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Exact Small Sample Properties of the Instrumental Variable

Estimator. A View From a Different Angle.

Halvor Mehlum*

Abstract

I derive the exact small sample properties of the instrumental variables estima-
tor using a trigonometric approach. The distribution for the estimation error is
decomposed into a product of three components - each with an intuitive interpreta-
tion. This approach helps the discussion on what underlies the exact shape of the

estimator’s distribution and in particular the possibility of a bimodal distribution.

Keywords: Instrument variable estimator

JEL: C30

1 Introduction

One of the core results in econometrics is that the instrumental variable estimator is
consistent. For small samples and weak instruments, however, the distribution of the in-
strumental variable estimator may be both skewed and biased. The many contributions to
the exploration of the small sample properties are authoritatively summarized by Phillips
(1983). Hence, there should not be more to say about the issue. In 1990 however, Nelson
and Startz points to the interesting result that the exact distribution of the instrumental

variable estimator not only may be skewed and have mode off the target. It could even

*Department of Economics, University of Oslo P.O. Box 1095, Blindern N-0317 Oslo, Norway. E-mail:
halvor.mehlum@econ.uio.no. I want to thank Gunnar Bardsen, Sheetal Chand, Jo Thori Lind, Ragnar
Nymoen, and Tore Schweder for useful comments.
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be bimodal. Maddala and Jeong (1992), following up on Nelson and Startz, clarified
what causes the bimodality. Later Woglom (2001) went in more detail using Marsaglia
(1965) to analyze the issue. Several of these discussions supplement their calculations
with intuitive reasoning based on the trigonometry of the problem. However, none of
them uses trigonometric methods. Hence the discussion is not linked to the analysis and
the intuitions for the results are therefore not entirely clear. In this paper I approach the
problem head on using trigonometry and geometry and manage to decompose the density
of the instrumental variable estimator into three factors, each with intuitive interpreta-
tions. The decomposition is the main contribution of the paper' and the relevance of
the results beyond that of the instrument variable estimator. It can also be used when
deriving the exact distribution of any ratio of correlated normal variables. Many such
applications appear in econometrics. Examples are the estimation of long run parameters

in dynamic models, and the estimation of equilibrium rate of unemployment NAIRU.

2 The Analysis

In this paper I follow Woglom’s description of the problem. Consider a model with one

structural and one reduced form equation:

Y =0X+4+u
(1)
X=~vZ+v

Here Y and X are endogenous variables while Z is an exogenous deterministic variable.

2

The error terms w and v are normally distributed with zero mean and a variances o,

and o2 and correlation coefficient p. The degree of endogeneity of X is measured by p*.
The quality of the instrument Z is measured by the squared correlation between Z and
X denoted R? = v*myz /0% (where my; is the empirical moment between k and [). By

using the instrument variable method to estimate the parameter of interest, 3, we get the

n the statistics literature the results in Nicholson (1941) overlaps part of my analysis. He follows,
however, a different route. The decomposition result is to my knowledge entirely new.
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estimator b. It can be shown that the estimation error is

b— ﬁ — W= mzy, Myz Tuz (2)

p— p— ;
mzx  YMzz +Myz Y+ Tz

where 7,7 = myuz/myzz and r,; = myz/mzy are regression coefficients such that ryy
~ N (0,0%/ (mzzT)). The correlation coefficient between r,7 and r,7 is p. Hence, the
estimation error w is the fraction of two correlated bivariate normal distributed variables.
For a large sample, large T', the distribution of w is bell shaped with zero mean. For small
T, however, the probability distribution for w may have both mode and mean different
from zero, it may be highly skewed. It may even have two modes.

In this paper I provide a new method for establishing the exact distribution for w.
The method provides a short and direct link from the distribution of r,z,7r,z to the
distribution of w. I start from the observation that p = (p1, p2) = (7 + rvz, Tuz) is a point
in the plane with a bivariate normal probability distribution. Hence, for any p, w is equal
to the tangent to the angle 6 of the line going through the origin and p: tan (0) = pa/p;.
The first step is to derive the distribution of #. In other words: What is the probability of
a p such that nsin (A) = py and ncos () = p1? (where n = \/p? + p is the distance from
p to origin.) Since p is bivariate normal with mean (v, 0), it follows from the standard

formulas that
0 %4
1 - 2
P@:/n 62(1_p)dn 3
0(6) Il 2%0102m 3)

(ncos () —)° N (nsin (6))? ~ 2p(ncos(#) —v)nsin (0)

U% O'% 01029

V=

where the variance of p; is 02 = 02/ (myz;T), the variance of py is 03 = 02/ (myzT)

and the correlation between p; and ps is p. For a given angle § € [—90°,90°], the two
dimensional normal density is integrated by letting the distance from the origin n run from
—o0 to 0co. The |n| term captures that we are integrating over sectors of infinitesimal

positive width where the width increases in proportion to |n|. Or to put it differently; as
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n increases the distance between the 6-line and the (6 + A#)-line increases in proportion

to n.

Figure 1: Deriving Py(6). Case 1 (62 = 02 = 0.1 and p = 0.7)
D2

2 —
1 — Al
p1
—2 —; 2 3
1
—2

b1

Figure 1 and Figure 2 gives two illustrations of how Py () is derived. In both figures
it is assumed that v = 1, hence the distribution of p is a normal elliptic bell with centre
in (1,0). The ellipses in the figures capture from the centre the 10%, the 50%, and
the 90% fractiles. In case 1, in Figure 1, the variances and the correlation are modest
(02 = 02 = 0.1,p = 0.7). In case 2, in Figure 2, the variances and the correlation are

high (62 =03 =1,p=0.95). Py (0) is the probability for the point p to lay in the sector

between the #-line and the (6 + Af)-line. The figures contains two different such 6 sectors
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- one for § = 85° and one for # = 20°. A number of essential features can be noted already

at this stage:

1. Positive correlation results in the mode of Py () to be found for a positive angle
0. The reason is that as the density is tilted to the right the parts of the density
that lay above the horizontal axis are farther from the origin than the parts of the
density that lay below. Hence, as the width of the sectors increases in distance from

the origin, it follows that P, (0) > 0. (For negative correlation the opposite is true.)

2. When the density is far from the origin (v high) the mode is close to zero. The
reason is that the effect referred to above is less important for densities far to the

right.

3. When the density is far from the origin(v high) P, (#) is peaked. The reason is that

for densities far to the right a limited range of 8’s covers the density.

4. When the correlation between p; and ps and their variances are high Py () may be
bimodal. Consider Figure 2. Most of the density is covered as 6 goes from —90° to
50° giving a bell-shape with mode around 10°. However, as 6 reaches 70° the sector
meets the density again - now in the third quadrant. As 6 goes from 70° to 90°,

Py (0) will grow generation a second mode at 90°.

The density Py () in (3) is quite easily calculated using any mathematics software.
The main contribution of this paper, however, is to show that (3) can be decomposed into

a product of two expressions based on univariate normal densities.

2.1 Decomposition

The decomposition builds on the idea that the density covered by a sector, is determined
by 1) the density over a line in the direction and 2) by the precision in this direction. By
precision I simply mean the probability mass’ average distance from the origin. Borrowing

terminology from the mechanics of the balance, the aim is to decompose the probability
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Py (0) into a product of 1) weight W and 2) moment arm A. Hence

By (0) =W () A(6) (4)

Such a decomposition is achieved as follows. Let p = (p1, p2), corresponding to p = (p1, p2),
be a point in the plane that is rotated through the angle 6 relative to the p—plane. This

linear transformation is described by the following formula

1 1 cos (#) sin (0)

P2 P2 sin (¢) — cos (0)

h 2
E - B =" (6)
D2 0 fio
while the covariance matrix is
ﬁl O'% PO 1072 5’% ﬁa’l(}g
Cov =B B = (7)
]52 PO102 O'% ,?)5162 5'%

This transformation keeps all angles and distances, hence p is distributed bivariate nor-
mal, with expectation and covariance given above. The following derivations are based
on standard formulas for marginal and conditional distributions based on the bivariate
normal.

The probability of a line having the angle 6 in the p-plane is equal to the probability
that py is zero. Hence, the weight W is simply

wo-r(2) 8

P

where f is the standard normal density. The precision, or length of arm, in this direction is
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given by the expectation of |p;| conditioned on p, = 0.2 Using the formula for conditional

distributions in combination with formulas for truncated distributions it follows that

A@ =7l =0) = g (127 (22} ) 4 2300 (£2) )

01,0 01,0
ﬂl,o =E (151|152 = 0) = fly — ﬂ2f)‘~71/52
1= Var (pi[p> = 0) = (1 — p*) .07
where F' is the cumulative standard normal distribution function and where the second 0
subscript indicates the conditioning on p, = 0. It can be verified, by using the definitions

above, that (8) and (9) inserted in (4) indeed satisfies (3).

Figure 3 illustrates the linear transformation leading to the decomposition. The weight

Figure 3: Deriving P(#), modest correlation (03 = ¢? = 0.1 and p = 0.7)

> D2
p2 9=

W () is the probability of po = 0, which is given by the probability mass covered by
P2 € [0,Ap]. The arm A (0) is the average distance from the origin for the probability
density covered by the py = 0 line. Visually, it is clear that for the illustrated 6 of 20°
A is around 1.3 while W is somewhat lower than its peak.

Figure 4 illustrates the decomposition in case 1. The solid line shows Pp (6), while

the dotted lines illustrates W and A. Py (6) is bell-shaped and quite symmetric. It has

2Note that the balance analogy is not perfect. When using absolute value, mass in the negative
direction do not balance weight in the positive direction as would be the case if a lever was resting on
the origin.



Instrument Variable Estimator From a Different Angle 8

Figure 4: Decomposing Py(#), case 1.
Py(6)

{ 1 6
—-90° 90°
mode and mean to the right of zero. The shape is more or less determined by the weight
function W. The reason for W being bell-shaped is the small variance. From Figure 1 it
is seen that the reason for the mode of W being to the right of the origin is that lines
that are tilted in the same direction as the density cover a larger part of the distribution
than lines with an equal negative tilt. The bimodality of A follows from the fact that A
has its minimum for the line that is parallel to the main axis of the density, i.e. § = 45°.
Note that the bimodality of A matters only marginally for the shape of F,. The reason
is that A has its second mode in a region where W is close to zero.

Case 2, as illustrated by Figure 5, is more complex. Here the weight-function W is not
bell-shaped and it only goes close to zero for angles around 45°. Going back to Figure 2,
it is clear that the reason for W having this shape is that there is significant probability
mass in all but the second quadrant. As for A the minimum for W is found where the
f—Iline is parallel to the main axis of the density, i.e. § = 45°. For other angels the line
covers non-negligible parts of the density. In case 2 both A and W have two modes and
Py (0) is far from bell-shaped. It also has two modes and does not go to zero. One should
note, however, that the distinction between shapes under the present circumstances is

somewhat arbitrary. The reason is that when we are analyzing angles going full circle the
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Figure 5: Decomposing Py(f) case 2.
?fje(@)

A(9)

{
—-90°
distributions with necessity bites their own tail. The shape therefore depends on where

you decide to break the circle and make it into a line. In the present case, however, § = 0

is the natural centre, as that angle captures zero estimation error, w = tan () = 0.

3 The last component

I have now decomposed P () into a product of W and A. The main question, however,
relates to w = tan (). The density function P (6) can easily be converted to a density
over w, P, (w), by multiplying by the Jacobian, (9tan () /88) " = (1+ tan (9)2)_1 =
cos (). This compensates for the fact that for larger 6 each sector, between 6 and 6+ A4,
covers a larger range of tangents.® It follows that the density for the estimation error is

given by
P, (w) = cos () Py (A) = cos (A)*> A () W (0), where § = arctan (w)

The third factor cos (9)2 is bell-shaped, symmetric around the origin and it approaches
zero as 0 — £90°. The distribution for P, (w) will always inherit the last feature.

The question is under what conditions distinct features of Py () - e.g. skewness and

Note that cos (arctan (w)) = 1/ (1 + w?) is in the Cauchy family of distributions.
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bimodality- survives after being multiplied by cos (9)2. The answer is simple for 6 close
to zero. When 6 = 0 then cos (#)* = 1 and the slope of cos (6)” is zero, hence both the
level and the shape of Py is transferred to P,. Therefore, if the mode of Py is to the
right of zero so is the mode of P,. In other words bias is retained. For # far from zero,
however, cos (A)? is small and declines sharply with ||, hence a second mode of Py need
to be peaked and steep and reasonably close to § = 0 in order to show up also in P,,.

Figure 6 illustrates® the transition from Py (6) to P, (tan (8)) by multiplying by cos (6)*.

Figure 6: From Fy(0) to P,(w) case 2.
P

-
-90°

The figure reveals that the bias of Py () in case 2 is indeed retained and so is the bimodal
shape. The second mode of P, (w) is not as high as it is for Py (#). It is, however, more
distinct, in the sense that P, goes to zero at each side of the second mode.
Geometrically, the reason for the survival of the bimodality is that Fy has a region
where it is close to zero between the two modes. Py is close to zero between its two modes
if there is strong correlation between p; and p,. Whether the second mode is significant
or not depends on whether the variances of p are high giving a significant probability
mass in the third quadrant. To sum up: the condition for a significant second mode is

strong endogeneity (giving high correlation) combined with weak instrument (giving high

“Note that P, in this figure is drawn as a function of ; P, (tan (#)) . P, is therefore not a probability
density proper. For the qualitative discussion this does not matter much as w is a continuously increasing
function of 6.
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variances).

4 Conclusion

I have provided a method to decompose the exact density of the instrument variable es-
timator. The results show that by trigonometric reasoning one may efficiently derive the
distribution of the estimation error. The decomposition following from the trigonometry
approach allows for intuitive interpretations of how the shape of the distribution is deter-
mined by instrument quality and endogeneity. I have employed the method to instrument
variable estimation. It can be used whenever deriving the exact distribution of any ratio
of correlated normal variables. Many such applications appear in econometrics. Examples
are the estimation of long run parameters in AR models, the estimation of equilibrium

rate of unemployment NAIRU, and the estimation of the monetary condition index MCI.?
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