation where the real interest
rate is less than the population growth rate (zero in our model), and the natural resource
has been overaccumulated. g x' ( ) > 0  corresponds the case where the real interest rate ex-
ceeds population growth rate, and thus is efficient.11

Inefficiency in our model results from the overlapping generations structure. Unlike in
models, where the first fundamental theorem of welfare economics holds, there is a double
infinity of consumers and dated commodities (consumptions in each period) in an overlap-
ping generations model. As pointed out by [17] this double infinity (and not the limited
market participation) is the fundamental reason for inefficiency in overlapping generations
models.

                                                
10 This can be seen as follows. Consider e.g. some period τ  where stock is increased. Up to that period the

economy has been in a steady state where h = g(x). So in period τ  )( ττ xgh < . This means first that
)(1 ττττ xghxx +−=+ , where now obviously ττ xx >+1 . Furthermore, because hh <τ  we have

)()( hfhf <τ , which means that consumption is decreased at least for one generation. Later generations
will get higher consumption because the stock has increased.

11 Efficiency outside steady states is a more complicated problem. One can study the efficiency of these
paths by modifying the criterion developed by [5].
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We summarize the discussion above in

Proposition 3. In the case of concave growth with two steady states, the unstable one is
always efficient but the stable one may or may not be efficient.

It is also easy to see that

Corollary 2. In the case of constant growth the steady state is efficient.

6. DYNAMICAL EQUILIBRIA WITH LOGARITHMIC UTILITY

To explore the robustness of our results with quasi-linear utility, we relax the assumption
of the linear second period utility function, but maintain the assumption of a general con-
cave resource growth. Specifically, we consider a case, where the both periodic utility
functions are logarithmic so that the intertemporal elasticity of substitution is unity. In this
case (12) can be written as

[ ]
)(
)('1

)(')(')(
)('

11

1

1 ++

+

+ +
+=

−− tt

t

ttttt

t

xgx
xg

xhfhfhhf
hf β . (36)

Using (11) in (36) gives a relation between th  and tx , defined as )( tt xPh = . Hence 1+th
disappears from the Euler equation (12) so that our planar system (11)-(12) is reduced to a
first-order nonlinear difference equation for x

).()(1 tttt xgxPxx +−=+  (37)

Once the evolution of x is determined, the behavior of h can be obtained from (12) so
that the system has become recursive. The slope of the first-order nonlinear difference
equation (37) is

)(')('11
tt

t

t xgxP
dx

dx +−=+ . (38)

In the steady state )()( xgxP = , so that equation (36) can be written as
[ ] [ ] [ ]))((')()('1)()(' hxhfhfxgxgxhf +−+=+ β . The steady state is not necessarily unique,

since )(xg  is not monotone. We prove in Appendix 4 that the steady state Euler condition
is an upward sloping curve in the hx -space and that the first-order nonlinear difference
equation (37) is upward sloping, i.e. 0)(')('1 >+− tt xgxP . We summarize our findings in
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Proposition 4. Under the logarithmic utility function, the planar system reduces to a
non-linear first-order difference equation for the natural resource stock.
If the elasticity of output with respect to harvest is constant, the steady
state equilibrium is unique. The equilibrium is stable regardless of
whether the equilibrium is efficient or not.

Proof: See Appendix 4.

The unique steady state equilibrium in our model with logarithmic preferences is stable.
Since the initial condition for the resource stock is determined by history, this unique
steady state and all the nonsteady-state equilibria tending towards it are determinate. Thus
the qualitative properties of the equilibria with logarithmic preferences are very close to
saddle point (and thus determinate) equilibria with quasi-linear utility.12

7. A Parametric Example

To shed further light on the properties of the our model with quasi-linear preferences, we
use the following parametric example for the first period utility function, the production
function and the resource growth function, respectively:

11 ln)( ccu =  (39)

f h h( ) = α , 0 1< <α  (40)

2)2/1()( bxaxxg −= . (41)

The economically interesting parameters are the output elasticity of resource (α ), which
determines the price elasticity of resource demand, and the discount factor ( β ). Equation
(41) is the logistic growth function for renewable resources. With these specifications (13)
and (14) reduce to

2)2/1( bxaxh −=  (42)

)1(
)1(

1
1 bxa
xhh

−+=
−− − β

αα αα . (43)

The maximum growth, $x  equals ba / , and the respective harvest will be )/)(2/1( 2 ba .
We calculate the point, where the Euler equation hits the h -axis. Setting 0=x  we get

                                                
12 Indeterminacy often arises in models with stable and multiple equilibria. Indeterminacy in those models,

however, is not caused by historically predetermined variables such as aggregate stocks of capital, hu-
man capital or resources, but by variables such as prices and interest rates, which are determined e.g. by
expectations. [2, p. 450]  has a short discussion about this distinction.
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0
)1(

1
1

1
1

>













+








−
=

α

βα a
h . Consider next the constellation of parameter values for

which one of the steady states is the MSY. Plugging in the MSY values for the stock
( ba / ) and the harvest ( )/)(2/1( 2 ba ) into equation (43) we obtain after a little manipula-
tion the following relation between parameters












 +−−−= ααβ

a
ah 21lnlnln , (44)

where )/)(2/1( 2 bah = . Next we make specific assumptions about the values of parame-
ters. Assumptions that 1=a  and 001.0=b  imply 1000ˆ =x  and 2000~ =x . These values
mean that the condition 0)('1 ≥+ xg  holds for all 20000 ≤≤ x .  Given these values, it
follows that 500=h . Then we get the relation between β  and α  depicted in Figure 5.

β

Figure 5. Relationship between β  and α

Now we can pick up values of β  and α  from Figure 5 to get the MSY as one of the
solutions. If 15.0=α  and 7158.0=β  the other steady state stock is 1000, and the respec-
tive level of harvest 500. The second steady state in this case is the one where

990433.0=x  and 989943.0=h . Keeping the same value for the elasticity of output and
decreasing the discount factor to 70.0=β , gives an example where the other steady state
is efficient (the equilibrium with the lower level of the stock is in the parenthesis):

374.985=x  ( 15018.1 ) and 893.499=h  ( 14951.1 ). If we still keep the same value for the
elasticity of output and let 72.0=β we get an example where the other steady state is inef-
ficient: 77.1003=x  ( 952382. ) and 993.499=h  ( 951929.0 ). Thus by using a parametric
example we have demonstrated that under quasi-linear preferences with concave resource
growth function there are two steady states, which may be efficient, inefficient or acciden-
tally at the point of the maximum sustained yield.
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8. CONCLUSIONS

We have examined an overlapping generations economy where a renewable natural re-
source stock serves as a store of value and an input in the production of consumption good.
The resource grows according to the growth function, which we assume to be either con-
cave or constant (when the resource is expendable). First we characterize the competitive
equilibria of the economy under quasi-linear utility function and show that for a steady
state equilibrium to exist, the discount factor may not be “too low”, i.e., an economy with
sufficient impatience extincts the resource. If the steady state exists the properties of equi-
libria depend crucially on the precise form of the resource growth function. For constant
growth, there is at most one steady state, which is stable. For general concave growth there
can be multiple steady states. If there are two steady states then the one associated with a
larger stock is stable, and the other one associated with a smaller stock is unstable.

The unstable steady state is always efficient, but the stable one may or may not be. In
particular, the steady state is inefficient if it lies to the right of the maximum sustained
yield stock. Then the resource has been overaccumulated. In this case the growth rate of
the resource is negative corresponding to the inefficiency results obtained in the overlap-
ping generations models when the real interest rate is less than the population growth rate.

We also explored the robustness of our results with quasi-linear utility by assuming the
periodic utility function to be logarithmic. In this case the dynamical system reduces to a
non-linear first-order difference equation for the resource stock.  In this case we show that
for the Cobb-Douglas production function the steady state equilibrium is unique and stable
regardless of whether the equilibrium is efficient or inefficient, and irrespective of the type
of the growth function. Hence, the qualitative properties of the model under logarithmic
utility function are similar to the saddle point equilibrium of the quasi-linear case.
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Appendix 1: Proof of Lemmas 1 and 2

Lemma 1.

We rewrite the curve 0))((')( =+− xhhfhf  as [ ] 0'1 ' =−− xff f
hf . There are three

possibilities for the limiting behavior. First, if 0→x , then h  must go towards some
positive number. Second, if 0→h , then x  must approach some positive number. The last
possibility is that the curve goes through the origin. In the first case, [ ] 01lim '

0
>−

→ f
hf

x
f

when h  is a finite positive number. In the second case [ ] 01lim '

0
=−

→ f
hf

h
f , and 'u  is

evaluated at ))('(lim
0

xhf
h

−
→

, which is minus infinity. Thus equation must go through the

origin. Q.E.D.

Lemma 2.

We let 0→x . Then the resource growth function in the right-hand side of (18) in the text
approaches some number. For the equation to hold the value of the left-hand side must then
also approach some number. This happens for some finite h since the argument of the
utility function can be rewritten as [ ]f

hff ′−1  (>0). Assume the contrary, i.e. that h  is zero

when 0→x . From Lemma 1 we know that [ ] 01lim '

0
=−

→ f
hf

h
f . So when 0→x  and 0→h ,

the argument in the utility function approaches ))('(lim
0,0

xhf
hx

−
→→

, which can be zero,

minus infinity, or some negative number, so that the Euler equation cannot hold. Q.E.D.

*   *   *   *   *   *

Appendix 2: Stability with Quasi-Linear Preferences

We analyze the stability of system (14) and (16).

x G x ht t t+ =1 ( , )  A.1

h F x ht t t+ =1 ( , ) . A.2

The stability of the steady state depends on the eigenvalues of the Jacobian matrix of the
partial derivatives
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J =
G G
F F

x h

x h









 .

Calculating the partial derivatives of the Jacobian matrix we get

G x h g xx t t t( , ) ' ( )= +1 , G x hh t t( , ) = −1,

[ ] [ ] [ ]
[ ] 








+

+−
+

+−=
+

+

+

−
+ 2

1

1

1

2
1

1 )('1
)('1)('')(')('

)('1
)('1)(''))('()(''),(

t

tttt

t

ttt
tttx xg

xgxgcuhf
xg

xgcuhfhfhxF β

[ ] [ ]








+

+−+
+

=
++

−
+ )('1

))()(('')(')('')('
)('1
)(')('')(''),(

11

1
1

t

tttttt

t

tt
ttth xg

xgxhfhfcuhf
xg

cuhfhfhxF β

[ ] 







+

+
+

+−
+ 2

1

11
1 ))('1(

)('')(')(')(''
t

ttt
t xg

xgcuhfhfβ .

Evaluating the elements of the Jacobian at the steady state and utilizing the facts that
)1( gu ′+=′ β  and h g=  we obtain

G x h gx ( , ) '= +1 G x hh t t( , ) = −1

0
''

''''')'(),(
2

<−−=
f

gfufhxFx β
β

0
'')'1(

'''
)'1(

)('''
'')'1(

'')'(1),(
2

>
+

+
+

+−
+

+=
fg

gf
g

hxuf
fg

ufhxFh ββ

The determinant, D, and the trace of the Jacobian matrix, T, are D = G F G Fx h h x− , and

hx FGT += , respectively. The characteristic polynomial is

p G F G F G Fx h x h h x( ) ( ) ( )λ λ λ= − + + − =2 0 , A.3

or expressed in terms of D and T

p T D( )λ λ λ= − + =2 0 . A.4
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From the stability theory of difference equations [2, pp. 63-67] we know that for a saddle
point, the roots of p( )λ = 0  need to be on both sides of unity. Thus we need that
D T− + <1 0  and D T+ + >1 0  or D T− + >1 0  and D T+ + <1 0 . The straightforward
calculation yields at the steady state

0)(''''1 >+−+=
β

hxufgD , A.5

1
'')'1(

'''
)'1(

)('''
'')'1(

'')'('2
2

>
+

+
+

+−
+

++=
fg

gf
g

hxuf
fg

ufgT
ββ

 A.6

meaning that D T+ + >1 0  holds. Calculating D T− +1  gives

))'''''(
'')'1(

'
'1

')('''(11 guf
fg

f
g

ghxufTD β
β

+
+

−





+

+−=+− . A.7

To determine the sign of D T− +1  we compare the slopes of the growth curve and the
consumer optimization condition at the steady state, calculated in equations (21) and (22)
in the text (cf. Figures 2 and 3). At the larger steady state stock consumer first-order
condition cuts the growth curve from below and we have

)(''''
'''''
xhfu

gfug
+−

+<′ β . A.8

This can be rearranged to yield

0)'''''('')(''''' >+−+− guffgxhfuf β . A.9

Finally, dividing both sides by ′′ <f 0  and 1 + ′g , we get

0
)'1(''

)'''''('
'1

')(''' <
+
+−

+
+−

gf
guff

g
gxhuf β , A.10

so that D T− + <1 0 , which is what is needed for a saddle point. Reversing A.8 leads to
the condition D T− + >1 0 , where the steady state is a source (both eigenvalues exceed
one).

*   *   *   *   *
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Appendix 3: Efficiency

To solve the social planner’s problem (PE) we form the following Lagrangean function

[ ] [ ] [ ] +−+−−+−−+++= ))()()()( 1
0
212121

0
2 hxgcchfcchfccucL λθµβφ    B.1

[ ]hxxgx −−+ )( 112λ ,

where µ , θ , 1λ , and 2λ  are nonnegative multipliers. Applying the Kuhn-Tucker theorem
part of the first-order conditions are

θµ +=)(' 1cu  B.2

 µβ =  B.3

 θφ =  B.4

 0)(')(' 21 =−−+ λλθµ hfhf  B.5

 21 )(' λλ =xg . B.6

 
If the weight of the initial old generation, φ , is positive, we have θµ +=)(' 1cu . Taking
into account B.3, and the fact that βRcu =)(' 1 in steady state competitive equilibrium, the

interest factor can be expressed as 11 ≥+=
β
θR . Since )('1 xgR +=  holds in a steady

state competitive equilibrium, efficient equilibria are characterized by the condition
1)('1 >+= xgR  i.e. 0)(' ≥xg , while those equilibria with 0)(' <xg  are inefficient.

*  *  *  *  *

Appendix 4: Stability and Uniqueness with Logarithmic Preferences

We first show that the difference equation (37) is upward sloping. Taking into account (11)
we can rewrite (37) as

[ ] =+−++− ))(()()(' xghxgxghxhf  C.1
[ ][ ])(')(')(')()(('1 xghfxhfhfxghxg −−+−+β .

Denoting the future value of x  by 'x  (i.e. )(' xghxx +−= ) we get
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[ ] [ ] [ ]{ }dhxgxffxgxgxffxgxgfxgxf ))(('''))'('1())((')'(''))'('1(')'(''' +−+−+−++−+ ββ

[ ]{ } dxxgffxgxgxffxgxg ))('1(''))'('1())((')'(''))('1( +−+−+−+= ββ  C.2

Denoting the term in braces on the left-hand side by Y (<0) and on the right-hand side by Z
(<0) we obtain

[ ]{ }
{ } 0)('1)(' >+==
Y

ZxgxP
dx
dh . C.3

Note that [ ])'1(1)('' ggxfZY ++++= β , which means that '1)('0 gxP +<< .

Next we evaluate C.3 in the steady state, where 'xx = . To prove the stability of the steady
state we need to have )(')('1)(')('1 xgxPxPxg >⇔<−+ . This condition holds for all
inefficient equilibria (where 0)(' ≤xg ). As for the stability of efficient equilibria (where

0)(' >xg ), note first that if the steady state equilibrium is unique, then the upward sloping
Euler equation must cut the resource growth curve from below so that the inequality (25)
holds.13 As will be shown below this is equivalent to the stability condition )(')(' xgxP > .

First we characterize the Euler equation a bit more. In the logarithmic case the Euler curve
goes through the point { }0,0 == xh .

Lemma A.1. The point { }0,0 == xh  fulfills the equation

[ ] [ ][ ]))((')()('1)()(' hxhfhfxgxgxhf +−+=+ β .

Proof. Suppose the Euler equation does not go through the origin. Then there are two
possibilities for the limiting behavior. Either (i) if 0→x , then h  must go towards some
positive number or (ii), if 0→h , then x  must approach some positive number. In the case
(i) the right-hand side of C.1 approaches some number, because )('0

lim xgx→ is finite, but the
left-hand side approaches zero and equation C.1 cannot hold. In the case (ii) when 0→h
and 0→x  the right-hand side approaches minus infinity, since ∞=→ )('0

lim hfh , but the left-
hand side approaches )))(('(lim

0,0
hxhf

hx
+

→→
, which can be zero, infinity, or some positive

number. Q.E.D.

•  Proof of stability:

Total differentiation of the Euler condition yields

                                                
13 Note that this is a necessary (but not sufficient) condition for uniqueness.
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[ ]{ }
[ ] 0

)'1(1)(''
')'1()1()(''' >

+++
++−+−=

ghxf
fghxffg

dx
dh

β
ββ . C.4

Note that this expression is not the same as the expression for )(' xP , since the latter ex-
pression was derived for points, which are valid outside the steady state, too.

For a unique steady state we need to have the slope of the Euler equation to cut the growth
curve from below, i.e.

[ ]{ }
[ ] '

)'1(1)(''
)'1(')1()(''' g

ghxf
gfhxffg >

+++
++−+−

β
ββ . C.5

Defining [ ] 0)'1(1)('' <=+++ aggxf β  makes it possible to re-express the slope of
)(xP  as

[ ]{ }
{ }aZ

ZxgxP
+

+= )('1)(' , C.6

and the condition C.5 as

'g
a
Z > , C.7

where Z  = [ ]{ } 0'))('1()1())((')('' <++−+− fxgxgxffxg ββ  at the steady state. Given
C.5 we want to show that ')(' gxP > , i.e.

[ ]{ }
{ } ')('1 g

aZ
Zxg >

+
+ . C.8

We have 
'

1'
gZ

ag
a
Z <⇒> . Adding unity to both sides gives 

'
'1

g
g

Z
aZ +<+ , so that

')'1( g
aZ

Zg >
+

+  Q.E.D.

•  Proof of uniqueness of the steady state with logarithmic preferences when the
output elasticity is constant, i.e. αhhf =)( :

Rewriting equation (36) from the text at the steady state we get

[ ])('1
)(')(')(

)(')(' xg
hxfhhfhf

xhfhhf +=
−−

+ β . C.9



25

Since )(xgh =  in the steady state, both sides of equation C.9 can be viewed as functions of
x . The RHS is a decreasing function of x . We develop the LHS as follows

1
'

1

)(')(')(
)(')('

−−

+
=

−−
+

h
x

hf
f

h
x

hxfhhfhf
xhfhhf , C.10

where the elasticity of output with respect to harvest is α1'/ =hff . Using this we can
rewrite C.10 as follows

1
)(

1

1
)()(

−−

+
=

xg
x

xg
x

xLHS

α

. C.11

A straightforward differentiation yields

2
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)11(

)'()1(

11

)'(
)('

−−








 −+
+

−−

−
=

g
x

g
x
g

g
x

g
x

g
x

g
x
g

g
x

xLHS

αα

.      C.12

Since the growth function is strictly concave, 0)(' >xLHS , and we have a unique equilib-
rium. Note that xhfhhfhf )(')(')( −−  is the first period consumption in a steady state,

and thus it is positive, as is then the expression 






 −− 1
'

'
h
x

hf
fhf  Q.E.D.

*  *  *  *  *
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