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ABSTRACT:  R&D activities by one industry often have positive effects on the productivity 

performance of other industries, as a consequence of technology spillovers. Econometric 

problems (such as multicollinearity), however, have prevented researchers from identifying 

the industries that have been responsible for the most important technology spillovers. This 

paper proposes an alternative estimation approach (Generalized Maximum Entropy 

econometrics), which can cope with datasets characterized by a high degree of 

multicollinearity. For a number of industries, rates of return to R&D expenditures by other 

industries are estimated on a bilateral basis. Furthermore, productivity effects of spillovers 

from the foreign counterparts of the industry are estimated. The analysis is done for eighteen 

industries in twelve OECD countries in the period 1976-1999.   

 
 
 
 
 
 



1. Introduction 
 
Knowledge has some characteristics of a public good. It is partly nonrival and partly non-
excludable, which implies that it can give rise to externalities. In mainstream theory, externalities 
often call for public policy. If the externalities are mainly positive, governments should take care 
of additional supply of the public good. Since most theories stress the positive externalities of 
knowledge, its purposeful production (by means of R&D activities) should be stimulated. Since 
the extent and nature of R&D activity varies considerably across industries, policy effectiveness 
would be helped considerably if the industries that generate the most important externalities (or, 
‘spillovers’) could be singled out. Despite the by now vast empirical literature on this topic, one 
cannot but observe that this identification objective has still not been attained. This paper 
proposes a less traditional approach, to come closer to the production of a matrix that indicates 
the productivity effects industries experience as a consequence of R&D activities done in each of 
the remaining industries. Productivity effects of foreign counterparts will also be estimated. 

Due to econometric problems (i.e. multicollinearity), empirical research into productivity 
effects has so far relied on composite spillover variables. Constructing such variables involves the 
definition of a weighting scheme, to approximate the relevance of industry-specific contributions 
to the industry under consideration. Including relevance weights is important, since it is 
implausible to assume that the electronics industry will enjoy similar benefits from a euro spent 
on R&D in the computer industry to those from a euro spent on R&D in the furniture industry. 
Several weighting schemes have been proposed, however, based on different channels of 
technology flows. Studies like Los and Verspagen (2000) compared results for a couple of such 
composite variables to find out which type of spillovers would have the most prominent effects, 
but did not find very strong results. Keller (1997, 1998) went much further, by arguing that the 
theoretically underpinned composite variables do not perform any better than composite 
variables based on randomly chosen weights. Although Keller’s results were not left uncriticized, 
a very inconvenient situation emerged: almost all studies (see Nadiri, 1993, and Mohnen, 1996, 
for early surveys) agree that technology spillovers have substantial positive effects on 
productivity, but it is impossible to assess which industries are best at “radiating” productive 
spillovers and whether the most important spillovers are of the rent spillover or the knowledge 
spillover kinds. 

This paper attempts to shed new light on the discussion, by adopting a non-classical 
regression approach, which does not suffer from the problems that caused researchers using 
classical regression analysis to use composite spillover variables. Generalized Maximum Entropy 
(GME) econometrics can deal with multicollinearity in data (see the excellent introduction by 
Golan et al., 1996). We applied our GME analysis on data for 12 developed countries, for the 
period 1976-1999. The data on industry-level value added growth and labor inputs were taken 
from the very recent EUKLEMS (2007) database. OECD’s STAN-ANBERD dataset was used 
as the source for the industry-level R&D data. Our analysis cannot tell which spillover channels 
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have had the strongest impact, but it gives indications about the main suppliers of technology 
spillovers for each of the 18 manufacturing industries for which we run the analysis. 

The paper is organized as follows. Section 2 reviews the general setup of studies into the 
productivity effects of technology spillovers and discusses the current state of affairs. In Section 
3, we give an introduction in the intuition behind GME estimation and present the equations we 
will estimate using GME techniques. Section 4 is devoted to a brief discussion of the data, after 
which the estimation results are presented in Section 5. Section 6 concludes.             
 
 
2. A Brief Non-Chronological History of Spillover Effects Estimation 
 
Since the early 1960s, many studies have tried to estimate the empirical importance of technology 
spillovers for productivity growth. Generally, these productivity studies start from a production 
function, most often an extended Cobb-Douglas specification. Not only the traditional 
production factors physical capital and labor are included, but also two kinds of R&D stocks: 
R&D investments by the unit (firm, industry, region or country) itself and R&D obtained 
through spillovers from other units (so-called indirect R&D). If we denote the former by R and 
the latter by IR, the production function looks like 
 

( )jt jt jt jt jtQ A IR K L Rη α β γ=         (1) 
 

Q stands for value added, A is a constant, K indicates the stock of physical capital, L denotes 
employment, t is the time index and j is the unit index. The elasticities η, α, β and γ can be 
estimated, if sufficient observations on each of the variables are available. Alternatively, β can be 
measured as the labor share in total income (this approach is commonly known as ‘growth 
accounting’). If constant returns to scale with respect to capital and labor are imposed, α equals 
1-β. In this way, a measure for total factor productivity (TFP) growth is obtained, and this can be 
related to the changes in both R&D stocks.1 Both approaches yield estimates for output 
elasticities with respect to indirect R&D, (dQ/dIR)⋅(IR/Q), or rates of return to indirect R&D, 
dQ/dIR. These are considered to be measures for the impact of spillovers. As explained by Van 
Meijl (1995), estimating a common rate of return is often less data-demanding than estimating a 
common elasticity. Under the (admittedly strong) assumption that R&D stocks are not subject to 
depreciation, rates of return can be estimated by linking total factor productivity growth to R&D 
intensities, defined as RE/Q and IRE/Q (E indicates expenditures).2  

                                                           
1   A third approach is to use the dual of the production function, i.e., the cost function. Changes in the costs per 

unit of output are regressed on changes in the prices and quantities of various inputs (see Bernstein and Nadiri, 
1988). 

2  This procedure is sometimes referred to as the ‘Terleckyj transformation’, after Terleckyj (1974). 
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In principle, the simplest way to estimate the influence of R&D efforts in other industries is 
the one applied by Bernstein and Nadiri (1988). They specify one indirect R&D variable for each 
of the (other) industries. For example, the decrease in unit costs in the U.S. chemical industry is 
related to the R&D expenditures of the industries that manufacture non-electrical machinery, 
electrical products, transportation equipment and scientific instruments. This approach lets the 
data speak for themselves to see which (other) industries influence the productivity of a particular 
industry. The method has one important drawback: most industry R&D budgets have risen 
during the last decades and are relatively high for the same set of countries, which causes huge 
multicollinearity problems. The method we propose below could be seen as a way of following 
up to the lead by Bernstein and Nadiri (1988), using an alternative regression technique. 

Since classical regression analysis is not suitable to solve the problems encountered by 
Bernstein and Nadiri, many authors have proceeded along an alternative avenue of research. 
They continued in the way proposed much earlier already by Terleckyj (1974), using weights to 
construct aggregate indirect R&D investment variables (IRE): 
 

∑ω=
i

iijj REIRE   ∀i≠j       (2) 

 

In this expression, i and j denote the ‘spillover producing’ and ‘spillover receiving’ units, 
respectively. The weights ωij are the crucial elements distinguishing the different approaches to 
measuring spillovers. They indicate to what extent the R&D undertaken by i may be considered 
to be part of the indirect R&D expenditures of j. A number of weighting schemes have been 
proposed. We will describe them briefly (see Los and Verspagen, 2007, for much more detailed 
discussions).3 
 
Unit Weights 
In his firm level study emphasizing the effects of intraindustry spillovers, Bernstein (1989) 
circumvents the weighting problem by setting all weights equal to one. So did Los and Verspagen 
(2000) in their attempt to evaluate the empirical performance of four different interindustry 
spillover measures. The most important disadvantage of this method is that no account is taken 
of the theory of spillovers, which argues that due to differences in technological opportunities, 
appropriability of knowledge, differences in trade intensities among industries etc., the weights 
should in fact be very heterogeneous. 
 
Weights Based on Transaction Input or Output Shares 
Early attempts to include spillovers in productivity analysis at the industry level (Terleckyj, 1974) 
used trade statistics to construct industry weights ωij. Input-output tables are converted into 
                                                           
3  See Griliches (1979, 1992) for classic contributions on channels through which innovations in one industry can 

affect the (sometimes misperceived) productivity performance of other industries. Van Pottelsberghe (1997) 
expresses views that are not in every sense in line with Los and Verspagen’s (2000, 2007) opinions. 
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tables of output coefficients. Such coefficients indicate the share of industry i’s output delivered 
to industry j. Next, R&D weights are set equal to the output coefficients, except for the diagonal 
elements. Terleckyj also calculated similar output coefficients from capital flow matrices to 
account for interindustry investment flows. In this output shares approach, ‘second-round’ 
effects might also be important. This occurs when spillovers are transmitted to industries down 
the production chain, for example, when advances in semi-conductors spill over to the computer 
industry, and from there to the banking industry (see, e.g. Sakurai et al., 1997).  

Input-output tables are also used to compute spillover measures in which the ωijs are defined 
as the input coefficients aij. Wolff (1997), among others, used this measure in an interindustry 
context. In their highly influential international spillover study, Coe and Helpman (1995) 
construct a similar measure (using import weights). A disadvantage of these approaches is that 
only trade-related knowledge flows are taken into account. It is well-known that several other 
channels provide opportunities for technology spillovers. 
 
Weights Based on Patent and Innovation Output Shares 
Scherer (1982) pioneered another approach, because he felt that economic transactions often do 
not entail exchange of technology. A procedure based on true technological data should be used. 
First, he assigned a sample of patents granted in a certain period to an industry-of-origin, i.e., the 
producer of the technology described in the patent. Next, all patents were assigned to one or 
more industries-of-use, on the basis of information in the patent document.4 Finally, output 
shares were computed in a way directly comparable to the way output coefficients are 
constructed for traditional input-output tables based on economic transactions.  

Numbers of innovations could be used as an alternative for patent counts. Sterlacchini (1989) 
used a large innovation survey undertaken by Robson et al. (1988). In this survey, innovations 
were assigned to an industry-of-origin (or industry-of-manufacture) and an industry-of-use. Next, 
he used this ‘innovations input-output table’ to calculate innovation share weights ωij, denoting 
the share of innovations of industry i used by industry j. DeBresson et al. (1994) followed this 
lead. A disadvantage of both approaches is that the focus is on innovations traded between 
industries, usually embodied in product innovations. Knowledge flows not related to economic 
transactions are not considered. In this sense, the main disadvantage of input-output based 
weights is not addressed by these methods. 

 
Weights Based on Patent Information Output Shares 
Verspagen (1997a) derived different spillover measures from patent office documents. Using a 
concordance that maps patent classification codes onto manufacturing industry classes, 

                                                           
4  Johnson and Evenson (1997) proposed a concordance that maps patent classification codes assigned by the 

Canadian Patent Office onto industry codes, which enabled them to construct their matrix without the need to 
examine every patent document individually. 
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Verspagen derived the industry most likely to have produced the knowledge described in the 
patent document, and the industries that have been most likely to benefit from this knowledge 
(not the patented product itself).5 This yielded a ‘patent information input-output table’ similar in 
format to the ones described above. The ωijs were then, set equal to the output coefficients of 
this table. 

Verspagen constructed a second type of patent information input-output tables using patent 
citations. The patent citation output share weights method has the disadvantage that it relates to a 
very specific channel of spillovers and implicitly assumes that each cited patent is equally relevant 
to the spillover receiver.  
 
Weights Based on Technological Proximity 
The first spillover measure explicitly focusing on non-traded knowledge spillovers was 
constructed by Jaffe (1986). He argued that knowledge generated by R&D investments flows into 
a ‘spillover pool’, which is accessible to all firms. Some firms or industries benefit more from 
firm i’s contribution to the pool than others, because not all knowledge is relevant to their R&D. 
To measure the part of the contribution of the ith firm that is relevant to firm j, Jaffe (1986) used 
a ‘technological proximity’ measure: 
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Equation (3) gives the cosine of two vectors consisting of the shares of the F patent classes in the 
‘patent portfolio’ of a firm. Goto and Suzuki (1989) chose a similar spillover measure in their 
productivity study at the industry level, but used Japanese information on the shares of product 
classes to which the R&D of an industry is devoted, instead of patent classes.6  

  A disadvantage of these methods is that symmetry is imposed, while it is very awkward to 
suppose that if industry i would generate knowledge useful for industry j, industry i will 
automatically benefit to the same extent from knowledge generated in j. 

 
The discussion above shows that a number of approaches have been adopted to weight R&D 
expenditures to arrive at composite indirect R&D or spillover variables. The main result of most 

                                                           
5  Whereas a patent originating from the aircraft industry might have the airlines industry as its main beneficiary in 

terms of the use of the patented product, the main user of the knowledge documented in the patent might be the 
motor vehicles industry.  

6  Comparable approaches can be found in Adams (1990), who used the shares of various categories of scientists in 
the research work force of an industry as determinants of its position ‘in technological space’, and in Los (2000), 
who proposed to compute weights analogously on the basis of columns of input-output tables. 



 

 

6

studies is that technology spillovers do have a substantive impact on productivity growth, 
irrespective of the weighting scheme applied. As a matter of fact, Keller (1997) claimed that most 
sets of randomly generated weights yielded virtually identical rates of return and goodness of fit 
statistics. Later on, in a critique of the influential article by Coe and Helpman (1995), he also 
claimed to find such a result for the effects of international R&D spillovers (Keller, 1998). This 
result got a lot of attention. Although Keller’s claims had to be modified somewhat because of 
the peculiar way in which he had constructed his random weights, the bottomline was a negative 
one: Unit weights as discussed above did not yield better or worse results than sets of weights 
constructed along ways grounded in theory. This more or less led to a standstill with regard to 
this kind of research. Case study research into sources of technology for specific industries and 
countries largely replaced systematic comparisons. 

In our view, not much more can be gained from the composite spillover variable approach. 
We feel, however, that new developments in non-classical econometrics make it possible to deal 
with data characterized by strong violations of the requirements for sensible application of 
classical least squares approaches. Hence, we propose to return to the original Bernstein and 
Nadiri (1988) approach of specifying an equation with several industry-specific R&D variables in 
the right hand side of the equation. These equations will be riddled with multicollinearity 
problems. Since Generalized Maximum Entropy methods are capable of dealing with problems 
like these, we aim at estimating rates of return to R&D expenditures by individual industries, 
including by the industry considered. Furthermore, we will estimate the productivity effects of 
R&D expenditures by competing industries abroad.        
 
 

3. The Maximum Entropy Approach 
 

In this section, the basics of (Generalized) Maximum Entropy (ME) econometrics will be 
introduced. We will limit our discussion to methods used to obtain estimates for the type of 
linear regression models we use to assess the productivity effects of technology spillovers. More 
extensive introductions can be found in Kapur and Kesavan (1993) and Golan et al. (1996). 

The essential property of the ME principle is that it chooses the ‘most uncertain’, ‘most 
uniform’ or ‘least information-requiring’ distribution for the estimate of a parameter that agrees 
with the data observed. This is fundamentally different from a more classical least squares 
approach, in which several assumptions on the distribution of the error term must be taken for 
granted. The main idea is that a random variable (such as an estimator) z can take on K values (z1, 
…, zK), with unknown probabilities p = (p1, …, pK). Following the formulation proposed by 
Shannon (1948), the entropy of this distribution p  is: 

 

∑
=

−=
K

k
kk ppH

1

ln)(p  (4) 
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The entropy function H measures the ‘uncertainty’ of the outcomes of the event. This function 
reaches its maximum when p has a uniform distribution: pk = 1/K for all k. On the other 
extreme, this function takes a value of zero (no uncertainty) when the probability of one of the 
outcomes goes to one. If some information about the variable (for example, observations on the 
dependent and independent variables) is available, it can be used as constraints in a linear 
programming model aimed at maximizing (4). Each piece of information will lead to a Bayesian 
update of p. In the linear regression framework, the estimator of a coefficient is found by 
computing the expected value of z, given p. It is important to note that even for a situation with 
only one observation, the ME approach yields an estimate of the probabilities, since this 
observation will generally lead to a difference between the a priori uniformly distributed p and 
the posterior p. Hence, in situations in which the number of observations is not large enough to 
apply classical econometrics, this approach can be used to obtain robust estimates of unknown 
parameters. Standard errors (required to judge the statistical significance of the point estimates) 
can be obtained as well, provided that the number of observations exceeds the number of 
parameters estimated.7  In Appendix A (and the references therein), information can be found 
about the statistical properties of the GME estimators used in this paper. 

The problem at hand is the estimation of a linear model where a variable y depends on R 
explanatory variables xl: 

 
eXβy +=  (5)

 
in which y is the ( )1×N  vector of observations for y, X is the ( )N R×  matrix of observations 
for the R explanatory variables, β  is the ( )1R×  vector of unknown parameters ( )1,..., Rβ β ′=β  
to be estimated, and e is the ( )1×N  vector with random disturbances. As mentioned, each rβ  is 
assumed to be a discrete random variable in the GME approach. A priori beliefs about their 

2K ≥  possible realizations are included in the estimation procedure by means of supporting 
vectors ( )1 2, , , 'r r r rKb b b=b K  with corresponding probabilities ( )1,..., 'r r rKp p=p , for r = 1, …, 
R. The vectors br are based on the researcher’s a priori beliefs about the likely values of the 
parameters. Now, vector β  can be written as: 
  

'
1 1

'
2 2
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R RR

β
β
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1

2

pb 0 . 0
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β Bp
... .... . . .

p0 0 . b

 (6)

 

                                                           
7  More precisely, if the observations on the independent variables are contained in the matrix X, X’X should be of 

rank R or higher, if R is the number of unknown parameters. 
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Then, given the vectors pr the initial estimate for each parameter is given by 
 

,...,R  rpb
K

k
rkkrrr 1 ;

1

==′= ∑
=

pbβ  (7) 

 

For the random term, a similar approach is followed. To express the lack of information about 
the actual values contained in e, we assume a distribution for each ie , with a set of 2Q ≥  values 

( )1,..., 'i i iQv v=v  with respective probabilities ( )1 2, ,..., 'i i i iQw w w w= .8 Hence, we can write: 
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 (8) 

 
and the value of the random term for an observation i equals 
 

'

1

; 1,...,
Q

i i i iq iq
q

e v w i N
=

= = =∑v w  (9) 

 
Consequently, model (5) can be transformed into: 
 

= +y XBp Vw  (10) 

 
Now, the estimation problem for the unknown vector of parameters β  is reduced to the 
estimation of NR +  probability distributions of the support vectors, and the following 
constrained entropy maximization problem can be solved to obtain these estimates: 
 

, 1 1 1 1

Max ( , ) ln ln
QR K N

rk rk iq iq
r k i q

H p p w w
= = = =

= − −∑∑ ∑∑p w
p w  (11a) 

subject to:  

1 1 1
;   1,...,

QR K

ri k rk iq iq i
r k q

x b p v w y i N
= = =

+ = =∑∑ ∑  (11b) 

                                                           
8 The distribution for the errors is usually assumed symmetric and centered around 0. Therefore 1i iQv v= − . A 

usual procedure for giving values to this vector is following the so-called 3-sigma rule, which amounts to fixing 
the extreme bounds as ±3 times the standard deviation of variable y. In our empirical analysis, we will assume 
identical a priori support vectors for each of the random disturbances. 
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1
1;   1,...,   

K

rk
k

p r R
=

= =∑  (11c)

1
1;   1,...,

Q

iq
q

w i N
=

= =∑  (11d)

 
The restrictions in (11b) ensure that the posterior probability distributions of the estimates and 
the errors are compatible with the observations. The restrictions in (11c) and (11d) are just 
normalization constraints. The estimated value of rβ  will be (cf. equation (7), but the vectors p 
now reflect a posteriori distributions): 
 

,...,R  rpb
K

k
rkkr 1 ;

1

== ∑
=

β  (12)

  
For GME regressions, a pseudo-R2 can be computed based on the concept of normalized 
entropy (see Golan et al., 2001). More specifically, the following formula has been applied: 
 

⎥
⎦

⎤
⎢
⎣

⎡
−=

)(max
)(

1R- 2

pH
pH

pseudo  (13)

 
This expression compares the value of the entropy function obtained in the ME program with 
the maximum value Shannon’s entropy could take, given the number of probabilities to estimate. 
A value equal to zero means that the entropy is maximum, which would mean that the 
information (the data sample) included as constraints in the ME program are not informative at 
all. The closer the value of this pseudo-R2 to one, the more information the sample contains. 
Multiple types of pseudo-R2s can be reported, the differences depending on the inclusion or 
exclusion of entropy related to the error term. In the results documented below, we report 
pseudo-R2s related to the coefficients to be estimated only, following Golan et al. (1999). 
 
 
 
4. Data Issues 
 
We use the methodology introduced above to estimate equations resembling production function 
(1), for 18 industries. The industry classification is given in Appendix B. Our choice for this 
specific aggregation level is mainly driven by data availability in the EUKLEMS (2007) database, 
which is the most extensive set of data currently available. Despite the opportunities offered by 
this database, we are faced with some data restrictions. In order not to loose too much industry 
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detail, we cannot include growth of capital intensities as a source of productivity growth. 
Although it does not fit standard mainstream production theory, one might argue that a lot of 
investment is induced by the emergence of improved or new capital goods. This would imply that 
parts of the returns to R&D carried out in capital goods industries are ‘misallocated’ to the 
investing industry if capital intensity is included as a separate determinant. 

Further, since the number of countries for which the required data are available is relatively 
small, we decided to consider three subperiods, 1976-1983, 1984-1991 and 1992-1999. This 
leaves us with 36 observations per industry, since data for Denmark, Finland, France, Germany, 
Ireland, Italy, Japan, The Netherlands, Spain, Sweden, the UK and the US have been available. 
For each of the three time periods we added a dummy, which yields the set of regression 
equations 
 

18

2 2 3 3
1

ˆ
ij

idt
jctD F d c

i i i i ict
j ict ictict

REREQ d d
L Q Q

α β β γ γ ε≠

=

⎛ ⎞
= + + + + +⎜ ⎟⎜ ⎟

⎝ ⎠

∑
∑   i = 1, …, 18; t = 1, 2, 3 (14) 

 
The abovementioned subperiods are indicated by t. The left hand side of the equation represents 
the annual average labor productivity growth for industry i in country c, as taken from the 
EUKLEMS (2007) database, variable LP_I (gross value added per hour worked, volume index).9  

The second term of the right hand side of (14) contains eighteen R&D intensities and the 
corresponding rates of return (the D

ijβ  coefficients). These refer to R&D expenditures by 
domestic industries, including the industry under consideration (i) itself. The third term captures 
important parts of the effect of foreign spillovers. In order to remain able to derive standard 
errors, the limited number of observations led us to the decision not to estimate effects of 
international interindustry spillovers, but to focus on the effects of international intraindustry 
spillovers (as opposed to, for example, Verspagen, 1997b). Neither did we include separate 
effects of R&D spillovers from individual countries, which would have been in the spirit of, 
among others, Coe and Helpman (1995). The effects of international intraindustry spillovers are 
captured by the rate of return F

iβ . 
All R&D expenditures were taken from OECD’s STAN-ANBERD database. In order to 

arrive at an industry-level classification compatible with the EUKLEMS productivity data some 
updating procedures comparable to EUKLEMS procedures had to be adopted, for instance in 
linking ISIC2 and ISIC3 industries to EUKLEMS industries.10 The value added figures were 
taken from EUKLEMS (2007), variable VA. Both the R&D expenditures and the value added 
indicators are expressed in national currency and in current prices. To arrive at average 

                                                           
9  See Timmer et al. (2007) for an overview of the data and a description of construction procedures. 
10  The R&D dataset is available from the authors on request. 
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observations for the subperiods, the annual R&D expenditures for the eight year-periods were 
added and so were the value added figures, after which the ratios of the sums were computed.11  

The two dummy variables are included to take differences in technological opportunities and 
other period-specific differences into account. The reference period is the early period, 1976-
1983. By adopting this specification, we assume that the rates of return to R&D remained equal 
over time. We acknowledge the restrictive nature of this approach, although mainstream 
economists would argue that profit-maximizing firms with rational expectations would lower 
their R&D expenditures in periods in which returns to a given level of R&D investments decline.   

Alternatively, we could have opted for a specification in which we would have looked at just 
one, 24 year-period. To obtain a reasonable number of degrees of freedom, we should have 
assumed that industries within a few categories would have had identical rates of return to R&D. 
This approach was followed by Verspagen (1997a), who assigned industries to the categories 
“high-tech”, “medium-tech” and “low-tech”. We feel such an approach is more restrictive than 
ours, since it would imply that returns would be equal even though R&D activities in different 
industries are characterized by different degrees of uncertainty (and, therefore, risk). 

We estimated equation (14) for 18 manufacturing industries. The industry classification can 
be found in the Appendix B. 
 
 
5. Results 
 
In order to estimate equation (14), we specified a maximum entropy problem shaped like 
equations (11). We took a common support vector with 3 elements (0, 0.5, 1) for all D

ijβ  

parameters, for all industries i. This implies that we assume that the range of feasible rates of 
return for own R&D efforts in industry i is a priori the same as the rate of return to R&D 
expenditures in other industry j. With this support vector we are impose our belief that only 
nonnegative rates of return of R&D are feasible in the medium- to long-run and averaged over 
firms in a country. We cannot think of a reason why R&D activity in one sector could affect the 
medium-run labor productivity performance in an industry negatively. Additionally, we set an 
upper bound to the rates of return of 100%. In view of the high rates of return to knowledge 
spillovers (118-147%) as reported by Scherer (1982), this might seem restrictive. If so, this would 
be indicated by the estimation results, because the additional information produced by the 
observations would push the estimates close to the 100%-bound set by the support vector.   

A common support has been chosen too for the intercept αi and the time dummies γi2 and 
γi3. For these parameters, we took (-5, 0, 5) as the common support. The support vector for the 
rates of return to foreign intraindustry spillovers F

iβ  was uniformly set as (-1, 0, 1). Finally, for 

                                                           
11  We could also have opted for a fully dynamic specification. This would have required the determination of a lag 

structure, which we consider an issue beyond the scope of this paper. 
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specifying the vector vi of feasible values for the error term, a three-point vector centered around 
0 has been taken in each regression, following the 3-sigma rule of variable y. This is common 
practice in most empirical studies that apply the ME approach (following Pukelsheim, 1994). 

We first attempted to estimate (14) by means of traditional least squares techniques. We do 
not present the full set of results for reasons of space, but discussion of a few results suffices to 
conclude that the estimation problem at hand is not suitable to be tackled by OLS. Hardly any 
rate of return to own R&D is significant (3 out of 18, at 10%) and estimated rates of return to 
R&D done in other industries range from -2357% to +3857%. Many of these huge (in an 
absolute sense) estimates are not significant, however. Foreign intraindustry spillovers have 
significant effects in just 3 industries. The R2s range from 0.42 to 0.78. Thus, the results suggest 
that R&D intensities are able to explain a substantial part of labor productivity growth rates 
indeed, but no reasonable interpretation can be given to estimates for single coefficients.     

Tables 1 reports the results for the estimations of equation (14) obtained by GME along the 
lines set out above. The estimates for the rates of return of the own R&D intensity in each 
industry are emphasized. The final columns shows the pseudo-R2 values.  

The own R&D efforts are pointed out as a relevant variable for explaining variations in labor 
productivity for most industries. Except for industries 2 (“textiles, leather and footwear)”, 3 
(“wood”), 10 (“metal products”) and 13 (“electrical machinery”), the estimates of the return of 
rate of the own R&D intensity are higher than zero. Furthermore, in almost all industries the 
own R&D intensity appears to be the highest rate of return estimated. In other words, although 
our neutral prior inserted into the GME program suggests that the R&D in one industry was 
expected to produce the same rate of return (50%, since 0.5 is the central value in the support 
vector) as R&D investments in any other industry, the additional information contained in the 
observations yields estimates that differ from our prior and are in line with intuition. One might 
expect that purposefully conducted R&D will have higher rates of return than R&D done by 
other industries, with different objectives in mind.  We find only two cases in which the upper 
bound of our support vectors (reflecting a rate of return of 100%) might have been restrictive. 
The estimated rates of return in “fuels” (5) and “radio, TV and communication equipment” (14) 
amount to 94% and 86%, respectively. Sensitivity analysis with respect to the support vectors 
might yield evidence that the actual rates of return in these industries could have exceeded 100%. 
This is an issue will study more systematically below. For many other industries, the estimated 
returns are in plausible ranges. 

Next, let us turn to the results for the effects of R&D spillovers from other industries. In 
many cases, the information contained in the observations drive the estimated rates of return 
down to a value close to 0. Apparently, the industries considered did no get relevant technology 
transmitted from the R&D-performing industry, or it did not manage to use it in a productivity-
enhancing way.  Two industries stand out in apparently generating hardly any positive 
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productivity effects for other industries. These are “chemicals”(6) and “radio, TV and 
communication equipment” (14). 

Six industries generated technology spillovers that raised labor productivity in at least ten 
industries. These were: “pulp, paper and printing” (4), “fuels” (5), “rubber and plastics”(7), 
“office machinery” (12), “instruments” (15) and “other manufacturing” (18). With the exception 
of (7) and (12), these industries might not be the ones one would have in mind as being very 
important in shaping manufacturing-wide productivity growth. It should be borne in mind, 
however, that rates of return do not say much about the contributions of these industries to 
productivity growth. The correct interpretation of the reported estimates is: if industry i would 
have spent the same amount of money on R&D activities as industry j (and with the same success 
rate), it would have enjoyed a rate of return on this investment equal to the value reported. In 
view of the fact that the amounts of R&D spent in an industry like “other manufacturing” (18) 
are rather small in comparison to other industries, the contribution to productivity growth on 
other industries is probably relatively modest. 

It is also interesting to see which industries gained much from R&D activities in other 
industries. In this respect, we find considerable differences. Industries that appear not to have 
experienced a lot of positive spillovers (at least not originating from a diversity of industries) are 
“textiles and leather” (2), “wood” (3), “metal products” (10, “electrical machinery” (13) and 
“motor vehicles” (16). At the other end of the spectrum, we also identify industries that received 
productive spillovers from virtually all industries. Examples are “chemicals” (6), “machinery” (11) 
and “radio, TV and communication equipment” (14). It is important, however, to note that in 
particular for the last two industries, the value of the pseudo-R2s is low. This implies that the 
positive estimates are mainly due to the uniform prior we used, which amounted to a rate of 
return of 50%. As can easily be checked, many of the estimated rates of return are close to this 
value indeed.     
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Table 1. GME estimations of rates of return to R&D and R&D spillovers 

 iα  
D
i1β  D

i 2β  D
i 3β  D

i 4β  D
i 5β  D

i 6β  D
i 7β  D

i 8β  D
i 9β  D

i10β  D
i11β  D

i12β  D
i13β  D

i14β  D
i15β  D

i16β  D
i17β  D

i18β  F
iβ  2iγ  3iγ  Pseudo 

-R2 
s1 0.03** 0.38** 0.49** 0.47** 0.16** 0.34** 0.01 0.40** 0.45** 0.27** 0.20** 0.01 0.12** 0.06** 0.00 0.14** 0.00 0.00 0.55** 0.41** -0.05** -0.05** 0.32 
s2 0.02** 0.01 0.40 0.35 0.00 0.31** 0.00 0.09 0.17 0.00 0.01 0.00 0.07** 0.00 0.00 0.01 0.00 0.00 0.33** 0.10** -0.02** -0.03** 0.57 
s3 0.01** 0.01 0.19 0.30 0.38** 0.06 0.00 0.08 0.04 0.01 0.12 0.00 0.00 0.00 0.00 0.05** 0.00 0.02 0.09 0.18** -0.03** -0.04** 0.58 
s4 0.01** 0.35** 0.37** 0.42** 0.28** 0.18** 0.00 0.04** 0.09** 0.01** 0.17** 0.00 0.00 0.00 0.00 0.00** 0.00 0.00** 0.18** 1.00** -0.02** 0.07** 0.43 
s5 -0.12** 0.01 0.15** 0.30** 0.09** 0.94** 0.00 0.05** 0.11** 0.34** 0.00 0.00 0.00 0.00 0.00 0.09** 0.00 0.22** 0.01 0.00** 0.00** 0.31** 0.61 
s6 0.08** 0.22** 0.43** 0.44** 0.15** 0.32** 0.01** 0.37** 0.34** 0.18** 0.21** 0.01** 0.12** 0.02** 0.00** 0.09** 0.04** 0.01** 0.42** 0.01** -0.06** -0.04** 0.30 
s7 -0.04** 0.09** 0.46** 0.41** 0.03** 0.37** 0.00 0.49** 0.40** 0.15** 0.16** 0.00 0.00** 0.01 0.00 0.31** 0.00** 0.11** 0.38** 0.04** -0.02** 0.02** 0.41 
s8 0.02** 0.04 0.38** 0.39** 0.01 0.07** 0.00 0.12** 0.23** 0.04 0.07** 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19** 0.13** -0.02** -0.02** 0.53 
s9 -0.01 0.17 0.45 0.48 0.39** 0.53** 0.01 0.52* 0.43 0.52* 0.40 0.12* 0.10** 0.15** 0.00 0.46** 0.25** 0.15** 0.31 -0.02** -0.14** -0.21** 0.22 
s10 -0.03** 0.26 0.42 0.47 0.31** 0.35 0.02 0.28 0.34 0.24 0.38 0.06 0.07** 0.16** 0.00 0.02 0.05 0.02 0.46* 0.13** 0.00** -0.02** 0.33 
s11 -0.01** 0.31** 0.49** 0.49** 0.40** 0.38** 0.04** 0.57** 0.50** 0.47** 0.44** 0.24** 0.10* 0.10** 0.02** 0.60** 0.21** 0.04** 0.46** 0.03** -0.05** -0.07** 0.20 
s12 0.29** 0.27** 0.47 0.48 0.16** 0.52** 0.00 0.32** 0.41** 0.23** 0.33** 0.00 0.69** 0.22** 0.00 0.06** 0.00 0.17** 0.44** -0.73** 0.06** 2.77** 0.37 
s13 -0.09** 0.17 0.51 0.50 0.29 0.33 0.00 0.46 0.55 0.44 0.37 0.05 0.23** 0.07 0.00 0.11 0.06 0.04 0.49 0.01 0.04** -0.01 0.30 
s14 -0.34** 0.47** 0.46** 0.50** 0.65** 0.47** 0.12** 0.43** 0.45** 0.50** 0.44** 0.27** 0.30** 0.17** 0.86** 0.49** 0.12** 0.15** 0.46** 0.00** -0.12** 0.63** 0.18 
s15 -0.06** 0.17 0.41 0.37 0.07 0.24 0.00 0.21 0.22 0.08 0.26 0.00 0.02 0.00 0.00 0.24** 0.03 0.37** 0.41** 0.05** -0.05** -0.04** 0.39 
s16 -0.02** 0.04 0.32 0.31 0.01 0.19 0.00 0.14 0.16 0.13 0.14 0.00 0.05** 0.00 0.00 0.00 0.25** 0.00 0.11 0.00 -0.02** 0.00 0.50 
s17 -0.04** 0.04** 0.37** 0.46** 0.10** 0.70** 0.00 0.16** 0.24** 0.10** 0.19** 0.00 0.05** 0.00* 0.00 0.00 0.01** 0.06** 0.16** 0.04** 0.03** 0.00** 0.45 
s18 -0.01** 0.02 0.30 0.25 0.08* 0.03 0.00 0.39** 0.22 0.03 0.02 0.00 0.00 0.00 0.00 0.05** 0.00 0.00 0.34** 0.05** 0.01** 0.00 0.55 

* Estimates significantly different from 0 at 10%; ** Estimates significantly different from 0 at 5%; 
Shaded cells on the main diagonal refer to productivity effects of “own” R&D. 
Support vectors for all iα , 2iγ and 3iγ : (-5, 0, 5); Support vectors for all D

ijβ : (0, 0.5, 1); Support vectors for all F
iβ : (-1, 0, 1). 
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Most of the estimated rates of return to foreign intraindustry spillovers are positive, such as in 
“food” (1), and to a lesser extent, “wood” (3), “non-metallic mineral products” (8) and “metal 
products” (10). As was mentioned already, we specified the support vector for the associated 
coefficient as (-1, 0, 1). We did so to consider that foreign R&D can lead to positive productivity 
effects through knowledge externalities, but also to business stealing effects. Such business 
stealing effects appear to dominate in the “computers” industry (12). One might speculate that 
the successful R&D projects in the US and Japan have largely eradicated high-productivity 
activities from many of the other countries in the sample, such as France and Italy. 

For “pulp, paper, and printing” (4) we find a rate of return to foreign intraindustry spillovers 
equal to the upper boundary of the prior distribution. This is another case that asks for sensitivity 
analysis. Results for a different set of support vectors are documented in Appendix C. As can be 
concluded from the pseudo-R2s, the wider support vectors and the higher expected rates of 
returns to domestic interindustry spillovers implied by the prior uniform distributions yield lower 
explanatory power. Nevertheless, most results do not change in a qualitative sense. The estimated 
rates of return are generally a bit higher, which should not come as a surprise: the expected value 
of the prior distributions is higher than in the baseline case reported in Table 1, after which 
exactly the same information (in the form of observations) is fed to the entropy maximizing 
program.         

Some of the results we find are in line with intuition, others were less expected. Particularly, 
the result that our estimation framework singles out own R&D as yielding significant returns 
(while we treated these intensities symmetrically with indirect R&D intensities reflecting 
spillovers) makes us think that interesting and insightful results can be attained by further 
exploring GME estimation of technology spillover effects. Testing several specifications of the 
regression equation should prove a useful avenue for future research.  
 
 
6. Conclusions 
 
In this paper, we introduced a novel approach to the assessment of the impact of interindustry 
technology spillovers on labor productivity. Unlike the vast majority of empirical studies 
undertaken so far, we do not use classical least-squares estimation techniques, but rely on 
Generalized Maximum Entropy techniques. This toolbox of econometric methods is particularly 
geared towards situations in which data are ill-behaved. In studies linking productivity growth to 
sources of spillovers, multicollinearity is often a big problem, as a consequence of which it is 
impossible to estimate the effects of R&D done in individual industries. This paper is the first 
one to approach these problems using GME techniques. 

GME estimation yields much more plausible results than ordinary least squares estimation. 
Our results show that with just a few exceptions, industries attain highly positive rates of return 
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to their R&D investments. Moreover, some industries benefit from innovation in many other 
industries, whereas others mainly rely on own R&D activities. Generally, industries benefit from 
technology generated in similar firms abroad. In the computer industry, however, very successful 
R&D in a few countries appear to have had very negative effects in other countries. This business 
stealing effect dominated strongly. 

The analysis in this paper can be extended in various ways. First, we do not employ the full 
potential of our dataset in terms of dynamic analyses. It should be possible to replicate studies 
like Los and Verspagen (2000), especially because GME can deal with non-stationary series of 
observations without having to incorporate cointegration formulations and the like. A second 
extension would not relate to the application, but more to a potential improvement in terms of 
the methodology. In this paper, our prior has been that all industries benefit to an identical extent 
from technology spillovers. Although the previous literature experienced difficulties in assessing 
the exact origins of productivity-enhancing spillovers, it made clear that industries differ in the 
extent to which spillovers play a role. Such information could be used to work with industry-
specific priors, which might further improve the accuracy of the estimates. Finally, our paper 
does not shed light on the importance of the channels through which the most important 
technology spillovers flow. In our view, it should be possible to estimate a single productivity 
parameter for an indirect R&D variable for which the weights are estimated simultaneously. In a 
next step, these weights could be compared to the weights found by researchers who constructed 
their weights based on a specific idea of how technological spillovers emerge.      
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Appendix A: Statistical properties of the GME estimator 
 

The large sample properties of the ME estimators are analyzed in Golan et al. (1996, chapter 6). ME 

estimators are shown to be consistent and asymptotically normal. Golan et al. also analyze small sample 

properties, using Monte Carlo simulation. They numerically compare the GME estimators to traditional 

least squares and maximum likelihood estimators. Their results show a good performance in terms of the 

accuracy of the estimates. 

In order to do inference in the GME approach, the procedure suggested by Mittelhammer and Cardell 

(1997), Fraser (2000) and Golan et al. (2001) can be followed. Under assumptions on the behavior of 
model eXβy +=  that guarantee the consistency and asymptotical normality of the estimator, the 

distribution of the estimates follows ( ) ⎥
⎦
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1

. Hence, it is possible to 

estimate the variance of GME estimators and obtain the t-ratios as 
( )β

β
ˆˆ

ˆ

raV
. 

 

 

 



 

 

20

Appendix B: Industry Classification 

 
1.  Food, beverages and tobacco 10. Fabricated metal products 

2. Textiles, textile, leather and footwear 11. Machinery, n.e.c. 

3. Wood and products of wood and cork 12. Office, accounting and computing machinery 

4. Pulp, paper, paper products, printing and 
publishing 

13. Electrical machinery and apparatus, n.e.c. 

5. Coke, refined petroleum and nuclear fuel 14. Radio, television and communication 
equipment 

6. Chemicals and chemical products 15. Medical, precision and optical instruments 

7. Rubber and plastics 16. Motor vehicles, trailers and semi-trailers 

8. Other non-metallic mineral products 17. Other transport equipment 

9. Basic metals 18. Manufacturing, n.e.c. 
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 Appendix C: Sensitivity Analysis 

 

Table C1. Sensitivity of the GME estimates 

 iα  
D
i1β  D

i 2β  D
i 3β  D

i 4β  D
i 5β  D

i 6β  D
i 7β  D

i 8β  D
i 9β  D

i10β  D
i11β  D

i12β  D
i13β  D

i14β  D
i15β  D

i16β  D
i17β  D

i18β  F
iβ  2iγ  3iγ  Pseudo 

-R2 
s1 0.03** 0.48** 0.72** 0.67** 0.14** 0.42** 0.01 0.52** 0.62** 0.29** 0.20** 0.00 0.10** 0.04** 0.00 0.11** 0.00 0.00 0.84** 0.44** -0.04** -0.05** 0.38 
s2 0.02** 0.01 0.55 0.48 0.00 0.36** 0.00 0.08 0.18 0.00 0.01 0.00 0.06** 0.00 0.00 0.00 0.00 0.00 0.38** 0.10** -0.02** -0.03** 0.61 
s3 0.01** 0.00 0.21 0.38 0.45** 0.06 0.00 0.09 0.03 0.00 0.12 0.00 0.00 0.00 0.00 0.05** 0.00 0.01 0.09 0.19** -0.03** -0.04** 0.63 
s4 -0.01** 0.46** 0.58** 0.69** 0.55** 0.42** 0.00 0.13** 0.26** 0.06** 0.35 0.00 0.00** 0.00** 0.00 0.01** 0.00 0.01** 0.36** 1.44** -0.04** 0.07** 0.44 
s5 -0.16** 0.01 0.25** 0.46** 0.08** 1.36** 0.00 0.10** 0.19** 0.43** 0.01 0.00 0.00 0.00 0.00 0.07** 0.00 0.29** 0.02* -0.03** -0.02** 0.25** 0.61 
s6 0.07** 0.28** 0.63** 0.64** 0.17** 0.45** 0.00 0.51** 0.46** 0.23** 0.29** 0.00 0.13** 0.02* 0.00 0.09** 0.04** 0.01 0.58** 0.01** -0.06** -0.04** 0.37 
s7 -0.05** 0.06** 0.63** 0.55** 0.01** 0.44 0.00 0.67** 0.47** 0.11** 0.15** 0.00 0.00 0.00** 0.00 0.32** 0.00 0.10** 0.45** 0.04** -0.02** 0.02** 0.47 
s8 0.02** 0.02 0.51** 0.51** 0.01 0.05 0.00 0.10 0.25* 0.03 0.05 0.00 0.00 0.00 0.00 0.00** 0.00 0.00 0.17** 0.12** -0.02** -0.02** 0.59 
s9 -0.02** 0.13 0.62 0.70 0.50** 0.79** 0.00 0.74 0.56 0.74 0.53 0.08 0.06 0.11 0.00 0.44** 0.24** 0.11 0.36 -0.02** -0.12** -0.20** 0.29 
s10 -0.03** 0.26 0.56 0.68 0.35** 0.44* 0.01 0.30 0.40 0.24 0.49* 0.03 0.05 0.14** 0.00 0.01 0.04 0.01 0.62** 0.12** 0.00 -0.01** 0.40 
s11 -0.02** 0.35** 0.72** 0.72* 0.53** 0.51** 0.02 0.83** 0.71** 0.64** 0.61** 0.23** 0.08** 0.09** 0.01 0.66** 0.19** 0.03* 0.67** 0.03** -0.04** -0.06** 0.26 
s12 0.12** 0.31** 0.68** 0.71** 0.19** 0.77** 0.00 0.41** 0.57** 0.26** 0.44** 0.00 1.05** 0.22** 0.00 0.05** 0.00 0.15** 0.62** -0.76** 0.12** 2.76** 0.39 
s13 -0.10** 0.14 0.75 0.74 0.32 0.42 0.00 0.62 0.79 0.52 0.46 0.02 0.22** 0.04 0.00 0.07 0.04 0.03 0.67 0.01 0.04** 0.00 0.37 
s14 -0.41** 0.69** 0.63** 0.73** 1.14** 0.68** 0.03 0.52** 0.58** 0.74** 0.54** 0.14** 0.24** 0.07** 1.45** 0.66** 0.02** 0.05** 0.63** -0.01** -0.14** 0.56** 0.20 
s15 -0.06** 0.15 0.56 0.48 0.04 0.25 0.00 0.22 0.22 0.06 0.28 0.00 0.01 0.00 0.00 0.23** 0.02 0.37** 0.51** 0.05** -0.05** -0.04** 0.47 
s16 -0.01** 0.03 0.38 0.37 0.00 0.19 0.00 0.12 0.14 0.12 0.12 0.00 0.04** 0.00 0.00 0.00 0.24** 0.00 0.10 0.00 -0.02** 0.01 0.57 
s17 -0.04** 0.02 0.49** 0.64** 0.08** 0.92** 0.00 0.16** 0.28** 0.08** 0.21** 0.00 0.03** 0.00 0.00 0.00 0.01* 0.04** 0.20** 0.05** 0.02** 0.00** 0.51 
s18 -0.01** 0.01 0.35 0.27 0.07 0.02 0.00 0.49** 0.21 0.02 0.01 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.39** 0.05** 0.01** -0.01** 0.60 
* Estimates significantly different from 0 at 10%; ** Estimates significantly different from 0 at 5%; 
Shaded cells on the main diagonal refer to productivity effects of “own” R&D; 
The support vectors were fixed as (0, 0.75, 1.5) for the interindustry spillovers, in (-1.5,0,1.5) for the aggregated R&D in the same industry abroad and in (-7.5,0,7.5) for the intercept 
and the time dummies. 
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